Power-amplifying strategy in vibration-powered energy harvesters
NASA Astrophysics Data System (ADS)
Ma, Pyung Sik; Kim, Jae Eun; Kim, Yoon Young
2010-04-01
A new cantilevered piezoelectric energy harvester (PEH) of which the additional lumped mass is connected to a harmonically oscillating base through an elastic foundation is proposed for maximizing generated power and enlarging its frequency bandwidth. The base motion is assumed to provide a given acceleration level. Earlier, a similar energy harvester employing the concept of the dynamic vibration absorber was developed but the mechanism of the present energy harvester is new because it incorporates a mass-spring system in addition to a conventional cantilevered piezoelectric energy harvesting beam with or without a tip mass. Consequently, the proposed energy harvester actually forms a two-degree-of-freedom system. It will be theoretically shown that the output power can be indeed substantially improved if the fundamental resonant frequencies of each of the two systems in the proposed energy harvester are simultaneously tuned as closely as possible to the input excitation frequency and also if the mass ratio of a piezoelectric energy harvesting beam to the lumped mass is adjusted below a certain value. The performance of the proposed energy harvester is checked by numerical simulation.
Vibration energy harvesting for low power and wireless applications
NASA Astrophysics Data System (ADS)
Challa, Vinod Reddy
Vibration energy harvesting is an attractive technique for the potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from ambient and mechanical vibrations, there are several generic requirements independent of the energy transfer mechanism that needs to be satisfied for efficient energy harvesting which are pursued here. For example, most energy harvesting devices developed are based on a single resonance frequency, and while recently efforts are being attempted to broaden the frequency range of the devices, lacking is a robust frequency tunable technique. In this work, a resonance frequency tunable mechanism employing magnetic force/stiffness technique is developed that allows the device frequency to increase or decrease based on the mode (attractive, repulsive) of the magnetic force applied. The developed technique provides the device to tune to approximately +/- 25% of its untuned resonance frequency allowing a wide frequency bandwidth. Further, this technique is developed into a self-tunable technique for autonomous device development. Another generic requirement is to match the electrical damping to the mechanical damping in the energy harvesting system for maximum efficiency. To satisfy this requirement, two independent energy harvesting techniques (piezoelectric and electromagnetic) are coupled through design, resulting in ˜30% and ˜65.5% increase in two different independent devices. Another key requirement is developing MEMS scale energy harvesting devices that will not only promises to enhance the power density but also allows potential integration with wireless sensors as an on-chip power source. Piezoelectric MEMS composite structures along with integrated silicon tip masses are fabricated using standard microfabrication techniques. Spray coating and spin coating techniques were explored to deposit zinc oxide as the piezoelectric material. Commercially available magnets were employed to
NASA Astrophysics Data System (ADS)
Kim, Jae Eun; Kim, Yoon Young
2013-07-01
We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.
NASA Astrophysics Data System (ADS)
Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.
2013-07-01
The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.
Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration
NASA Astrophysics Data System (ADS)
Rastegar, J.; Pereira, C.; Nguyen, H.-L.
2006-03-01
This paper presents a new class of highly efficient piezoelectric based energy harvesting power sources for mounting on platforms that vibrate at very low frequencies as compared to the frequencies at which energy can be efficiently harvested using piezoelectric elements . These energy harvesting power sources have a very simple design and do not require accurate tuning for each application to match the frequency of the platform vibration. The developed method of harvesting mechanical energy and converting it to electrical energy overcomes problems that are usually encountered with harvesting energy from low frequency vibration of various platforms such as ships and other platforms with similar vibratory (rocking or translational) motions. Omnitek Partners has designed several such energy harvesting power sources and is in the process of constructing prototypes for testing. The developed designs are modular and can be used to construct power sources for various power requirements. The amount of mechanical energy available for harvesting is obviously dependent on the frequency and amplitude of vibration of the platform, and the size and mass of the power source.
High output power AlN vibration-driven energy harvesters
NASA Astrophysics Data System (ADS)
Cao, Z.; He, J.; Wang, Q.; Hara, M.; Oguchi, H.; Kuwano, H.
2013-12-01
This paper presents miniature AlN harvesters for harvesting low-frequency and two-dimensional vibration energy. A high fracture toughness and high yield strength stainless steel substrate was used to enhance output power and reduce resonate frequency of vibration energy harvesters. The thickness of 1.89 μm AlN films were deposited on 50 μm thick stainless steel (SUS) substrates for fabricating the harvesters. The Al/AlN/SUS multi-layer sheet was made into long and thin plate-like cantilevers with heavy proof masses attached at their free ends. The devices can collect vibration energy efficiently not only under perpendicular direction to the plate surface of cantilevers but also under the parallel direction. When vibration acceleration was 1.0 g, output power was 28.114 μW for perpendicular vibration and 51.735 μW for parallel vibration. When the acceleration of parallel vibration was 1.6 g, output power was 89.339 μW.
Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
NASA Astrophysics Data System (ADS)
Amin Karami, M.; Inman, Daniel J.
2012-01-01
Linear and nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the pacemakers by converting the vibrations from the heartbeats to electrical energy. The power requirement of a pacemaker is very low. However, after few years, patients require another surgical operation just to replace their pacemaker battery. Linear low frequency and nonlinear mono-stable and bi-stable energy harvesters are designed according to the especial signature of heart vibrations. The proposed energy harvesters are robust to variation of heart rate and can meet the power requirement of pacemakers.
Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Ahmed-Seddik, B.; Despesse, G.; Boisseau, S.; Defay, E.
2013-12-01
This paper reports on the design, fabrication and testing of an innovative 33-mode piezoelectric vibration energy harvester (VEH). This system is able to change its resonant frequency in real time to follow the main frequency of a vibration source. The system proposed in this paper enables to adapt VEH characteristics (resonant frequency, electrical damping) to vibration parameters variations (frequency and amplitude) in order to optimize the extraction of energy and then the output power at any time. This solution allows up to 40% of resonant frequency tuning ratio; moreover, the adaptation is made in real time and the consumption of the regulation electronic is less than 10% of the VEH output power (480μW@0.1g-276Hz).
NASA Astrophysics Data System (ADS)
Ren, Long; Chen, Renwen; Xia, Huakang; Zhang, Xiaoxiao
2016-04-01
To supply power to wireless sensor networks, a type of broadband electromagnetic vibration energy harvester (VEH) using bistable vibration scavenging structure is proposed. It consists of a planar spring, an electromagnetic transducer with an annular magnetic circuit, and a coil assembly with a ferrite bobbin inside. A nonlinear magnetic force respecting to the relative displacement is generated by the ferrite bobbin, and to broaden the working frequency bandwidth of the VEH. Moreover, the ferrite bobbin increases the magnetic flux linkage gradient of the coil assembly in its moving region, and further to improve its output voltage. The dynamic behaviors of the VEH are analyzed and predicted by finite element analysis and ODE calculation. Validation experiments are carried out and show that the VEH can harvest high energy in a relatively wide excitation frequency band. The further test shows that the load power of the VEH with a load resistor of 90Ω can reach 10mW level in a wide frequency bandwidth when the acceleration level of the harmonic excitation is 1g. It can ensure the intermittent work of many sensors as well as wireless communication modules at least.
NASA Astrophysics Data System (ADS)
Kim, D.; Hewa-Kasakarage, N. N.; Yoon, S.; Hall, N. A.
2012-09-01
The minimum transducer coupling to enable maximum theoretical power capture from vibration energy harvesters is derived, leading to the simple conclusion that the product of the transducer coupling coefficient and resonance quality factor must be greater than two. Maximum theoretical power capture is experimentally demonstrated on a micromachined piezoelectric energy harvester comprised of a 20 μm thick epitaxial silicon cantilever with 800 nm thick lead-zirconate-titanate along the top surface and a bulk silicon mass at the tip. The coupling of these structures, although small (κ2=0.0033), is entirely sufficient to enable maximum theoretical power capture owing to light damping (Q =906).
A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-01-01
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670
A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-01-01
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670
NASA Astrophysics Data System (ADS)
Du, Sijun; Jia, Yu; Seshia, Ashwin
2015-12-01
A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.
Self-suspended vibration-driven energy harvesting chip for power density maximization
NASA Astrophysics Data System (ADS)
Murillo, Gonzalo; Agustí, Jordi; Abadal, Gabriel
2015-11-01
This work introduces a new concept to integrate energy-harvesting devices with the aim of improving their throughput, mainly in terms of scavenged energy density and frequency tunability. This concept, named energy harvester in package (EHiP), is focused on the heterogeneous integration of a MEMS die, dedicated to scavenging energy, with an auxiliary chip, which can include the control and power management circuitry, sensors and RF transmission capabilities. The main advantages are that the whole die can be used as an inertial mass and the chip area usage is optimized. Based on this concept, in this paper we describe the development and characterization of a MEMS die fully dedicated to harvesting mechanical energy from ambient vibrations through an electrostatic transduction. A test PCB has been fabricated to perform the assembly that allows measurement of the resonance motion of the whole system at 289 Hz. An estimated maximum generated power of around 11 μW has been obtained for an input vibration acceleration of ˜10 m s-2 when the energy harvester operates in a constant-charge cycle for the best-case scenario. Therefore, a maximum scavenged power density of 0.85 mW cm-3 is theoretically expected for the assembled system. These results demonstrate that the generated power density of any vibration-based energy harvester can be significantly increased by applying the EHiP concept, which could become an industrial standard for manufacturing this kind of system, independently of the transduction type, fabrication technology or application.
NASA Astrophysics Data System (ADS)
Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar
2015-12-01
This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof mass displacement reaches maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization and tunable electromechanical coupling k2. Measurement results show that harvested power can be made to follow the optimal velocity-damped generator also for a range of accelerations that implies displacement constraints. Comparing to the saturated power, the power increases 1.5 times with the optimal load and an electromechanical coupling k2=8.7%. This value is 2.3 times for a higher coupling k2=17.9%. The obtained system effectiveness is beyond 60% under the optimization. This work also shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer.
Self-powered autonomous wireless sensor node using vibration energy harvesting
NASA Astrophysics Data System (ADS)
Torah, R.; Glynne-Jones, P.; Tudor, M.; O'Donnell, T.; Roy, S.; Beeby, S.
2008-12-01
This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s-2rms acceleration and can be as low as 0.2 m s-2rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm3 producing an average power of 58 µW at 0.6 m s-2rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s-2rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application.
NASA Astrophysics Data System (ADS)
Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.
2015-04-01
In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.
Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives
NASA Astrophysics Data System (ADS)
Chang, Jen-Yuan (James; Gutierrez, Mike
Energy harvesters with battery charging circuitry, which collect wasted kinetic energy from a magnetic disk drive's rotary actuator seek operations and flexible cable vibrations, are proposed, prototyped and presented in this paper. Depending on a disk drive's form factor and seek format, it is suggested by the present study that the harvested energy can be optimized by tuning the harvester's natural frequencies to major frequency content in the rotary actuator's excitation. It is demonstrated in this study that with prototype energy harvester systems, one can easily light up a regular LED. The work presented in this paper has implications in energy saving and recycling wasted mechanical energy for other low-power electronic applications in magnetic disk drive storage devices.
NASA Astrophysics Data System (ADS)
Das, Saptarshi; Shi, Yan; Dong, Bo; Biswas, Subir
2016-04-01
This paper develops an energy-aware ultrasonic sensor network architecture using a Pulse Switching approach for lightweight, through-substrate operation in Structural Health Monitoring applications. Pulse Switching protocols employ single pulses instead of multi-bit packets for information delivery with maximal lightness in event monitoring with binary sensing requirements i.e. where event information transmitted is only a single bit (YES / NO) based on evaluation of structural characteristics. The paper presents a simulation study of the Energy-Aware Through-Substrate Pulse Switching protocol performance for structural monitoring when operated using energy harvested from intermittent vibrations in the structure itself. The paper incorporates an energy harvesting model for simulating memory-less vibration patterns using exponentially distributed random processes at different networked nodes. These nodes are placed inside a rectangular plate structure and the corresponding harvested energy profiles are simulated. The vibration profiles are a function of the position of the node on the plate as well as time. Such spatio-temporal variation leads to interesting dynamics in the energy-aware protocol operation which have been explored in the current paper setting. Through the simulations, it is shown that the proposed Energy-Aware Pulse Switching protocol mechanisms can offer a robust through-substrate network that can be reliably used for Structural Health Monitoring using vibration-harvested energy.
Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes
NASA Astrophysics Data System (ADS)
Iannacci, J.; Gottardi, M.; Serra, E.; Di Criscienzo, R.; Borrielli, A.; Bonaldi, M.
2013-05-01
The aim of this contribution is to report and discuss a preliminary study and rough optimization of a novel concept of MEMS device for vibration energy harvesting, based on a multi-modal dynamic behavior. The circular-shaped device features Four-Leaf Clover-like (FLC) double spring-mass cascaded systems, kept constrained to the surrounding frame by means of four straight beams. The combination of flexural bending behavior of the slender beams plus deformable parts of the petals enable to populate the desired vibration frequency range with a number of resonant modes, and improve the energy conversion capability of the micro-transducer. The harvester device, conceived for piezoelectric mechanical into electric energy conversion, is intended to sense environmental vibrations and, thereby, its geometry is optimized to have a large concentration of resonant modes in a frequency range below 5-10 kHz. The results of FEM (Finite Element Method) based analysis performed in ANSYSTM Workbench are reported, both concerning modal and harmonic response, providing important indications related to the device geometry optimization. The analysis reported in this work is limited to the sole mechanical modeling of the proposed MEMS harvester device concept. Future developments of the study will encompass the inclusion of piezoelectric conversion in the FEM simulations, in order to have indications of the actual power levels achievable with the proposed harvester concept. Furthermore, the results of the FEM studies here discussed, will be validated against experimental data, as soon as the MEMS resonator specimens, currently under fabrication, are ready for testing.
NASA Astrophysics Data System (ADS)
Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.
2015-12-01
This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.
Adaptive vibration energy harvesting
NASA Astrophysics Data System (ADS)
Behrens, Sam; Ward, John; Davidson, Josh
2007-04-01
By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.
NASA Astrophysics Data System (ADS)
Chandrasekharan, Nataraj
Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous
Vibration Testing of Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey
2003-01-01
The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be
NASA Astrophysics Data System (ADS)
Tao, Kai; Liu, Shuwei; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao
2014-06-01
A novel three-dimensional (3D) electret-based micro power generator with multiple vibration modes has been developed, which is capable of converting low-level ambient kinetic energy to electrical energy. The device is based on a rotational symmetrical resonator which consists of a movable disc-shaped seismic mass suspended by three sets of spiral springs. Experimental analysis shows that the proposed generator operates at an out-of-plane direction at mode I of 66 Hz and two in-plane directions at mode II of 75 Hz and mode III of 78.5 Hz with a phase difference of about 90°. A corona localized charging method is also proposed that employs a shadow mask and multiple discharge needles for the production of micro-sized electret array. From tests conducted at an acceleration of 0.05 g, the prototype can generate a maximum power of 4.8 nW, 0.67 nW and 1.2 nW at vibration modes of I, II and III, respectively. These values correspond to the normalized power densities of 16 µW cm-3 g-2, 2.2 µW cm-3 g-2 and 4 µW cm-3 g-2, respectively. The results show that the generator can potentially offer an intriguing alternative for scavenging low-level ambient energy from 3D vibration sources.
NASA Astrophysics Data System (ADS)
Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.
2015-05-01
In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.
Design Methodology of Micro Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Tanaka, Shuji
Recently, micro vibration energy harvesters are attracting much attention for wireless sensor applications. To answer the power requirement of practical applications, the design methodology is important. This paper first reviews the fundamental theory of vibration energy harvesting, and then discusses how to design a micro vibration energy harvester at a concept level. For the micro vibration energy harvesters, independent design parameters at the top level are only the mass and stroke of a seismic mass and quality factor, while the frequency and acceleration of vibration input are given parameters determined by the application. The key design point is simply to make the mass and stroke of the seismic mass as large as possible within the available device size. Some case studies based on the theory are also presented. This paper provides a guideline for the development of the micro vibration energy harvesters.
Vibration shape effects on the power output in piezoelectric vibro-impact energy harvesters
NASA Astrophysics Data System (ADS)
Twiefel, Jens
2013-04-01
Vibro-Impcact harvesting devices are one concept to increase the bandwidth of resonant operated piezoelectric vibration generators. The fundamental setup is a piezoelectric bending element, where the deflection is limited by two stoppers. After starting the system in resonance operation the bandwidth increases towards higher frequencies as soon the deflection reach the stopper. If the stoppers are rigid, the frequency response gives constant amplitude for increasing frequencies, as long the system is treated as ideal one-DOF system with symmetric stoppers. In consequence, the bandwidth is theoretically unlimited large. However, such a system also has two major drawbacks, firstly the complicated startup mechanism and secondly the tendency to drop from the high constant branch in the frequency response on the much smaller linear branch if the system is disturbed. Nevertheless, the system has its application wherever the startup problem can be solved. Most modeling approaches utilize modal one-DOF models to describe the systems behavior and do not tread the higher harmonics of the beam. This work investigates the effects of the stoppers on the vibration shape of the piezoelectric beam, wherefore a finite element model is used. The used elements are one-dimensional two node elements based on the Timoshenko-beam theory. The finite element code is implemented in Matlab. The model is calculated utilizing time step integration for simulation, to reduce the computation time an auto-resonant calculation method is implemented. A control loop including positive feedback and saturation is used to create a self-excited system. Therefore, the system is always operated in resonance (on the backbone curve) and the frequency is a direct result of the computation. In this case tip velocity is used as feedback. This technique allows effective parametric studies. Investigated parameters include gap, excitation amplitude, tip mass as well as the stiffness of the stopper. The stress and
Extremely low-loss rectification methodology for low-power vibration energy harvesters
NASA Astrophysics Data System (ADS)
Tiwari, R.; Ryoo, K.; Schlichting, A.; Garcia, E.
2013-06-01
Because of its promise for the generation of wireless systems, energy harvesting technology using smart materials is the focus of significant reported effort. Various techniques and methodologies for increasing power extraction have been tested. One of the key issues with the existing techniques is the use of diodes in the harvesting circuits with a typical voltage drop of 0.7 V. Since most of the smart materials, and other transducers, do not produce large voltage outputs, this voltage drop becomes significant in most applications. Hence, there is a need for designing a rectification method that can convert AC to DC with minimal losses. This paper describes a new mechanical rectification scheme, designed using reed switches, in a full-bridge configuration that shows the capability of working with signals from millivolts to a few hundred volts with extremely low losses. The methodology has been tested for piezoelectric energy harvesters undergoing mechanical excitation.
Vibration energy harvester optimization using artificial intelligence
NASA Astrophysics Data System (ADS)
Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.
2011-06-01
This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.
Energy scavenging from environmental vibration.
Galchev, Tzeno; Apblett, Christopher Alan; Najafi, Khalil
2009-10-01
The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The
Wireless Inductive Power Device Suppresses Blade Vibrations
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.
2011-01-01
Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it
Vibration harvesting in traffic tunnels to power wireless sensor nodes
NASA Astrophysics Data System (ADS)
Wischke, M.; Masur, M.; Kröner, M.; Woias, P.
2011-08-01
Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.
Intramolecular vibrational dephasing obeys a power law at intermediate times
Gruebele, M.
1998-01-01
Experimental intramolecular vibrational dephasing transients for several large organic molecules are reanalyzed. Fits to the experimental data, as well as full numerical quantum calculations with a factorized potential surface for all active degrees of freedom of fluorene indicate that power law decays, not exponentials, occur at intermediate times. The results support a proposal that power law decays describe vibrational dephasing dynamics in large molecules at intermediate times because of the local nature of energy flow. PMID:9600900
A vibration energy harvester using magnet/piezoelectric composite transducer
NASA Astrophysics Data System (ADS)
Qiu, Jing; Chen, Hengjia; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli
2014-05-01
In this research, a vibration energy harvester employing the magnet/piezoelectric composite transducer to convert mechanical vibration energy into electrical energy is presented. The electric output performance of a vibration energy harvester has been investigated. Compared to traditional magnetoelectric transducer, the proposed vibration energy harvester has some remarkable characteristic which do not need binder. The experimental results show that the presented vibration energy harvester can obtain an average power of 0.39 mW for an acceleration of 0.6g at frequency of 38 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a widely range of wireless sensors in wireless sensor network.
Harvesting Vibrational Energy Using Material Work Functions
NASA Astrophysics Data System (ADS)
Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika
2014-10-01
Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications.
Harvesting Vibrational Energy Using Material Work Functions
Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika
2014-01-01
Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004
A vibration powered wireless mote on the Forth Road Bridge
NASA Astrophysics Data System (ADS)
Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.
2015-12-01
The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Adaptive learning algorithms for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ward, John K.; Behrens, Sam
2008-06-01
By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.
Enhanced vibration energy harvesting using nonlinear oscillations
NASA Astrophysics Data System (ADS)
Engel, Emily; Wei, Jiaying; Lee, Christopher L.
2015-05-01
Results for the design and testing of an electromagnetic device that converts ambient mechanical vibration into electricity are presented. The design of the device is based on an L-shaped beam structure which is tuned so that the first two natural frequencies have a near two-to-one ratio which is referred to as an internal resonance or autoparametic condition. It is shown that in contrast to single degree-of-freedom, linear-dynamics-based vibration harvesters which convert energy in a very narrow frequency band the prototype can generate power over an extended frequency range when subject to harmonic, base displacement excitation.
Microelectromechanical power generator and vibration sensor
Roesler, Alexander W.; Christenson, Todd R.
2006-11-28
A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.
Energy scavenging from low frequency vibrations
NASA Astrophysics Data System (ADS)
Galchev, Tzeno V.
The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical
A MEMS vibration energy harvester for automotive applications
NASA Astrophysics Data System (ADS)
van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.
2013-05-01
The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.
Vibrational energy transfer in fluids
NASA Astrophysics Data System (ADS)
Miller, David W.; Adelman, Steven A.
A review of several of the available theories of vibrational energy transfer (VET) in the gas and liquid phases is presented. First the classical theory of gas phase VET mainly due to Landau and Teller, to Jackson and Mott and to Zener is developed in some detail. Next the Schwartz-Slawsky-Herzfeld theory, a framework for analysing VET data based on the classical theory, is outlined. Experimental tests of the classical theory and theoretical critiques of its assumptions are then described. Next a brief review of the modern ab-initio quantum approach to gas phase VET rates, taking as an example the work of Banks, Clary and Werner, is given. Theories of VET at elevated densities are then discussed. The isolated binary collision model is reviewed and a new molecular approach to the density, temperature and isotope dependences of vibrational energy relaxation rates, due to Adelman and co-workers, is outlined.
Vibration characteristic of high power CO2 laser
NASA Astrophysics Data System (ADS)
Zhang, Kuo
2015-02-01
High power CO2 laser is widely used in various scientific, industrial and military applications. Vibration is a common phenomenon during laser working process, it will affect the working performance of high power CO2 laser, vibration must be strictly controlled in the condition where the laser pointing is required. This paper proposed a method to investigate the vibration characteristic of high power CO2 laser. An experiment device with vibration acceleration sensor was established to measure vibration signal of CO2 laser, the measured vibration signal was mathematically treated using space-frequency conversion, and then the vibration characteristic of high power CO2 laser can be obtained.
Evaluating vehicular-induced bridge vibrations for energy harvesting applications
NASA Astrophysics Data System (ADS)
Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard
2012-04-01
Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.
Vibration energy harvesting with polyphase AC transducers
NASA Astrophysics Data System (ADS)
McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko
2016-04-01
Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.
Multiple cell configuration electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Marin, Anthony; Bressers, Scott; Priya, Shashank
2011-07-01
This paper reports the design of an electromagnetic vibration energy harvester that doubles the magnitude of output power generated by the prior four-bar magnet configuration. This enhancement was achieved with minor increase in volume by 23% and mass by 30%. The new 'double cell' design utilizes an additional pair of magnets to create a secondary air gap, or cell, for a second coil to vibrate within. To further reduce the dimensions of the device, two coils were attached to one common cantilever beam. These unique features lead to improvements of 66% in output power per unit volume (power density) and 27% increase in output power per unit volume and mass (specific power density), from 0.1 to 0.17 mW cm-3 and 0.41 to 0.51 mW cm-3 kg-1 respectively. Using the ANSYS multiphysics analysis, it was determined that for the double cell harvester, adding one additional pair of magnets created a small magnetic gradient between air gaps of 0.001 T which is insignificant in terms of electromagnetic damping. An analytical model was developed to optimize the magnitude of transformation factor and magnetic field gradient within the gap.
Enhanced vibrational energy harvesting using nonlinear stochastic resonance
NASA Astrophysics Data System (ADS)
McInnes, C. R.; Gorman, D. G.; Cartmell, M. P.
2008-12-01
Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification by noise. However, this apparently counter-intuitive phenomenon does not appear to have been exploited as a tool to enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism without periodic forcing. In order to illustrate this novel effect, a conceptually simple, but plausible model of such a device is proposed to explore the use of stochastic resonance to enhance vibrational energy harvesting.
Vibration energy harvesting from random force and motion excitations
NASA Astrophysics Data System (ADS)
Tang, Xiudong; Zuo, Lei
2012-07-01
A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not
Internal resonance for nonlinear vibration energy harvesting
NASA Astrophysics Data System (ADS)
Cao, D. X.; Leadenham, S.; Erturk, A.
2015-11-01
The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.
Piezoelectric Power Requirements for Active Vibration Control
NASA Technical Reports Server (NTRS)
Brennan, Matthew C.; McGowan, Anna-Maria Rivas
1997-01-01
This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.
Bilgen, Onur; Kenerson, John G; Akpinar-Elci, Muge; Hattery, Rebecca; Hanson, Lisbet M
2015-08-01
The World Health Organization has established recommendations for blood pressure measurement devices for use in low-resource venues, setting the "triple A" expectations of Accuracy, Affordability, and Availability. Because of issues related to training and assessment of proficiency, the pendulum has swung away from manual blood pressure devices and auscultatory techniques towards automatic oscillometric devices. As a result of power challenges in the developing world, there has also been a push towards semiautomatic devices that are not dependent on external power sources or batteries. Beyond solar solutions, disruptive technology related to solid-state vibrational energy harvesting may be the next iterative solution to attain the ultimate goal of a self-powered low-cost validated device that is simple to use and reliable. PMID:25913774
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
2000-01-01
Stirling Technology Company (STC), as part of a Small Business Innovation Research contract Phase II with the NASA Glenn Research Center at Lewis Field, is developing an Adaptive Vibration Reduction System (AVRS) that will effectively eliminate vibrations for the Stirling radioisotope power system. The AVRS will reduce vibration levels for two synchronized, opposed Stirling converters by a factor of 10 or more under normal operating conditions. Even more importantly, the AVRS will be adaptive and will be able to adjust to any changing converter conditions over the course of a mission. The Stirling converter is being developed by NASA and the Department of Energy (DOE) as a high-efficiency option for a radioisotope power system to provide onboard electric power for NASA deep space missions. The high Stirling efficiency of over 25 percent for this application will reduce the required amount of isotope by more than a factor of 3 in comparison to the current radioisotope thermoelectric generators (RTG s). Stirling is the most developed converter option of the advanced power technologies under consideration.
Noise powered nonlinear energy harvesting
NASA Astrophysics Data System (ADS)
Gammaitoni, Luca; Neri, Igor; Vocca, Helios
2011-04-01
The powering of small-scale electronic mobile devices has been in recent years the subject of a great number of research efforts aimed primarily at finding an alternative solution to standard batteries. The harvesting of kinetic energy present in the form of random vibrations (from non-equilibrium thermal noise up to machine vibrations) is an interesting option due to the almost universal presence of some kind of motion. Present working solutions for vibration energy harvesting are based on oscillating mechanical elements that convert kinetic energy via capacitive, inductive or piezoelectric methods. These oscillators are usually designed to be resonantly tuned to the ambient dominant frequency. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, especially at low frequency, and frequency tuning is not always possible due to geometrical/dynamical constraints. We present a new approach to the powering of small autonomous sensors based on vibration energy harvesting by the exploitation of nonlinear stochastic dynamics. Such a method is shown to outperform standard linear approaches based on the use of resonant oscillators and to overcome some of the most severe limitations of present strategies, like narrow bandwidth, need for continuous frequency tuning and low power efficiency. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.
Vibration Monitoring of Power Distribution Poles
Clark Scott; Gail Heath; John Svoboda
2006-04-01
Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.
Piezoelectric energy harvesting from hybrid vibrations
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Abdelkefi, Abdessattar; Hajj, Muhammad R.
2014-02-01
The concept of harvesting energy from ambient and galloping vibrations of a bluff body with a triangular cross-section geometry is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert these vibrations to electrical energy. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena that take place. The results show that, depending on the interaction between the base and galloping excitations, and the considered values of the wind speed, base acceleration, and electrical load resistance, different nonlinear phenomena arise while others disappear. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. The results show that the maximum levels of harvested power are accompanied by a minimum transverse displacement when varying the electrical load resistance.
A vibration energy harvesting device with bidirectional resonance frequency tunability
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Shi, Yong; Fisher, Frank T.
2008-02-01
Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22-32 Hz to enable a continuous power output 240-280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined.
Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters
NASA Astrophysics Data System (ADS)
Oxaal, John
Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).
On Kinetics Modeling of Vibrational Energy Transfer
NASA Technical Reports Server (NTRS)
Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)
1996-01-01
Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.
Vibrational energy flow in substituted benzenes
NASA Astrophysics Data System (ADS)
Pein, Brandt C.
Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore
Two degrees of freedom piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Shengsheng; Cao, Junyi; Zhou, Shengxi; Lin, Jing
2016-04-01
Recently, vibration energy harvesting from surrounding environments to power wearable devices and wireless sensors in structure health monitoring has received considerable interest. Piezoelectric conversion mechanism has been employed to develop many successful energy harvesting devices due to its simple structure, long life span, high harvesting efficiency and so on. However, there are many difficulties of microscale cantilever configurations in energy harvesting from low frequency ambient. In order to improve the adaptability of energy harvesting from ambient vibrations, a two degrees of freedom (2-DOF) magnetic-coupled piezoelectric energy harvester is proposed in this paper. The electromechanical governing models of the cantilever and clamped hybrid energy harvester are derived to describe the dynamic characteristics for 2-DOF magnetic-coupled piezoelectric vibration energy harvester. Numerical simulations based on Matlab and ANSYS software show that the proposed magnetically coupled energy harvester can enhance the effective operating frequency bandwidth and increase the energy density. The experimental voltage responses of 2-DOF harvester under different structure parameters are acquired to demonstrate the effectiveness of the lumped parameter model for low frequency excitations. Moreover, the proposed energy harvester can enhance the energy harvesting performance over a wider bandwidth of low frequencies and has a great potential for broadband vibration energy harvesting.
LaRue, Jerry L; Schäfer, Tim; Matsiev, Daniel; Velarde, Luis; Nahler, N Hendrik; Auerbach, Daniel J; Wodtke, Alec M
2011-12-22
We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer. PMID:22112161
Nonsynchronous vibrations observed in a supercritical power transmission shaft
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Zorzi, E. S.
1979-01-01
A flexible shaft is prone to a number of vibration phenomena which occur at frequencies other than synchronous with rotational speed. Nonsynchronous vibrations from several sources were observed while running a test rig designed to simulate the operation of a supercritical power transmission shaft. The test rig was run first with very light external damping and then with a higher level of external damping, for comparison. As a result, the effect of external damping on the nonsynchronous vibrations of the test rig was observed. All of these nonsynchronous vibrations were of significant amplitude. Their presence in the vibrations spectra for a supercritical power transmission shaft at various speeds in the operating range indicates that very careful attention to all of the vibration spectra should be made in any supercritical power transmission shafting. This paper presents a review of the analysis performed and a comparison with experimental data. A thorough discussion of the observed nonsynchronous whirl is also provided.
Vibration power generator for a linear MR damper
NASA Astrophysics Data System (ADS)
Sapiński, Bogdan
2010-10-01
The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power.
Ueno, Toshiyuki
2015-05-07
Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.
NASA Astrophysics Data System (ADS)
Ueno, Toshiyuki
2015-05-01
Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm3 under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm3. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.
Wideband electromagnetic energy harvesting from ambient vibrations
NASA Astrophysics Data System (ADS)
Mallick, Dhiman; Podder, Pranay; Roy, Saibal
2015-06-01
Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
Vibration energy harvesting using Galfenol-based transducer
NASA Astrophysics Data System (ADS)
Berbyuk, Viktor
2013-04-01
In this paper the novel design of Galfenol based vibration energy harvester is presented. The device uses Galfenol rod diameter 6.35 mm and length 50mm, polycrystalline, production grade, manufactured by FSZM process by ETREMA Product Inc. For experimental study of the harvester, the test rig was developed. It was found by experiment that for given frequency of external excitation there exist optimal values of bias and pre-stress which maximize generated voltage and harvested power. Under optimized operational conditions and external excitations with frequency 50Hz the designed transducer generates about 10 V and harvests about 0,45 W power. Within the running conditions, the Galfenol rod power density was estimated to 340mW/cm3. The obtained results show high practical potential of Galfenol based sensors for vibration-to-electrical energy conversion, structural health monitoring, etc.
Mechanical vibration to electrical energy converter
Kellogg, Rick Allen; Brotz, Jay Kristoffer
2009-03-03
Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.
A new figure of merit for wideband vibration energy harvesters
NASA Astrophysics Data System (ADS)
Liu, W. Q.; Badel, A.; Formosa, F.; Wu, Y. P.
2015-12-01
The performance evaluation method is a very important part in the field of vibration energy harvesting. It provides the ability to compare and rate different vibration energy harvesters (VEHs). Considering the lack of a well-recognized tool, this article proposed a new systematic figure of merit for the appraisement of wideband VEHs. Extensive investigations are first performed for some classic figures for linear VEHs. With the common fundamental information obtained, the proposed figure integrates four essential factors: the revised energy harvester effectiveness, the mechanical quality factor, the normalized bandwidth and the effective mass density. Special considerations are devoted to the properties of wideband VEHs about the operation range and the average power in this domain which are related to the performance target of stable power output. Afterward, this new figure is applied to some literature VEHs and demonstrated to present good evaluations of wideband VEHs. Moreover, it exhibits the ability to point out the improvement information of the concerned VEHs further developments.
Effect of electrode configurations on piezoelectric vibration energy harvesting performance
NASA Astrophysics Data System (ADS)
Kim, Miso; Dugundji, John; Wardle, Brian L.
2015-04-01
Piezoelectric vibration energy harvesting is an attractive technology for self-powered wireless sensor networks because of the potential to deliver power to the sensor nodes from mechanical vibration sources in the surrounding medium. Systematic device designs are required in order to increase performance along with materials development of high piezoelectric coefficients and design of circuits with high power transfer efficiency. In this work, we present refined structural and electrical modeling of interdigitated electrodes (IDEs) for piezoelectric vibration energy harvesting, followed by parametric case studies on MEMS devices. Differences in geometric parameters including the size of the electrode and the number of IDE fingers for given device dimensions lead to substantial changes in harvesting performance such as capacitance, system coupling, voltage and power. When compared with parallel plate electrodes, use of IDEs results in much higher voltage generation by a factor of ten times while similar power levels are observed for both {3-1} and {3-3} configurations at optimal electrical loading conditions.
NASA Astrophysics Data System (ADS)
Zaghari, Bahareh; Rustighi, Emiliano; Ghandchi Tehrani, Maryam
2015-03-01
Vibration energy harvesting is the transformation of vibration energy to electrical energy. The motivation of this work is to use vibration energy harvesting to power wireless sensors that could be used in inaccessible or hostile environments to transmit information for condition health monitoring. Although considerable work has been done in the area of energy harvesting, there is still a demand for making a robust and small vibration energy harvesters from random excitations in a real environment that can produce a reliable amount of energy. Parametrically excited harvesters can have time-varying stiffness. Parametric amplification is used to tune vibration energy harvesters to maximize energy gains at system superharmonics, often at twice the first natural frequency. In this paper the parametrically excited harvester with cubic and cubic parametric nonlinearity is introduced as a novel work. The advantages of having cubic and cubic nonlinearity are explained theoretically and experimentally.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
Energy harvesting from an autoparametric vibration absorber
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Hajj, Muhammad R.
2015-11-01
The combined control and energy harvesting characteristics of an autoparametric vibration absorber consisting of a base structure subjected to the external force and a cantilever beam with a tip mass are investigated. The piezoelectric sheets are attached to the cantilever beam to convert the vibrations of the base structure into electrical energy. The coupled nonlinear representative model is developed by using the extended Hamiton’s principle. The effects of the electrical load resistance on the frequency and damping ratio of the cantilever beam are analyzed. The impacts of the external force and load resistance on the structural displacements of the base structure and the beam and on the level of harvested energy are determined. The results show that the initial conditions have a significant impact on the system’s response. The relatively high level of energy harvesting is not necessarily accompanied with the minimum displacements of the base structure.
Vibrationally assisted quantum energy pumps
NASA Astrophysics Data System (ADS)
Myers, C. R.; Milburn, G. J.; Twamley, J.
2015-09-01
We show that directed energy transport in a linear array of coupled quantum dots can be achieved by a coherent coupling of each dot to a single coherently driven mechanical mode. Recent work on light harvesting molecules have implicated the role of discrete mechanical modes in enhancing the energy transport through dipole arrays but say less about directed transport. The study of quantum ratchets indicates how directed energy transport is possible in quantum dot arrays. Inspired by these two apparently unrelated models we show how directed energy transport may be implemented in an engineered quantum systems using a single mechanical degree of freedom. This may have implications for nano-engineered artificial energy harvesting systems.
Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester
Kubba, Ali E.; Jiang, Kyle
2014-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Efficiency enhancement of a cantilever-based vibration energy harvester.
Kubba, Ali E; Jiang, Kyle
2013-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Electrostatic MEMS vibration energy harvester for HVAC applications
NASA Astrophysics Data System (ADS)
Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.
2015-12-01
This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.
U-shape magnetostrictive vibration based power generator for universal use
NASA Astrophysics Data System (ADS)
Ueno, T.
2016-04-01
Vibrational power generator extracts electrical energy from ambient vibration. Author invented novel configuration using magnetostrictive material. The device is based on parallel beams of iron-gallium alloy and magnetic material, and features high efficiency, high robustness, and low electrical impedance. In this paper, author proposes U-shape generator for universal use. It consists of the parallel beams and fixed and free end beams forming U-shape frame flexibly modified for variety of mechanical input. Miniature U-shape prototype using Fe-Ga rod 6 by 0.5 by 13 mm3 exhibited average power of 3.7 mW under vibration of 166 Hz and 2.5 G. L-shape type was demonstrated to generate electromotive force by two directional vibrations. In switch type, maximum energy of 0.7 mJ was retrieved by one pushing force. The performances are sufficient to drive wireless module for heath monitoring and remote control.
Vibration energy absorption in the whole-body system of a tractor operator.
Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek
2014-01-01
Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1). PMID:24959797
Magnetostrictive vibration damper and energy harvester for rotating machinery
NASA Astrophysics Data System (ADS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-04-01
Vibrations generated by machine driveline components can cause excessive noise and structural dam- age. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron- dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum av- erage electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Energy harvester array using piezoelectric circular diaphragm for rail vibration
NASA Astrophysics Data System (ADS)
Wang, Wei; Huang, Rong-Jin; Huang, Chuan-Jun; Li, Lai-Feng
2014-12-01
Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper. The electrical characteristics of the functional array consisted of three plates with varies tip masses are examined under dynamic conditions. With an optimal load resistor of 11 kΩ, an output power of 21.4 mW was generated from the array in parallel connection at 150 Hz under a pre-stress of 0.8 N and a vibration acceleration of 9.8 m/s2. Moreover, the broadband energy harvesting using this array still can be realized with different tip masses. Three obvious output power peaks can be obtained in a frequency spectra of 110 Hz to 260 Hz. The results show that using a piezoelectric circular diaphragm array can increase significantly the output of energy compared with the use of a single plate. And by optimizing combination of tip masses with piezoelectric elements in array, the frequency range can be tuned to meet the broadband vibration. This array may possibly be exploited to design the energy harvesting for practical applications such as future high speed rail.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Harvesting energy from the natural vibration of human walking.
Yang, Weiqing; Chen, Jun; Zhu, Guang; Yang, Jin; Bai, Peng; Su, Yuanjie; Jing, Qingsheng; Cao, Xia; Wang, Zhong Lin
2013-12-23
The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers. PMID:24180642
A power flow method for evaluating vibration from underground railways
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; Hunt, H. E. M.
2006-06-01
One of the major sources of ground-borne vibration is the running of trains in underground railway tunnels. Vibration is generated at the wheel-rail interface, from where it propagates through the tunnel and surrounding soil into nearby buildings. An understanding of the dynamic interfaces between track, tunnel and soil is essential before engineering solutions to the vibration problem can be found. A new method has been developed to evaluate the effectiveness of vibration countermeasures. The method is based on calculating the mean power flow from the tunnel, paying attention to that part of the power which radiates upwards to places where buildings' foundations are expected to be found. The mean power is calculated for an infinite train moving through the tunnel with a constant velocity. An elegant mathematical expression for the mean power flow is derived, which can be used with any underground-tunnel model. To evaluate the effect of vibration countermeasures and track properties on power flow, a comprehensive three-dimensional analytical model is used. It consists of Euler-Bernoulli beams to account for the rails and the track slab. These are coupled in the wavenumber-frequency domain to a thin shell representing the tunnel embedded within an infinite continuum, with a cylindrical cavity representing the surrounding soil.
A piezomagnetoelastic structure for broadband vibration energy harvesting
NASA Astrophysics Data System (ADS)
Erturk, A.; Hoffmann, J.; Inman, D. J.
2009-06-01
This letter introduces a piezomagnetoelastic device for substantial enhancement of piezoelectric power generation in vibration energy harvesting. Electromechanical equations describing the nonlinear system are given along with theoretical simulations. Experimental performance of the piezomagnetoelastic generator exhibits qualitative agreement with the theory, yielding large-amplitude periodic oscillations for excitations over a frequency range. Comparisons are presented against the conventional case without magnetic buckling and superiority of the piezomagnetoelastic structure as a broadband electric generator is proven. The piezomagnetoelastic generator results in a 200% increase in the open-circuit voltage amplitude (hence promising an 800% increase in the power amplitude).
Fundamental issues in nonlinear wideband-vibration energy harvesting
NASA Astrophysics Data System (ADS)
Halvorsen, Einar
2013-04-01
Mechanically nonlinear energy harvesters driven by broadband vibrations modeled as white noise are investigated. We derive an upper bound on output power versus load resistance and show that, subject to mild restrictions that we make precise, the upper-bound performance can be obtained by a linear harvester with appropriate stiffness. Despite this, nonlinear harvesters can have implementation-related advantages. Based on the Kramers equation, we numerically obtain the output power at weak coupling for a selection of phenomenological elastic potentials and discuss their merits.
Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation
NASA Astrophysics Data System (ADS)
Palagummi, Sri Vikram
Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For
NASA Astrophysics Data System (ADS)
Loverich, J.; Geiger, R.; Frank, J.
2008-03-01
This paper addresses a particular type of power harvesting in which energy in the periodic movement of structures is parasitically converted to stored electric charge. In such applications, tuning of the vibration power harvesters' resonance frequency is often required to match the host structures' forcing frequency. This paper presents a method of adjusting the boundary conditions of nonlinear stiffness elements as a means of tuning the resonance frequency of piezoelectric vibration power harvesters (altering the deformation mode from bending to in-plane stretching). Using this tuning method, the resonance frequency was experimentally varied between 56 and 62 Hz. For a vibration level of 2 mm/s, the harvester has a similar Q to a linear system but its Q is reduced by one third at a vibration level of 10 mm/s. This behavior is important for applications where high sensitivity is required for low vibration levels but mechanical robustness is required for high vibration levels.
Resonant vibrational energy transfer in ice Ih
Shi, L.; Li, F.; Skinner, J. L.
2014-06-28
Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.
NASA Astrophysics Data System (ADS)
Umaba, M.; Nakamachi, E.; Morita, Y.
2015-12-01
In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.
Piezoelectric energy harvesting from heartbeat vibrations for leadless pacemakers
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Karami, M. Amin
2015-12-01
This paper studies energy harvesting from heartbeat vibrations using fan-folded piezoelectric beams. The generated energy from the heartbeat can be used to power a leadless pacemaker. In order to utilize the available 3 dimensional space to the energy harvester, we chose the fan-folded design. The proposed device consists of several piezoelectric beams stacked on top of each other. The size for this energy harvester is 2 cm by 0.5 cm by 1 cm, which makes the natural frequency very high. High natural frequency is one major concern about the micro-scaled energy harvesters. By utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, this natural frequency is reduced to the desired range. This fan-folded design makes it possible to generate more than 10 μW of power. The proposed device does not incorporate magnets and is thus Magnetic resonance imaging (MRI) compatible. Although our device is a linear energy harvester, it is shown that the device is relatively insensitive to the heartrate. The natural frequencies and the mode shapes of the device are calculated. An analytical solution is presented and the method is verified by experimental investigation. We use a closed loop shaker controller and a shaker to simulate the heartbeat vibrations. The developed analytical model is verified through comparison of theoretical and experimental tip displacement and acceleration frequency response functions.
Statistical energy analysis of nonlinear vibrating systems.
Spelman, G M; Langley, R S
2015-09-28
Nonlinearities in practical systems can arise in contacts between components, possibly from friction or impacts. However, it is also known that quadratic and cubic nonlinearity can occur in the stiffness of structural elements undergoing large amplitude vibration, without the need for local contacts. Nonlinearity due purely to large amplitude vibration can then result in significant energy being found in frequency bands other than those being driven by external forces. To analyse this phenomenon, a method is developed here in which the response of the structure in the frequency domain is divided into frequency bands, and the energy flow between the frequency bands is calculated. The frequency bands are assigned an energy variable to describe the mean response and the nonlinear coupling between bands is described in terms of weighted summations of the convolutions of linear modal transfer functions. This represents a nonlinear extension to an established linear theory known as statistical energy analysis (SEA). The nonlinear extension to SEA theory is presented for the case of a plate structure with quadratic and cubic nonlinearity. PMID:26303923
Low-frequency meandering piezoelectric vibration energy harvester.
Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios
2012-05-01
The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint. PMID:22622969
Airflow energy harvesters of metal-based PZT thin films by self-excited vibration
NASA Astrophysics Data System (ADS)
Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.
2014-11-01
We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.
Production, Delivery and Application of Vibration Energy in Healthcare
NASA Astrophysics Data System (ADS)
Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola
2011-02-01
In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.
Autoparametric Resonance Systems for Vibration-Based Energy Harvesters
NASA Astrophysics Data System (ADS)
Kurmann, L.; Hoffmann, D.; Folkmer, B.; Manoli, Y.; Woias, P.; Anderegg, R.
2015-12-01
Motivation for this paper is the creation of a new kind of (vibration) kinetic energy harvester systems that can effectively transfer environmental mechanical vibrations into electrical energy over a wider frequency bandwidth than conventional devices. This paper presents a potential improvement in the 1DoF vibration transducer class and examining therefore analytically the behavior of such systems using strong nonlinear springs. Then a new 2DoF class of vibration transducer is presented having a strong nonlinear characteristic which is well suited for autoparametric resonance vibrations.
Methods of performing downhole operations using orbital vibrator energy sources
Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.
2004-02-17
Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.
MEMS electrostatic vibration energy harvester without switches and inductive elements
NASA Astrophysics Data System (ADS)
Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.
2014-11-01
The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.
Interface Circuit for Vibration Energy Harvesting with Adjustable Bias Voltage
NASA Astrophysics Data System (ADS)
Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.
2015-12-01
This paper presents a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage. An electronic switch is used to modify the circuit configuration so that the harvested energy increases the voltage across a biasing capacitor. Decrease of this biasing capacitor voltage occurs naturally due to the circuit imperfections. Such a control of the bias voltage enables to adjust the amount of energy converted by the variable capacitor on each cycle. This feature can be used to optimize the mechanical damping induced by the energy conversion process in order to maximize the harvested power. Another feature of this interface circuit is that it is capable to get high bias voltage whatever the battery voltage with low energy loss.
NASA Astrophysics Data System (ADS)
Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.
2000-08-01
Efficiency of vibrational energy transfer (VET) in vibrational quasicontinuum of triplet states was estimated from the dependence of time-resolved delayed fluorescence of benzophenone and anthraquinone on bath gas pressure. The negative temperature dependence for vibration-vibration (V-V) and positive for vibration-translation (V-T) energy transfers from benzophenone and anthraquinone to bath gases (C 2H 4, SF 6, CCl 4, C 5H 12) were obtained between 373 and 553 K. Polarizability and dipole moment of colliding molecules seem to affect the efficiency of V-V relaxation. These data reflect the dominance of long-range attractive interactions in V-V energy transfer and short-range repulsive interactions in V-T energy transfer.
Vibrational Energy Transfer Across a Reverse Micelle Surfactant Layer
NASA Astrophysics Data System (ADS)
Deàk, John C.; Pang, Yoonsoo; Sechler, Timothy D.; Wang, Zhaohui; Dlott, Dana D.
2004-10-01
In a suspension of reverse micelles, in which the surfactant sodium dioctyl sulfosuccinate (AOT) separates a water nanodroplet from a bulk nonpolar CCl4 phase, ultrafast vibrational spectroscopy was used to study vibrational energy transfer from the nanodroplet through the AOT interfacial monolayer to the surrounding CCl4. Most of the vibrational energy from the nanodroplet was transferred to the polar AOT head group within 1.8 picoseconds and then out to the CCl4 within 10 picoseconds. Vibrational energy pumped directly into the AOT tail resulted in a slower 20- to 40-picosecond transfer of energy to the CCl4.
Vibrational energy transfer across a reverse micelle surfactant layer.
Deàk, John C; Pang, Yoonsoo; Sechler, Timothy D; Wang, Zhaohui; Dlott, Dana D
2004-10-15
In a suspension of reverse micelles, in which the surfactant sodium dioctyl sulfosuccinate (AOT) separates a water nanodroplet from a bulk nonpolar CCl4 phase, ultrafast vibrational spectroscopy was used to study vibrational energy transfer from the nanodroplet through the AOT interfacial monolayer to the surrounding CCl4. Most of the vibrational energy from the nanodroplet was transferred to the polar AOT head group within 1.8 picoseconds and then out to the CCl4 within 10 picoseconds. Vibrational energy pumped directly into the AOT tail resulted in a slower 20- to 40-picosecond transfer of energy to the CCl4. PMID:15388896
Dual resonant structure for energy harvesting from random vibration sources at low frequency
NASA Astrophysics Data System (ADS)
Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei
2016-01-01
We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
Powerful Low-Frequency Vibrators for Active Seismology
Alekseev, A.S.; Chichinin, I.S.; Korneev, V.A.
2003-12-01
In the past two decades, active seismology studies in Russia have made use of powerful (40- and 100-ton) low-frequency vibrators. These sources create a force amplitude of up to 100 tons and function in the 1.5 3, 3 6, and 5 10 Hz frequency bands. The mobile versions of the vibrator have a force amplitude of 40 tons and a 6 12 Hz frequency band. Recording distances for the 100-ton vibrator are as large as 350 km, enabling the refracted waves to penetrate down to 50 km depths. Vibrator operation sessions are highly repeatable, having distinct summer or winter spectral patterns. A long profile of seismic records allows estimation of fault zone depths using changes in recorded spectra. Other applications include deep seismic profiling, seismic hazard mapping, structural testing, stress-induced anisotropy studies, seismic station calibration, and large-structure integrity testing. The theoretical description of the low-frequency vibrator is given in the appendices, which contain numerical examples.
NASA Astrophysics Data System (ADS)
Ono, Kazuyoshi; Sato, Norio; Shimamura, Toshishige; Ugajin, Mamoru; Sakata, Tomomi; Mutoh, Shin'ichiro; Kodate, Junichi; Jin, Yoshito; Sato, Yasuhiro
2012-05-01
In this paper, we describe a novel structure of a vibrational micro-electro-mechanical system (MEMS) device for power generation enhancement. A synchronized multiple-array vibrational device, in which movable plates are connected by rods, increases the area of the movable plate in the energy conversion region and couples the phase of movement. The fabricated device resonates at approximately 1430 Hz with an acceleration amplitude of 6 m/s2 and nanoampere-order AC current is generated. These results confirm that this MEMS vibrational device will contribute to the progress in energy harvesting.
NASA Astrophysics Data System (ADS)
Leland, Eli S.; Wright, Paul K.
2006-10-01
Vibration energy scavenging, harvesting ambient vibrations in structures for conversion into usable electricity, provides a potential power source for emerging technologies including wireless sensor networks. Most vibration energy scavenging devices developed to date operate effectively at a single specific frequency dictated by the device's design. However, for this technology to be commercially viable, vibration energy scavengers that generate usable power across a range of driving frequencies must be developed. This paper details the design and testing of a tunable-resonance vibration energy scavenger which uses the novel approach of axially compressing a piezoelectric bimorph to lower its resonance frequency. It was determined that an axial preload can adjust the resonance frequency of a simply supported bimorph to 24% below its unloaded resonance frequency. The power output to a resistive load was found to be 65-90% of the nominal value at frequencies 19-24% below the unloaded resonance frequency. Prototypes were developed that produced 300-400 µW of power at driving frequencies between 200 and 250 Hz. Additionally, piezoelectric coupling coefficient values were increased using this method, with keff values rising as much as 25% from 0.37 to 0.46. Device damping increased 67% under preload, from 0.0265 to 0.0445, adversely affecting the power output at lower frequencies. A theoretical model modified to include the effects of preload on damping predicted power output to within 0-30% of values obtained experimentally. Optimal load resistance deviated significantly from theory, and merits further investigation.
A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Xu; John, Sabu
2015-06-01
In this study, a dimensionless analysis method is proposed to predict the output voltage and harvested power for a 2DOF vibration energy harvesting system. This method allows us to compare the harvesting power and efficiency of the 2DOF vibration energy harvesting system and to evaluate the harvesting system performance regardless the sizes or scales. The analysis method is a hybrid of time domain simulation and frequency response analysis approaches, which would be a useful tool for parametric study, design and optimisation of a 2DOF piezoelectric vibration energy harvester. In a case study, a quarter car suspension model with a piezoelectric material insert is chosen to be studied. The 2DOF vibration energy harvesting system could potentially be applied in a vehicle to convert waste or harmful ambient vibration energy into electrical energy for charging the battery. Especially for its application in a hybrid vehicle or an electrical vehicle, the 2DOF vibration energy harvesting system could improve charge mileage, comfort and reliability.
NASA Astrophysics Data System (ADS)
Nishi, Yoshiki; Ueno, Yuta; Nishio, Masachika; Quadrante, Luis Antonio Rodrigues; Kokubun, Kentaroh
2014-05-01
We conducted an experiment in a towing tank to investigate the performance of an energy extraction system using the flow-induced vibration of a circular cylinder. This experiment tested three different cases involving the following arrangements of cylinder(s) of identical diameter: the upstream fixed-downstream movable arrangement (case F); the upstream movable-downstream fixed arrangement (case R); and a movable isolated cylinder (case I). In cases F and R, the separation distance (ratio of the distance between the centers of the two cylinders to their diameters) is fixed at 1.30. Measurement results show that while cases F and I generate vortex-induced vibration (VIV) resonance responses, case R yields wake-induced vibration (WIV) at reduced velocity over 9.0, which is significantly larger than that of the VIV response, leading to the induction of higher electronic power in a generator. Accordingly, primary energy conversion efficiency is higher in the case involving WIV.
Experimental study of a self-powered and sensing MR-damper-based vibration control system
NASA Astrophysics Data System (ADS)
Sapiński, Bogdan
2011-10-01
The paper deals with a semi-active vibration control system based on a magnetorheological (MR) damper. The study outlines the model and the structure of the system, and describes its experimental investigation. The conceptual design of this system involves harvesting energy from structural vibrations using an energy extractor based on an electromagnetic transduction mechanism (Faraday's law). The system consists of an electromagnetic induction device (EMI) prototype and an MR damper of RD-1005 series manufactured by Lord Corporation. The energy extracted is applied to control the damping characteristics of the MR damper. The model of the system was used to prove that the proposed vibration control system is feasible. The system was realized in the semi-active control strategy with energy recovery and examined through experiments in the cases where the control coil of the MR damper was voltage-supplied directly from the EMI or voltage-supplied via the rectifier, or supplied with a current control system with two feedback loops. The external loop used the sky-hook algorithm whilst the internal loop used the algorithm switching the photorelay, at the output from the rectifier. Experimental results of the proposed vibration control system were compared with those obtained for the passive system (MR damper is off-state) and for the system with an external power source (conventional system) when the control coil of the MR damper was supplied by a DC power supply and analogue voltage amplifier or a DC power supply and a photorelay. It was demonstrated that the system is able to power-supply the MR damper and can adjust itself to structural vibrations. It was also found that, since the signal of induced voltage from the EMI agrees well with that of the relative velocity signal across the damper, the device can act as a 'velocity-sign' sensor.
A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei
2014-01-01
To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054
Vibrational Energy Transfer of Diatomic Gases in Hypersonic Expanding Flows.
NASA Astrophysics Data System (ADS)
Ruffin, Stephen Merrick
In high temperature flows related to vehicles at hypersonic speeds significant excitation of the vibrational energy modes of the gas can occur. Accurate predictions of the vibrational state of the gas and the rates of vibrational energy transfer are essential to achieve optimum engine performance, for design of heat shields, and for studies of ground based hypersonic test facilities. The Landau -Teller relaxation model is widely used because it has been shown to give accurate predictions in vibrationally heating flows such as behind forebody shocks. However, a number of experiments in nozzles have indicated that it fails to accurately predict the rate of energy transfer in expanding, or cooling, flow regions and fails to predict the distribution of energy in the vibrational quantum levels. The present study examines the range of applicability of the Landau -Teller model in expanding flows and develops techniques which provide accurate predictions in expanding flows. In the present study, detailed calculations of the vibrational relaxation process of N_2 and CO in cooling flows are conducted. A coupled set of vibrational transition rate equations and quasi one-dimensional fluid dynamic equations is solved. Rapid anharmonic Vibration-Translation transition rates and Vibration -Vibration exchange collisions are found to be responsible for vibrational relaxation acceleration in situations of high vibrational temperature and low translational temperature. The predictions of the detailed master equation solver are in excellent agreement with experimental results. The exact degree of acceleration is cataloged in this study for N_2 and is found to be a function of both the translational temperature (T) and the ratio of vibrational to translational temperatures (T_{vib}/T). Non-Boltzmann population distributions are observed for values of T _{vib}/T as low as 2.0. The local energy transfer rate is shown to be an order of magnitude or more faster than the Landau-Teller model
Improvement of force factor of magnetostrictive vibration power generator for high efficiency
NASA Astrophysics Data System (ADS)
Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi
2015-05-01
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.
Improvement of force factor of magnetostrictive vibration power generator for high efficiency
Kita, Shota Ueno, Toshiyuki; Yamada, Sotoshi
2015-05-07
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.
Piezoelectric Vibration Energy Harvester Using Indirect Impact of Springless Proof Mass
NASA Astrophysics Data System (ADS)
Ju, S.; Ji, C.-H.
2015-12-01
This paper presents an impact-based piezoelectric vibration energy harvester using freely movable spherical proof mass and MFC (Macro Fiber Composite) beams as piezoelectric cantilevers. When external vibration is applied, a metal sphere moves freely along the channel and collides with both ends of the cavity, which induces the vibration of parallel- connected MFCs and generates electric power. A proof-of-concept device having the form- factor of a wristwatch has been designed and tested. Moreover, spherical proof mass made of different materials has been tested to analyze the relationship between output power, long-term reliability, and audible noise level during operation. Maximum peak-to-peak open circuit voltage of 41.2V and average power of 908.7 μW have been obtained in response to a 3g vibration at 17Hz for device with parallel-connected MFC beams.
NASA Astrophysics Data System (ADS)
Karami, M. Amin; Inman, Daniel J.
2011-11-01
A unified approximation method is derived to illustrate the effect of electro-mechanical coupling on vibration-based energy harvesting systems caused by variations in damping ratio and excitation frequency of the mechanical subsystem. Vibrational energy harvesters are electro-mechanical systems that generate power from the ambient oscillations. Typically vibration-based energy harvesters employ a mechanical subsystem tuned to resonate with ambient oscillations. The piezoelectric or electromagnetic coupling mechanisms utilized in energy harvesters, transfers some energy from the mechanical subsystem and converts it to an electric energy. Recently the focus of energy harvesting community has shifted toward nonlinear energy harvesters that are less sensitive to the frequency of ambient vibrations. We consider the general class of hybrid energy harvesters that use both piezoelectric and electromagnetic energy harvesting mechanisms. Through using perturbation methods for low amplitude oscillations and numerical integration for large amplitude vibrations we establish a unified approximation method for linear, softly nonlinear, and bi-stable nonlinear energy harvesters. The method quantifies equivalent changes in damping and excitation frequency of the mechanical subsystem that resembles the backward coupling from energy harvesting. We investigate a novel nonlinear hybrid energy harvester as a case study of the proposed method. The approximation method is accurate, provides an intuitive explanation for backward coupling effects and in some cases reduces the computational efforts by an order of magnitude.
Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect
NASA Astrophysics Data System (ADS)
Si, Hongyu; Dong, Jinlu; Chen, Lei; Sun, Laizhi; Zhang, Xiaodong; Gao, Mintian
2014-01-01
The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.
Resonant frequency tuning of an industrial vibration energy harvester
NASA Astrophysics Data System (ADS)
Toh, T. T.; Wright, S. W.; Mitcheson, P. D.
2014-11-01
This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.
Electret transducer for vibration-based energy harvesting
Hillenbrand, J. Sessler, G. M.; Pondrom, P.
2015-05-04
Vibration-based electret energy harvesters with soft cellular spacer rings are presented. These harvesters are closely related to recently introduced electret accelerometers; however, their development targets are partially differing. Various harvesters with seismic masses from 8 to 23 g and surface potentials in the 500 V regime were built and characterized and powers of up to 8 μW at about 2 kHz and an acceleration of 1 g were measured. An analytical model is presented which, for instance, allows the calculation of the frequency response of the power output into a given load resistance. Finally, experimental and calculated results are compared.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.
2012-04-01
Vibrational energy harvesting devices are oftentimes constructed in a manner identical to classical tuned-massdampers used in vibration control applications. However, many applications and models in past work assume that the harvesters will have negligible influence on the host structure (e.g. harvesters on a bridge). In contrast, this work adopts the perspective that the energy harvester is analogous to an electromechanical vibration absorber, attenuating the structural vibrations via a dominant mechanical influence while converting the absorbed energy into electric power. One embodiment of a device serving these two purposes-passive vibration attenuation and energy harvesting-is introduced. The device utilizes a distributed piezoelectric spring layer such that as the spring is strained between the top mass layer and the vibrating host structure the piezoelectric spring generates a voltage potential across its electrodes. Two experimental studies are detailed which investigate the capability for energy harvesting vibration absorbers to meet both goals. It is found that achievement of both objectives may require compromise but with proper device design still yields a viable electrical output.
NASA Astrophysics Data System (ADS)
Nili Ahmadabadi, Z.; Khadem, S. E.
2014-09-01
This paper presents an optimal design for a system comprising a nonlinear energy sink (NES) and a piezoelectric-based vibration energy harvester attached to a free-free beam under shock excitation. The energy harvester is used for scavenging vibration energy dissipated by the NES. Grounded and ungrounded configurations are examined and the systems parameters are optimized globally to both maximize the dissipated energy by the NES and increase the harvested energy by piezoelectric element. A satisfactory amount of energy has been harvested as electric power in both configurations. The realization of nonlinear vibration control through one-way irreversible nonlinear energy pumping and optimizing the system parameters result in acquiring up to 78 percent dissipation of the grounded system energy.
Coupling analysis of linear vibration energy harvesting systems
NASA Astrophysics Data System (ADS)
Wang, Xu; Liang, Xingyu; Shu, Gequn; Watkins, Simon
2016-03-01
This paper has disclosed the relationship of vibration energy harvester performance with dimensionless force factor. Numerical ranges of the dimensionless force factor have been defined for cases of weak, moderate and strong coupling. The relationships of coupling loss factor, dimensionless force factor, critical coupling strength, coupling quotient, electro-mechanical coupling factor, damping loss factor and modal densities have been established in linear vibration energy harvester systems. The new contribution of this paper is to determine a frequency range where the vibration energy harvesting systems are in a weak coupling and the statistical energy analysis is applicable.
Piezoelectric diaphragm for vibration energy harvesting.
Minazara, E; Vasic, D; Costa, F; Poulin, G
2006-12-22
This paper presents a technique of electric energy generation using a mechanically excited unimorph piezoelectric membrane transducer. The electrical characteristics of the piezoelectric power generator are investigated under dynamic conditions. The electromechanical model of the generator is presented and used to predict its electrical performances. The experiments was performed with a piezoelectric actuator (shaker) moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 0.65 mW was generated at the resonance frequency (1.71 kHz) across a 5.6 kOmega optimal resistor and for a 80 N force. A special electronic circuit has been conceived in order to increase the power harvested by the piezoelectric transducer. This electrical converter applies the SSHI (synchronized switch harvesting on inductor) technique, and leads to remarkable results: under the same actuation conditions the generated power reaches 1.7 mW, which is sufficient to supply a large range of low consumption sensors. PMID:16814837
Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.
2016-05-01
This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic–piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3–7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.
Nonlinear vibration energy harvesting based on variable double well potential function
NASA Astrophysics Data System (ADS)
Yang, Wei; Towfighian, Shahrzad
2016-04-01
Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam oscillates, the spring energy gradually releases and further increases the amplitude of vibration. To describe the motion of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as Euler-Bernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.
Han, Jiande; Freel, Keith; Heaven, Michael C
2011-12-28
Collisional energy transfer kinetics of vibrationally excited acetylene has been examined for states with internal energies near 6560 cm(-1). Total population removal rate constants were determined for selected rotational levels of the (1,0,1,0(0),0(0)) and (0,1,1,2(0),0(0)) states. Values in the range of (10-18) × 10(-10) cm(3) s(-1) were obtained. Measurements of state-to-state rotational energy transfer rate constants were also carried out for these states. The rotational energy transfer kinetics was found to be consistent with simple energy gap models for the transfer probabilities. Vibrational transfer out of the (0,1,1,2(0),0(0)) state accounted for no more than 16% of the total removal process. Transfer from (1,0,1,0(0),0(0)) to the u-symmetry (0,2,0,3(1),1(-1)), (0,1,1,2(0),0(0)), and (1,1,0,1(1),1(-1)) states was observed. Applying the principle of detailed balance to these data indicated that vibrational transfer to (1,0,1,0(0),0(0)) accounted for ~0.1% of the population loss from (0,2,0,3(1),1(-1)) or (0,1,1,2(0),0(0)), and 3% of the loss from (1,1,0,1(1),1(-1)). Relative rotational transfer probabilities were obtained for transfer to the g-symmetry (1,1,0,2(0),0(0))∕(0,0,2,0(0),0(0)) dyad. These results are related to recent studies of optically pumped acetylene lasers. PMID:22225153
Killoran, N.; Huelga, S. F.; Plenio, M. B.
2015-10-21
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
PERTURB: A program for calculating vibrational energies by generalized algebraic quantization
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Ezra, Gregory S.
1988-09-01
We describe PERTURB, a special purpose algebraic manipulation program which calculates vibrational eigenvalues in coupled oscillator systems. PERTURB implements the method of generalized algebraic quantization (AQ), in which Van Vleck perturbation theory is formulated in a mock phase space. The phase space formulation enables quantum and classical perturbation theory to be treated on the same footing, and allows the systematic calculation of corrections to classical perturbation results in powers of h̷. Generalized AQ is a powerful and efficient technique for calculating semiclassical vibrational energy levels. In many cases, including just the first correction to classical perturbation theory yields highly accurate energies.
NASA Astrophysics Data System (ADS)
Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia; Yang, Jin
2015-05-01
In this research, a vibration energy harvester employing the FeCuNbSiB/Terfenol-D/PZT/Terfenol-D/FeCuNbSiB five-phase laminate composite transducer to convert mechanical vibration energy into electrical energy was presented. The electric output performance of the proposed vibration energy harvester has been investigated. It was found that appropriate FeCuNbSiB layer thickness was propitious to the electric output characteristics. Compared to traditional vibration energy harvester using Terfenol-D/PZT/Terfenol-D (MPM) transducer, the experimental results show that the proposed vibration energy harvester provides a remarkably enhanced output power performance. When the thickness of FeCuNbSiB layer was 30 μm, the optimum output power of vibration energy harvester achieved 4.00 mW/g for an acceleration of 0.8 g at frequency of 34.5 Hz, which was 1.29 times as great as that of traditional MPM transducer. Remarkably, this power is a very encouraging power figure and the proposed vibration energy harvester has great potential as far as its application in wireless sensor network.
Energy harvesting from vibration with cross-linked polypropylene piezoelectrets
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.
2015-07-01
Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.
Energy harvesting from vibration with cross-linked polypropylene piezoelectrets
Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.
2015-07-15
Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.
NASA Astrophysics Data System (ADS)
Zhao, S.; Erturk, A.
2013-01-01
We present electroelastic modeling, analytical and numerical solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The modeling approach employed herein is based on a distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included, since broadband random vibrations, such as Gaussian white noise, might excite higher vibration modes. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given power spectral density (PSD) or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first of the two numerical solution methods employs the Fourier series representation of the base acceleration history in an ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The simulations exhibit very good agreement with the experimental measurements for a range of resistive electrical boundary conditions and input PSD levels. It is also shown that lightly damped higher vibration modes can alter the expected power curve under broadband random excitation. Therefore, the distributed-parameter modeling and solutions presented herein can be used as a more accurate alternative to the existing single-degree-of-freedom solutions for broadband random vibration energy harvesting.
Vibration suppression of composite laminated plate with nonlinear energy sink
NASA Astrophysics Data System (ADS)
Zhang, Ye-Wei; Zhang, Hao; Hou, Shuai; Xu, Ke-Fan; Chen, Li-Qun
2016-06-01
The composite laminated plate is widely used in supersonic aircraft. So, there are many researches about the vibration suppression of composite laminated plate. In this paper, nonlinear energy sink (NES) as an effective method to suppress vibration is studied. The coupled partial differential governing equations of the composite laminated plate with the nonlinear energy sink (NES) are established by using the Hamilton principle. The fourth-order Galerkin discrete method is used to truncate the partial differential equations, which are solved by numerical integration method. Meanwhile study about the precise effectiveness of the nonlinear energy sink (NES) by discussing the different installation location of the nonlinear energy sink (NES) at the same speed. The results indicate that the nonlinear energy sink (NES) can significantly suppress the severe vibration of the composite laminated plate with speed wind loadings in to protect the composite laminated plate from excessive vibration.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.
2012-03-01
Fundamental studies in vibrational energy harvesting consider the electromechanically coupled devices to be excited by uniform base vibration. Since many harvester devices are mass-spring systems, there is a clear opportunity to exploit the mechanical resonance in a fashion identical to tuned mass dampers to simultaneously suppress the vibration of the host structure via reactive forces while converting the ‘absorbed’ vibration into electrical power. This paper presents a general analytical model for the coupled electro-elastic dynamics of a vibrating panel to which distributed energy harvesting devices are attached. One such device is described which employs a corrugated piezoelectric spring layer. The model is validated by comparison to measured elastic and electric frequency response functions. Tests on an excited panel show that the device, contributing 1% additional mass to the structure, concurrently attenuates the lowest panel mode accelerance by >20 dB while generating 0.441 µW for a panel drive acceleration of 3.29 m s-2. Adjustment of the load resistance connected to the piezoelectric spring layer verifies the analogy between the present harvester device and an electromechanically stiffened and damped vibration absorber. The results show that maximum vibration suppression and energy harvesting objectives occur for nearly the same load resistance in the harvester circuit.
Enhanced vibration based energy harvesting using embedded acoustic black holes
NASA Astrophysics Data System (ADS)
Zhao, L.; Semperlotti, F.; Conlon, S. C.
2014-03-01
In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.
Saffar, Saber; Abdullah, Amir
2014-03-01
Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. PMID:24246149
A diamagnetically stabilized horizontally levitated electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Palagummi, S.; Zou, J.; Yuan, F. G.
2015-04-01
This article investigates a horizontal diamagnetic levitation (HDL) system for vibration energy harvesting. In this configuration, two large magnets, alias lifting magnets, are arranged co-axially at a distance such that in between them a magnet, alias floating magnet, is passively levitated at a laterally offset equilibrium position. The levitation is stabilized in the horizontal direction by two diamagnetic plates made of pyrolytic graphite placed on each side of the floating magnet. This HDL configuration permits large amplitude vibration of the floating magnet and exploits the ability to tailor the geometry to meet specific applications due to its frequency tuning capability. Theoretical modeling techniques are discussed followed by an experimental setup to validate it. At an input root mean square (RMS) acceleration of 0.0434 m/s2 (0.0044 grms) and at a resonant frequency of 1.2 Hz, the prototype generated a RMS power of 3.6 μW with an average system efficiency of 1.93%. Followed by the validation, parametric studies on the geometry of the components are undertaken to show that with the optimized parameters the efficiency can be further enhanced.
Vibrational energy relaxation of water in Aerosol OT reverse micelle
NASA Astrophysics Data System (ADS)
Pang, Yoonsoo; Deak, John; Dlott, Dana
2005-03-01
An IR-Raman technique with mid-IR pump and anti-Stokes Raman probe is used to investigate reverse micelle mixture of Aerosol OT, water, and carbon tetrachloride, where polar water phase and nonpolar oil phase is separated by a monolayer of surfactant molecules. Anti-Stokes Raman scattering is only dependent on the population of vibrationally excited states, thus time-dependent population changes of parent/daughter vibrations can be monitored with this technique. Vibrational energy from nanodroplet of water is transferred to the surfactant head group in 1.8 ps and then out to solvent in 10 ps. Vibrational energy directly pumped into the surfactant tail group results in a slower 20-40 ps energy transfer to solvent. This energy transfer cannot be explained by ordinary heat transfer, but the specific vibrational energy relaxation pathway such as sulfonate stretch of surfactant molecules should be used. We can change the water-to-solvent energy transfer rate by adopting different size of reverse micelles or changing pump frequency over the broad OH stretch mode of water due to hydrogen bond network. Water molecules confined in nanometer scale reverse micelles have very different properties from bulk water and we have found many differences between the vibrational dynamics of water in these reverse micelles and those of bulk water.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2011-02-01
Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recently been described, in many applications optimization of such systems will require the energy harvesting device to be able to autonomously tune its resonance frequency. In this work a vibration energy harvesting device with autonomous resonance frequency tunability utilizing a magnetic stiffness technique is presented. Here a piezoelectric cantilever beam array is employed with magnets attached to the free ends of cantilever beams to enable magnetic force resonance frequency tuning. The device is successfully tuned from - 27% to + 22% of its untuned resonance frequency while outputting a peak power of approximately 1 mW. Since the magnetic force tuning technique is semi-active, energy is only consumed during the tuning process. The developed prototype consumed maximum energies of 3.3 and 3.9 J to tune to the farthest source frequencies with respect to the untuned resonance frequency of the device. The time necessary for this prototype device to harvest the energy expended during its most energy-intensive (largest resonant frequency adjustment) tuning operation is 88 min in a low amplitude 0.1g vibration environment, which could be further optimized using higher efficiency piezoelectric materials and system components.
A Detailed Level Kinetics Model of NO Vibrational Energy Distributions
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)
1996-01-01
Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.
A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array
NASA Astrophysics Data System (ADS)
Salauddin, M.; Halim, M. A.; Park, J. Y.
2016-09-01
Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm‑3 g‑2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.
A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems
Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin
2015-05-07
Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.
Crim, F.F.
1982-03-01
Combining the techniques of direct excitation of overtone vibrations and time resolved spectroscopic detection permits detailed measurements of the vibrational and rotational relaxation of highly vibrationally excited molecules. Using this technique, we have measured vibrational and rotational relaxation in HF(v = 3,4,5) between 300 K and 650 K and have compared these results to various theoretical calculations. Using laser double resonance to probe individual rotational states, we find phenomenological rotational relaxation rate constants which decrease montonically with rotational energy change in the vibrationally excited molecule, and we have directly measured the vibrational relaxation rate constants for v = 1 and v = 2 as well as made a preliminary estimate of the (surprisingly small) fraction of the relaxation which goes by vibration-to-vibration energy transfer.
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Rizzo, T.R.
1993-12-01
This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.
NASA Astrophysics Data System (ADS)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-01
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
Crim, F.F.; Randunsky, M.B.; Booze, J.A.; Govoni, D.B.; Fritz, M.D.
1995-03-15
The flow of energy in molecules, either isolated or colliding, is fundamental to complex phenomena occurring in atmospheric chemistry, combustion, molecular lasers, plasmas, and a host of other environments containing energetic species. The authors have developed, proven, and applied a technique that combines vibrational overtone excitation, to prepare highly vibrationally excited initial states, and time-resolved spectroscopic detection, to probe the evolution of the prepared state, for studying energy transfer in vibrationally energized molecules. Their experiments on acetylene have demonstrated the power of this approach for learning about otherwise inaccessible vibrations in electronically excited molecules, for determining the pathways of intramolecular energy transfer in isolated molecules, and for measuring fully state-resolved rotational and vibrational energy transfer rates in collisions.
Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2016-07-01
A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices. PMID:27065470
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi
2010-11-01
This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system.
Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations
NASA Astrophysics Data System (ADS)
Atalaya, Juan
Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
NASA Astrophysics Data System (ADS)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-07-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
NASA Astrophysics Data System (ADS)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-05-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Rizzo, T.R.
1992-03-01
These experiments apply multiple-laser spectroscopic techniques to investigate the bond energies, potential surface topologies, and dissociation dynamics of highly vibrationally excited molecules. Infrared-optical double resonance pumping of light atom stretch vibrations in H{sub 2}O{sub 2} and HN{sub 3} prepares reactant molecules in single rovibrational states above the unimolecular dissociation threshold on the ground potential surface, and laser induced fluorescence detection of the OH or NH fragments monitors the partitioning of energy into individual product quantum states. Product energy partitioning data from H{sub 2}O{sub 2} dissociation provide a stringent test of statistical theories as well as potential energy surface calculations. Ongoing work on HN{sub 3} seeks to determine the height of the barrier to dissociation on the singlet potential energy surface. Our most recently developed spectroscopic scheme allows the measurement of high vibrational overtone spectra of jet-cooled molecules. This approach uses CO{sub 2} laser infrared multiphoton dissociation followed by laser induced fluorescence product detection to measure weak vibrational overtone transitions in low pressure environments. Application of this scheme to record the {Delta}V{sub OH}=4 and {Delta}V{sub OH}=5 transitions of CH{sub 3}OH cooled in a supersonic free-jet demonstrates both its feasibility and its utility for simplifying high vibrational overtone spectra.
NASA Astrophysics Data System (ADS)
Harne, R. L.
2013-04-01
Vibrational energy harvesting devices are often designed in a manner analogous to classical dynamic vibration absorbers (DVAs). An electromechanical mass-spring system is devised so as to resonate at the frequency most dominant in the environmental vibration spectrum; the consequent device oscillation is converted to a electrical signal which is harnessed for immediate usage or as a charging mechanism for a battery. The DVA is likewise designed but with the intention of inducing substantial inertial influence upon a host structure for vibration control purposes, either to globally dampen the vibration of the main body or, in an undamped configuration to "absorb" the primary system vibration at a single frequency. This paper describes the development of an electromechanical mass-spring-damper which seeks to serve both goals of passive vibration control and energy harvesting. The device utilizes a piezoelectric film spring and a distributed mass layer so as to be suitable for the attenuation of surface vibrations and to convert a portion of the absorbed energy into electric power. The development and design of the device are presented and the results of realistic tests are provided to show both the potentials and the challenges encountered when attempting to superpose the goals of vibration control and energy harvesting.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
NASA Astrophysics Data System (ADS)
Bibo, A.; Daqaq, M. F.
2013-06-01
In this letter, a single vibratory energy harvester integrated with an airfoil is proposed to concurrently harness energy from ambient vibrations and wind. In terms of its transduction capabilities and power density, the integrated device is shown to have a superior performance under the combined loading when compared to utilizing two separate devices to harvest energy independently from the two available energy sources. Even below its flutter speed, the proposed device was able to provide 2.5 times the power obtained using two separate harvesters.
Pradhan, G. B.; Juanes-Marcos, J. C.; Balakrishnan, N.; Kendrick, Brian K.
2013-11-21
Quantum scattering calculations are reported for state-to-state vibrational relaxation and reactive scattering in O + OH(v = 2 − 3, j = 0) collisions on the electronically adiabatic ground state {sup 2}A′′ potential energy surface of the HO{sub 2} molecule. The time-independent Schrödinger equation in hyperspherical coordinates is solved to determine energy dependent probabilities and cross sections over collision energies ranging from ultracold to 0.35 eV and for total angular momentum quantum number J = 0. A J-shifting approximation is then used to compute initial state selected reactive rate coefficients in the temperature range T = 1 − 400 K. Results are found to be in reasonable agreement with available quasiclassical trajectory calculations. Results indicate that rate coefficients for O{sub 2} formation increase with increasing the OH vibrational level except at low and ultralow temperatures where OH(v = 0) exhibits a slightly different trend. It is found that vibrational relaxation of OH in v = 2 and v = 3 vibrational levels is dominated by a multi-quantum process.
NASA Astrophysics Data System (ADS)
Galchev, Tzeno; McCullagh, James; Peterson, Rebecca L.; Najafi, Khalil; Mortazawi, Amir
2011-04-01
To power distributed wireless sensor networks on bridges, traditional power cables or battery replacement are excessively expensive or infeasible. This project develops two power harvesting technologies. First, a novel parametric frequency-increased generator (PFIG) is developed. The fabricated PFIG harvests the non-periodic and unprecedentedly low frequency (DC to 30 Hz) and low acceleration (0.55-9.8 m/s2) mechanical energy available on bridges with an average power > 2 μW. Prototype power conversion and storage electronics were designed and the harvester system was used to charge a capacitor from arbitrary bridge-like vibrations. Second, an RF scavenger operating at medium and shortwave frequencies has been designed and tested. Power scavenging at MHz frequencies allows for lower antenna directivities, reducing sensitivity to antenna positioning. Furthermore, ambient RF signals at these frequencies have higher power levels away from cities and residential areas compared to the UHF and SHF bands utilized for cellular communication systems. An RF power scavenger operating at 1 MHz along with power management and storage circuitry has been demonstrated. It powers a LED at a distance of 10 km from AM radio stations.
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life. PMID:26827346
NASA Astrophysics Data System (ADS)
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Efficiency of Collisional O2 + N2 Vibrational Energy Exchange.
Garcia, E; Kurnosov, A; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M
2016-03-01
By following the scheme of the Grid Empowered Molecular Simulator (GEMS), a new O2 + N2 intermolecular potential, built on ab initio calculations and experimental (scattering and second virial coefficient) data, has been coupled with an appropriate intramolecular one. On the resulting potential energy surface detailed rate coefficients for collision induced vibrational energy exchanges have been computed using a semiclassical method. A cross comparison of the computed rate coefficients with the outcomes of previous semiclassical calculations and kinetic experiments has provided a foundation for characterizing the main features of the vibrational energy transfer processes of the title system as well as a critical reading of the trajectory outcomes and kinetic data. On the implemented procedures massive trajectory runs for the proper interval of initial conditions have singled out structures of the vibrational distributions useful to formulate scaling relationships for complex molecular simulations. PMID:26292835
Low Head, Vortex Induced Vibrations River Energy Converter
Bernitsas, Michael B.; Dritz, Tad
2006-06-30
Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.
Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations
NASA Astrophysics Data System (ADS)
Zhu, Jin; Zhang, Wei
2015-04-01
Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever
A smart and self-sufficient frequency tunable vibration energy harvester
NASA Astrophysics Data System (ADS)
Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.
2011-10-01
We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.
NASA Astrophysics Data System (ADS)
Montanini, Roberto; Quattrocchi, Antonino
2016-06-01
A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.
Energy Measurement of Bubble Bursting Based on Vibration Signals
NASA Astrophysics Data System (ADS)
Liu, Xiao-Bo; Zhang, Jian-Run; Li, Pu; Le, Van-Quynh
2012-06-01
An experimental study of the energy of bubble bursting at the surface of a high-viscosity liquid on a cantilever beam is reported. The sudden bursting event of a bubble at the liquid surface can cause a vibration of the cantilever beam besides the acoustic wave and jet wave. The peaks of the vibration signal from the beam slightly lag the peaks of the acoustic signal, and the energy transferred to the vibration is larger than that transferred to the acoustic wave. The amplitude of the jet wave depends on the thickness of the liquid film and the size of the bubble. The results of the investigation can be used to understand the dynamic characteristics of bubble bursting.
Delayed-feedback vibration absorbers to enhance energy harvesting
NASA Astrophysics Data System (ADS)
Kammer, Ayhan S.; Olgac, Nejat
2016-02-01
Recovering energy from ambient vibrations has recently been a popular research topic. This article is conceived as a concept study that explores new directions to enhance the performance of such energy harvesting devices from base excitation. The main idea revolves around the introduction of delayed feedback sensitization (or tuning) of an active vibration absorber setup. To clarify the concept, the Delayed Resonator theory is reviewed and its suitability for energy harvesting purposes is studied. It is recognized that an actively tuned and purely resonant absorber is infeasible for such applications. The focus is then shifted to alternative tuning schemes that deviate from resonance conditions. Also called Delayed Feedback Vibration Absorbers, these devices may indeed provide significant enhancements in energy harvesting capacity. Analytical developments are presented to study energy generation and consumption characteristics. Effects of excitation frequency and absorber damping are investigated. The influences of time-delayed feedback on the stability and the transient performance of the system are also treated. The analysis starts from a stand-alone absorber, emulating seismic mass type harvesters. The work is then extended to vibration control applications, where an absorber/harvester is coupled with a primary structure. The results are demonstrated with numerical simulations on a case study.
A two-dimensional broadband vibration energy harvester using magnetoelectric transducer
Yang, Jin Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling
2013-12-09
In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4 Hz and power of 0.59 mW, with acceleration of 0.6 g (with g = 9.8 m s{sup −2})
Molecular vibrational energy flow and dilution factors in an anharmonic state space.
Sibert, Edwin L; Gruebele, Martin
2006-01-14
A fourth-order resonance Hamiltonian is derived from the experimental normal-mode Hamiltonian of SCCl2. The anharmonic vibrational state space constructed from the effective Hamiltonian provides a realistic model for vibrational energy flow from bright states accessible by pulsed laser excitation. We study the experimentally derived distribution PE(sigma) of dilution factors sigma as a function of energy. This distribution characterizes the dynamics in the long-time limit. State space models predict that PE(sigma) should be bimodal, with some states undergoing facile intramolecular vibrational energy redistribution (small sigma), while others at the same total energy remain "protected" (sigma approximately 1). The bimodal distribution is in qualitative agreement with analytical and numerical local density of states models. However, there are fewer states protected from energy flow, and the protected states begin to fragment at higher energy, shifting from sigma approximately 1 to sigma approximately 0.5. We also examine how dilution factors are distributed in the vibrational state space of SCCl2 and how the power law specifying the survival probability of harmonic initial states correlates with the dilution factor distribution of anharmonic initial states. PMID:16422593
NASA Astrophysics Data System (ADS)
Nawayseh, Naser; Griffin, Michael J.
2010-07-01
Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.
Optimization design of high power ultrasonic circular ring radiator in coupled vibration.
Xu, Long; Lin, Shuyu; Hu, Wenxu
2011-10-01
This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. PMID:21529873
Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.
Kondoh, Masato; Mizuno, Misao; Mizutani, Yasuhisa
2016-06-01
Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein. PMID:27164418
Low energy electron impact vibrational excitation of acetylene
NASA Astrophysics Data System (ADS)
Patra, Sigma; Hargreaves, Leigh; Khakoo, Murtadha
2016-05-01
Experimental differential cross sections for the vibration excitation of the four fundamental modes of acetylene at low incident electron energies from 1 eV to 20 eV and scattering angles of 10o to 130o will be presented. The results will be compared to results available in the literature. Funded by NSF-AMOP-RUI Grant.
Does acute side-alternating vibration exercise enhance ballistic upper-body power?
Cochrane, D J; Black, M J; Barnes, M J
2014-11-01
The aim of this study was to investigate the effects of acute vibration exercise, at 2 different frequencies, on upper body power output. Muscle activity (EMG) and upper-body peak power was measured in 12 healthy males during ballistic bench press throws at 30% of 1-repetition maximum on a Smith machine. Measures were made prior to, 30 s and 5 min after one of 3 conditions performed for 30 s in a press-up position: side-alternating vibration at 20 Hz, 26 Hz and no vibration. EMG was recorded in the anterior deltoid, triceps brachii and pectoralis major during ballistic bench press throws as well as during application of each condition. While peak power output was higher at 5 min post condition across all conditions, compared to baseline measures (P<0.05), only 20 Hz vibration resulted in a significant increase in peak power output (P<0.05) compared to no vibration. EMG was greater during both vibration conditions, compared to no vibration (P<0.001). However, this difference was not evident during bench press throws when no difference was seen in muscle activity between conditions. These findings suggest that 20 Hz vibration has an ergogenic effect on upper-body power that may be due to peripheral, rather than central, mediated mechanisms. PMID:24838267
Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting
NASA Astrophysics Data System (ADS)
Dong, Lin; Prasad, M. G.; Fisher, Frank T.
2016-06-01
Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.
Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.
2014-11-01
This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.
Vibration characterisation of cymbal transducers for power ultrasonic applications
NASA Astrophysics Data System (ADS)
Bejarano, F.; Feeney, A.; Lucas, M.
2012-08-01
A Class V cymbal flextensional transducer is composed of a piezoceramic disc or ring sandwiched between two cymbal-shaped shell end-caps. These end-caps act as mechanical transformers to convert high impedance, low radial displacement of the piezoceramic into low impedance, large axial motion of the end-cap. The cymbal transducer was developed in the early 1990's at Penn State University, and is an improvement of the moonie transducer which has been in use since the 1980's. Despite the fact that cymbal transducers have been used in many fields, both as sensors and actuators, due to its physical limitations its use has been mainly at low power intensities. It is only very recently that its suitability for high amplitude and high power applications has been studied, and consequently implementation in this area of research remains undeveloped. This paper employs experimental modal analysis (EMA), vibration response measurements and electrical impedance measurements to characterise two variations of the cymbal transducer design, both aimed at incorporation in ultrasonic cutting devices. The transducers are fabricated using the commercial Eccobond 45LV epoxy adhesive as the bonding agent. The first cymbal transducer is of the classic design where the piezoceramic disc is bonded directly to the end-caps. The second cymbal transducer includes a metal ring bonded to the outer edge of the piezoceramic disc. The reason for the inclusion of this metal ring is to improve the mechanical coupling with the end-caps. This would therefore make this design particularly suitable for power ultrasonic applications, reducing the possibility of debonding at the higher ultrasonic amplitudes. The experimental results demonstrate that the second cymbal design is a significant improvement on the more classic design, allowing the transducer to operate at higher voltages and higher amplitudes, exhibiting a linear response over a practical power ultrasonic device driving voltage range. The
Minimization of the vibration energy of thin-plate structure
NASA Technical Reports Server (NTRS)
Inoue, Katsumi; Townsend, Dennis P.; Coy, John J.
1992-01-01
An optimization method is proposed to reduce the vibration of thin plate structures. The method is based on a finite element shell analysis, a modal analysis, and a structural optimization method. In the finite element analysis, a triangular shell element with 18 dof is used. In the optimization, the overall vibration energy of the structure is adopted as the objective function, and it is minimized at the given exciting frequency by varying the thickness of the elements. The technique of modal analysis is used to derive the sensitivity of the vibration energy with respect to the design variables. The sensitivity is represented by the sensitivities of both eigenvalues and eigenvectors. The optimum value is computed by the gradient projection method and a unidimensional search procedure under the constraint condition of constant weight. A computer code, based on the proposed method, is developed and is applied to design problems using a beam and a plate as test cases. It is confirmed that the vibration energy is reduced at the given exciting frequency. For the beam excited by a frequency slightly less than the fundamental natural frequency, the optimized shape is close to the beam of uniform strength.
NASA Technical Reports Server (NTRS)
Inoue, Katsumi; Krantz, Timothy L.
1995-01-01
While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.
Characterization of a water pump for drum-type washing machine by vibration power approach
NASA Astrophysics Data System (ADS)
Heo, YongHwa; Kim, Kwang-joon
2015-03-01
Water pumps used in drum-type washing machines to save water are likely to make the washing process noisier than the one without those because the water pumps attached usually onto cabinet structure work as additional vibration and noise sources. In order to either counteract such vibration and noise problems by stiffness design of the cabinet structure or classify the water pumps from the view point of an acceptance test, characterization of the water pumps as excitation sources would be essential. In this paper, several methods to characterize a water pump as an excitation source are investigated. Measurements by traditional methods of blocked force and/or free velocity for a water pump of 35 W are presented. Two methods of vibration power suggested rather recently are reviewed. Then, another method of the vibration power is proposed. Estimations of the vibration power for the water pump operating on a beam structure are obtained and discussed comparatively.
Electromagnetic Vibration Energy Harvester Using Springless Proof Mass and Ferrofluid as a Lubricant
NASA Astrophysics Data System (ADS)
Chae, S. H.; Ju, S.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.
2013-12-01
This paper presents an electromagnetic energy harvester using an array of rectangular permanent magnets as springless proof mass and ferrofluid as a lubricating material. Lateral motion of the multi-pole magnet array generates voltage across an array of copper windings formed under the aluminum channel in response to low frequency external vibrations such as human-body-induced motion. A proof-of-concept device has been fabricated and output voltage has been measured at various input frequencies and accelerations provided by a vibration exciter. Device with ferrofluid lubrication generated maximum open-circuit voltage of 0.47V at 3g vibration at 12Hz, which is 8% higher than that of the device without lubricant. Maximum output power of 71.26μW has been obtained at 40.8Ω with the device with ferrofluid lubrication.
Optimization of piezoelectric bistable composite plates for broadband vibrational energy harvesting
NASA Astrophysics Data System (ADS)
Betts, David N.; Kim, H. Alicia; Bowen, Christopher R.; Inman, Daniel J.
2012-04-01
This paper presents a unique arrangement of bistable composite plates with piezoelectric patches bonded to its surface to perform broadband vibration-based energy harvesting from ambient mechanical vibrations. These bistable nonlinear devices have been shown to have improved power generation compared to conventional resonant systems and can be designed to occupy smaller volumes than bistable magnetic cantilever systems. This paper presents the results of an optimization study of bistable composites that are capable of generating greater electrical power from a smaller space by discovering the correct geometric configuration for energy harvesting. Optimum solutions are investigated in a series of design parameter studies intended to reveal the complex interactions of the physical constraints and design requirements. The proposed approach considers the optimal choice of device aspect ratio, thickness, laminate stacking sequence, and piezoelectric surface area. Increased electrical output is found for geometries and piezoelectric configurations which have not been considered previously.
Efficiency improvement of a cantilever-type energy harvester using torsional vibration
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo
2016-04-01
In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.
Investigation of Vibrational Energy Transfer in Connected Structures
NASA Technical Reports Server (NTRS)
Hwang, C.; Pi, W. S.
1973-01-01
The results are reported of an analytical and experimental investigation on the vibrational energy transfer between connected substructures under random excitation. In the analytical area, the basic foundation and assumptions of the statistical energy analysis (SEA) method, a major tool in random response analysis of structures, were examined and reviewed. A new SEA formulation based on the strong coupling condition of the substructures was carried out and presented. Also presented were the results of vibration energy transfer study based on the wave equations applied to connected structures. In the experimental phase, three simple structural models were fabricated and tested. Additional tests were performed on selected substructures which formed parts of the test models. The test results were presented and evaluated against the analytical data.
Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer
NASA Astrophysics Data System (ADS)
Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi
2013-09-01
A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.
NASA Astrophysics Data System (ADS)
Halim, Miah A.; Park, Jae Y.
2014-03-01
We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Accurate ab initio vibrational energies of methyl chloride.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH3 (35)Cl and CH3 (37)Cl. The respective PESs, CBS-35( HL), and CBS-37( HL), are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35( HL) and CBS-37( HL) PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm(-1), respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs. PMID:26133427
Accurate ab initio vibrational energies of methyl chloride
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-01
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm-1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs.
Power conditioning for low-voltage piezoelectric stack energy harvesters
NASA Astrophysics Data System (ADS)
Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.
2016-04-01
Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.
Investigation of folded spring structures for vibration-based piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Lueke, J.; Rezaei, M.; Moussa, W. A.
2014-12-01
This paper presents a fixed-fixed folded spring as an alternative elastic element for beam-based piezoelectric energy harvesting. In order to harvest energy from low frequency vibration in an optimal manner, the natural/operational frequencies of harvesters must be reduced to match low frequency input vibrations. Therefore, natural frequency reduction of vibration-based energy harvesters is critical to maximize output power at low operational frequency. The mechanical optimization of cantilever-based piezoelectric energy harvesters is limited by residual stress-based beam curling that produced through microfabrication adding additional mechanical stiffness to the system. The fixed-fixed folded spring structure presented in this paper allows for increased effective beam length and residual stress relaxation, without out of plane beam curling to further reducing the natural frequency. Multiple designs of folded spring energy harvesters are presented to demonstrate the effect of important design parameters. It is shown that the folded spring harvesters were capable of harvesting electricity at low natural frequencies, ranging from 45 Hz to 3667 Hz. Additionally, the harvesters were shown to be insensitive to microfabrication-based residual stress beam curling. The maximum power output achieved by the folded spring harvesters was 690.5 nW at 226.3 Hz for a single harvesting element of an array, with a PZT layer thickness of 0.24 μm. The work presented in this paper demonstrates that the fixed-fixed folded spring can be used as a viable structural element for low frequency piezoelectric energy harvesting to take advantage of ambient vibrations found in low frequency applications.
Resonant vibrational excitation of CO by low-energy electrons
Poparic, G. B.; Belic, D. S.; Vicic, M. D.
2006-06-15
Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Xu; John, Sabu
2016-02-01
A novel piezoelectric vibration energy harvesting system is proposed whose harvesting performance could be significantly enhanced by introducing one or multiple additional piezoelectric elements placed between every two nearby oscillators. The proposed two degree-of-freedom piezoelectric vibration harvester system is expected to extract 9.78 times more electrical energy than a conventional two degrees of freedom harvester system with only one piezoelectric element inserted close to the base. A parameter study of a multiple degree-of-freedom piezoelectric vibration energy harvester system has been conducted to provide a guideline for tuning its harvesting bandwidth and optimizing its design. Based on the analysis method of the two degrees of freedom piezoelectric vibration harvester system, a generalised MDOF piezoelectric vibration energy harvester with multiple pieces of piezoelectric elements inserted between every two nearby oscillators is studied. The harvested power values of the piezoelectric vibration energy harvesters of 1 to 5 degree-of-freedom have been compared while the total mass and the mass ratio of the oscillators are kept as constants. It is found that the greater numbers of degree-of-freedom of a PVEH with the more additional piezoelectric elements inserted between every two nearby oscillators would enable that system to harvest more energy. The first mode resonant frequency will be shifted to a low-frequency range when the numbers of degree-of-freedom increase.
Vibration signal classification by wavelet packet energy flow manifold learning
NASA Astrophysics Data System (ADS)
He, Qingbo
2013-04-01
This paper proposes a new study to explore the wavelet packet energy (WPE) flow characteristics of vibration signals by using the manifold learning technique. This study intends to discover the nonlinear manifold information from the WPE flow map of vibration signals to characterize and discriminate different classes. A new feature, called WPE manifold feature, is achieved by three main steps: first, the wavelet packet transform (WPT) is conducted to decompose multi-class signals into a library of time-frequency subspaces; second, the WPE is calculated in each subspace to produce a feature vector for each signal; and finally, low-dimensional manifold features carrying class information are extracted from the WPE library for either training or testing samples by using the manifold learning algorithm. The new feature reveals the nonlinear WPE flow structure among various redundant time-frequency subspaces. It combines the benefits of time-frequency characteristics and nonlinear information, and hence exhibits valuable properties for vibration signal classification. The effectiveness and the merits of the proposed method are confirmed by case studies on vibration analysis-based machine fault classification.
Internal Conversion and Vibrational Energy Redistribution in Chlorophyll A.
Shenai, Prathamesh M; Fernandez-Alberti, Sebastian; Bricker, William P; Tretiak, Sergei; Zhao, Yang
2016-01-14
We have computationally investigated the role of intramolecular vibrational modes in determining nonradiative relaxation pathways of photoexcited electronic states in isolated chlorophyll A (ChlA) molecules. To simulate the excited state relaxation from the initially excited Soret state to the lowest excited state Qy, the approach of nonadiabatic excited state molecular dynamics has been adopted. The intramolecular vibrational energy relaxation and redistribution that accompany the electronic internal conversion process is followed by analyzing the excited state trajectories in terms of the ground state equilibrium normal modes. The time dependence of the normal mode velocities is determined by projecting instantaneous Cartesian velocities onto the normal mode vectors. Our analysis of the time evolution of the average mode energies uncovers that only a small subset of the medium-to-high frequency normal modes actively participate in the electronic relaxation processes. These active modes are characterized by the highest overlap with the nonadiabatic coupling vectors (NACRs) during the electronic transitions. Further statistical analysis of the nonadiabatic transitions reveals that the electronic and vibrational energy relaxation occurs via two distinct pathways with significantly different time scales on which the hopping from Soret to Qx occurs thereby dictating the overall dynamics. Furthermore, the NACRs corresponding to each of the transitions have been consistently found to be predominantly similar to a set of normal modes that vary depending upon the transition and the identified categories. Each pathway exhibits a differential time scale of energy transfer and also a differential set of predominant active modes. Our present analysis can be considered as a general approach allowing identification of a reduced subset of specific vibrational coordinates associated with nonradiative relaxation pathways. Therefore, it represents an adequate prior strategy that
Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics
Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen
2014-04-07
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.
Designing and Testing Energy Harvesters Suitable for Renewable Power Sources
NASA Astrophysics Data System (ADS)
Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.
2016-01-01
Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.
Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester
NASA Astrophysics Data System (ADS)
Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi
2016-06-01
We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.
NASA Astrophysics Data System (ADS)
Yang, Jin; Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo
2014-07-01
A magnetoelectric (ME) vibration energy harvester has been designed to scavenge sufficient energy from ambient vibration with arbitrary motion directions in a plane and over a range of frequencies. In the harvester, a circular-cross-section cantilever rod is adopted to extract the vibration energy due to its ability to host accelerations in arbitrary in-plane motion directions. The magnetic coupling between the magnet and the ME transducer results in nonlinear oscillation of the cantilever rod with increased frequency bandwidth. To achieve optimal vibration energy harvesting performance, the effects of the nonlinear vibration and the harvester parameters including the magnetic circuit and the separation distance on the electrical output and the␣working bandwidth are analyzed. The experimental results show that the harvester can scavenge vibration energy in arbitrary in-plane directions, exhibiting a bandwidth of 4.0 Hz and maximum power of 0.22 mW at acceleration of 0.6 g (with g = 9.8 m s-2).
NASA Astrophysics Data System (ADS)
Miller, Lindsay Margaret
Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one
Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Yang, Zhengbao; Zu, Jean
2015-04-01
Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.
Synergistic use of smart materials for vibration-based energy harvesting
NASA Astrophysics Data System (ADS)
Silva, L. L.; Oliveira, S. A.; Pacheco, P. M. C. L.; Savi, M. A.
2015-11-01
Vibration-based energy harvesting is an approach where available mechanical vibration energy is converted into electrical energy that can be employed for different purposes. This paper deals with the synergistic use of smart materials for energy harvesting purposes. In essence, piezoelectric and shape memory alloys are combined to build an energy harvesting system. The combined effect of these materials can increase the system performance and reduce some limitations. The possibility to control the mechanical stiffness under vibration by a shape memory alloy (SMA) element can provide the ability to tune resonant frequencies in order to increase the output power. The analysis is developed considering a one-degree of freedom mechanical system where the restitution force is provided by an SMA element. The electro-mechanical coupling is provided by a piezoelectric element. Linear piezoelectric constitutive equation is employed together with the Brinson's model for SMA element. Numerical simulations are carried out showing different responses of the system indicating that the inclusion of the SMA element can be used to extend the operational range of the system.
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-02-01
We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.
Bian, Hongtao; Chen, Hailong; Li, Jiebo; Wen, Xiewen; Zheng, Junrong
2011-10-27
The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was found to be able to describe the intermolecular mode specific vibrational energy transfer. Under the assumption of the dipole-dipole approximation, the distance between anions in the aqueous solutions was obtained from the vibrational energy transfer measurements, confirmed with measurements on the corresponding crystalline samples. The result demonstrates that the mode-specific vibrational energy transfer method holds promise as an angstrom molecular ruler. PMID:21916443
Harvestable vibrational energy from an avian source: theoretical predictions vs. measured values
NASA Astrophysics Data System (ADS)
Shafer, Michael W.; MacCurdy, Robert; Garcia, Ephrahim; Winkler, David
2012-04-01
For many reasons, it would be beneficial to have the capability of powering a wildlife tag over the course of multiple migratory seasons. Such an energy harvesting system would allow for more data collection and eliminate the need to replace depleted batteries. In this work, we investigate energy harvesting on birds and focus on vibrational energy harvesting. We review a method of predicting the amount of power that can be safely harvested from the birds such that the effect on their longterm survivability is not compromised. After showing that the safely harvestable power is significant in comparison to the circuits used in avian tags, we present testing results for the flight accelerations of two species of birds. Using these measured values, we then design harvesters that matched the flight acceleration frequency and are sufficiently low mass to be carried by the birds.
Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations
NASA Astrophysics Data System (ADS)
Jamróz, Michał H.
2013-10-01
The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.
Comparison of vibrational conductivity and radiative energy transfer methods
NASA Astrophysics Data System (ADS)
Le Bot, A.
2005-05-01
This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yufeng; Zhao, Lurui; Sok Kim, Eun
2016-02-01
This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17 × 7 × 1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44 × 20 × 6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.
Low power energy harvesting and storage techniques from ambient human powered energy sources
NASA Astrophysics Data System (ADS)
Yildiz, Faruk
small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source.
Power extraction from vortex-induced vibration of dual mass system
NASA Astrophysics Data System (ADS)
Nishi, Yoshiki
2013-01-01
This study theoretically examines energy extraction through the vortex-induced vibration (VIV) of a dual mass system. The theory involves a dynamic system comprising two cylinders connected with a few springs, dampers, and a generator. The governing equation for the system is composed of equations of translational motion for the two cylinders and an equation of rotation for the wake oscillator, which is introduced for describing a hydrodynamic lift force acting on a primary cylinder. The harmonic solution of the equations is derived by adopting an averaging method. The analytical solution obtained for a dual mass case is reduced to one for a single mass case by considering a limit of infinite in-between damping and zero mass of secondary cylinder. The calculation shows enhancement of power extraction by the dual mass system, surpassing that by single mass system. This advantage of the dual mass system holds under both constant and variable flow velocities.
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Karami, M. Amin
2016-03-01
This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.
NASA Astrophysics Data System (ADS)
Haroun, Ahmed; Yamada, Ichiro; Warisawa, Shin`ichi
2015-08-01
This paper presents study of an electromagnetic vibration energy harvesting configuration that can work effectively at low frequencies. Unlike the conventional form of vibration energy harvesters in which the mass is directly connected to a vibrating frame with spring suspension, in the proposed configuration a permanent magnet mass is allowed to move freely within a certain distance inside a frame-carrying coil and make impacts with spring end stops. The free motion distance allows matching lower vibration frequencies with an increase in the relative amplitude at resonance. Hence, significant power could be generated at low frequencies. A nonlinear mathematical model including impact and electromagnetic induction is derived. Study of the dynamic behaviour and investigation of the system performance is carried out with the aid of case study simulation. The proposed harvester shows a unique dynamic behaviour in which different ways of response of the internal relative oscillation appear over the range of input frequencies. A mathematical condition for the response type at which the higher relative amplitude appears is derived, followed by an investigation of the system resonant frequency and relative amplitude. The resonant frequency shows a dependency on the free motion distance as well as the utilized mass and spring stiffness. Simulation and experimental comparisons are carried out between the proposed harvester and similar conventional one tuned at the same input frequency. The power generated by the proposed harvesting configuration can reach more than 12 times at 11 Hz in the simulation case and about 10 times at 10 Hz in the experimental case. Simulation comparison also shows that this power magnification increases by matching lower frequencies which emphasize the advantages of the proposed configuration for low frequency operation.
From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Iannacci, J.; Sordo, G.
2015-05-01
In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Worbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.
NASA Astrophysics Data System (ADS)
Tsampas, P.; Roditis, G.; Papadimitriou, V.; Chatzakos, P.; Gan, Tat-Hean
2013-05-01
Increasing demand in mobile, autonomous devices has made energy harvesting a particular point of interest. Systems that can be powered up by a few hundreds of microwatts could feature their own energy extraction module. Energy can be harvested from the environment close to the device. Particularly, the ambient mechanical vibrations conversion via piezoelectric transducers is one of the most investigated fields for energy harvesting. A technique for optimized energy harvesting using piezoelectric actuators called "Synchronized Switching Harvesting" is explored. Comparing to a typical full bridge rectifier, the proposed harvesting technique can highly improve harvesting efficiency, even in a significantly extended frequency window around the piezoelectric actuator's resonance. In this paper, the concept of design, theoretical analysis, modeling, implementation and experimental results using CEDRAT's APA 400M-MD piezoelectric actuator are presented in detail. Moreover, we suggest design guidelines for optimum selection of the storage unit in direct relation to the characteristics of the random vibrations. From a practical aspect, the harvesting unit is based on dedicated electronics that continuously sense the charge level of the actuator's piezoelectric element. When the charge is sensed, to come to a maximum, it is directed to speedily flow into a storage unit. Special care is taken so that electronics operate at low voltages consuming a very small amount of the energy stored. The final prototype developed includes the harvesting circuit implemented with miniaturized, low cost and low consumption electronics and a storage unit consisting of a super capacitors array, forming a truly self-powered system drawing energy from ambient random vibrations of a wide range of characteristics.
Self-powered semi-passive vibration damping system based on self-sensing approach
NASA Astrophysics Data System (ADS)
Shen, Hui; Zhang, Fengsheng; Ji, Hongli; Qiu, Jinhao; Bian, Yixiang
2016-01-01
In recent years, semi-passive vibration damping using Synchronized Switching Damping on Inductor (SSDI) technique has been intensively investigated. In this paper, a self-powered semi-passive vibration damping system based on self sensing approach is proposed and investigated. With the self-sensing technique, the same piezoelectric element can be used as a sensor and an actuator. Compared with the other self-powered SSDI approaches, this technique can not only detect switching time without lag, but also reduce the number of piezoelectric elements. Furthermore, a low-power circuit for semi-passive piezoelectric vibration control based on self-sensing technique is designed. Experimental results demonstrate that the self-sensing SSDI system has good damping performance. The performance of the self-sensing SSDI system is also compared with the externally powered system.
A review of vibration problems in power station boiler feed pumps
NASA Technical Reports Server (NTRS)
France, David
1994-01-01
Boiler feed pump reliability and availability is recognized as important to the overall efficiency of power generation. Vibration monitoring is often used as a part of planned maintenance. This paper reviews a number of different types of boiler feed pump vibration problems describing some methods of solution in the process. It is hoped that this review may assist both designers and users faced with similar problems.
Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters
NASA Astrophysics Data System (ADS)
Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell
2015-11-01
Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.
Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter
NASA Astrophysics Data System (ADS)
Bradai, Sonia; Naifar, Slim; Kanoun, Olfa
2015-12-01
In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most important aspect is the dependence of magnetic flux variation on design parameters, as is it is the decisive effect for energy conversion. Magnetic circuit form and magnetization are optimized for maximizing energy outcome. We conclude that better magnetic flux variation is reached for a magnetic circuit formed with two magnets stacked one within the other using the same magnetization. Results illustrate that the use of combined converter enables to enhance the performance of simple electrodynamic or ME converter.
Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph
NASA Astrophysics Data System (ADS)
Cao, Yongqing
With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For
A novel design of a map-tuning piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Lin, Kao-An
2012-08-01
In this paper, a new design of a self-tuning bimorph PZT beam for maximum vibration energy harvesting is introduced. As is well known, a PZT beam harvester captures the most energy as it resonates with the ambient vibration. The ambient excitation frequency varies in nature so that proper tracking of the ambient frequency and adjusting the harvester’s resonance frequency accordingly would assure the most energy retrieved. The harvester introduced in the paper is composed of an elastic beam partially covered with two-sided PZT patches, the same as most others, but the method of tuning its resonance frequency is novel. A movable intermediate rigid support is attached to the beam and by adjusting the support’s position according to the sensed ambient frequency, the beam’s resonance frequency will coincide with the ambient frequency such that the harvested vibration energy is maximized. The theoretical analysis employs Hamilton’s principle, the assumed-mode method, and the receptance method. Numerical results are obtained and compared with the experimental ones. They show excellent agreement in a frequency versus support’s position chart. The most significant feature is that there can be up to ±35% of resonance frequency tunability. This achievement provides substantial advantages in power-harvesting applications. An experiment for base excitation to simulate the ambient vibration is setup as well and the results show that as little as 5% excitation frequency variation would cause more than 70% output voltage drop if there were no tuning ability. The novel design could significantly enhance the harvested energy in a short duration of time.
NASA Astrophysics Data System (ADS)
Muthalif, Asan G. A.; Nordin, N. H. Diyana
2015-03-01
Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.
Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad; Su, Quang
2016-04-01
Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam are obtained using the shooting method.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Fikri Muhammad, Khairul; Mohd Khairuddin, Ismail; Ishak, Ismayuzri; Razlan Yusoff, Ahmad
2016-02-01
This paper presents the new form of coils for electromagnetic energy harvesting system based on topology optimization method which look-liked a cap to maximize the power output. It could increase the number of magnetic flux linkage interception of a cylindrical permanent magnet which in this case is of 10mm diameter. Several coils with different geometrical properties have been build and tested on a vibration generator with frequency of 100Hz. The results showed that the coil with lowest number of winding transduced highest power output of 680μW while the highest number of windings generated highest voltage output of 0.16V.
Smart Sand—a wide bandwidth vibration energy harvesting platform
NASA Astrophysics Data System (ADS)
Marinkovic, Bozidar; Koser, Hur
2009-03-01
We propose a concept for true wide bandwidth vibration energy harvesting. Our approach exploits nonlinear stretching of fixed-fixed beams in an off-resonance mode, effectively expanding the operational frequency range well beyond the narrow bandwidth of linear resonators. Our initial prototype demonstrates operation between 160-400 Hz, without the need for frequency tuning. A simple dynamic model shows good agreement with measurements. Optimized device geometry will allow for even lower frequency operation (starting at 60 Hz) at strain levels above 1e-3 (ideal for piezoelectric transduction).
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2013-01-01
The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114
Zalesskaya, G.A.; Yakovlev, D.L.
1995-02-01
CO{sub 2} laser-induced delayed fluorescence was used to study the collisional vibration-energy exchange between the polyatomic molecules in gases. The efficiency of collisional exchange, the mean amount of energy transfer in one collision, as well as their correlation with the vibration energy and with the size of excited molecule were determined for diacetyl, acetophenone, benzophenone, and anthraquinone molecules form the experimentally observed pressure dependences of the decay rates and fluorescence intensities. It was shown that the mean amount of energy transfer per collision decreases with the molecular size and increases as E{sup m}, with m>2, with increasing the vibration energy. 25 refs., 4 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Wang, Xu
2016-02-01
This paper establishes coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis under parameter variations and random excitations. The new contributions of this paper are to define the numerical ranges of the dimensionless force factor for the weak, moderate and strong coupling and to study the connections of dimensionless force factor, coupling loss factor, coupling quotient, critical coupling strength, electro-mechanical coupling factor, damping loss factor and modal densities in linear vibration energy harvesting systems. The motivation of this paper is to enable statistical energy analysis of linear vibration energy harvesting systems for reliable performance predictions and design optimisation under parameter variations of materials and manufacturing processes and random ambient environmental excitations.
A low frequency vibration energy harvester using dual Halbach array suspended in magnetic springs
NASA Astrophysics Data System (ADS)
Salauddin, M.; Halim, M. A.; Park, J. Y.
2015-12-01
An electromagnetic (EM) low frequency vibration energy harvester is newly developed based on dual Halbach array which is suspended in two magnetic springs. Each Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. With the goal of higher power generation in low amplitude and low frequency vibrations, the magnetic structures (both the dual Halbach array and the magnetic springs) were optimized in terms of operating frequency and power density. A prototype was fabricated and tested. It is capable of delivering maximum 1.09mW average power to 44Ω optimum load at 11Hz resonant frequency and 0.5g acceleration. The prototype device offers 33.4μWcm-3 average power density which is much higher than recently reported electromagnetic energy harvesters.
The influence of mass configurations on velocity amplified vibrational energy harvesters
NASA Astrophysics Data System (ADS)
O’Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.
2016-05-01
Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.
Novel optimized design of a piezoelectric energy harvester in a package for low amplitude vibrations
NASA Astrophysics Data System (ADS)
Murillo, G.; Campanella, H.; Esteve, J.; Abadal, G.
2013-12-01
This paper presents a novel piezoelectric energy harvesting device created with the flip-chip bonding of two different parts, one is a MEMS die which plays the role of inertial mass and the other is an associate CMOS chip anchored to the vibrating environment. The flip-chip bonding is performed between the MEMS die, which consists of four piezoelectric beams connected to four PADs or anchor points, and a test PCB, which is used to validate the feasibility of the whole assembled system. The resulting system in package is a proof of concept of a novel design concept that increases the extracted power from an ambient vibration. FEM simulations have been carried out to study the mechanical behaviour of the who le system. Moreover, the fabrication of the piezoelectric die and the test PCB has been successfully performed, as well as their flip-chip integration.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Power management for energy harvesting wireless sensors
NASA Astrophysics Data System (ADS)
Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.
2005-05-01
The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring. PMID:24168315
NASA Astrophysics Data System (ADS)
Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke
2016-01-01
A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.
Energy 101: Concentrating Solar Power
None
2013-05-29
From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.
Determination of stepsize parameters for intermolecular vibrational energy transfer
Tardy, D.C.
1992-03-01
Intermolecular energy transfer of highly excited polyatomic molecules plays an important role in many complex chemical systems: combustion, high temperature and atmospheric chemistry. By monitoring the relaxation of internal energy we have observed trends in the collisional efficiency ({beta}) for energy transfer as a function of the substrate's excitation energy and the complexities of substrate and deactivator. For a given substrate {beta} increases as the deactivator's mass increase to {approximately}30 amu and then exhibits a nearly constant value; this is due to a mass mismatch between the atoms of the colliders. In a homologous series of substrate molecules (C{sub 3}{minus}C{sub 8}) {beta} decreases as the number of atoms in the substrate increases; replacing F with H increases {beta}. All substrates, except for CF{sub 2}Cl{sub 2} and CF{sub 2}HCl below 10,000 cm{sup {minus}1}, exhibited that {beta} is independent of energy, i.e. <{Delta}E>{sub all} is linear with energy. The results are interpreted with a simple model which considers that {beta} is a function of the ocillators energy and its vibrational frequency. Limitations of current approximations used in high temperature unimolecular reactions were evaluated and better approximations were developed. The importance of energy transfer in product yields was observed for the photoactivation of perfluorocyclopropene and the photoproduction of difluoroethyne. 3 refs., 18 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Makihara, K.
2002-01-01
inherent performance in damping is enhanced. Several semi-active vibration suppression approaches have been proposed based on variable-stiffness members, variable-friction devices, or variable-viscosity dampers, and the performance of each of these systems has been studied. The semi-active approach exploits passive energy-dissipation mechanisms, and supplies the system with no additional energy. Semi-active vibration suppression thus ensures that the system is always stable. This is its advantage. However, its performance in vibration suppression is usually inferior to active vibration suppression. have proposed collection of the energy taken from a vibrating system in suppressing its vibration. Using the collected energy to more quickly suppress the vibration is an attractive possibility. Additional energy is still not supplied to the system, and the vibration energy is finally dissipated. Therefore, this is a kind of semi-active approach, and retains the quality of that the system with it is always stable. method of energy-recycling semi-active vibration suppression is described and its performance is demonstrated by an experiment. A five bay truss beam with a piezoelectric transducer was used, and a simple electric circuit with switches was connected to the transducers. Then the switches were controlled by a processor so that the vibration was quickly suppressed by exploiting the collected electric energy. The results of the experiment demonstrated that the performance in vibration suppression of energy-recycling semi-active vibration suppression with actual hardware is much better than that of a traditional semi-active control. The effects of some non-ideal characteristics of real hardware on the performance in vibration suppression are also investigated.
NASA Astrophysics Data System (ADS)
Sun, Xufei; Li, Min; Shao, Yun; Liu, Ming-Ming; Xie, Xiguo; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan
2016-07-01
We study the photon energy sharing between the photoelectron and the nuclei in the process of above-threshold multiphoton dissociative ionization of CO molecules by measuring the joint energy spectra. The experimental observation shows that the electron-nuclear energy sharing strongly depends on the vibrational state. The experimental observation shows that both the energy deposited to the nuclei of C O+ and the emitted photoelectron decrease with increasing the vibrational level. Through studying the vibrationally resolved nuclear kinetic energy release and photoelectron energy spectra at different laser intensities, for each vibrational level of C O+ , the nuclei always tend to take the same amount of energy in every vibrational level regardless of the laser intensity, while the energy deposited to the photoelectron varies with respect to the laser intensity because of the ponderomotive shifted energy and the distinct dissociative ionization mechanisms.
Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles.
Bosco, C; Cardinale, M; Tsarpela, O
1999-03-01
The aim of this study was to evaluate the influence of vibration on the mechanical properties of arm flexors. A group of 12 international level boxers, all members of the Italian national team, voluntarily participated in the experiment: all were engaged in regular boxing training. At the beginning of the study they were tested whilst performing forearm flexion with an extra load equal to 5% of the subjects' body mass. Following this. one arm was given the experimental treatment (E; mechanical vibration) and the other was the control (no treatment). The E treatment consisted of five repetitions lasting 1-min each of mechanical vibration applied during arm flexion in isometric conditions with 1 min rest between them. Further tests were performed 5 min immediately after the treatment on both limbs. The results showed statistically significant enhancement of the average power in the arm treated with vibrations. The root mean square electromyogram (EMGrms) had not changed following the treatment but, when divided by mechanical power, (P) as an index of neural efficiency, it showed statistically significant increases. It was concluded that mechanical vibrations enhanced muscle P and decreased the related EMG/P relationship in elite athletes. Moreover, the analysis of EMGrms recorded before the treatment and during the treatment itself showed an enormous increase in neural activity during vibration up to more than twice the baseline values. This would indicate that this type of treatment is able to stimulate the neuromuscular system more than other treatments used to improve neuromuscular properties. PMID:10090628
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
NASA Astrophysics Data System (ADS)
Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.
2014-03-01
This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.
Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit
NASA Technical Reports Server (NTRS)
Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira
1991-01-01
The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.
Molecular distances determined with resonant vibrational energy transfers.
Chen, Hailong; Wen, Xiewen; Li, Jiebo; Zheng, Junrong
2014-04-01
In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline samples, the closest anion distance was determined to be 3.9 ± 0.3 Å, consistent with the XRD result. In the 1.8 and 1 M KSCN aqueous solutions, the anion distances in the ion clusters were determined to be 4.4 ± 0.4 Å. The clustered anion distances in aqueous solutions are very similar to the closest anion distance in the KSCN crystal but significantly shorter than the average anion distance (0.94-1.17 nm) in the aqueous solutions if ion clustering did not occur. The result suggests that ions in the strong electrolyte aqueous solutions can form clusters inside of which they have direct contact with each other. PMID:24641170
Laser induced vibrational energy transfer in iron pentacarbonyl
NASA Astrophysics Data System (ADS)
Langsam, Yedidyah; Ronn, A. M.
1984-01-01
The internal kinetics of Fe(CO)5 as well as the kinetics between Fe(CO)5 and other nonreactive species were studied using the technique of laser induced fluorescence. The energy transfer behavior of this large polyatomic is discussed in terms of existing V-V and V-T/R theories and collisional energy transfer. Iron pentacarbonyl's vibrational energy structure is treated by means of a simple three and four level energy transfer scheme. Subsequent to excitation of the 10 μ region by a CO2 laser, infrared fluorescence has been detected from the ˜16, ˜5, and ˜4 μ regions of Fe(CO)5. A single exponential decay rate of 13.6 ms-1 Torr-1 is observed from the ˜5 μ region, in good agreement with other decay rates established for smaller polyatomics possessing similar vibrational level structure. Under conditions of low fluence (˜30 mJ/cm2), this region is activated at a rate of 474 ms-1 Torr-1 suggesting a rapid near resonant collisional energy transfer. Under conditions of high fluence (˜5 J/cm2), the activation of the ˜5 μ region proceeds at a rate of 1250 ms-1 Torr-1 suggesting a different pathway for the determining step of the excitation process. The rare gas deactivation rates as well as those with Ni(CO)4, CO(CO)3No, and CO (as well as the reverse rate) and the crossover rate from excited Fe(CO)5 to CO in high rare gas dilution have also been determined.
Vibration energy harvesting using a phononic crystal with point defect states
NASA Astrophysics Data System (ADS)
Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen
2013-01-01
A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.
NASA Astrophysics Data System (ADS)
Meister, F. J.
1980-06-01
An attempt is made to link vibration sensation with sound sensation which is possible with Steven's power functions. The units Sone and Pal are related to each other and the relation of the so-called K-values of the guideline project of VDI 2057 to the Pal scale is sought by means of the rising tangents of Stevens power lines. It is demonstrated that the dependence of the vibration load of the human body on stress duration can be reproduced by the time dependence at acoustic loads, which is done for three load stages. Finally, these are compared with the proposal of the International Standardization Organization and a Soviet proposal.
An evaluation on low-level vibration energy harvesting using piezoelectret foam
NASA Astrophysics Data System (ADS)
Anton, S. R.; Farinholt, K. M.
2012-04-01
Energy harvesting technology is critical in the development of self-powered electronic devices. Over the past few decades, several transduction mechanisms have been investigated for harvesting various forms of ambient energy. This paper provides an investigation of a novel transducer material for vibration energy harvesting; piezoelectret foam. Piezoelectrets are cellular ferroelectret foams, which are thin, flexible polymeric materials that exhibit piezoelectric properties. The basic operational principle behind cellular ferroelectrets involves the deformation of internally charged voids in the polymer, which can be represented as macroscopic dipoles, resulting in a potential developed across the material. Both the mechanical and electromechanical properties of this material are investigated in this work. Mechanical testing is performed using traditional tensile testing techniques to obtain experimental measures of the stiffness and strength of the materials. Electromechanical testing is performed in order to establish a relationship between input mechanical energy and output electrical energy by dynamically measuring the piezoelectric constant, d33. Additionally, the properties of ferroelectret foams are compared to those of polyvinylidene fluoride (PVDF), a conventional polymer-based piezoelectric material whose crystalline phase exhibits piezoelectricity through dipole orientation. Finally, the feasibility of vibration energy harvesting using piezoelectret materials is investigated.
On the calculation of classical vibrational energy exchange
NASA Astrophysics Data System (ADS)
Gibbons, John P.; Stettler, John D.
1982-07-01
A three-dimensional, Monte Carlo classical model for the calculation of vibrational energy relaxation and transfer rates for both diatomic—monatomic and diatomic—diatomic systems was developed, analyzed and implemented. Mediation by internal angular momentum changes was demonstrated to be important in these energy transfer processes. This mechanism was incorporated into the model in order to achieve statistically significant results within reasonable computer running times. This made possible the extension of the model calculations to much lower temperatures than had been previously investigated. This calculational procedure was applied to Ar—O 2, to He—O 2 and to the near resonant CO—N 2 process at several temperatures between room temperature and 4000 K with the use of exponential repulsive intermolecular potential. Three different sets of potential parameters obtained from three independent sources were used. The results were compared to experiment.
Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface.
Pradhan, Ekadashi; Brown, Alex
2016-05-01
A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm(-1)) up to 10 000 cm(-1) above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm(-1) above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control. PMID:27155638
Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface
NASA Astrophysics Data System (ADS)
Pradhan, Ekadashi; Brown, Alex
2016-05-01
A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm-1) up to 10 000 cm-1 above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm-1 above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.
DSMC Modeling of Vibration-Vibration Energy Transfer Between Diatomic Molecules
Bondar, Ye. A.; Ivanov, M. S.
2008-12-31
Larsen-Borgnakke model, widely used in the DSMC method to simulate rotation-translation and vibration-translation exchanges in molecular collisions, is applied for the first time to resonant exchange between the vibrational modes of diatomic molecules (VV exchange). The validation of the model is performed through comparisons with experimental data on VV exchange in nitrogen.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
NASA Astrophysics Data System (ADS)
Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.
2016-07-01
Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.
Theoretical study of vibrational energy transfer of free OH groups at the water-air interface
NASA Astrophysics Data System (ADS)
Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang
2016-04-01
Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.
Theoretical study of vibrational energy transfer of free OH groups at the water-air interface.
Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang
2016-04-14
Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface. PMID:27083739
NASA Astrophysics Data System (ADS)
Sharpes, Nathan; Abdelkefi, Abdessattar; Abdelmoula, Hichem; Kumar, Prashant; Adler, Jan; Priya, Shashank
2016-07-01
Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the "Elephant" two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.
Note: A cubic electromagnetic harvester that convert vibration energy from all directions
NASA Astrophysics Data System (ADS)
Han, Mengdi; Qiu, Guolin; Liu, Wen; Meng, Bo; Zhang, Xiao-Sheng; Zhang, Haixia
2014-07-01
We investigate the output performance of a cubic harvester which can scavenge low-frequency vibration energy from all directions. By adjusting the size and shape of the inside magnets, higher induced voltages and output power can be achieved. The optimal magnet is found to be cubic shape with the length of 6.35 mm (25.6% volume ratio), which can generate 4.27 mV root mean square voltage and 2.45 μW average power at the frequency of 28.86 Hz and acceleration of 1.17 g. The device is also demonstrated as a self-powered tilt sensor by measuring induced voltages at different tilt angles.
MEMS based Nonlinear Monostable Electromagnetic Vibrational Energy Harvester for Wider Bandwidth
NASA Astrophysics Data System (ADS)
Mallick, D.; Amann, A.; Roy, S.
2015-12-01
This paper reports a wideband vibrational energy harvesting scheme using a MEMS based nonlinear electromagnetic transducer. The nonlinearity is incorporated in the proposed device through the stretching strain in addition to the bending of the fixed-guided configured beams of the designed structure. The thin spring structure is fabricated on Silicon-On-Insulator substrate with device layer thickness of 50 m. The MEMS spring structure is packaged and characterized with wire wound copper coil (NE1) and micro fabricated double layer copper coil (NE2) for comparison. Measurement results show that ∼80 Hz half power bandwidth is obtained for the fabricated devices with maximum load powers of 2.8 W (NE1) and 0.4 W (NE2) respectively at 0.5g which improves the ‘power-bandwidth gain’ to one of the highest among reported works.
Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2015-12-01
Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.
Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder
NASA Astrophysics Data System (ADS)
Mehmood, A.; Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.; Akhtar, I.; Nuhait, A. O.
2013-09-01
The concept of harvesting energy from a circular cylinder undergoing vortex-induced vibrations is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. Numerical simulations are performed for Reynolds numbers (Re) in the range 96≤Re≤118, which covers the pre-synchronization, synchronization, and post-synchronization regimes. Load resistances (R) in the range 500 Ω≤R≤5 MΩ are considered. The results show that the load resistance has a significant effect on the oscillation amplitude, lift coefficient, voltage output, and harvested power. The results also show that the synchronization region widens when the load resistance increases. It is also found that there is an optimum value of the load resistance for which the harvested power is maximum. This optimum value does not correspond to the case of largest oscillations, which points to the need for a coupled analysis as performed here.
A modal approach to modeling spatially distributed vibration energy dissipation.
Segalman, Daniel Joseph
2010-08-01
The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.
An investigation on vibration energy harvesting using nonlinear dynamic principles inspired by trees
NASA Astrophysics Data System (ADS)
Harne, R. L.; Sun, A.; Wang, K. W.
2015-04-01
Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to the internal resonance phenomenon. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful damping mechanisms in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors, suggesting that the energetic dynamics may be deactivated if stochastic inputs corrupt ideal excitation properties. To address these issues, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.
Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system
NASA Astrophysics Data System (ADS)
Harne, R. L.; Sun, A.; Wang, K. W.
2016-02-01
Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to internal resonance phenomena. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful to dampen swaying motions in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors; this additionally suggests that the energetic dynamics may be susceptible to deactivation if stochastic inputs corrupt ideal excitation properties. To address these issues and to investigate whether the underlying motivation of exploiting internal resonance-induced saturation dynamics is truly justified, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.
Efficiency improvement in a vibration power generator for a linear MR damper: numerical study
NASA Astrophysics Data System (ADS)
Sapiński, Bogdan; Krupa, Stanisław
2013-04-01
This paper summarizes a numerical analysis of the electromagnetic field, voltage and circuit properties and the cogging force in a vibration power generator comprising permanent magnets and a coil with a foil winding. The device converts the energy harvested from vibrations into electrical energy which is next used to vary the damping characteristics of a linear MR damper attached to the generator. The objective of the study is to propose a sufficiently efficient generator whose finally developed (target) version could be integrated with a small-scale MR damper to build a single device. Two design options for the device are numerically studied, the previously engineered generator 1 and the newly devised generator 2. Generator 1 incorporates two magnet systems having four magnets each and a single-section coil, while generator 2 comprises three magnet systems with four magnets each and a two-section coil. Calculations were performed to determine the electromagnetic field, voltage and current properties and the cogging force in the generators. The electromagnetic field parameters include the distribution of the magnetic field, the electrical potential field and the current density in the open turn and closed turn of the generators’ coils. The voltage and current properties include electromotive force (emf) in the generators and the voltage, current, instantaneous power and energy of the magnetic field in the MR damper control coil which is represented by resistance parameter R and inductance parameter L. The cogging force expresses the magnetic interactions between the permanent magnet systems and ferromagnetic structural components of the generators. The occurrence of this force is very unfavourable and attempts should be made to reduce it through control of the parameters of the magnetic circuit components. On one hand, comparison of the numerical results for the electromagnetic field parameters and voltage and current properties revealed that for the
NASA Astrophysics Data System (ADS)
Wang, Hongjin; Meng, Qingfeng
2013-03-01
Power harvesting techniques that convert vibration energy into electrical energy through piezoelectric transducers show strong potential for powering smart wireless sensor devices in applications of structural health monitoring. This paper presents an analytical model of the dynamic behavior of an electromechanical piezoelectric bimorph cantilever harvester connected with an AC-DC circuit based on the Euler-Bernoulli beam theory and Hamiltonian theorem. A new cantilevered piezoelectric bimorph structure is proposed in which the plug-type connection between support layer and tip-mass ensures that the gravity center of the tip-mass is collinear with the gravity center of the beam so that the brittle fracture of piezoelectric layers can also be avoided while vibrating with large amplitude. The tip-mass is equated by the inertial force and inertial moment acting at the end of the piezoelectric bimorph beam based on D'Alembert's principle. An AC-DC converting circuit soldered with the piezoelectric elements is also taken into account. A completely new analytic expression of the global behavior of the electromechanical piezoelectric bimorph harvesting system with AC-DC circuit under input base transverse excitation is derived. Moreover, an experimental energy harvester is fabricated and the theoretical analysis and experimental results of the piezoelectric harvester under the input base transverse displacement excitation are validated by using measurements of the absolute tip displacement, electric voltage response, electric current response and electric power harvesting.
Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers
ERIC Educational Resources Information Center
Liu, Bin; Luo, Jiong
2015-01-01
Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The vibration response of a gas-bearing rotor-support system was analyzed experimentally documented for sinusoidal and random vibration environments. The NASA Brayton Rotating Unit (BRU), 36,000 rpm; 10 KWe turbogenerator; was subjected in the laboratory to sinusoidal and random vibrations to evaluate the capability of the BRU to (1) survive the vibration levels expected to be encountered during periods of nonoperation and (2) operate satisfactorily (that is, without detrimental bearing surface contacts) at the vibration levels expected during normal BRU operation. Response power spectral density was calculated for specified input random excitation, with particular emphasis upon the dynamic motions of the thrust bearing runner and stator. A three-mass model with nonlinear representation of the engine isolator mounts was used to calculate axial rotor-bearing shock response.
Saffar, Saber; Abdullah, Amir
2014-01-01
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. PMID:23664304
Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)
Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.
1999-06-01
Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2{nu}{sub 1} to 5{nu}{sub 1}) and free-jet action spectra of the second through the fourth overtones (3{nu}{sub 1} to 5{nu}{sub 1}) of the N{endash}H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N{endash}H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with {ital ab initio} calculations of East, Johnson, and Allen [J. Chem. Phys. {bold 98}, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N{endash}H stretching zero-order states are ones with a quantum of N{endash}H stretching excitation ({nu}{sub 1}) replaced by different combinations of N{endash}C{endash}O asymmetric or symmetric stretching excitation ({nu}{sub 2} or {nu}{sub 3}) and {ital trans}-bending excitation ({nu}{sub 4}). The two strongest couplings of the n{nu}{sub 1} state are to the states (n{minus}1){nu}{sub 1}+{nu}{sub 2}+{nu}{sub 4} and (n{minus}1){nu}{sub 1}+{nu}{sub 3}+2{nu}{sub 4}, and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N{endash}H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. {copyright} {ital 1999 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Cui, Xiu-hua; Mu, Bao-xia; Shen, Yi-fan; Dai, Kang
2012-11-01
The vibrational levels of KH(X1Σ+, v″=0-3) were generated in the reaction of K (5P) and H2. Vibrational state total relaxation rate coefficientsk(CO2) for KH (v″=14-21) are measured in an overtone pump-probe configuration. The rate coefficient k(CO2) is strongly dependent on vibrational quantum number. Scattered CO2 (0000, 32≤J≤48) molecules were excited to CO2 (1005, J+1) states. The rotational temperatures of CO2 (0000, J=32-48) states populated by collisions with highly vibrationally excited KH (v″=14-21) are obtained. The average rotational energy of the scattered CO2 molecules is increased by a factor of 2.33 when KH level v″=14 increases to v″=21. The average translational energy of the scattered CO2 molecules is increased roughly linearly as a function of CO2J state. Under single collision conditions, state-specific energy transfer rate coefficients for collisions of highly excited KH with CO2 are obtained. For v″=19, the integrated rate coefficients kint increases by a factor of 4.5 to v″=14.
Inversion vibration of PH3+(X~ 2A2'') studied by zero kinetic energy photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Jie; Li, Juan; Hao, Yusong; Zhou, Chang; Mo, Yuxiang
2006-08-01
We report the first rotationally resolved spectroscopic studies on PH3+(X˜A2″2) using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000cm-1 above the ground vibrational state of PH3+(X˜A2″2) have been recorded. We observed the vibrational energy level splittings of PH3+(X˜A2″2) due to the tunneling effect in the inversion (symmetric bending) vibration (ν2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8cm-1. The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for ν2+=0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (ν2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (ν1+) and the degenerate bending vibration (ν4+). The fundamental frequencies for ν1+ and ν4+ are 2461.6 (±2) and 1043.9 (±2)cm-1, respectively. The first IE for PH3 was determined as 79670.9 (±1)cm-1.
Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator
NASA Astrophysics Data System (ADS)
Gatti, G.; Brennan, M. J.; Tehrani, M. G.; Thompson, D. J.
2016-01-01
With the advent of wireless sensors, there has been an increasing amount of research in the area of energy harvesting, particularly from vibration, to power these devices. An interesting application is the possibility of harvesting energy from the track-side vibration due to a passing train, as this energy could be used to power remote sensors mounted on the track for strutural health monitoring, for example. This paper describes a fundamental study to determine how much energy could be harvested from a passing train. Using a time history of vertical vibration measured on a sleeper, the optimum mechanical parameters of a linear energy harvesting device are determined. Numerical and analytical investigations are both carried out. It is found that the optimum amount of energy harvested per unit mass is proportional to the product of the square of the input acceleration amplitude and the square of the input duration. For the specific case studied, it was found that the maximum energy that could be harvested per unit mass of the oscillator is about 0.25 J/kg at a frequency of about 17 Hz. The damping ratio for the optimum harvester was found to be about 0.0045, and the corresponding amplitude of the relative displacement of the mass is approximately 5 mm.
Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.
2016-02-01
The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s).
Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils
NASA Astrophysics Data System (ADS)
Podder, P.; Constantinou, P.; Mallick, D.; Roy, S.
2015-12-01
This work reports the development of a MEMS bistable electromagnetic vibrational energy harvester (EMVEH) consisting of a silicon-on-insulator (SOI) spiral spring, double layer micro-coils and miniaturized NdFeB magnets. Furthermore, with respect to the spiral silicon spring based VEH, four different square micro-coil topologies with different copper track width and number of turns have been investigated to determine the optimal coil dimensions. The micro-generator with the optimal micro-coil generated 0.68 micro-watt load power over an optimum resistive load at 0.1g acceleration, leading to normalized power density of 3.5 kg.s/m3. At higher accelerations the load power increased, and the vibrating magnet collides with the planar micro-coil producing wider bandwidth. Simulation results show that a substantially wider bandwidth could be achieved in the same device by introducing bistable nonlinearity through a repulsive configuration between the moving and fixed permanent magnets.
A low frequency MEMS vibration sensor for low power missile health monitoring
NASA Astrophysics Data System (ADS)
Horowitz, S. B.; Allen, M. S.; Fox, J. R.; Cortes, J. P.; Barkett, L.; Mathias, A. D.; Hernandez, C.; Martin, A. C.; Sanghadasa, M.; Marotta, S.
This paper addresses the design, fabrication and characterization of a first-generation, low frequency MEMS vibration sensor. The sensor is designed specifically for applications requiring extremely low power vibration detection at only targeted frequencies. For development, lumped element and finite element modeling was performed, driving the design towards a realizable geometry that addresses the targeted performance specs. The sensors were microfabricated using conventional surface micromachining, sol-gel PZT (lead zirconate titanate) thin films, and bulk silicon etching techniques. The completed sensors were then characterized to determine electrical, mechanical and piezoelectric properties at the material and device level. Results demonstrate functional operation with performance close to predicted specifications.
Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters
NASA Astrophysics Data System (ADS)
Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.
2015-10-01
Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.
NASA Astrophysics Data System (ADS)
Abdelkefi, A.; Najar, F.; Nayfeh, A. H.; Ben Ayed, S.
2011-11-01
Recently, piezoelectric cantilevered beams have received considerable attention for vibration-to-electric energy conversion. Generally, researchers have investigated a classical piezoelectric cantilever beam with or without a tip mass. In this paper, we propose the use of a unimorph cantilever beam undergoing bending-torsion vibrations as a new piezoelectric energy harvester. The proposed design consists of a single piezoelectric layer and a couple of asymmetric tip masses; the latter convert part of the base excitation force into a torsion moment. This structure can be tuned to be a broader band energy harvester by adjusting the first two global natural frequencies to be relatively close to each other. We develop a distributed-parameter model of the harvester by using the Euler-beam theory and Hamilton's principle, thereby obtaining the governing equations of motion and associated boundary conditions. Then, we calculate the exact eigenvalues and associated mode shapes and validate them with a finite element (FE) model. We use these mode shapes in a Galerkin procedure to develop a reduced-order model of the harvester, which we use in turn to obtain closed-form expressions for the displacement, twisting angle, voltage output, and harvested electrical power. These expressions are used to conduct a parametric study for the dynamics of the system to determine the appropriate set of geometric properties that maximizes the harvested electrical power. The results show that, as the asymmetry is increased, the harvester's performance improves. We found a 30% increase in the harvested power with this design compared to the case of beams undergoing bending only. We also show that the locations of the two masses can be chosen to bring the lowest two global natural frequencies closer to each other, thereby allowing the harvesting of electrical power from multi-frequency excitations.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2015-03-01
In complete braking achievement the rotational and vibrational as well as the linear kinetic energies of the charged particle results in a photon: hν = 1 / 2 mv2 + 1 / 2 Iω2 + 1 / 2 kx2 . In partial transfer of kinetic energies of the deccelerating particle the resulting photon is hν = [(1 / 2 mv2) 1 +(1 / 2 Iω2) 1 +(1 / 2 kx2) 1 ] - [(1 / 2 mv2) 2 +(1 / 2 Iω2) 2 +(1 / 2 kx2) 2 ] . The linear kinetic energy of the charged particle is 1 / 2 mv2 , the rotational kinetic energy is 1 / 2 Iω2 and the vibrational kinetic energy is given by 1 / 2 kx2 .
Magma energy for power generation
Dunn, J.C.
1987-01-01
Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.
Minimizing the Excitation of Parasitic Modes of Vibration in Slender Power Ultrasonic Devices
NASA Astrophysics Data System (ADS)
Mathieson, A.; Lucas, M.
The design of slender power ultrasonic devices can often be challenging due to the excitation of parasitic modes of vibration during operation. The excitation of these modes is known to manifest from behaviors such as modal coupling which if not controlled or designed out of the system can, under operational conditions, lead to poor device performance and device failure. However, a report published by the authors has indicted that the excitation of these modes of vibration could be minimized through device design, specifically careful location of the piezoceramic stack. This paper illustrates that it is possible, through piezoceramic stack position, to minimize modal coupling between a parasitic mode and the tuned longitudinal mode of vibration for slender ultrasonic devices.
A method of real-time fault diagnosis for power transformers based on vibration analysis
NASA Astrophysics Data System (ADS)
Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie
2015-11-01
In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.
The flash photodissociation of nitrosyl chloride: Vibrational energy-transfer processes
NASA Astrophysics Data System (ADS)
Bechara, J.; Morrow, T.; McGrath, W. D.
1985-12-01
Vibrationally excited NOCl (NOCl *) has been observed, via its strong continuous absorption in the 230-280 nm region, following partial flash photodissociation of gaseous nitrosyl chloride mixtures. The formation of NOCl * is attributed to a vibrational energy transfer from Cl 2*, formed in the reaction of Cl with NOCl. The possibility of vibrational transfer from NO * to NOCl is also discussed. Rate constants for quenching of NOCl * and its precursor (Cl 2*) by NOCl, CO 2 and Ar are reported.
Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations
NASA Astrophysics Data System (ADS)
Abdelkefi, Abdessattar
Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the
NASA Astrophysics Data System (ADS)
Karami, Armine; Basset, Philippe; Galayko, Dimitri
2015-12-01
This paper reports for the first time experiments using an electrostatic vibration energy harvester comprised of a low voltage electret-charged MEMS transducer joined to an unstable autosynchronous conditioning circuit with rectangular charge-voltage characteristic, also known as the Bennet's doubler conditioning circuit. The experimental results show that the electret voltage, even if of low value, can be used as the necessary pre-charge for these type of electrostatic vibration energy harvesters. Also, the use of such a conditioning circuit with a low-voltage electret capacitive MEMS tranducer instead of the previously-reported conditioning circuits with direct connection to load or through a rectifier, can be advantageous in terms of maximal harvested power for a low-voltage electret, showing up to 95% higher converted power.
Vibration piezoelectric energy harvester with multi-beam
Cui, Yan Zhang, Qunying Yao, Minglei; Dong, Weijie; Gao, Shiqiao
2015-04-15
This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .
A hybrid electromagnetic energy harvesting device for low frequency vibration
NASA Astrophysics Data System (ADS)
Jung, Hyung-Jo; Kim, In-Ho; Min, Dong Yi; Sim, Sung-Han; Koo, Jeong-Hoi
2013-04-01
An electromagnetic energy harvesting device, which converts a translational base motion into a rotational motion by using a rigid bar having a moving mass pivoted on a hinged point with a power spring, has been recently developed for use of civil engineering structures having low natural frequencies. The device utilizes the relative motion between moving permanent magnets and a fixed solenoid coil in order to harvest electrical power. In this study, the performance of the device is enhanced by introducing a rotational-type generator at a hinged point. In addition, a mechanical stopper, which makes use of an auxiliary energy harvesting part to further improve the efficiency, is incorporated into the device. The effectiveness of the proposed hybrid energy harvesting device based on electromagnetic mechanism is verified through a series of laboratory tests.
NASA Astrophysics Data System (ADS)
Furumachi, S.; Ueno, T.
2016-04-01
We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.
Wang, Peihong; Du, Hejun
2015-07-01
Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration. PMID:26233403
NASA Astrophysics Data System (ADS)
Wang, Peihong; Du, Hejun
2015-07-01
Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s2. By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Li, Pengwei Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong; Liu, Ying; Liu, Wei
2015-04-15
As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
ENIDINE: Vibration and seismic isolation technologies for power generation station applications
Zemanek, T.A.
1994-12-31
ENIDINE Inc. is a world leader in the design and manufacture of shock and vibration mounts. Founded in 1966, the company has two manufacturing facilities, employs over 300 people and supports a worldwide network of distributors and representatives. ENIDINE Inc. is part of the ENIDINE Corporate Group which owns a number of companies that design and manufacture Hydraulic/Pneumatic cylinders, Electromechanical devices, Hydraulic Control Valves and a number of Industrial Distribution companies throughout Europe. In total, the ENIDINE Corporate Group has over 900 employees with annual sales of over $100 million. ENIDINE shock and vibration mounts are used to isolate the vibration of missiles from their guidance systems, pumps from hospital operating equipment and off shore oil rigs, from the shock energy of waves in the North Sea. ENIDINE products can be found on all Boeing and McDonnell Douglas aircraft, as well as many electronic and weapons systems on board Navy ships.
Vibrating Beam With Spatially Periodic Stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1989-01-01
Report presents theoretical analysis of vibrations of simply supported beam, bending stiffness varying about steady value, sinusoidally with position along length. Problem of practical importance because related to vibrations of twisted-pair electric-power transmission lines. Twists promote nonuniform shedding of vortexes and prevents resonant accumulation of vibrational energy from wind.
Power output enhancement of a vibration-driven electret generator for wireless sensor applications
NASA Astrophysics Data System (ADS)
Masaki, Tatsuakira; Sakurai, Kenji; Yokoyama, Toru; Ikuta, Masayo; Sameshima, Hiroshi; Doi, Masashi; Seki, Tomonori; Oba, Masatoshi
2011-10-01
We developed a compact vibration-driven electret generator that excelled at a power output. It succeeded in the operation of wireless sensor modules only on electricity from electret generators. This electret generator can supply enough power to operate a wireless sensor module without an external power source. It was necessary for enabling this operation to enhance the power output of the electret generator. We enhanced the power output by decreasing the parasitic capacitance. To decrease the parasitic capacitance, we fabricated a collector substrate using concave electrodes. We decreased it from 25 to 17 pF. As a result, the power output from our generator was enhanced from 40 to 100 µW considerably at an acceleration of 0.15 g (1.47 m s-2) and a resonance frequency of 30 Hz.
NASA Astrophysics Data System (ADS)
Shen, Wenai; Zhu, Songye; Zhu, Hongping
2016-06-01
Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck–boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.
Design method of planar vibration system for specified ratio of energy peaks
NASA Astrophysics Data System (ADS)
Kim, Jun Woo; Lee, Sungon; Choi, Yong Je
2015-05-01
The magnitudes of the resonant peaks should be considered in the design stage of any bandwidth-relevant applications to widen the working bandwidth. This paper presents a new design method for a planar vibration system that satisfies any desired ratio of peak magnitudes at target resonant frequencies. An important geometric property of a modal triangle formed from three vibration centers representing vibration modes is found. Utilizing the property, the analytical expressions for the vibration energy generated by external forces are derived in terms of the geometrical data of vibration centers. When any desired ratio of peak magnitudes is specified, the locations of the vibration centers are found from their analytical relations. The corresponding stiffness matrix can be determined and realized accordingly. The systematic design methods for direct- and base-excitation systems are developed, and one numerical example is presented to illustrate the proposed design method.
NASA Technical Reports Server (NTRS)
Phillips, William H
1955-01-01
Brief ground tests were made to determine the effect of reduction of valve friction in a power control system of a fighter airplane by use of a vibrator. The vibrator was found to be an effective means of overcoming adverse effects of valve friction on the control characteristics.
NASA Astrophysics Data System (ADS)
Halim, M. A.; Cho, H. O.; Park, J. Y.
2014-11-01
We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.
The Effects of Spring Stiffness on Vortex-Induced Vibration for Energy Generation
NASA Astrophysics Data System (ADS)
Zahari, M.; Chan, H. B.; Yong, T. H.; Dol, S. S.
2015-04-01
Vortex-induced vibration (VIV) is the turbulent motion induced on bluff body that generates alternating lift forces and results in irregular movement of the body. VIV-powered system seems a good idea in greening the energy sector and most importantly is its ability to take advantages of low current speed of water to generate electricity. This paper aims to investigate the effects of spring stiffness on the characteristic of VIV. The study is important in order to maximize these potentially destructive vibrations into a valuable resource of energy. Five cylinders with the range of 0.25 to 2.00 inch diameter are tested to study the behavior of VIV. Results from this experiment indicates that, the 2.0 inch cylinder gave the lowest error in frequency ratio which is 1.1% and have a high potential of lock-in condition to occur. In term of maximum amplitude, this cylinder gave the highest amplitude of oscillation motion that is equal to 0.0065 m.
NASA Astrophysics Data System (ADS)
Palagummi, S.; Yuan, F. G.
2015-04-01
A detailed analysis of a mono-stable vertical diamagnetic levitation (VDL) system for optimal vibration energy harvesting is presented. Initial studies showed that simple analytical techniques such as the dipole model and the image method provide useful guideline for understanding the potential of a diamagnetic levitation system, however, it is discussed here that the more accurate semi-analytical techniques such as the thin coil model and the discrete volume method are needed for quantitative optimization and design of the VDL system. With the semi-analytical techniques, the influence of the cylindrical geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For efficient vibration energy harvesting using the VDL system, ways to mitigate eddy current damping and a coil geometry for transduction are critically discussed. With the optimized parameters, an experimental system is realized which showed a hardening type nonlinearity. The results show an overall efficiency of 1.54 percent, a root mean square (rms) power output of 1.72 μW when excited at a peak acceleration of 0.081 m/s2 and at a frequency of 2.1 Hz.
Vibration exercise as a warm-up modality for deadlift power output.
Cochrane, Darryl J; Coley, Karl W; Pritchard, Hayden J; Barnes, Matthew J
2015-04-01
Vibration exercise (VbX) has gained popularity as a warm-up modality to enhance performance in golf, baseball, and sprint cycling, but little is known about the efficacy of using VbX as a warm-up before resistance exercise, such as deadlifting. The aim of this study was to compare the effects of a deadlift (DL)-specific warm-up, VbX warm-up, and Control on DL power output (PO). The DL warm-up (DL-WU) included 10, 8, and 5 repetitions performed at 30, 40, and 50% 1-repetition maximum (1RM), respectively, where the number of repetitions was matched by body-weight squats performed with vibration and without vibration (Control). The warm-up conditions were randomized and performed at least 2 days apart. Peak power (PP), mean power, rate of force development (RFD), and electromyography (EMG) were measured during the concentric phase of 2 consecutive DLs (75% 1RM) at 30 seconds and 2:30 minutes after the warm-up conditions. There was no significant (p > 0.05) main effect or interaction effect between the DL-WU, VbX warm-up, and Control for PP, mean power, RFD, and EMG. Vibration exercise warm-up did not exhibit an ergogenic effect to potentiate muscle activity more than the specific DL-WU and Control. Therefore, DL PO is affected to a similar extent, irrespective of the type of stimuli, when the warm-up is not focused on raising muscle temperature. PMID:25353078
Vibration transmission through rolling element bearings. IV - Statistical energy analysis
NASA Technical Reports Server (NTRS)
Lim, T. C.; Singh, R.
1992-01-01
A theoretical broadband coupling-loss factor is developed analytically for use in the statistical energy analysis (SEA) of a shaft-bearing-plate system. The procedure is based on the solution of the boundary-value problem at the plate-bearing interface and incorporates a bearing-stiffness matrix developed by the authors. Three examples are utilized to illustrate the SEA incorporating the coupling-loss factor including: (1) a shaft-bearing-plate system; (2) a plate-cantilevered beam; and (3) a circular-shaft-bearing plate. The coupling-loss factor in the case of the thin plate-cantilevered beam is found to be more accurate than that developed by Lyon and Eichler (1964). The coupling-loss factor is described for the bearing system and extended to describe the mean-square vibratory response of a rectangular plate. The proposed techniques are of interest to the study of vibration and noise in rotating machinery such as gearboxes.
Nakamura, Ryosuke; Hamada, Norio
2015-05-14
Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps. PMID:25896223
Power and energy for posterity
NASA Technical Reports Server (NTRS)
Barthelemy, R. F.; Cooper, R. F.
1972-01-01
The use of sophisticated space energy generation and storage systems to benefit the general public was examined. The utilization of these systems for pollution-free generation of energy to satisfy mankind's future electrical, thermal, and propulsion needs was of primary concern. Ground, air, and space transportation; commercial, peaking, and emergency electrical power; and metropolitan and unit thermal energy requirements were considered. Each type of energy system was first analyzed in terms of its utility in satisfying the requirement, and then its potential in reducing the air, noise, thermal, water, and nuclear pollution from future electrical and thermal systems was determined.
Vibrational effects on surface energies and band gaps in hexagonal and cubic ice
NASA Astrophysics Data System (ADS)
Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.
2016-07-01
Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1975-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.
NASA Astrophysics Data System (ADS)
Zhu, Dibin; Tudor, Michael J.; Beeby, Stephen P.
2010-02-01
This review presents possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, nonlinear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This review presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach.
NASA Astrophysics Data System (ADS)
Nawayseh, Naser; Griffin, Michael J.
2012-01-01
Although the discomfort or injury associated with whole-body vibration cannot be predicted directly from the power absorbed during exposure to vibration, the absorbed power may contribute to understanding of the biodynamics involved in such responses. From measurements of force and acceleration at the seat, the feet, and the backrest, the power absorbed at these three locations was calculated for subjects sitting in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest while exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random fore-and-aft vibration. The power absorbed by the body at the supporting seat surface when there was no backrest showed a peak around 1 Hz and another peak between 3 and 4 Hz. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Foot support influenced both the magnitude and the frequency of the peaks in the absorbed power spectra as well as the total absorbed power. The measurements of absorbed power are consistent with backrests being beneficial during exposure to low frequency fore-and-aft vibration but detrimental with high frequency fore-and-aft vibration.
Energy Industry Powers CTE Program
ERIC Educational Resources Information Center
Khokhar, Amy
2012-01-01
Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…
A fail-safe magnetorheological energy absorber for shock and vibration isolation
Bai, Xian-Xu; Wereley, Norman M.
2014-05-07
Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.
Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device
NASA Astrophysics Data System (ADS)
Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.; Fazeli, M.
2015-11-01
In this paper an adaptive tuned piezoelectric vibration based energy harvesting system based on the use of electrostatic device is proposed. The main motivation is to control the resonance frequency of the piezoelectric harvester with the DC voltage applied to the electrostatic system in order to maximize the harvested power. The idea is demonstrated in a hybrid system consisting of a cantilevered piezoelectric harvester combined with an electrostatic harvester which is connected to a variable voltage source. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and solved to obtain the static and dynamic solutions. The results show that the harvester can be tuned to give a resonant response over a wide range of frequencies, and shows the great potential of this hybrid system.
A fail-safe magnetorheological energy absorber for shock and vibration isolation
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Wereley, Norman M.
2014-05-01
Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.
NASA Astrophysics Data System (ADS)
Xiong, Xingyu; Oyadiji, S. Olutunde
2014-10-01
Piezoelectric vibration energy harvesters with multi-layer stacked structures have been developed. They consist of multi-layer beams, of zigzag configurations, with rigid masses attached between the beams. The rigid masses, which also serve as spacers, are attached to each layer to tune the frequencies of the harvester. Close resonance frequencies and considerable power output can be achieved in multiple modes by varying the positions of the masses. A modal approach is introduced to determine the modal performance conveniently using the mass ratio and the modal electromechanical coupling coefficient, and the required modal parameters are derived using the finite element method. Mass ratio represents the influence of modal mechanical behaviour on the power density. Since the modes with larger mass ratios cause the remaining modes to have smaller mass ratios and lower power densities, a screening process using the modal approach is developed to determine the optimal or near-optimal performance of the harvesters when altering mass positions. This procedure obviates the need for full analysis by pre-selecting the harvester configurations with close resonances and favourable values of mass ratio initially. Furthermore, the multi-layer stacked designs using the modal approach can be used to develop harvesters with different sizes with the power ranging from microwatts to milliwatts.
Vibrational energy relaxation of the ND-stretching vibration of NH2D in liquid NH3.
Schäfer, Tim; Kandratsenka, Alexander; Vöhringer, Peter; Schroeder, Jörg; Schwarzer, Dirk
2012-09-01
The vibrational energy relaxation from the first excited ND-stretching mode of NH(2)D dissolved in liquid NH(3) is studied using molecular dynamics simulations. The rate constants for inter- and intramolecular energy transfer are calculated in the framework of the quantum-classical Landau-Teller theory. At 273 K and an ammonia density of 0.642 g cm(-3) the calculated ND-stretch lifetime of τ = 9.1 ps is in good agreement with the experimental value of 8.6 ps. The main relaxation channel accounting for 52% of the energy transfer involves an intramolecular transition to the first excited state of the umbrella mode. The energy difference between both states is taken up by the near-resonant bending vibrations of the solvent. Less important for the ND-stretch lifetime are both the direct transition to the ground state and intramolecular relaxation via the NH(2)D bending modes contributing 23% each. Our calculations imply that the experimentally observed weak density dependence of τ is caused by detuning the resonance between the ND-stretch-umbrella energy gap and the solvent accepting modes which counteracts the expected linear increase of the relaxation rate with density. PMID:22824981
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
NASA Astrophysics Data System (ADS)
Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank
2015-08-01
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
Yuksek, N. S.; Almasri, M.; Feng, Z. C.
2014-09-15
In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.
NASA Astrophysics Data System (ADS)
Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.
2012-10-01
This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.
Crim, F.F.
1981-03-01
Combining the techniques of direct excitation of overtone vibrations and time resolved spectroscopic detection permits detailed measurements of the vibrational and rotational relaxation of highly vibrationally excited molecules. Using this technique, we have measured vibrational and rotational relaxation in HF(v = 3, 4, 5). By observing near-infrared fluorescence, we determine the self-relaxation probabilities for HF(v = 3, 4, 5) to be 0.19, 0.47, and 0.97, respectively, and find that the rates decrease more rapidly with temperature in these high levels than for v = 1. Using laser double resonance to probe individual rotational states, we find phenomenological rotational relaxation rate constants which decrease montonically with rotational energy change in the vibrationally excited molecule.
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Duchko, A. N.
2016-05-01
The Rayleigh-Schrödinger perturbation theory of high orders and the algebraic Padé-Hermite approximants are used to determine the singular points of a vibrational energy function of the formaldehyde molecule dependent on a complex perturbation parameter as on the argument. It is shown that the Fermi, Darling-Dennison, and other higher-order vibrational resonances are related to Katz's points—common branch points on the complex plane of the energy of two vibrational states. Analysis of Katz's points that connect different vibrational states allows one to reveal essential resonance perturbations, to introduce an additional classification for them, and to determine the polyad structure of an energy spectrum.
NASA Astrophysics Data System (ADS)
Syta, Arkadiusz; Litak, Grzegorz; Friswell, Michael I.; Adhikari, Sondipon
2016-04-01
We examine multiple responses of a vibrational energy harvester composed of a vertical beam and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be described by single or double well potentials depending on the gravity force from the tip mass. By changing the tip mass we examine the appearance of various solutions and their basins of attraction. Identification of particular solutions of the energy harvester is important as each solution may provide a different level of power output.
Ultrafast vibrational energy flow in water monomers in acetonitrile
NASA Astrophysics Data System (ADS)
Dahms, Fabian; Costard, Rene; Nibbering, Erik T. J.; Elsaesser, Thomas
2016-05-01
Vibrational relaxation of the OH stretching and bending modes of water monomers in acetonitrile is studied by two-color pump-probe experiments in a frequency range from 1400 to 3800 cm-1. Measurements with resonant infrared excitation reveal vibrational lifetimes of 6.4 ± 1.0 ps of the OH stretching modes and 4.0 ± 0.5 ps of the OH bending mode. After OH stretching excitation, the OH bending mode shows an instantaneous response, a hallmark of the anharmonic coupling of stretching and bending modes, and a delayed population buildup by relaxation of the stretching via the bending mode. The relaxation steps are discussed within the framework of current theoretical pictures of water's vibrational relaxation.
Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark
2014-07-01
Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations. PMID:24378660
Rotation vibration energy level clustering in the XB1 ground electronic state of PH2
NASA Astrophysics Data System (ADS)
Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.
2006-10-01
We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.
Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai
2014-01-01
Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. PMID:23859359
ENergy and Power Evaluation Program
1996-11-01
In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.
Vibrational energy transfer kinetics in molecular disequilibrium. Status report
Rich, J.W.
1980-03-01
A c-w CO laser was used to excite the CO vibrational mode in mixtures of CO and various other gases (N/sub 2/, Ar, NO). Products are (CN)/sub 2/ and C/sub 2/. Two possible mechanisms for C/sub 2/ formation are discussed. 3 figures, 3 tables. (DLC)
LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow
NASA Astrophysics Data System (ADS)
Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.
2016-06-01
The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.
Voltage tuning of vibrational mode energies in single-molecule junctions
Li, Yajing; Doak, Peter; Kronik, Leeor; Neaton, Jeffrey B.; Natelson, Douglas
2014-01-01
Vibrational modes of molecules are fundamental properties determined by intramolecular bonding, atomic masses, and molecular geometry, and often serve as important channels for dissipation in nanoscale processes. Although single-molecule junctions have been used to manipulate electronic structure and related functional properties of molecules, electrical control of vibrational mode energies has remained elusive. Here we use simultaneous transport and surface-enhanced Raman spectroscopy measurements to demonstrate large, reversible, voltage-driven shifts of vibrational mode energies of C60 molecules in gold junctions. C60 mode energies are found to vary approximately quadratically with bias, but in a manner inconsistent with a simple vibrational Stark effect. Our theoretical model instead suggests that the mode shifts are a signature of bias-driven addition of electronic charge to the molecule. These results imply that voltage-controlled tuning of vibrational modes is a general phenomenon at metal–molecule interfaces and is a means of achieving significant shifts in vibrational energies relative to a pure Stark effect. PMID:24474749
NASA Astrophysics Data System (ADS)
Chen, Shih-Jui; Wu, Jia-Yin
2016-09-01
A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.
Novel vibration-based electrical energy generators for low and variable speed turbo-machinery
NASA Astrophysics Data System (ADS)
Rastegar, J.; Murray, R.
2007-04-01
A novel class of vibration-based electrical energy generators is presented for applications in which the input rotary speed is relatively low and varies significantly over time such as wind mills, turbo-machinery used to harvest tidal flows, and the like. Current technology uses magnet and coil based rotary generators to generate electrical energy in such machinery. However, to make the generation cycle efficient, gearing or other similar mechanisms have to be used to increase the output speed. In addition, variable speed mechanisms are usually needed to achieve high mechanical to electrical energy conversion efficiency since speed variation is usually significant in the aforementioned applications. The objective of the present work is the development of electrical energy generators that do not require the aforementioned gearing and speed control mechanisms, thereby significantly reducing complexity and cost, particularly those related to maintenance and service. This novel class of electrical energy generators operates based on repeated vibration of multiple vibrating elements that are tuned to vibrate at a fixed prescribed frequency. The mechanical energy stored in the vibration elements is transformed into electrical energy using piezoelectric elements. The present generators are very simple, can efficiently operate over a very large range of input speeds, and should require minimal service and maintenance. The project is at the early stages of its development, but the analytical modeling and computer simulation studies using realistic system and component parameters indicate the potentials of this class of piezoelectric-based generators for the indicated applications.
Efficient calculation of potential energy surfaces for the generation of vibrational wave functions
NASA Astrophysics Data System (ADS)
Rauhut, Guntram
2004-11-01
An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations—within the computation of the potential—on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan).
Efficient calculation of potential energy surfaces for the generation of vibrational wave functions.
Rauhut, Guntram
2004-11-15
An automatic procedure for the generation of potential energy surfaces based on high level ab initio calculations is described. It allows us to determine the vibrational wave functions for molecules of up to ten atoms. Speedups in computer time of about four orders of magnitude in comparison to standard implementations were achieved. Effects due to introduced approximations--within the computation of the potential--on fundamental modes obtained from vibrational self-consistent field and vibrational configuration interaction calculations are discussed. Benchmark calculations are provided for formaldehyde and 1,2,5-oxadiazole (furazan). PMID:15538851
Local Orientational Order in Liquids Revealed by Resonant Vibrational Energy Transfer
NASA Astrophysics Data System (ADS)
Panman, M. R.; Shaw, D. J.; Ensing, B.; Woutersen, S.
2014-11-01
We demonstrate that local orientational ordering in a liquid can be observed in the decay of the vibrational anisotropy caused by resonant transfer of vibrational excitations between its constituent molecules. We show that the functional form of this decay is determined by the (distribution of) angles between the vibrating bonds of the molecules between which energy transfer occurs, and that the initial drop in the decay reflects the average angle between nearest neighbors. We use this effect to observe the difference in local orientational ordering in the two hydrogen-bonded liquids ethanol and N -methylacetamide.
Collisional energy transfer in highly vibrationally excited molecules. Summary report Jun 83-May 84
Crim, F.F.
1984-04-03
Overtone vibration-laser double resonance measurements have provided new data on vibrational and rotational relaxation in HF(v = 2). These experiments determine the magnitudes of the total vibrational relaxation rate constants for HF(v = 1 and 2) as well as their temperature dependences. Detailed analysis yields the variation of the branching between competing V-V and V-TR pathways. Rotational relaxation data come from these measurements as well. The temporal evolution of individual rotational states observed in the double resonance studies provides level-to-level energy transfer rate constants when analyzed using an iterative fitting scheme which incorporates scaling relations among the rate constants.
Optimal design of two-layer vibration energy harvesters using a modal approach
NASA Astrophysics Data System (ADS)
Xiong, Xingyu; Olutunde Oyadiji, S.
2014-03-01
Piezoelectric vibration energy harvesters (VEHs) with two-layer structures are developed. The attached masses are used to tune the frequencies and as spacers between the two layers. By changing the dimensions of the layers and masses and relocating the positions of the masses, the VEHs can generate close resonance frequencies and considerable power output. The modal approach is introduced to determine the modal performance using the mass ratio and the modal electromechanical coupling coefficient, where the mass ratio represents the influence of the modal mechanical behaviour on the power density directly, and the modal parameters required are derived using the finite element method. The findings indicate that a mode with too large mass ratio will cause the remaining modes to have small mass ratios and poor performance. Then, a screening process for the identification of the configurations of VEHs with optimal or near-optimal performance is developed using the modal approach. This procedure facilitates the selection of VEH configurations with close resonances and favourable values of mass ratio initially before carrying out full analysis. Furthermore, the approach can be used to develop VEHs of different sizes ranging from a few millimeters to hundreds of millimeters with the power ranging from microwatts to milliwatts.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiğdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
Chung, Pao-Hung; Lin, Guan-Lun; Liu, Chiang; Chuang, Long-Ren; Shiang, Tzyy-Yuang
2013-01-01
The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV), a Tai Chi Chuan group (TCC) or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm) three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods. Key points Eight weeks of Tai Chi Chuan combined with vibration training can more efficiently improve balance control for an untrained young population. The positive training effect on the lower extremity muscle power induced by vibration stimuli during Tai Chi Chuan movements still remains significant because of SSC mechanism. Combining Tai Chi Chuan with vibration training is more efficient and does not decrease the overall training effects due to a cross-interaction of each other
Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei
2014-05-14
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.
NASA Astrophysics Data System (ADS)
Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, Jonathan
2015-07-01
A procedure for calculation of rotational-vibrational states of medium-sized molecules is presented. It combines the advantages of variational calculations and perturbation theory. The vibrational problem is solved by diagonalising a Hamiltonian matrix, which is partitioned into two sub-blocks. The first, smaller sub-block includes matrix elements with the largest contribution to the energy levels targeted in the calculations. The second, larger sub-block comprises those basis states which have little effect on these energy levels. Numerical perturbation theory, implemented as a Jacobi rotation, is used to compute the contributions from the matrix elements of the second sub-block. Only the first sub-block needs to be stored in memory and diagonalised. Calculations of the vibrational-rotational energy levels also employ a partitioning of the Hamiltonian matrix into sub-blocks, each of which corresponds either to a single vibrational state or a set of resonating vibrational states, with all associated rotational levels. Physically, this partitioning is efficient when the Coriolis coupling between different vibrational states is small. Numerical perturbation theory is used to include the cross-contributions from different vibrational states. Separate individual sub-blocks are then diagonalised, replacing the diagonalisation of a large Hamiltonian matrix with a number of small matrix diagonalisations. Numerical examples show that the proposed hybrid variational-perturbation method greatly speeds up the variational procedure without significant loss of precision for both vibrational-rotational energy levels and transition intensities. The hybrid scheme can be used for accurate nuclear motion calculations on molecules with up to 15 atoms on currently available computers.
NASA Astrophysics Data System (ADS)
Fedorov, Dmitry A.; Derevianko, Andrei; Varganov, Sergey A.
2014-05-01
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X1Σ+ electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm-1 for LiNa and by no more than 114 cm-1 for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm-1, and the discrepancies for the anharmonic correction are less than 0.1 cm-1. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.
Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura
2015-01-01
This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948
Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura
2015-01-01
This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948
Hayden, C.C.; Penn, S.M.; Carlson, K.J.; Crim, F.F.
1988-03-24
The authors describe a new method for obtaining vibrational overtone spectra of polyatomic molecules in supersonic expansions that uses low-energy electrons to ionize the vibrationally excited molecules. Measuring the excitation spectrum of water in the region of the third overtone of the OH stretching vibration (4..sigma../sub OH/) demonstrates the technique. The ionization process is probably not direct but may occur by electron impact excitation to vibrationally and electronically excited states from which the neutral molecule is subsequently ionizes
Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode
NASA Astrophysics Data System (ADS)
Mourokh, Lev G.; Nori, Franco
2015-11-01
Using methods from condensed matter and statistical physics, we examine the transport of excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation-annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intrasystem couplings. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibrational modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the energy transfer efficiency in the steady-state regime. Using the structural parameters of the Fenna-Matthews-Olson complex, we find that, for vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of a "mixed exciton-vibrational mode" where the exciton is transferred back and forth between the two pigments with the absorption or emission of vibrational quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibrational mode strongly couples to the third pigment only, instead of coupling to the entire system.
NASA Astrophysics Data System (ADS)
Soloviev, V.; Seleznev, V.; Emanov, A.; Sal`Nikov, A.; Kashun, V.; Glinsky, B.; Kovalevsky, V.; Zhemchugova, I.; Danilov, I.; Liseikin, A.
2004-12-01
There are presented the materials of deep vibroseism researches, carried out in seismic active regions of Siberia with use of stationary (100-tos power) and moveable vibration sources (40-60tons power) and mobile digital recording equipment. There are given some examples of unique, have no world analogues, correlograms from high-power vibrators on distances to 400km and more. Using new vibroseismic technology of deep seismic researches, there were got detail deep sections of the Earth's crust and upper mantle, including time-sections of CDP-DSS up to depth of 80km. Materials of vibroseismic investigations on 2500km of seismic profiles in hard-to-reach regions of the Altay-Sayan region, the Baikal rift zone and Okhotsko-Chukotski regions are evidence of high cost efficiency, ecological safety, possibility to be realized in hard-to-reach region and finally of availability of deep seismic investigations with use of high-power vibration sources.
Collisional vibrational energy transfer of OH (A 2Sigma + , v'=1)
NASA Astrophysics Data System (ADS)
Williams, Leah R.; Crosley, David R.
1996-05-01
Vibrational energy transfer (VET) and quenching of the v'=1 level of A 2Σ+ OH have been studied using laser-induced fluorescence in a discharge flow cell at room temperature. VET cross sections (Å2) are N2, 30.1±2.8; O2, 2.8±0.3; Ar, 0.56±0.05; H2O, 8.6±0.6. The rotational energy distribution in v'=0 following the VET event was determined for nine colliders. It is nonthermal, generally populating high rotational levels. There are three broad categories of colliders that cause varying degrees of vibrational to rotational energy transfer; H2, D2, and CH4 show the least; N2, CO2, CF4, and N2O more; and O2 and Ar the most, with about one-third of the vibrational energy appearing as OH rotation.
A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Tao, Kai; Wu, Jin; Tang, Lihua; Xia, Xin; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao
2016-03-01
In this paper, a vibration-based MEMS electromagnetic energy harvester (EM-EH) device with two-degree-of-freedom (2DOF) configuration has been presented, modeled and characterized. The proposed 2DOF system comprises a primary subsystem for power generation, and an accessory subsystem for frequency tuning. A lumped parametric 2DOF model is built and examined in respect of energy harvesting capabilities. By controlling the mass ratio and frequency ratio, the first two resonances of primary mass can be tuned close to each other while maintaining comparable magnitudes. The 2DOF configuration is expected to be more adaptive and efficient than the conventional 1DOF structure, which could only operate near its sole resonance. The 2DOF EM-EH chip is fabricated on silicon-on-insulator (SOI) wafer through double-sided deep reactive-ion etching (DRIE). Induction coil is only patterned on the primary mass for energy conversion. With current prototype at an acceleration of 0.12 g, two resonances of 326 and 391 Hz with output voltages of 3.6 and 6.5 mV are obtained respectively, providing good validation for the modeling results. This paper offers new insights of implementing a multimodal MEMS EM-EH device.
NASA Astrophysics Data System (ADS)
Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini
2016-07-01
A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m‑3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO–PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.
The thermal effects on high-frequency vibration of beams using energy flow analysis
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Chen, Hualing; Zhu, Danhui; Kong, Xiangjie
2014-04-01
In this paper, the energy flow analysis (EFA) method is developed to predict the high-frequency response of beams in a thermal environment, which is a topic of concern in aerospace and automotive industries. The temperature load applied on the structures can generate thermal stresses and change material properties. The wavenumber and group velocity associated with the in-plane axial force arising from thermal stresses are included in the derivation of the governing energy equation, and the input power is obtained from the derived effective bending stiffness. In addition, effect of temperature-dependent material properties is considered in the EFA model. To verify the proposed formulation, numerical simulations are performed for a pinned-pinned beam in a uniform thermal environment. The EFA results are compared with the modal solutions for various frequencies and damping loss factors, and good correlations are observed. The results show that the spatial distributions and levels of energy density can be affected by the thermal effects, and the vibration response of beams increases with temperature.
Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini
2016-07-15
A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators. PMID:27256619
Random vibration analysis of the Topaz-II nuclear reactor power system. Master`s thesis
Campbell, S.E.
1995-06-01
The TOPAZ-II Ya-21U is one of six Russian made space nuclear power systems which is based on theomionic power conversion. The U.S. is presently analyzing TOPAZ-II to determine the reliability and feasibility of using this system. A structural analysis test was conducted on the TOPAZ unit in May 1993 to provide data from which modal parameters could be identified. This test showed the fundamental frequency to be 10.5 Hz, yet the test results that the Russians conducted identified a fundamental frequency of 5 Hz. Another finite element model was created incorporating new developments in TOPAZ-II and modifications to the finite element model to better simulate the mass properties of the TOPAZ-II2. A second structural analysis test was conducted on the TOPAZ unit 06-09 September 1994. This thesis focuses on the random vibration analysis of the TOPAZ-II Ya-2lU utilizing the most recent test results and the Master Series (updated version) I-DEAS software. The modal respose of the model and simulated random vibration tests were within 8.33%. This model is a feasible tool which can be used to analyze the TOPAZ unit without testing the unit to fatigue.
Do, T. P. T.; Lopes, M. C. A.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au
2015-03-28
We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.
NASA Astrophysics Data System (ADS)
Sato, T.; Masuda, A.; Sanada, T.
2015-12-01
This paper presents an experimental verification of a self-excitation control of a resonance- type vibration energy harvester with a Duffing-type nonlinearity which is designed to perform effectively in a wide frequency range. For the conventional linear vibration energy harvester, the performance of the power generation at the resonance frequency and the bandwidth of the resonance peak are trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear oscillator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. It has been experimentally validated that this control law imparts the self-excitation capability to the oscillator to show an entrainment into the highest-energy solution.
Net energy analysis - powerful tool for selecting elective power options
Baron, S.
1995-12-01
A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.
Exploring Energy, Power, and Transportation Technology.
ERIC Educational Resources Information Center
Bowers, Donovan; Kellum, Mary
These teacher's materials for a seven-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the communication industries. The seven units include an overview of energy and power, principles of energy and power, power production and conversion, power transmission and…
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer
NASA Astrophysics Data System (ADS)
Stoykov, S.; Litak, G.; Manoach, E.
2015-11-01
An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.
Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions
Turner, T.P.
1984-07-01
This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H/sub 2//sup +/ + He and HD/sup +/ + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H/sub 2//sup +/ or HD/sup +/ is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C/sub 2/H/sub 2//sup +/ + H/sub 2/ ..-->.. C/sub 2/H/sub 3//sup +/ + H.
Lan, C. B.; Qin, W. Y.
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Intermediate energy electron impact excitation of composite vibrational modes in phenol
Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Nixon, K. L.; Oliveira, E. M. de; Lima, M. A. P.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Silva, G. B. da; Brunger, M. J.
2015-05-21
We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.
NASA Astrophysics Data System (ADS)
Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.
2013-05-01
The paper presents data of operating vibroseismic observations using high-power stationary 100-tons and moveable 40-tons vibration sources, which have been carried out in Russia for 30 years. It is shown that investigations using high-power vibration sources open new possibilities for study stressedly-deformed condition of the Earth`s crust and the upper mantle and tectonic process in them. Special attention is given to developing operating seismic translucences of the Earth`s crust and the upper mantle using high-power 40-tons vibration sources. As a result of experimental researches there was proved high stability and repeatability of vibration effects. There were carried out long period experiments of many days with vibration source sessions of every two hours with the purpose of monitoring accuracy estimation. It was determined, that repeatability of vibroseismic effects (there was researched time difference of repeated sessions of P- and S-waves from crystal rocks surface) could be estimated as 10-3 - 10-4 sec. It is ten times less than revealed here annual variations of kinematic parameters according to regime vibroseismic observations. It is shown, that on hard high-speed grounds radiation spectrum becomes narrowband and is dislocated to high frequency; at the same time quantity of multiple high-frequency harmonic is growing. At radiation on soft sedimentary grounds (sand, clay) spectrum of vibration source in near zone is more broadband, correlograms are more compact. there Correspondence of wave fields from 40-tons vibration sources and explosions by reference waves from boundaries in he Earth`s crust and the upper mantle at record distance of 400 km was proved by many experiments in various regions of Russia; there was carried out the technique of high-power vibration sources grouping for increase of effectiveness of emanation and increase of record distance. According to results of long-term vibroseismic monitoring near Novosibirsk (1997-2012) there are
Optimizing the Electrical Power in an Energy Harvesting System
NASA Astrophysics Data System (ADS)
Coccolo, Mattia; Litak, Grzegorz; Seoane, Jesús M.; Sanjuán, Miguel A. F.
In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.
NASA Astrophysics Data System (ADS)
Heo, YongHwa; Kim, Kwang-joon
2015-02-01
While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank
2015-08-31
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
Applications of energy harvesting for ultralow power technology
NASA Astrophysics Data System (ADS)
Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.
2015-06-01
Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.
NASA Astrophysics Data System (ADS)
Blažević, D.; Zelenika, S.
2015-05-01
Scavenging of low-level ambient vibrations i.e. the conversion of kinetic into electric energy, is proven as effective means of powering low consumption electronic devices such as wireless sensor nodes. Cantilever based scavengers are characterised by several advantages and thus thoroughly investigated; analytical models based on a distributed parameter approach, Euler-Bernoulli beam theory and eigenvalue analysis have thus been developed and experimentally verified. Finite element models (FEM) have also been proposed employing different modelling approaches and commercial software packages with coupled analysis capabilities. An approach of using a FEM analysis of a piezoelectric cantilever bimorph under harmonic excitation is used in this work. Modal, harmonic and linear and nonlinear transient analyses are performed. Different complex dynamic effects are observed and compared to the results obtained by using a distributed parameter model. The influence of two types of finite elements and three mesh densities is also investigated. A complex bimorph cantilever, based on commercially available Midé Technology® Volture energy scavengers, is then considered. These scavengers are characterised by an intricate multilayer structure not investigated so far in literature. An experimental set-up is developed to evaluate the behaviour of the considered class of devices. The results of the modal and the harmonic FEM analyses of the behaviour of the multilayer scavengers are verified experimentally for three different tip masses and 12 different electrical load values. A satisfying agreement between numerical and experimental results is achieved.
Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Jia, Y.; Seshia, A. A.
2014-11-01
In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.
Sparta, Manuel; Hansen, Mikkel B; Matito, Eduard; Toffoli, Daniele; Christiansen, Ove
2010-10-12
The availability of an accurate representation of the potential energy surface (PES) is an essential prerequisite in an anharmonic vibrational calculation. At the same time, the high dimensionality of the fully coupled PES and the adverse scaling properties with respect to the molecular size make the construction of an accurate PES a computationally demanding task. In the past few years, our group tested and developed a series of tools and techniques aimed at defining computationally efficient, black-box protocols for the construction of PESs for use in vibrational calculations. This includes the definition of an adaptive density-guided approach (ADGA) for the construction of PESs from an automatically generated set of evaluation points. Another separate aspect has been the exploration of the use of derivative information through modified Shepard (MS) interpolation/extrapolation procedures. With this article, we present an assembled machinery where these methods are embedded in an efficient way to provide both a general machinery as well as concrete computational protocols. In this framework we introduce and discuss the accuracy and computational efficiency of two methods, called ADGA[2gx3M] and ADGA[2hx3M], where the ADGA recipe is used (with MS interpolation) to automatically define modest sized grids for up to two-mode couplings, while MS extrapolation based on, respectively, gradients only and gradients and Hessians from the ADGA determined points provides access to sufficiently accurate three-mode couplings. The performance of the resulting potentials is investigated in vibrational coupled cluster (VCC) calculations. Three molecular systems serve as benchmarks: a trisubstituted methane (CHFClBr), methanimine (CH2NH), and oxazole (C3H3NO). Furthermore, methanimine and oxazole are addressed in accurate calculations aiming to reproduce experimental results. PMID:26616778
NASA Astrophysics Data System (ADS)
Wang, Xu; Liang, Xingyu; Hao, Zhiyong; Du, Haiping; Zhang, Nong; Qian, Ma
2016-05-01
A frequency response analysis has been conducted for a single degree of freedom vibration energy harvester connected to four different interface circuits. The performance and characteristics of both electromagnetic and piezoelectric harvesters have been analysed and compared. The main research outcome is the disclosure of similarity and duality of the electromagnetic and piezoelectric harvesters with different interface circuits. The contribution of this paper is to provide a new method to identify a vibration energy harvester with the best interface circuit and the most stable performance.
A modified method of vibration surveillance by using the optimal control at energy performance index
NASA Astrophysics Data System (ADS)
Kaliński, Krzysztof J.; Galewski, Marek A.
2015-06-01
A method of vibration surveillance by using the optimal control at energy performance index has been creatively modified. The suggested original modification depends on consideration of direct relationship between the measured acceleration signal and the optimal control command. The paper presents the results of experiments and Hardware-in-the-loop simulations of a new active vibration reduction algorithm based on the energy performance index idea modified in such a way, that it directly utilises the acceleration feedback signal. Promising prospects towards real application of the modified method in case of the high speed milling are predicted as well.
Careers in Geothermal Energy: Power from below
ERIC Educational Resources Information Center
Liming, Drew
2013-01-01
In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…
NASA Astrophysics Data System (ADS)
Somà, A.; De Pasquale, G.
2013-05-01
The reduction of power consumption of sensors allows the local power supply or wireless sensor networks. This paper introduces the results of design and experiments on devices for harvesting energy from vibrations of machines. The main contribution of this research is the empirical evaluation of different technical solutions able to improve harvester performances and sensing system duty cycle. Satisfactory results have been achieved in lowering of resonance by levitating suspensions and in increasing of Q-factor by studying the air flows. Output power values of 10mW (5.7Hz, 1.4g) and 115mW (3.2Hz, 0.2g) were obtained for piezoelectric and inductive harvesters respectively.
Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.
Fang, Tao; Jia, Junteng; Li, Shuhua
2016-05-01
The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study. PMID:27076120
High-level ab initio potential energy surfaces and vibrational energies of H2CS
NASA Astrophysics Data System (ADS)
Yachmenev, Andrey; Yurchenko, Sergei N.; Ribeyre, Tristan; Thiel, Walter
2011-08-01
Six-dimensional (6D) potential energy surfaces (PESs) of H2CS have been generated ab initio using the recently proposed explicitly correlated (F12) singles and doubles coupled cluster method including a perturbational estimate of connected triple excitations, CCSD(T)-F12b [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] in conjunction with F12-optimized correlation consistent basis sets. Core-electron correlation, high-order correlation, scalar relativistic, and diagonal Born-Oppenheimer terms were included as additive high-level (HL) corrections. The resulting 6D PESs were represented by analytical functions which were used in variational calculations of the vibrational term values below 5000 cm-1. The best PESs obtained with and without the HL corrections, VQZ-F12* HL and VQZ-F12*, reproduce the fundamental vibrational wavenumbers with mean absolute deviations of 1.13 and 1.22 cm-1, respectively. A detailed analysis of the effects of the HL corrections shows how the VQZ-F12 results benefit from error cancellation. The present purely ab initio PESs will be useful as starting points for empirical refinements towards an accurate "spectroscopic" PES of H2CS.
NASA Astrophysics Data System (ADS)
Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun
2012-01-01
A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.
NASA Astrophysics Data System (ADS)
Sekiguchi, K.; Shimojima, A.; Kajimoto, O.
2002-04-01
A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.
Dhote, Sharvari Zu, Jean; Zhu, Yang
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
NASA Astrophysics Data System (ADS)
Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.
2016-08-01
In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.
Anaerobic power in road cyclists is improved after 10 weeks of whole-body vibration training.
Oosthuyse, Tanja; Viedge, Alison; McVeigh, Joanne; Avidon, Ingrid
2013-02-01
Whole-body vibration (WBV) training has previously improved muscle power in various athletic groups requiring explosive muscle contractions. To evaluate the benefit of including WBV as a training adjunct for improving aerobic and anaerobic cycling performance, road cyclists (n = 9) performed 3 weekly, 10-minute sessions of intermittent WBV on synchronous vertical plates (30 Hz) while standing in a static posture. A control group of cyclists (n = 8) received no WBV training. Before and after the 10-week intervention period, lean body mass (LBM), cycling aerobic peak power (Wmax), 4 mM lactate concentration (OBLA), VO2peak, and Wingate anaerobic peak and mean power output were determined. The WBV group successfully completed all WBV sessions but reported a significant 30% decrease in the weekly cycling training time (pre: 9.4 ± 3.3 h·wk(-1); post: 6.7 ± 3.7 h·wk(-1); p = 0.01) that resulted in a 6% decrease in VO2peak and a 4% decrease in OBLA. The control group reported a nonsignificant 6% decrease in cycling training volume (pre: 9.5 ± 3.6 h·wk(-1); 8.6 ± 2.9 h·wk(-1); p = 0.13), and all measured variables were maintained. Despite the evidence of detraining in the WBV group, Wmax was maintained (pre: 258 ± 53 W; post: 254 ± 57 W; p = 0.43). Furthermore, Wingate peak power increased by 6% (668 ± 189 to 708 ± 220 W; p = 0.055), and Wingate mean power increased by 2% (553 ± 157 to 565 ± 157 W; p = 0.006) in the WBV group from preintervention to postintervention, respectively, without any change to LBM. The WBV training is an attractive training supplement for improving anaerobic power without increasing muscle mass in road cyclists. PMID:22531614
NASA Astrophysics Data System (ADS)
Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun
2014-10-01
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-09
Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Spall, Steven J; Keane, Theo; Blake, Alexander J; Wilson, Claire; Meijer, Anthony J H M; Weinstein, Julia A
2014-10-01
Nonlinear vibrational spectroscopy provides insights into the dynamics of vibrational energy transfer in and between molecules, a crucial phenomenon in condensed phase physics, chemistry, and biology. Here we use frequency-domain 2-dimensional infrared (2DIR) spectroscopy to investigate the vibrational relaxation (VR) and vibrational energy transfer (VET) rates in different solvents in both the electronic ground and excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine), a prototypical transition metal carbonyl complex. The strong C≡O and ester C═O stretch infrared reporters, located on opposite sides of the molecule, were monitored in the 1600-2100 cm(-1) spectral region. VR in the lowest charge transfer triplet excited state ((3)CT) is found to be up to eight times faster than in the ground state. In the ground state, intramolecular anharmonic coupling may be solvent-assisted through solvent-induced frequency and charge fluctuations, and as such VR rates are solvent-dependent. In contrast, VR rates in the solvated (3)CT state are surprisingly solvent-insensitive, which suggests that predominantly intramolecular effects are responsible for the rapid vibrational deactivation. The increased VR rates in the excited state are discussed in terms of intramolecular electrostatic interactions helping overcome structural and thermodynamic barriers for this process in the vicinity of the central heavy atom, a feature which may be of significance to nonequilibrium photoinduced processes observed in transition metal complexes in general. PMID:25198700
Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions
Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.
1981-07-01
The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.
NASA Astrophysics Data System (ADS)
Haque, Md. Rejaul; Chowdhury, M. Arshad Zahangir; Goswami, Anjan
2016-07-01
A two-dimensional numerical study of flow induced vibration is reported in this paper to investigate flow over a semi-cricular D-shaped bluff body oriented at different angles-of-attack to determine an optimized design for energy harvesting. Bluff body structure governs fluid streamlines; therefore obtaining a suitable range of "lock in frequency" for energy harvesting purpose is dependent on refining and optimizing bluff body's shape and structure. A cantilever based novel energy harvester design incorporates the suitable angle-of-attack for optimized performance. This optimization was done by performing computations for 30°, 60° and 90° angles-of-attack. The frequency of vibration of the body was calculated at different Reynolds Number. A Fast Fourier Transformation yielded frequency of vortex shedding. From the wake velocity profile, lift oscillation and frequency of vortex shedding is estimated. Strouhal numbers of the body were analyzed at different angles-of-attack. A higher synchronized bandwidth of shedding frequencies is an indication of an optimized harvester design at different Reynolds number. The `D' shaped bluff bodies (with angle of attack of 30°,60° and 90°) are more suitable than that of cylindrical shaped bluff bodies. The research clearly stated that, bluff bodies shape has a prominent influence on vortex induced vibration and semicircular bluff body gives the highest vibration or energy under stated conditions.
Ishizaki, Akihito; Tanimura, Yoshitaka
2006-08-28
Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is assumed linear plus square in the system coordinate, but linear in the bath coordinates. The square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy relaxation in the stochastic model, the system part is then transformed into an energy eigenstate representation without using the rotating wave approximation. Two-dimensional (2D) infrared spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck (LTC-QFP) equation for a colored noise bath and by the stochastic theory. In motional narrowing regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The preconditions for validity of the stochastic theory for molecular vibrational motion are also discussed. PMID:16965023
NASA Astrophysics Data System (ADS)
Shin, Seungha
All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals
NASA Astrophysics Data System (ADS)
Dudka, A.; Basset, P.; Cottone, F.; Blokhina, E.; Galayko, D.
2013-12-01
This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback - two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110-170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs.
NASA Astrophysics Data System (ADS)
Wu, Dan; Guyomar, Daniel; Richard, Claude
2013-04-01
A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.
A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.
Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang
2011-04-01
A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. PMID:21507747
A composite beam with dual bistability for enhanced vibration energy harvesting
NASA Astrophysics Data System (ADS)
Harris, Peter; Litak, Grzegorz; Bowen, Chris R.; Arafa, Mustafa
2016-05-01
In this paper a bistable composite cantilever beam comprising asymmetric laminates is studied for vibration energy harvesting applications. An additional magnetic bistability is introduced to the harvesting system to lower the level of excitation that triggers the snap-through for the cantilever from one stable state to another, while retaining the favorable broadband performance. In order to achieve the, the cantilever beam is fitted with a permanent magnet at its tip that is oriented so that there is magnetic repulsion with a stationary magnet. The system performance can be adjusted by varying the separation between the magnets. Experimental results reveal that the use of magnetic bistability enhances broadband performance and improves the output power within a certain level of drive level and magnet separation. The load-deflection characteristic of the bistable beam is experimentally determined, and is subsequently used to model the system by a reduced single-degree-of-freedom (SDOF) system having the form of the Duffing equation for a double-well potential system. The dynamics of the beam are investigated using bifurcation diagrams and shows that the qualitative behavior given by the experimentally measured response is predicted well by the simple SDOF model.
Energy-weighted sum rules and the analysis of vibrational structure in molecular spectra
NASA Astrophysics Data System (ADS)
Smith, W. L.
2015-10-01
The energy-weighted sum SV = Σn (E‧n - E″m)|<ψ″m|ψ‧n>|2 = <ψ″m|ΔV|ψ″m> for the vibrational potential functions V‧, V″ associated with transitions between two electronic states of diatomic molecular species is investigated and specific formulae are given using Morse functions for V‧ and V″. It is found that these formulae are useful approximations which provide a convenient way to analyse the vibrational structure of real spectra to give estimates of molecular parameters such as the change in internuclear distance accompanying a transition.
On the ro-vibrational energies for the lithium dimer; maximum-possible rotational levels
NASA Astrophysics Data System (ADS)
Mustafa, Omar
2015-03-01
The Deng-Fan potential is used to discuss the reliability of the improved Greene-Aldrich approximation and the factorization recipe of Badawi et al [17] for the central attractive/repulsive core J≤ft( J+1 \\right)/2μ {{r}2}. The factorization recipe is shown to be a more reliable approximation and is used to obtain the rotational-vibrational energies for the {{a}3}Σ u+-7Li2 dimer. For each vibrational state only a limited number of the rotational levels are found to be supported by the {{a}3}Σ u+-7Li2 dimer.
Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1
NASA Technical Reports Server (NTRS)
Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.
1990-01-01
Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.
Energy analysis of wave and tidal power
NASA Astrophysics Data System (ADS)
Harrison, R.; Smith, K. G.; Varley, J. S.
1980-06-01
Energy requirements for building wave- and tidal-power systems are estimated and the relationship between energy requirements and extraction efficiency is examined for wavepower systems. It is found that a point of maximum net output is reached, beyond which further increases in extraction efficiency result in decreased net energy. In this manner, the energy analysis identifies a limit on the energy which could, in principle, be extracted by a wave-energy system. Finally, it is noted that although similar limits could be identified for other types of energy sources, the tidal power analysis is confined to a brief comparison of energy inputs and outputs.
Pasin, Gauthier; Iung, Christophe; Gatti, Fabien; Richter, Falk; Léonard, Céline; Meyer, Hans-Dieter
2008-10-14
The present paper is devoted to a full quantum mechanical study of the intramolecular vibrational energy redistribution in HFCO and DFCO. In contrast to our previous studies [Pasin et al., J. Chem. Phys. 124, 194304 (2006) and 126, 024302 (2007)], the dynamics is now performed in the presence of an external time-dependent field. This more closely reflects the experimental conditions. A six-dimensional dipole surface is computed. The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. Special emphasis is placed on the excitation of the out-of-plane bending vibration and on the dissociation of the molecule. In the case of DFCO, we predict that it is possible to excite the out-of-plane bending mode of vibration and to drive the dissociation to DF+CO with only one laser pulse with a fixed frequency and without excitation of an electronic state. PMID:19045144
S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.
Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi
2016-08-01
We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151
S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting
NASA Astrophysics Data System (ADS)
Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi
2016-08-01
We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.
NASA Astrophysics Data System (ADS)
Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.
2015-12-01
This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.
Laboratory Measurement of O3(v) + O Vibrational Energy Transfer
NASA Astrophysics Data System (ADS)
Castle, K. J.; Hwang, E. S.; Dodd, J. A.
2007-12-01
Photochemical reactions involving O3 play a key role in determining the thermal and radiative structure of the upper mesosphere/lower thermosphere. Emission detected in NASA's TIMED/SABER 9.6-μm channel is dominated by the O3(ν3) asymmetric stretch mode, including hot band and combination band emission arising from vibrationally-excited O3(v) populated by O + O2 + M three-body recombination. Rate coefficients kM(O3) for the relaxation of O3(v) by O2, N2, and O must be known to confidently model the O3 photochemistry in this region. Measurements of O3( v) quenching by O2 and N2 have been performed by several groups, including the temperature dependence. On the other hand, rate coefficients kO(O3) for quenching of O3(ν2,ν3) by O were only reported in a single published paper some 30 years ago. Those measurements were performed at room temperature, and yielded rate coefficients with factor-of-two precision. The data suggest that quenching of O3(v) by O could make a significant contribution especially at higher altitudes, motivating an updated measurement. The goal of the present work is to measure the quenching of several excited O3(v) levels by O using a temperature-jump/transient diode laser absorption experiment similar to the ongoing CO2(ν2)-O study. Ultimately a variable-temperature reaction cell will be used to measure temperature-dependent O3(v)-O relaxation rates for the first time.
Water Power for a Clean Energy Future
2013-04-12
This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.
Feasibility of Self Powered Actuation for Flow, Separation and Vibration Control
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Bak, Dillon; Izadnegahdar, Alain
2015-01-01
A gas turbine engine is anywhere from 40-50% efficient. A large amount of energy is wasted as heat. Some of this heat is recoverable through the use of energy harvesting and can be used for powering on-board systems or for storing energy in batteries to replace auxiliary power units (APUs). As hybrid electric aircraft become more common, the use of energy harvesting will see increasingly more benefit and become commonplace in gas turbine engines. For electric aircraft with motors, TEGs would be beneficial for reclaiming waste heat from electric motors. The primary focus of this work was to evaluate the feasibility of harvesting energy from the hot section of a gas turbine engine (for a single aisle Boeing 737 thrust class) using thermoelectric generators (TEGs). The resulting heat could be used to power on-board actuation mechanisms such as plasma actuators and piezoelectric actuators. The work is a result of a two year NASA Center Innovation Fund from 2009 to 2011. The trade-off between thermoelectric harvesting and blade surface temperature were studied to ensure that blade durability is not adversely impacted by embedding a low thermal conductivity TEG. Calculations show that.5-10 Watts can be harvested per blade depending on flow conditions and on the thermoelectric material chosen. BiTe and SiGe were used for this analysis and future thermoelectric generators or multiferroic alloys could considerably improve power output.
NASA Astrophysics Data System (ADS)
Hong, Kuang-Sheng
We propose a phenomenon of piezoelectrochemical (PZEC) effect for the direct conversion of mechanical energy to chemical energy. This phenomenon is further applied for generating hydrogen and oxygen via direct water decomposition by means of as-synthesized piezoelectric quartz (SiO2) nano-rods, ZnO microfibers, and BaTiO3 microdendrites. The materials are vibrated with ultrasonic waves leading to a strain-induced electric charge development on their surface. With sufficient electric potential, the strained piezoelectric materials in water triggered the redox reaction of water to produce hydrogen and oxygen gases. All materials have indicated a well response to the external mechanical vibration to drive the desired chemical reactions. ZnO fibers under ultrasonic vibrations showed a stoichiometric ratio of H 2/O2 (2:1) initial gas production from pure water. The efficiency of the piezoelectrochemical effect was calculated by ratio of the chemical energy output over the mechanical energy input of the system. The study of piezoelectrochemical effect is further applied to the environmental cleaning technology. Accordingly, a dissolved orange dye (AO7) was decomposed via mechanical driving force by using BaTiO3 microdendrites. Kinetic details of the dye decomposition through piezoelectrochemical effect were investigated. In addition, the piezoelectrochemical effect was proposed to the implication of tectonic hydrogen in geological systems providing insights of hydrogen generation in active fault zones. The tectonic hydrogen produced through PZEC effect could be a sustainable energy source for subsurface microbial community. This study provides a simple and cost-effective technology for generating hydrogen fuels as well as environmental cleaning by scavenging energy wastes such as noise or stray vibrations from the environment. This new piezoelectrochemical effect may have potential implications in solving the challenging energy and environmental issues that we are facing
Enhanced output power by eigenfrequency shift in acoustic energy harvester
NASA Astrophysics Data System (ADS)
Li, Bin; You, Jeong Ho
2014-04-01
In our previous studies, multiple piezoelectric cantilever plates were placed inside a quarter-wavelength straight tube resonator to harvest low frequency acoustic energy. To investigate the modification of eigenmodes in the tube resonator due to the presence of piezoelectric plates, the eigenfrequency shift properties by introducing single and multiple rectangular blockages in open-closed ducts are studied by using 1D segmented Helmholtz equations, Webster horn equation, and finite element simulations. The first-mode eigenfrequency of the duct is reduced when the blockage is placed near the open inlet. The decrease of eigenfrequency leads to the enhancement of absorbed acoustic power in the duct. Furthermore, the first half of the tube resonator possesses high pressure gradient resulting in larger driving forces for the vibration motion of piezoelectric plates. Therefore, in our harvesters, it is better to place the piezoelectric plates in the first half of the tube resonator to obtain high output voltage and power.
Energy harvesting to power embedded condition monitoring hardware
NASA Astrophysics Data System (ADS)
Farinholt, Kevin; Brown, Nathan; Siegel, Jake; McQuown, Justin; Humphris, Robert
2015-04-01
The shift toward condition-based monitoring is a key area of research for many military, industrial, and commercial customers who want to lower the overall operating costs of capital equipment and general facilities. Assessing the health of rotating systems such as gearboxes, bearings, pumps and other actuation systems often rely on the need for continuous monitoring to capture transient signals that are evidence of events that could cause (i.e. cavitation), or be the result of (i.e. spalling), damage within a system. In some applications this can be accomplished using line powered analyzers, however for wide-spread monitoring, the use of small-scale embedded electronic systems are more desirable. In such cases the method for powering the electronics becomes a significant design factor. This work presents a multi-source energy harvesting approach meant to provide a robust power source for embedded electronics, capturing energy from vibration, thermal and light sources to operate a low-power sensor node. This paper presents the general design philosophy behind the multi-source harvesting circuit, and how it can be extended from powering electronics developed for periodic monitoring to sensing equipment capable of providing continuous condition-based monitoring.
NASA Astrophysics Data System (ADS)
Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung
2016-02-01
In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.
Potential energy surface and vibrational band origins of the triatomic lithium cation
NASA Astrophysics Data System (ADS)
Searles, Debra J.; Dunne, Simon J.; von Nagy-Felsobuki, Ellak I.
The 104 point CISD Li +3 potential energy surface and its analytical representation is reported. The calculations predict the minimum energy geometry to be an equilateral triangle of side RLiLi = 3.0 Å and of energy - 22.20506 E h. A fifth-order Morse—Dunham type analytical force field is used in the Carney—Porter normal co-ordinate vibrational Hamiltonian, the corresponding eigenvalue problem being solved variationally using a 560 configurational finite-element basis set. The predicted assignment of the vibrational band origins is in accord with that reported for H +3. Moreover, for 6Li +3 and 7Li +3 the lowest i.r. accessible band origin is the overlineν0,1,±1 predicted to be at 243.6 and 226.0 cm -1 respectively.
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2016-01-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205
Jia, Yu; Du, Sijun; Seshia, Ashwin A
2016-01-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2016-07-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a ‑3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.
On the nature of intramolecular vibrational energy transfer in dense molecular environments
NASA Astrophysics Data System (ADS)
von Benten, Rebekka S.; Abel, Bernd
2010-12-01
Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.
NASA Astrophysics Data System (ADS)
Bian, Hongtao; Li, Jiebo; Wen, Xiewen; Zheng, Junrong
2010-05-01
Vibrational energy transfer from the first excited state (2252 cm-1) of the C-D stretch of deuterated chloroform (DCCl3) to the 0-1 transition (2155 cm-1) of the CN stretch of phenyl selenocyanate (C6H5SeCN) in their 1:1 liquid mixture was observed with a pump/probe two-color two dimensional infrared spectroscopic technique. The mode-specific energy transfer can occur mainly because of the long vibrational lifetime of the CN stretch first excited state (˜300 ps) and the relatively strong hydrogen-bond between the C-D and CN (calculated H-bond formation energy in gas phase ˜-5.4 kcal/mol). The mode-specific energy transfer is relatively low efficient (only ˜2%), which is mainly because of the relatively short vibrational lifetime (˜9 ps) of the C-D stretch first excited state and the big donor/acceptor energy mismatch (97 cm-1) and the slow transfer kinetics (1/kCD→CN=330 ps).
Free vibrations of an uncertain energy pumping system
NASA Astrophysics Data System (ADS)
Cataldo, Edson; Bellizzi, Sergio; Sampaio, Rubens
2013-12-01
The aim of this paper is to study the energy pumping (the irreversible energy transfer from one structure, linear, to another structure, nonlinear) robustness considering the uncertainties of the parameters of a two DOF mass-spring-damper, composed of two subsystems, coupled by a linear spring: one linear subsystem, the primary structure, and one nonlinear subsystem, the so-called NES (nonlinear energy sink). Three parameters of the system will be considered as uncertain: the nonlinear stiffness and the two dampers. Random variables are associated to the uncertain parameters and probability density functions are constructed for the random variables applying the Maximum Entropy Principle. A sensitivity analysis is then performed, considering different levels of dispersion, and conclusions are obtained about the influence of the uncertain parameters in the robustness of the system.
Solar energy thermally powered electrical generating system
NASA Technical Reports Server (NTRS)
Owens, William R. (Inventor)
1989-01-01
A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.
NASA Astrophysics Data System (ADS)
Kawano, M.; Zhang, Y.; Zheng, R.; Nakano, K.; Kim, B.
2015-12-01
This paper describes extremely simple configuration of novel vibrational energy harvester, which can harness low frequency (less than 5 Hz, such as various environmental vibrations) over a broad frequency band for the first time. A design that utilizes a phenomenon called stochastic resonance can give significantly enhanced vibration mode for increasing efficiency, and simple bi-stable cantilever with tip mass installed a basement vertically fulfils the requirements for stochastic resonance. We fabricated bi-stable cantilever with tip mass and validated whether the cantilever could be used as an effective low frequency vibration energy harvester. In the experiment, when a 1 Hz periodic force and environmental noise vibration were applied, stochastic resonance occurred. The amplitude of the energy harvester increased over tenfold (over 30 mm).
Roles of the Excitation in Harvesting Energy from Vibrations.
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
Roles of the Excitation in Harvesting Energy from Vibrations
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
Vibrational Energy Relaxation of Choloroiodomethane in Cold Argon
NASA Astrophysics Data System (ADS)
Jain, Amber; Sibert, Edwin L. Sibert, Iii
2013-06-01
Electronically exciting the C-I stretch in the molecule chloroiodomethane CH_{2}ClI embedded in a matrix of argon at 12K can lead to an isomer, iso-chloroiodomethane CH_{2}Cl-I, that features a chlorine iodine bond. By temporally probing the isomer at two different frequencies of 435 nm and 485 nm, multiple timescales for isomerization are inferred. To gain further mechanistic insights into this process we have studied the isomerization theoretically using molecular dynamics. Two and three low frequency modes (C-Cl-I bend, Cl-I stretch and C-Cl stretch) are included in the model. The experiment is simulated by equilibrating the molecule in the parent configuration and providing an energy of 37,500 cm^{-1}, corresponding to the electronic excitation of the C-I stretch. Subsequent time evolution of the classical trajectories is monitored, and the decay rates of energy are compared to the experimental spectroscopy results. Varying different parameters related to the potential energy surface can lead to different results and their implications to the energy flow are discussed. The decay rates in the isomer well are also compared to the classical Landau Teller theory. T. J. Preston, M. Dutta, B. J. Esselman, A. Kalume, L. George, R. J. McMahon, S. A. Reid, and F. F. Crim, J. Chem. Phys. 135, 114503 (2011)
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1974-01-01
A bearing damper, operating on the support flexure of a pivoted pad in a tilting-pad type gas-lubricated journal bearing, has been designed, built, and tested under externally-applied random vibrations. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10-Kwe turbogenerator had previously been subjected in the MTI Vibration Test Laboratory to external random vibrations, and vibration response data had been recorded and analyzed for amplitude distribution and frequency content at a number of locations in the machine. Based on data from that evaluation, a piston-type damper was designed and developed for each of the two flexibly-supported journal bearing pads (one in each of the two three-pad bearings). A modified BRU, with dampers installed, has been re-tested under random vibration conditions. Root-mean-square vibration amplitudes were determined from the test data, and displacement power spectral density analyses have been performed. Results of these data reduction efforts have been compared with vibration tolerance limits. Results of the tests indicate significant reductions in vibration levels in the bearing gas-lubricant films, particularly in the rigidly-mounted pads. The utility of the gas-lubricated damper for limiting rotor-bearing system vibrations in high-speed turbomachinery has thus been demonstrated.
Vibration-based energy harvesting with piezoelectrets having high d31 activity
NASA Astrophysics Data System (ADS)
Zhang, X.; Pondrom, P.; Wu, L.; Sessler, G. M.
2016-05-01
Sandwiched fluoroethylene propylene films with charged, parallel-tunnel voids between the layers, which exhibit high d31 piezoelectric activity, were designed. Stripes of such piezoelectrets were exposed to mechanical stress in length direction by a seismic mass excited to vibrations. Due to the piezoelectricity of the films, a current in a terminating resistor is generated. The harvested power across the resistor amounts to about 0.2 mW for a seismic mass of 2 g and an acceleration of 1 g. In comparison with other piezoelectret or with poly(vinylidene fluoride) harvesters, the generated power referred to equal acceleration and force, is significantly larger.
NASA Astrophysics Data System (ADS)
Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.
2014-09-01
In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.
ERIC Educational Resources Information Center
Holdren, John; Herrera, Philip
The demand of Americans for more and more power, particularly electric power, contrasted by the deep and growing concern for the environment and a desire by private citizens to participate in the public decisions that affect the environment is the dilemma explored in this book. Part One by John Holdren, offers a scientist's overview of the energy…
Pulsed Power Driven Fusion Energy
SLUTZ,STEPHEN A.
1999-11-22
Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.
NASA Astrophysics Data System (ADS)
Mudjijono; Lawrence, Warren D.
1994-06-01
State-to-state branching ratios are reported for vibrational energy transfer (VET) from the 30 2 and 8 2 vibrational levels in S 1 ( 1B 2u) p-difluorobenzene by the collision partners He and Ar in the collision region of a supersonic free-jet expansion. For VET from the 8 2 level, He removes more energy than does Ar. This is the expected light collision partner effect. For the 30 2 level, however, Ar unexpectedly removes more energy than He. The opposing behaviour observed for relaxation by He and Ar from two vibrational levels of the same molecule is inconsistent with a universal 'light collision partner effect'.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Theoretical Rotation-Vibration Energies of X3B1NH 2+
NASA Astrophysics Data System (ADS)
Jensen, Per
1997-01-01
The present work reports rotation-vibration energies for the electronic ground state X3B1of the amidogen ion, NH 2+, predicted by means of the MORBID Hamiltonian and computer program (see P. Jensen in"Molecules in the Stellar Environment" (U. G. Jørgensen, Ed.), Lecture Notes in Physics, No. 428. Springer-Verlag, Berlin, 1994, and references therein). The predictions are based on a potential energy function obtained by Barclay et al.( J. Chem. Phys.99,9709-9719 (1993)) in a least-squares fit to the available high-resolution rotation-vibration data for X3B1NH 2+(M. Okumura, B. D. Rehfuss, B. M. Dinelli, M. G. Bawendi, and T. Oka, J. Chem. Phys.90,5918-5923 (1989); Y. Kabbadj, T. R. Huet, D. Uy, and T. Oka, J. Mol. Spectrosc.175,277-288 (1996)). We hope that the predicted energies will facilitate the assignment of further rotation-vibration transitions of this interesting, extremely floppy molecule. Further, we give a detailed discussion of the correlation between the linear-molecule and the bent-molecule quantum numbers which have been used in the literature to label the energy levels of the quasilinear NH 2+ion.
Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Offenhaeuser, F.
1987-01-01
The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.
The vibrational energy flow transition in organic molecules: Theory meets experiment
Bigwood, R.; Gruebele, M.; Leitner, D. M.; Wolynes, P. G.
1998-01-01
Most large dynamical systems are thought to have ergodic dynamics, whereas small systems may not have free interchange of energy between degrees of freedom. This assumption is made in many areas of chemistry and physics, ranging from nuclei to reacting molecules and on to quantum dots. We examine the transition to facile vibrational energy flow in a large set of organic molecules as molecular size is increased. Both analytical and computational results based on local random matrix models describe the transition to unrestricted vibrational energy flow in these molecules. In particular, the models connect the number of states participating in intramolecular energy flow to simple molecular properties such as the molecular size and the distribution of vibrational frequencies. The transition itself is governed by a local anharmonic coupling strength and a local state density. The theoretical results for the transition characteristics compare well with those implied by experimental measurements using IR fluorescence spectroscopy of dilution factors reported by Stewart and McDonald [Stewart, G. M. & McDonald, J. D. (1983) J. Chem. Phys. 78, 3907–3915]. PMID:9600899
Turbulent boundary layer induced vibration up to high frequencies by means of local energy methods
NASA Astrophysics Data System (ADS)
Hardy, Pierre; Jezequel, Louis; Ichchou, Mohammed; Jacques, Yves
2002-11-01
The local energy method developed in the last years revealed appropriate in medium and high frequencies and supplies an accurate description of the spread of vibration and acoustic fields up to high frequencies. Our aim in the paper is to provide a complete description of the turbulent boundary layer (TBL) induced vibration by means of this method, for a simply supported thin plate. The first step in the energy method proof is the characterization of energy input from a given model of the TBL pressure interspectrum. Then, is deduced the uncoherent structural response of the panel, and the uncoherent normal mean square velocity. The latter provides, using the acoustic radiation resistance, a prediction of noise radiating by the panel up to high frequencies. Accuracy of the local energy analysis versus the usual random normal modes decomposition is demonstrated. Ultimately, a numerical parametric survey is given for various internal loss level. Precisely, the link between results provided here and SEA predictions of TBL structural induced vibration is discussed.
NASA Astrophysics Data System (ADS)
Chong, C.; Kim, E.; Charalampidis, E. G.; Kim, H.; Li, F.; Kevrekidis, P. G.; Lydon, J.; Daraio, C.; Yang, J.
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments.
Chakraborty, Arindam; Truhlar, Donald G; Bowman, Joel M; Carter, Stuart
2004-08-01
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J = 0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. PMID:15260761
Chong, C; Kim, E; Charalampidis, E G; Kim, H; Li, F; Kevrekidis, P G; Lydon, J; Daraio, C; Yang, J
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments. PMID:27300876
NASA Astrophysics Data System (ADS)
Badrakhan, F.
1994-06-01
The general expression for the energy dissipated by Coulomb friction in layered beams, valid for any number of layers and for any slipping level, is derived. The expression of optimum pressure for maximum energy dissipation is also derived. It is shown, in particular, that this optimum pressure does not guarantee minimum vibration amplitude at resonance if the beam is excited by a harmonic force. The results obtained, concerning the energy dissipated and the optimum pressure, are adapted to the case of leaf springs, for which the concept of optimum pressure seems to be more meaningful.
Laboratory Measurements of Room Temperature Vibrational Energy Transfer in O3 - O Collisions
NASA Astrophysics Data System (ADS)
Schaeffer, J.; Black, L.; Pedersen, T.; Castle, K. J.
2009-12-01
Vibrational energy exchange between O3 and O may play a significant role in the temperature and density structure of Earth’s upper mesosphere / lower thermosphere between 60 and100km. More accurate laboratory measurements of this rate coefficient are needed to improve aeronomic models of the region. A slow flowing gas mixture of O3 in Ar/Xe bath gas through a 1m long cell is used to perform laboratory measurements of the rate coefficient for quenching of vibrationally excited O3 by O(3P). Nd:YAG pulses (266nm) are used to photodissociate a small fraction of the O3, providing O atoms and vibrationally excited O3 via a modest temperature jump (~10K). Diode laser absorption spectroscopy in the 1030cm-1 region is used to measure the time-evolving populations in various O3 vibrational states. Data are taken at varying O concentrations to allow determination of the rate coefficient of interest using a global nonlinear least squares regression fitting algorithm programmed in Visual FORTRAN. Recent progress and updated measurements will be reported.
Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam
NASA Astrophysics Data System (ADS)
Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu
In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic
An efficient vibration energy harvester with a multi-mode dynamic magnifier
NASA Astrophysics Data System (ADS)
Zhou, Wanlu; Reddy Penamalli, Gopinath; Zuo, Lei
2012-01-01
A novel piezoelectric energy harvester with a multi-mode dynamic magnifier, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration, is proposed and investigated in this paper. The design comprises a multi-mode intermediate beam with a tip mass, called a ‘dynamic magnifier’, and an ‘energy harvesting beam’ with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can magnify the motion virtually in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in the frequency range 3-300 Hz, and 100-1000 times more energy around all the first three resonances of the harvesting beam.
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo
2013-07-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.
NASA Astrophysics Data System (ADS)
Liu, Zhe Peng; Li, Qing
2013-04-01
Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.
Zuo, Lei; Cui, Wen
2013-10-01
This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load. PMID:23918165
Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.
Koput, Jacek
2016-10-01
The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3 = 16 state. PMID:27481562
Energy Storage for the Power Grid
Imhoff, Carl; Vaishnav, Dave
2014-07-01
The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.
Renewable Energy. The Power to Choose.
ERIC Educational Resources Information Center
Deudney, Daniel; Flavin, Christopher
This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…
Teachers Environmental Resource Unit: Energy and Power.
ERIC Educational Resources Information Center
Bemiss, Clair W.
Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…
NASA Astrophysics Data System (ADS)
Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.
2015-12-01
Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.
Influence of temperature on thymine-to-solvent vibrational energy transfer
NASA Astrophysics Data System (ADS)
West, Brantley A.; Womick, Jordan M.; Moran, Andrew M.
2011-09-01
At the instant following the non-radiative deactivation of its ππ* electronic state, the vibrational modes of thymine possess a highly non-equilibrium distribution of excitation quanta (i.e., >4 eV in excess energy). Equilibrium is re-established through rapid (5 ps) vibrational energy transfer to the surrounding solvent. The mechanisms behind such vibrational cooling (VC) processes are examined here using femtosecond transient grating and two-dimensional photon echo spectroscopies conducted at 100 K and 300 K in a mixture of methanol and water. Remarkably, we find that this variation in temperature has essentially no impact on the VC kinetics. Together the experiments and a theoretical model suggest three possible mechanisms consistent with this behavior: (i) vibrational energy transfer from the solute to solvent initiates (directly) in intramolecular modes of the solute with frequencies >300 cm-1; (ii) the relaxation induced increase in the temperature of the environment reduces the sensitivity of VC to the temperature of the equilibrium system; (iii) the time scale of solvent motion approaches 0.1 ps even at 100 K. Mechanism (i) deserves strong consideration because it is consistent with the conclusions drawn in earlier studies of isotope effects on VC in hydrogen bonding solvents. Our model calculations suggest that mechanism (ii) also plays a significant role under the present experimental conditions. Mechanism (iii) is ruled out on the basis of long-lived correlations evident in the photon echo line shapes at 100 K. These insights into photoinduced relaxation processes in thymine are made possible by our recent extension of interferometric transient grating and photon echo spectroscopies to the mid UV spectral region.
Influence of temperature on thymine-to-solvent vibrational energy transfer.
West, Brantley A; Womick, Jordan M; Moran, Andrew M
2011-09-21
At the instant following the non-radiative deactivation of its ππ* electronic state, the vibrational modes of thymine possess a highly non-equilibrium distribution of excitation quanta (i.e., >4 eV in excess energy). Equilibrium is re-established through rapid (5 ps) vibrational energy transfer to the surrounding solvent. The mechanisms behind such vibrational cooling (VC) processes are examined here using femtosecond transient grating and two-dimensional photon echo spectroscopies conducted at 100 K and 300 K in a mixture of methanol and water. Remarkably, we find that this variation in temperature has essentially no impact on the VC kinetics. Together the experiments and a theoretical model suggest three possible mechanisms consistent with this behavior: (i) vibrational energy transfer from the solute to solvent initiates (directly) in intramolecular modes of the solute with frequencies >300 cm(-1); (ii) the relaxation induced increase in the temperature of the environment reduces the sensitivity of VC to the temperature of the equilibrium system; (iii) the time scale of solvent motion approaches 0.1 ps even at 100 K. Mechanism (i) deserves strong consideration because it is consistent with the conclusions drawn in earlier studies of isotope effects on VC in hydrogen bonding solvents. Our model calculations suggest that mechanism (ii) also plays a significant role under the present experimental conditions. Mechanism (iii) is ruled out on the basis of long-lived correlations evident in the photon echo line shapes at 100 K. These insights into photoinduced relaxation processes in thymine are made possible by our recent extension of interferometric transient grating and photon echo spectroscopies to the mid UV spectral region. PMID:21950869
Energy analysis of the solar power satellite.
Herendeen, R A; Kary, T; Rebitzer, J
1979-08-01
The energy requirements to build and operate the proposed Solar Power Satellite are evaluated and compared with the energy it produces. Because the technology is so speculative, uncertainty is explicitly accounted for. For a proposed 10-gigawatt satellite system, the energy ratio, defined as the electrical energy produced divided by the primary nonrenewable energy required over the lifetime of the system, is of order 2, where a ratio of 1 indicates the energy breakeven point. This is significantly below the energy ratio of today's electricity technologies such as light-water nuclear or coal-fired electric plants. PMID:17758765
NASA Astrophysics Data System (ADS)
Lajimi, S. A. M.; Friswell, M. I.
2015-04-01
For a nonlinear beam-mass system used to harvest vibratory energy, the two-mode approximation of the response is computed and compared to the single-mode approximation of the response. To this end, the discretized equations of generalized coordinates are developed and studied using a computational method. By obtaining phase-portraits and time-histories of the displacement and voltage, it is shown that the strong nonlinearity of the system affects the system dynamics considerably. By comparing the results of single- and two-mode approximations, it is shown that the number of mode shapes affects the dynamics of the response. Varying the tip-mass results in different structural configurations namely linear, pre-buckled nonlinear, and post-buckled nonlinear configurations. The nonlinear dynamics of the system response are investigated for vibrations about static equilibrium points arising from the buckling of the beam. Furthermore, it is demonstrated that the harvested power is affected by the system configuration.
NASA Astrophysics Data System (ADS)
Lumentut, Mikail F.; Howard, Ian M.
2016-02-01
This paper focuses on the primary development of novel numerical and analytical techniques of the modal damped vibration energy harvesters with arbitrary proof mass offset. The key equations of electromechanical finite element discretisation using the extended Lagrangian principle are revealed and simplified to give matrix and scalar forms of the coupled system equations, indicating the most relevant numerical technique for the power harvester research. To evaluate the performance of the numerical study, the analytical closed-form boundary value equations have been developed using the extended Hamiltonian principle. The results from the electromechanical frequency response functions (EFRFs) derived from two theoretical studies show excellent agreement with experimental studies. The benefit of the numerical technique is in providing effective and quick predictions for analysing parametric designs and physical properties of piezoelectric materials. Although analytical technique provides a challenging process for analysing the complex smart structure, it shows complementary study for validating the numerical technique.
Low power interface IC's for electrostatic energy harvesting applications
NASA Astrophysics Data System (ADS)
Kempitiya, Asantha
interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the
NASA Astrophysics Data System (ADS)
Harris, P.; Bowen, C. R.; Kim, H. A.; Litak, G.
2016-04-01
The use of bistable laminates is a potential approach to realize broadband piezoelectric-based energy harvesting by introducing elastic non-linearities to the system. In this paper the dynamic response of a piezoelectric material attached to a bistable laminate beam is examined based on the experimental measurement of the generated voltage-time series. The system was subjected to harmonic excitations and exhibited single-well and snap-through vibrations of both periodic and chaotic character. The ability to identify the vibration modes of the energy harvester is important since different levels of power are expected in each dynamic mode. We identify the dynamics of the selected system response using return maps, multiscale entropy, and "0-1" test. The potential of the approaches to identify periodic and chaotic modes and snap-through events in the non-linear bistable harvester is described.
Power Measurement Methods for Energy Efficient Applications
Calandrini, Guilherme; Gardel, Alfredo; Bravo, Ignacio; Revenga, Pedro; Lázaro, José L.; Toledo-Moreo, F. Javier
2013-01-01
Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system. PMID:23778191
Anharmonic force field, vibrational energies, and barrier to inversion of SiH{sub 3}{sup -}
Aarset, Kirsten; Csaszar, Attila G.; Sibert, Edwin L. III; Allen, Wesley D.; Schaefer, Henry F. III; Klopper, Wim; Theoretical Chemistry Group, Debye Institute, Utrecht University, Padualaan 14, NL-3584 CH Utrecht, The Netherlands ; Noga, Jozef
2000-03-01
The full quartic force field of the ground electronic state of the silyl anion (SiH{sub 3}{sup -}) has been determined at the CCSD(T)-R12 level employing a [Si/H]=[16s11p6d5f/7s5p4d] basis set. The vibrational energy levels, using the quartic force field as a representation of the potential energy hypersurface around equilibrium, have been determined by vibrational perturbation theory carried out to second, fourth, and sixth order. The undetected vibrational fundamental for the umbrella mode, {nu}{sub 2}, is predicted to be 844 cm-1. High-quality ab initio quantum chemical methods, including higher-order coupled cluster (CC) and many-body perturbation (MP) theory with basis sets ranging from [Si/H] [5s4p2d/3s2p] to [8s7p6d5f4g3h/7s6p5d4f3g] have been employed to obtain the best possible value for the inversion barrier of the silyl anion. The rarely quantified effects of one- and two-particle relativistic terms, core correlation, and the diagonal Born-Oppenheimer correction (DBOC) have been included in the determination of the barrier for this model system. The final electronic (vibrationless) extrapolated barrier height of this study is 8351{+-}100 cm{sup -1}. (c) 2000 American Institute of Physics.
Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane.
Li, Jun; Guo, Hua
2016-05-19
A full-dimensional potential energy surface is developed for dioxirane based on a high-fidelity fit of ∼46,000 ab initio points at the CCSD(T)-F12a/AVTZ level. The ro-vibrational levels of dioxirane were computed using the MULTIMODE method on this potential energy surface, and the agreement with the available experimental microwave spectrum is quite satisfactory. In addition, dipole moment surfaces have been constructed from ab initio data, and they allow the prediction of the infrared (IR) spectrum. PMID:26422048
SPS Energy Conversion Power Management Workshop
NASA Technical Reports Server (NTRS)
1980-01-01
Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.
NASA Astrophysics Data System (ADS)
Moeser, Beate; Janoschka, Adam; Wolny, Juliusz A.; Filipov, Igor; Chumakov, Aleksandr I.; Walker, F. Ann; Schünemann, Volker
2012-03-01
The binding of the signal molecule nitric oxide (NO) to the NO transporter protein Nitrophorin 2 (NP2) from the bloodsucking insect Rhodnius prolixus has been characterized by Mössbauer spectroscopy as well as nuclear forward scattering (NFS) and nuclear inelastic scattering (NIS). A striking feature of the vibrational spectrum obtained from NP2-NO is a vibration at 594 cm - 1. This mode is assigned to a Fe-NO stretching mode via simulation of the NIS data by density functional theory (DFT) coupled with molecular mechanics (MM) methods. At frequencies below 100 cm - 1 collective motions like heme doming occur which could explain spectroscopic features observed by NIS at these low energies.
Excitation of vibrational quanta in furfural by intermediate-energy electrons.
Jones, D B; Neves, R F C; Lopes, M C A; da Costa, R F; Varella, M T do N; Bettega, M H F; Lima, M A P; García, G; Blanco, F; Brunger, M J
2015-12-14
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule. PMID:26671372
Extensivity of Energy and Electronic and Vibrational Structure Methods for Crystals
NASA Astrophysics Data System (ADS)
Hirata, So; Keçeli, Murat; Ohnishi, Yu-ya; Sode, Olaseni; Yagi, Kiyoshi
2012-05-01
A pedagogical proof is presented for the extensivity of energies of metallic and nonmetallic crystals that proceeds by elucidating the asymptotic distance dependence of the effective chemical interactions: kinetic, Coulomb, exchange, and correlation. On this basis, a guideline for the size-consistent design of electronic and vibrational methods is proposed. This guideline underscores the significance of the distinct use of the intermediate and standard normalization of wave functions for extensive and intensive quantities, includes the extensive and intensive diagram theorems as the unambiguous criteria for determining size consistency of a method for extensive and intensive quantities, and introduces the extensive-intensive consistency theorem, which stipulates the precise balance between the determinant spaces reached by extensive and intensive operators. Electronic and vibrational methods for crystals are reviewed that are inspired by these formal analyses or developed in accordance with the guideline.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
NASA Astrophysics Data System (ADS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.
2015-12-01
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; and others
2015-12-14
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Blevins, R.D.
1990-01-01
This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.
Energy Decisions: Is Solar Power the Solution?
ERIC Educational Resources Information Center
Childress, Vincent W.
2011-01-01
People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…
Power Technologies Energy Data Book - Fourth Edition
Aabakken, J.
2006-08-01
This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.
Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester
NASA Astrophysics Data System (ADS)
Lu, Qiuchen; Loong, Chengning; Chang, Chih-Chen; Dimitrakopoulos, Elias G.
2014-04-01
The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.
Power conversion from environmentally scavenged energy sources.
Druxman, Lee Daniel
2007-09-01
As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.
Vibrational vs. translational energy in promoting a prototype metal–hydrocarbon insertion reaction
Proctor, David L.; Davis, H. Floyd
2008-01-01
The reaction Y + CH4 → HYCH3 → YCH2 + H2 is initiated by C–H insertion involving a 20 ± 3 kcal/mol potential energy barrier. The reaction is studied in crossed molecular beams under two different conditions with nearly the same total energy. One experiment is carried out at a collision energy of 15.1 kcal/mol with one quantum of CH4 antisymmetric (ν3) stretching vibrational excitation (8.63 kcal/mol), the other at a collision energy of 23.8 kcal/mol. The reaction cross-section for C–H stretch excited methane (σs) is found to be at least a factor of 2.2 times larger than for ground-state methane (σg) at the same total energy. PMID:18678904
Coal and nuclear power: Illinois' energy future
Not Available
1982-01-01
This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.
NASA Astrophysics Data System (ADS)
Faria, Cassio T.; Inman, Daniel J.
2014-04-01
When a mechanical and/or structural component is immersed in a fluid and it vibrates, the reasonable assumption is that part of the energy is transmitted to the adjacent media. For some engineering applications the energy transport between these two domains, i.e., structure and fluid, plays a central role. The work presented in this paper is focused on discussing the energy transport in beam-like structures as they can be used to represent flexible swimmers (fish-like pulsating mechanisms) in their simplest form. In order to expose the role of each of the fluid and beam properties effecting the energy transfer process, a simplified analytical fluid-structure interaction (FSI) model is derived. After analysis of the resulting coupled-systems' damping coefficient, a new energy transport component is added to the initial Euler-Bernoulli beam equation; a term associated with diffusion (fluid viscosity). In addition our modeling results in an added mass term, a characteristic consistent with previous literature. While deriving the model, an important assumption is made: beam mode shapes are not significantly affected by the domains' interaction. This hypothesis is experimentally tested in two different fluid media and confirmed to be reasonable for the first three vibration mode shapes.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Blum, Volker; Scheffler, Matthias
2012-02-01
Helices are one of the most abundant secondary structure ``building blocks" of polypeptides and proteins. Here, we explore helix stabilization as a function of peptide length and temperature [harmonic approximation to the vibrational free energy (FE)], for the alanine-based peptide, Ac-Alan-LysH^+ n=4-15, in the gas phase. For n=4-8, we predict the lowest energy structures in density-functional theory, using the van der Waals (vdW) corrected[1] PBE exchange-correlation potential. α-helices become the lowest energy structures at n 7-8 on the potential energy surface, but only barely and if including vdW interactions. At finite temperatures, the helices are further stabilized over compact conformers. While the vibrational entropy is the leading stabilizing term at 300 K, also the zero-point-energies favor the helical structures. For n>=8, the α-helix should be the only accessible conformer in the FE surface at 300 K, in agreement with experiment[2] and with our own comparison[3] of calculated ab initio anharmonic IR spectra to experimental IR multiple photon dissociation data for n=5, 10, and 15. [1] Tkatchenko and Scheffler, PRL 102, 073055 (2009); [2] Kohtani and Jarrold, JACS 108, 8454 (2004); [3] Rossi et al., JPCL 1, 3465 (2010).
Inaudible temporomandibular joint vibrations.
Widmalm, Sven E; Bae, Hanna E K; Djurdjanovic, Dragan; McKay, Duane C
2006-07-01
The aim was to test the hypothesis that inaudible vibrations with significant amounts of energy increasing during jaw movements can be recorded in the temporomandibular joint (TMJ) area. Twenty one subjects, who could perform wide opening movements without feeling discomfort, 12 with and 9 without TMJ sounds audible at conventional auscultation with a stethoscope, were included. Recordings were made during opening-closing, 2/s without tooth contact, and during mandibular rest, using accelerometers with a flat frequency response between the filter cutoff frequencies 0.1 Hz and 1000 Hz. The signals were digitized using a 24 bits card and sampled with the rate 96000 Hz. Power spectral analyses, and independent and paired samples t-tests were used in the analysis of the vibration power observed in frequency bands corresponding to audible and inaudible frequencies. An alpha-level of 5% was chosen for accepting a difference as being significant. In the group with audible sounds, about 47% of the total vibration energy was in the inaudible area below 20 Hz during opening-closing and about 76% during mandibular rest. In the group without audible sounds, the corresponding proportions were significantly different, 85% vs. 69%. The energy content of the vibrations, both those below and those above 20 Hz, increased significantly during jaw movement in both groups. Furthermore, percentage of signal energy above 20 Hz showed a noticeable increase in the group of subjects with audible sounds. This can physically be explained by decreased damping properties of damaged tissues surrounding the TMJ. Vibrations in the TMJ area can be observed with significant portions in the inaudible area below 20 Hz both during mandibular rest and during jaw movements whether or not the subjects have audible joint sounds. Further studies are needed to identify sources and evaluate possible diagnostic value. PMID:16933462
Fiscalini Farms Renewable Energy Power Generation Project
2009-02-01
Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.
Space solar power - An energy alternative
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1978-01-01
The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Tarasov, E. V.
2012-05-01
The report addresses the real-time condition monitoring of technical state and automatic diagnosis of auxiliary equipment for bearings supports vibration, for example, control of the feed-pump operating modes of thermal power stations. The causes that lead to premature birth and development of defects in rolling bearings are identified and the development of activities ensuring safe and continuous operation of the auxiliary equipment of thermal power stations is carried out. Collection and analysis of vibration parameters of pumping units during their operation at the operating modes of the technological process are realized by means of real-time technical condition monitoring. Spectral analysis of vibration parameters of one of the pumps showed the presence of frequency components, which mark violations in the operating practices of the pump, the imbalance development and, as a consequence, the development of defects in the bearings by long-term operation of the unit. Timely warning of the personnel on the operation of the unit with the "INTOLERABLE" technical state and automatic warning issuance of the need to change the technological process allowed to recover the estimated pump operation mode in due time and prevent further development of defects in equipment.
Power and energy requirements for electromagnetic launchers
NASA Astrophysics Data System (ADS)
Lottes, P. A.; Holtz, R. E.; Uherka, K. L.
A large data base exists covering almost all aspects of the requirements for the successful development of electromagnetic launchers. To extend the use of electromagnetic launchers to the limits of technology for such exotic applications as hypervelocity weaponry or space launch systems, it is useful to examine the energy and power requirements for such uses. One way to do this is to purposely neglect all system losses in order to determine minimum power and energy requirements. Actual power requirements will most likely be higher by at least a factor of three. Calculations are presented for minimum power requirements, launch acceleration time, projectile kinetic energy, and projectile inertial force as a function of projectile mass, projectile terminal velocity, and the length of the launch tube. Results of these calculations are presented.
Fluid Power Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…
Power conditioning system for energy sources
Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva
2008-05-13
Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.
Breezy Power: From Wind to Energy
ERIC Educational Resources Information Center
Claymier, Bob
2009-01-01
This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…
Saving Energy Through Advanced Power Strips (Poster)
Christensen, D.
2013-10-01
Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.
Topology optimization and fabrication of low frequency vibration energy harvesting microdevices
NASA Astrophysics Data System (ADS)
Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei
2015-02-01
Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response
NASA Astrophysics Data System (ADS)
Li, Jie; Zhao, Ziyuan
2010-08-01
For the purpose of 10G communication system upgrade for Guangdong Power Grid, laboratory simulation tests on dynamic and temperature cycle are performed for the reserved cables (stock optical cables) of existing 2.5G special optical cable lines that have operated for ten years, in order to verify the possibility of optical cable to be upgraded to a 10G transmission level and evaluate the degradation level of optical cables. This paper points out the necessity of laboratory test on attenuation performance in a wind-induced vibration environment, describes the test methods thereof, summarizes and analyzes a variety of optical attenuation performance data, and finds that the attenuation performance of current OPGW, ADSS, ADL optical fiber lines in wind-induced vibration environment meets the industry standards.
Vibrational energy flow between modes by dynamic mode coupling in THIATS J-aggregates.
Hasegawa, Daisuke; Nakata, Kazuaki; Tokunaga, Eiji; Okamura, Kotaro; Du, Juan; Kobayashi, Takayoshi
2013-11-14
We performed ultrafast pump-probe spectroscopy of J-aggregates of 3,3'-disulfopropyl-5,5'-dichloro-9-ethyl thiacarbocyanine triethylammonium (THIATS), one of the most typical cyanine dyes, and detected excited molecular vibrations, using a sub-10 fs pulse laser. The time-resolved two-dimensional difference absorption (ΔA) spectra are observed between -314 and 1267 fs. By performing the Fourier transform and spectrogram analysis, vibrational modes in THIATS are observed at 285, 485, 555, 824, and 1633 cm(-1) and there was a modulation of the vibrational frequencies around 1633 cm(-1) which depend on the delay time, respectively. By the analysis of the modulation, energy flow is found to take place from other modes to the 1633 cm(-1) mode through the low frequency mode with ∼50 cm(-1). Also, by fitting the real-time traces of ΔA with the sum of two exponential functions and a constant term, the average lifetimes of three electronically excited states were found to be τ1 = 52 ± 5 fs and τ2 = 540 ± 78 fs. By performing single-exponential fitting around the stationary absorption peak at 1.990 eV, in the negative time range, the electronic dephasing time, T2(ele), is determined to be 18.30 fs. PMID:24111914
Energy Servers Deliver Clean, Affordable Power
NASA Technical Reports Server (NTRS)
2010-01-01
K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.
Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine
Jones, D. B.; Ellis-Gibbings, L.; García, G.; Nixon, K. L.; Lopes, M. C. A.; Brunger, M. J.
2015-09-07
We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong
2016-06-01
This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
Leitner, David M. E-mail: stock@physik.uni-freiburg.de; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard E-mail: stock@physik.uni-freiburg.de
2015-02-21
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
Crim, F.F.
1985-03-08
Overtone vibration-laser double resonance measurements have provided new data on vibrational and rotational relaxation in HF(v=2). These experiments determine the magnitudes of the total vibrational relaxation rate constants for HF (v=1 and 2) as well as their temperature dependences. Detailed analysis yields the variation of the branching between competing V-V and V-TR pathways. Rotational relaxation data come from these measurements as well. The temporal evolution of individual rotational states observed in the double resonance studies provides level-to-level energy transfer rate constants when analyzed using an iterative fitting scheme which incorporates scaling relations among the rate constants.