Science.gov

Sample records for vibration fault diagnosis

  1. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  2. Vibration signal models for fault diagnosis of planet bearings

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2016-05-01

    Rolling element bearings are key components of planetary gearboxes. Among them, the motion of planet bearings is very complex, encompassing spinning and revolution. Therefore, planet bearing vibrations are highly intricate and their fault characteristics are completely different from those of fixed-axis case, making planet bearing fault diagnosis a difficult topic. In order to address this issue, we derive the explicit equations for calculating the characteristic frequency of outer race, rolling element and inner race fault, considering the complex motion of planet bearings. We also develop the planet bearing vibration signal model for each fault case, considering the modulation effects of load zone passing, time-varying angle between the gear pair mesh and fault induced impact force, as well as the time-varying vibration transfer path. Based on the developed signal models, we derive the explicit equations of Fourier spectrum in each fault case, and summarize the vibration spectral characteristics respectively. The theoretical derivations are illustrated by numerical simulation, and further validated experimentally and all the three fault cases (i.e. outer race, rolling element and inner race localized fault) are diagnosed.

  3. Bearing fault diagnosis based on spectrum images of vibration signals

    NASA Astrophysics Data System (ADS)

    Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Wu, Bo; Zhou, Gongbo

    2016-03-01

    Bearing fault diagnosis has been a challenge in the monitoring activities of rotating machinery, and it’s receiving more and more attention. The conventional fault diagnosis methods usually extract features from the waveforms or spectrums of vibration signals in order to correctly classify faults. In this paper, a novel feature in the form of images is presented, namely analysis of the spectrum images of vibration signals. The spectrum images are simply obtained by doing fast Fourier transformation. Such images are processed with two-dimensional principal component analysis (2DPCA) to reduce the dimensions, and then a minimum distance method is applied to classify the faults of bearings. The effectiveness of the proposed method is verified with experimental data.

  4. Vibration signal models for fault diagnosis of planetary gearboxes

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.

    2012-10-01

    A thorough understanding of the spectral structure of planetary gear system vibration signals is helpful to fault diagnosis of planetary gearboxes. Considering both the amplitude modulation and the frequency modulation effects due to gear damage and periodically time variant working condition, as well as the effect of vibration transfer path, signal models of gear damage for fault diagnosis of planetary gearboxes are given and the spectral characteristics are summarized in closed form. Meanwhile, explicit equations for calculating the characteristic frequency of local and distributed gear fault are deduced. The theoretical derivations are validated using both experimental and industrial signals. According to the theoretical basis derived, manually created local gear damage of different levels and naturally developed gear damage in a planetary gearbox can be detected and located.

  5. Fault diagnosis of planetary gearboxes via torsional vibration signal analysis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.

    2013-04-01

    Torsional vibration signals are theoretically free from the amplitude modulation effect caused by time variant vibration transfer paths due to the rotation of planet carrier and sun gear, and therefore their spectral structure are simpler than transverse vibration signals. Thus, it is potentially easy and effective to diagnose planetary gearbox faults via torsional vibration signal analysis. We give explicit equations to model torsional vibration signals, considering both distributed gear faults (like manufacturing or assembly errors) and local gear faults (like pitting, crack or breakage of one tooth), and derive the characteristics of both the traditional Fourier spectrum and the proposed demodulated spectra of amplitude envelope and instantaneous frequency. These derivations are not only effective to diagnose single gear fault of planetary gearboxes, but can also be generalized to detect and locate multiple gear faults. We validate experimentally the signal models, as well as the Fourier spectral analysis and demodulation analysis methods.

  6. Fault Diagnosis of Diesel Engine Using Vibration Signals

    NASA Astrophysics Data System (ADS)

    Wang, Fengli; Duan, Shulin

    Aiming at the characteristics of the surface vibration signals measured from the diesel engine, a novel method combining local wave decomposition (LWD) and lifting wavelet denoising is proposed, and is used for feature extraction and condition evaluation of diesel engine vibration signals. Firstly, the original data is preprocessed using the lifting wavelet transformation to suppress abnormal interference of noise, and avoid the pseudo mode functions from LWD. Obtaining intrinsic mode functions(IMFs) by using LWD, the instantaneous frequency and amplitude can be calculated by Hilbert transform. Hilbert marginal spectrum can exactly provide the energy distribution of the signal with the change of instantaneous frequency. The vibration signals of diesel engine piston-liner wear are analyzed and the results show that the method is feasible and effective in feature extraction and condition evaluation of diesel engine faults.

  7. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo

    2016-05-01

    Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.

  8. Unsupervised Pattern Classifier for Abnormality-Scaling of Vibration Features for Helicopter Gearbox Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.

  9. Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis

    PubMed Central

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2014-01-01

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods. PMID:24379045

  10. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    NASA Astrophysics Data System (ADS)

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  11. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.

  12. Theoretical and experimental analysis of bispectrum of vibration signals for fault diagnosis of gears

    NASA Astrophysics Data System (ADS)

    Guoji, Shen; McLaughlin, Stephen; Yongcheng, Xu; White, Paul

    2014-02-01

    Condition monitoring and fault diagnosis is an important issue for gearbox maintenance and safety. The critical process involved in such activities is to extract reliable features representative of the condition of the gears or gearbox. In this paper a framework is presented for the application of bispectrum to the analysis of gearbox vibration. The bispectrum of a composite signal consisting of multiple periodic components has peaks at the bifrequencies that correspond to closely related components which can be produced by any nonlinearity. As a result, biphase verification is necessary to decrease false-alarming for any bispectrum-based method. A model based on modulated signals is adopted to reveal the bispectrum characteristics for the vibration of a faulty gear, and the corresponding amplitude and phase of the bispectrum expression are deduced. Therefore, a diagnostic approach based on the theoretical result is derived and verified by the analysis of a set of vibration signals from a helicopter gearbox.

  13. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    PubMed Central

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-01-01

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately. PMID:24936949

  14. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns.

    PubMed

    Khan, Sheraz Ali; Kim, Jong-Myon

    2016-04-01

    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms. PMID:27106344

  15. A method of real-time fault diagnosis for power transformers based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie

    2015-11-01

    In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.

  16. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    PubMed

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. PMID:24975564

  17. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    PubMed Central

    Cerrada, Mariela; Sánchez, René Vinicio; Cabrera, Diego; Zurita, Grover; Li, Chuan

    2015-01-01

    There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%. PMID:26393603

  18. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal.

    PubMed

    Cerrada, Mariela; Vinicio Sánchez, René; Cabrera, Diego; Zurita, Grover; Li, Chuan

    2015-01-01

    There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%. PMID:26393603

  19. Multi-component machine monitoring and fault diagnosis using blind source separation and advanced vibration analysis

    NASA Astrophysics Data System (ADS)

    Mahvash Mohammadi, Ali

    In this dissertation, two approaches are studied for the case of bearing anomaly detection. One approach is to regard it as a blind source separation (cocktail party) problem and take advantage of statistical and mathematical methods developed for this purpose, primarily independent component analysis (ICA), to separate signals coming from different sources. The other approach is to avoid making the effort to 'separate' the signals and relate them to different components (sources) and instead make use of the specification and characteristics of vibration signals produced by the different components in normal and faulty conditions. In the first approach, a common difficulty with applying blind source separation techniques (or, in general any mathematical methods) to separation of vibration sources is that no standard measure exists to assess the quality of separation and validate the results. In fact, for an ideal assessment the true original signals produced by each component must be available as a prerequisite. This requires gathering signals from each component in strict isolation during operation in a lab environment which, if not impossible, is very costly and difficult. To alleviate this difficulty, a novel method is developed that presents the distribution of vibration energy with regard to the respective locations of vibration sources and sensors, and takes into consideration the mechanical attributes of the structure. This method uses some key concepts from statistical energy analysis (SEA) to support the fact that each sensor collects a different version of the oscillations produced in the system with respect to its location in the system. Therefore, by comparing the spectral signature of the vibration signals and making use of a priori knowledge of the spatial distribution of sensors and components, a schematic representation of the spectral signature of the vibration sources are obtained. This method is verified using a series of experiments with synthetic and real data. If a standard evaluation metric is available, more rigorous evaluation of blind source separation techniques can be achieved. The foremost existing solution to blind source separation is Independent Component Analysis (ICA). In ICA it is assumed that the source signals are statistically independent from one another and can therefore be recovered by formulating the independence. There are, however, two dominant ambiguities and indeterminacies associated with ICA results. One ambiguity is that the original index or permutation of the recovered source signals is unknown. The other ambiguity is that the actual scale of the source signals cannot be determined. ICA can be applied in both time and frequency domains. In this dissertation, a new technique is proposed based mainly on the mechanical attributes of the system rather than unrealistic mathematical or statistical assumptions. This technique is developed based on the presumption that the mixing mechanism for neighboring frequency bins varies only slightly from one bin to another. Therefore, by numerically tying and relating the mixing matrices of contiguous frequency bins, local permutation and scale indeterminacy problems are resolved. This method is studied experimentally using laboratory data and the results are also compared with the evaluation metric presented in the previous study. Accordance between the results confirmed the efficacy of the proposed method. In the second approach, the effectiveness of cyclic spectral analysis is assessed for detecting bearing faults in complex machinery. Bearing faults are known to produce vibration with recurring impulsiveness in the energy which is referred to as cyclostationarity. Cyclic spectral analysis is a powerful tool to measure the cyclostationarity of a signal in different frequency ranges. For this tool to be effective in applications related to complex machinery, two requirements are identified. One requirement is that the tool must be capable of detecting defects from a weak signal as it passes and attenuates through its transmission path. The other requirement is that it must allow robust, attainable and consistent trending. Also the feature being tracked must be consistent in the sense that its value bears some correspondence to the severity of the faults. In this thesis, cyclostationarity is examined for these requirements through two sets of experimental tests. The experimental results show that cyclic spectral analysis is indeed capable of detecting bearing faults from faint signals. Also, it can be utilized as a reliable monitoring tool, even though the correspondence between the feature value and the severity of the bearing faults may not be robustly established. (Abstract shortened by UMI.)

  20. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  1. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  2. Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load

    NASA Astrophysics Data System (ADS)

    Villa, Luisa F.; Reñones, Aníbal; Perán, Jose R.; de Miguel, Luis J.

    2012-05-01

    In this paper the authors are dealing with the detection of different mechanical faults (unbalance and misalignment) under a wide range of working conditions of speed and load. The conditions tested in a test bench are similar to the ones that can be found in different kinds of machines like for example wind turbines. The authors demonstrate how to take advantage of the information on vibrations from the mechanical system under study in a wide range of load and speed conditions. Using such information the prognosis and detection of faults is faster and more reliable than the one obtained from an analysis over a restricted range of working conditions (e.g. nominal).

  3. Energy operator demodulating of optimal resonance components for the compound faults diagnosis of gearboxes

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Yu, Dejie; Zhang, Wenyi

    2015-11-01

    Compound faults diagnosis is a challenge for rotating machinery fault diagnosis. The vibration signals measured from gearboxes are usually complex, non-stationary, and nonlinear. When compound faults occur in a gearbox, weak fault characteristic signals are always submerged by the strong ones. Therefore, it is difficult to detect a weak fault by using the demodulating analysis of vibration signals of gearboxes directly. The key to compound faults diagnosis of gearboxes is to separate different fault characteristic signals from the collected vibration signals. Aiming at that problem, a new method for the compound faults diagnosis of gearboxes is proposed based on the energy operator demodulating of optimal resonance components. In this method, the genetic algorithm is first used to obtain the optimal decomposition parameters. Then the compound faults vibration signals of a gearbox are subject to resonance-based signal sparse decomposition (RSSD) to separate the fault characteristic signals of the gear and the bearing by using the optimal decomposition parameters. Finally, the separated fault characteristic signals are analyzed by energy operator demodulating, and each one’s instantaneous amplitude can be calculated. According to the spectra of instantaneous amplitudes of fault characteristic signals, the faults of the gear and the bearing can be diagnosed, respectively. The performance of the proposed method is validated by using the simulation data and the experiment vibration signals from a gearbox with compound faults.

  4. Layered clustering multi-fault diagnosis for hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wang, Shaoping; Zhang, Haiyan

    2013-04-01

    Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.

  5. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  6. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    PubMed

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  7. Fault diagnosis for magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; King, Yueh-Hsun; Lee, Rong-Mao

    2009-05-01

    A full fault diagnosis for active magnetic bearing (AMB) and rotor systems to monitor the closed-loop operation and analyze fault patterns on-line in case any malfunction occurs is proposed in this paper. Most traditional approaches for fault diagnosis are based on actuator or sensor diagnosis individually and can solely detect a single fault at a time. This research combines two diagnosis methodologies by using both state estimators and parameter estimators to detect, identify and analyze actuators and sensors faults in AMB/rotor systems. The proposed fault diagnosis algorithm not only enhances the diagnosis accuracy, but also illustrates the capability to detect multiple sensors faults which occur concurrently. The efficacy of the presented algorithm has been verified by computer simulations and intensive experiments. The test rig for experiments is equipped with AMB, interface module (dSPACE DS1104), data acquisition unit MATLAB/Simulink simulation environment. At last, the fault patterns, such as bias, multiplicative loop gain variation and noise addition, can be identified by the algorithm presented in this work. In other words, the proposed diagnosis algorithm is able to detect faults at the first moment, find which sensors or actuators under failure and identify which fault pattern the found faults belong to.

  8. Roller element bearing fault diagnosis using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Muruganatham, Bubathi; Sanjith, M. A.; Krishnakumar, B.; Satya Murty, S. A. V.

    2013-02-01

    Most of the existing time series methods of feature extraction involve complex algorithm and the extracted features are affected by sample size and noise. In this paper, a simple time series method for bearing fault feature extraction using singular spectrum analysis (SSA) of the vibration signal is proposed. The method is easy to implement and fault feature is noise immune. SSA is used for the decomposition of the acquired signals into an additive set of principal components. A new approach for the selection of the principal components is also presented. Two methods of feature extraction based on SSA are implemented. In first method, the singular values (SV) of the selected SV number are adopted as the fault features, and in second method, the energy of the principal components corresponding to the selected SV numbers are used as features. An artificial neural network (ANN) is used for fault diagnosis. The algorithms were evaluated using two experimental datasets—one from a motor bearing subjected to different fault severity levels at various loads, with and without noise, and the other with bearing vibration data obtained in the presence of a gearbox. The effect of sample size, fault size and load on the fault feature is studied. The advantages of the proposed method over the exiting time series method are discussed. The experimental results demonstrate that the proposed bearing fault diagnosis method is simple, noise tolerant and efficient.

  9. Rolling bearing fault diagnosis using an optimization deep belief network

    NASA Astrophysics Data System (ADS)

    Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui

    2015-11-01

    The vibration signals measured from a rolling bearing are usually affected by the variable operating conditions and background noise which lead to the diversity and complexity of the vibration signal characteristics, and it is a challenge to effectively identify the rolling bearing faults from such vibration signals with no further fault information. In this paper, a novel optimization deep belief network (DBN) is proposed for rolling bearing fault diagnosis. Stochastic gradient descent is used to efficiently fine-tune all the connection weights after the pre-training of restricted Boltzmann machines (RBMs) based on the energy functions, and the classification accuracy of the DBN is improved. Particle swarm is further used to decide the optimal structure of the trained DBN, and the optimization DBN is designed. The proposed method is applied to analyze the simulation signal and experimental signal of a rolling bearing. The results confirm that the proposed method is more accurate and robust than other intelligent methods.

  10. The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as "Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2"

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Dong

    2013-11-01

    Rolling element bearings are widely used in rotating machines. An early warning of bearing faults helps to prevent machinery breakdown and economic loss. Vibration-based envelope analysis has been proven to be one of the most effective methods for bearing fault diagnosis. The core of an envelope analysis is to find a resonant frequency band for a band-pass filtering for the enhancement of weak bearing fault signals. A new concept called a sparsogram is proposed in Part 1 paper. The aim of the sparsogram is to quickly determine the resonant frequency bands. The sparsogram is constructed using the sparsity measurements of the power spectra from the envelopes of wavelet packet coefficients at different wavelet packet decomposition depths. The optimal wavelet packet node can be selected by visually inspecting the largest sparsity value of the wavelet packet coefficients obtained from all wavelet packet nodes. Then, the wavelet packet coefficients extracted from the selected wavelet packet node is demodulated for envelope analysis. Several case studies including a simulated bearing fault signal mixed with heavy noise and real bearing fault signals collected from a rotary motor were used to validate the sparsogram. The results show that the sparsogram effectively locates the resonant frequency bands, where the bearing fault signature has been magnified in these bands. Several comparison studies with three popular wavelet packet decomposition based methods were conducted to show the superior capability of sparsogram in bearing fault diagnosis.

  11. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  12. Instrument for bearing fault diagnosis based on demodulated resonance technology

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Hu, Xiao-feng; Zheng, Yong-jun

    2010-08-01

    Rolling bearing is a very important comment for mechanical system. The traditional measurement method is using time domain analysis and frequency domain analysis with mechanical vibration theory. However, these methods are very difficult to precisely diagnose the rolling bearing fault. Demodulated resonance technology is an effective method to diagnose bearing fault. In this paper, the realization of demodulated resonance technology is described in detail. It includes three important aspects: design of filter, envelope demodulation and spectrum zooming. Hilbert transform is an effective solution to envelope demodulation. Based on this theory, the PC controlled experimental device for fault diagnosis was built up. The ball bearing of type 6201 was measured on the experimental device, and the applications software was programmed by VC++, which had the functions of real-time monitoring, spectral analysis (FFT), digital filtering and zoom-FFT etc. So this system can get fault characteristic from the vibration speed signal with big noise and automatically identify the type of fault. The types included the fault of inner ring, outer ring and rolling element. Results showed that it has a remarkable effect on bearing fault diagnosis, and it had many advantages such as high precision, high degree of automatic measurement.

  13. Automatic fault diagnosis of a switching regulator

    NASA Astrophysics Data System (ADS)

    Nienhaus, H. A.; Palmer, D. E.

    This paper describes a microprocessor-based system for the automatic fault diagnosis of a switching regulator. It covers the system from a test philosophy to a working breadboard that correctly identifies single simulated faults in the switching regulator. In addition to open circuit, short circuit, and stuck at faults, the system is capable of diagnosing faults due to excessive leakage, drift in critical components, and system instability.

  14. Detection of stator winding faults in induction machines using flux and vibration analysis

    NASA Astrophysics Data System (ADS)

    Lamim Filho, P. C. M.; Pederiva, R.; Brito, J. N.

    2014-01-01

    This work aims at presenting the detection and diagnosis of electrical faults in the stator winding of three-phase induction motors using magnetic flux and vibration analysis techniques. A relationship was established between the main electrical faults (inter-turn short circuits and unbalanced voltage supplies) and the signals of magnetic flux and vibration, in order to identify the characteristic frequencies of those faults. The experimental results showed the efficiency of the conjugation of these techniques for detection, diagnosis and monitoring tasks. The results were undoubtedly impressive and can be adapted and used in real predictive maintenance programs in industries.

  15. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  16. Tractable particle filters for robot fault diagnosis

    NASA Astrophysics Data System (ADS)

    Verma, Vandi

    Experience has shown that even carefully designed and tested robots may encounter anomalous situations. It is therefore important for robots to monitor their state so that anomalous situations may be detected in a timely manner. Robot fault diagnosis typically requires tracking a very large number of possible faults in complex non-linear dynamic systems with noisy sensors. Traditional methods either ignore the uncertainly or use linear approximations of nonlinear system dynamics. Such approximations are often unrealistic, and as a result faults either go undetected or become confused with non-fault conditions. Probability theory provides a natural representation for uncertainty, but an exact Bayesian solution for the diagnosis problem is intractable. Classical Monte Carlo methods, such as particle filters, suffer from substantial computational complexity. This is particularly true with the presence of rare, yet important events, such as many system faults. The thesis presents a set of complementary algorithms that provide an approach for computationally tractable fault diagnosis. These algorithms leverage probabilistic approaches to decision theory and information theory to efficiently track a large number of faults in a general dynamic system with noisy measurements. The problem of fault diagnosis is represented as hybrid (discrete/continuous) state estimation. Taking advantage of structure in the domain it dynamically concentrates computation in the regions of state space that are currently most relevant without losing track of less likely states. Experiments with a dynamic simulation of a six-wheel rocker-bogie rover show a significant improvement in performance over the classical approach.

  17. Autoregressive modelling for rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Al-Bugharbee, H.; Trendafilova, I.

    2015-07-01

    In this study, time series analysis and pattern recognition analysis are used effectively for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the use of a linear AR model applied to the signals after they are stationarized. The obtained coefficients of the AR model are further used to form pattern vectors which are in turn subjected to pattern recognition for differentiating among different faults and different fault sizes. This study explores the behavior of the AR coefficients and their changes with the introduction and the growth of different faults. The idea is to gain more understanding about the process of AR modelling for roller element bearing signatures and the relation of the coefficients to the vibratory behavior of the bearings and their condition.

  18. Efficient fault diagnosis of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  19. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  20. On-line diagnosis of unrestricted faults

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Sundstrom, R. J.

    1975-01-01

    Attention is given to the formal development of the notion of a discrete-time system and the associated concepts of fault, result of a fault, and error. The considered concept of on-line diagnosis is formalized and a diagnosis using inverse machines is discussed. The case of an inverse which is lossless is investigated. It is found that in such a case the class of unrestricted faults can be diagnosed with a delay equal to the delay of losslessness of the inverse system.

  1. Adaptive fault diagnosis in rotating machines using indicators selection

    NASA Astrophysics Data System (ADS)

    Khelf, Ilyes; Laouar, Lakhdar; Bouchelaghem, Abdelaziz M.; Rémond, Didier; Saad, Salah

    2013-11-01

    Over the past two decades, condition monitoring and faults diagnosis in rotating machinery have been widely studied and reported. In the present paper an algorithm for fault diagnosis in industrial rotating machines facing new operating conditions emergence is developed on the basis of input indicators, extracted from vibrations spectrums. Indicators selection is used to improve diagnosis performances by the help of a hybrid approach using several selection criteria and different classifiers. To validate the performances of this algorithm, experimental tests were conducted on two industrial systems with various operating conditions. The results have proved the effectiveness of the developed algorithm compared to the "J48 decision tree" and also reveal the need to re-select the indicators for reliable monitoring of working conditions.

  2. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  3. Diagnosis of fault gearbox with wavelet packet decomposition and vector statistics method

    NASA Astrophysics Data System (ADS)

    Ren, Xueping; Shao, Wei; Ma, Wensheng

    2008-12-01

    Vibration signals from fault gearbox are usually complex with many different frequencies. As a result, it is difficult to find early symptoms of a potential fault in a gearbox. WPD (Wavelet Packet Decomposition) have been established as the most wide spread tool to disclose transient information in signals and wavelet packet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. The paper presents a method to decompose the fault vibration signals with WPD and analysis the decomposed vectors with statistic algorithm to diagnosis the gearbox fault. The method is considered to be effective with the aim of gearbox fault detection and diagnosis.

  4. Completing fault models for abductive diagnosis

    SciTech Connect

    Knill, E.; Cox, P.T.; Pietrzykowski, T.

    1992-11-05

    In logic-based diagnosis, the consistency-based method is used to determine the possible sets of faulty devices. If the fault models of the devices are incomplete or nondeterministic, then this method does not necessarily yield abductive explanations of system behavior. Such explanations give additional information about faulty behavior and can be used for prediction. Unfortunately, system descriptions for the consistency-based method are often not suitable for abductive diagnosis. Methods for completing the fault models for abductive diagnosis have been suggested informally by Poole and by Cox et al. Here we formalize these methods by introducing a standard form for system descriptions. The properties of these methods are determined in relation to consistency-based diagnosis and compared to other ideas for integrating consistency-based and abductive diagnosis.

  5. Monitoring and fault diagnosis of hybrid systems.

    PubMed

    Zhao, Feng; Koutsoukos, Xenofon; Haussecker, Horst; Reich, Jim; Cheung, Patrick

    2005-12-01

    Many networked embedded sensing and control systems can be modeled as hybrid systems with interacting continuous and discrete dynamics. These systems present significant challenges for monitoring and diagnosis. Many existing model-based approaches focus on diagnostic reasoning assuming appropriate fault signatures have been generated. However, an important missing piece is the integration of model-based techniques with the acquisition and processing of sensor signals and the modeling of faults to support diagnostic reasoning. This paper addresses key modeling and computational problems at the interface between model-based diagnosis techniques and signature analysis to enable the efficient detection and isolation of incipient and abrupt faults in hybrid systems. A hybrid automata model that parameterizes abrupt and incipient faults is introduced. Based on this model, an approach for diagnoser design is presented. The paper also develops a novel mode estimation algorithm that uses model-based prediction to focus distributed processing signal algorithms. Finally, the paper describes a diagnostic system architecture that integrates the modeling, prediction, and diagnosis components. The implemented architecture is applied to fault diagnosis of a complex electro-mechanical machine, the Xerox DC265 printer, and the experimental results presented validate the approach. A number of design trade-offs that were made to support implementation of the algorithms for online applications are also described. PMID:16366248

  6. Multi-concurrent fault diagnosis method for turbo-generator set based on wavelet fuzzy network

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Wang, Yuguo; Liang, Baoshe; Shen, Songhua

    2006-11-01

    To improve the limitation of applying traditional fault diagnosis method to the diagnosis of multi-concurrent vibrant faults of turbo-generator sets, a new diagnosis approach combining the wavelet transform with fuzzy theory is proposed. A novel method based on the statistic rule is brought forward to determine the threshold of each order of wavelet space and the decomposition level adaptively, increasing the signal-noise-ratio (SNR). The effective eigenvectors are acquired by binary discrete wavelet transform and the fault modes are classified by fuzzy diagnosis equation based on correlation matrix. The fault diagnosis model of turbo-generator set is established and the improved least squares algorithm (LSA) is used to fulfill the network structure and the robustness of fault diagnosis equation is discussed. By means of choosing enough samples to train the fault diagnosis equation and the information representing the faults is input into the trained diagnosis equation, and according to the output result the type of fault an be determined. Actual applications show that the proposed method can effectively diagnose multi-concurrent fault for stator temperature fluctuation and rotor vibration and the diagnosis result is correct.

  7. Model based fault diagnosis of a rotor-bearing system for misalignment and unbalance under steady-state condition

    NASA Astrophysics Data System (ADS)

    Jalan, Arun Kr.; Mohanty, A. R.

    2009-11-01

    Vibration monitoring is one of the primary techniques of condition monitoring of rotating machines. Shaft misalignment and rotor unbalance are the main sources of vibration in rotating machines. In this study a model based technique for fault diagnosis of rotor-bearing system is described. Using the residual generation technique, residual vibrations are generated from experimental results for the rotor bearing system subject to misalignment and unbalance, and then the residual forces due to presence of faults are calculated. These residual forces are compared with the equivalent theoretical forces due to faults. The fault condition and location of faults are successfully detected by this model based technique.

  8. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  9. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    PubMed

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  10. Use of autocorrelation of wavelet coefficients for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Rafiee, J.; Tse, P. W.

    2009-07-01

    This paper presents a novel time-frequency-based feature recognition system for gear fault diagnosis using autocorrelation of continuous wavelet coefficients (CWC). Furthermore, it introduces an original mathematical approximation of gearbox vibration signals which approximates sinusoidal components of noisy vibration signals generated from gearboxes, including incipient and serious gear failures using autocorrelation of CWC. First, the drawbacks of the continuous wavelet transform (CWT) have been eliminated using autocorrelation function. Secondly, the autocorrelation of CWC is introduced as an original pattern for fault identification in machine condition monitoring. Thirdly, a sinusoidal summation function consisting of eight terms was used to approximate the periodic waveforms generated by autocorrelation of CWC for normal gearboxes (NGs) as well as occurrences of incipient and severe gear fault (e.g. slight-worn, medium-worn, and broken-tooth gears). In other words, the size of vibration signals can be reduced with minimal loss of significant frequency content by means of the sinusoidal approximation of generated autocorrelation waveforms of CWC as reported in this paper.

  11. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  12. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  13. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    PubMed Central

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  14. A dynamic integrated fault diagnosis method for power transformers.

    PubMed

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  15. A Fault Diagnosis Approach for Rolling Bearings Based on EMD Method and Eigenvector Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Huang, Xianxiang

    Fault diagnosis of rolling bearings is still a very important and difficult research task on engineering. After analyzing the shortcomings of current bearing fault diagnosis technologies, a new approach based on Empirical Mode Decomposition (EMD) and blind equalization eigenvector algorithm (EVA) for rolling bearings fault diagnosis is proposed. In this approach, the characteristic high-frequency signal with amplitude and channel modulation of a rolling bearing with local damage is first separated from the mechanical vibration signal as an Intrinsic Mode Function (IMF) by using EMD, then the source impact vibration signal yielded by local damage is extracted by means of a EVA model and algorithm. Finally, the presented approach is used to analyze an impacting experiment and two real signals collected from rolling bearings with outer race damage or inner race damage. The results show that the EMD and EVA based approach can effectively detect rolling bearing fault.

  16. Blind Source Separation and Dynamic Fuzzy Neural Network for Fault Diagnosis in Machines

    NASA Astrophysics Data System (ADS)

    Huang, Haifeng; Ouyang, Huajiang; Gao, Hongli

    2015-07-01

    Many assessment and detection methods are used to diagnose faults in machines. High accuracy in fault detection and diagnosis can be achieved by using numerical methods with noise-resistant properties. However, to some extent, noise always exists in measured data on real machines, which affects the identification results, especially in the diagnosis of early- stage faults. In view of this situation, a damage assessment method based on blind source separation and dynamic fuzzy neural network (DFNN) is presented to diagnose the early-stage machinery faults in this paper. In the processing of measurement signals, blind source separation is adopted to reduce noise. Then sensitive features of these faults are obtained by extracting low dimensional manifold characteristics from the signals. The model for fault diagnosis is established based on DFNN. Furthermore, on-line computation is accelerated by means of compressed sensing. Numerical vibration signals of ball screw fault modes are processed on the model for mechanical fault diagnosis and the results are in good agreement with the actual condition even at the early stage of fault development. This detection method is very useful in practice and feasible for early-stage fault diagnosis.

  17. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760

  18. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    PubMed

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760

  19. A PC based fault diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Marsh, Christopher A.

    1990-01-01

    The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station Freedom's Operation Management System (OMS). This paper describes the development of the ISA prototype from early concepts to the current PC/workstation version used today and describes future areas of development for the prototype.

  20. A roller bearing fault diagnosis method based on EMD energy entropy and ANN

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Yu, Dejie; Cheng, Junsheng

    2006-06-01

    According to the non-stationary characteristics of roller bearing fault vibration signals, a roller bearing fault diagnosis method based on empirical mode decomposition (EMD) energy entropy is put forward in this paper. Firstly, original acceleration vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs), then the concept of EMD energy entropy is proposed. The analysis results from EMD energy entropy of different vibration signals show that the energy of vibration signal will change in different frequency bands when bearing fault occurs. Therefore, to identify roller bearing fault patterns, energy feature extracted from a number of IMFs that contained the most dominant fault information could serve as input vectors of artificial neural network. The analysis results from roller bearing signals with inner-race and out-race faults show that the diagnosis approach based on neural network by using EMD to extract the energy of different frequency bands as features can identify roller bearing fault patterns accurately and effectively and is superior to that based on wavelet packet decomposition and reconstruction.

  1. Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo; Chen, Guoan

    2015-01-01

    Fault diagnosis of rotating machinery is receiving more and more attentions. Vibration signals of rotating machinery are commonly analyzed to extract features of faults, and the features are identified with classifiers, e.g. artificial neural networks (ANNs) and support vector machines (SVMs). Due to nonlinear behaviors and unknown noises in machinery, the extracted features are varying from sample to sample, which may result in false classifications. It is also difficult to analytically ensure the accuracy of fault diagnosis. In this paper, a feature extraction and evaluation method is proposed for fault diagnosis of rotating machinery. Based on the central limit theory, an extraction procedure is given to obtain the statistical features with the help of existing signal processing tools. The obtained statistical features approximately obey normal distributions. They can significantly improve the performance of fault classification, and it is verified by taking ANN and SVM classifiers as examples. Then the statistical features are evaluated with a decoupling technique and compared with thresholds to make the decision on fault classification. The proposed evaluation method only requires simple algebraic computation, and the accuracy of fault classification can be analytically guaranteed in terms of the so-called false classification rate (FCR). An experiment is carried out to verify the effectiveness of the proposed method, where the unbalanced fault of rotor, inner race fault, outer race fault and ball fault of bearings are considered.

  2. Gear faults diagnosis based on wavelet-AR model and PCA

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Peng, Zhongxiao

    2010-08-01

    Gear mechanisms are an important element in a variety of industrial applications and about 80% of the breakdowns of the transmission machinery are caused by the gear failure. Efficient incipient faults detection and accurate faults diagnosis are therefore critical to machinery normal operation. The use of mechanical vibration signals for fault diagnosis is significant and effective due to advances in the progress of digital signal processing techniques. Through virtual prototype simulation analysis and experimental study, a novel method for gear multi-faults diagnosis was presented in this paper based on the wavelet-Autoregressive (AR) model and Principal Component Analysis (PCA) method. The virtual prototype simulation and the experimental test were firstly carried out and the comparison results prove that the traditional Fast Fourier Transform Algorithm (FFT) analysis is not appropriate for the gear fault detection and identification. Then the wavelet-AR model was applied to extract the feature sets of the gear fault vibration data. In this procedure, the wavelet transform was used to decompose and de-noise the original signal to obtain fault signals, and the fault type information was extracted by the AR parameters. In order to eliminate the redundant fault features, the PCA was furthermore adopted to fuse the AR parameters into one characteristic to enhance the fault defection and identification. The experimental results indicate that the proposed method based on the wavelet-AR model and PCA is feasible and reliable in the gear multi-faults signal diagnosis, and the isolation of different gear conditions, including normal, single crack, single wear, compound fault of wear and spalling etc., has been effectively accomplished.

  3. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  4. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion

    NASA Astrophysics Data System (ADS)

    Lin, Jinshan; Chen, Qian

    2013-07-01

    Vibration data of faulty rolling bearings are usually nonstationary and nonlinear, and contain fairly weak fault features. As a result, feature extraction of rolling bearing fault data is always an intractable problem and has attracted considerable attention for a long time. This paper introduces multifractal detrended fluctuation analysis (MF-DFA) to analyze bearing vibration data and proposes a novel method for fault diagnosis of rolling bearings based on MF-DFA and Mahalanobis distance criterion (MDC). MF-DFA, an extension of monofractal DFA, is a powerful tool for uncovering the nonlinear dynamical characteristics buried in nonstationary time series and can capture minor changes of complex system conditions. To begin with, by MF-DFA, multifractality of bearing fault data was quantified with the generalized Hurst exponent, the scaling exponent and the multifractal spectrum. Consequently, controlled by essentially different dynamical mechanisms, the multifractality of four heterogeneous bearing fault data is significantly different; by contrast, controlled by slightly different dynamical mechanisms, the multifractality of homogeneous bearing fault data with different fault diameters is significantly or slightly different depending on different types of bearing faults. Therefore, the multifractal spectrum, as a set of parameters describing multifractality of time series, can be employed to characterize different types and severity of bearing faults. Subsequently, five characteristic parameters sensitive to changes of bearing fault conditions were extracted from the multifractal spectrum and utilized to construct fault features of bearing fault data. Moreover, Hilbert transform based envelope analysis, empirical mode decomposition (EMD) and wavelet transform (WT) were utilized to study the same bearing fault data. Also, the kurtosis and the peak levels of the EMD or the WT component corresponding to the bearing tones in the frequency domain were carefully checked and used as the bearing fault features. Next, MDC was used to classify the bearing fault features extracted by EMD, WT and MF-DFA in the time domain and assess the abilities of the three methods to extract fault features from bearing fault data. The results show that MF-DFA seems to outperform each of envelope analysis, statistical parameters, EMD and WT in feature extraction of bearing fault data and then the proposed method in this paper delivers satisfactory performances in distinguishing different types and severity of bearing faults. Furthermore, to further ascertain the nature causing the multifractality of bearing vibration data, the generalized Hurst exponents of the original bearing vibration data were compared with those of the shuffled and the surrogated data. Consequently, the long-range correlations for small and large fluctuations of data seem to be chiefly responsible for the multifractality of bearing vibration data.

  5. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Ruonan; Yang, Boyuan; Zhang, Xiaoli; Wang, Shibin; Chen, Xuefeng

    2016-06-01

    Bearing plays an essential role in the performance of mechanical system and fault diagnosis of mechanical system is inseparably related to the diagnosis of the bearings. However, it is a challenge to detect weak fault from the complex and non-stationary vibration signals with a large amount of noise, especially at the early stage. To improve the anti-noise ability and detect incipient fault, a novel fault detection method based on a short-time matching method and Support Vector Machine (SVM) is proposed. In this paper, the mechanism of roller bearing is discussed and the impact time frequency dictionary is constructed targeting the multi-component characteristics and fault feature of roller bearing fault vibration signals. Then, a short-time matching method is described and the simulation results show the excellent feature extraction effects in extremely low signal-to-noise ratio (SNR). After extracting the most relevance atoms as features, SVM was trained for fault recognition. Finally, the practical bearing experiments indicate that the proposed method is more effective and efficient than the traditional methods in weak impact signal oscillatory characters extraction and incipient fault diagnosis.

  6. Application of Hilbert-Huang transformation to fault diagnosis of rotary machinery

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Zhou, Xiang; Wu, Qinghua; He, Tao; He, Haixia

    2008-10-01

    The vibration signal of a rotor bearing system is usually nonlinear and non-stationary. Fourier transform is hard to analyze these signals. A new method based upon empirical mode decomposition (EMD) and Hilbert spectrum is proposed for fault diagnosis of roller bearings. We get vibration signals from 6205-type ball bearings with inner-race faults and with outer-race faults, then analyzing its local Hilbert spectrum and local Hilbert marginal spectrum. Comparing the results with theory value, we can diagnose the fault of rotary machinery fault. In this study, we find that local Hilbert spectrum and local Hilbert marginal spectrum are very useful. Hilbert Transformation is introduced to confirm the HHT method is fit to process nonlinear and non-stationary signals.

  7. Laboratory observations of fault-normal vibrations during stick slip

    SciTech Connect

    Bodin, P.; Brown, S.; Matheson, D.

    1998-12-01

    We report laboratory observations of interface separation waves during stick slip on a fault in a uniform polymer material. Our observations, made at stress levels expected at midcrustal depths, share many macroscopic properties with ruptures of faults in rocks. We observed a drop in fault-normal stress shortly before the onset of, and during, stick slip at points along the fault during a rupture. We suggest that {ital P} wave energy in front of the propagating rupture tip is responsible for the drop in normal stress. We also interpret that stick slip took place within a traveling slip pulse, and we suggest that the dynamic stress drop within the slipping patch exceeded the overall static stress drop by a factor of at least 5 within a few millimeters of the fault. Our experiments did not resolve whether the fault surfaces actually separate or if fault-normal stress is just greatly reduced. In either case the net result is that fault slip is permitted to take place with much less frictional resistance than that expected from the applied load. Our observations provide laboratory evidence that fault-normal vibrations may play an important role in sustaining a rupture by facilitating the propagation of a transient instability. Faults may appear weak in part because they are dynamically weakened as they slip during rupture while retaining their strength during the interseismic period. {copyright} 1998 American Geophysical Union

  8. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (ESTSC)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmore » degraded.« less

  9. Transformer fault diagnosis using continuous sparse autoencoder.

    PubMed

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis. PMID:27119052

  10. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  11. Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne

    2003-01-01

    An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.

  12. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1996-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data were obtained from a spiral bevel gear fatigue test rig at NASA/Lewis. Time-synchronous-averaged vibration data were recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Wigner-Ville distribution was used to examine the time-averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques that include time-domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  13. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  14. Vibration signature analysis of a faulted gear transmission system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-06-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  15. Complex signal analysis for wind turbine planetary gearbox fault diagnosis via iterative atomic decomposition thresholding

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Liang, Ming

    2014-09-01

    The vibration signals from complex structures such as wind turbine (WT) planetary gearboxes are intricate. Reliable analysis of such signals is the key to success in fault detection and diagnosis for complex structures. The recently proposed iterative atomic decomposition thresholding (IADT) method has shown to be effective in extracting true constituent components of complicated signals and in suppressing background noise interferences. In this study, such properties of the IADT are exploited to analyze and extract the target signal components from complex signals with a focus on WT planetary gearboxes under constant running conditions. Fault diagnosis for WT planetary gearboxes has been a very important yet challenging issue due to their harsh working conditions and complex structures. Planetary gearbox fault diagnosis relies on detecting the presence of gear characteristic frequencies or monitoring their magnitude changes. However, a planetary gearbox vibration signal is a mixture of multiple complex components due to the unique structure, complex kinetics and background noise. As such, the IADT is applied to enhance the gear characteristic frequencies of interest, and thereby diagnose gear faults. Considering the spectral properties of planetary gearbox vibration signals, we propose to use Fourier dictionary in the IADT so as to match the harmonic waves in frequency domain and pinpoint the gear fault characteristic frequency. To reduce computing time and better target at more relevant signal components, we also suggest a criterion to estimate the number of sparse components to be used by the IADT. The performance of the proposed approach in planetary gearbox fault diagnosis has been evaluated through analyzing the numerically simulated, lab experimental and on-site collected signals. The results show that both localized and distributed gear faults, both the sun and planet gear faults, can be diagnosed successfully.

  16. Envelope extraction based dimension reduction for independent component analysis in fault diagnosis of rolling element bearing

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Na, Jing; Li, Bin; Fung, Rong-Fong

    2014-06-01

    A robust feature extraction scheme for the rolling element bearing (REB) fault diagnosis is proposed by combining the envelope extraction and the independent component analysis (ICA). In the present approach, the envelope extraction is not only utilized to obtain the impulsive component corresponding to the faults from the REB, but also to reduce the dimension of vibration sources included in the sensor-picked signals. Consequently, the difficulty for applying the ICA algorithm under the conditions that the sensor number is limited and the source number is unknown can be successfully eliminated. Then, the ICA algorithm is employed to separate the envelopes according to the independence of vibration sources. Finally, the vibration features related to the REB faults can be separated from disturbances and clearly exposed by the envelope spectrum. Simulations and experimental tests are conducted to validate the proposed method.

  17. Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Zhong, Wei; Tong, Shuiguang; Tang, Ning; Chen, Jin

    2015-05-01

    Rolling element bearings are at the heart of most rotating machines and they bear the function of connectivity between the rotor and stator. It is important to distinguish the incipient fault before the bearing step into serious failure. The Slip Matrix (SM) construction method based on Singular Value Decomposition (SVD) is proposed in this paper. The SM based fault feature extraction and impulses intelligent detection methods are introduced as the key steps for rolling bearing fault diagnosis. The numerical simulation of rolling bearing fault signal is adopted which shows that the proposed method is good at fault impulses detection in strong background noise environment. The rolling element bearing accelerated life test is performed for the acquisition of experimental data of rolling bearing fault. With the rolling bearing running from normal state to failure, the initial fault signal part can be picked out from the whole life vibration data of the rolling bearing. The vibration signal is close to the nature fault signal which is acquired from a rolling bearing applied in industrial field. The analysis result shows that the proposed method has an excellent performance in rolling bearing fault detection.

  18. Quantitative diagnosis of fault severity trend of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Ma, Chunqing; Zhang, Feibin; Wang, Huaqing

    2015-11-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  19. Experimental Evaluation of a Structure-Based Connectionist Network for Fault Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, V. B.; Danai, K.; Lewicki, D. G.

    1998-01-01

    This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.

  20. Fault degradation assessment of water hydraulic motor by impulse vibration signal with Wavelet Packet Analysis and Kolmogorov Smirnov Test

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Chua, Patrick S. K.; Lim, G. H.

    2008-10-01

    The machinery fault diagnosis is important for improving reliability and performance of systems. Many methods such as Time Synchronous Average (TSA), Fast Fourier Transform (FFT)-based spectrum analysis and short-time Fourier transform (STFT) have been applied in fault diagnosis and condition monitoring of mechanical system. The above methods analyze the signal in frequency domain with low resolution, which is not suitable for non-stationary vibration signal. The Kolmogorov-Smirnov (KS) test is a simple and precise technique in vibration signal analysis for machinery fault diagnosis. It has limited use and advantage to analyze the vibration signal with higher noise directly. In this paper, a new method for the fault degradation assessment of the water hydraulic motor is proposed based on Wavelet Packet Analysis (WPA) and KS test to analyze the impulsive energy of the vibration signal, which is used to detect the piston condition of water hydraulic motor. WPA is used to analyze the impulsive vibration signal from the casing of the water hydraulic motor to obtain the impulsive energy. The impulsive energy of the vibration signal can be obtained by the multi-decomposition based on Wavelet Packet Transform (WPT) and used as feature values to assess the fault degradation of the pistons. The kurtosis of the impulsive energy in the reconstructed signal from the Wavelet Packet coefficients is used to extract the feature values of the impulse energy by calculating the coefficients of the WPT multi-decomposition. The KS test is used to compare the kurtosis of the impulse energy of the vibration signal statistically under the different piston conditions. The results show the applicability and effectiveness of the proposed method to assess the fault degradation of the pistons in the water hydraulic motor.

  1. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Zhao, Fagang

    2013-01-01

    Rolling element bearing faults are among the main causes of rotating machines breakdown. It is important to distinguish the incipient fault before the bearings step into serious failure. Based on the traditional singular value decomposition (SVD) theory, short-time matrix series (STMS) and singular value ratio (SVR) are introduced to the vibration signal processing. The proposed signal processing method is called S-SVDR (STMS based SVD method using SVR) and it has been proved to have a good local identification capability in the rolling bearing fault diagnosis. The detailed description of applying S-SVDR methods to rolling bearing fault diagnosis is given through the artificial fault signal processing in experiment 1. In experiment 2, rolling element bearing accelerated life test is performed in Hangzhou Bearing Test & Research Center (HBRC). The experimental result shows that the incipient fault can be well detected through S-SVDR processing method. However, the envelope analysis of original signal cannot detect the fault due to the existence of signal interference. A conclusion can be made that the proposed S-SVDR method has a good effect on de-noising and eliminating the signal interference of rolling bearing for the fault diagnosis.

  2. Multisensor fusion for induction motor aging analysis and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Erbay, Ali Seyfettin

    Induction motors are the most commonly used electrical drives, ranging in power from fractional horsepower to several thousand horsepowers. Several studies have been conducted to identify the cause of failure of induction motors in industrial applications. Recent activities indicate a focus towards building intelligence into the motors, so that a continuous on-line fault diagnosis and prognosis may be performed. The purpose of this research and development was to perform aging studies of three-phase, squirrel-cage induction motors; establish a database of mechanical, electrical and thermal measurements from load testing of the motors; develop a sensor-fusion method for on-line motor diagnosis; and use the accelerated aging models to extrapolate to the normal aging regimes. A new laboratory was established at The University of Tennessee to meet the goals of the project. The accelerated aging and motor performance tests constitute a unique database, containing information about the trend characteristics of measured signatures as a function of motor faults. The various measurements facilitate enhanced fault diagnosis of motors and may be effectively utilized to increase the reliability of decision making and for the development of life prediction techniques. One of these signatures is the use of Multi-Resolution Analysis (MRA) using wavelets. Using MRA in trending different frequency bands has revealed that higher frequencies show a characteristic increase when the condition of a bearing is in question. This study effectively showed that the use of MRA in vibration signatures can identify a thermal degradation or degradation via electrical charge of the bearing, whereas other failure mechanisms, such as winding insulation failure, do not exhibit such characteristics. A motor diagnostic system, called the Intelligent Motor Monitoring System (IMMS) was developed in this research. The IMMS integrated the various mechanical, electrical and thermal signatures, and artificial neural networks and fuzzy logic algorithms. The IMMS was then used for motor fault detection and isolation and for estimating its remaining operable lifetime. The performance of the IMMS was evaluated using the motor aging data, and showed that several motor degradation modes could be effectively diagnosed and the prognosis of motor operation could be established.

  3. Fault diagnosis of direct-drive wind turbine based on support vector machine

    NASA Astrophysics Data System (ADS)

    An, X. L.; Jiang, D. X.; Li, S. H.; Chen, J.

    2011-07-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  4. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  5. An approach to performance assessment and fault diagnosis for rotating machinery equipment

    NASA Astrophysics Data System (ADS)

    Tao, Xiaochuang; Lu, Chen; Lu, Chuan; Wang, Zili

    2013-12-01

    Predict and prevent maintenance is routinely carried out. However, how to address the problem of performance assessment maximizing the use of available monitoring data, and how to build a framework that integrates performance assessment, fault detection, and diagnosis are still a significant challenge. For this purpose, this article introduces an approach to performance assessment and fault diagnosis for rotating machinery, including wavelet packet decomposition for extracting energy feature samples from vibration signals acquired during normal and faulty conditions; clustering analysis for demonstrating the separability of the samples; and Fisher discriminant analysis for providing an optimal lower-dimensional representation, in terms of maximizing the separability among different populations, by projecting the samples into a new space. In the new low-dimensional space, the Mahalanobis distance (MD) between the new measurement data and normal population can be calculated for performance assessment. Moreover, this model for performance assessment only requires data to be available in normal conditions and any one of all possible fault conditions, without the necessity for the full life cycle of condition monitoring data. In addition, if monitoring data under different fault conditions are available, the fault mode can be identified accurately by comparing the MDs between the new measurement data and each fault population. Finally, the proposed method was verified to be successful on performance assessment and fault diagnosis via a hydraulic pump test and a ball bearing test.

  6. Detection of signal transients based on wavelet and statistics for machine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhu, Z. K.; Yan, Ruqiang; Luo, Liheng; Feng, Z. H.; Kong, F. R.

    2009-05-01

    This paper presents a transient detection method that combines continuous wavelet transform (CWT) and Kolmogorov-Smirnov (K-S) test for machine fault diagnosis. According to this method, the CWT represents the signal in the time-scale plane, and the proposed "step-by-step detection" based on K-S test identifies the transient coefficients. Simulation study shows that the transient feature can be effectively identified in the time-scale plane with the K-S test. Moreover, the transients can be further transformed back into the time domain through the inverse CWT. The proposed method is then utilized in the gearbox vibration transient detection for fault diagnosis, and the results show that the transient features both expressed in the time-scale plane and re-constructed in the time domain characterize the gearbox condition and fault severity development more clearly than the original time domain signal. The proposed method is also applied to the vibration signals of cone bearings with the localized fault in the inner race, outer race and the rolling elements, respectively. The detected transients indicate not only the existence of the bearing faults, but also the information about the fault severity to a certain degree.

  7. Adaptive PCA based fault diagnosis scheme in imperial smelting process.

    PubMed

    Hu, Zhikun; Chen, Zhiwen; Gui, Weihua; Jiang, Bin

    2014-09-01

    In this paper, an adaptive fault detection scheme based on a recursive principal component analysis (PCA) is proposed to deal with the problem of false alarm due to normal process changes in real process. Our further study is also dedicated to develop a fault isolation approach based on Generalized Likelihood Ratio (GLR) test and Singular Value Decomposition (SVD) which is one of general techniques of PCA, on which the off-set and scaling fault can be easily isolated with explicit off-set fault direction and scaling fault classification. The identification of off-set and scaling fault is also applied. The complete scheme of PCA-based fault diagnosis procedure is proposed. The proposed scheme is first applied to Imperial Smelting Process, and the results show that the proposed strategies can be able to mitigate false alarms and isolate faults efficiently. PMID:24439836

  8. Fault diagnosis based on continuous simulation models

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  9. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  10. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Wang, Jing; Lee, Seungchul

    2014-05-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression of the signals. An adaptive matching pursuit algorithm that uses an impulse dictionary is introduced in this article for rolling bearing vibration signal processing and fault diagnosis. First, a new dictionary model is established according to the characteristics and mechanism of rolling bearing faults. The new model incorporates the rotational speed of the bearing, the dimensions of the bearing and the bearing fault status, among other parameters. The model can simulate the impulse experienced by the bearing at different bearing fault levels. A simulation experiment suggests that a new impulse dictionary used in a matching pursuit algorithm combined with a genetic algorithm has a more accurate effect on bearing fault diagnosis than using a traditional impulse dictionary. However, those two methods have some weak points, namely, poor stability, rapidity and controllability. Each key parameter in the dictionary model and its influence on the analysis results are systematically studied, and the impulse location is determined as the primary model parameter. The adaptive impulse dictionary is established by changing characteristic parameters progressively. The dictionary built by this method has a lower redundancy and a higher relevance between each dictionary atom and the analyzed vibration signal. The matching pursuit algorithm of an adaptive impulse dictionary is adopted to analyze the simulated signals. The results indicate that the characteristic fault components could be accurately extracted from the noisy simulation fault signals by this algorithm, and the result exhibited a higher efficiency in addition to an improved stability, rapidity and controllability when compared with a matching pursuit approach that was based on a genetic algorithm. We experimentally analyze the early-stage fault signals and composite fault signals of the bearing. The results further demonstrate the effectiveness and superiority of the matching pursuit algorithm that uses the adaptive impulse dictionary. Finally, this algorithm is applied to the analysis of engineering data, and good results are achieved.

  11. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  12. Catastrophic fault diagnosis in dynamic systems using bond graph methods

    SciTech Connect

    Yarom, Tamar.

    1990-01-01

    Detection and diagnosis of faults has become a critical issue in high performance engineering systems as well as in mass-produced equipment. It is particularly helpful when the diagnosis can be made at the initial design level with respect to a prospective fault list. A number of powerful methods have been developed for aiding in the general fault analysis of designs. Catastrophic faults represent the limit case of complete local failure of connections or components. They result in the interruption of energy transfer between corresponding points in the system. In this work the conventional approach to fault detection and diagnosis is extended by means of bond-graph methods to a wide variety of engineering systems. Attention is focused on catastrophic fault diagnosis. A catastrophic fault dictionary is generated from the system model based on topological properties of the bond graph. The dictionary is processed by existing methods to extract a catastrophic fault report to aid the engineer in performing a design analysis.

  13. Fuzzy classifier for fault diagnosis in analog electronic circuits.

    PubMed

    Kumar, Ashwani; Singh, A P

    2013-11-01

    Many studies have presented different approaches for the fault diagnosis with fault models having ± 50% variation in the component values in analog electronic circuits. There is still a need of the approaches which provide the fault diagnosis with the variation in the component value below ± 50%. A new single and multiple fault diagnosis technique for soft faults in analog electronic circuit using fuzzy classifier has been proposed in this paper. This technique uses the simulation before test (SBT) approach by analyzing the frequency response of the analog circuit under faulty and fault free conditions. Three signature parameters peak gain, frequency and phase associated with peak gain, of the frequency response of the analog circuit are observed and extracted such that they give unique values for faulty and fault free configuration of the circuit. The single and double fault models with the component variations from ± 10% to ± 50% are considered. The fuzzy classifier along the classification of faults gives the estimated component value under faulty and faultfree conditions. The proposed method is validated using simulated data and the real time data for a benchmark analog circuit. The comparative analysis is also presented for both the validations. PMID:23849881

  14. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  15. Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liang, Ming; Zhang, Yi; Hou, Shumin

    2012-08-01

    Fault features of rolling element bearings can be reflected by geometrical structures of the bearing vibration signals. These symptoms, however, often spread over various morphological scales without a known pattern. For this reason, we propose a multi-scale autocorrelation via morphological wavelet slices (MAMWS) approach to detect bearing fault signatures. The vibration measurement of a bearing is decomposed using morphological stationary wavelet with different resolutions of structuring elements. The extracted temporal components are then transformed to form a frequency-domain view of morphological slices by the Fourier transform. Although this three-dimensional representation is more intuitive in terms of fault diagnosis, the existence of the noise may reduce its readability. Hence the autocorrelation function is exploited to produce a multi-scale autocorrelation spectrogram from which the maximal autocorrelation values of all frequencies are aggregated into an ichnographical spectral representation. Accordingly the fault signature is highlighted for easy diagnosis of bearing faults. The effectiveness of the proposed approach has been demonstrated by both the simulation and experimental signal analyses.

  16. Inverse Gaussian mixtures models of bearing vibrations under local faults

    NASA Astrophysics Data System (ADS)

    Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Repetitive impacts performed by damaged spot on a component of the rolling element bearing specific statistical properties, due to the constant angular distance between the roller elements. Under (almost) constant rotational speed the successive impacts are regarded as almost periodic with small random fluctuations due to slippage. Often these random components are modelled as normally distributed, which is unrealistic since physically impossible events, such as negative time between two consecutive impacts, become likely by the nature of the distribution. Motivated by this deficiency we propose a new model that describes the occurrence of repetitive vibrational patterns as realisation of a point process with the (mixture) inverse Gaussian distribution of the inter-event times. Such a model is applicable to both constant and variable rotational speeds. Additionally, the proposed model inherently describes the quasi-cyclostationarity of the impact times under almost constant rotational speed. The applicability of the model was evaluated using vibrational signals generated by bearings with localised surface fault.

  17. Application of the Teager-Kaiser energy operator in bearing fault diagnosis.

    PubMed

    Henríquez Rodríguez, Patricia; Alonso, Jesús B; Ferrer, Miguel A; Travieso, Carlos M

    2013-03-01

    Condition monitoring of rotating machines is important in the prevention of failures. As most machine malfunctions are related to bearing failures, several bearing diagnosis techniques have been developed. Some of them feature the bearing vibration signal with statistical measures and others extract the bearing fault characteristic frequency from the AM component of the vibration signal. In this paper, we propose to transform the vibration signal to the Teager-Kaiser domain and feature it with statistical and energy-based measures. A bearing database with normal and faulty bearings is used. The diagnosis is performed with two classifiers: a neural network classifier and a LS-SVM classifier. Experiments show that the Teager domain features outperform those based on the temporal or AM signal. PMID:23352553

  18. Applications of detrended-fluctuation analysis to gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    de Moura, E. P.; Vieira, A. P.; Irmão, M. A. S.; Silva, A. A.

    2009-04-01

    Aiming at fault diagnosis, we study vibration signals obtained from gearboxes under various conditions. We consider normal gearboxes, gearboxes containing scratched gears, and gearboxes containing toothless gears, both unloaded and under load, with several rotation frequencies. By applying detrended-fluctuation analysis (DFA), a mathematical tool introduced to study fractal properties of time series, we are able to distinguish the signals with respect to their working conditions. For each signal, DFA involves performing a linear fit to the data inside intervals of a certain size, and evaluating the corresponding fluctuations detrended by the local fit. Repeating this procedure for many interval sizes yields a curve of the average fluctuation as a function of size. From the curves, we define vectors whose components correspond to the average fluctuation associated with suitably chosen interval sizes. We finally apply principal component analysis to the set of all vectors, obtaining very good clustering of the transformed vectors according to the different working conditions, with a performance comparable to that obtained from Fourier analysis, especially for gears working under load.

  19. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  20. A survey of an introduction to fault diagnosis algorithms

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included.

  1. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient

    NASA Astrophysics Data System (ADS)

    Qiao, Zijian; Pan, Zhengrong

    2015-08-01

    Aiming at solving the existing sharp problems by using singular value decomposition (SVD) in the fault diagnosis of rolling bearings, such as the determination of the delay step k for creating the Hankel matrix and selection of effective singular values, the present study proposes a novel adaptive SVD method for fault feature detection based on the correlation coefficient by analyzing the principles of the SVD method. This proposed method achieves not only the optimal determination of the delay step k by means of the absolute value {{r}k} of the autocorrelation function sequence of the collected vibration signal, but also the adaptive selection of effective singular values using the index ρ corresponding to useful component signals including weak fault information to detect weak fault signals for rolling bearings, especially weak impulse signals. The effectiveness of this method has been verified by contrastive results between the proposed method and traditional SVD, even using the wavelet-based method through simulated experiments. Finally, the proposed method has been applied to fault diagnosis for a deep-groove ball bearing in which a single point fault located on either the inner or outer race of rolling bearings is obtained successfully. Therefore, it can be stated that the proposed method is of great practical value in engineering applications.

  2. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong; Li, Chuan

    2015-10-01

    The interfering vibration signals of a gearbox often represent a challenging issue in rolling bearing fault detection and diagnosis, particularly under unknown variable rotational speed conditions. Though some methods have been proposed to remove the gearbox interfering signals based on their discrete frequency nature, such methods may not work well under unknown variable speed conditions. As such, we propose a new approach to address this issue. The new approach consists of three main steps: (a) adaptive gear interference removal, (b) fault characteristic order (FCO) based fault detection, and (c) rotational-order-sideband (ROS) based fault type identification. For gear interference removal, an enhanced adaptive noise cancellation (ANC) algorithm has been developed in this study. The new ANC algorithm does not require an additional accelerometer to provide reference input. Instead, the reference signal is adaptively constructed from signal maxima and instantaneous dominant meshing multiple (IDMM) trend. Key ANC parameters such as filter length and step size have also been tailored to suit the variable speed conditions, The main advantage of using ROS for fault type diagnosis is that it is insusceptible to confusion caused by the co-existence of bearing and gear rotational frequency peaks in the identification of the bearing fault characteristic frequency in the FCO sub-order region. The effectiveness of the proposed method has been demonstrated using both simulation and experimental data. Our experimental study also indicates that the proposed method is applicable regardless whether the bearing and gear rotational speeds are proportional to each other or not.

  3. Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2013-10-01

    This paper explores the improved time-scale representation by considering the non-linear property for effectively identifying rotating machine faults in the time-scale domain. A new time-scale signature, called time-scale manifold (TSM), is proposed in this study through combining phase space reconstruction (PSR), continuous wavelet transform (CWT), and manifold learning. For the TSM generation, an optimal scale band is selected to eliminate the influence of unconcerned scale components, and the noise in the selected band is suppressed by manifold learning to highlight the inherent non-linear structure of faulty impacts. The TSM reserves the non-stationary information and reveals the non-linear structure of the fault pattern, with the merits of noise suppression and resolution improvement. The TSM ridge is further extracted by seeking the ridge with energy concentration lying on the TSM signature. It inherits the advantages of both the TSM and ridge analysis, and hence is beneficial to demodulation of the fault information. Through analyzing the instantaneous amplitude (IA) of the TSM ridge, in which the noise is nearly not contained, the fault characteristic frequency can be exactly identified. The whole process of the proposed fault diagnosis scheme is automatic, and its effectiveness has been verified by means of typical faulty vibration/acoustic signals from a gearbox and bearings. A reliable performance of the new method is validated in comparison with traditional enveloping methods for rotating machine fault diagnosis.

  4. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings

    NASA Astrophysics Data System (ADS)

    Chen, Guohua; Qie, Longfei; Zhang, Aijun; Han, Jin

    2016-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.

  5. Anti-aliasing lifting scheme for mechanical vibration fault feature extraction

    NASA Astrophysics Data System (ADS)

    Bao, Wen; Zhou, Rui; Yang, Jianguo; Yu, Daren; Li, Ning

    2009-07-01

    A troublesome problem in application of wavelet transform for mechanical vibration fault feature extraction is frequency aliasing. In this paper, an anti-aliasing lifting scheme is proposed to solve this problem. With this method, the input signal is firstly transformed by a redundant lifting scheme to avoid the aliasing caused by split and merge operations. Then the resultant coefficients and their single subband reconstructed signals are further processed to remove the aliasing caused by the unideal frequency property of lifting filters based on the fast Fourier transform (FFT) technique. Because the aliasing in each subband signal is eliminated, the ratio of signal to noise (SNR) is improved. The anti-aliasing lifting scheme is applied to analyze a practical vibration signal measured from a faulty ball bearing and testing results confirm that the proposed method is effective for extracting weak fault feature from a complex background. The proposed method is also applied to the fault diagnosis of valve trains in different working conditions on a gasoline engine. The experimental results show that using the features extracted from the anti-aliasing lifting scheme for classification can obtain a higher accuracy than using those extracted from the lifting scheme and the redundant lifting scheme.

  6. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    PubMed Central

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  7. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    PubMed

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  8. Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Wang, Xuan; Lu, Chen

    2015-08-01

    A rolling bearing vibration signal is nonlinear and non-stationary and has multiple components and multifractal properties. A rolling-bearing fault-diagnosis method based on Local Characteristic-scale Decomposition-Teager Energy Operator (LCD-TEO) and multifractal detrended fluctuation analysis (MF-DFA) is first proposed in this paper. First, the vibration signal was decomposed into several intrinsic scale components (ISCs) by using LCD, which is a newly developed signal decomposition method. Second, the instantaneous amplitude was obtained by applying the TEO to each major ISC for demodulation. Third, the intrinsic multifractality features hidden in each major ISC were extracted by using MF-DFA, among which the generalized Hurst exponents are selected as the multifractal feature in this paper. Finally, the feature vectors were obtained by applying principal components analysis (PCA) to the extracted multifractality features, thus reducing the dimension of the multifractal features and obtaining the fault feature insensitive to variation in working conditions, further enhancing the accuracy of diagnosis. According to the extracted feature vector, rolling bearing faults can be diagnosed under variable working conditions. The experimental results demonstrate its desirable diagnostic performance under both different working conditions and different fault severities. Simultaneously, the results of comparison show that the performance of the proposed diagnostic method outperforms that of Hilbert-Huang transform (HHT) combined with MF-DFA or LCD-TEO combined with mono-fractal analysis.

  9. Fault diagnosis in spur gears based on genetic algorithm and random forest

    NASA Astrophysics Data System (ADS)

    Cerrada, Mariela; Zurita, Grover; Cabrera, Diego; Sánchez, René-Vinicio; Artés, Mariano; Li, Chuan

    2016-03-01

    There are growing demands for condition-based monitoring of gearboxes, and therefore new methods to improve the reliability, effectiveness, accuracy of the gear fault detection ought to be evaluated. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance of the diagnostic models. On the other hand, random forest classifiers are suitable models in industrial environments where large data-samples are not usually available for training such diagnostic models. The main aim of this research is to build up a robust system for the multi-class fault diagnosis in spur gears, by selecting the best set of condition parameters on time, frequency and time-frequency domains, which are extracted from vibration signals. The diagnostic system is performed by using genetic algorithms and a classifier based on random forest, in a supervised environment. The original set of condition parameters is reduced around 66% regarding the initial size by using genetic algorithms, and still get an acceptable classification precision over 97%. The approach is tested on real vibration signals by considering several fault classes, one of them being an incipient fault, under different running conditions of load and velocity.

  10. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Xiang, Jiawei; Markert, Richard; Liang, Ming

    2016-01-01

    Condition-based maintenance via vibration signal processing plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in industrial enterprises. Many machine faults, such as local defects in rotating machines, manifest themselves in the acquired vibration signals as a series of impulsive events. The spectral kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency that indicates how the impulsiveness of a signal. This work intends to review and summarize the recent research developments on the SK theories, for instance, short-time Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the corresponding applications in fault detection and diagnosis of the rotating machines. The potential prospects of prognostics using SK technique are also designated. Some examples have been presented to illustrate their performances. The expectation is that further research and applications of the SK technique will flourish in the future, especially in the fields of the prognostics.

  11. Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Zhao, Jiangbin; Peng, Zhongxiao

    2011-03-01

    A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox. The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum, and the ANN classification method has achieved high detection accuracy. Hence, the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases, and thus have application importance.

  12. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  13. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Shi, Tielin; Xuan, Jianping

    2012-05-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  14. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  15. A data structure and algorithm for fault diagnosis

    NASA Technical Reports Server (NTRS)

    Bosworth, Edward L., Jr.

    1987-01-01

    Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.

  16. Development of a generic rotating machinery fault diagnosis approach insensitive to machine speed and support type

    NASA Astrophysics Data System (ADS)

    Nembhard, Adrian D.; Sinha, Jyoti K.; Yunusa-Kaltungo, A.

    2015-02-01

    Despite numerous difficulties that can be encountered when using trend monitoring of harmonic components from the simple amplitude spectra to aid diagnosis of rotor related faults on large multi-stage multi-bearing rotating machines, the technique continues to be the mainstay in industry. This is due in part to factors including a lack of adequate experimental validation of newly proposed techniques aimed at improving or replacing this traditional practice. Nevertheless, in recent studies, simple but robust Individual Speed Individual Foundation (ISIF) and Multi-Speed Individual Foundation (MSIF) fault diagnosis (FD) methods that both used a single vibration sensor per bearing without the use of phase information was applied with good results to fixed and variable speed machines respectively. A similar Individual Speed Multi-Foundation (ISMF) technique later enabled FD by direct comparison of vibration data between similarly configured machines with different dynamic characteristics operating at the same steady-state speed. However, the efficacy of these techniques was questioned as they were all applied to experimental rigs with the same few rotor related faults. Thus, the objective of this study is to test the transferability of these said techniques on a wider range of rotor related faults on different machines. A new Multi-Speed Multi-Foundation (MSMF) method which facilitates FD by the direct comparison of vibration data from similarly configured machines with different dynamic characteristics operating at different steady-state speeds is also proposed. It is observed that the previously proposed methods are indeed able to separate the range of conditions tested on machines with different dynamic characteristics. Analysis done with newly proposed MSMF approach gives improved isolation of fault conditions tested compared to the previously proposed techniques.

  17. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Junsheng, Cheng; Dejie, Yu; Yu, Yang

    2007-02-01

    An energy operator demodulation approach based on EMD (Empirical Mode Decomposition) is proposed to extract the instantaneous frequencies and amplitudes of the multi-component amplitude-modulated and frequency-modulated (AM-FM) signals. Furthermore the proposed approach is applied to machinery fault diagnosis. Firstly, EMD method is used to decompose a multi-component AM-FM signal into a number of intrinsic mode functions (IFMs). Secondly, the energy operator demodulation method is applied to each IMF and the instantaneous amplitudes and frequencies of a multi-component AM-FM signal are extracted. Finally, the spectrum analysis is applied to each instantaneous amplitude in order to obtain envelope spectra from which the mechanical fault can be diagnosed. The analysis results show that the energy operator demodulation approach based on EMD can extract the characteristic of machinery fault vibration signals efficiently.

  18. Research on iterated Hilbert transform and its application in mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Qin, Shuren; Mao, Yongfang

    2008-11-01

    Multicomponent AM-FM demodulation is an available method for machinery fault vibration signal analysis, so a new method for mechanical fault diagnosis based on iterated Hilbert transform (IHT) is proposed. The principle of computing the asymptotically exact multicomponent sinusoidal model for an arbitrary signal by iterating Hilbert transform is introduced, and some properties of IHT are analyzed. Theoretical analysis for the generic two-component signal shows that there are limitations in the direct estimation of instantaneous frequencies via the phase signals of the previously obtained model. Therefore, a smoothed instantaneous frequency estimation (SIFE) method based on difference operator and zero-phase digital low-pass filtering is proposed, and then the accuracy and validity of this method have been proved by the simulation results. The analysis results of the mechanical fault signals show that the weak features of these signals can be efficiently extracted with the proposed approach.

  19. A gearbox fault diagnosis scheme based on near-field acoustic holography and spatial distribution features of sound field

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Yuan, Guoqing; Yan, Li

    2013-05-01

    Vibration signal analysis is the main technique in machine condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for gearbox based on near-field acoustic holography (NAH) and spatial distribution features of sound field is presented in this paper. It focuses on applying distribution information of sound field to gearbox fault diagnosis. A two-stage industrial helical gearbox is experimentally studied in a semi-anechoic chamber and a lab workshop, respectively. Firstly, multi-class faults (mild pitting, moderate pitting, severe pitting and tooth breakage) are simulated, respectively. Secondly, sound fields and corresponding acoustic images in different gearbox running conditions are obtained by fast Fourier transform (FFT) based NAH. Thirdly, by introducing texture analysis to fault diagnosis, spatial distribution features are extracted from acoustic images for capturing fault patterns underlying the sound field. Finally, the features are fed into multi-class support vector machine for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with traditional ABD method. Even with strong noise interference, spatial distribution features of sound field can reliably reveal the fault patterns of gearbox, and thus the satisfactory accuracy can be obtained. The combination of histogram features and gray level gradient co-occurrence matrix features is suggested for good diagnosis accuracy and low time cost.

  20. Display interface concepts for automated fault diagnosis

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.

    1989-01-01

    An effort which investigated concepts for displaying dynamic system status and fault history (propagation) information to the flight crew is described. This investigation was performed by developing several candidate display formats and then conducting comprehension tests to determine those characteristics that made one format preferable to another for presenting this type of information. Twelve subjects participated. Flash tests, or limited time exposure tests, were used to determine the subjects' comprehension of the information presented in the display formats. It was concluded from the results of the comprehension tests that pictographs were more comprehensible than both block diagrams and text for presenting dynamic system status and fault history information, and that pictographs were preferred over both block diagrams and text. It was also concluded that the addition of this type of information in the cockpit would help the crew remain aware of the status of their aircraft.

  1. Automated misfire diagnosis in engines using torsional vibration and block rotation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Randall, R. B.; Peeters, B.; Van der Auweraer, H.; Desmet, W.

    2012-05-01

    Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were applied in the different stages. The final results have shown that the diagnostic system can efficiently diagnose different misfire conditions, including location and severity.

  2. Vibrations of balanced fault-free ball bearings

    NASA Astrophysics Data System (ADS)

    Ghafari, S. H.; Abdel-Rahman, E. M.; Golnaraghi, F.; Ismail, F.

    2010-04-01

    This paper investigates the vibrations of balanced fault-free ball bearings. A lumped mass-damper-spring model is adopted including the use of the Hertzian contact theory to represent the stiffness of the bearing rolling elements. We found that the equilibrium point of the bearing undergoes a supercritical pitchfork bifurcation as the bearing internal clearance increases. We developed closed-form expressions for the frequency-response functions of the horizontal and vertical motions of bearings with small internal clearance (below the bifurcation point). We also developed a chaos map to describe the locations and intensity of chaos in the internal clearance-shaft speed parameter space for bearings with larger internal clearance (beyond the bifurcation point).

  3. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    PubMed

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. PMID:24239987

  4. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  5. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Chen, Jin; Dong, Guangming; Liu, Tao; Chen, Gang

    2015-02-01

    Based on the traditional theory of singular value decomposition (SVD), singular values (SVs) and ratios of neighboring singular values (NSVRs) are introduced to the feature extraction of vibration signals. The proposed feature extraction method is called SV-NSVR. Combined with selected SV-NSVR features, continuous hidden Markov model (CHMM) is used to realize the automatic classification. Then the SV-NSVR and CHMM based method is applied in fault diagnosis and performance assessment of rolling element bearings. The simulation and experimental results show that this method has a higher accuracy for the bearing fault diagnosis compared with those using other SVD features, and it is effective for the performance assessment of rolling element bearings.

  6. Comparative investigation of diagnosis media for induction machine mechanical unbalance fault.

    PubMed

    Salah, Mohamed; Bacha, Khmais; Chaari, Abdelkader

    2013-11-01

    For an induction machine, we suggest a theoretical development of the mechanical unbalance effect on the analytical expressions of radial vibration and stator current. Related spectra are described and characteristic defect frequencies are determined. Moreover, the stray flux expressions are developed for both axial and radial sensor coil positions and a substitute diagnosis technique is proposed. In addition, the load torque effect on the detection efficiency of these diagnosis media is discussed and a comparative investigation is performed. The decisive factor of comparison is the fault sensitivity. Experimental results show that spectral analysis of the axial stray flux can be an alternative solution to cover effectiveness limitation of the traditional stator current technique and to substitute the classical vibration practice. PMID:23938005

  7. Research on fault diagnosis technique on aerocamera communication based on fault tree analysis

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; He, Binggao; Tian, Chengjun; Yang, Chengyu; Duan, Jie

    2008-12-01

    ARINC429 is the standard of digital transmission of avionic device. This paper used fault tree analysis to diagnosis failures of aerocamera 429 communication, built up fault tree of aerocamera 429 communication, analyzed and diagnosed the failures, and designed the detecting flaw, finished aerocamera 429 communication detecting system finally. This detecting system can detect aerocamera 429 communication board fast and effectively, and cut down period of clearing of fault. In addition, it can increase the direction of maintenance and repair, improve the overall function of aerocamera.

  8. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine

    PubMed Central

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-01-01

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665

  9. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.

    PubMed

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-01-01

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665

  10. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2015-02-01

    The wavelet transform has been widely used in the field of machinery fault diagnosis for its good property of band-pass filtering. However, the filtered signal still faces the contamination of in-band noise. This paper focuses on wavelet enveloping, and proposes a new method, called multiscale envelope manifold (MEM), to extract the envelope information of fault impacts with in-band noise suppression. The MEM addresses manifold learning on the wavelet envelopes at multiple scales. Specifically, the proposed method is conducted by three following steps. First, the continuous wavelet transform (CWT) with complex Morlet wavelet base is introduced to obtain the wavelet envelopes at all scales. Second, the wavelet envelopes are restricted in one or more narrow scale bands to simply include the envelope information of fault impacts. The scale band is determined through a smoothness index-based (SI-based) selection method by considering the impulsiveness inside the power spectrum. Third, the manifold learning algorithm is conducted on the wavelet envelopes at selected scales to extract the intrinsic envelope manifold of fault-related impulses. The MEM combines the envelope information at multiple scales in a nonlinear approach, and may thus preserve the factual envelope structure of machinery fault. Simulation studies and experimental verifications confirm that the new method is effective for enhanced fault diagnosis of rotating machines.

  11. Fault Prognosis and Diagnosis of an Automotive Rear Axle Gear Using a RBF-BP Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yimin; Liang, Jie; Gu, Fengshou; Chen, Zaigang; Ball, Andrew

    2011-07-01

    The rear axle gear is one of the key parts of transmission system for automobiles. Its healthy state directly influences the security and reliability of the automotives. However, non-stationary and nonlinear characteristics of gear vibration due to load and speed fluctuations, makes it difficult to detect and diagnosis the faults from the transmission gear. To solve this problem a fault prognosis and diagnosis method based on a combination of radial basis function(RBF) and back-propagation (BP) neural networks is proposed in this paper. Firstly, a moving average pretreatment is used to suppress the time series fluctuation of vibration characteristic parameter tie series and reduce the interference of random noise. Then, the RBF network is applied to the pretreated parameter sequences for fault prognosis. Furthermore, based on self-learning ability of neural networks, characteristic parameters for different common faults are learned by a BP network. Then the trained BP neural network is utilized for fault diagnosis of the rear axle gear. The results show that the proposed method has a good performance in prognosing and diagnosing different faults from the rear axle gear.

  12. Algorithms for Multiple Fault Diagnosis With Unreliable Tests

    NASA Technical Reports Server (NTRS)

    Shakeri, Mojdeh; Raghavan, Vijaya; Pattipati, Krishna R.; Patterson-Hine, Ann

    1997-01-01

    In this paper, we consider the problem of constructing optimal and near-optimal multiple fault diagnosis (MFD) in bipartite systems with unreliable (imperfect) tests. It is known that exact computation of conditional probabilities for multiple fault diagnosis is NP-hard. The novel feature of our diagnostic algorithms is the use of Lagrangian relaxation and subgradient optimization methods to provide: (1) near optimal solutions for the MFD problem, and (2) upper bounds for an optimal branch-and-bound algorithm. The proposed method is illustrated using several examples. Computational results indicate that: (1) our algorithm has superior computational performance to the existing algorithms (approximately three orders of magnitude improvement), (2) the near optimal algorithm generates the most likely candidates with a very high accuracy, and (3) our algorithm can find the most likely candidates in systems with as many as 1000 faults.

  13. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xu, Guanghua; Zhang, Qing; Liu, Dan; Jiang, Kuosheng

    2015-07-01

    During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications significantly. In order to extend the conventional diagnosis technique to speed variation cases, a rotating speed isolation method is proposed. This method consists of four main steps: (a) a low-pass filter is used to separate the rotating speed components and the resonance frequency band from the original signal; (b) the trend line of instantaneous rotating frequency (IRF) is extracted by ridge detection from the short-time spectrum of the low-pass filtered signal; (c) the envelope signal is obtained by fast kurtogram based resonance demodulation; (d) the trend line of instantaneous fault characteristic frequency (IFCF) is extracted by ridge detection from the short-time spectrum of the envelope signal; (e) the rotating speed is isolated and the instantaneous fault characteristic order (FCO), which is obtained by simply dividing the IFCF by IRF, can be used to identify the fault type. By rotating speed isolation, the bearing faults under speed variation conditions can be detected without additional tachometers. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals. The results show that the proposed method outperforms the conventional envelope analysis method and is effective in bearing diagnosis under speed variation conditions.

  14. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong

    2014-03-01

    Order tracking based on time-frequency representation (TFR) is one of the most effective methods for gear fault detection under time-varying rotational speed without using a tachometer. However, for a rolling element bearing, the signal components related to rotational speed usually cannot be directly extracted from the TFR. As such, we propose a new method to solve this problem. This method consists of four main steps: (a) signal filtering via fast spectral kurtosis (SK) analysis - this together with the short time Fourier transform (STFT) leads to a TFR of the filtered signal with clear fault-revealing trend lines, (b) extraction of instantaneous fault characteristic frequency (IFCF) from the TFR using an amplitude-sum based spectral peak search algorithm, (c) signal resampling based on the extracted IFCF to convert the non-stationary time-domain signal into the stationary fault phase angle (FPA) domain signal, and (d) transform of the FPA domain signal into the domain of the fault characteristic order (FCO) and identification of fault type from the FCO spectrum. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

  15. Experimental investigation for fault diagnosis based on a hybrid approach using wavelet packet and support vector classification.

    PubMed

    Li, Pengfei; Jiang, Yongying; Xiang, Jiawei

    2014-01-01

    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361

  16. A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Meng, Lingjie; Xiang, Jiawei; Wang, Yanxue; Jiang, Yongying; Gao, Haifeng

    2015-01-01

    Defective rolling bearing response is often characterized by the presence of periodic impulses, which are usually immersed in heavy noise. Therefore, a hybrid fault diagnosis approach is proposed. The morphological filter combining with translation invariant wavelet is taken as the pre-filter process unit to reduce the narrowband impulses and random noises in the original signal, then the purified signal will be decomposed by improved ensemble empirical mode decomposition (EEMD), in which a new selection method integrating autocorrelation analysis with the first two intrinsic mode functions (IMFs) having the maximum energies is put forward to eliminate the pseudo low-frequency components of IMFs. Applying the envelope analysis on those selected IMFs, the defect information is easily extracted. The proposed hybrid approach is evaluated by simulations and vibration signals of defective bearings with outer race fault, inner race fault, rolling element fault. Results show that the approach is feasible and effective for the fault detection of rolling bearing.

  17. Development of an on-line diagnosis system for rotor vibration via model-based intelligent inference

    PubMed

    Bai; Hsiao; Tsai; Lin

    2000-01-01

    An on-line fault detection and isolation technique is proposed for the diagnosis of rotating machinery. The architecture of the system consists of a feature generation module and a fault inference module. Lateral vibration data are used for calculating the system features. Both continuous-time and discrete-time parameter estimation algorithms are employed for generating the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed method is implemented on a digital signal processor. Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance. PMID:10641641

  18. A diagnosis system using object-oriented fault tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors.

  19. A Feature Extraction Method Based on Information Theory for Fault Diagnosis of Reciprocating Machinery

    PubMed Central

    Wang, Huaqing; Chen, Peng

    2009-01-01

    This paper proposes a feature extraction method based on information theory for fault diagnosis of reciprocating machinery. A method to obtain symptom parameter waves is defined in the time domain using the vibration signals, and an information wave is presented based on information theory, using the symptom parameter waves. A new way to determine the difference spectrum of envelope information waves is also derived, by which the feature spectrum can be extracted clearly and machine faults can be effectively differentiated. This paper also compares the proposed method with the conventional Hilbert-transform-based envelope detection and with a wavelet analysis technique. Practical examples of diagnosis for a rolling element bearing used in a diesel engine are provided to verify the effectiveness of the proposed method. The verification results show that the bearing faults that typically occur in rolling element bearings, such as outer-race, inner-race, and roller defects, can be effectively identified by the proposed method, while these bearing faults are difficult to detect using either of the other techniques it was compared to. PMID:22574021

  20. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery.

    PubMed

    Wang, Huaqing; Chen, Peng

    2009-01-01

    This paper proposes a feature extraction method based on information theory for fault diagnosis of reciprocating machinery. A method to obtain symptom parameter waves is defined in the time domain using the vibration signals, and an information wave is presented based on information theory, using the symptom parameter waves. A new way to determine the difference spectrum of envelope information waves is also derived, by which the feature spectrum can be extracted clearly and machine faults can be effectively differentiated. This paper also compares the proposed method with the conventional Hilbert-transform-based envelope detection and with a wavelet analysis technique. Practical examples of diagnosis for a rolling element bearing used in a diesel engine are provided to verify the effectiveness of the proposed method. The verification results show that the bearing faults that typically occur in rolling element bearings, such as outer-race, inner-race, and roller defects, can be effectively identified by the proposed method, while these bearing faults are difficult to detect using either of the other techniques it was compared to. PMID:22574021

  1. On fault-tolerant structure, distributed fault-diagnosis, reconfiguration, and recovery of the array processors

    SciTech Connect

    Hosseini, S.H.

    1989-07-01

    The increasing need for the design of high-performance computers has led to the design of special purpose computers such as array processors. This paper studies the design of fault-tolerant array processors. First, it is shown how hardware redundancy can be employed in the existing structures in order to make them capable of withstanding the failure of some of the array links and processors. Then distributed fault-tolerance schemes are introduced for the diagnosis of the faulty elements, reconfiguration, and recovery of the array. Fault tolerance is maintained by the cooperation of processors in a decentralized form of control without the participation of any type of hardcore or fault-free central controller such as a host computer.

  2. A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection

    NASA Astrophysics Data System (ADS)

    Yang, Mao

    A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection is developed. The coupled rotor/fuselage/vibration absorbers (bifilar type) system incorporates consistent structural, aerodynamic and inertial couplings. The aeroelastic analysis is based on finite element methods in space and time. The coupled rotor, absorbers and fuselage equations are transformed into the modal space and solved in the fixed coordinate system. A coupled trim procedure is used to solve the responses of rotor, fuselage and vibration absorber, rotor trim control and vehicle orientation simultaneously. Rotor system faults are modeled by changing blade structural, inertial and aerodynamic properties. Both adjustable and component faults, such as misadjusted trim-tab, misadjusted pitch-control rod (PCR), imbalanced mass and pitch-control bearing freeplay, are investigated. Detailed SH-60 helicopter fuselage NASTRAN model is integrated into the analysis. Validation study was performed using SH-60 helicopter flight test data. The prediction of fuselage natural frequencies show fairly large error compared to shake test data. Analytical predictions of fuselage baseline (without fault) 4/rev vibration and fault-induced 1/rev vibration and blade displacement deviations are compared with SH-60 flight test (with prescribed fault) data. The fault-induced 1/rev fuselage vibration (magnitude and phase) predicted by present analysis generally capture the trend of the flight test data, although prediction under-predicts. The large discrepancy of fault-induced 1/rev vibration magnitude at hover between prediction and flight test data partially comes from the variation of flight condition (not perfect hover) and partially due to the effect of the rotor-fuselage aerodynamic interaction (wake effect) at low speed which is not considered in the analysis. Also the differences in the phase prediction is not clear since only the magnitude and phase information were given instead of the original vibration time-history. The imbalanced mass fault causes higher 1/rev roll vibration that is insensitive to the airspeed. The misadjusted trim-tab fault induced 1/rev vertical vibration increases with airspeed. The misadjusted pitch-control rod fault causes high vibration at hover. A parametric study was conducted to identify key factors that affect the fault-induced fuselage vibration. Analysis show that elastic fuselage model and precise hub modeling (inclusion of vibration absorbers) are essential to the vibration pre diction. The analysis shows that a compound fault can be expressed as a linear combination of individual faults involved. Aircraft operational parameters, such as gross-weight; center of gravity location, flight speed, flight path and aircraft configuration, have significant impact on the fault-induced 1/rev vibration. Prediction show that there are certain patterns in the fault-induced 1/rev hub-loads. Thus measuring both fuselage vibration and hub loads may benefit rotor system fault detection.

  3. Fault diagnosis in orbital refueling operations

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1988-01-01

    Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers and is often quite different from the user logic. The latter is usually a compiled version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design. The presentation is represented by abstract and overhead visuals only.

  4. Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo

    2014-05-01

    The vibration or acoustic signal from rotating machinery with localized fault usually behaves as the form of amplitude modulation (AM) and/or frequency modulation (FM). The demodulation techniques are conventional ways to reveal the fault characteristics from the analyzed signals. One of these techniques is the time-scale manifold (TSM) ridge demodulation method with the merits of good time-frequency localization and in-band noise suppression properties. However, due to the essential attribute of wavelet ridge, the survived in-band noise on the achieved TSM will still disturb the envelope extraction of fault-induced impulses. This paper presents an improved TSM ridge demodulation method, called exchanged ridge demodulation of TSM, by combining the benefits of the first two TSMs: the noise suppression of the first TSM and the noise separation of the second TSM. Specifically, the ridge on the second TSM can capture the fault-induced impulses precisely while avoiding the in-band noise smartly. By putting this ridge on the first TSM, the corresponding instantaneous amplitude (IA) waveform can represent the real envelope of pure faulty impulses. Moreover, an adaptive selection method for Morlet wavelet parameters is also proposed based on the smoothness index (SI) in the time-scale domain for an optimal time-scale representation of analyzed signal. The effectiveness of the proposed method is verified by means of a simulation study and applications to diagnosis of bearing defects and gear fault.

  5. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Peng, Zhongxiao; Li, Li

    2011-10-01

    Gear systems are an essential element widely used in a variety of industrial applications. Since approximately 80% of the breakdowns in transmission machinery are caused by gear failure, the efficiency of early fault detection and accurate fault diagnosis are therefore critical to normal machinery operations. Reviewed literature indicates that only limited research has considered the gear multi-fault diagnosis, especially for single, coupled distributed and localized faults. Through virtual prototype simulation analysis and experimental study, a novel method for gear multi-fault diagnosis has been presented in this paper. This new method was developed based on the integration of Wavelet transform (WT) technique, Autoregressive (AR) model and Principal Component Analysis (PCA) for fault detection. The WT method was used in the study as the de-noising technique for processing raw vibration signals. Compared with the noise removing method based on the time synchronous average (TSA), the WT technique can be performed directly on the raw vibration signals without the need to calculate any ensemble average of the tested gear vibration signals. More importantly, the WT can deal with coupled faults of a gear pair in one operation while the TSA must be carried out several times for multiple fault detection. The analysis results of the virtual prototype simulation prove that the proposed method is a more time efficient and effective way to detect coupled fault than TSA, and the fault classification rate is superior to the TSA based approaches. In the experimental tests, the proposed method was compared with the Mahalanobis distance approach. However, the latter turns out to be inefficient for the gear multi-fault diagnosis. Its defect detection rate is below 60%, which is much less than that of the proposed method. Furthermore, the ability of the AR model to cope with localized as well as distributed gear faults is verified by both the virtual prototype simulation and experimental studies.

  6. An approach to fault diagnosis of vacuum cleaner motors based on sound analysis

    NASA Astrophysics Data System (ADS)

    Benko, Uros̆; Petrovc̆ic̆, Janko; Juričić, Đani; Tavčar, Joža; Rejec, Jožica

    2005-03-01

    This paper addresses the problem of the detailed quality end-test of vacuum cleaner motors at the end of the manufacturing cycle. For the prototyping purposes a test rig has been constructed and is presented in short. The diagnostic system built hereto takes advantage of vibration, sound and commutation analysis as well as parity relation checks. The paper focuses on the sound analysis module and provides two main contributions. First, an analysis of sound sources is performed and a set of appropriate features is suggested. Second, efficient signal processing algorithms are developed in order to detect and localise bearing faults, defects in fan impeller, improper brush-commutator contacts and rubbing of rotating surfaces. A thorough laboratory study shows that the underlying diagnostic modules provide accurate diagnosis, high sensitivity with respect to faults, and good diagnostic resolution.

  7. Fault Diagnosis in a Fully Distributed Local Computer Network.

    NASA Astrophysics Data System (ADS)

    Kwag, Hye Keun

    Local computer networks are being installed in diverse application areas. Many of the networks employ a distributed control scheme, which has advantages in performance and reliability over a centralized one. However, distribution of control increases the difficulty in locating faulty hardware elements. Consequently, advantages may not be fully realized unless measures are taken to account for the difficulties of fault diagnosis; yet, not much work has been done in this area. A hardcore is defined as a node or a part of a node which is fault-free and which can diagnose other elements in a system. Faults are diagnosed in most existing distributed local computer networks by assuming that every node, or a part of every node, is a fixed hardcore: a fixed node or a part of a fixed node is always a hardcore. Maintaining such high reliability may not be possible or cost-effective for some systems. A distributed network contains dynamically redundant elements, and it is reasonable to assume that fewer nodes are simultaneously faulty than are fault-free at any point in the life cycle of the network. A diagnostic model is proposed herein which determines bindary evaluation results according to the status of the testing and tested nodes, and which leads the network to dynamically locate a fault-free node (a hardcore). This diagnostic model is, in most cases, simpler to implement and more cost-effective than the fixed hardcore. The selected hardcore can diagnose the other elements and can locate permanent faults. In a hop-by-hop test, the destination node and every intermediate node in a path test the transmitted data. This dissertation presents another method to locate an element with frequent transient faults; it checks data only at the destination, thereby, eliminating the need for a hop-by-hop test.

  8. A fault diagnosis scheme of rolling element bearing based on near-field acoustic holography and gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Wu, Haijun; Hou, Junjian

    2012-07-01

    Vibration signal analysis is the most widely used technique in condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for rolling element bearing fault diagnosis based on near-field acoustic holography (NAH) and gray level co-occurrence matrix (GLCM) is presented in this paper. It focuses on applying the distribution information of sound field to bearing fault diagnosis. A series of rolling element bearings with different types of fault are experimentally studied. Sound fields and corresponding acoustic images in different bearing conditions are obtained by fast Fourier transform (FFT) based NAH. GLCM features are extracted for capturing fault pattern information underlying sound fields. The optimal feature subset selected by improved F-score is fed into multi-class support vector machine (SVM) for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with the traditional ABD method. Considering test cost, the quantized level and the number of GLCM features for each characteristic frequency is suggested to be 4 and 32, respectively, with the satisfactory accuracy rate 97.5%.

  9. The envelope order spectrum based on generalized demodulation time-frequency analysis and its application to gear fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Yang, Yu; Yu, Dejie

    2010-02-01

    The generalized demodulation time-frequency analysis is a novel signal processing method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM-FM) signals as it can decompose a multi-component signal into a set of single-component signals whose instantaneous frequencies own physical meaning. While fault occurs in gear, the vibration signals measured from gearbox would exactly display AM-FM characteristics. Therefore, targeting the modulation feature of gear vibration signal in run-ups and run-downs, a fault diagnosis method in which generalized demodulation time-frequency analysis and envelope order spectrum technique are combined is put forward and applied to the transient analysis of gear vibration signal. Firstly the multi-component vibration signal of gear is decomposed into some mono-component signals using the generalized demodulation time-frequency analysis approach; secondly the envelope analysis is performed to each single-component signal; thirdly each envelope signal is re-sampled in angle domain; finally the spectrum analysis is applied to each re-sampled signal and the corresponding envelope order spectrum can be obtained. Furthermore, the gear working condition can be identified according to the envelope order spectrum. The analysis results from the simulation and experimental signals show that the proposed algorithm was effective in gear fault diagnosis.

  10. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Minghang; Tang, Baoping; Tan, Qian

    2015-08-01

    Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases.

  11. LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information

    PubMed Central

    Liu, Zhiwen; Chen, Xuefeng; He, Zhengjia; Shen, Zhongjie

    2013-01-01

    Timely and accurate condition monitoring and fault diagnosis of rotating machinery are very important to maintain a high degree of availability, reliability and operational safety. This paper presents a novel intelligent method based on local mean decomposition (LMD) and multi-class reproducing wavelet support vector machines (RWSVM), which is applied to diagnose rotating machinery faults. First, the sensor-based vibration signals measured from the rotating machinery are preprocessed by the LMD method and product functions (PFs) are produced. Second, statistic features are extracted to acquire more fault characteristic information from the sensitive PF. Finally, these features are fed into a multi-class RWSVM to identify the rotating machinery health conditions. The experimental results validate the effectiveness of the proposed RWSVM method in identifying rotating machinery fault patterns accurately and effectively and its superiority over that based on the general SVM. PMID:23881133

  12. LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information.

    PubMed

    Liu, Zhiwen; Chen, Xuefeng; He, Zhengjia; Shen, Zhongjie

    2013-01-01

    Timely and accurate condition monitoring and fault diagnosis of rotating machinery are very important to maintain a high degree of availability, reliability and operational safety. This paper presents a novel intelligent method based on local mean decomposition (LMD) and multi-class reproducing wavelet support vector machines (RWSVM), which is applied to diagnose rotating machinery faults. First, the sensor-based vibration signals measured from the rotating machinery are preprocessed by the LMD method and product functions (PFs) are produced. Second, statistic features are extracted to acquire more fault characteristic information from the sensitive PF. Finally, these features are fed into a multi-class RWSVM to identify the rotating machinery health conditions. The experimental results validate the effectiveness of the proposed RWSVM method in identifying rotating machinery fault patterns accurately and effectively and its superiority over that based on the general SVM. PMID:23881133

  13. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains

    NASA Astrophysics Data System (ADS)

    Hu, Bingbing; Li, Bing

    2016-02-01

    It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.

  14. Dominant feature selection for the fault diagnosis of rotary machines using modified genetic algorithm and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Yan, Jihong; de Silva, Clarence W.

    2015-05-01

    This paper develops a novel dominant feature selection method using a genetic algorithm with a dynamic searching strategy. It is applied in the search for the most representative features in rotary mechanical fault diagnosis, and is shown to improve the classification performance with fewer features. First, empirical mode decomposition (EMD) is employed to decompose a vibration signal into intrinsic mode functions (IMFs) which represent the signal characteristic with sample oscillatory modes. Then, a modified genetic algorithm with variable-range encoding and dynamic searching strategy is used to establish relationships between optimized feature subsets and the classification performance. Next, a statistical model that uses receiver operating characteristic (ROC) is developed to select dominant features. Finally, support vector machine (SVM) is used to classify different fault patterns. Two real-world problems, rotor-unbalance vibration and bearing corrosion, are employed to evaluate the proposed feature selection scheme and fault diagnosis system. Statistical results obtained by analyzing the two problems, and comparative studies with five well-known feature selection techniques, demonstrate that the method developed in this paper can achieve improvements in identification accuracy with lower feature dimensionality. In addition, the results indicate that the proposed method is a promising tool to select dominant features in rotary machinery fault diagnosis.

  15. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    PubMed Central

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  16. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis.

    PubMed

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  17. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  18. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  19. A fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVM

    NASA Astrophysics Data System (ADS)

    Yu, Liu; Junhong, Zhang; Fengrong, Bi; Jiewei, Lin; Wenpeng, Ma

    2015-02-01

    Targeting the non-stationary characteristics of the vibration signals of a diesel engine valve train, and the limitation of the autoregressive (AR) model, a novel approach based on the improved intrinsic time-scale decomposition (ITD) and relevance vector machine (RVM) is proposed in this paper for the identification of diesel engine valve train faults. The approach mainly consists of three stages: First, prior to the feature extraction, non-uniform B-spline interpolation is introduced to the ITD method for the fitting of baseline signal, then the improved ITD is used to decompose the non-stationary signals into a set of stationary proper rotation components (PRCs). Second, the AR model is established for each PRC, and the first several AR coefficients together with the remnant variance of all PRCs are regarded as the fault feature vectors. Finally, a new separability based directed acyclic graph (SDAG) method is proposed to determine the structure of multi-class RVM, and the fault feature vectors are classified using the SDAG-RVM classifier to recognize the fault of the diesel engine valve train. The experimental results demonstrate that the proposed fault diagnosis approach can effectively extract the fault features and accurately identify the fault patterns.

  20. Fault Detection and Diagnosis System for the Air-conditioning

    NASA Astrophysics Data System (ADS)

    Nakahara, Nobuo

    The fault detection and diagnosis system, the FDD system, for the HVAC was initiated around the middle of 1970s in Japan but it still remains at the elementary stage. The HVAC is really one of the most complicated and large scaled system for the FDD system. Besides, the maintenance engineering was never focussed as the target of the academic study since after the war, but the FDD system for some kinds of the components and subsystems has been developed for the sake of the practical industrial needs. Recently, international cooperative study in the IEA Annex 25 on the energy conservation for the building and community targetted on the BOFD, the building optimization, fault detection and diagnosis. Not a few academic peaple from various engineering field got interested and, moreover, some national projects seem to start in the European countries. The author has reviewed the state of the art of the FDD and BO as well based on the references and the experience at the IEA study.

  1. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  2. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu

    2016-01-01

    This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.

  3. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    PubMed

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-01-01

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858

  4. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals

    PubMed Central

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-01-01

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858

  5. Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.; Qu, Jian; Tian, Tao; Liu, Zhiliang

    2013-10-01

    The vibration signals of faulty planetary gearboxes have complicated spectral structures due to the amplitude modulation and frequency modulation (AMFM) nature of gear damage induced vibration and the additional multiplicative amplitude modulation (AM) effect caused by the time-varying vibration transfer paths (for local gear damage case) and the passing planets (for distributed gear damage case). The spectral complexity leads to the difficulty in fault diagnosis of planetary gearboxes. Observing that both the amplitude envelope and the instantaneous frequency of planetary gearbox vibration signals are associated with the characteristic frequency of the faulty gear, a joint amplitude and frequency demodulation method is proposed for fault diagnosis of planetary gearboxes. In order to satisfy the mono-component requirement by instantaneous frequency estimation, a signal is firstly decomposed into product functions (PF) using the local mean decomposition (LMD) method. Then, the earliest extracted PF that has an instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is chosen for further analysis, because it contains most of the information about the gear fault. The amplitude demodulation analysis can be accomplished through Fourier transforming the amplitude envelope of the chosen PF. For the frequency demodulation analysis, Fourier transform is applied to the estimated instantaneous frequency of the chosen PF to reveal its fluctuating frequency, thus obtaining the spectrum of the instantaneous frequency. By joint application of the amplitude and frequency demodulation methods, planetary gearbox faults can be diagnosed by matching the dominant peaks in the envelope spectrum and the spectrum of instantaneous frequency with the theoretical characteristic frequencies of faulty gears. The performance of the proposed method is illustrated by simulated signal analysis, and is validated by experimental signal analysis of a lab planetary gearbox with intentionally created pitting and naturally developed wear.

  6. Satellite fault diagnosis using support vector machines based on a hybrid voting mechanism.

    PubMed

    Yin, Hong; Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324

  7. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    PubMed Central

    Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324

  8. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929

  9. SOM Neural Network Fault Diagnosis Method of Polymerization Kettle Equipment Optimized by Improved PSO Algorithm

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929

  10. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.

    PubMed

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system. PMID:23464251

  11. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants

    NASA Astrophysics Data System (ADS)

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  12. A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong

    2015-08-01

    Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.

  13. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  14. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

    NASA Astrophysics Data System (ADS)

    Cabrera, Diego; Sancho, Fernando; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Li, Chuan; Vásquez, Rafael E.

    2015-09-01

    This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal's condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients' energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters' space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.

  15. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.

    PubMed

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-01-01

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059

  16. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform

    PubMed Central

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-01-01

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059

  17. Hidden Markov Model based fault diagnosis for stamping processes

    NASA Astrophysics Data System (ADS)

    Ge, M.; Du, R.; Xu, Y.

    2004-03-01

    Metal stamping process plays a very important role in the modern manufacturing industry. Owing to an ever-increasing demand for better quality at reduced cost, a practical on-line monitoring and diagnosis system is of much appeal. However, the stamping process is a complicated transient process involving a large number of variables. It is rather difficult to monitor and diagnose by classical methods such as statistical classification. In this paper, a new method for fault detecting the stamping process is developed. First, it uses a number of autoregressive (AR) models to model the monitoring signal in different time periods of a stamping operation and uses the residues as the features. Then, it uses a Hidden Markov Model (HMM) for classification. The experiment results indicate that the new method is effective with a success rate between 80% and 90%.

  18. Knowledge-based fault diagnosis system for refuse collection vehicle

    SciTech Connect

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  19. Real-time antenna fault diagnosis experiments at DSS 13

    NASA Technical Reports Server (NTRS)

    Mellstrom, J.; Pierson, C.; Smyth, P.

    1992-01-01

    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.

  20. Knowledge-based fault diagnosis system for refuse collection vehicle

    NASA Astrophysics Data System (ADS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  1. Human problem solving performance in a fault diagnosis task

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1978-01-01

    It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.

  2. Expert systems for fault diagnosis in nuclear reactor control

    NASA Astrophysics Data System (ADS)

    Jalel, N. A.; Nicholson, H.

    1990-11-01

    An expert system for accident analysis and fault diagnosis for the Loss Of Fluid Test (LOFT) reactor, a small scale pressurized water reactor, was developed for a personal computer. The knowledge of the system is presented using a production rule approach with a backward chaining inference engine. The data base of the system includes simulated dependent state variables of the LOFT reactor model. Another system is designed to assist the operator in choosing the appropriate cooling mode and to diagnose the fault in the selected cooling system. The response tree, which is used to provide the link between a list of very specific accident sequences and a set of generic emergency procedures which help the operator in monitoring system status, and to differentiate between different accident sequences and select the correct procedures, is used to build the system knowledge base. Both systems are written in TURBO PROLOG language and can be run on an IBM PC compatible with 640k RAM, 40 Mbyte hard disk and color graphics.

  3. The use of hybrid automata for fault-tolerant vibration control for parametric failures

    NASA Astrophysics Data System (ADS)

    Byreddy, Chakradhar; Frampton, Kenneth D.; Yongmin, Kim

    2006-03-01

    The purpose of this work is to make use of hybrid automata for vibration control reconfiguration under system failures. Fault detection and isolation (FDI) filters are used to monitor an active vibration control system. When system failures occur (specifically parametric faults) the FDI filters detect and identify the specific failure. In this work we are specifically interested in parametric faults such as changes in system physical parameters; however this approach works equally well with additive faults such as sensor or actuator failures. The FDI filter output is used to drive a hybrid automaton, which selects the appropriate controller and FDI filter from a library. The hybrid automata also implements switching between controllers and filters in order to maintain optimal performance under faulty operating conditions. The biggest challenge in developing this system is managing the switching and in maintaining stability during the discontinuous switches. Therefore, in addition to vibration control, the stability associated with switching compensators and FDI filters is studied. Furthermore, the performance of two types of FDI filters is compared: filters based on parameter estimation methods and so called "Beard-Jones" filters. Finally, these simulations help in understanding the use of hybrid automata for fault-tolerant control.

  4. Multi-stable stochastic resonance and its application research on mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jimeng; Chen, Xuefeng; He, Zhengjia

    2013-10-01

    It is difficult to extract the fault features of a rotating machine via vibration analysis due to interference from background noise. Stochastic resonance (SR), used as a method of utilising noise to amplify weak signals in nonlinear dynamical systems, can detect weak signals overwhelmed in the noise. However, the detection effect of current SR methods is still unsatisfactory. To further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR, the present study proposes an improved SR method with a multi-stable model for identifying the defect-induced rotating machine faults by analysing the influence relationship between the resonance model and the resonance effect. Due to the structural characteristics of three potential wells and two barriers, the proposed resonance model can not only further amplify weak signals, but also convert into a monostable model, a bistable model or a tristable model. This result is achieved by adjusting system parameters and thus obtaining a better matching of the input signals and resonance models. Therefore, the multi-stable SR method, combined with the characteristics of the multi-stable model, can both increase the output SNR and improve the detection effect and also detect the low SNR signals and enhance the processing capability of SR for weak signals. Finally, the proposed method is applied to a gearbox fault diagnosis in a rolling mill in which two local faults located in the big gear and the pinion, respectively, are found successfully. It can be concluded that multi-stable SR method has practical value in engineering. The influence relationship between a resonance model and SR is analysed. An improved SR method with a multi-stable model is presented. The signal processing performance of multi-stable SR is analysed comparatively. Simulation and application show the validity and superiority of multi-stable SR.

  5. Development of rules for single-line fault diagnosis in delta-delta connected distribution systems

    SciTech Connect

    Momoh, J.A.; Dias, L.G.; Thor, T.; Laird, D.N.

    1994-12-31

    Single-line fault diagnosis in delta-delta connected distribution systems suffers due to the low fault currents associated with such faults. Simulation tests on this type of system reveals that rule based decision support can be used of such diagnosis. This paper describes the development of rules for single-line fault diagnosis utilizing simulation test results. The key parameters used are the voltage magnitude of each phase at the bus bar and the currents on the feeders including their sequence components.

  6. A time domain approach to diagnose gearbox fault based on measured vibration signals

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Dhupia, Jaspreet Singh

    2014-03-01

    Spectral analysis techniques to process vibration measurements have been widely studied to characterize the state of gearboxes. However, in practice, the modulated sidebands resulting from the local gear fault are often difficult to extract accurately from an ambiguous/blurred measured vibration spectrum due to the limited frequency resolution and small fluctuations in the operating speed of the machine that often occurs in an industrial environment. To address this issue, a new time-domain diagnostic algorithm is developed and presented herein for monitoring of gear faults, which shows an improved fault extraction capability from such measured vibration signals. This new time-domain fault detection method combines the fast dynamic time warping (Fast DTW) as well as the correlated kurtosis (CK) techniques to characterize the local gear fault, and identify the corresponding faulty gear and its position. Fast DTW is employed to extract the periodic impulse excitations caused from the faulty gear tooth using an estimated reference signal that has the same frequency as the nominal gear mesh harmonic and is built using vibration characteristics of the gearbox operation under presumed healthy conditions. This technique is beneficial in practical analysis to highlight sideband patterns in situations where data is often contaminated by process/measurement noises and small fluctuations in operating speeds that occur even at otherwise presumed steady-state conditions. The extracted signal is then resampled for subsequent diagnostic analysis using CK technique. CK takes advantages of the periodicity of the geared faults; it is used to identify the position of the local gear fault in the gearbox. Based on simulated gear vibration signals, the Fast DTW and CK based approach is shown to be useful for condition monitoring in both fixed axis as well as epicyclic gearboxes. Finally the effectiveness of the proposed method in fault detection of gears is validated using experimental signals from a planetary gearbox test rig. For fault detection in planetary gear-sets, a window function is introduced to account for the planet motion with respect to the fixed sensor, which is experimentally determined and is later employed for the estimation of reference signal used in Fast DTW algorithm.

  7. Diagnosis of Compressor Product's Malfunctions Based on Vibration Analysis

    NASA Astrophysics Data System (ADS)

    Toyoshima, Masaki; Yamashita, Koji; Obase, Shinichirou; Nobata, Toshihumi

    Diagnosis of compressor product's malfunctions based on the vibration wave pattern data of the compressor and the FFT analysis data is developed. The feature of the analysis technique is two points. One is "Evaluating the ratio of the FFT integral calculus value of low frequency area and the high frequency area of the vibration wave pattern for the feature of abnormalitys", and the other is "Separating and evaluating the wave pattern region at the time of the start and the steady part as correspondence to the phenomenon that an abnormal tendency appears in the non-steady early start region". The feature of each abnormality is extracted. A diagnosis algorithm that distinguished normality and abnormality is developed. Moreover, the cause is distinguished about abnormality. The verification examination of the scroll compressor is done in the production line. And the effectiveness of this diagnosis algorithm is validated for both the alternating-current motor type scroll compressor and the direct-current motor type scroll compressor.

  8. Fault diagnosis of an air-handling unit using artificial neural networks

    SciTech Connect

    Lee, W.Y.; House, J.M.; Park, C.; Kelly, G.E.

    1996-11-01

    The objective of this study is to describe the application of artificial neural networks to the problem of fault diagnosis in an air-handling unit. Initially, residuals of system variables that can be used to quantify the dominant symptoms of fault modes of operation are selected. Idealized steady-state patterns of the residuals are then defined for each fault mode of operation. The steady-state relationship between the dominant symptoms and the faults is learned by an artificial neural network using the backpropagation algorithm. The trained neural network is applied to experimental data for various faults and successfully identifies each fault.

  9. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.

    PubMed

    Li, Chaoshun; Zhou, Jianzhong

    2014-09-01

    Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this paper, a semi-supervised kernel clustering model is designed to diagnose known and unknown faults. At first, a novel semi-supervised weighted kernel clustering algorithm based on gravitational search (SWKC-GS) is proposed for clustering of dataset composed of labeled and unlabeled fault samples. The clustering model of SWKC-GS is defined based on wrong classification rate of labeled samples and fuzzy clustering index on the whole dataset. Gravitational search algorithm (GSA) is used to solve the clustering model, while centers of clusters, feature weights and parameter of kernel function are selected as optimization variables. And then, new fault samples are identified and diagnosed by calculating the weighted kernel distance between them and the fault cluster centers. If the fault samples are unknown, they will be added in historical dataset and the SWKC-GS is used to partition the mixed dataset and update the clustering results for diagnosing new fault. In experiments, the proposed method has been applied in fault diagnosis for rotatory bearing, while SWKC-GS has been compared not only with traditional clustering methods, but also with SVM and neural network, for known fault diagnosis. In addition, the proposed method has also been applied in unknown fault diagnosis. The results have shown effectiveness of the proposed method in achieving expected diagnosis accuracy for both known and unknown faults of rotatory bearing. PMID:24981891

  10. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  11. Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Damour, Cdric; Benne, Michel; Grondin-Perez, Brigitte; Bessafi, Miloud; Hissel, Daniel; Chabriat, Jean-Pierre

    2015-12-01

    Diagnosis tool for water management is relevant to improve the reliability and lifetime of polymer electrolyte membrane fuel cells (PEMFCs). This paper presents a novel signal-based diagnosis approach, based on Empirical Mode Decomposition (EMD), dedicated to PEMFCs. EMD is an empirical, intuitive, direct and adaptive signal processing method, without pre-determined basis functions. The proposed diagnosis approach relies on the decomposition of FC output voltage to detect and isolate flooding and drying faults. The low computational cost of EMD, the reduced number of required measurements, and the high diagnosis accuracy of flooding and drying faults diagnosis make this approach a promising online diagnosis tool for PEMFC degraded modes management.

  12. A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Baojia; He, Zhengjia; Chen, Xuefeng; Cao, Hongrui; Cai, Gaigai; Zi, Yanyang

    2011-05-01

    Since machinery fault vibration signals are usually multicomponent modulation signals, how to decompose complex signals into a set of mono-components whose instantaneous frequency (IF) has physical sense has become a key issue. Local mean decomposition (LMD) is a new kind of time-frequency analysis approach which can decompose a signal adaptively into a set of product function (PF) components. In this paper, a modulation feature extraction method-based LMD is proposed. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. The computed IF and IA are displayed together in the form of time-frequency representation (TFR). Modulation features can be extracted from the spectrum analysis of the IA and IF. In order to make the IF have physical meaning, the phase-unwrapping algorithm and IF processing method of extrema are presented in detail along with a simulation FM signal example. Besides, the dependence of the LMD method on the signal-to-noise ratio (SNR) is also investigated by analyzing synthetic signals which are added with Gaussian noise. As a result, the recommended critical SNRs for PF decomposition and IF extraction are given according to the practical application. Successful fault diagnosis on a rolling bearing and gear of locomotive bogies shows that LMD has better identification capacity for modulation signal processing and is very suitable for failure detection in rotating machinery.

  13. Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng

    2016-01-01

    A maximum margin classification based on flexible convex hulls (MMC-FCH) is proposed and applied to fault diagnosis of roller bearings. In this method, the class region of each sample set is approximated by a flexible convex hull of its training samples, and then an optimal separating hyper-plane that maximizes the geometric margin between flexible convex hulls is constructed by solving a closest pair of points problem. By using the kernel trick, MMC-FCH can be extended to nonlinear cases. In addition, multi-class classification problems can be processed by constructing binary pairwise classifiers as in support vector machine (SVM). Actually, the classical SVM also can be regarded as a maximum margin classification based on convex hulls (MMC-CH), which approximates each class region with a convex hull. The convex hull is a special case of the flexible convex hull. To train a MMC-FCH classifier, time-domain and frequency-domain statistical parameters are extracted not only from raw vibration signals but also from the resulting intrinsic mode functions (IMFs) by performing empirical mode decomposition (EMD) on the raw signals, and then the distance evaluation technique (DET) is used to select salient features from the whole statistical features. The experiments on bearing datasets show that the proposed method can reliably recognize different bearing faults.

  14. Experimental studies on intelligent fault detection and diagnosis using sensor networks on mechanical pneumatic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Kunbo; Kao, Imin; Kambli, Sachin; Boehm, Christian

    2008-03-01

    Fault is a undesirable factor in any mechanical/pneumatic system. It affects the efficiency of system operation and reduces economic benefit in industry. The early detection and diagnosis of faults in a mechanical system becomes important for preventing failure of equipment and loss of productivity and profits. In this paper, we present our ongoing research results on intelligent fault detections and diagnosis (FDD) on mechanical/ pneumatic systems. Using data from sensors and sensor network in an integrated industrial system, our proposed FDD methodology provides the analysis of necessary sensory information (for example, flow rates and pressure, as well as other digital sensor data) for the detection and diagnosis of system fault. In this experimental study, the leakage of pneumatic cylinder was the "fault." It was shown that the FDD analysis was able to make diagnosis of leakage both in location and size of the fault. In addition, the systematic fault and localized faults can be detected separately. The proposed wavelet method gives rise to the fingerprint analysis to recognize the patterns of the flow rate and pressure data - a very useful tool in intelligent fault detection and diagnosis.

  15. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Lin, Xuefeng; Zuo, Ming J.

    2016-05-01

    Planetary gearbox vibration signals feature complex modulations, thus leading to intricate sideband structure and resulting in difficulty in fault characteristic frequency identification. Intrinsic time-scale decomposition has unique merits, such as high adaptability to changes in signals, low computational complexity, good capability to suppress mode mixing and to preserve temporal information of transients, and excellent suitability for mono-component decomposition of complex multi-component signals. In order to address the issue with planetary gearbox fault diagnosis due to the multiple modulation sources, a joint amplitude and frequency demodulation analysis method is proposed, by exploiting the merits of intrinsic time-scale decomposition. The signal is firstly decomposed into a series of mono-component proper rotational components. Then the one with its instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is selected as the sensitive component. Next, Fourier transformation is applied to the instantaneous amplitude and instantaneous frequency of the sensitive component to obtain the amplitude and frequency demodulated spectra respectively. Finally, a planetary gearbox fault is diagnosed by matching the peaks in the amplitude and frequency demodulated spectra with the theoretical gear fault characteristic frequencies. The proposed method is illustrated by a numerical simulated signal, and further validated by lab experimental signals of a planetary gearbox. The localized faults of sun, planet and ring gears are diagnosed, showing the effectiveness of the method.

  16. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyuan; Zhou, Jianzhong

    2013-12-01

    This study presents a novel procedure based on ensemble empirical mode decomposition (EEMD) and optimized support vector machine (SVM) for multi-fault diagnosis of rolling element bearings. The vibration signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by EEMD. Two types of features, the EEMD energy entropy and singular values of the matrix whose rows are IMFs, are extracted. EEMD energy entropy is used to specify whether the bearing has faults or not. If the bearing has faults, singular values are input to multi-class SVM optimized by inter-cluster distance in the feature space (ICDSVM) to specify the fault type. The proposed method was tested on a system with an electric motor which has two rolling bearings with 8 normal working conditions and 48 fault working conditions. Five groups of experiments were done to evaluate the effectiveness of the proposed method. The results show that the proposed method outperforms other methods both mentioned in this paper and published in other literatures.

  17. An expert system for fault diagnosis in a Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    The detection and diagnosis of SSME faults in an early stage is important in order to allow enough time for fault preventive or corrective measurements. Since most of the faults in a complex system like SSME develop rapidly, early detection and diagnosis of faults is critical for the survival of space vehicles. An expert system has been designed for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations. This paper describes an innovative machine learning approach which is employed for the automatic training of this expert system.

  18. The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB

    NASA Astrophysics Data System (ADS)

    Wang, Jiangping; Hu, Yingcai

    This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.

  19. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  20. A new angular resampling algorithm for the bearing fault diagnosis under the time-varying rotational speed

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Cheng, Weidong; Li, Jianvong; Chu, Fulei

    2015-07-01

    Order tracking is one of the most effective algorithms to eliminate the effect of time-varying rotational speed on the rotary machines. However, this algorithm is not suitable for the faulty rolling bearing unless the peak time of the fault-induced impulse is set as zero which cannot be met in the real engineering. The traditional resampling process will cause uneven intervals between the adjacent impulse peaks in the angular domain and then affect the envelope analysis-based diagnosis result. To solve this problem, a new resampling algorithm with three parts is proposed: (a) linearly fitting the instantaneous rotational speed measured by the tachometer, (b) resampling the vibration signal from the time domain to the angular domain using the traditional method, (c) calculating the envelope deformation amount and then compensating the resampled result. The effectiveness of the proposed method has been validated by both the simulated and experimental bearing vibration signals.

  1. Sensor fault diagnosis for fast steering mirror system based on Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Hongju; Bao, Qiliang; Yang, Haifeng; Tao, Sunjie

    2015-10-01

    In this paper, to improve the reliability of a two-axis fast steering mirror system with minimum hardware consumption, a fault diagnosis method based on Kalman filter was developed. The dynamics model of the two-axis FSM was established firstly, and then the state-space form of the FSM was adopted. A bank of Kalman filters for fault detection was designed based on the state-space form. The effects of the sensor faults on the innovation sequence were investigated, and a decision approach called weighted sum-squared residual (WSSR) was adopted to isolate the sensor faults. Sensor faults could be detected and isolated when the decision statistics changed. Experimental studies on a prototype system show that the faulty sensor can be isolated timely and accurately. Meanwhile, the mathematical model of FSM system was used to design fault diagnosis scheme in the proposed method, thus the consumption of the hardware and space is decreased.

  2. Dynamic friction in sheared fault gouge: Implications of acoustic vibration on triggering and slow slip

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2016-03-01

    Friction and deformation in granular fault gouge are among various dynamic interactions associated with seismic phenomena that have important implications for slip mechanisms on earthquake faults. To this end, we propose a mechanistic model of granular fault gouge subject to acoustic vibrations and shear deformation. The grain-scale dynamics is described by the Shear-Transformation-Zone theory of granular flow, which accounts for irreversible plastic deformation in terms of flow defects whose density is governed by an effective temperature. Our model accounts for stick-slip instabilities observed at seismic slip rates. In addition, as the vibration intensity increases, we observe an increase in the temporal advancement of large slip events, followed by a plateau and gradual decrease. Furthermore, slip becomes progressively slower upon increasing the vibration intensity. The results shed important light on the physical mechanisms of earthquake triggering and slow slip and provide essential elements for the multiscale modeling of earthquake ruptures. In particular, the results suggest that slow slip may be triggered by tremors.

  3. An artificial intelligence approach to onboard fault monitoring and diagnosis for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Abbott, K. H.

    1986-01-01

    Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.

  4. Thermal image based fault diagnosis for rotating machinery

    NASA Astrophysics Data System (ADS)

    Janssens, Olivier; Schulz, Raiko; Slavkovikj, Viktor; Stockman, Kurt; Loccufier, Mia; Van de Walle, Rik; Van Hoecke, Sofie

    2015-11-01

    Infrared imaging is crucial for condition monitoring as the thermographic patterns will differ depending on the fault or machine condition. Currently, a limited number of machine faults have been studied using thermal imaging. Therefore, this paper proposes a novel automatic fault detection system using infrared imaging, focussing on bearings of rotating machinery. The set of bearing faults monitored contain faults for which state-of-the-art techniques have no general solutions such as bearing-lubricant starvation. For each fault, several recordings are made using different bearings to ensure generalization of the fault-detection system. The system contains two image-processing pipelines, each with their own respective purposes. The first pipeline focusses on detecting rotor imbalance, regardless of the bearing faults. The second pipeline focusses on the bearing faults, regardless of whether the machine is balanced or not. Within the first pipeline, imbalance is detected by differencing the consecutive image frames which are subsequently summarized by their distribution along the image axes. For the second pipeline, three features are introduced which are the standard deviation of the temperature, the Gini coefficient, and the Moment of Light. The final system is able to distinguish between all eight different conditions with an accuracy of 88.25%.

  5. On-line early fault detection and diagnosis of municipal solid waste incinerators.

    PubMed

    Zhao, Jinsong; Huang, Jianchao; Sun, Wei

    2008-11-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI. PMID:18255276

  6. Fault Detection and Diagnosis Techniques for Liquid-Propellant Rocket Propellant Engines

    NASA Astrophysics Data System (ADS)

    Wua, Jianjun; Tanb, Songlin

    2002-01-01

    Fault detection and diagnosis plays a pivotal role in the health-monitoring techniques for liquid- propellant rocket engines. This paper firstly gives a brief summary on the techniques of fault detection and diagnosis utilized in liquid-propellant rocket engines. Then, the applications of fault detection and diagnosis algorithms studied and developed to the Long March Main Engine System(LMME) are introduced. For fault detection, an analytical model-based detection algorithm, a time-series-analysis algorithm and a startup- transient detection algorithm based on nonlinear identification developed and evaluated through ground-test data of the LMME are given. For fault diagnosis, neural-network approaches, nonlinear-static-models based methods, and knowledge-based intelligent approaches are presented. Keywords: Fault detection; Fault diagnosis; Health monitoring; Neural networks; Fuzzy logic; Expert system; Long March main engines Contact author and full address: Dr. Jianjun Wu Department of Astronautical Engineering School of Aerospace and Material Engineering National University of Defense Technology Changsha, Hunan 410073 P.R.China Tel:86-731-4556611(O), 4573175(O), 2219923(H) Fax:86-731-4512301 E-mail:jjwu@nudt.edu.cn

  7. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  8. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  9. Fault Diagnosis of Steam Generator Using Signed Directed Graph and Artificial Neural Networks

    SciTech Connect

    Aly, Mohamed N.; Hegazy, Hesham N.

    2006-07-01

    Diagnosis is a very complex and important task for finding the root cause of faults in nuclear power plants. The objective of this paper is to investigate the feasibility of using the combination of signed directed graph (SDG) and artificial neural networks for fault diagnosis in nuclear power plants especially in U-Tube steam generator. Signed directed graph has been the most widely used form of qualitative based model methods for process fault diagnosis. It is constructed to represent the cause-effect relations among the dynamic process variables. Signed directed graph consists of nodes represent the process variables and branches. The branch represents the qualitative influence of a process variable on the related variable. The main problem in fault diagnosis using the signed directed graph is the unmeasured variables. Therefore, neural networks are used to estimate the values of unmeasured nodes. In this work, different four cases of faults in the steam generator ( SG) have been diagnosed, three of them are single fault and the fourth is multiple fault. The first three faults are by pass valve leakage (Vbp(+)), main feed water valve opening increase (Vfw(+)), main feed water valve opening decrease (Vfw (-)). The fourth fault is a multiple fault where by-pass valve leakage and main feed water valve opening decrease (Vbp(+) and Vfw (-)) in the same time. The used data are collected from a basic principle simulator of pressurized water reactor 925 Mwe. The signed directed graph of the steam generator is constructed to represent the cause-effect relations among SG variables. It consists of 26 nodes represent the SG variables, and 48 branches represent the cause effect relations among this variables. For each fault the values of measured nodes are coming from sensors and the values of unmeasured nodes are coming from the trained neural networks. These values of the nodes are compared by normal values to get the sign of the nodes. The cause-effect graph for each fault is constructed from the steam generator signed directed graph by removing the invalid (normal) nodes and inconsistent branches. Then in the cause-effect graph we search about the node which does not have an input branch. This node is the fault origin node. The result of this work demonstrated that this method can be used in nuclear power plant fault diagnosis. The advantages of this method are, it enables us to diagnose a multi fault, it is not restricted by pre-defined faults, and it is fast method. (authors)

  10. Petri nets and fault diagnosis in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Jalel, N. A.; Nicholson, H.

    1990-11-01

    The possibility of applying Petri nets (Pns) as a modeling tool to represent any fault or accident that might occur in the Loss Of Fluid Test (LOFT), small scale pressurized water reactor, is discussed and analyzed. Pns are developed to assist the nuclear reactor operator in identifying any fault or alarm that might arise in the power station.

  11. Engine Fault Diagnosis using DTW, MFCC and FFT

    NASA Astrophysics Data System (ADS)

    Singh, Vrijendra; Meena, Narendra

    . In this paper we have used a combination of three algorithms: Dynamic time warping (DTW) and the coefficients of Mel frequency Cepstrum (MFC) and Fast Fourier Transformation (FFT) for classifying various engine faults. Dynamic time warping and MFCC (Mel Frequency Cepstral Coefficients), FFT are used usually for automatic speech recognition purposes. This paper introduces DTW algorithm and the coefficients extracted from Mel Frequency Cepstrum, FFT for automatic fault detection and identification (FDI) of internal combustion engines for the first time. The objective of the current work was to develop a new intelligent system that should be able to predict the possible fault in a running engine at different-different workshops. We are doing this first time. Basically we took different-different samples of Engine fault and applied these algorithms, extracted features from it and used Fuzzy Rule Base approach for fault Classification.

  12. Time-frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming; Ma, Fei

    2015-10-01

    The vibration signal of planetary gearboxes exhibits the characteristics of both amplitude modulation (AM) and frequency modulation (FM), and thus has a complex sideband structure. Time-varying speed and/or load will result in time variant characteristic frequency components. Since the modulating frequency is related to the gear fault characteristic frequency, the AM and FM parts each alone contains the information of the gear fault. We propose a time-frequency amplitude and frequency demodulation analysis metbhod to avoid the complex time-variant sideband analysis, and thereby identify the time-variant gear fault characteristic frequency. We enhance the time-frequency analysis via iterative generalized demodulation (IGD). The time-varying amplitude and frequency demodulated spectra have fine time-frequency resolution and are free of cross term interferences. They do not involve complex time-variant sidebands, thus considerably facilitating fault diagnosis of planetary gearboxes under nonstationary conditions. The method is validated using both numerically simulated data and experimental signals.

  13. Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection

    NASA Astrophysics Data System (ADS)

    Liu, Jie

    2012-05-01

    Although a variety of methods have been proposed in the literature for machine fault detection, it still remains a challenge to extract prominent features from random and nonstationary vibratory signals, a typical representative of which are the resonance signatures generated by incipient defects on the rolling elements of ball bearings. Due to its random and nonstationary nature, the involved signal generally possesses a low signal-to-noise ratio, where the classical signal processing methods cannot be effectively applied and the extracted features are usually submerged into the severe background noise. In this paper, a novel random and nonstationary vibratory signature analysis (R&N-VSA) technique is presented to address this challenge. The original vibration signal is decomposed into fault-related and non-fault-related signal segments, and multi-level exponential moving average power filtering is suggested to guide this decomposition. Instead of analyzing the whole vibratory signal, the developed Shannon wavelet spectrum analysis is more efficiently applied on the truncated fault-related signal segments so as to enhance the features' characteristics. The effectiveness of the proposed technique is examined through a series of tests with two experimental setups, and the investigation results show that the developed R&N-VSA technique is an effective signal processing technique for incipient machine fault detection.

  14. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  15. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  16. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution

    PubMed Central

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing

    2015-01-01

    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings. PMID:26610501

  17. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.

    PubMed

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing

    2015-01-01

    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings. PMID:26610501

  18. Remote Fault Information Acquisition and Diagnosis System of the Combine Harvester Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Wu, Pei; Xu, Kai

    Most combine harvesters have not be equipped with online fault diagnosis system. A fault information acquisition and diagnosis system of the Combine Harvester based on LabVIEW is designed, researched and developed. Using ARM development board, by collecting many sensors' signals, this system can achieve real-time measurement, collection, displaying and analysis of different parts of combine harvesters. It can also realize detection online of forward velocity, roller speed, engine temperature, etc. Meanwhile the system can judge the fault location. A new database function is added so that we can search the remedial measures to solve the faults and also we can add new faults to the database. So it is easy to take precautions against before the combine harvester breaking down then take measures to service the harvester.

  19. A wavelet decomposition analysis of vibration signal for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Nizwan, C. K. E.; Ong, S. A.; Yusof, M. F. M.; Baharom, M. Z.

    2013-12-01

    This paper presents a study of vibrational signal analysis for bearing fault detection using Discrete Wavelet Transform (DWT). In this study, the vibration data was acquired from three different types of bearing defect i.e. corroded, outer race defect and point defect. The experiments were carried out at three different speeds which are 10%, 50% and 90% of the maximum motor speed. The time domain vibration data measured from accelerometer was then transformed into frequency domain using a frequency analyzer in order to study the frequency characteristics of the signal. The DWT was utilized to decomposed signal at different frequency scale. Then, root mean square (RMS) for every decomposition level was calculated to detect the defect features in vibration signals by referring to the trend of vibrational energy retention at every decomposition. Based on the result, the defective bearings show significant deviation in retaining RMS value after a few levels of decomposition. The findings indicate that Wavelet decomposition analysis can be used to develop an effective bearing condition monitoring tool. This signal processing analysis is recommended in on-line monitoring while the machine is on operation.

  20. A model-based solution for fault diagnosis of thruster faults: application to the rendezvous phase of the mars sample return mission

    NASA Astrophysics Data System (ADS)

    Henry, D.; Bornschlegl, E.; Olive, X.; Charbonnel, C.

    2013-12-01

    This paper addresses the design of model-based fault diagnosis schemes to detect and isolate faults occurring in the orbiter thrusters of the Mars Sample Return (MSR) mission. The proposed fault diagnosis method is based on a H(0) filter with robust poles assignment to detect quickly any kind of thruster faults and a cross-correlation test to isolate them. Simulation results from the MSR "high-fidelity" nonlinear simulator provided by Thales Alenia Space demonstrate that the proposed method is able to diagnose thruster faults with a detection and isolation delay less than 1.1 s.

  1. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  2. Design of fault diagnosis system for inertial navigation system based on virtual technology

    NASA Astrophysics Data System (ADS)

    Hu, Baiqing; Wang, Boxiong; Li, An; Zhang, Mingzhao; Qin, Fangjun; Pan, Hua

    2006-11-01

    With regard to the complex structure of the inertial navigation system and the low rate of fault detection with BITE (built-in test equipment), a fault diagnosis system for INS based on virtual technologies (virtual instrument and virtual equipment) is proposed in this paper. The hardware of the system is a PXI computer with highly stable performance and strong extensibility. In addition to the basic functions of digital multimeter, oscilloscope and cymometer, it can also measure the attitude of the ship in real-time, connect and control the measurement instruments with digital interface. The software is designed with the languages of Measurement Studio for VB, JAVA, and CULT3D. Using the extensively applied fault-tree reasoning and fault cases makes fault diagnosis. To suit the system to the diagnosis for various navigation electronic equipments, the modular design concept is adopted for the software programming. Knowledge of the expert system is digitally processed and the parameters of the system's interface and the expert diagnosis knowledge are stored in the database. The application shows that system is stable in operation, easy to use, quick and accurate in fault diagnosis.

  3. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  4. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    PubMed Central

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  5. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals.

    PubMed

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  6. Vibration based fault detection and identification in an aircraft skeleton structure via a stochastic functional model based method

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2008-04-01

    The problem of vibration based fault detection, identification (localization) and estimation in a scale aircraft skeleton structure is considered via a stochastic functional model based method (FMBM). The method is based on the novel class of stochastic Functionally Pooled models, which are capable of accurately representing the structure in a faulty state for the state's continuum of fault magnitudes, as well as interval estimation and formal statistical hypothesis testing procedures. The faults considered consist of small masses attached to the structure. The method is capable of operating even on single-excitation single-response signals, and is shown to achieve effective fault detection and identification, as well as remarkable accuracy in estimating the exact fault magnitude. This is so even for "unmodelled" faults, or faults monitored by remote sensors.

  7. Development of model-based fault diagnosis algorithms for MASCOTTE cryogenic test bench

    NASA Astrophysics Data System (ADS)

    Iannetti, A.; Marzat, J.; Piet-Lahanier, H.; Ordonneau, G.; Vingert, L.

    2014-12-01

    This article describes the on-going results of a fault diagnosis benchmark for a cryogenic rocket engine demonstrator. The benchmark consists in the use of classical model- based fault diagnosis methods to monitor the status of the cooling circuit of the MASCOTTE cryogenic bench. The algorithms developed are validated on real data from the last 2014 firing campaign (ATAC campaign). The objective of this demonstration is to find practical diagnosis alternatives to classical redline providing more flexible means of data exploitation in real time and for post processing.

  8. Neural Networks and Fault Probability Evaluation for Diagnosis Issues

    PubMed Central

    Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method. PMID:25132845

  9. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method. PMID:25132845

  10. Simplified interval observer scheme: a new approach for fault diagnosis in instruments.

    PubMed

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  11. Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments

    PubMed Central

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  12. Multiwavelet transform and its applications in mechanical fault diagnosis - A review

    NASA Astrophysics Data System (ADS)

    Sun, Hailiang; He, Zhengjia; Zi, Yanyang; Yuan, Jing; Wang, Xiaodong; Chen, Jinglong; He, Shuilong

    2014-02-01

    Mechanical fault diagnosis is important to reduce unscheduled machine downtime and avoid catastrophic accidents. It is significant to extract incipient fault and compound fault features as early as possible, which is a complex and challenging task that requests advanced analytical methods with high reliability, high accuracy and high efficiency. Compound fault features are mutually coupled in dynamic signals from the complex system. Weak features of incipient faults are always submersed in background noises. Multiwavelet transform is a remarkable development of wavelet transform, which uses vector scaling functions and wavelet functions. Multiwavelets possess the property of orthogonality, symmetry, compact support and high vanishing moments simultaneously. These advantages promote the development of multiwavelets and their applications in mechanical fault diagnosis in the past decades. This paper attempts to summarize the recent development of multiwavelet transform and its applications in mechanical fault diagnosis. First, the history of wavelets and multiwavelets is introduced. Second, the necessity and the overview of preprocessing methods for multiwavelets are summarized. Third, the advantages of multiwavelets and improvements of different generation multiwavelets are addressed. Fourth, different algorithms of these multiwavelet transforms and their flow charts are presented. Fifth, engineering applications of multiwavelets in mechanical fault diagnosis are investigated. This review also describes a simulation experiment and three application examples which provide a better understanding of different generation multiwavelets for compound fault detection. Finally, existent problems and prospects of further researches are discussed. It is expected that this review will construct an image of the contributions of different generation multiwavelets and link the current frontiers with engineering applications for readers interested in this field.

  13. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    PubMed

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. PMID:26626623

  14. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. PMID:26753616

  15. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  16. Model-Based Fault Diagnosis for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Green, Michael D.; Duyar, Ahmet; Litt, Jonathan S.

    1998-01-01

    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice. These test signals can be used to expose and differentiate between faults in various components by comparing the responses of particular engine variables to the expected. The responses can be processed on-line in a variety of ways which have been shown to reveal and identify faults. The combination of specific test signals and on-line processing methods provides an ad hoc approach to the isolation of faults which might not otherwise be detected during pre-flight checkout.

  17. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liang, Ming

    2012-01-01

    The vibration data, especially those collected during the system run-up and run-down periods, contain rich information for gearbox condition monitoring. Time-frequency (TF) signal analysis is an effective tool to detect gearbox faults under varying shaft speed. However, the feature of the amplitude modulated-frequency modulated (AM-FM) gearbox fault signal usually cannot be directly extracted from the blurred time-frequency representation (TFR) caused by the time-varying frequency and noisy multicomponent measurement. As such, we propose to use a generalized synchrosqueezing transform (GST)-based TF method to detect and diagnose gearbox faults. With this method, the original vibration signal is first mapped into another analytical signal to facilitate synchrosqueezing of the TF picture. A time-scale domain restoration process is then applied to recover the instantaneous frequency profile with concentrated TFR. The gearbox fault, if any, can then be detected by observing the presence of the meshing frequency and sideband components in the TFR. The faulty gear can be identified via frequency relation analysis of AM-FM components. The proposed method is evaluated using both simulated and experimental gearbox vibration signals. The results show that the proposed approach is effective for gearbox condition monitoring.

  18. An evaluation of a real-time fault diagnosis expert system for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.

    1987-01-01

    A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.

  19. Implementation of a research prototype onboard fault monitoring and diagnosis system

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.

    1987-01-01

    Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.

  20. Phase-compensation-based dynamic time warping for fault diagnosis using the motor current signal

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Zhao, H. L.; Gu, F.; Ball, A. D.

    2012-05-01

    Dynamic time warping (DTW) is a time-domain-based method and widely used in various similar recognition and data mining applications. This paper presents a phase-compensation-based DTW to process the motor current signals for detecting and quantifying various faults in a two-stage reciprocating compressor under different operating conditions. DTW is an effective method to align two signals for dissimilarity analysis. However, it has drawbacks such as singularities and high computational demands that limit its application in processing motor current signals for obtaining modulation characteristics accurately in diagnosing compressor faults. Therefore, a phase compensation approach is developed to reduce the singularity effect and a sliding window is designed to improve computing efficiency. Based on the proposed method, the motor current signals measured from the compressor induced with different common faults are analysed for fault diagnosis. Results show that residual signal analysis using the phase-compensation-based DTW allows the fault-related sideband features to be resolved more accurately for obtaining reliable fault detection and diagnosis. It provides an effective and easy approach to the analysis of motor current signals for better diagnosis in the time domain in comparison with conventional Fourier-transform-based methods.

  1. Observer based on-line fault diagnosis of continuous systems modeled as Petri nets.

    PubMed

    Renganathan, K; Bhaskar, Vidhyacharan

    2010-10-01

    This paper describes a technique for achieving on-line fault diagnosis in continuous systems that are modeled using Petri nets. The effect of place markings and transition markings are considered and based on the computed error between the initial marking and subsequent markings evolved in time, the faults are categorized assuming that the markings are both observable and unobservable. An algorithm has been suitably proposed for achieving detection of faults for a typical continuous three tank system along with suitable results. PMID:20466365

  2. Fault detection and diagnosis for singular stochastic systems via B-spline expansions.

    PubMed

    Hu, Zhuohuan; Han, Zhengzhi; Tian, Zuohua

    2009-10-01

    This paper deals with the problem of fault detection and diagnosis (FDD) for singular stochastic systems. The outputs of singular stochastic systems are described by probability density functions (PDFs) based on square root B-spline expansions. Then, two non-linear observers are designed for the FDD. The conditions of stability of the correlative error estimation systems are given by using linear matrix inequalities (LMIs). Finally, the simulation results are presented to indicate that the approach can detect faults and estimate the size of faults. PMID:19409560

  3. A Diagnosis method of the small end fault on reciprocating compressor connecting rod

    NASA Astrophysics Data System (ADS)

    Jiang, Zhinong; Mao, Zhiwei; Yao, Ziyun; Zhang, Jinjie

    2015-08-01

    The connecting rod is the key moving part of a reciprocating compressor, of which the stress state is extremely complicate and the wear fault of the small end is always a bottleneck problem in the field of fault monitoring and diagnosing. This paper is aimed to present a new method to diagnose the above wear fault. Firstly, a contact model of a clearance in the revolute joint of the small end of a connecting rod bearing (SECRB) was established and a multi-body simulation tool was utilized to simulate the slider-crank mechanism with a clearance, from which the dynamic influence of wear gap in SECRB of a slider-crank mechanism was obtained. Based on the study above, we extracted the characteristics of the wear fault of SECRB and then proposed a brand new approach to monitoring and diagnosing this wear fault by analyzing the angle domain of vibration signals. The availability was verified by conducting an experiment on a reciprocating compressor. And the experimental results show that this method can not only accurately diagnose the wear fault of SECRB but also approximately estimate its severity. This study laid a foundation for the online monitoring and early warning of this fault.

  4. Fault diagnosis of a benchmark fermentation process: a comparative study of feature extraction and classification techniques.

    PubMed

    Monroy, Isaac; Villez, Kris; Graells, Moisès; Venkatasubramanian, Venkat

    2012-06-01

    This paper investigates fault diagnosis in batch processes and presents a comparative study of feature extraction and classification techniques applied to a specific biotechnological case study: the fermentation process model by Birol et al. (Comput Chem Eng 26:1553-1565, 2002), which is a benchmark for advanced batch processes monitoring, diagnosis and control. Fault diagnosis is achieved using four approaches on four different process scenarios based on the different levels of noise so as to evaluate their effects on the performance. Each approach combines a feature extraction method, either multi-way principal component analysis (MPCA) or multi-way independent component analysis (MICA), with a classification method, either artificial neural network (ANN) or support vector machines (SVM). The performance obtained by the different approaches is assessed and discussed for a set of simulated faults under different scenarios. One of the faults (a loss in mixing power) could not be detected due to the minimal effect of mixing on the simulated data. The remaining faults could be easily diagnosed and the subsequent discussion provides practical insight into the selection and use of the available techniques to specific applications. Irrespective of the classification algorithm, MPCA renders better results than MICA, hence the diagnosis performance proves to be more sensitive to the selection of the feature extraction technique. PMID:22076402

  5. Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lo, Chun; Lynch, Jerome P.; Liu, Mingyan

    2016-01-01

    Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.

  6. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    NASA Technical Reports Server (NTRS)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  7. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  8. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time domain in comparison with conventional FT based methods.

  9. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  10. Distributed multisensor fusion for machine condition monitoring fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Zhao, Guohua; Xie, Xin

    2001-09-01

    This paper presents a new general framework for multisensor fusion based on a distributed detection. Parallel processing and distributed multisensor fusion, as rapidly emerging and promising technologies, provides powerful tools for solving this difficult problem, The distribution and parallelism of proposing and confirming of hypothesis in condition and diagnostic is prosed. A combination serial and parallel reconfiguration of n sensors for decision fusion is analyzed. It shows the result for a real-time parallel distributed complex machine condition monitor and fault diagnostic system.

  11. Physically-based modeling of speed sensors for fault diagnosis and fault tolerant control in wind turbines

    NASA Astrophysics Data System (ADS)

    Weber, Wolfgang; Jungjohann, Jonas; Schulte, Horst

    2014-12-01

    In this paper, a generic physically-based modeling framework for encoder type speed sensors is derived. The consideration takes into account the nominal fault-free and two most relevant fault cases. The advantage of this approach is a reconstruction of the output waveforms in dependence of the internal physical parameter changes which enables a more accurate diagnosis and identification of faulty incremental encoders i.a. in wind turbines. The objectives are to describe the effect of the tilt and eccentric of the encoder disk on the digital output signals and the influence of the accuracy of the speed measurement in wind turbines. Simulation results show the applicability and effectiveness of the proposed approach.

  12. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  13. Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Ming, A. B.; Qin, Z. Y.; Zhang, W.; Chu, F. L.

    2013-12-01

    Bearing failure is one of the most common reasons of machine breakdowns and accidents. Therefore, the fault diagnosis of rolling element bearings is of great significance to the safe and efficient operation of machines owing to its fault indication and accident prevention capability in engineering applications. Based on the orthogonal projection theory, a novel method is proposed to extract the fault characteristic frequency for the incipient fault diagnosis of rolling element bearings in this paper. With the capability of exposing the oscillation frequency of the signal energy, the proposed method is a generalized form of the squared envelope analysis and named as spectral auto-correlation analysis (SACA). Meanwhile, the SACA is a simplified form of the cyclostationary analysis as well and can be iteratively carried out in applications. Simulations and experiments are used to evaluate the efficiency of the proposed method. Comparing the results of SACA, the traditional envelope analysis and the squared envelope analysis, it is found that the result of SACA is more legible due to the more prominent harmonic amplitudes of the fault characteristic frequency and that the SACA with the proper iteration will further enhance the fault features.

  14. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  15. Effectiveness of MED for Fault Diagnosis in Roller Bearings

    NASA Astrophysics Data System (ADS)

    Pennacchi, P.; Ricci, Roberto; Chatterton, S.; Borghesani, P.

    Diagnostics of rolling element bearings is usually performed by means of vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. The aim is to monitor the integrity of the bearing components, in order to avoid catastrophic failures, or to implement condition based maintenance strategies. In particular, the trend in this field is to combine in a single algorithm different signal-enhancement and signal-analysis techniques. Among the first ones, Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to highlight the effect of a possible damage in one of the bearing components within the vibration signal. This paper presents the application of this technique to signals collected on a simple test-rig, able to test damaged industrial roller bearings in different working conditions. The effectiveness of the technique has been tested, comparing the results of one undamaged bearing with three bearings artificially damaged in different locations, namely on the inner race, outer race and rollers. Since MED performances are dependent on the filter length, the most suitable value of this parameter is defined on the basis of both the application and measured signals. This represents an original contribution of the paper.

  16. A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Alwodai, A.; Gu, F.; Ball, A. D.

    2012-05-01

    The problem of failures in induction motors is a large concern due to its significant influence over industrial production. Therefore a large number of detection techniques were presented to avoid this problem. This paper presents the comparison results of induction motor rotor fault detection using three methods: motor current signature analysis (MCSA), surface vibration (SV), and instantaneous angular speed (IAS). These three measurements were performed under different loads with three rotor conditions: baseline, one rotor bar broken and two rotor bar broken. The faults can be detected and diagnosed based on the amplitude difference of the characteristic frequency components of power spectrum. However IAS may be the best technique because it gives the clearest spectrum representation in which the largest amplitude change is observed due to the faults.

  17. Switched Fault Diagnosis Approach for Industrial Processes based on Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yang, Chunjie; Sun, Youxian; Pan, Yijun; An, Ruqiao

    2015-11-01

    Traditional fault diagnosis methods based on hidden Markov model (HMM) use a unified method for feature extraction, such as principal component analysis (PCA), kernel principal component analysis (KPCA) and independent component analysis (ICA). However, every method has its own limitations. For example, PCA cannot extract nonlinear relationships among process variables. So it is inappropriate to extract all features of variables by only one method, especially when data characteristics are very complex. This article proposes a switched feature extraction procedure using PCA and KPCA based on nonlinearity measure. By the proposed method, we are able to choose the most suitable feature extraction method, which could improve the accuracy of fault diagnosis. A simulation from the Tennessee Eastman (TE) process demonstrates that the proposed approach is superior to the traditional one based on HMM and could achieve more accurate classification of various process faults.

  18. Data Mining in Multi-Dimensional Functional Data for Manufacturing Fault Diagnosis

    SciTech Connect

    Jeong, Myong K; Kong, Seong G; Omitaomu, Olufemi A

    2008-09-01

    Multi-dimensional functional data, such as time series data and images from manufacturing processes, have been used for fault detection and quality improvement in many engineering applications such as automobile manufacturing, semiconductor manufacturing, and nano-machining systems. Extracting interesting and useful features from multi-dimensional functional data for manufacturing fault diagnosis is more difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the complexity of functional data types, high correlation, and nonstationary nature of the data. This chapter discusses accomplishments and research issues of multi-dimensional functional data mining in the following areas: dimensionality reduction for functional data, multi-scale fault diagnosis, misalignment prediction of rotating machinery, and agricultural product inspection based on hyperspectral image analysis.

  19. Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette

    2010-01-01

    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.

  20. Fault diagnosis for stator winding bar hollow strand blockage of turbogenerators based on data fusion

    NASA Astrophysics Data System (ADS)

    Wang, Xianpei; Dai, Zheng Y.; Liu, Zhenxing; Chen, Yalin

    2003-09-01

    Stator Winding Bar Hollow Strand Blockage (SWBHSB) is one of the main faults for large turbo-generators with water and hydrogen cooling system. It will lead to increasing water temperature at the bar exit which may cause hidden troubles for turbo-generator's security. According to a three-layer-structural model of data fusion, this paper presents a fault diagnosis method for turbo-generators based on data fusion technology. Firstly, a bp network on pixel level fusion is set up, in which several temperature parameters at the bar exit are accurately computed. Then in feature level fusion, the fingerprints are distilled from the result of pixel level fusion. Finally, decision level fusion gives a fault diagnosis for the measuring channels and thermometric components. This method can effectively avoid problems such as misinformation and fake report.

  1. Online motor fault detection and diagnosis using a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng

    2014-04-01

    In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks. PMID:24807956

  2. Fault diagnosis using noise modeling and a new artificial immune system based algorithm

    NASA Astrophysics Data System (ADS)

    Abbasi, Farshid; Mojtahedi, Alireza; Ettefagh, Mir Mohammad

    2015-12-01

    A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms (GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.

  3. The fault diagnosis of large-scale wind turbine based on expert system

    NASA Astrophysics Data System (ADS)

    Chen, Changzheng; Li, Yun

    2011-10-01

    The wind turbine is the critical equipment for wind power, due to the poor working environment and the long running, the wind turbine components will have a variety of failures. Planned maintenance which has long been used is unable to understand the operational status of equipment comprehensively and timely in a way, especially for large wind machine, the repair work took too long time and cause serious damage. Therefore, fault diagnosis and predictive maintenance becomes more imminent. In this paper, the fault symptoms and corresponding reason of the large-scale wind turbine parts are analyzed and summarized ,such as gear box, generator, yaw system, and so on . And on this basis, the large-scale wind turbine fault diagnosis expert system was constructed by using expert system tool CLIPS and Visual C + +.

  4. Artificial immune system based approach to fault diagnosis for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Chen, Yongjun; Yuan, Shenfang; Wang, Yang; Wu, Jian

    2009-07-01

    Fault diagnosis has been recognized as one of the key issues in wireless sensor networks. Considering distribution feature of sensor node, however, the fault happened in wireless sensor networks is usually random and unpredictable. The conventional diagnosis approaches become increasingly difficult to deal with. As a result, the application is limited seriously. To solve the problem, a new approach based on artificial immune system for fault diagnosis is proposed. The normal and abnormal character patterns generated by a network simulator for wireless sensor networks, respectively, are regarded as the self and antigen of artificial immune system. According to a real-valued negative selection algorithm, the detectors are generated to improve the covering ability of non-self space. Taking detector as antibody, an immunity calculation is executed by the distribution zones of antibody and evolution learning mechanism of artificial immune system. The type of antigen is decided based on the clustering distribution of cloned and matured antibody. The example shows that the approach has better accuracy and the capability of self-adaptive for the fault diagnosis in wireless sensor networks.

  5. Sliding Mode Approaches for Robust Control, State Estimation, Secure Communication, and Fault Diagnosis in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Ablay, Gunyaz

    Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.

  6. Theory of reliable systems. [reliability analysis and on-line fault diagnosis

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1974-01-01

    Research is reported in the program to refine the current notion of system reliability by identifying and investigating attributes of a system which are important to reliability considerations, and to develop techniques which facilitate analysis of system reliability. Reliability analysis, and on-line fault diagnosis are discussed.

  7. Deep-reasoning fault diagnosis - An aid and a model

    NASA Technical Reports Server (NTRS)

    Yoon, Wan Chul; Hammer, John M.

    1988-01-01

    The design and evaluation are presented for the knowledge-based assistance of a human operator who must diagnose a novel fault in a dynamic, physical system. A computer aid based on a qualitative model of the system was built to help the operators overcome some of their cognitive limitations. This aid differs from most expert systems in that it operates at several levels of interaction that are believed to be more suitable for deep reasoning. Four aiding approaches, each of which provided unique information to the operator, were evaluated. The aiding features were designed to help the human's casual reasoning about the system in predicting normal system behavior (N aiding), integrating observations into actual system behavior (O aiding), finding discrepancies between the two (O-N aiding), or finding discrepancies between observed behavior and hypothetical behavior (O-HN aiding). Human diagnostic performance was found to improve by almost a factor of two with O aiding and O-N aiding.

  8. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  9. Boolean modeling and fault diagnosis in oxidative stress response

    PubMed Central

    2012-01-01

    Background Oxidative stress is a consequence of normal and abnormal cellular metabolism and is linked to the development of human diseases. The effective functioning of the pathway responding to oxidative stress protects the cellular DNA against oxidative damage; conversely the failure of the oxidative stress response mechanism can induce aberrant cellular behavior leading to diseases such as neurodegenerative disorders and cancer. Thus, understanding the normal signaling present in oxidative stress response pathways and determining possible signaling alterations leading to disease could provide us with useful pointers for therapeutic purposes. Using knowledge of oxidative stress response pathways from the literature, we developed a Boolean network model whose simulated behavior is consistent with earlier experimental observations from the literature. Concatenating the oxidative stress response pathways with the PI3-Kinase-Akt pathway, the oxidative stress is linked to the phenotype of apoptosis, once again through a Boolean network model. Furthermore, we present an approach for pinpointing possible fault locations by using temporal variations in the oxidative stress input and observing the resulting deviations in the apoptotic signature from the normally predicted pathway. Such an approach could potentially form the basis for designing more effective combination therapies against complex diseases such as cancer. Results In this paper, we have developed a Boolean network model for the oxidative stress response. This model was developed based on pathway information from the current literature pertaining to oxidative stress. Where applicable, the behaviour predicted by the model is in agreement with experimental observations from the published literature. We have also linked the oxidative stress response to the phenomenon of apoptosis via the PI3k/Akt pathway. Conclusions It is our hope that some of the additional predictions here, such as those pertaining to the oscillatory behaviour of certain genes in the presence of oxidative stress, will be experimentally validated in the near future. Of course, it should be pointed out that the theoretical procedure presented here for pinpointing fault locations in a biological network with feedback will need to be further simplified before it can be even considered for practical biological validation. PMID:23134720

  10. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  11. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  12. Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS.

    PubMed

    Lau, C K; Heng, Y S; Hussain, M A; Mohamad Nor, M I

    2010-10-01

    The performance of a chemical process plant can gradually degrade due to deterioration of the process equipment and unpermitted deviation of the characteristic variables of the system. Hence, advanced supervision is required for early detection, isolation and correction of abnormal conditions. This work presents the use of an adaptive neuro-fuzzy inference system (ANFIS) for online fault diagnosis of a gas-phase polypropylene production process with emphasis on fast and accurate diagnosis, multiple fault identification and adaptability. The most influential inputs are selected from the raw measured data sets and fed to multiple ANFIS classifiers to identify faults occurring in the process, eliminating the requirement of a detailed process model. Simulation results illustrated that the proposed method effectively diagnosed different fault types and severities, and that it has a better performance compared to a conventional multivariate statistical approach based on principal component analysis (PCA). The proposed method is shown to be simple to apply, robust to measurement noise and able to rapidly discriminate between multiple faults occurring simultaneously. This method is applicable for plant-wide monitoring and can serve as an early warning system to identify process upsets that could threaten the process operation ahead of time. PMID:20667537

  13. Development of the Task-Based Expert System for Machine Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Bo, Ma; Zhi-nong, Jiang; Zhong-qing, Wei

    2012-05-01

    The operating mechanism of expert systems widely used in fault diagnosis is to formulate a set of diagnostic rules, according to the mechanism and symptoms of faults, in order to instruct the fault diagnosis or directly give diagnostic results. In practice, due to differences existing in such aspects as production technology, drivers, etc., a certain fault may derive from different causes, which will lead to a lower diagnostic accuracy of expert systems. Besides, a variety of expert systems now available have a dual problem of low generality and low expandability, of which the former can lead to the repeated development of expert systems for different machines, while the latter restricts users from expanding the system. Aimed at these problems, a type of task-based software architecture of expert system is proposed in this paper, which permits a specific optimization based on a set of common rules, and allows users to add or modify rules on a man-machine dialog so as to keep on absorbing and improving the expert knowledge. Finally, the integration of the expert system with the condition monitoring system to implement the automatic and semi-automatic diagnosis is introduced.

  14. A novel identification method of Volterra series in rotor-bearing system for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Xia, Xin; Zhou, Jianzhong; Xiao, Jian; Xiao, Han

    2016-01-01

    Volterra series is widely employed in the fault diagnosis of rotor-bearing system to prevent dangerous accidents and improve economic efficiency. The identification of the Volterra series involves the infinite-solution problems which is caused by the periodic characteristic of the excitation signal of rotor-bearing system. But this problem has not been considered in the current identification methods of the Volterra series. In this paper, a key kernels-PSO (KK-PSO) method is proposed for Volterra series identification. Instead of identifying the Volterra series directly, the key kernels of Volterra are found out to simply the Volterra model firstly. Then, the Volterra series with the simplest formation is identified by the PSO method. Next, simulation verification is utilized to verify the feasibility and effectiveness of the KK-PSO method by comparison to the least square (LS) method and traditional PSO method. Finally, experimental tests have been done to get the Volterra series of a rotor-bearing test rig in different states, and a fault diagnosis system is built with a neural network to classify different fault conditions by the kernels of the Volterra series. The analysis results indicate that the KK-PSO method performs good capability on the identification of Volterra series of rotor-bearing system, and the proposed method can further improve the accuracy of fault diagnosis.

  15. Dense framelets with two generators and their application in mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Jiaxu; Mao, Yongfang

    2013-11-01

    Wavelet analysis has been widely applied to mechanical fault diagnosis. Aiming at the problems of current wavelet basis, such as low time-frequency sampling, asymmetry and poor shift-invariance, this paper develops a new family of dense framelets with two generators and some desirable properties. To perform the corresponding framelet transform, three-channel iterated filterbank should be used, where the first and the third channel is decimated while the second channel is undecimated. This arrangement is very helpful for extracting the fault feature of the mid and low frequency band signal components and obtaining some symmetric framelets. To obtain framelets with high symmetry and a specified number of vanishing moments, B-spline and maximally flat linear FIR filter are, respectively, used to design filterbank. Three symmetric framelets and one framelets with symmetric low-pass filter and high-pass filter are constructed. Compared with the higher density framelets and orthonormal wavelets, the proposed framelets have better shift-invariance and denoising performance. Finally, the proposed framelets are applied to fault diagnosis of two gearboxes. The results show that the proposed framelets can be effectively applied to mechanical fault diagnosis and is superior to other commonly-used framelets/wavelets.

  16. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes.

    PubMed

    Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe

    2011-12-01

    The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method. PMID:21954208

  17. Fault diagnosis model for power transformers based on information fusion

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Yan, Zhang; Yang, Li; Judd, Martin D.

    2005-07-01

    Methods used to assess the insulation status of power transformers before they deteriorate to a critical state include dissolved gas analysis (DGA), partial discharge (PD) detection and transfer function techniques, etc. All of these approaches require experience in order to correctly interpret the observations. Artificial intelligence (AI) is increasingly used to improve interpretation of the individual datasets. However, a satisfactory diagnosis may not be obtained if only one technique is used. For example, the exact location of PD cannot be predicted if only DGA is performed. However, using diverse methods may result in different diagnosis solutions, a problem that is addressed in this paper through the introduction of a fuzzy information infusion model. An inference scheme is proposed that yields consistent conclusions and manages the inherent uncertainty in the various methods. With the aid of information fusion, a framework is established that allows different diagnostic tools to be combined in a systematic way. The application of information fusion technique for insulation diagnostics of transformers is proved promising by means of examples.

  18. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  19. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    NASA Astrophysics Data System (ADS)

    Al-Bugharbee, Hussein; Trendafilova, Irina

    2016-05-01

    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.

  20. The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.; Gamble, Jonathan; Rabban, Michael

    2008-01-01

    The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station.

  1. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults. PMID:17672519

  2. Wavelet transform-based fault diagnosis and line selection method of small current grounding system

    NASA Astrophysics Data System (ADS)

    Yang, Ni; Zhang, Shuqing; Zhang, Liguo; Zhang, Kexin; Sun, Lingyun

    2008-12-01

    Small current grounding system is the system that the neutral point doesn't ground or grounds across the arc suppressing coils, which has been applied commonly in distribution system of many countries. As the grounding fault occurs, current is the one caused by capacity of circuit to ground only and it is rather small. The status of fault is complexity, e.g., the electromagnet interferes together with the amplified impact of zero-order loops to high-order singularity waves and various temporary variables. All these result in the lower ratio of the fault element signal to noise caused by zero-order current. In this paper, the position of signal singularity and the magnitude of the singularity degree are analyzed based on the variable focus character of wavelet, and the time fault occurs is then determined. The series db wavelet with close sustain is adopted, and the line selection is according to the zero-order voltage of the generatrix and the current of various outlet line. It is proved by the experiment that the fault circuit diagnosis method based on wavelet analysis to the character of temporary status of single-phase grounding fault plays an important role to a finer line selection.

  3. Robust fault diagnosis of physical systems in operation. Ph.D. Thesis - Rutgers - The State Univ.

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy Hamilton

    1991-01-01

    Ideas are presented and demonstrated for improved robustness in diagnostic problem solving of complex physical systems in operation, or operative diagnosis. The first idea is that graceful degradation can be viewed as reasoning at higher levels of abstraction whenever the more detailed levels proved to be incomplete or inadequate. A form of abstraction is defined that applies this view to the problem of diagnosis. In this form of abstraction, named status abstraction, two levels are defined. The lower level of abstraction corresponds to the level of detail at which most current knowledge-based diagnosis systems reason. At the higher level, a graph representation is presented that describes the real-world physical system. An incremental, constructive approach to manipulating this graph representation is demonstrated that supports certain characteristics of operative diagnosis. The suitability of this constructive approach is shown for diagnosing fault propagation behavior over time, and for sometimes diagnosing systems with feedback. A way is shown to represent different semantics in the same type of graph representation to characterize different types of fault propagation behavior. An approach is demonstrated that threats these different behaviors as different fault classes, and the approach moves to other classes when previous classes fail to generate suitable hypotheses. These ideas are implemented in a computer program named Draphys (Diagnostic Reasoning About Physical Systems) and demonstrated for the domain of inflight aircraft subsystems, specifically a propulsion system (containing two turbofan systems and a fuel system) and hydraulic subsystem.

  4. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.

  5. Fault diagnosis for manifold absolute pressure sensor(MAP) of diesel engine based on Elman neural network observer

    NASA Astrophysics Data System (ADS)

    Wang, Yingmin; Zhang, Fujun; Cui, Tao; Zhou, Jinlong

    2016-03-01

    Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015-0.017 5 and sample error is controlled within 0-0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis; the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.

  6. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  7. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  8. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.

  9. Optimizing the Adaptive Stochastic Resonance and Its Application in Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaole; Yang, Jianhua; Liu, Houguang; Cheng, Gang; Chen, Xihui; Xu, Dan

    2015-10-01

    This paper presents an adaptive stochastic resonance method based on the improved artificial fish swarm algorithm. By this method, we can enhance the weak characteristic signal which is submerged in a heavy noise. We can also adaptively lead the stochastic resonance to be optimized to the greatest extent. The effectiveness of the proposed method is verified by both numerical simulation and lab experimental vibration signals including normal, a chipped tooth and a missing tooth of planetary gearboxes under the loaded condition. Both theoretical and experimental results show that this method can effectively extract weak characteristics in a heavy noise. In the experiment, each weak fault feature is extracted successfully from the fault planetary gear. When compared with the ensemble empirical mode decomposition (EEMD) method, the method proposed in this paper has been found to give remarkable performance.

  10. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  11. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-01-01

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft. PMID:26556358

  12. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph

    PubMed Central

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-01-01

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft. PMID:26556358

  13. Fundamental Study on Vibration Diagnosis for High Speed Rotational Machine using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kawada, Masatake; Yamada, Koji; Yamashita, Katsuya

    In this paper we presented results of fundamental study to introduce the wavelet transform to vibration diagnosis for high-speed rotational machine such as steam turbine, gas turbine, and generator and so on. It is required to detect and distinguish typical vibration of high-speed rotational machine accurately in order to diagnose the machine. The wavelet transform is used in many fields because it is able to visualize phenomenon in time-frequency domain and to detect the beginning time and the duration of it. We made a model rotor supported with two journal bearings to simulate contact vibration, clearance vibration, and oil whip. The vibration phenomena were measured with vertical and horizontal displacement meters at the rotor and vertical and horizontal accelerometers at the rotor bearing and visualized in the time-frequency domain by the wavelet transform. It is found that the dynamic spectra obtained by the wavelet transform of the vertical and horizontal components of displacement and acceleration signals are different for each vibration phenomenon, therefore, this method is able to distinguish each kind of vibration phenomenon. Each vibration phenomenon can be detected and distinguished at the early stage.

  14. A novel method for feature extraction using crossover characteristics of nonlinear data and its application to fault diagnosis of rotary machinery

    NASA Astrophysics Data System (ADS)

    Lin, Jinshan; Chen, Qian

    2014-10-01

    Defective rotary machinery typically exhibits a complex dynamical behavior, which is hard to analyze. Detrended Fluctuation Analysis (DFA) is a robust tool for uncovering long-range correlations hidden in nonstationary data. By DFA, an original series can be compressed into a fluctuation series, which can well preserve the dynamical characteristics of the original series. Lately, the fluctuation series has been separately analyzed by principal component analysis (PCA) and neural network (NN) for fault diagnosis of rotary machinery. However, the feature parameters extracted by PCA or NN normally lack clear physical meaning. In addition, the execution of PCA or NN usually consumes extra time. Interestingly, the scaling-law curve, by which the relation between the fluctuation function and the time scale can be illustrated graphically in a log-log plot, usually exhibits crossover properties. As a result, this study exploited the interesting crossover properties for fault diagnosis of rotary machinery and proposed a novel method for feature extraction of nonlinear data. The proposed method consists of three parts. Firstly, the vibration data from defective rotary machinery are analyzed by DFA and the resultant scaling-law curve is obtained. Secondly, the crossover points in the scaling-law curve are located and then employed to segment the entire scaling-law curve into several different scaling regions, in each of which a single Hurst exponent can be estimated. Thirdly, the whole or a part of the Hurst exponents are used as feature parameters for describing the conditions of defective rotary machinery. Next, the performance of the proposed method was measured using both real gearbox and rolling bearing vibration data with different fault types and severity. The results indicate that the proposed method can ease the problems mentioned previously and performs well in identifying fault types and severity of rotary machinery.

  15. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net

    NASA Astrophysics Data System (ADS)

    Zhang, Han

    Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.

  16. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    PubMed

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis. PMID:25993810

  17. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  18. Sound based induction motor fault diagnosis using Kohonen self-organizing map

    NASA Astrophysics Data System (ADS)

    Germen, Emin; Başaran, Murat; Fidan, Mehmet

    2014-05-01

    The induction motors, which have simple structures and design, are the essential elements of the industry. Their long-lasting utilization in critical processes possibly causes unavoidable mechanical and electrical defects that can deteriorate the production. The early diagnosis of the defects in induction motors is crucial in order to avoid interruption of manufacturing. In this work, the mechanical and the electrical faults which can be observed frequently on the induction motors are classified by means of analysis of the acoustic data of squirrel cage induction motors recorded by using several microphones simultaneously since the true nature of propagation of sound around the running motor provides specific clues about the types of the faults. In order to reveal the traces of the faults, multiple microphones are placed in a hemispherical shape around the motor. Correlation and wavelet-based analyses are applied for extracting necessary features from the recorded data. The features obtained from same types of motors with different kind of faults are used for the classification using the Self-Organizing Maps method. As it is described in this paper, highly motivating results are obtained both on the separation of healthy motor and faulty one and on the classification of fault types.

  19. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. PMID:22902083

  20. Improved 2D model of a ball bearing for the simulation of vibrations due to faults during run-up

    NASA Astrophysics Data System (ADS)

    Tadina, Matej; Boltežar, Miha

    2011-07-01

    This paper present an improved 2D bearing model for investigation of the vibrations of a ball-bearing during run-up. The presented numerical model assumes deformable outer race, which is modelled with finite elements, centrifugal load effects and radial clearance. The contact force for the balls is described by a nonlinear Hertzian contact deformation. Various surface defects due to local deformations are introduced into the developed model. The detailed geometry of the local defects is modelled as an impressed ellipsoid on the races and as a flattened sphere for the rolling balls. The obtained equations of motion were solved numerically with a modified Newmark time-integration method for the increasing rotational frequency of the shaft. The simulated vibrational response of the bearing with different local faults was used to test the suitability of the continuous wavelet transformation for the bearing fault identification and classification.

  1. High pressure air compressor valve fault diagnosis using feedforward neural networks

    NASA Astrophysics Data System (ADS)

    James Li, C.; Yu, Xueli

    1995-09-01

    Feedforward neural networks (FNNs) are developed and implemented to classify a four-stage high pressure air compressor into one of the following conditions: baseline, suction or exhaust valve faults. These FNNs are used for the compressor's automatic condition monitoring and fault diagnosis. Measurements of 39 variables are obtained under different baseline conditions and third-stage suction and exhaust valve faults. These variables include pressures and temperatures at all stages, voltage between phase aand phase b, voltage between phase band phase c, total three-phase real power, cooling water flow rate, etc. To reduce the number of variables, the amount of their discriminatory information is quantified by scattering matrices to identify statistical significant ones. Measurements of the selected variables are then used by a fully automatic structural and weight learning algorithm to construct three-layer FNNs to classify the compressor's condition. This learning algorithm requires neither guesses of initial weight values nor number of neurons in the hidden layer of an FNN. It takes an incremental approach in which a hidden neuron is trained by exemplars and then augmented to the existing network. These exemplars are then made orthogonal to the newly identified hidden neuron. They are subsequently used for the training of the next hidden neuron. The betterment continues until a desired accuracy is reached. After the neural networks are established, novel measurements from various conditions that haven't been previously seen by the FNNs are then used to evaluate their ability in fault diagnosis. The trained neural networks provide very accurate diagnosis for suction and discharge valve defects.

  2. A New On-Line Diagnosis Protocol for the SPIDER Family of Byzantine Fault Tolerant Architectures

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Miner, Paul S.

    2004-01-01

    This paper presents the formal verification of a new protocol for online distributed diagnosis for the SPIDER family of architectures. An instance of the Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) architecture consists of a collection of processing elements communicating over a Reliable Optical Bus (ROBUS). The ROBUS is a specialized fault-tolerant device that guarantees Interactive Consistency, Distributed Diagnosis (Group Membership), and Synchronization in the presence of a bounded number of physical faults. Formal verification of the original SPIDER diagnosis protocol provided a detailed understanding that led to the discovery of a significantly more efficient protocol. The original protocol was adapted from the formally verified protocol used in the MAFT architecture. It required O(N) message exchanges per defendant to correctly diagnose failures in a system with N nodes. The new protocol achieves the same diagnostic fidelity, but only requires O(1) exchanges per defendant. This paper presents this new diagnosis protocol and a formal proof of its correctness using PVS.

  3. Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method

    NASA Astrophysics Data System (ADS)

    Zhao, ShuanFeng; Liang, Lin; Xu, GuangHua; Wang, Jing; Zhang, WenMing

    2013-10-01

    Spalling or pitting is the main manifestation of fault development in a bearing during the earlier stages. Previous studies indicated that the vibration signal of a bearing with a spall-like defect may be composed of two parts; the first part originates from the entry of the rolling element into the spall-like area, and the second part refers to the exit from the fault region. The quantitative diagnosis of a spall-like fault of the rolling element bearing can be realised if the entry-exit event times can be accurately calculated. However, the vibration signal of a faulty bearing is usually non-stationary and non-linear with strong background noise interference. Meanwhile, the signal energy from the early spall region is too low to accurately register the features of the entry-exit event in the time domain. In this work, the approximate entropy (ApEn) method and empirical mode decomposition (EMD) are applied to clearly separate the entry-exit events, and thus the size of the spall-like fault is estimated. First, the original acceleration vibration signal is decomposed by EMD, and some useful intrinsic mode function (IMF) components are obtained. Second, the concept of IMF-ApEn is introduced, which can directly reflect the complexity of the IMFs using the actual vibration signal. The IMF-ApEn distributions of different noise signals illustrate that the process of complexity changes when a full spectrum process is split into its IMFs. Third, a unit white noise IMF-ApEn distribution template serves as a sieve to extract the (effective intrinsic mode functions) EIMF components, and thus the entry and exit events in the response signal are distinguished. The IMF-ApEn method is further compared with a previous method (N. Sawalhi's method) to test its superiority. The dynamic effects are investigated when the ball element enters a spall-like region by computer simulation. The simulation and the experimental results show that the approach to the quantitative diagnosis of a rolling element bearing based on IMF-ApEn has higher veracity and good robustness.

  4. An enhanced Kurtogram method for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.; Tsui, Kwok Leung

    2013-02-01

    The Kurtogram is based on the kurtosis of temporal signals that are filtered by the short-time Fourier transform (STFT), and has proved useful in the diagnosis of bearing faults. To extract transient impulsive signals more effectively, wavelet packet transform is regarded as an alternative method to STFT for signal decomposition. Although kurtosis based on temporal signals is effective under some conditions, its performance is low in the presence of a low signal-to-noise ratio and non-Gaussian noise. This paper proposes an enhanced Kurtogram, the major innovation of which is kurtosis values calculated based on the power spectrum of the envelope of the signals extracted from wavelet packet nodes at different depths. The power spectrum of the envelope of the signals defines the sparse representation of the signals and kurtosis measures the protrusion of the sparse representation. This enhanced Kurtogram helps to determine the location of resonant frequency bands for further demodulation with envelope analysis. The frequency signatures of the envelope signal can then be used to determine the type of fault that has affected a bearing by identifying its characteristic frequency. In many cases, discrete frequency noise always exists and may mask the weak bearing faults. It is usually preferable to remove such discrete frequency noise by using autoregressive filtering before the enhanced Kurtogram is performed. At last, we used a number of simulated bearing fault signals and three real bearing fault signals obtained from an experimental motor to validate the efficiency of these proposed modifications. The results show that both the proposed method and the enhanced Kurtogram are effective in the detection of various bearing faults.

  5. Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Chen, Jinglong; Zi, Yanyang; Li, Yueming; He, Zhengjia

    2016-05-01

    Due to the multi-modulation feature in most of the vibration signals, the extraction of embedded fault information from condition monitoring data for mechanical fault diagnosis still is not a relaxed task. Despite the reported achievements, Wavelet transform follows the dyadic partition scheme and would not allow a data-driven frequency partition. And then Empirical Wavelet Transform (EWT) is used to extract inherent modulation information by decomposing signal into mono-components under an orthogonal basis and non-dyadic partition scheme. However, the pre-defined segment way of Fourier spectrum without dependence on analyzed signals may result in inaccurate mono-component identification. In this paper, the modified EWT (MEWT) method via data-driven adaptive Fourier spectrum segment is proposed for mechanical fault identification. First, inner product is calculated between the Fourier spectrum of analyzed signal and Gaussian function for scale representation. Then, adaptive spectrum segment is achieved by detecting local minima of the scale representation. Finally, empirical modes can be obtained by adaptively merging mono-components based on their envelope spectrum similarity. The adaptively extracted empirical modes are analyzed for mechanical fault identification. A simulation experiment and two application cases are used to verify the effectiveness of the proposed method and the results show its outstanding performance.

  6. Feature extraction of kernel regress reconstruction for fault diagnosis based on self-organizing manifold learning

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Liang, Lin; Xu, Guanghua; Liu, Dan

    2013-09-01

    The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension. Currently, nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings, such as manifold learning. However, these methods are all based on manual intervention, which have some shortages in stability, and suppressing the disturbance noise. To extract features automatically, a manifold learning method with self-organization mapping is introduced for the first time. Under the non-uniform sample distribution reconstructed by the phase space, the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention. After that, the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation. Finally, the signal is reconstructed by the kernel regression. Several typical states include the Lorenz system, engine fault with piston pin defect, and bearing fault with outer-race defect are analyzed. Compared with the LTSA and continuous wavelet transform, the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified. A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.

  7. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  8. A Flight Expert System (FLES) For On-Board Fault Monitoring And Diagnosis

    NASA Astrophysics Data System (ADS)

    Ali, M.; Scharnhorst, D...; Ai, C. S.; Ferber, H. J.

    1986-03-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, we have developed an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes our reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.

  9. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    PubMed Central

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  10. A modular neural network scheme applied to fault diagnosis in electric power systems.

    PubMed

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  11. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.

    PubMed

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes' status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors' detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  12. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  13. Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.

  14. An embedded intelligent monitoring system for rotating machiney vibrations

    NASA Astrophysics Data System (ADS)

    Wang, Li; Han, Qingkai; Zhang, Mo; Zhang, Tianxia; Wen, Bangchun

    2007-12-01

    As required of multi-level and network based fault diagnosis system for large-scale rotating machinery, a new kind of embedded intelligent local set is introduced in the paper for machine condition monitoring and fundamental diagnosis. Its functions include high-speed acquisition of vibration signals, time-frequency analyses, ANN-based fault diagnosis and remote communications. The experimental results show that it performs with higher efficiency with real time, reliability and accuracy in data acquisition, vibration monitoring and typical fault diagnosis.

  15. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    SciTech Connect

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    2009-03-05

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  16. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    SciTech Connect

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  17. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  18. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    SciTech Connect

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  19. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    PubMed Central

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  20. Fault diagnosis of rolling bearing based on fast nonlocal means and envelop spectrum.

    PubMed

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  1. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    PubMed Central

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  2. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    PubMed

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  3. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2015-11-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  4. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be developed easily.

  5. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Sanz, Javier; Perera, Ricardo; Huerta, Consuelo

    2007-05-01

    This paper presents a new technique for monitoring the condition of rotating machinery from vibration analyses. The proposed method combines the capability of wavelet transform (WT) to treat transient signals with the ability of auto-associative neural networks to extract features of data sets in an unsupervised mode. Trained and configured networks with WT coefficients of nonfaulty signals are used as a method to detect the novelties or anomalies of faulty signals. The effectiveness of the proposed technique is evaluated using the numerical data and experimental vibration data of a gearbox. Despite the fact that noise is present in both cases, results demonstrated that the proposed method is a good candidate to be used as an online diagnosis tool for rotating machinery.

  6. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  7. Qualitative multiple-fault diagnosis of continuous dynamic systems using behavioral modes

    SciTech Connect

    Subramanian, S.; Mooney, R.J.

    1996-12-31

    Most model-based diagnosis systems, such as GDE and Sherlock, have concerned discrete, static systems such as logic circuits and use simple constraint propagation to detect inconsistencies. However, sophisticated systems such as QSIM and QPE have been developed for qualitative modeling and simulation of continuous dynamic systems. We present an integration of these two lines of research as implemented in a system called QDOCS for multiple-fault diagnosis of continuous dynamic systems using QSIM models. The main contributions of the algorithm include a method for propagating dependencies while solving a general constraint satisfaction problem and a method for verifying the consistency of a behavior with a model across time. Through systematic experiments on two realistic engineering systems, we demonstrate that QDOCS demonstrates a better balance of generality, accuracy, and efficiency than competing methods.

  8. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  9. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  10. Hard competitive growing neural network for the diagnosis of small bearing faults

    NASA Astrophysics Data System (ADS)

    Barakat, M.; El Badaoui, M.; Guillet, F.

    2013-05-01

    A hard competitive growing neural network (HC-GNN) with shrinkage learning is put forward to detect and diagnose small bearing faults. Structure determination based on supervised learning is an important issue in pattern classification. For that reason, the proposed approach introduces new hidden units whenever necessary and adjusts their shapes to minimize the risk of misclassification. This leads to smaller networks compared to classical radial basis functions or probabilistic neural networks and therefore enables the use of large data sets with satisfactory classification accuracy. This technique is based on the following concepts: (1) growing architecture, (2) dynamic adaptive learning, (3), convergence by means of several criteria, (4) embedded weighted feature selection, and (5) optimized network structure. HC-GNN consists of two main stages and runs in an iterative way. The first stage learns weighted selected parameters to well-known classes while the second stage associates the testing parameters of unknown samples to the learned classes. This approach is applied on a machinery system with different small bearing faults at various speeds and loads. The challenge is to detect and diagnose these faults regardless of the motor's shaft speed. Obtained results are analyzed, explained and compared with various techniques that have been widely investigated in diagnosis area.

  11. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1 N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  12. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  13. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  14. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  15. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  16. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  17. Fault diagnosis using a diagnostic shell and its verification results by connecting to an operator training simulator

    SciTech Connect

    Kobayashi, T.; Moridera, D.; Komai, K.; Fukui, S.; Matsumoto, K.

    1995-02-01

    This paper describes a fault diagnostic system using a diagnostic shell, MELDASH, and results that confirm its effectiveness. The diagnostic shell that reflects and makes use of the nature of model-based diagnosis is developed to overcome the drawbacks of methods that depend on operator knowledge. A high-performance fault diagnostic system is constructed simply by adding an application model to the diagnostic shell. A prototype system is verified by connecting it to an operator training simulator. It is able to make a proper diagnosis in 79 difficult fault cases. Verification results shows that the prototype system has sufficient accuracy. The authors confirm the effectiveness of this fault diagnostic method for future energy management systems.

  18. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays. PMID:27131696

  19. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  20. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition

    PubMed Central

    Lei, Yaguo; Li, Naipeng; Lin, Jing; Wang, Sizhe

    2013-01-01

    The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithms. In most of the studies on EEMD, the parameters were selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this paper. In the method, the sifting number is adaptively selected, and the amplitude of the added noise changes with the signal frequency components during the decomposition process. The simulation, the experimental and the application results demonstrate that the adaptive EEMD provides the improved results compared with the original EEMD in diagnosing rotating machinery. PMID:24351666

  1. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. PMID:26549566

  2. Design and implementation of virtual fault diagnosis system for photoelectric tracking devices based on OpenGL

    NASA Astrophysics Data System (ADS)

    Hou, MingLiang; Li, Cunhua; Zhang, Yong; Su, Liyun

    2009-10-01

    In view of the crucial deficiency of the traditional diagnosis approaches for photoelectric tracking devices and the output of more sufficient diagnosis information, in this paper, an virtual fault diagnosis system based on open graphic library(OpenGL) is proposed. Firstly, some interrelated key principles and technology of virtual reality, visualization and intelligent fault diagnosis technology are put forward. Then, the demand analysis and architecture of the system are elaborated. Next, details of interrelated essential implementation issues are also discussed, including the the 3D modeling of the related diagnosis equipments, key development process and design via OpenGL. Practical applications and experiments illuminate that the proposed approach is feasible and effective.

  3. Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up

    NASA Astrophysics Data System (ADS)

    Tadina, Matej; Boltežar, Miha

    2011-08-01

    In this paper an improved bearing model is developed in order to investigate the vibrations of a ball bearing during run-up. The numerical bearing model was developed with the assumptions that the inner race has only 2 DOF and that the outer race is deformable in the radial direction, and is modelled with finite elements. The centrifugal load effect and the radial clearance are taken into account. The contact force for the balls is described by a nonlinear Hertzian contact deformation. Various surface defects due to local deformations are introduced into the developed model. The detailed geometry of the local defects is modelled as an impressed ellipsoid on the races and as a flattened sphere for the rolling balls. With the developed bearing model the transmission path of the bearing housing can be taken into account, since the outer ring can be coupled with the FE model of the housing. The obtained equations of motion were solved numerically with a modified Newmark time-integration method for the increasing rotational frequency of the shaft. The simulated vibrational response of the bearing with different local faults was used to test the suitability of the envelope analysis technique and the continuous wavelet transformation was used for the bearing-fault identification and classification.

  4. Fuzzy reasoning system for fault diagnosis of physiological activities in a cultivating process.

    PubMed

    Bustamante, Z R; Pokkinen, M; Takuwa, T; Asama, H; Linko, P; Endo, I

    1992-06-01

    Aiming at development of a system which supports cultivating operations, a method to diagnose physiological activities in a cultivating process is presented, and a fuzzy expert system for diagnosing Lactobacillus casei cultivating process is implemented in this paper. This system can calculate specific rates of cell growth, substrate consumption, and product formation with measuring cell mass concentration, substrate concentration, and product concentration by using a turbidity sensor and HPLC. A database is implemented, where standard curves on specific rates representing characteristics of microorganisms are stored according to normalized substrate consumption. Comparing the calculated specific rates with standard values derived from the database, the system diagnoses physiological activities of the microorganisms. As a case study, a knowledge base for diagnosing lactic acid production process is implemented. The use of fault diagnosis on pH malfunctions by the expert system proves its reasonable performance. PMID:1368352

  5. Intelligent fault diagnosis and failure management of flight control actuation systems

    NASA Technical Reports Server (NTRS)

    Bonnice, William F.; Baker, Walter

    1988-01-01

    The real-time fault diagnosis and failure management (FDFM) of current operational and experimental dual tandem aircraft flight control system actuators was investigated. Dual tandem actuators were studied because of the active FDFM capability required to manage the redundancy of these actuators. The FDFM methods used on current dual tandem actuators were determined by examining six specific actuators. The FDFM capability on these six actuators was also evaluated. One approach for improving the FDFM capability on dual tandem actuators may be through the application of artificial intelligence (AI) technology. Existing AI approaches and applications of FDFM were examined and evaluated. Based on the general survey of AI FDFM approaches, the potential role of AI technology for real-time actuator FDFM was determined. Finally, FDFM and maintainability improvements for dual tandem actuators were recommended.

  6. Rule extraction of fault diagnosis based on a modified artificial immune algorithm

    NASA Astrophysics Data System (ADS)

    Hao, Xiaoli; Xie, Keming

    2006-11-01

    When employed in fault diagnosis, rough set can realize attribution reduction. But it can not discrete attribution and reduct attribution simultaneously, therefore we can not say that it can automatically extract rules. To solve the problem, a new rule extraction method based on developed artificial immune algorithm is firstly proposed in the paper. At first, a new method of encoding is produced which can make the process of discretion and reduction unify. Secondly, a new definition of concentration of antibodies not only compare individuals in structure and space, but also in fitness value. Thirdly, the algorithm provide dissimilation operator and similar-taxis operator, which replace choice, expansion and mutation in traditional artificial immune algorithm. All these developments not only maintain diversity of the antibody population, but also converge faster. Finally, we apply the algorithm to fault diagnose of heat recoup system in steam turbine. Tests proved that the algorithm is feasible, and the diagnose rules acquired by the algorithm have higher accuracy rate.

  7. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  8. Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Bashir Mahdi; Faiz, Jawad; Lotfi-fard, S.; Pillay, P.

    2012-07-01

    This paper introduces novel indices for broken rotor bars diagnosis in three-phase induction motors based on wavelet coefficients of stator current in a specific frequency band. These indices enable to diagnose occurrence and determine number of broken bars in different loads precisely. Besides thanks to the suitability of wavelet transform in transient conditions, it is possible to detect the fault during the start-up of the motor. This is important in the case of start-up of large induction motors with long starting time and also motors with frequent start-up. Furthermore, broken rotor bars in induction motor are detected using spectra analysis of the stator current. It is also shown that rise of number of broken bars and load levels increases amplitude of the particular side-band components of the stator currents in the faulty case. An induction motor with 1, 2, 3 and 4 broken bars at the rated load and the motor with 4 broken bars at no-load, 33%, 66%, 100% and 133% rated load are investigated. Time stepping finite element method is used for modeling broken rotor bars faults in induction motors. In this modeling, effects of the stator winding distribution, stator and rotor slots, geometrical and physical characteristics of different parts of the motor and non-linearity of the core materials are taken into account. The simulation results are are verified by the experimental results.

  9. Incipient interturn fault diagnosis in induction machines using an analytic wavelet-based optimized Bayesian inference.

    PubMed

    Seshadrinath, Jeevanand; Singh, Bhim; Panigrahi, Bijaya Ketan

    2014-05-01

    Interturn fault diagnosis of induction machines has been discussed using various neural network-based techniques. The main challenge in such methods is the computational complexity due to the huge size of the network, and in pruning a large number of parameters. In this paper, a nearly shift insensitive complex wavelet-based probabilistic neural network (PNN) model, which has only a single parameter to be optimized, is proposed for interturn fault detection. The algorithm constitutes two parts and runs in an iterative way. In the first part, the PNN structure determination has been discussed, which finds out the optimum size of the network using an orthogonal least squares regression algorithm, thereby reducing its size. In the second part, a Bayesian classifier fusion has been recommended as an effective solution for deciding the machine condition. The testing accuracy, sensitivity, and specificity values are highest for the product rule-based fusion scheme, which is obtained under load, supply, and frequency variations. The point of overfitting of PNN is determined, which reduces the size, without compromising the performance. Moreover, a comparative evaluation with traditional discrete wavelet transform-based method is demonstrated for performance evaluation and to appreciate the obtained results. PMID:24808044

  10. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  11. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Jinjin; Dong, Chaoyang; Wang, Qing

    2008-10-01

    An effective approach for fault diagnosis of aeroengine based on integration of wavelet analysis and neural networks is presented. The wavelet transform can accurately localizes the characteristics of a signal in time-frequency domains and in a view of the inter relationship of wavelet transform between exponent theory, the whole and local exponents obtained from wavelet transform coefficients as features are presented for extracting fault signals, which are inputted into radial basis function for fault pattern recognition. The fault diagnosis model of aero-engine is established and the improved Levenberg-Marquardt training algorithm is used to fulfill the network structure and parameter identification. By choosing enough samples to train the fault diagnosis network and the information representing the faults input into the neural network, the fault pattern can be determined. The robustness of wavelet neural network for fault diagnosis is discussed. The practical fault diagnosis for aeroengine vibration approves to be accurate and comprehensive.

  12. Serological tests for diagnosis and staging of hand-arm vibration syndrome (HAVS).

    PubMed

    Kao, Dennis S; Yan, Ji-Geng; Zhang, Lin-Ling; Kaplan, Rachel E; Riley, Danny A; Matloub, Hani S

    2008-06-01

    The current gold standard for the diagnosis and staging of hand-arm vibration syndrome (HAVS) is the Stockholm workshop scale, which is subjective and relies on the patient's recalling ability and honesty. Therefore, great potentials exist for diagnostic and staging errors. The purpose of this study is to determine if objective serum tests, such as levels of soluble thrombomodulin (sTM) and soluble intercellular adhesion molecule-1 (sICAM-1), may be used in the diagnosis and staging of HAVS. Twenty two nonsmokers were divided into a control group (n = 11) and a vibration group (n = 11). The control group included subjects without history of frequent vibrating tool use. The vibration group included construction workers with average vibrating tool use of 12.2 years. All were classified according to the Stockholm workshop scale (SN, sensorineural symptoms; V, vascular symptoms. SN0, no numbness; SN1, intermittent numbness; SN2, reduced sensory perception; SN3, reduced tactile discrimination; V0, no vasospasmic attacks; V1, intermittent vasospasm involving distal phalanges; V2, intermittent vasospasm extending to middle phalanges; V3, intermittent vasospasm extending to proximal phalanges; V4, skin atrophy/necrosis). All control subjects were SN0 V0. Seven out of 11 vibration subjects were SN1 V1, and 4 out of 11 were SN1 V2. A 10-cm(3) sample of venous blood was collected from each subject. The sTM and sICAM-1 levels were determined by enzyme-linked immunosorbent assay. The mean plasma sTM levels were as follows: control group = 2.93 +/- 0.47 ng/ml, and vibration group = 3.61 +/- 0.24 ng/ml. The mean plasma sICAM-1 levels were as follows: control group = 218.8 +/- 54.1 ng/ml, and vibration group = 300.3 +/- 53.2 ng/ml. The sTM and sICAM-1 differences between control and vibration groups were statistically significant (p < 0.0002 and p < 0.001, respectively). When reference ranges provided by Hemostasis Reference Lab were used as cut-off values, all sTM and sICAM-1 levels were within range, except three vibration individuals (27%) who had sICAM-1 levels greater than the reference range. This was not statistically significant (p = 0.08). When subjects were compared based on the Stockholm workshop scale, mean plasma sTM levels were SN0 V0 group = 2.93 +/- 0.47 ng/ml, SN1 V1 group = 3.59 +/- 0.25 ng/ml, and SN1 V2 group = 3.65 +/- 0.27 ng/ml, and mean plasma sICAM-1 levels were SN0 V0 = 219 +/- 54.1 ng/ml, SN1 V1 = 275 +/- 33.5 ng/ml, and SN1 V2 = 345 +/- 54.6 ng/ml. The difference in sTM level among the three groups was statistically significant (p < 0.001). The difference in sICAM-1 level among the three groups was also statistically significant (p < 0.002). The sTM and sICAM-1 levels are statistically higher in subjects with HAVS, with levels proportional to the disease severity. However, large population studies are needed to determine the "real-life" standard reference ranges for sTM and sICAM-1. PMID:18780088

  13. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  14. Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.; Guo, Wei; Miao, Qiang

    2011-02-01

    A novel method for enhancing gearbox fault diagnosis and prognosis is developed by fusion of multiple health indicators through support vector data description. First, the Comblet transform is used to identify gear residual error signals from the raw signal. Second, based on the observation of gear residual error signals, a total of 11 gear health indicators are identified, and are categorized into two types of indicators. The first and second types of indicators are for fault diagnosis and prognosis, respectively. The first type has six indicators, which are sensitive to impulsive signals triggered by anomalous impacts. The second type has five indicators, which are suitable for tracking degradation of faults. Third, through the support vector data description, the first six health indicators are fused into type one indicators for fault diagnosis. The remaining five indicators are fused into type two indicators for fault prognosis. Finally, a Gaussian kernel is designed to enhance the performance of type one and two indicators by optimal range of width size. The effectiveness of the proposed method is validated through experiments. The new method has been proven to be superior to methods that use unfused indicators individually.

  15. Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT

    NASA Astrophysics Data System (ADS)

    Liu, Yukun; Guo, Liwei; Wang, Qixiang; An, Guoqing; Guo, Ming; Lian, Hao

    2010-11-01

    This paper presents a signal processing method - amplitude recovery method (abbreviated to ARM) - that can be used as the signal pre-processing for fast Fourier transform (FFT) in order to analyze the spectrum of the other-order harmonics rather than the fundamental frequency in stator currents and diagnose subtle faults in induction motors. In this situation, the ARM functions as a filter that can filter out the component of the fundamental frequency from three phases of stator currents of the induction motor. The filtering result of the ARM can be provided to FFT to do further spectrum analysis. In this way, the amplitudes of other-order frequencies can be extracted and analyzed independently. If the FFT is used without the ARM pre-processing and the components of other-order frequencies, compared to the fundamental frequency, are fainter, the amplitudes of other-order frequencies are not able easily to extract out from stator currents. The reason is when the FFT is used direct to analyze the original signal, all the frequencies in the spectrum analysis of original stator current signal have the same weight. The ARM is capable of separating the other-order part in stator currents from the fundamental-order part. Compared to the existent digital filters, the ARM has the benefits, including its stop-band narrow enough just to stop the fundamental frequency, its simple operations of algebra and trigonometry without any integration, and its deduction direct from mathematics equations without any artificial adjustment. The ARM can be also used by itself as a coarse-grained diagnosis of faults in induction motors when they are working. These features can be applied to monitor and diagnose the subtle faults in induction motors to guard them from some damages when they are in operation. The diagnosis application of ARM combined with FFT is also displayed in this paper with the experimented induction motor. The test results verify the rationality and feasibility of the ARM. It should be clarified that the ARM must be applied in three phases of currents in electrical machines. For a single phase of alternating current or direct current, it can do nothing. However, since three-phase electrical machines have a dominant position in the application field in modern economic society and it is natural and convenient to acquire three phases of stator currents during the three-phase electrical machines are tested, it is necessary and meaningful to develop the ARM to diagnose and guard them.

  16. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. PMID:24296116

  17. Generalized stepwise demodulation transform and synchrosqueezing for time-frequency analysis and bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Shi, Juanjuan; Liang, Ming; Necsulescu, Dan-Sorin; Guan, Yunpeng

    2016-04-01

    The energy concentration level is an important indicator for time-frequency analysis (TFA). Weak energy concentration would result in time-frequency representation (TFR) diffusion and thus leading to ambiguous results or even misleading signal analysis results, particularly for nonstationary multicomponent signals. To improve the energy concentration level, this paper proposes a generalized stepwise demodulation transform (GSDT). The rationale of the proposed method is that (1) the generalized demodulation (GD) can map the original signal into an analytic signal with constant instantaneous frequency (IF) and improve the energy concentration level on time-frequency plane, and (2) focusing on a short window around the time instant of interest, a backward demodulation operation can recover the original frequency at the time instant without affecting the improved energy concentration level. By repeating the backward demodulation at every time instant of interest, the TFR of the entire signal can be attained with enhanced energy concentration level. With the GSDT, an iterative GSDT (IGSDT) is developed to analyze multicomponent signal that is subjected to different modulating sources for their constituent components. The IGSDT iteratively demodulates each constituent component to attain its TFR and the TFR of the whole signal is derived from superposing all the resulting TFRs of constituent components. The cross-term free and more energy concentrated TFR of the signal is, therefore, obtained, and the diffusion in the TFR can be reduced. The GSDT-based synchrosqueezing transform is also elaborated to further enhance the GSDT(IGSDT) yielded TFR. The effectiveness of the proposed method in TFA is tested using both simulated monocomponent and multicomponent signals. The application of the proposed method to bearing fault detection is explored. Bearing condition and fault pattern can be revealed by the proposed method resulting TFR. The main advantages of the proposed method for bearing condition monitoring under variable speed conditions include: (a) it can simultaneously improve energy concentration level of signals of interest and remove interferences in the TFR, (b) it is resampling-free and hence can avoid the resampling related errors, and (c) it yields instantaneous frequencies for fault and shaft rotation and thus can carry out both fault detection and diagnosis tasks.

  18. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    PubMed

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. PMID:26838675

  19. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2015-02-01

    The synchrosqueezing transform can effectively improve the readability of time-frequency representation of mono-component and constant frequency signals. However, for multi-component and time-variant frequency signals, it still suffers from time-frequency blurs. In order to address this issue, the synchrosqueezing transform is improved using iterative generalized demodulation. Firstly, the complex nonstationary signal is decomposed into mono-components of constant frequency by iterative generalized demodulation. Then, the instantaneous frequency of each mono-component is accurately estimated via the synchrosqueezing transform, by exploiting its merit of enhanced time-frequency resolution. Finally, the time-frequency representation of the original signal is obtained by superposing the time-frequency representations of all the mono-components with restored instantaneous frequency. This proposed method generalizes the synchrosqueezing transform to multi-component and time-variant frequency signals, and it has fine time-frequency resolution and is free of cross-term interferences. The proposed method was validated using both numerically simulated and lab experimental vibration signals of planetary gearboxes under nonstationary conditions. The time-variant planetary gearbox characteristic frequencies were effectively identified, and the gear faults were correctly diagnosed.

  20. Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.

  1. The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.

    PubMed

    Roh, S D; Kim, S W; Cho, W S

    2001-10-01

    The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control. PMID:11954726

  2. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  3. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Huang, Fuzhen

    2015-11-01

    Infrared thermography (IRT) has taken a very important role in monitoring and inspecting thermal defects of electrical equipment without shutting down, which has important significance for the stability of power systems. It has many advantages such as non-contact detection, freedom from electromagnetic interference, safety, reliability and providing large inspection coverage. Manual analysis of infrared images for detecting defects and classifying the status of equipment may take a lot of time and efforts, and may also lead to incorrect diagnosis results. To avoid the lack of manual analysis of infrared images, many intelligent fault diagnosis methods for electrical equipment are proposed, but there are two difficulties when using these methods: one is to find the region of interest, another is to extract features which can represent the condition of electrical equipment, as it is difficult to segment infrared images due to their over-centralized distributions and low intensity contrasts, which are quite different from those in visual light images. In this paper, a new intelligent diagnosis method for classification different conditions of electrical equipment using data obtained from infrared images is presented. In the first stage of our method, an infrared image of electrical equipment is clustered using K-means algorithm, then statistical characteristics containing temperature and area information are extracted in each region. In the second stage, in order to select the salient features which can better represent the condition of electrical equipment, some or all statistical characteristics from each region are combined as input data for support vector machine (SVM) classifier. To improve the classification performance of SVM, a coarse-to-fine parameter optimization approach is adopted. The performance of SVM is compared with that of back propagation neural network. The comparison results show that our method can achieve a better performance with accuracy 97.8495%.

  4. Real-Time Condition Monitoring and Fault Diagnosis of Gear Train Systems Using Instantaneous Angular Speed (IAS) Analysis

    NASA Astrophysics Data System (ADS)

    Sait, Abdulrahman S.

    This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.

  5. Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Zhao, Yajun; Defoort, Michael; Pecht, Michael

    2015-01-01

    To improve reliability, safety and efficiency, advanced methods of fault detection and diagnosis become increasingly important for many technical fields, especially for safety related complex systems like aircraft, trains, automobiles, power plants and chemical plants. This paper presents a robust fault detection and diagnostic scheme for a multi-energy domain system that integrates a model-based strategy for system fault modeling and a data-driven approach for online anomaly monitoring. The developed scheme uses LFT (linear fractional transformations)-based bond graph for physical parameter uncertainty modeling and fault simulation, and employs AAKR (auto-associative kernel regression)-based empirical estimation followed by SPRT (sequential probability ratio test)-based threshold monitoring to improve the accuracy of fault detection. Moreover, pre- and post-denoising processes are applied to eliminate the cumulative influence of parameter uncertainty and measurement uncertainty. The scheme is demonstrated on the main unit of a locomotive electro-pneumatic brake in a simulated experiment. The results show robust fault detection and diagnostic performance.

  6. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  7. Envelope calculation of the multi-component signal and its application to the deterministic component cancellation in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Ming, A. B.; Zhang, W.; Qin, Z. Y.; Chu, F. L.

    2015-01-01

    Commonly presented as cyclic impulse responses with some degrees of randomness, the vibrations induced by bearing faults are multi-component signals and usually overwhelmed by other deterministic components, which may degrade the efficiency of the traditional envelope analysis used for bearing fault feature extraction. In this paper, the envelope of the multi-component signal, including both discrete frequency components and cyclic impulse responses, is theoretically calculated by the Hilbert transform in both time and frequency domains at first. Then, a novel deterministic component cancellation method is proposed based on the iterative calculation of the signal envelope. Finally, simulations and experiments are used to validate the theoretical calculation and the proposed deterministic component cancellation method. It is indicated that the oscillation part of the envelope is dominated by the cross-terms of the multi-component signal, and that the cross-terms between a discrete frequency component and cyclic impulse responses present as new cyclic impulse responses, which retain the cyclic feature of the original ones. Furthermore, the deterministic component can be canceled by iteratively subtracting the direct current (DC) offset of the envelope. Compared with the cepstrum pre-whiten (CPW) method, used to separate the deterministic (discrete frequency) component from the random component (vibration induced by the bearing fault), the proposed method is more efficient to the shifting of the cyclic impulse responses from the powerful deterministic component with little disruption, and is more suitable for the real time signal processing owing to the high efficient calculation of the Hilbert transform.

  8. Fault diagnosis strategy for incompletely described samples and its application to refrigeration system

    NASA Astrophysics Data System (ADS)

    Ren, Neng; Liang, Jun; Gu, Bo; Han, Hua

    2008-02-01

    Fault diagnosis (FD) plays a very important role in the operation and maintenance of mechanical system and equipment. Existing FD methods are not capable of effectively dealing with incompletely described samples. In this paper, a strategy for FD using the incompletely described samples is presented. It is actualized in two steps, namely the determination of the values of unknown features which is the key step of the presented FD strategy, and the utilization of the regenerated completely described samples to diagnose the system based on support vector machine (SVM) classifiers. And the first step is mainly implemented by the following three sub-steps: (1) with the help of domain knowledge, the similarity transformation matrix of partial problem description (PPD)—problems with incomplete feature description—is generated based on the historical database; (2) the unknown features of the samples are transformed to related known features, through which generates a new retrieval feature vector; (3) the values of unknown features are assigned by the optimal cases which can be retrieved by measuring and comparing similarities between the retrieval feature vector and the completely described samples in the historical database. Finally, the presented FD strategy was applied to a real refrigeration system, and achieved satisfying results.

  9. Prototype fault-diagnosis system for NASA space station power management and control. Master's thesis

    SciTech Connect

    Hester, G.L.

    1988-09-01

    The Power Management and Distribution System (PMAD) Prototype utilizes a computer graphics interface with a computer expert system running transparent to the user and a computer communications interface that links the two together, all enabling the diagnosis of PMAD system faults. The prototype design is based on the concept that an astronaut on a space station will instruct an expert system through a graphic interface to run a system or component check on the PMAD system. The graphics interface determines which type of evaluations was requested and sends that information through the communications interface to the expert system. The expert system receives the information and, based on the type of evaluation requested, executes the appropriate rules in the knowledge base and sends the resulting status back to the graphics interface and the astronaut. The PMAD System Prototype serves as a proposed training tool for NASA to use in the training of new personnel who will be designing and developing the NASA Space station expert systems.

  10. Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion

    NASA Astrophysics Data System (ADS)

    Wang, Yuefei; Xue, Chuang; Jia, Xiaohan; Peng, Xueyuan

    2015-05-01

    This paper proposes a method of diagnosing faults in reciprocating compressor valves using the acoustic emission signal coupled with the simulated valve motion. The actual working condition of a valve can be obtained by analyzing the acoustic emission signal in the crank angle domain and the valve movement can be predicted by simulating the valve motion. The exact opening and closing locations of a normal valve, provided by the simulated valve motion, can be used as references for the valve fault diagnosis. The typical valve faults are diagnosed to validate the feasibility and accuracy of the proposed method. The experimental results indicate that this method can easily distinguish the normal valve, valve flutter and valve delayed closing conditions. The characteristic locations of the opening and closing of the suction and discharge valves can be clearly identified in the waveform of the acoustic emission signal and the simulated valve motion.

  11. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal

    NASA Astrophysics Data System (ADS)

    Janjarasjitt, S.; Ocak, H.; Loparo, K. A.

    2008-10-01

    In this paper, we introduce a modified form of the correlation integral developed by Grassberger and Procaccia referred to as the partial correlation integral, which can be computed in real time. The partial correlation integral algorithm is then used to analyze machine vibration data obtained throughout a life test of a rolling element bearing. From the experimental results, the dimensional exponent (an approximation of the correlation dimension) as computed from the partial correlation integral algorithm tends to increase as time progresses and the useful remaining life of the bearing is decreasing. The dimensional exponents of a healthy bearing and a bearing close to failure are statistically different. We also propose a computational scheme for bearing condition monitoring (diagnosis and prognosis) using the dimensional exponent integrated with a surrogate data testing technique. As a result, we can characterize the condition of the bearing from the results of the surrogate data test and furthermore, we provide some preliminary evidence that the dimensional exponent can be used to predict the failure of rolling element bearings in rotating machinery from real-time vibration data.

  12. Application of the Envelope and Wavelet Transform Analyses for the Diagnosis of Incipient Faults in Ball Bearings

    NASA Astrophysics Data System (ADS)

    Rubini, R.; Meneghetti, U.

    2001-03-01

    Fatigue faults on the surface of rolling bearing elements are some of the most frequent causes of malfunctions and breakages of rotating machines. In normal operating conditions this kind of damage can be revealed by classical vibration analyses, such as Spectral or Envelope ones. Furthermore, this last technique—by working in time domain—makes it possible to monitor the longitudinal dimension of the defect. In this paper, the limits of the mentioned methodologies are presented by showing their application to bearings affected by different pitting failures on the outer or inner race or a rolling element and subjected to a very low radial load. Results are compared with that obtained by an advanced signal processing method based on the evaluation of the wavelet transform. Effects of fault evolution are investigated.

  13. Modeling fault diagnosis as the activation and use of a frame system. [for pilot problem-solving rating

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Giffin, Walter C.; Rockwell, Thomas H.; Thomas, Mark

    1986-01-01

    Twenty pilots with instrument flight ratings were asked to perform a fault-diagnosis task for which they had relevant domain knowledge. The pilots were asked to think out loud as they requested and interpreted information. Performances were then modeled as the activation and use of a frame system. Cognitive biases, memory distortions and losses, and failures to correctly diagnose the problem were studied in the context of this frame system model.

  14. Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.

    PubMed

    Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil

    2014-08-01

    For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work. PMID:25096149

  15. Sensor fault diagnosis based on energy balance evaluation: application to a metal processing.

    PubMed

    Theilliol, D; Noura, H; Sauter, D; Hamelin, F

    2006-10-01

    This paper deals with the design of a residual generator for fault detection and isolation in the dynamic closed-loop systems based on the balance of energy which "enters" and "leaves" plants. The main contribution of this paper consists in developing a suitable fault detection and isolation technique to detect faults in single-input single-output closed-loop system based on major signals without the requirement of an accurate static or dynamic model. Indeed, in the absence of conventional input-output models, the proposed method involves the on-line energy balance evaluation to detect a sensor fault. The application to the monitoring of a galvanizing line in steel industry shows the effectiveness of the suggested approach when a sensor fault occurs. PMID:17063941

  16. ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems

    NASA Technical Reports Server (NTRS)

    Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.

    1988-01-01

    ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.

  17. Quantification of multiple fault parameters in flexible turbo-generator systems with incomplete rundown vibration data

    NASA Astrophysics Data System (ADS)

    Lal, Mohit; Tiwari, Rajiv

    2013-12-01

    A turbo-generator system of the modern rotating machinery consists of the driver and driven shafts, which are coupled through flexible couplings and mounted on flexible bearings. Dynamic characterisation of vital machine elements of such rotating machinery is a challenging problem for reliable and accurate response predictions. In this paper, a key intention is to estimate the bearing and coupling dynamic parameters along with residual unbalances at predefined planes, and the misalignment forces and moments at the coupling based on the rundown vibration data. To tackle a practical difficulty of limited measurements and a numerical difficulty of the conventional dynamic condensation in the development of identification algorithm, a novel condensation technique has been implemented especially to overcome measurement of transverse rotational DOFs. Numerical examples are also presented to show the effectiveness of the proposed method. The measurement noise has been added in numerically simulated responses that are used in the present algorithm to identify the parameters and it is found to be robust. Modelling errors of few physical parameters are also considered and estimates are found to be very good.

  18. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

    PubMed Central

    Şimşir, Mehmet; Bayır, Raif; Uyaroğlu, Yılmaz

    2016-01-01

    Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. PMID:26819590

  19. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network.

    PubMed

    Şimşir, Mehmet; Bayır, Raif; Uyaroğlu, Yılmaz

    2016-01-01

    Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. PMID:26819590

  20. Comparison of Fault Detection Algorithms for Real-time Diagnosis in Large-Scale System. Appendix E

    NASA Technical Reports Server (NTRS)

    Kirubarajan, Thiagalingam; Malepati, Venkat; Deb, Somnath; Ying, Jie

    2001-01-01

    In this paper, we present a review of different real-time capable algorithms to detect and isolate component failures in large-scale systems in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of I's and O's) are available to the algorithms. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the rows in the test dictionary, which in turn will isolate the faults. In order to recover the uncorrupted test result vector, one needs the accuracy of each test. That is, its detection and false alarm probabilities are required. In this problem, their true values are not known and, therefore, have to be estimated online. Other major aspects in this problem are the large-scale nature and the real-time capability requirement. Test dictionaries of sizes up to 1000 x 1000 are to be handled. That is, results from 1000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of the test results are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test results with online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one needs a mechanism to update them after processing each test result vector. Using Qualtech's TEAMS-RT (system simulation and real-time diagnosis tool), we test the performances of 1) TEAMSAT's built-in diagnosis algorithm, 2) Hamming distance based diagnosis, 3) Maximum Likelihood based diagnosis, and 4) HidderMarkov Model based diagnosis.

  1. Simulation and analysis of machinery fault signals

    NASA Astrophysics Data System (ADS)

    White, M. F.

    1984-03-01

    Machinery condition monitoring is rapidly finding applications in all branches of industry. In particular, vibration monitoring is playing an increasingly important role as a tool for assisting with predictive and preventive maintenance and for improving operation efficiency of plant. Condition monitoring systems are used for the detection of incipient failure and the diagnosis of the nature of faults in operating machinery. However, for these systems to be reliable an improved understanding is required of the vibration signatures produced by machinery failure mechanisms and of methods for the interpretation of these signals. Many types of fault produce vibration signals which are impulsive in nature and which may be buried in background noise. A method is described for simulating this type of signal and modelling the various stages of incipient failure. Statistical and spectral analysis are used to describe the fault development. The influence of machinery frequency response characteristics on signal transmission from the damaged are to the measurement point are also considered.

  2. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan

    2012-01-01

    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  3. [Study on fault diagnosis of power-shift steering transmission based on spectrometric analysis and SVM].

    PubMed

    Zhang, Ying-Feng; Ma, Biao; Zhang, Jin-Le; Chen, Man; Fan, Yu-Heng; Li, Wen-Chang

    2010-06-01

    Spectrometric oil analysis is an important method to study the running state of Power-Shift Steering Transmission (PSST). A method of multiple out least squares support vector regression was developed using spectrometric oil analysis data and SVM (Support Vector Machine). The spectrometric oil analysis data were studied using multiple out least squares support vector regression. It has been proved that the regression data are good in approximation effect for No. 1 PSST. And the predictive values for No. 2 PSST are highly veracious with the test data. The fault information was found and the fault position was determined through compar4tive analysis. This method has been proved to have practice significance for finding fault-hidden dangers and judging fault positions. PMID:20707155

  4. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  5. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  6. The technique of entropy optimization in motor current signature analysis and its application in the fault diagnosis of gear transmission

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Liang, Lin; Liu, Fei; Xu, Guanghua; Luo, Ailing; Zhang, Sicong

    2012-05-01

    Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.

  7. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  8. Diagnosis of helicopter gearboxes using structure-based networks

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1995-01-01

    A connectionist network is introduced for fault diagnosis of helicopter gearboxes that incorporates knowledge of the gearbox structure and characteristics of the vibration features as its fuzzy weights. Diagnosis is performed by propagating the abnormal features of vibration measurements through this Structure-Based Connectionist Network (SBCN), the outputs of which represent the fault possibility values for individual components of the gearbox. The performance of this network is evaluated by applying it to experimental vibration data from an OH-58A helicopter gearbox. The diagnostic results indicate that the network performance is comparable to those obtained from supervised pattern classification.

  9. Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Tsao, Wen-Chang; Pan, Min-Chun

    2014-03-01

    The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.

  10. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  11. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  12. Airdata sensor based position estimation and fault diagnosis in aerial refueling

    NASA Astrophysics Data System (ADS)

    Sevil, Hakki Erhan

    Aerial refueling is the process of transferring fuel from one aircraft (the tanker) to another (the receiver) during flight. In aerial refueling operations, the receiver aircraft is exposed to nonuniform wind field induced by tanker aircraft, and this nonuniform wind field leads to differences in readings of airdata sensors placed at different locations on the receiver aircraft. There are advantages and disadvantages of this phenomenon. As an advantage, it is used as a mechanism to estimate relative position of the receiver aircraft inside the nonuniform wind field behind the tanker. Using the difference in the measurements from multiple identical sensors, a model of the nonuniform wind field that is organized as maps of the airspeed, side slip angle and angle of attack as functions of the relative position is prepared. Then, using the developed algorithms, preformed maps and instant sensor readings, the relative position receiver aircraft is determined. The disadvantage of the phenomenon is that the differences in readings of airdata sensors cause false fault detections in a redundant-sensor-based Fault Detection and Isolation (FDI) system developed based on the assumption of identical sensor readings from three airdata sensors. Such FDI algorithm successfully performs detection and isolation of sensor faults when the receiver aircraft flies solo or outside the wake of the tanker aircraft. However, the FDI algorithm yields false fault detection when the receiver aircraft enters the tanker's wake. This problem can be eliminated by modifying the FDI algorithm. For the robustness, the expected values of the sensor measurements are incorporated in the FDI algorithm, instead of the assumption of identical measurements from the sensors. The expected values, which depend on the position of the receiver relative to the tanker, are obtained from the maps of the nonuniform wind field as functions of the relative position. The new robust FDI detects and isolates sensor faults, as well as it eliminates the false fault detection in the nonuniform wind field induced by the tanker aircraft.

  13. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.

  14. A knowledge-based operator advisor system for integration of fault detection, control, and diagnosis to enhance the safe and reliable operation of nuclear power plants

    SciTech Connect

    Bhatnagar, R.

    1989-01-01

    A Knowledged-Based Operator Advisor System has been developed for enhancing the complex task of maintaining safe and reliable operation of nuclear power plants. The operator's activities have been organized into the four tasks of data interpretation for abstracting high level information from sensor data, plant state monitoring for identification of faults, plan execution for controlling the faults, and diagnosis for determination of root causes of faults. The Operator Advisor System is capable of identifying the abnormal functioning of the plant in terms of: (1) deviations from normality, (2) pre-enumerated abnormal events, and (3) safety threats. The classification of abnormal functioning into the three categories of deviations from normality, abnormal events, and safety threats allows the detection of faults at three levels of: (1) developing faults, (2) developed faults, and (3) safety threatening faults. After the identification of abnormal functioning the system will identify the procedures to be executed to mitigate the consequences of abnormal functioning and will help the operator by displaying the procedure steps and monitoring the success of actions taken. The system also is capable of diagnosing the root causes of abnormal functioning. The identification, and diagnosis of root causes of abnormal functioning are done in parallel to the task of procedure execution, allowing the detection of more critical safety threats while executing procedures to control abnormal events.

  15. Parameter estimation for uncertain systems based on fault diagnosis using Takagi-Sugeno model.

    PubMed

    Nagy-Kiss, A M; Schutz, G; Ragot, J

    2015-05-01

    The paper addresses a systematic procedure to deal with state and parameter uncertainty estimation for nonlinear time-varying systems. A robust observer with respect to states, inputs and perturbations is designed, using a Takagi-Sugeno (T-S) approach with unknown premise variables. Tools of the linear automatic to the nonlinear systems are applied, using the Linear Matrix Inequalities optimization. The observer estimates the uncertainties, the states and minimizes the effect of external disturbances on the estimation error. The uncertainties are modelled in a polynomial way which allows considering the uncertainty estimation as a fault detection problem. The residual sensitivity to faults while maintaining robustness according to a noise signal is handled by H?/H- approach. The method performance is illustrated using the three-tank system. PMID:25677711

  16. Initial results on fault diagnosis of DSN antenna control assemblies using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smyth, P.; Mellstrom, J.

    1990-01-01

    Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature.

  17. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    PubMed

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636

  18. Application of Composite Dictionary Multi-Atom Matching in Gear Fault Diagnosis

    PubMed Central

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results. PMID:22163938

  19. A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Chen, Zheng; Vagapov, Yuriy; Zouaoui, Zoubir

    2014-01-01

    This paper proposes a new induction motor broken bar fault extent diagnostic approach under varying load conditions based on wavelet coefficients of stator current in a specific frequency band. In this paper, winding function approach (WFA) is used to develop a mathematical model to provide indication references for parameters under different load levels and different fault cases. It is shown that rise of number of broken bars and load levels increases amplitude of the particular side band components of the stator currents in faulty case. Stator current, rotor speed and torque are used to demonstrate the relationship between these parameters and broken rotor bar severity. An induction motor with 1, 2 and 3 broken bars and the motor with 3 broken bars in experiment at no-load, 50% and 100% load are investigated. A novel criterion is then developed to assess rotor fault severity based on the stator current and the rotor speed. Simulations and experimental results confirm the validity of the proposed approach.

  20. Fault diagnosis hybrid system using a Luenberger-based detection filter and neural networks

    NASA Astrophysics Data System (ADS)

    Tarantino, Rocco; Cabezas, Kathiusca; Rivas-Echeverria, Francklin; Colina-Morles, Eliezer

    2001-03-01

    The present paper proposes a new layout for failure detection and diagnosis in industrial dynamic systems in which, failure vector decoupling is not always possible, due to the failure intrinsic propagation. In this case diagnosis can be determined due to the existing correlation between the failure vector and residual vector time patterns. The greatest benefit of this study is the failure detection method, Luenberger observer based detection filter, through vectorial residual generation combined with the pattern recognition technique based on neural networks theory. The synergy of both methods offer a wider application range to diagnosis problem solutions, in systems under presence of non-decoupled failures.

  1. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    NASA Astrophysics Data System (ADS)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  2. Cutting State Diagnosis for Shearer through the Vibration of Rocker Transmission Part with an Improved Probabilistic Neural Network

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Zhang, Lin

    2016-01-01

    In order to achieve more accurate and reliable identification of shearer cutting state, this paper employs the vibration of rocker transmission part and proposes a diagnosis method based on a probabilistic neural network (PNN) and fruit fly optimization algorithm (FOA). The original FOA is modified with a multi-swarm strategy to enhance the search performance and the modified FOA is utilized to optimize the smoothing parameters of the PNN. The vibration signals of rocker transmission part are decomposed by the ensemble empirical mode decomposition and the Kullback-Leibler divergence is used to choose several appropriate components. Forty-five features are extracted to estimate the decomposed components and original signal, and the distance-based evaluation approach is employed to select a subset of state-sensitive features by removing the irrelevant features. Finally, the effectiveness of the proposed method is demonstrated via the simulation studies of shearer cutting state diagnosis and the comparison results indicate that the proposed method outperforms the competing methods in terms of diagnosis accuracy. PMID:27058540

  3. Cutting State Diagnosis for Shearer through the Vibration of Rocker Transmission Part with an Improved Probabilistic Neural Network.

    PubMed

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Zhang, Lin

    2016-01-01

    In order to achieve more accurate and reliable identification of shearer cutting state, this paper employs the vibration of rocker transmission part and proposes a diagnosis method based on a probabilistic neural network (PNN) and fruit fly optimization algorithm (FOA). The original FOA is modified with a multi-swarm strategy to enhance the search performance and the modified FOA is utilized to optimize the smoothing parameters of the PNN. The vibration signals of rocker transmission part are decomposed by the ensemble empirical mode decomposition and the Kullback-Leibler divergence is used to choose several appropriate components. Forty-five features are extracted to estimate the decomposed components and original signal, and the distance-based evaluation approach is employed to select a subset of state-sensitive features by removing the irrelevant features. Finally, the effectiveness of the proposed method is demonstrated via the simulation studies of shearer cutting state diagnosis and the comparison results indicate that the proposed method outperforms the competing methods in terms of diagnosis accuracy. PMID:27058540

  4. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Zhang, Yu; Zhang, Feibin; Zhang, Jianyu; Lee, Seungchul

    2016-03-01

    For the quantitative fault diagnosis of rolling element bearings, a nonlinear vibration model for fault severity assessment of rolling element bearings is established in this study. The outer race defect size parameter is introduced into the dynamic model, and vibration response signals of rolling element bearings under different fault sizes are simulated. The signals are analyzed quantitatively to observe the relationship between vibration responses and fault sizes. The impact points when the ball rolls onto and away from the defect are identified from the vibration response signals. Next, the impact characteristic that reflects the fault severity in rolling element bearings is obtained from the time interval between two impact points. When the width of the bearing fault is small, the signals are presented as clear single impact. The signals gradually become double impacts with increasing size of defects. The vibration signals of a rolling element bearings test rig are measured for different outer race fault sizes. The experimental results agree well with the results from simulations. These results are useful for understanding the vibration response mechanism of rolling element bearings under various degrees of fault severity.

  5. A flight expert system for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, Moonis

    1990-01-01

    An architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing, and recovering from inflight faults is described. A prototype was implemented and an attempt was made to automate the knowledge acquisition process by employing a learning by being told methodology. The scope of acquired knowledge ranges from domain knowledge, including the information about objects and their relationships, to the procedural knowledge associated with the functionality of the mechanisms. AKAS (automatic knowledge acquisition system) is the constructed prototype for demonstration proof of concept, in which the expert directly interfaces with the knowledge acquisition system to ultimately construct the knowledge base for the particular application. The expert talks directly to the system using a natural language restricted only by the extent of the definitions in an analyzer dictionary, i.e., the interface understands a subset of concepts related to a given domain. In this case, the domain is the electrical system of the Boeing 737. Efforts were made to define and employ heuristics as well as algorithmic rules to conceptualize data produced by normal and faulty jet engine behavior examples. These rules were employed in developing the machine learning system (MLS). The input to MLS is examples which contain data of normal and faulty engine behavior and which are obtained from an engine simulation program. MLS first transforms the data into discrete selectors. Partial descriptions formed by those selectors are then generalized or specialized to generate concept descriptions about faults. The concepts are represented in the form of characteristic and discriminant descriptions, which are stored in the knowledge base and are employed to diagnose faults. MLS was successfully tested on jet engine examples.

  6. Tuning and comparing fault diagnosis methods for aeronautical systems via kriging-based optimization

    NASA Astrophysics Data System (ADS)

    Marzat, J.; Piet-Lahanier, H.; Damongeot, F.; Walter, E.

    2013-12-01

    Many approaches address fault detection and isolation (FDI) based on analytical redundancy. To rank them, it is necessary to define performance indices and realistic sets of test cases on which they will be evaluated. For the ranking to be fair, each of the methods under consideration should have its internal parameters tuned optimally. The work presented uses a combination of tools developed in the context of computer experiments to achieve this tuning from a limited number of numerical evaluations. The methodology is then extended so as to provide a robust tuning in the worst-case sense.

  7. Law-based sensor fault diagnosis and validation for building air-conditioning systems

    SciTech Connect

    Wang, S.; Wang, J.B.

    2000-07-01

    This paper presents an automatic strategy that can be used in a building energy management and control system to detect, diagnose, and evaluate soft sensor faults in building air-conditioning systems. The strategy is based on fundamental conservation (mass and energy conservation) relations and accommodates changes of plant performance and working conditions. The existence and magnitude of non-abrupt biases in chilled water flow meters and temperature sensors due to miscalibration and drift are detected. Sensor biases are estimated by minimizing the sum of the squares of the mass and energy balance residuals of selected control volumes. Validation of the strategy on a central chilling system is presented.

  8. Translation-invariant multiwavelet denoising using improved neighbouring coefficients and its application on rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Hailiang, Sun; Yanyang, Zi; Zhengjia, He; Xiaodong, Wang; Jing, Yuan

    2011-07-01

    The deficiencies of conventional neighbouring coefficients denoising are the invariant neighbouring window size and the global threshold; therefore, it cannot accurately represent local concentrated energy of the collected signals in engineering application. The improved neighbouring coefficients named Neighbouring Coefficients Dependent on Level (NCDL) is proposed. The size of neighbouring window varies with different decomposition levels and the threshold is chosen according to the neighbourhood. Translation invariant method can effectively weaken some visual artifacts, for example Gibbs phenomena in the neighbourhood of discontinuities. Multiwavelets have two or more scaling and wavelet functions. Compared with scalar wavelet, multiwavelets offer several excellent properties such as symmetric, orthogonal, compactly support and higher order of vanishing moment. A novel denoising method - translation invariant multiwavelet denoising with improved neighbouring coefficients is presented. The simulation signal proves the validity of the presented method. This method is then applied to the fault diagnosis of a locomotive rolling bearing. The results show that the present method can effectively extract the fault characteristic frequency of a slight scrape on the outer race of the rolling bearing.

  9. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  10. Diagnosis of broken-bars fault in induction machines using higher order spectral analysis.

    PubMed

    Saidi, L; Fnaiech, F; Henao, H; Capolino, G-A; Cirrincione, G

    2013-01-01

    Detection and identification of induction machine faults through the stator current signal using higher order spectra analysis is presented. This technique is known as motor current signature analysis (MCSA). This paper proposes two higher order spectra techniques, namely the power spectrum and the slices of bi-spectrum used for the analysis of induction machine stator current leading to the detection of electrical failures within the rotor cage. The method has been tested by using both healthy and broken rotor bars cases for an 18.5 kW-220 V/380 V-50 Hz-2 pair of poles induction motor under different load conditions. Experimental signals have been analyzed highlighting that bi-spectrum results show their superiority in the accurate detection of rotor broken bars. Even when the induction machine is rotating at a low level of shaft load (no-load condition), the rotor fault detection is efficient. We will also demonstrate through the analysis and experimental verification, that our proposed proposed-method has better detection performance in terms of receiver operation characteristics (ROC) curves and precision-recall graph. PMID:22999985

  11. A generic task approach to a real time nuclear power plant fault diagnosis and advisory system

    SciTech Connect

    Hajek, B.K.; Miller, D.W.; Bhatnagar, R.; Stasenko, J.E.; Punch, W.F. III; Yamada, N.

    1988-01-01

    A generic task toolkit developed at The Ohio State University Laboratory for Artificial Intelligence Research (LAIR) has been used in the development of an aid for operators of nuclear power plants. The toolkit consists of high level programming tools that enable knowledge to be used in accordance with its need. That is, if diagnosis is the need, a framework for performing diagnosis is provided. The operator aid provides for monitoring the conditions in the plant, detecting abnormal events, and providing the operator with guidance and advice through procedures on what path should be followed to mitigate the consequences. 8 refs., 5 figs.

  12. Fault Diagnosis of Cantilever Beam Using Finite Element Analysis: A Case Study

    NASA Astrophysics Data System (ADS)

    Murthy, B. S. N.; Ratnam, C.; Kumar, K. A.

    2013-10-01

    Damage prediction in mechanical and structural systems is establishing a prominent role in modern engineering. Vibration based damage methods give ample flexibility to understand the extent of expected damages in the system. Measurement of vibration characteristics like natural frequencies and mode shapes, Fourier responses and transient responses can help in comprehending the present status of a system either by comparing with their baseline equivalents or by formulating residual functions and minimizing them. The minimization of residues is carried out using non-conventional optimization techniques like genetic algorithms. Genetic algorithms being a meta-heuristic method obtain global minimum values with implicitly defined constraints and objective. In all the residual functions considered in this paper, it is assumed that only the stiffness parameters are reduced individually in each element due to the damage. The amount of reduction in each element is an unknown parameter. The approach is attempted with a structural member like beam. Experimental analysis is carried out to test the natural frequencies and mode shapes of the damaged beams from finite element model considered. A cantilever beam with central slot of desired depth is selected and impact hammer analysis is performed to know the variation in modes when compared to undamaged counter part. Results are presented in the form of table and graphs.

  13. Frequency Analysis of Vibrations of the Internal Combustion Engine Components in the Diagnosis of Engine Processes

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Franciszek; Szymański, Grzegorz

    2012-03-01

    Many methods of diagnosing internal combustion engines have been already worked out. They can be divided into methods using working processes and methods using leftover processes. Working processes give information about general condition of internal combustion engine. Leftover processes give information about condition of particular subassemblies and kinematic couples; hence they are used as autonomous processes or as processes supporting other diagnostic methods. Methods based on analysis of vibrations and noise changes to determine technical condition of object are named as vibroacoustic diagnostics. In papers about vibroacoustic diagnostics of engine, problems connected with difficulty to select test point and to define diagnostic parameters containing essential information about engine's condition, are most often omitted. Selection of engine's working parameters and conditions of taking measurements or registering vibration signal are usually based on references, researcher's experience or intuition. General assumptions about taking measurements of signal closest to its source are most often used. Application of vibrations and noise generated by working combustion engine to assess correctness of its work and technical condition has many advantages. Vibroacoustic processes are a good carrier of diagnostic information for the following reasons: - high information capacity, - high speed of data transfer (signal's component describing change in object's condition is visible the moment the inefficiency occurs), - vibration signal reflects all significant processes in combustion engine, - measurement of vibrations and noise does not require special preparations of technical object for tests and can be carried out during regular operations. This article presents a new approach to vibroacoustic diagnostics of internal combustion engine. Selection of test points of vibration on the basis of impact tests' results was suggested. Those results were applied to build dynamic models of systems of combustion engines. Such model was used to assess condition of the systems.

  14. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  15. Vibration-based condition monitoring of rotating machines using a machine composite spectrum

    NASA Astrophysics Data System (ADS)

    Elbhbah, Keri; Sinha, Jyoti K.

    2013-05-01

    Vibration-based condition monitoring (VCM) requires vibration measurement on each bearing pedestal using a number of vibration transducers and then signals processing for all the measured vibration data to identify fault(s), if any, in a rotating machine. Such a large vibration data set makes the diagnosis process complex generally for a large rotating machine supported through a number of bearing pedestals. Hence a new method is used to construct a single composite spectrum using all the measured vibration data set. This composite spectrum is expected to represent the dynamics of the complete machine assembly and can make fault diagnosis process relatively easier and more straightforward. The paper presents the concept of the proposed composite spectrum which was applied to a laboratory test rig with different simulated faults; healthy and three faulty cases named misalignment, crack shaft, and shaft rub. A comparison between the composite spectrum with and without the coherence has been investigated for the simulated faults in the rig. It has been observed that the coherent composite spectrum provides much better diagnosis compared to the non-coherent composite spectrum.

  16. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Gan, Meng; Wang, Cong; Zhu, Chang`an

    2016-05-01

    A novel hierarchical diagnosis network (HDN) is proposed by collecting deep belief networks (DBNs) by layer for the hierarchical identification of mechanical system. The deeper layer in HDN presents a more detailed classification of the result generated from the last layer to provide representative features for different tasks. A two-layer HDN is designed for a two-stage diagnosis with the wavelet packet energy feature. The first layer is intended to identify fault types, while the second layer is developed to further recognize fault severity ranking from the result of the first layer. To confirm the effectiveness of HDN, two similar networks constructed by support vector machine and back propagation neuron networks (BPNN) are employed to present a comprehensive comparison. The experimental results show that HDN is highly reliable for precise multi-stage diagnosis and can overcome the overlapping problem caused by noise and other disturbances.

  17. Experimental investigations on vibration response of misaligned rotors

    NASA Astrophysics Data System (ADS)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-10-01

    Misalignment is one of the most commonly observed faults in rotating machines. However, there have been relatively limited research efforts in the past to understand its effect on overall dynamics of the rotor system. In the existing literature, there is confusing spectral information on the rotor vibration characteristics of misalignment. The present study is aimed at understanding the dynamics of misaligned rotors and reducing the ambiguity so as to improve the reliability of the misalignment fault diagnosis. Influence of misalignment and its type on the forcing characteristics of flexible coupling is investigated followed by experimental investigation of the vibration response of misaligned coupled rotors supported on rolling element bearings. Steady-state vibration response at integer fraction of the first bending natural frequency is investigated. Effects of types of misalignments, i.e. parallel and angular misalignments, are investigated. The conventional Fourier spectrum (i.e. FFT) has limitations in revealing the directional nature of the vibrations arising out of rotor faults. In addition, it has been observed that several other rotor faults generate higher harmonics in the Fourier spectrum and hence there could be a level of uncertainty in the diagnosis when other faults are also suspect. The present work through use of full spectra has shown possibility of diagnosing misalignment through unique vibration features exhibited in the full spectra (i.e. forward/backward whirl). This provides an important tool to separate faults that generate similar frequency spectra (e.g. crack and misalignment) and lead to a more reliable misalignment diagnosis. Full spectra and orbit plots are efficiently used to reveal the unique nature of misalignment fault not clearly brought out by the previous studies, and new misalignment diagnostics recommendations are proposed.

  18. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  19. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  20. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Sawalhi, N.; Randall, R. B.; Endo, H.

    2007-08-01

    Spectral kurtosis (SK) represents a valuable tool for extracting transients buried in noise, which makes it very powerful for the diagnostics of rolling element bearings. However, a high value of SK requires that the individual transients are separated, which in turn means that if their repetition rate is high their damping must be sufficiently high that each dies away before the appearance of the next. This paper presents an algorithm for enhancing the surveillance capability of SK by using the minimum entropy deconvolution (MED) technique. The MED technique effectively deconvolves the effect of the transmission path and clarifies the impulses, even where they are not separated in the original signal. The paper illustrates these issues by analysing signals taken from a high-speed test rig, which contained a bearing with a spalled inner race. The results show that the use of the MED technique dramatically sharpens the pulses originating from the impacts of the balls with the spall and increases the kurtosis values to a level that reflects the severity of the fault. Moreover, when the algorithm was tested on signals taken from a gearbox for a bearing with a spalled outer race, it shows that each of the impulses originating from the impacts is made up of two parts (corresponding to entry into and exit from the spall). This agrees well with the literature but is often difficult to observe without the use of the MED technique. The use of the MED along with SK analysis also greatly improves the results of envelope analysis for making a complete diagnosis of the fault and trending its progression.

  1. Study on open equipment condition monitoring and fault diagnosis system based on Internet

    NASA Astrophysics Data System (ADS)

    He, Hui-Long; Wang, Tai-Yong; Deng, Hui; Zeng, Ju-Xiang; Wang, Guo-Feng; Rao, Jun

    2005-12-01

    An open condition-monitoring system combined C/S (Client / Server) with B/S (Brower / Server) pattern was introduced. It consists of three parts of software: SE (Server-Terminal), ADE ( Analysis-Diagnosis-Terminal) and DAE ( Data-Acquisition-Terminal ). SE can monitor every connection request from ADE or DAE user and determinate whether ADE or DAE can be run on client's PC. As a result, the system security is improved in a sense. Additionally, the system hardware part comprises two kinds of terminal portable instruments: DASOC(data-acquisition system on chip based-on the Cygnal MCU) and DSAI(dynamic signal analysis instrument based on an embedded OS:XPE). DASOC and DSAI can realize data-acquisition, signal analysis and data-transmission based-on internet. The system structure mode has been applied to a certain power plant's enterprise information network in Tianjin. Results show that the system is successful.

  2. Sensors and systems for space applications: a methodology for developing fault detection, diagnosis, and recovery

    NASA Astrophysics Data System (ADS)

    Edwards, John L.; Beekman, Randy M.; Buchanan, David B.; Farner, Scott; Gershzohn, Gary R.; Khuzadi, Mbuyi; Mikula, D. F.; Nissen, Gerry; Peck, James; Taylor, Shaun

    2007-04-01

    Human space travel is inherently dangerous. Hazardous conditions will exist. Real time health monitoring of critical subsystems is essential for providing a safe abort timeline in the event of a catastrophic subsystem failure. In this paper, we discuss a practical and cost effective process for developing critical subsystem failure detection, diagnosis and response (FDDR). We also present the results of a real time health monitoring simulation of a propellant ullage pressurization subsystem failure. The health monitoring development process identifies hazards, isolates hazard causes, defines software partitioning requirements and quantifies software algorithm development. The process provides a means to establish the number and placement of sensors necessary to provide real time health monitoring. We discuss how health monitoring software tracks subsystem control commands, interprets off-nominal operational sensor data, predicts failure propagation timelines, corroborate failures predictions and formats failure protocol.

  3. Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Cai, Gaigai; Zhu, Z. K.; Shen, Changqing; Huang, Weiguo; Shang, Li

    2015-05-01

    Vibration signals from a defective gearbox are often associated with important measurement information useful for gearbox fault diagnosis. The extraction of transient features from the vibration signals has always been a key issue for detecting the localized fault. In this paper, a new transient feature extraction technique is proposed for gearbox fault diagnosis based on sparse representation in wavelet basis. With the proposed method, both the impulse time and the period of transients can be effectively identified, and thus the transient features can be extracted. The effectiveness of the proposed method is verified by the simulated signals as well as the practical gearbox vibration signals. Comparison study shows that the proposed method outperforms empirical mode decomposition (EMD) in transient feature extraction.

  4. A Feature Extraction Method for Fault Classification of Rolling Bearing based on PCA

    NASA Astrophysics Data System (ADS)

    Wang, Fengtao; Sun, Jian; Yan, Dawen; Zhang, Shenghua; Cui, Liming; Xu, Yong

    2015-07-01

    This paper discusses the fault feature selection using principal component analysis (PCA) for bearing faults classification. Multiple features selected from the time-frequency domain parameters of vibration signals are analyzed. First, calculate the time domain statistical features, such as root mean square and kurtosis; meanwhile, by Fourier transformation and Hilbert transformation, the frequency statistical features are extracted from the frequency spectrum. Then the PCA is used to reduce the dimension of feature vectors drawn from raw vibration signals, which can improve real time performance and accuracy of the fault diagnosis. Finally, a fuzzy C-means (FCM) model is established to implement the diagnosis of rolling bearing faults. Practical rolling bearing experiment data is used to verify the effectiveness of the proposed method.

  5. Optical Interferometric Measurement of Skin Vibration for the Diagnosis of Cardiovascular Diseases.

    NASA Astrophysics Data System (ADS)

    Hong, Hyundae

    A system has been developed based on the measurement of skin surface vibration which is related to the underlying vascular wall motion for the superficial arteries and coronary movement for the chest wall. Data obtained suggests that the information detected by such measurements can be related to the derivative of the intravascular pressure, an important physiological parameter. These results are in contrast to conventional optical Doppler techniques which have been utilized to measure blood perfusion in the skin layers and blood flow within the superficial arteries. These techniques relied on the interaction between incident photons and moving red blood cells. The present system uses an optical interferometer with a 633 nm HeNe laser to detect μm displacements of the skin surface. A photodiode detects an optical Doppler shift signal of frequency, 2 v/ lambda, where v and lambda are the skin vibration velocity and the wavelength of the laser, respectively. The electronic processing system we developed enhances, cleans and processes the raw Doppler signal to produce two main outputs: Doppler audio, and a time domain profile of the skin velocity. The audio signal changes its tone according to the velocity of skin movement which is related to the first derivative of the intravascular pressure, and the internal structure of the intervening tissue layers between the vessel and the surface. The results obtained demonstrated that the skin velocity waveforms near each artery and the chest signals at the auscultation points for the four heart valve sounds were unique in their profiles. It also proved to be possible to measure the magnitude, harmonics, and the cardiovascular propagation delay for pulse waves. The theoretical and experimental results demonstrated that the system detected the skin velocity, which is related to the time derivative of the pressure. It also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system sensitivity, which could potentially be optimized further was 366.2 mum/sec for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple non invasive approach to cardiovascular screening.

  6. A novel method for high-performance fault detection of induction machine

    NASA Astrophysics Data System (ADS)

    Su, Hua; Kim, Yeong-Min; Chong, Kil To

    2005-12-01

    Induction machine is probably the most commonly utilized electromechanical device in modern society. However, there are many undesirable problems arising in the machine operation of industrial plants. It is desirable for early detection and diagnosis of incipient faults for online condition monitoring, product quality assurance, and improved operational efficiency of induction motors. In this paper, a high-performance residual-based novel method is developed for induction machine fault detection, using Fourier-based signal processing for steady-state vibration signals. The proposed approach uses only motor vibration measurements without the nameplate information. The reference model in spectra is obtained statistically to represent the healthy condition. The effectiveness of the proposed approach in detecting a wide range of mechanical and electrical faults is demonstrated through staged motor faults, and it is shown that a robust and reliable induction machine fault detection system has been produced.

  7. A fuzzy-based approach for open-transistor fault diagnosis in voltage-source inverter induction motor drives

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Luo, Hui; Zhao, Jin; Wu, Feng

    2015-02-01

    This paper develops a novel method for the detection and isolation of open-transistor faults in voltage-source inverters feeding induction motors. Based on analyzing the load currents trajectories after Concordia transformation, six diagnostic signals each of which indicates a certain switch are extracted and a fuzzy rule base is designed to perform fuzzy reasoning in order to detect and isolate 21 fault modes including single- and double-transistor faults. In addition, the fuzzy rules are rearranged and each of them is set to a reasonable value representing the fault modes. The simulation and experiment are carried out to demonstrate the effectiveness of the proposed fuzzy approach.

  8. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xu, Guanghua; Luo, Ailing; Liang, Lin; Jiang, Kuosheng

    2016-04-01

    Vibration analysis has been proved to be an effective and powerful tool for the condition monitoring and fault diagnosis of rolling bearings. During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications. In recent years, order tracking methods based on time-frequency representation have been proposed for bearing fault detection under speed variation operating conditions. However, the methods are only applicable for offline bearing fault detection. Aiming at the shortcomings of the current tacholess order tracking techniques, an online tacholess order tracking method is proposed in this paper. The proposed method is on the basis of extracting the instantaneous tachometer information from the collected vibration signal itself continuously, and resampling the original signal with equal angle increment. The envelope order spectrum is used for bearing fault identification. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

  9. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    PubMed

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. PMID:25004798

  10. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  11. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Moosavi, S. S.; Djerdir, A.; Amirat, Y. Ait.; Khaburi, D. A.

    2015-10-01

    There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported.

  12. Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: A method free from prefiltering and resampling

    NASA Astrophysics Data System (ADS)

    Shi, Juanjuan; Liang, Ming; Guan, Yunpeng

    2016-02-01

    The conventional way for bearing fault diagnosis under variable rotational speed generally includes prefiltering, resampling based on shaft rotating frequency and order spectrum analysis. However, its application is confined by three major obstacles: a) knowledge-demanding parameter determination required by prefiltering, b) unavailable shaft rotating frequency for resampling as it is coupled with instantaneous fault characteristic frequency (IFCF) by a fault characteristic coefficient (FCC) which cannot be decided without knowing what fault actually exists, and c) complicated and error-prone resampling process. As such, we propose a new method to address these problems. The proposed method free from prefiltering and resampling mainly contains the following steps: a) extracting envelope by windowed fractal dimension (FD) transform, requiring no prefiltering, b) with the envelope signal, performing short time Fourier transform (STFT) to get a clear time frequency representation (TFR), from which the IFCF and the basic demodulator for generalized demodulation (GD) can be obtained, c) applying the generalized demodulation to the envelope signal with the current demodulator, converting the trajectory of the current time-frequency component into a linear path parallel to the time axis, d) frequency analyzing the demodulated signal, followed by searching the amplitude of the constant frequency where the linear path is situated. Updating demodulator via multiplying the basic demodulator by different real numbers (i.e., coefficient λ) and repeating the steps (c)-(d), the resampling-free order spectrum is then obtained. Based on the resulting spectrum, the final diagnosis decision can be made. The proposed method for its implementation on the example of simulated data is presented. Finally, experimental data are employed to validate the effectiveness of the proposed technique.

  13. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  14. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  15. Sparsity-based algorithm for detecting faults in rotating machines

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Ding, Yin; Zi, Yanyang; Selesnick, Ivan W.

    2016-05-01

    This paper addresses the detection of periodic transients in vibration signals so as to detect faults in rotating machines. For this purpose, we present a method to estimate periodic-group-sparse signals in noise. The method is based on the formulation of a convex optimization problem. A fast iterative algorithm is given for its solution. A simulated signal is formulated to verify the performance of the proposed approach for periodic feature extraction. The detection performance of comparative methods is compared with that of the proposed approach via RMSE values and receiver operating characteristic (ROC) curves. Finally, the proposed approach is applied to single fault diagnosis of a locomotive bearing and compound faults diagnosis of motor bearings. The processed results show that the proposed approach can effectively detect and extract the useful features of bearing outer race and inner race defect.

  16. A Doppler Transient Model Based on the Laplace Wavelet and Spectrum Correlation Assessment for Locomotive Bearing Fault Diagnosis

    PubMed Central

    Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W.

    2013-01-01

    The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191

  17. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox

    NASA Astrophysics Data System (ADS)

    Cai, Gaigai; Chen, Xuefeng; He, Zhengjia

    2013-12-01

    Localized faults in gearboxes tend to result in periodic shocks and thus arouse periodic responses in vibration signals. Feature extraction has always been a key problem for localized fault diagnosis. This paper proposes a new fault feature extraction technique for gearboxes by using sparsity-enabled signal decomposition method. The sparsity-enabled signal decomposition method separates signals based on the oscillatory behavior of the signal rather than the frequency or scale. Thus, the fault feature can be nonlinearly extracted from vibration signals. During the implementation of the proposed method, tunable Q-factor wavelet transform, for which the Q-factor can be easily specified, is adopted to represent vibration signals in a sparse way, and then morphological component analysis (MCA) is employed to estimate and separate the distinct components. The corresponding optimization problem of MCA is solved by the split augmented Lagrangian shrinkage algorithm (SALSA). With the proposed method, vibration signals of the faulty gearbox can be nonlinearly decomposed into high-oscillatory component and low-oscillatory component which is the fault feature of gearboxes. To evaluate the performance of the proposed method, this paper investigates the effect of two parameters pertinent to MCA and SALSA: the Lagrange multiplier and the penalty parameter. The effectiveness of the proposed method is verified by both the simulated and practical gearbox vibration signals. Results show the proposed method outperforms empirical mode decomposition and spectral kurtosis in extracting fault features of gearboxes.

  18. Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology

    NASA Astrophysics Data System (ADS)

    Alegre, D. M.; Koroishi, E. H.; Melo, G. P.

    2015-07-01

    This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.

  19. Electrical Motor Current Signal Analysis using a Modulation Signal Bispectrum for the Fault Diagnosis of a Gearbox Downstream

    NASA Astrophysics Data System (ADS)

    Haram, M.; Wang, T.; Gu, F.; Ball, A. D.

    2012-05-01

    Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

  20. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  1. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  2. Diagnosable systems for intermittent faults

    NASA Technical Reports Server (NTRS)

    Mallela, S.; Masson, G. M.

    1978-01-01

    The fault diagnosis capabilities of systems composed of interconnected units capable of testing each other are studied for the case of systems with intermittent faults. A central role is played by the concept of t(i)-fault diagnosability. A system is said to be t(i)-fault diagnosable when it is such that if no more than t(i) units are intermittently faulty then a fault-free unit will never be diagnosed as faulty and the diagnosis at any time is at worst incomplete. Necessary and sufficient conditions for t(i)-fault diagnosability are proved, and bounds for t(i) are established. The conditions are in general more restrictive than those for permanent-fault diagnosability. For intermittent faults there is only one testing strategy (repetitive testing), and consequently only one type of intermittent-fault diagnosable system.

  3. Fault Diagnosis approach based on a model-based reasoner and a functional designer for a wind turbine. An approach towards self-maintenance

    NASA Astrophysics Data System (ADS)

    Echavarria, E.; Tomiyama, T.; van Bussel, G. J. W.

    2007-07-01

    The objective of this on-going research is to develop a design methodology to increase the availability for offshore wind farms, by means of an intelligent maintenance system capable of responding to faults by reconfiguring the system or subsystems, without increasing service visits, complexity, or costs. The idea is to make use of the existing functional redundancies within the system and sub-systems to keep the wind turbine operational, even at a reduced capacity if necessary. Re-configuration is intended to be a built-in capability to be used as a repair strategy, based on these existing functionalities provided by the components. The possible solutions can range from using information from adjacent wind turbines, such as wind speed and direction, to setting up different operational modes, for instance re-wiring, re-connecting, changing parameters or control strategy. The methodology described in this paper is based on qualitative physics and consists of a fault diagnosis system based on a model-based reasoner (MBR), and on a functional redundancy designer (FRD). Both design tools make use of a function-behaviour-state (FBS) model. A design methodology based on the re-configuration concept to achieve self-maintained wind turbines is an interesting and promising approach to reduce stoppage rate, failure events, maintenance visits, and to maintain energy output possibly at reduced rate until the next scheduled maintenance.

  4. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation

    PubMed Central

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-01-01

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties. PMID:26610507

  5. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    PubMed

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-01-01

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties. PMID:26610507

  6. A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; He, Zhengjia; Zi, Yanyang

    2009-02-01

    Demodulation is an available method for mechanical diagnoses, and a demodulation technique based on improved local mean decomposition (LMD) is proposed in this paper. A method of boundary process and a strategy for determining the step size of moving average are presented to improve the LMD algorithm. Instantaneous amplitude (IA) and instantaneous frequency (IF) of the signal can be computed independently of Hilbert transform using the improved LMD method. A well-constructed description of the derived IA and IF is given in the form of instantaneous time-frequency spectrum (ITFS) which preserves both the time and frequency information simultaneously. Results of three synthetic signals indicate that this proposed method is the best demodulation approach to extracting the all-round carrier and modulated components as well as the accurate IF, compared with Hilbert-Huang transform and stationary wavelet transform. The validity of the technique is then demonstrated on a real rotor system of a gas turbine with rub-impact fault. Due to the opposite friction during operation, the transient fluctuations of the IF of the fundamental harmonic component are successfully identified in the ITFS. In addition, we find that the proposed technique is more effective and sensitive than other methods in detecting sub-harmonics and FM components contained in the rub-impact signals. Thus the present method is powerful in the analysis of modulated signals and is an effective tool for the detection of rub-impact faults.

  7. Fault analysis for condition monitoring of induction motors

    NASA Astrophysics Data System (ADS)

    Nandi, Subhasis

    Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. Like adjustable speed drives, fault prognosis has become almost indispensable. The manufacturers of these drives are now keen to include diagnostic features in the software to decrease machine down time and improve salability. Prodigious improvement in signal processing hardware and software has made this possible. Primarily, these techniques depend upon locating specific harmonic components in the line current, also known as motor current signature analysis (MCSA). These harmonic components are usually different for different types of faults. However, with multiple faults or different varieties of drive schemes, MCSA can become an onerous task as different types of faults and time harmonics may end up generating similar signatures. Thus, other signals such as speed, torque, noise, vibration, etc., are also explored for their frequency contents. Sometimes, altogether different techniques such as thermal measurements, chemical analysis, etc., are also employed to find out the nature and the degree of the fault. It is indeed evident that this area is vast in scope. Going by the present trend, human involvement in the actual fault detection decision making is slowly being replaced by automated tools such as expert systems, neural networks, fuzzy logic based systems; to name a few. However, this cannot be achieved without detailed fault analysis and subsequent recognition of the fault pattern. Keeping this in mind, simulation studies of the broken bar and eccentricity related faults using MCSA have been taken up. Also, a common theoretical basis for the different types (static, dynamic and mixed) of eccentricity related faults which give different signatures for different pole and rotor bar combinations has been developed. This will be of great importance both from fault diagnosis as well as sensorless drive applications' viewpoint. Finally, the insight gained from the analysis of eccentricity related faults leads to a novel detection technique of stator inter-turn faults by analyzing the frequency content of the transient line to line voltage, after the motor is switched off.

  8. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  9. Envelope order tracking for fault detection in rolling element bearings

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Liu, Ting-Wei; Na, Jing; Fung, Rong-Fong

    2012-12-01

    An envelope order tracking analysis scheme is proposed in the paper for the fault detection of rolling element bearing (REB) under varying-speed running condition. The developed method takes the advantages of order tracking, envelope analysis and spectral kurtosis. The fast kurtogram algorithm is utilized to obtain both optimal center frequency and bandwidth of the band-pass filter based on the maximum spectral kurtosis. The envelope containing vibration features of the incipient REB fault can be extracted adaptively. The envelope is re-sampled by the even-angle sampling scheme, and thus the non-stationary signal in the time domain is represented as a quasi-stationary signal in the angular domain. As a result, the frequency-smear problem can be eliminated in order spectrum and the fault diagnosis of REB in the varying-speed running condition of the rotating machinery is achieved. Experiments are conducted to verify the validity of the proposed method.

  10. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  11. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  12. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    NASA Astrophysics Data System (ADS)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  13. Study on the precession orbit shape analysis-based linear fault qualitative identification method for rotating machinery

    NASA Astrophysics Data System (ADS)

    Lang, Genfeng; Liao, Yuhe; Liu, Qingcheng; Lin, Jing

    2015-01-01

    The vibration responses of different linear faults all possess some common features, which make fault diagnosis very difficult. Based on the multi-sensor information fusion theory, this paper presents a new qualitative identification method for the diagnosis of linear faults. The excitation-response dynamic equation is constructed and system balancing response with full consideration of system anisotropy is analyzed. Through discussion of the precession orbit shape difference and its dispersive situation, the orbit shape average difference coefficient and the corresponding dispersion term are estimated to obtain the theoretical balancing effect. Finally, the qualitative identification of linear fault can be done according to whether the calculated balancing effect meets the safe operation requirement or not. The dynamic characteristic of the system difference coefficients is verified by a simulation experiment and the case study further testifies the capability and reliability of the proposed method.

  14. Bearing defect detection and diagnosis using a time encoded signal processing and pattern recognition method

    NASA Astrophysics Data System (ADS)

    Abdusslam, S.; Raharjo, P.; Gu, F.; Ball, A.

    2012-05-01

    Many new bearing monitoring and diagnosis methods have been explored in the last two decades to provide a technique that is capable of picking up an incipient bearing fault. Vibration analysis is a commonly used condition monitoring technique in world industry and has proved an effective method for rolling bearing monitoring systems. The focus of this paper is to combine two conventional methods: wavelet transform and envelope analysis with the Time Encoded Signal Processing and Recognition (TESPAR) to develop a better technique for detection of small bearing faults. Results show that TESPAR with these two combinations provides good fault discrimination in terms of location and severity for different bearing conditions.

  15. Study on the non-contact FBG vibration sensor and its application

    NASA Astrophysics Data System (ADS)

    Li, Tianliang; Tan, Yuegang; Zhou, Zude; Cai, Li; Liu, Sai; He, Zhongting; Zheng, Kai

    2015-06-01

    A non-contact vibration sensor based on the fiber Bragg grating (FBG) sensor has been presented, and it is used to monitor the vibration of rotating shaft. In the paper, we describe the principle of the sensor and make some experimental analyses. The analysis results show that the sensitivity and linearity of the sensor are -1.5 pm/μm and 4.11% within a measuring range of 2 mm-2.6 mm, respectively. When it is used to monitor the vibration of the rotating shaft, the analysis signals of vibration of the rotating shaft and the critical speed of rotation obtained are the same as that obtained from the eddy current sensor. It verifies that the sensor can be used for the non-contact measurement of vibration of the rotating shaft system and for fault monitoring and diagnosis of rotating machinery.

  16. Normalized complex Teager energy operator demodulation method and its application to fault diagnosis in a rubbing rotor system

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng

    2015-01-01

    As a newer signal demodulation method composed of an empirical AM-FM decomposition and a Hilbert transform, the Normalized Hilbert transform (NHT) method has been proved effective to overcome several drawbacks of the direct Hilbert transform (HT) demodulation method to a certain extent, including limitation of Bedrosian theorem, negative frequency values and inevitable boundary fluctuations of the demodulation results. However, studies in this paper will show that the FM signal resulting from the empirical AM-FM decomposition may contain riding waves and its local extrema values may also deviate much from unity value in some cases. These two problems involved in the empirical AM-FM decomposition are not beneficial to extracting a desirable instantaneous frequency. Moreover, since the Hilbert transform is still used in the NHT method to extract instantaneous frequency from the FM signal, the boundary fluctuations will inevitably occur. Aiming at the drawbacks of NHT method, a new signal demodulation method named the normalized complex Teager energy operator (NCTEO) is proposed in this paper, which consists of an improved empirical AM-FM decomposition and a new instantaneous frequency estimate based on complex Teager energy operator (CTEO). In this demodulation method, the improved empirical AM-FM decomposition is firstly applied to a monocomponent signal for instantaneous amplitude extraction, achieving the separation of the envelope signal (AM part) and the carrier (FM part), then the proposed CTEO method is employed to extract the instantaneous frequency from the resulting FM signal. The results of comparative analysis on simulated signals and experimental rotor data demonstrate that NCTEO method can effectively extract the time-frequency information, and provide a reliable diagnostic basis for the rotor rubbing fault; moreover, comparisons with some other existing demodulation methods, such as HT, NHT and TEO methods, show the promising applications of NCTEO method.

  17. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    NASA Astrophysics Data System (ADS)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  18. Tacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Lei, Yaguo

    2013-01-01

    Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the conventional diagnostic methods to speed variation cases, a tacholess envelope order analysis technique is proposed in this paper. In the proposed technique, a tacholess order tracking (TLOT) method is first introduced to extract the tachometer information from the vibration signal itself. On this basis, an envelope order spectrum (EOS) is utilized to recover the bearing characteristic frequencies in the order domain. By combining the advantages of TLOT and EOS, the proposed technique is capable of detecting bearing faults under varying speeds, even without the use of a tachometer. The effectiveness of the proposed method is demonstrated by both simulated signals and real vibration signals collected from locomotive roller bearings with faults on inner race, outer race and rollers, respectively. Analyzed results show that the proposed method could identify different bearing faults effectively and accurately under speed varying conditions. PMID:23959244

  19. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds.

    PubMed

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Lei, Yaguo

    2013-01-01

    Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the conventional diagnostic methods to speed variation cases, a tacholess envelope order analysis technique is proposed in this paper. In the proposed technique, a tacholess order tracking (TLOT) method is first introduced to extract the tachometer information from the vibration signal itself. On this basis, an envelope order spectrum (EOS) is utilized to recover the bearing characteristic frequencies in the order domain. By combining the advantages of TLOT and EOS, the proposed technique is capable of detecting bearing faults under varying speeds, even without the use of a tachometer. The effectiveness of the proposed method is demonstrated by both simulated signals and real vibration signals collected from locomotive roller bearings with faults on inner race, outer race and rollers, respectively. Analyzed results show that the proposed method could identify different bearing faults effectively and accurately under speed varying conditions. PMID:23959244

  20. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  1. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  2. Faulted Barn

    This barn is faulted through the middle; the moletrack is seen in the foreground with the viewer standing on the fault. From the air one can see metal roof panels of the barn that rotated as the barn was faulted....

  3. Intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization.

    PubMed

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks. PMID:22163833

  4. Vibration analysis of a bearing integrated sensor module

    NASA Astrophysics Data System (ADS)

    Suryavanshi, Abhijit P.; Gao, Robert X.

    2001-12-01

    Implementing a reliable condition monitoring system for bearing fault diagnosis and prognosis poses a big challenge to the industry. This challenge stems from the fact that bearing failure is statistical in nature, and thus contains elements of uncertainty and unpredictability. To achieve high accuracy in bearing diagnosis in spite of this inherent variance, reliable data acquisition and analysis techniques are needed. This paper focuses on the vibration analysis of a wireless transmitter module with an integrated sensor that is embedded into the bearing outer raceway for high signal-to-noise ratio data acquisition. A mechatronic design of the sensor module under severe space constraints is presented. The paper also analyses an optimizing scheme for the placement of sensor module substrate supports to reduce vibration transmitted from the bearing to the on-board electronics.

  5. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  6. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Markert, Richard; Xiang, Jiawei; Zheng, Weiguang

    2015-08-01

    Multi-component extraction is an available method for vibration signal analysis of rotary machinery, so a novel method of rubbing fault diagnosis based on variational mode decomposition (VMD) is proposed. VMD is a newly developed technique for adaptive signal decomposition, which can non-recursively decompose a multi-component signal into a number of quasi-orthogonal intrinsic mode functions. The equivalent filtering characteristics of VMD are investigated, and the behavior of wavelet packet-like expansion is first found based on fractional Gaussian noise via numerical simulations. VMD is then applied to detect multiple rubbing-caused signatures for rotor-stator fault diagnosis via numerical simulated response signal and practical vibration signal. A comparison has also been conducted to evaluate the effectiveness of identifying the rubbing-caused signatures by using VMD, empirical wavelet transform (EWT), EEMD and EMD. The analysis results of the rubbing signals show that the multiple features can be better extracted with the VMD, simultaneously.

  7. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  8. Application of higher order spectral features and support vector machines for bearing faults classification.

    PubMed

    Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat

    2015-01-01

    Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. PMID:25282095

  9. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  10. Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using Artificial Neural Networks.

    PubMed

    Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri

    2015-11-01

    The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method. PMID:26412499

  11. Detecting Faults In Helicopter Gearboxes By The MVIM Method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    Multivalued influence-matrix (MVIM) method potential utility as theoretical basis of proposed automated monitoring systems detecting faults in helicopter gearboxes. Applied to recognize patterns in vibration measurements. Fault-recognition system required to operate continuously while helicopter airborne, analyzing measurements of vibrations for signs of trouble to provide real-time warning of any dangerous or potentially dangerous fault like cracked case or fractured gear tooth. System also required not to give false alarms to prevent unnecessary emergency landings.

  12. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  13. An integrated electro-mechanical model of motor-gear units—Applications to tooth fault detection by electric measurements

    NASA Astrophysics Data System (ADS)

    Feki, N.; Clerc, G.; Velex, Ph.

    2012-05-01

    Fault diagnosis in geared transmissions is traditionally based on vibration monitoring but, in a number of cases, sensor implementation and signal transfer from rotary to stationary parts can cause problems. This paper presents an original integrated electro-mechanical model aimed at testing the possibility and the interest of tooth fault detection based on electric measurements on the motor stator. The motor is simulated using Kron's transformation while the mechanical transmission is accounted for by a lumped parameter model. Tooth defects are assimilated to distributions of initial separations between the mating flanks whose positions and shapes are controlled. A unique non-linear parametrically excited differential system is obtained, which provides direct access to both the electrical and mechanical variables. A number of results are presented, which illustrate the possibility of tooth fault detection by stator current measurements with regard to the position and dimensions of the defect.

  14. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  15. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  16. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  17. Improving the Performance of the Structure-Based Connectionist Network for Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Koroush; Lewicki, David G.

    1996-01-01

    A diagnostic method is introduced for helicopter gearboxes that uses knowledge of the gear-box structure and characteristics of the 'features' of vibration to define the influences of faults on features. The 'structural influences' in this method are defined based on the root mean square value of vibration obtained from a simplified lumped-mass model of the gearbox. The structural influences are then converted to fuzzy variables, to account for the approximate nature of the lumped-mass model, and used as the weights of a connectionist network. Diagnosis in this Structure-Based Connectionist Network (SBCN) is performed by propagating the abnormal vibration features through the weights of SBCN to obtain fault possibility values for each component in the gearbox. Upon occurrence of misdiagnoses, the SBCN also has the ability to improve its diagnostic performance. For this, a supervised training method is presented which adapts the weights of SBCN to minimize the number of misdiagnoses. For experimental evaluation of the SBCN, vibration data from a OH-58A helicopter gearbox collected at NASA Lewis Research Center is used. Diagnostic results indicate that the SBCN is able to diagnose about 80% of the faults without training, and is able to improve its performance to nearly 100% after training.

  18. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques. PMID:25014982

  19. Improved automated diagnosis of misfire in internal combustion engines based on simulation models

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Bond Randall, Robert

    2015-12-01

    In this paper, a new advance in the application of Artificial Neural Networks (ANNs) to the automated diagnosis of misfires in Internal Combustion engines(IC engines) is detailed. The automated diagnostic system comprises three stages: fault detection, fault localization and fault severity identification. Particularly, in the severity identification stage, separate Multi-Layer Perceptron networks (MLPs) with saturating linear transfer functions were designed for individual speed conditions, so they could achieve finer classification. In order to obtain sufficient data for the network training, numerical simulation was used to simulate different ranges of misfires in the engine. The simulation models need to be updated and evaluated using experimental data, so a series of experiments were first carried out on the engine test rig to capture the vibration signals for both normal condition and with a range of misfires. Two methods were used for the misfire diagnosis: one is based on the torsional vibration signals of the crankshaft and the other on the angular acceleration signals (rotational motion) of the engine block. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The ANN systems were trained using only the simulated data and tested using real experimental cases, indicating that the simulation model can be used for a wider range of faults for which it can still be considered valid. The final results have shown that the diagnostic system based on simulation can efficiently diagnose misfire, including location and severity.

  20. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect characteristics in the transmitted signals to ensure accurate bearing fault diagnosis.

  1. Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals

    PubMed Central

    Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu

    2012-01-01

    Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017

  2. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  3. Automatic translation of digraph to fault-tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    1992-01-01

    The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.

  4. Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum

    NASA Astrophysics Data System (ADS)

    Ming, Yang; Chen, Jin; Dong, Guangming

    2011-07-01

    In vibration analysis, weak fault feature extraction under strong background noise is of great importance. A method based on cyclic Wiener filter and envelope spectrum analysis is proposed. Cyclic Wiener filter exploits the spectral coherence theory induced by the second-order cyclostationary signal. The original signal is duplicated and shifted in the frequency domain by amounts corresponding to the cyclic frequencies. The noise component is optimally filtered by a filter-bank. The filtered signal is analyzed by performing envelope spectrum. In the envelope spectrum, characteristic frequencies are quite clear. Then the most impactive part is effectively extracted for further fault diagnosis. The effectiveness of the method is demonstrated on both simulated signal and actual data from rolling bearing accelerated life test.

  5. Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Guofeng; Luo, Zhigao; Qin, Xuda; Leng, Yonggang; Wang, Taiyong

    2008-05-01

    Rolling element bearing faults are among the main causes of breakdown of rotating machines and its condition monitoring based on vibration signal has been used extensively. For obtaining more accurate time-frequency spectrum estimation, time-varying autoregressive method based on Kalman smoothing algorithm is utilized to realize parametric modeling of non-stationary signal so as to obtain high resolution time-frequency spectrum. Singular value decomposition (SVD) method is adopted to obtain the first left and right singular vectors of time-frequency spectrum. And by down sampling and preprocessing, these singular vectors are taken as feature vectors of time-frequency spectrum. Moreover, radial basis function (RBF) neural network is adopted to realize the automated classification. By classification of roll