Sample records for vibration response characteristics

  1. Significant characteristics of social response to noise and vibration

    NASA Technical Reports Server (NTRS)

    Nishinomiya, G.

    1979-01-01

    Several surveys made since 1971 to investigate annoyance resulting from noise and vibration, from various sources were studied in order to quantify the relation between annoyance response to noise or vibration and properties of the respondent including factors such as noise exposure, etc. Samples collected by the social surveys and physical measurements were analyzed by multi-dimensional analysis.

  2. Parametric characteristic of the random vibration response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Dong, Xing-Jian; Peng, Zhi-Ke; Zhang, Wen-Ming; Meng, Guang; Chu, Fu-Lei

    2013-04-01

    Volterra series is a powerful mathematical tool for nonlinear system analysis, and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model. In the present study, the random vibration of nonlinear systems is investigated using Volterra series. Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation. Based on these expressions, it was revealed that both the output PSD and the input-output cross-PSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity. Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship. The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.

  3. VIBRATION CHARACTERISTICS AND TRANSIENT RESPONSE OF SHEAR-DEFORMABLE FUNCTIONALLY GRADED PLATES IN THERMAL ENVIRONMENTS

    Microsoft Academic Search

    J. Yang; H.-S. SHEN

    2002-01-01

    Free and forced vibration analyses for initially stressed functionally graded plates in thermal environment are presented. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Theoretical formulations are based on Reddy's higher order shear deformation plate theory and include

  4. Vibrational excitation energies from vibrational coupled cluster response theory

    NASA Astrophysics Data System (ADS)

    Seidler, Peter; Christiansen, Ove

    2007-05-01

    Response theory in the context of vibrational coupled cluster (VCC) theory is introduced and used to obtain vibrational excitation energies. The relation to the vibrational configuration interaction (VCI) approach is described, and the increase in accuracy of VCC response energies relative to VCI energies is discussed theoretically in terms of a perturbational order expansion and demonstrated numerically. To illustrate the theory, a pilot implementation is used to obtain anharmonic vibrational frequencies for fundamental, first overtone and combination excitations of formaldehyde as well as for the fundamental transitions of ethylene.

  5. Effect of Vibration on Retention Characteristics of Screen Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Park, A. C.

    1977-01-01

    An analytical and experimental investigation of the effect of vibration on the retention characteristics of screen acquisition systems was performed. The functioning of surface tension devices using fine-mesh screens requires that the pressure differential acting on the screen be less than its pressure retention capability. When exceeded, screen breakdown will occur and gas-free expulsion of propellant will no longer be possible. An analytical approach to predicting the effect of vibration was developed. This approach considers the transmission of the vibration to the screens of the device and the coupling of the liquid and the screen in establishing the screen response. A method of evaluating the transient response of the gas/liquid interface within the screen was also developed.

  6. Impact-absorbing characteristics by applying ultrasonic vibration

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Ueki, Eiichiro; Tsujino, Jiromaru

    2012-05-01

    An impact-absorbing device that facilitates the application of ultrasonic vibrations was devised. Vibration distributions, springback characteristics, and impact-absorption characteristics were measured. We confirm that the springback amount decreases and the impact is absorbed upon the application of ultrasonic vibrations. When an aluminum alloy plate is crumpled, the maximum output voltage of the attached shock sensor decreases to 65% upon the application of ultrasonic vibrations as compared to when the ultrasonic vibrations are not applied.

  7. Vibration characteristic of high power CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Kuo

    2015-02-01

    High power CO2 laser is widely used in various scientific, industrial and military applications. Vibration is a common phenomenon during laser working process, it will affect the working performance of high power CO2 laser, vibration must be strictly controlled in the condition where the laser pointing is required. This paper proposed a method to investigate the vibration characteristic of high power CO2 laser. An experiment device with vibration acceleration sensor was established to measure vibration signal of CO2 laser, the measured vibration signal was mathematically treated using space-frequency conversion, and then the vibration characteristic of high power CO2 laser can be obtained.

  8. Human response to vibration in residential environments.

    PubMed

    Waddington, David C; Woodcock, James; Peris, Eulalia; Condie, Jenna; Sica, Gennaro; Moorhouse, Andrew T; Steele, Andy

    2014-01-01

    This paper presents the main findings of a field survey conducted in the United Kingdom into the human response to vibration in residential environments. The main aim of this study was to derive exposure-response relationships for annoyance due to vibration from environmental sources. The sources of vibration considered in this paper are railway and construction activity. Annoyance data were collected using questionnaires conducted face-to-face with residents in their own homes. Questionnaires were completed with residents exposed to railway induced vibration (N?=?931) and vibration from the construction of a light rail system (N?=?350). Measurements of vibration were conducted at internal and external positions from which estimates of 24-h vibration exposure were derived for 1073 of the case studies. Sixty different vibration exposure descriptors along with 6 different frequency weightings were assessed as potential predictors of annoyance. Of the exposure descriptors considered, none were found to be a better predictor of annoyance than any other. However, use of relevant frequency weightings was found to improve correlation between vibration exposure and annoyance. A unified exposure-response relationship could not be derived due to differences in response to the two sources so separate relationships are presented for each source. PMID:24437758

  9. A new method that indicates the peak stress of random vibration response

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Xie, Peng; Xu, Zhen; Jin, Guang

    2012-09-01

    It is an important assessment targets that make a quantitative study of the peak stress of random vibration response during the mechanical properties design process of the space payload. Based on the equivalent of the destructive effect of the random vibration peak response and sine vibration response, the paper established the link between the two, obtained the sine vibration input function that equivalent to the destructive effect of the random vibration peak response. Considering the characteristic of the quantitative research that stress of sine vibration can be, the paper analyzed the stress of the sine vibration by the finite element method and indirectly accessed to the random vibration response peak stress which equivalent to the sine vibration destructive effect. This method worked very well to indicate the peak stress of random vibration response during the ground random vibration tests. The paper provided an effective means of predictive and validation method for the mechanical properties design and test during the ground random vibration test evaluation. The developments costs of the engineering can be significant saving and greatly shorten the development cycle by the method of the peak stress of random vibration response indicated during the ground tests. It is also helpful to improve the safety and reliability of the space load structure in order to avoid the failure or fatigue of the ground random vibration tests.

  10. Free Vibration Characteristics of Hybrid SPR Beams

    NASA Astrophysics Data System (ADS)

    He, Xiaocong; Dong, Biao; Zhu, Xunzhi

    2010-05-01

    This paper deals with torsional free vibration analysis of single lap-jointed encastre hybrid SPR beams. The finite element analyses are carried out using the commercially-available ANSYS FEA program. The focus of the analysis is to reveal the influence on the natural frequencies, natural frequency ratios and mode shapes of single lap-jointed encastre hybrid SPR beams caused by variations in the material properties of the adhesives. Numerical examples show that the torsional natural frequencies of single lap jointed encastre hybrid SPR beams increase significantly as the Young's modulus of the adhesive increase, but only slight change with an increase in Poisson's ratio. The mode shapes show that there are different deformations in the jointed section of the odd and even modes. These different deformations may result different dynamic response and different stress distributions.

  11. Physiology responses of Rhesus monkeys to vibration

    NASA Astrophysics Data System (ADS)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  12. Shock and vibration response of multistage structure

    NASA Technical Reports Server (NTRS)

    Lee, S. Y.; Liyeos, J. G.; Tang, S. S.

    1968-01-01

    Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity.

  13. System identification of suspension bridge from ambient vibration response

    Microsoft Academic Search

    Dionysius M. Siringoringo; Yozo Fujino

    2008-01-01

    The paper addresses and evaluates the application of system identification to a suspension bridge using ambient vibration response. To obtain dynamic characteristics of the bridge, two output-only time-domain system identification methods are employed namely, the Random Decrement Method combined with the Ibrahim Time Domain (ITD) method and the Natural Excitation Technique (NExT) combined with the Eigensystem Realization Algorithm (ERA). Accuracy

  14. Aircraft noise-induced building vibrations. [human annoyance responses

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Mayes, W. H.

    1979-01-01

    The outdoor/indoor noise levels and associated vibration levels resulting from aircraft and nonaircraft events are recorded at 11 homesites, a historic building, and a school. In addition, limited subjective tests are conducted to examine the human detection/annoyance thresholds for building vibration and rattle caused by aircraft noise. Results include relationships between aircraft noise and building vibration and between vibration and human response. Comparisons of building vibration data with existing criteria for building damage and human response are also considered.

  15. Effects of vibration characteristics on the walking discomfort of floating floors on concrete slabs.

    PubMed

    Kim, Jae Ho; Jeon, Jin Yong

    2014-10-01

    In the present study, the vibration characteristics of floating floor systems and the discomfort in walking upon them have been studied in concrete slab structures through mock-up floors experiments. Seven types of floor systems, with panels of various sizes and supporting beams with different joist spacings, were constructed based on actual conditions. For the vibration measurement, an ISO rubber ball dropped from a height of 20?cm was used as an impact source to reproduce human walking. The vibration characteristics were evaluated by calculating the vibration acceleration values and the autocorrelation function parameters for the floor structures. Finally, a human walking experiment was conducted to investigate subjective responses to the vibration characteristics of floating floors. From the results, it was found that the vibration acceleration values and walking discomfort varied with the supporting conditions of the floors and that these were highly correlated with each other. It was also found that more than 75% of subjects accepted the floors when the vibration value of the floor in terms of vibration does value (VDV) is below 4.8?ms(-1.75). In addition, a practical regression of the VDV was obtained and design guidelines for floating floors were suggested. PMID:25324073

  16. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  17. Vibrational characteristics of the embalmed human femur

    Microsoft Academic Search

    T. B. Khalil; D. C. Viano; L. A. Taber

    1981-01-01

    The resonant frequencies and mode shapes of contralateral femurs have been identified by experimental and analytical procedures. Also, the cross-sectional area, centroid, and principal moments of inertia were computed throughout the femur length for both compact and cancellous bone. The resonant frequencies of freely vibrating specimens were identified from transfer function measurements by using a Fourier analyzer. Twenty frequencies were

  18. Vibrational characteristics of the embalmed human femur

    NASA Astrophysics Data System (ADS)

    Khalil, T. B.; Viano, D. C.; Taber, L. A.

    1981-04-01

    The resonant frequencies and mode shapes of contralateral femurs have been identified by experimental and analytical procedures. Also, the cross-sectional area, centroid, and principal moments of inertia were computed throughout the femur length for both compact and cancellous bone. The resonant frequencies of freely vibrating specimens were identified from transfer function measurements by using a Fourier analyzer. Twenty frequencies were noted in a frequency range of 20 Hz-8 kHz. A mathematical model of the femur consisting of 59 joined uniform segments, with each composed of compact and/or cancellous bone, was analyzed by using a transfer matrix technique. Results of the model enabled classification of the experimental resonances into deformations corresponding to flexure (about principal planes of inertia), torsion, and longitudinal extension with fundamental frequencies at 250, 308, 557, and 2138 Hz, respectively. Generalized non-dimensional resonant frequencies were computed based on femur geometry averaged over its length and compared with those predicted by simple beam models. This analysis provided further understanding of the vibrational behavior of the femur.

  19. Linear response functions for a vibrational configuration interaction state.

    PubMed

    Christiansen, Ove; Kongsted, Jacob; Paterson, Martin J; Luis, Josep M

    2006-12-01

    Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach. PMID:17166023

  20. Vibration characteristics of a piezoelectric open-shell transducer

    NASA Astrophysics Data System (ADS)

    Kim, Daeseung; Kim, Jin O.; Il Jung, Soon

    2012-04-01

    This paper deals with the vibration characteristics of a piezoelectric open-shell transducer which was made by dividing a cylindrical piezoelectric transducer longitudinally into two segments. Two-dimensional governing equations were derived by using the cylindrical membrane theory. Applying mechanical and electrical boundary conditions yielded a characteristic equation for the resonance frequencies of the piezoelectric open-shell transducer. The fundamental frequency and the electromechanical coupling factor were calculated and compared with the results of the finite element analysis and experiment. The fundamental mode shape obtained theoretically was compared with the result of the finite element analysis. The theoretical analysis was verified to provide the vibration characteristics of an open-shell transducer.

  1. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro, E-mail: morita@m.tohoku.ac.jp [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  2. Vibration characteristics of aluminum material and its influences on laser Doppler voice acquisition

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ze; Li, Li-yan; Tong, You-wan; Zeng, Hua-lin; Zhou, Yan

    2013-09-01

    Laser Doppler technology is widely used in precision vibration measurement such as voice acquisition. The fundamental of voice acquisition is to detect the vibration of targets induced by sound wave using a Laser Doppler voice acquisition system, and then demodulate the voice signal from interference signal. Therefore the target's vibration characteristics will be the principal factor influencing the effect of voice acquisition. In this paper, we focus on the plane structure's vibration characteristics caused by voice. There are mainly two parts in this paper, simulation and experimental verify. In simulation, the finite element method is used. The Finite Element Analysis method is widely used in material properties analysis, dynamic analysis, and acoustic analysis. Through finite element analysis method, the plane structure models of thick smooth aluminum are established by ANSYS. Then the frequency responses of different constraints are compared. The Laser Doppler voice acquisition system is applied to test and verify the simulation results. The response characteristics of aluminum board under different excitation frequency are measured. The experimental results and simulation results are compared to verify the correctness and reasonableness of simulation. At the same time, this provides theoretical guidance for Laser Doppler voice acquisition system to choose targets and improve voice acquisition performance.

  3. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  4. Evaluation of High Freuqency Vibrator Response

    E-print Network

    Hendrix, Craig Michael

    2012-08-12

    Accurate analysis of the motion of a commercial high frequency hydraulic vibrator commonly used for near-surface applications demonstrated that the rigid body assumption of the weighted-sum approximation is not valid ...

  5. Vibration transmissibility characteristics of the human hand-arm system under different postures, hand forces and excitation levels

    NASA Astrophysics Data System (ADS)

    Adewusi, S. A.; Rakheja, S.; Marcotte, P.; Boutin, J.

    2010-07-01

    Biodynamic responses of the hand-arm system have been mostly characterized in terms of driving-point force-motion relationships, which have also served as the primary basis for developing the mechanical-equivalent models. The knowledge of localized vibration responses of the hand-arm segments could help derive more effective biodynamic models. In this study, the transmission of z h-axis handle vibration to the wrist, elbow and the shoulder of the human hand and arm are characterized in the laboratory for the bent-arm and extended arm postures. The experiments involved six subjects grasping a handle subject to two different magnitudes of broad-band random vibration, and nine different combinations of hand grip and push forces. The vibration transmissibility data were acquired in the z h- and y h-axis at the wrist and shoulder, and along all the three axes around the elbow joint. The results show that the human hand-arm system in an extended arm posture amplifies the vibration transmitted to the upper-arm and the whole-body at frequencies below 25 Hz, but attenuates the vibration above 25 Hz more effectively than the bent-arm posture, except at the shoulder. The magnitudes of transmitted vibration under an extended arm posture along the y h-axis were observed to be nearly twice those for the bent-arm posture in the low frequency region. The results further showed that variations in the grip force mostly affect vibration transmissibility and characteristic frequencies of the forearm, while changes in the push force influenced the dynamic characteristics of the entire hand-arm system. The magnitudes of transmitted vibration in the vicinity of the characteristic frequencies were influenced by the handle vibration magnitude.

  6. The flaminio obelisk in Rome: vibrational characteristics as part of preservation efforts

    USGS Publications Warehouse

    Bongiovanni, G.; Celebi, M.; Clemente, P.

    1990-01-01

    The purpose of the paper is to study the vibrational characteristics of the Flaminio Obelisk in Rome as part of general studies being performed for preservation purposes. The state of preservation of the monument is described as well as the sonic method used to evaluate the integrity of the sections. The results of the sonic tests are used to determine reductions in the cross-sectional properties. A stick model including two rotational frequency independent soil springs at the basement level of the obelisk is developed. A response spectrum and stress analysis according to the Italian Seismic Code is performed considering and evaluating the degraded characteristics of sections. -from Authors

  7. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    NASA Astrophysics Data System (ADS)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.

  8. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm.

    PubMed

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-28

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Gyo?rffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method. PMID:22462829

  9. Size-dependent vibration characteristics of fluid-conveying microtubes

    NASA Astrophysics Data System (ADS)

    Wang, L.

    2010-05-01

    In this paper, a new theoretical model is developed, based on the modified couple stress theory, for the vibration analysis of fluid-conveying microtubes by introducing one internal material length scale parameter. Using Hamilton's principle, the equations of motion of fluid-conveying microtubes are derived. After discretization via the Differential Quadrature Method (DQM), the analytical model exhibits some essential vibration characteristics. For a microtube in which both ends are supported, it is found that the natural frequencies decrease with increasing internal flow velocities. It is also shown that the microtube will become unstable by divergence at a critical flow velocity. More significantly, when the outside diameter of the microtube is comparable to the material length scale parameter, the natural frequencies obtained using the modified couple stress theory are much larger than those obtained using the classical beam theory. It is not surprising, therefore, that the critical flow velocities predicted by the modified couple stress theory are generally higher than those predicted by the classical beam theory.

  10. Damage identification of piles based on vibration characteristics.

    PubMed

    Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen

    2014-01-01

    A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062

  11. Ventilatory responses to muscular vibrations in healthy humans.

    PubMed

    Jammes, Y; Mathiot, M J; Roll, J P; Prefaut, C; Berthelin, F; Grimaud, C; Milic-Emili, J

    1981-08-01

    In healthy humans, we studied the effect of high-frequency mechanical vibrations applied unilaterally to the tendon of the biceps or triceps brachialis on ventilation and the breathing pattern. This stimulus preferentially activates the muscle spindle afferents. Increase of respiratory frequency and changes in the ventilatory timing started at the first or second inspiration during tendon stimulation, and no adaptation occurred as long as the vibrations continued. The tidal volume and mean inspiratory flow rate were only enhanced in individuals having high-frequency breathing during eupnea. The changes in ventilatory variables were observed when the motor response to vibrations was tested under isometric or isotonic conditions. Various experimental procedures enabled us to induce a tonic reflex contraction in either the vibrated muscle or the antagonist of no reflex contraction in either group of muscles. In all cases the increase in minute ventilation was identical. These changes in breathing pattern was not associated with a significant decrease in alveolar CO2 pressure and did not seem to be responsible for important variations in respiratory gas exchanges. The response to high-frequency vibrations was also studied after ventilation was increased with added dead space. The magnitude of hyperventilation an the pattern of ventilatory response produced by tendon stimulation did not change with increased ventilation. In conclusion, the stimulation of muscle spindles in human induces changes in ventilation and pattern of breathing , and the occurrence of a reflex muscular contraction does not seem necessary in order to obtain such effects. PMID:6455404

  12. Automated calculation of anharmonic vibrational contributions to first hyperpolarizabilities: Quadratic response functions from vibrational configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof

    2009-10-01

    Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.

  13. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ayaho; Yabe, Akito

    2011-07-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the "substructure method" employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  14. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  15. Vibrational coupled cluster response theory: A general implementation

    NASA Astrophysics Data System (ADS)

    Seidler, Peter; Sparta, Manuel; Christiansen, Ove

    2011-02-01

    The calculation of vibrational contributions to molecular properties using vibrational coupled cluster (VCC) response theory is discussed. General expressions are given for expectation values, linear response functions, and transition moments. It is shown how these expressions can be evaluated for arbitrary levels of excitation in the wave function parameterization as well as for arbitrary coupling levels in the potential and property surfaces. The convergence of the method is assessed by benchmark calculations on formaldehyde. Furthermore, excitation energies and infrared intensities are calculated for the fundamental vibrations of furan using VCC limited to up to two-mode and up to three-mode excitations, VCC[2] and VCC[3], as well as VCC with full two-mode and approximate three-mode couplings, VCC[2pt3].

  16. Vibrational coupled cluster response theory: a general implementation.

    PubMed

    Seidler, Peter; Sparta, Manuel; Christiansen, Ove

    2011-02-01

    The calculation of vibrational contributions to molecular properties using vibrational coupled cluster (VCC) response theory is discussed. General expressions are given for expectation values, linear response functions, and transition moments. It is shown how these expressions can be evaluated for arbitrary levels of excitation in the wave function parameterization as well as for arbitrary coupling levels in the potential and property surfaces. The convergence of the method is assessed by benchmark calculations on formaldehyde. Furthermore, excitation energies and infrared intensities are calculated for the fundamental vibrations of furan using VCC limited to up to two-mode and up to three-mode excitations, VCC[2] and VCC[3], as well as VCC with full two-mode and approximate three-mode couplings, VCC[2pt3]. PMID:21303104

  17. Vibration characteristics of a discal piezoelectric transducer with spiral interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Chengliang; Liao, Wei-Hsin; Liu, Yongbin; Feng, Zhihua

    2014-03-01

    Torsional vibrations of circular tubes, rods, rings, and disks are widely used as operation modes of acoustic wave transducers in various piezoelectric devices. In this paper, a piezoelectric disk with spiral interdigitated electrodes is proposed to generate in-plane torsion in a simple and effective manner. Design and working principle of the torsional transducer are introduced. Vibration characteristics of the transducer with a constant spiral angle are studied. A simplified model is established to investigate the basic dynamic characteristics of torsional vibration accompanying with radial vibration. Electric admittance, resonant frequencies, and mode shapes with different boundary conditions are calculated. Resonant frequencies as functions of several structural parameters are discussed.

  18. Vibration characteristics of an APS lab facility in Building 401

    SciTech Connect

    Royston, T.J.

    1998-01-01

    The vibratory behavior of a lab facility located in Building 401 of the Advanced Photon Source site at Argonne National Laboratory is summarized. Measurements of ambient vibration indicate that acceptable displacement levels are usually maintained (rms value below 0.1 microns) for the measured frequency range, above 0.2 Hz. An exception occurs when strong wind conditions excite a horizontal building resonance near 1.85 Hz to rms levels as high as 0.3 microns. Measurements of the laboratory floor`s dynamic response to directly applied force excitation agree with theoretical predictions. The primary component of the floor construction is a reinforced concrete slab. The slab has a transverse fundamental resonant frequency of 18.5 Hz and an associated damping level of roughly 8.5% of critical. It is also shown via experimental measurements that the linoleum surface adhered to the concrete slab is far more compliant than the slab itself and can significantly influence the floor`s dynamic response to local excitations.

  19. Rocket Launch-Induced Vibration and Ignition Overpressure Response

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul; Margasahayam, Ravi; Nayfeh, Jamal; Thompson, Karen (Technical Monitor)

    2001-01-01

    Rocket-induced vibration and ignition overpressure response environments are predicted in the low-frequency (5 to 200 hertz) range. The predictions are necessary to evaluate their impact on critical components, structures, and facilities in the immediate vicinity of the rocket launch pad.

  20. Comparative evaluation of Space Transportation System (STS)-3 flight and acoustic test random vibration response of the OSS-1 payload

    NASA Technical Reports Server (NTRS)

    On, F. J.

    1983-01-01

    A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.

  1. The influence of dynamic soil characteristics on vibration predictions

    Microsoft Academic Search

    P. Hölscher; V. Hopman; G. Degrande

    Reliable prediction of environmental vibrations from railways and metros not only requires reliable models, but also reliable input parameters. Within the frame of the European project CONVURT, an advanced numerical prediction model is developed for subway induced ground- borne vibrations. This model is validated by means of the results of elaborate in situ tests in Paris and London. On the

  2. Electric potential response analysis of a piezoelectric shell under random micro-vibration excitations

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Feng, J.; Ni, Y. Q.; Zhu, W. Q.

    2011-10-01

    The response characteristics of a spherically symmetric piezoelectric shell under random boundary micro-vibration excitations are analyzed and calculated. The equation for electric potential is integrated radially to obtain the electric potential as a function of displacement, so that the differential equations for the piezoelectric shell with electrical and mechanical coupling are converted into an equation only for the displacement. The displacement transformation is constructed to convert the random boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to further convert the partial differential equation for the displacement into ordinary differential equations using the Galerkin method. The equations represent a multi-degree-of-freedom dynamic system with an asymmetric stiffness matrix under random micro-vibration excitations. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the system response are derived from these equations based on the theory of random vibration. The expressions of mean-square displacement, stress and electric potential of the piezoelectric shell are finally obtained and illustrated by numerical results for random micro-vibration excitations. The random electrical and mechanical coupling properties, in particular the relations between boundary electric potential responses and micro-displacement excitations, are explored.

  3. A REVIEW OF AERODYNAMICALLY INDUCED FORCES ACTING ON CENTRIFUGAL COMPRESSORS, AND RESULTING VIBRATION CHARACTERISTICS OF ROTORS

    Microsoft Academic Search

    D. Fred Marshall; James M. Sorokes

    There are several sources of nonsynchronous forced vibration of centrifugal compressor rotors. Many of them are aerodynamic phenomena, created within the gas path of the compressor. Phenomena such as impeller stall, diffuser stall (with and without vanes), and flow instabilities caused by impeller to diffuser misalignment, are all characteristic flow disturbances that can cause forced vibration. In fact, often the

  4. The response of rotating machinery to external random vibration

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1974-01-01

    A high-speed turbogenerator employing gas-lubricated hydrodynamic journal and thrust bearings was subjected to external random vibrations for the purpose of assessing bearing performance in a dynamic environment. The pivoted-pad type journal bearings and the step-sector thrust bearing supported a turbine-driven rotor weighing approximately twenty-one pounds at a nominal operating speed of 36,000 rpm. The response amplitudes of both the rigid-supported and flexible-supported bearing pads, the gimballed thrust bearing, and the rotor relative to the machine casing were measured with capacitance type displacement probes. Random vibrations were applied by means of a large electrodynamic shaker at input levels ranging between 0.5 g (rms) and 1.5 g (rms). Vibrations were applied both along and perpendicular to the rotor axis. Response measurements were analyzed for amplitude distribution and power spectral density. Experimental results compare well with calculations of amplitude power spectral density made for the case where the vibrations were applied along the rotor axis. In this case, the rotor-bearing system was treated as a linear, three-mass model.

  5. Postural responses to vibration of neck muscles in patients with unilateral vestibular lesions

    Microsoft Academic Search

    Konstantin Popov; Hamid Lekhel; Adolfo Bronstein; Michael Gresty

    1996-01-01

    Postural responses to vibration applied unilaterally to dorsal neck muscles were recorded with a sway platform in nine patients with unilateral vestibular lesions and 19 normal subjects. In normals, the vibration induced a forward postural deviation. In patients, vibration of the neck contralateral to the lesion induced normal forward sway, whereas ipsilateral vibration resulted in sway of lower amplitude than

  6. Characteristics of active vibration control system using gyrostabilizer

    Microsoft Academic Search

    Masao Namiki

    1998-01-01

    An active vibration control system using gyro-stabilizers is studied. The gyro-stabilizer, which has a flywheel with a single gimbal, generates moments to control wind induced vibration of tower-like structures. In general, the system is set to have suitable control gain at strong winds, and hence its effectiveness decreases for medium to low levels of wind excitations. For this reason, the

  7. Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment.

    PubMed

    Zhao, Xin; Geng, Qian; Li, Yueming

    2013-03-01

    This paper is a study of the vibration and acoustic response characteristics of orthotropic laminated composite plate with simple supported boundary conditions excited by a harmonic concentrated force in a hygroscopic environment. First the natural vibration of the plate with the in-plane forces induced by hygroscopic stress is obtained analytically. Secondly, the sound pressure distribution of the plate at the far field is obtained using the Rayleigh integral. Furthermore, the sound radiation efficiency is deduced. Third, different ratios of elastic modulus in material principal directions are set to research the effects of increasing stiffness of the orthotropic plate on the vibration and acoustic radiation characteristics. Finally, to verify the theoretical solution, numerical simulations are also carried out with commercial finite software. It is found that the natural frequencies decrease with the increase of the moisture content and the first two order modes interconvert at high moisture content. The dynamic response and sound pressure level float to lower frequencies with elevated moisture content. Acoustic radiation efficiency generally floats to the low frequencies and decreases with an increase of moisture content. The dynamic and acoustic responses reduce and the coincidence frequency decreases with the enhanced stiffness. PMID:23464015

  8. Vibrational cooling and thermoelectric response of nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Arrachea, Liliana; Bode, Niels; von Oppen, Felix

    2014-09-01

    An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermoelectrics. In linear response, this theory describes thermoelectric refrigerators in terms of their cooling efficiency ? and figure of merit ZT. We show that both concepts carry over to phonon cooling in nanoelectromechanical systems. As an important consequence, this allows us to discuss the efficiency of phonon refrigerators in relation to the fundamental Carnot efficiency. We illustrate these general concepts by thoroughly investigating a simple double-quantum-dot model with the dual advantage of being quite realistic experimentally and amenable to a largely analytical analysis theoretically. Specifically, we obtain results for the efficiency, the figure of merit, and the effective temperature of the vibrational motion in two regimes. In the quantum regime in which the vibrational motion is fast compared to the electronic degrees of freedom, we can describe the electronic and phononic dynamics of the model in terms of master equations. In the complementary classical regime of slow vibrational motion, the dynamics is described in terms of an appropriate Langevin equation. Remarkably, we find that the efficiency can approach the maximal Carnot value in the quantum regime, with large associated figures of merit. In contrast, the efficiencies are typically far from the Carnot limit in the classical regime. Our theoretical results should provide guidance to implementing efficient vibrational cooling of nanoelectromechanical systems in the laboratory.

  9. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  10. Effects of mechanical vibration of the foot sole and ankle tendons on cutaneomuscular responses in man.

    PubMed

    Smith, Andrew C; Mummidisetty, Chaithanya K; Rymer, William Zev; Knikou, Maria

    2013-06-17

    The modulation of cutaneomuscular responses in response to mechanical vibration applied to the foot sole and to the ankle tendons was established in ten healthy subjects. The effects of mechanical vibration applied to the skin adjacent to the tibialis anterior (TA) and Achilles tendons were examined in two subjects. With the subjects seated, mechanical vibration applied to the TA and/or Achilles tendons significantly depressed the cutaneomuscular responses in all subjects, regardless of the frequency (50, 150, 250 Hz) of vibration. Mechanical vibration applied either to the foot sole or to the skin adjacent to the tendons induced no significant effects. The demonstration that mechanical vibration applied to muscle tendons exerts an inhibitory effect on cutaneomuscular responses supports the hypothesis that receptors that mediate body kinesthesia can be used as a vehicle to alter the spinal excitability state. The data suggests that tendon vibration could be utilized in neurological disorders to induce exogenous-mediated potentiation of presynaptic inhibition. PMID:23643990

  11. Modelling of Haptic Vibration Textures with Infinite-Impulse-Response Filters

    E-print Network

    Lee, WonSook

    Modelling of Haptic Vibration Textures with Infinite-Impulse-Response Filters Vijaya L. Guruswamy, Canada ON K1N 6N5 Email: vguru054,jlang,wslee@site.uottwa.ca Abstract--Vibration feedback models--Haptic, Vibrotactile, Texture. I. INTRODUCTION We experience vibrations during contact with our physical environment

  12. Postural responses to vibration of neck muscles in patients with uni- and bilateral vestibular loss

    Microsoft Academic Search

    Hamid Lekhel; Konstantin Popov; Adolfo Bronstein; Michael Gresty

    1998-01-01

    Postural responses to vibration applied unilaterally to the dorsal neck muscles were recorded with a sway platform in 11 patients with bilateral vestibular loss (BLD), 13 patients with unilateral vestibular lesions (ULD) and 19 normal subjects. In the normals, the vibration induced a forward postural deviation. Vibration failed to induce postural sway in the BLD patients but induced a backwards

  13. Vibration Characteristics of Partially Covered Double-Sandwich Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Chen, Qinghua; Levy, Cesar

    1996-01-01

    The differential equations of motion together with the boundary conditions for a partially covered, double-sandwich cantilever beam are derived. Bending and extension, rotational and longitudinal inertia of damping layers, and shear deformation and rotational and longitudinal inertia of the constraining layers and the primary beam are included in the equations. The theory is applicable for long as well as short, soft, or stiff damping layer, double-sandwich beams. Also, the effects of different parameters on the system loss factor and resonance frequency are discussed. Differences are found to exist with the previous beam model (called the Euler beam model) when the damping layers are stiff, when the thickness of the damping layer is large compared to the primary-beam thickness, and in the case of higher modes of vibration.

  14. Dose-response relation between exposure to two types of hand-arm vibration and sensorineural perception of vibration.

    PubMed Central

    Virokannas, H

    1995-01-01

    OBJECTIVES--31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). METHODS--Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. RESULTS--Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. CONCLUSION--There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration. PMID:7795756

  15. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  16. Vibration testing based on impulse response excited by laser ablation

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Hosoya, Naoki

    2011-10-01

    This paper proposes an innovative vibration testing method based on impulse response excited by laser ablation. In conventional vibration testing using an impulse hammer, high-frequency elements of over tens of kilohertz are barely present in the excitation force. A pulsed high-power YAG laser is used in this study for producing an ideal impulse force on a structural surface. Illuminating a point on a metal with the well-focused YAG laser, laser ablation is caused by generation of plasma on the metal. As a result, an ideal impulse excitation force generated by laser ablation is applied to the point on the structure. Therefore, it is possible to measure high-frequency FRFs due to the laser excitation. A water droplet overlay on the metal is used to adjust the force magnitude of laser excitation. An aluminum block that has nine natural frequencies below 40 kHz is employed as a test piece. The validity of the proposed method is verified by comparing the FRFs of the block obtained by the laser excitation, impulse hammer, and finite element analysis. Furthermore, the relationship between accuracy of FRF measurements and sensitivity of sensors is investigated.

  17. Methods for deriving a representative biodynamic response of the hand-arm system to vibration

    NASA Astrophysics Data System (ADS)

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2009-09-01

    Vibration-induced biodynamic responses (BR) of the human hand-arm system measured with subjects participating in an experiment are usually arithmetically averaged and used to represent their mean response. The mean BR data reported from different studies are further arithmetically averaged to form the reference mean response for standardization and other applications. The objectives of this study are to clarify whether such a response-based averaging process could significantly misrepresent the characteristics of the original responses, and to identify an appropriate derivation method. The arithmetically averaged response was directly compared with the response derived from a property-based method proposed in this study. Two sets of reported mechanical impedance data measured at the fingers and the palms of the hands were used to derive the models required for the comparison. This study found that the response-based arithmetic averaging could generate some systematic errors. The range of the subjects' natural frequencies in each resonance mode, the mode damping ratio, and the number of subjects participating in the experiment are among the major factors influencing the level of the errors. An effective and practical approach for reducing the potential for error is to increase the number of subjects in the BR measurement. On the other hand, the property-based derivation method can be generally used to obtain the representative response, but it is less efficient than the response-based derivation method.

  18. Vibration Characteristics of Disks-Spindle System in Hard Disk Drives

    Microsoft Academic Search

    T. H. Yan; X. D. Chen; R. M. Lin

    2007-01-01

    The purpose of this paper is to develop both numerical and experimental methods that can be used for easy prediction of vibration characteristics of disk-spindle systems in hard disk drives (HDDs). First, the effective numerical method, i.e., Finite element method (FEM), for the modeling of the whole disks and spindle system under real product constraint conditions has been discussed. So

  19. Some constructions and characteristics of rod-type piezoelectric ultrasonic motors using longitudinal and torsional vibrations

    Microsoft Academic Search

    Yoshiro Tomikawa; Kazunari Adachi; Manabu Aoyagi; Tadaatsu Sagae; Takehiro Takano

    1992-01-01

    Ultrasonic motors using longitudinal and torsional motions of rod vibrators have previously been proposed. Several motor constructions, whose forms are different from the previous ones, are proposed and their characteristics are experimentally examined in order to develop the ultrasonic motors of this type; that is, they are expected to have much different uses, according to how their forms are modified.

  20. The Design and Characteristics of Disk-Type Ultrasonic Motor Using Complex Vibration Mode

    Microsoft Academic Search

    Kee-Joe Lim; Jong-Sub Lee; Seong-Hwa Kang; Sung-Hee Park; Yong-Jin Yun; Cheol-Hyun Park

    2006-01-01

    In this paper, disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumference of elastic disk bonded onto

  1. Teacher Characteristics for Culturally Responsive Pedagogy

    ERIC Educational Resources Information Center

    Rychly, Laura; Graves, Emily

    2012-01-01

    Culturally responsive pedagogy, as defined by one of the most prominent authors in the field, Geneva Gay (2002), is "using the cultural characteristics, experiences, and perspectives of ethnically diverse students as conduits for teaching them more effectively". Culturally responsive pedagogy can be thought of, then, as teaching practices that…

  2. Peripheral origins and functional characteristics of vibration-sensitive VIIIth nerve fibers in the frog Rana temporaria

    Microsoft Academic Search

    Morten Buhl Jorgensen; Jakob Christensen-Dalsgaard

    1991-01-01

    1)The peripheral origins of vibration-sensitive VIIIth nerve fibers in European grassfrogs (Rana temporaria) were investigated by recording from individual nerve branchlets within the inner ear. Furthermore, the fibers' responses to both pulsed and continuous, dorsoventral, sinusoidal vibrations were studied.2)Vibration-sensitive fibers were found in both the anterior and posterior branch of the VIIIth nerve.3)No vibration-sensitive fibers were found in the lagenar

  3. Light-induced vibration characteristics of free-standing carbon nanotube films fabricated by vacuum filtration

    NASA Astrophysics Data System (ADS)

    Li, Junying; Zhu, Yong; Wang, Xin; Wang, Ning; Zhang, Jie

    2014-07-01

    In this paper, we fabricated carbon nanotube (CNT) films with different thickness by vacuum filtration method, and the films were separated from Mixed Cellulose Ester membranes with burn-off process. The thickness of CNT films with different concentrations of CNTs 50 mg, 100 mg, 150 mg, and 200 mg are 10.36 ?m, 20.90 ?m, 30.19 ?m, and 39.98 ?m respectively. The CNT bundles are homogeneously distributed and entangled with each other, and still maintain 2D continuous network structures after burn-off process. The optical absorptivity of the films is between 84% and 99% at wavelengths ranging from 400 nm to 2500 nm. Vibration characteristics were measured with the Fabry-Perot (F-P) interferometer vibration measurement system. CNT films vibrate only under the xenon light irradiating perpendicularly to the surface. Vibration recorded by Fabry-Perot interferometer is considered to be caused by the time-dependent thermal moment, which is due to the temperature differences of two sides of CNT films. The vibration frequency spectrums between 0.1 ˜ 0.5 Hz were obtained by the Fast Fourier Transform spectra from time domain to frequency domain, and showed a linear relationship with films thickness, which is in accordance with theoretical model of thermal induced vibration.

  4. Light-induced vibration characteristics of free-standing carbon nanotube films fabricated by vacuum filtration

    SciTech Connect

    Li, Junying; Zhu, Yong, E-mail: yongzhu@cqu.edu.cn; Wang, Ning; Zhang, Jie [The Key Laboratory of Optoelectronic Technology and System, Education Ministry of China, Chongqing University, Chongqing, 400044 (China); Wang, Xin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2014-07-14

    In this paper, we fabricated carbon nanotube (CNT) films with different thickness by vacuum filtration method, and the films were separated from Mixed Cellulose Ester membranes with burn-off process. The thickness of CNT films with different concentrations of CNTs 50?mg, 100?mg, 150?mg, and 200?mg are 10.36??m, 20.90??m, 30.19??m, and 39.98??m respectively. The CNT bundles are homogeneously distributed and entangled with each other, and still maintain 2D continuous network structures after burn-off process. The optical absorptivity of the films is between 84% and 99% at wavelengths ranging from 400?nm to 2500?nm. Vibration characteristics were measured with the Fabry-Perot (F-P) interferometer vibration measurement system. CNT films vibrate only under the xenon light irradiating perpendicularly to the surface. Vibration recorded by Fabry-Perot interferometer is considered to be caused by the time-dependent thermal moment, which is due to the temperature differences of two sides of CNT films. The vibration frequency spectrums between 0.1???0.5?Hz were obtained by the Fast Fourier Transform spectra from time domain to frequency domain, and showed a linear relationship with films thickness, which is in accordance with theoretical model of thermal induced vibration.

  5. Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1999-01-01

    Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.

  6. Optimization of Training Sets For Neural-Net Processing of Characteristic Patterns From Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J. (Inventor)

    2006-01-01

    An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.

  7. Seismic site-response analysis based on random vibration theory

    NASA Astrophysics Data System (ADS)

    Kang, T.; Jang, H.

    2013-12-01

    Local geology influences earthquake ground motions, which is of importance in specifying ground motion levels for seismic design in practice. This effect is quantified through site response analysis, which involves the propagation of seismic waves from bedrock to the free surface through soft layers. Site response analysis provides a set or several sets of scale factors given as function of frequency at the surface. Empirical characterization of site response requires a large data set over a wide range of magnitudes and distances of events. In reality, especially in low to moderate seismicity regions such as the Korean Peninsula, empirical characterization of site response is not plausible. Thus numerical modeling is only a viable tool for site response in those regions. On the other hand, most of conventional modeling procedures include a step for developing some appropriate synthetic waveforms as input motions to be used in site response analyses. The waveforms are typically synthesized by matching the spectrum, such as uniform hazard response spectrum, on basement rock obtained from the seismic hazard analysis. However, these synthetics are fundamentally problematic in spite of spectral matching because it is based on the amplitude spectrum only without phase information. As an alternative, an approach based on random vibration theory (RVT) is introduced without the need of waveform generations. RVT explains that a given response spectrum can be converted into a power spectrum density function. It is performed in the frequency domain and deals with the statistical representation of responses. It requires the transfer function for the velocity profile of a site. The transfer function is initially developed by computations of receiver functions using the reflectivity method assuming no attenuation for the profile under consideration of various incidence angles. Then the transfer function is iteratively updated with varying attenuation until the results are compatible with the observed modulus and damping which can be obtained through the in-situ or lab tests for the profile. After the final iteration on the transfer function, the maximum amplification responses can be obtained with the extreme values of shear stress and strain on the profile. Thus this approach combines the observational results of material properties with the analytical results based on the reflectivity calculations of a layered structure, which makes it able to estimate site response in reducing unphysical manipulations.

  8. Cross-frame and lateral bracing influence on curved steel bridge free vibration response

    Microsoft Academic Search

    H. Maneetes; D. G. Linzell

    2003-01-01

    Accurately quantifying the free vibration response of curved steel bridges has been a topic of interest for researchers and practitioners. This study examines the response of an experimental, single-span, noncomposite, curved I-girder bridge superstructure during free vibration. Finite element models of the experimental bridge system, which was tested for the FHWA Curved Steel Bridge Research Project (CSBRP), were constructed and

  9. Analysis for response of earthquake to bridge considering coupling vibration of pier-water

    Microsoft Academic Search

    Xiao-jun Ning; Yi-tang Zhou

    2011-01-01

    When analyzing the earthquake response of rigid- frame bridge with high pier in water, it can't be neglected for coupling vibration of pier-water. In this thesis, earthquake response of one bridge is calculated using Westergaard theory. It is approved that the bending moment at bottom of pier increased more than 20% when considering coupling vibration of pier- water.

  10. Semilinear response for the heating rate of cold atoms in vibrating traps

    E-print Network

    Cohen, Doron

    OFFPRINT Semilinear response for the heating rate of cold atoms in vibrating traps A. Stotland, D.epljournal.org doi: 10.1209/0295-5075/86/10004 Semilinear response for the heating rate of cold atoms in vibrating 03.65.-w ­ Quantum mechanics Abstract ­ The calculation of the heating rate of cold atoms

  11. Piezoelectric Instruments of High Natural Frequency Vibration Characteristics and Protection Against Interference by Mass Forces

    NASA Technical Reports Server (NTRS)

    Gohlka, Werner

    1943-01-01

    The exploration of the processes accompanying engine combustion demands quick-responding pressure-recording instruments, among which the piezoelectric type has found widespread use because of its especially propitious properties as vibration-recording instruments for high frequencies. Lacking appropriate test methods, the potential errors of piezoelectric recorders in dynamic measurements could only be estimated up to now. In the present report a test method is described by means of which the resonance curves of the piezoelectric pickup can be determined; hence an instrumental appraisal of the vibration characteristics of piezoelectric recorders is obtainable.

  12. Vibration characteristics of aluminum plates reinforced with boron-epoxy composite material.

    NASA Technical Reports Server (NTRS)

    Clary, R. R.; Cooper, P. A.

    1973-01-01

    Analytical and experimental data on the vibration characteristics of cantilevered winglike flat trapezoidal aluminum plates are presented. The plates had been reinforced with boron-epoxy composite material which had been placed symmetrically about the plate middle surface. The effect of filament orientation on the mode shapes and frequencies of the first ten modes and on the damping coefficients of several of the lowest frequency modes has been investigated experimentally. Experimental data are compared with results from a finite-element analysis. Stiffness properties of the composite material for use in the analysis were determined from vibration tests of composite reinforced aluminum beams.

  13. Experimental investigation of the vibration characteristics of a model of an asymmetric multielement space shuttle

    NASA Technical Reports Server (NTRS)

    Blanchard, U. J.

    1977-01-01

    Vibration investigations of a model of the asymmetric multielement space shuttle were made. The influence on overall motions of local deformation in the vicinity of element interfaces, high modal density, low structural damping, and high responsiveness in the crew cabin are included in the findings. Mode frequencies generally increase with decreasing propellant masses and staging of elements.

  14. Biodynamic characteristics of upper limb reaching movements of the seated human under whole-body vibration.

    PubMed

    Kim, Heon-Jeong; Martin, Bernard J

    2013-02-01

    Simulation of human movements is an essential component for proactive ergonomic analysis and biomechanical model development (Chaffin, 2001). Most studies on reach kinematics have described human movements in a static environment, however the models derived from these studies cannot be applied to the analysis of human reach movements in vibratory environments such as in-vehicle operations. This study analyzes three-dimensional joint kinematics of the upper extremity in reach movements performed in static and specific vibratory conditions and investigates vibration transmission to shoulder, elbow, and hand along the body path during pointing tasks. Thirteen seated subjects performed reach movements to five target directions distributed in their right hemisphere. The results show similarities in the characteristics of movement patterns and reach trajectories of upper body segments for static and dynamic environments. In addition, vibration transmission through upper body segments is affected by vibration frequency, direction, and location of the target to be reached. Similarities in the pattern of movement trajectories revealed by filtering vibration-induced oscillations indicate that coordination strategy may not be drastically different in static and vibratory environments. This finding may facilitate the development of active biodynamic models to predict human performance and behavior under whole body vibration exposure. PMID:22814094

  15. City dweller responses to multiple stressors intruding into their homes: noise, light, odour, and vibration.

    PubMed

    Pedersen, Eja

    2015-01-01

    Urban densification increases exposure to noise, light, odour, and vibration in urban dwellings. Exposure from combined environmental stressors intruding into the home could increase the risk of adverse effects on wellbeing, even when the exposure is at a relatively low level. This study assesses the prevalence of annoyance with a combination of potential environmental stressors common in urban areas and the association with wellbeing. A questionnaire was sent by mail to residents in five areas in Halmstad (Sweden) with similar socioeconomic and housing characteristics but different exposure (response rate 56%; n = 385). Of the respondents, 50% were annoyed to some degree by at least one of the suggested stressors, most commonly by noise and vibration from local traffic. Structural equation modelling showed that annoyance led to lowered quality of life via the mediating construct residential satisfaction, which in turn was influenced by place attachment and perceived restoration possibilities in the dwelling. Stress had a negative impact on quality of life, but was not directly correlated to annoyance. Stress was however correlated with sensitivity. The findings suggest that dose-response relationships for environmental stressors should be studied in a broader context of environmental and individual factors. Also relatively low levels of exposure should be mitigated, especially if several stressors are present. PMID:25794188

  16. Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake (China)

    Microsoft Academic Search

    Shuangyin Zhang; Lei Wang; Youshi Hong

    2010-01-01

    This article presents free vibration analysis of the submerged floating tunnel (SFT) prototype, which has been designed to be built in Qiandao Lake (China). As an approximation the supporting effect of the tethers is omitted in the calculation of beam-like bending vibrations. As a case study, the response of the SFT prototype to an accidental collision by an object like

  17. Insulation of nonlinear and random vibrations in the mining industry. [elastodynamic response of rubber insulator

    NASA Technical Reports Server (NTRS)

    Zeveleanu, C.

    1974-01-01

    The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.

  18. Chaotic response is a generic feature of vortex-induced vibrations of flexible risers

    Microsoft Academic Search

    Y. Modarres-Sadeghi; F. Chasparis; M. S. Triantafyllou; M. Tognarelli; P. Beynet

    2011-01-01

    We show through analysis of experimental data that the vortex-induced vibrations of long flexible risers are characterized by time intervals of chaotic response, followed or preceded by periods of statistically stationary response. Regions of chaotic response have been ignored in past analyses, while they contain distinctly different response features and have significant implications on riser fatigue analysis. Whereas periods of

  19. Analysis of the vibration characteristics of fluid-conveying double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Natsuki, Toshiaki; Ni, Qing-Qing; Endo, Morinobu

    2009-05-01

    Vibration characteristics of double-walled carbon nanotubes (DWCNTs) with conveying fluid are analyzed based on the Euler-Bernoulli beam theory and using the wave propagation approach. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The influences of internal moving fluids, such as flow velocity and mass density of fluids, on the vibration frequency of DWCNTs and the DWCNTs embedded in an elastic matrix are investigated in detail. The effect of matrix surrounding carbon nanotubes is considered as a spring element defined by the Winkler model. In this paper, we consider the double-walled nanotubes with an inner diameter of 2.2 nm and an outer diameter of 3.0 nm. According to this analysis, the numerical results indicate that the vibration frequency for the first mode (mode 1) reduces to zero at a critical flow velocity in the case of higher flow velocity, which coincides with the previous study based on a single beam model. The critical flow velocity is largely affected by the fluid properties and the vibration modes.

  20. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  1. Absence of Subharmonic Response in Vibrated Granular Systems under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Kollmer, Jonathan E.; Tupy, Martin; Heckel, Michael; Sack, Achim; Pöschel, Thorsten

    2015-02-01

    By means of experiments in microgravity conditions, we show that granular systems subjected to sinusoidal vibrations respond either by harmonic or gaslike dynamics, depending on the parameters of the vibration, amplitude and frequency, and the container size, while subharmonic response is unstable, except for extreme material properties and particular initial conditions. The absence of subharmonic response in vibrated granular systems implies that granular dampeners cannot reveal higher-order resonances, which makes them even more attractive for technical applications. Extensive molecular dynamics simulations support our findings.

  2. Dose-response patterns for vibration-induced white finger

    PubMed Central

    Griffin, M; Bovenzi, M; Nelson, C

    2003-01-01

    Aims: To investigate alternative relations between cumulative exposures to hand-transmitted vibration (taking account of vibration magnitude, lifetime exposure duration, and frequency of vibration) and the development of white finger (Raynaud's phenomenon). Methods: Three previous studies have been combined to provide a group of 1557 users of powered vibratory tools in seven occupational subgroups: stone grinders, stone carvers, quarry drillers, dockyard caulkers, dockyard boilermakers, dockyard painters, and forest workers. The estimated total operating duration in hours was thus obtained for each subject, for each tool, and for all tools combined. From the vibration magnitudes and exposure durations, seven alternative measurements of cumulative exposure were calculated for each subject, using expressions of the form: dose = ?amiti, where ai is the acceleration magnitude on tool i, ti is the lifetime exposure duration for tool i, and m = 0, 1, 2, or 4. Results: For all seven alternative dose measures, an increase in dose was associated with a significant increase in the occurrence of vibration-induced white finger, after adjustment for age and smoking. However, dose measures with high powers of acceleration (m > 1) faired less well than measures in which the weighted or unweighted acceleration, and lifetime exposure duration, were given equal weight (m = 1). Dose determined solely by the lifetime exposure duration (without consideration of the vibration magnitude) gave better predictions than measures with m greater than unity. All measures of dose calculated from the unweighted acceleration gave better predictions than the equivalent dose measures using acceleration frequency-weighted according to current standards. Conclusions: Since the total duration of exposure does not discriminate between exposures accumulated over the day and those accumulated over years, a linear relation between vibration magnitude and exposure duration seems appropriate for predicting the occurrence of vibration-induced white finger. Poorer predictions were obtained when the currently recommended frequency weighting was employed than when accelerations at all frequencies were given equal weight. Findings suggest that improvements are possible to both the frequency weighting and the time dependency used to predict the development of vibration-induced white finger in current standards. PMID:12499452

  3. Vibration responses of h-BN sheet to charge doping and external strain

    SciTech Connect

    Yang, Wei; Yang, Yu; Zheng, Fawei [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2013-12-07

    Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position of the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.

  4. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  5. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ajori, S.; Ansari, R.

    2015-02-01

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively.

  6. Vibration and Structural Response of Hybrid Wind Turbine Blades

    E-print Network

    Nanami, Norimichi

    2011-02-22

    , and vibration modes. The results showed that the composite layers did not exhibit any damage. However, in the balsa core of the sandwich skin, the von Mises stress exceeded its allowable at wind speeds ranging from 11.0 m/sec to 12.6 m/sec. In the blades...

  7. Vibration characteristics of a large wind turbine tower on non-rigid foundations

    NASA Technical Reports Server (NTRS)

    Yee, S. T.; Cang, T. Y. P.; Scavuzzo, R. J.; Timmerman, D. H.; Fenton, J. W.

    1977-01-01

    Vibration characteristics of the Mod-OA wind turbine supported by nonrigid foundations were investigated for a range of soil rigidities. The study shows that the influence of foundation rotation on the fundamental frequency of the wind turbine is quite significant for cohesive soils or loose sand. The reduction in natural frequency can be greater than 20 percent. However, for a foundation resting on well graded, dense granular materials or bedrock, such effect is small and the foundation can be treated as a fixed base.

  8. Vibration-Induced Motor Responses of Infants With and Without Myelomeningocele

    PubMed Central

    Teulier, Caroline; Smith, Beth A.; Kim, Byungji; Beutler, Benjamin D.; Martin, Bernard J.; Ulrich, Beverly D.

    2012-01-01

    Background The severity of myelomeningocele (MMC) stems both from a loss of neurons due to neural tube defect and a loss of function in viable neurons due to reduced movement experience during the first year after birth. In young infants with MMC, the challenge is to reinforce excitability and voluntary control of all available neurons. Muscle vibration paired with voluntary movement may increase motoneuron excitability and contribute to improvements in neural organization, responsiveness, and control. Objectives This study examined whether infants with or without MMC respond to vibration by altering their step or stance behavior when supported upright on a treadmill. Design This was a cross-sectional study. Methods Twenty-four 2- to 10-month-old infants, 12 with typical development (TD) and 12 with MMC (lumbar and sacral lesions), were tested. Infants were supported upright with their feet in contact with a stationary or moving treadmill during 30-second trials. Rhythmic alternating vibrations were applied to the right and left rectus femoris muscles, the lateral gastrocnemius muscle, or the sole of the foot. Two cameras and behavior coding were used to determine step count, step type, and motor response to vibration onset. Results Step count decreased and swing duration increased in infants with TD during vibration of the sole of the foot on a moving treadmill (FT-M trials). Across all groups the percentage of single steps increased during vibration of the lateral gastrocnemius muscle on a moving treadmill. Infants with MMC and younger infants with TD responded to onset of vibration with leg straightening during rectus femoris muscle stimulation and by stepping during FT-M trials more often than older infants with TD. Conclusions Vibration seems a viable option for increasing motor responsiveness in infants with MMC. Follow-up studies are needed to identify optimal methods of administering vibration to maximize step and stance behavior in infants. PMID:22228610

  9. The use of statistical characteristics of reducer vibrations as diagnostic symptoms

    NASA Technical Reports Server (NTRS)

    Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Sokolova, A. G.

    1973-01-01

    The results of a statistical analysis of the vibrations of the experimental RS-1 reducer stand, with a spiral-gear transmission, operating on a closed circuit, are presented. The analysis was carried out on the Minsk-2 and Minsk-32 digital computers, with two-channel analog-digital converter, built in the Institute of the Science of Mechanics. Two-dimensional distribution patterns, conditional dispersions and dispersion ratios were calculated. The octave-band-filtered first harmonics of the tooth frequency f sub z of the vibrations at two different measurement points were considered as the components of the vibration process to be analyzed. The regression lines, corresponding to different values of the loading torque, are presented. Since it was not the gear drive parameters which were determined by diagnostic methods, but the characteristics most sensitive to change in state of the object of the investigation, the loading torque, which is the simplest and most accessible for measurement, was chosen as the condition parameter.

  10. Study on vibration characteristics of the shaft system for a dredging pump based on FEM

    NASA Astrophysics Data System (ADS)

    Zhai, L. M.; Qin, L.; Liu, C. Y.; Liu, X.; He, L. Y.; He, Y.; Wang, Z. W.

    2012-11-01

    The dynamic characteristics of the shaft system for a dredging pump were studied with the Finite Element Method (FEM) by SAMCEF ROTOR. At first, the influence of the fluid-solid coupling interaction of mud water and impeller, water sealing and pump shaft on the lateral critical speeds were analyzed. The results indicated that the mud water must be taken into consideration, while the water sealing need not to. Then the effects of radial and thrust rolling bearings on the lateral critical speeds were discussed, which shows that the radial bearing close to the impeller has greatest impact on the 1st order critical speed. At last, the upper and lower limits of the critical speeds of lateral, axial and torsional vibration were calculated. The rated speed of the dredging pump was far less than the predicted critical speed, which can ensure the safe operation of the unit. Each vibration mode is also shown in this paper. This dynamic analysis method offers some reference value on the research of vibration and stability of the shaft system in dredging pump.

  11. Nonlinear response of vibrational excitons: Simulating the two-dimensional infrared spectrum of liquid water

    PubMed Central

    Paarmann, A.; Hayashi, T.; Mukamel, S.; Miller, R. J. D.

    2009-01-01

    A simulation formalism for the nonlinear response of vibrational excitons is presented and applied to the OH stretching vibrations of neat liquid H2O. The method employs numerical integration of the Schrödinger equation and allows explicit treatment of fluctuating transition frequencies, vibrational couplings, dipole moments, and the anharmonicities of all these quantities, as well as nonadiabatic effects. The split operator technique greatly increases computational feasibility and performance. The electrostatic map for the OH stretching vibrations in liquid water employed in our previous study [A. Paarmann et al., J. Chem. Phys. 128, 191103 (2008)] is presented. The two-dimensional spectra are in close agreement with experiment. The fast 100 fs dynamics are primarily attributed to intramolecular mixing between states in the two-dimensional OH stretching potential. Small intermolecular couplings are sufficient to reproduce the experimental energy transfer time scales. Interference effects between Liouville pathways in excitonic systems and their impact on the analysis of the nonlinear response are discussed. PMID:19485440

  12. Random gust response statistics for coupled torsion-flapping rotor blade vibrations.

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Hohenemser, K. H.; Yin, S. K.

    1972-01-01

    An analysis of coupled torsion-flapping rotor blade vibrations in response to atmospheric turbulence revealed that at high rotor advance ratios anticipated for future high speed pure or convertible rotorcraft both flapping and torsional vibrations can be severe. While appropriate feedback systems can alleviate flapping, they have little effect on torsion. Dynamic stability margins have also no substantial influence on dynamic torsion loads. The only effective means found to alleviate turbulence caused torsional vibrations and loads at high advance ratio was a substantial torsional stiffness margin with respect to local static torsional divergence of the retreating blade.

  13. High Efficiency of Optimization of Response Surface Method for Structure Dynamic Characteristics by Using Perturbation Method with Complementary Term

    NASA Astrophysics Data System (ADS)

    Zhao, Xilu; Terane, Teppei; Shin, Hyunjin; Hagiwara, Ichiro

    In this paper, a new perturbation method is proposed, and is shown that the correction vector can be calculated shorter than ever. And, the computing efficiency of the response surface optimization method could improve greatly by applying perturbation method with complementary term to example analysis in the optimization of vibration characteristics by the response surface methodology and by finishing eigenvalue analysis which takes most computing time just once. Moreover, the validity and effectiveness is examined by examples by inducing approximately estimated formula of the vibration response value based on orthogonal polynomial. Lastly, it is shown that the computing time is shorten greatly compared with former method by applying this method to analysis of optimization problem of vibration characteristics.

  14. Head position-based electrotactile tongue biofeedback affects postural responses to Achilles tendon vibration in humans

    Microsoft Academic Search

    Nicolas Vuillerme; Rémy Cuisinier

    2008-01-01

    The purpose of the present experiment was to investigate whether postural responses to ankle proprioceptive perturbation Achilles\\u000a tendon vibration were affected by the availability of augmented sensory information about head orientation\\/motion with respect\\u000a to gravitational vertical, i.e., normally provided by the vestibular system. To achieve this goal, ten standing subjects were\\u000a exposed to Achilles tendon vibration in two No Biofeedback

  15. Prediction of vibration amplitude from machining parameters by response surface methodology in end milling

    Microsoft Academic Search

    P. S. Sivasakthivel; V. Velmurugan; R. Sudhakaran

    2011-01-01

    Decreasing vibration amplitude during end milling process reduces tool wear and improves surface finish. Mathematical model\\u000a has been developed to predict the acceleration amplitude of vibration in terms of machining parameters such as helix angle\\u000a of cutting tool, spindle speed, feed rate, and axial and radial depth of cut. Central composite rotatable second-order response\\u000a surface methodology was employed to create

  16. Dynamic response of well-mixed binary particulate systems subjected to low magnitude vibration

    Microsoft Academic Search

    T. Yanagida; A. J. Matchett; B. N. Asmar; P. A. Langston; J. K. Walters; J. M. Coulthard

    2003-01-01

    The dynamic response of well-mixed binary mixtures subjected to low magnitude vibration was investigated using a newly developed non-invasive method. An apparent mass, defined as a ratio of the base force to base acceleration, was measured when applying a sweep vibration that ranged from 10 to 2000 Hz. The method could operate more rapidly, conveniently and non-destructively for a wider

  17. Forced response approach of a parametric vibration with a trigonometric series

    NASA Astrophysics Data System (ADS)

    Huang, Dishan

    2015-02-01

    A forced vibration problem with parametric stiffness is modeled by feedback structure in this manuscript, and the forced response is expressed as a special trigonometric series. The forced response of this problem is determined by algebraic equation. By applying harmonic balance and limitation operation, all coefficients of the harmonic components in the forced response solution are fully approached. The investigation result shows that the new approach has an advantage in the computational time and accuracy, and it is very significant for the theoretical research and engineering application in dealing with the problem of forced parametric vibration.

  18. Response of a flexible filament in a flowing soap film subject to a forced vibration

    NASA Astrophysics Data System (ADS)

    Jia, Laibing; Xiao, Qing; Wu, Haijun; Wu, Yanfeng; Yin, Xiezhen

    2015-01-01

    The interactions between flexible plates and fluids are important physical phenomena. A flag in wind is one of the most simplified and classical models for studying the problem. In this paper, we investigated the response of a flag in flow with an externally forced vibration by using flexible filaments and soap film. Experiments show that for a filament that is either in oscillation or stationary, the external forced vibration leads to its oscillation. A synchronization phenomenon occurs in the experiments. A small perturbation leads to a large response of flapping amplitude in response. The insight provided here is helpful to the applications in the flow control, energy harvesting, and bionic propulsion areas.

  19. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    SciTech Connect

    Chen, Roger H. L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-07-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures.

  20. Some constructions and characteristics of rod-type piezoelectric ultrasonic motors using longitudinal and torsional vibrations.

    PubMed

    Tomikawa, Y; Adachi, K; Aoyagi, M; Sagae, T; Takano, T

    1992-01-01

    Ultrasonic motors using longitudinal and torsional motions of rod vibrators have previously been proposed. Several motor constructions, whose forms are different from the previous ones, are proposed and their characteristics are experimentally examined in order to develop the ultrasonic motors of this type; that is, they are expected to have much different uses, according to how their forms are modified. Two groups of motor are dealt with: one contains motors basically suited to the relatively high torque of 2-3 kgf-cm and the other contains motors for small or medium torque below about 1.0 kgf-cm. As the result, operational characteristics of motors are totally revealed. These are useful in developing the rod type ultrasonic motors and in their practical applications. PMID:18267671

  1. EVALUATION ON ARCH DAMS CONSIDERING NONLINEAR BEHAVIOR OF TRANSVERSE JOINTS ON VIBRATION CHARACTERISTICS AND STATIC BEHAVIOR

    NASA Astrophysics Data System (ADS)

    Mazda, Taiji; Okuma, Nobuyuki; Endo, Yohei; Kandemir, Elif Cargda

    Thin structures of the arch dams are influenced by the interaction of foundational rock and reservoir. In this research, transverse joints have been confirmed to open and slip. In each dam site, a dam body shape has wide variety shape, however that dam body shape effect on static behavior has not been clarified. In this paper, an analytical model considering the nonlinear characteristics of the transverse joints is built, and a symmetric and asymmetric model is modeled as the three dimensional models which have a dam body - foundational rock - reservoir system. In order to find out a vibration characteristics and resistance mechanism, each model is analyzed by the eigenvalue analysis and static behavior analysis.

  2. Vibrational bone characteristics versus bone density for the assessment of osteoporosis in ovariectomized rats.

    PubMed

    Anastassopoulos, G; Panteliou, S; Christopoulou, G; Stavropoulou, A; Panagiotopoulos, E; Lyritis, G; Khaldi, Lubna; Varakis, J; Karamanos, N

    2010-01-01

    Our previous research findings suggested this integrated study in order to monitor changes of bone properties and assess bone integrity using vibrational characteristics in osteoporosis. The method is based on measurement of the bone dynamic characteristic modal damping factor (MDF). The experimental animal model is ovariectomized rat followed by alendronate treatment. According to the experimental design, adult female Wistar rats are ovariectomized and 60 days later, with confirmed osteoporosis, the population is divided into two groups. One is administered alendronate and the second is given no treatment. Furthermore, established techniques such as pQCT and histomorphometry are applied at all time points, in order to compare and correlate to MDF. The results indicate induction of osteoporosis due to ovariectomy and render MDF capable of monitoring changes in bone material properties and architecture, with high sensitivity and repeatability. PMID:19995148

  3. Visual Stimulation Facilitates Penile Responses to Vibration in Men with and without Erectile Disorder.

    ERIC Educational Resources Information Center

    Janssen, Erick; And Others

    1994-01-01

    Compared reflexogenic and psychogenic penile responses in men with and without erectile disorder. Hypothesized that men with psychogenic dysfunction respond minimally to vibrotactile stimulation. As predicted, responses were different in the vibration condition. Interpretations are provided in terms of attention and appraisal. (BF)

  4. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    E-print Network

    Elias, Damian Octavio

    The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end

  5. Crack Response to Blast Vibrations and Moisture Induced Volumetric Changes in Foundation Soils

    E-print Network

    * Structural distortion from overloading, creep, etc. Responses to changes in the foundation soil are usuallyCrack Response to Blast Vibrations and Moisture Induced Volumetric Changes in Foundation Soils By C changes in foundation soils induced by natural events. These natural phenomena include changes

  6. The characteristics of vibration fracture of Pb-Sn and lead-free Sn-Zn eutectic solders

    Microsoft Academic Search

    C. M. Chuang; T. S. Lui; L. H. Chen

    2001-01-01

    This work investigated the fatigue fracture characteristics of Sn-7˜11wt.%Zn and Sn-30˜50wt.%PPb solder alloys under resonant vibration. For the alloys containing proeutectic Sn-rich grains, the results show stratum appearance on the deformation of coarse proeutectic grains. This stratum-type deformation will reduce the vibration resistance of Pb-Sn solder by inducing cracks. For the Sn-Zn system, fine eutectic structure will cause cracks to

  7. Subjective response to combined noise and vibration during flight of a large twin-jet airplane

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1976-01-01

    A NASA twin-jet airplane was used to obtain controlled noise and vibration environments during flight while obtaining subjective responses from 13 passenger-subjects (6 females and 7 males). Subjective ratings of overall comfort, comfort when considering only vibration, and comfort when considering only noise were obtained during times of different vibration and noise environments. Passenger-subjects were able to distinguish and rate noise better than vibration. In addition, there was a statistically significant difference in ratings of ride comfort due to both sex type and flight experience. Males rated flying discomfort much more severely than females when rating the overall ride and the ride when considering only the noise environment. Experienced passengers also rated the overall ride to be more uncomfortable than inexperienced passengers.

  8. Vibration Characteristics Assessment of External Store Panels Furnished in a 50kg-Class Micro-Satellite ``SOHLA-1''

    NASA Astrophysics Data System (ADS)

    Sakai, Takeshi; Sonoda, Yusuke; Kakiuchi, Katsu; Sugiyama, Yoshihiko; Honda, Hisayoshi; Moribe, Kohei; Chiba, Masakatsu; Nakamura, Yosuke

    The paper reports the vibration characteristics assessment of grid panels which were furnished in the main structure of 50kg-class micro-satellite ``SOHLA-1''. Three different types of grid panels with dimensions of 141.1 × 423.0 × 10.0mm, triangle-grid-type panel, rectangle-grid-type panel and frame-type panel, were investigated to find their dynamics through impulse test. Vibration characteristics were also simulated by a FEM computer soft NASTRAN. Application of flame-retardant type magnesium alloy to the panel was made to confirm the structural effectiveness of magnesium alloy panel.

  9. A spider's biological vibration filter: micromechanical characteristics of a biomaterial surface.

    PubMed

    Young, Seth L; Chyasnavichyus, Marius; Erko, Maxim; Barth, Friedrich G; Fratzl, Peter; Zlotnikov, Igor; Politi, Yael; Tsukruk, Vladimir V

    2014-11-01

    A strain-sensing lyriform organ (HS-10) found on all of the legs of a Central American wandering spider (Cupiennius salei) detects courtship, prey and predator vibrations transmitted by the plant on which it sits. It has been suggested that the viscoelastic properties of a cuticular pad directly adjacent to the sensory organ contribute to the organ's pronounced high-pass characteristics. Here, we investigate the micromechanical properties of the cuticular pad biomaterial in search of a deeper understanding of its impact on the function of the vibration sensor. These properties are considered to be an effective adaptation for the selective detection of signals for frequencies >40 Hz. Using surface force spectroscopy mapping we determine the elastic modulus of the pad surface over a temperature range of 15-40 °C at various loading frequencies. In the glassy state, the elastic modulus was ~100 MPa, while in the rubbery state the elastic modulus decreased to 20 MPa. These data are analyzed according to the principle of time-temperature superposition to construct a master curve that relates mechanical properties, temperature and stimulus frequencies. By estimating the loss and storage moduli vs. temperature and frequency it was possible to make a direct comparison with electrophysiology experiments, and it was found that the dissipation of energy occurs within a frequency window whose position is controlled by environmental temperatures. PMID:25065547

  10. Influence of middle ear pressure alteration and middle ear effusion on vibration characteristics of human tympanic membrane

    NASA Astrophysics Data System (ADS)

    Stasche, Norbert; Hoermann, Karl; Foth, Hans-Jochen; Bernecker, Frank; Barton, Thomas G.

    1995-05-01

    A laser doppler vibrometer was used to measure the motion of a simple middle ear model and tympanic membrane vibrations of human temporal bone specimen. Different pathological conditions were simulated: Increasing or decreasing middle ear pressure to defined levels create a situation similar to a barootitis. Additionally the middle ear cavities were partially or totally filled with fluids of different viscosities. Characteristic changes of the vibration patterns were detected: With increasing pressure difference between middle ear and atmosphere the vibration amplitudes decreased. In middle ear effusions diminished amplitudes were obtained, depending on the fluid-occupied volume within the tympanic cavity. The vibration pattern was not influenced by differences in the viscosity of the effusion. Therefore a preoperative examination of a patient with middle ear effusions by laser doppler vibrometer offers no predictive aspect to the decision whether a ventilation tube should be inserted or not.

  11. Suppression of Subsynchronous Vibrations Due to Aerodynamic Response to Surge in a Two-Stage Centrifugal Compressor with Air Foil Bearings

    Microsoft Academic Search

    Y. B. Lee; T. H. Kim; C. H. Kim; N. S. Lee

    2003-01-01

    An investigation was conducted on the suppression of subsynchronous vibrations due to aerodynamic response to surge in a two-stage centrifugal compressor with air foil bearings. Unsteady aerodynamic response to surge caused excessive subsynchronous shaft vibration which might result in reduced bearing life. Notably, subsynchronous vibrations associated with rigid mode frequencies were more severe than any other subsynchronous vibrations. The objective

  12. Pt(II)-ion hydration: Structural and vibrational characteristics from theory and experiment

    NASA Astrophysics Data System (ADS)

    Stirling, András; Bakó, Imre; Kocsis, László; Hajba, László; Mink, János

    IR, Raman measurements, and ab initio molecular dynamics simulations have been carried out to describe and understand the structural and dynamic behavior of hydrated Pt2+ ion in water. The experiments have revealed strong red-shifted O-H bond frequencies and blue-shifted ligand deformation bands. The simulations have showed that the presence of the doubly charged cation and the enhanced hydrogen bond formations between the first and second shells result in significant structural changes in the first solvation shell, which in turn yield the characteristic shifts in the vibrational spectra. The weakening of the ligand O-H bonds and the strengthened hydrogen-bonds around the cation can be accounted for as the result of the strong Coulombic field of the Pt(II)-ion.

  13. Effects of blood in veins of dragonfly wing on the vibration characteristics.

    PubMed

    Hou, Dan; Yin, Yajun; Zhao, Hongxiao; Zhong, Zheng

    2015-03-01

    How the blood in veins of dragonfly wing affects its vibration characteristics is investigated. Based on the experimental results of the wing?s morphology and microstructures, including the veins, the membranes and the pterostigma, accurate three-dimensional finite element models of the dragonfly forewing are developed. Considering the blood in veins, the total mass, mass distribution and the moments of inertia of the wing are studied. The natural frequencies/modal shapes are analyzed when the veins are filled with and without blood, respectively. The based natural frequency of the model with blood (189Hz) is much closer to the experimental result. Relative to bending modal shapes, the torsional ones are affected more significantly by the blood. The results in this article reveal the multi-functions of the blood in dragonfly wings and have important implications for the bionic design of flapping-wing micro air vehicles. PMID:25577611

  14. A computer toolbox for damage identification based on changes in vibration characteristics

    SciTech Connect

    Doebling, S.W.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Cornwell, P.J. [Rose Hulman Institute of Technology, Terre Haute, IN (United States). Dept. of Mechanical Engineering

    1997-09-01

    This paper introduces a new toolbox of graphical-interface software algorithms for the numerical simulation of vibration tests, analysis of modal data, finite element model correlation, and the comparison of both linear and nonlinear damage identification techniques. This toolbox is unique because it contains several different vibration-based damage identification algorithms, categorized as those which use only measured response and sensor location information ({open_quotes}non-model-based{close_quotes} techniques) and those which use finite element model correlation ({open_quotes}model-based{close_quotes} techniques). Another unique feature of this toolbox is the wide range of algorithms for experimental modal analysis. The toolbox also contains a unique capability that utilizes the measured coherence functions and Monte Carlo analysis to perform statistical uncertainty analysis on the modal correlation capabilities of toolbox, and also shows a sample application which uses the toolbox to analyze the statistical uncertainties on the results of a series of modal tests performed on a highway bridge.

  15. Scanning LDV for vibration measurement of filiform hairs in crickets in response to induced airflow

    NASA Astrophysics Data System (ADS)

    Santulli, C.; Finn, T. J.; Seidel, R.; Jeronimidis, G.

    2006-06-01

    Cercal hairs represent in cricket a wind sensitive escape system, able to detect the airflow generated from predating species. These sensors have been studied as a biomimetic concept to allow the development of MEMS for biomedical use. In particular, the behaviour of the hairs, including airflow response, resonant frequency and damping, has been investigated up to a frequency of 20 kHz. The microscopic nature of the hairs, the complex vibrations of excited hairs and the high damping of the system suggested that the use of Laser Doppler vibrometry could possibly improve the test performance. Two types of tests were performed: in the first case the hairs were indirectly excited using the signal obtained from a vibrating aluminium plate, whilst in the second case the hairs were directly excited using a white noise chirp. The results from the first experiment indicated that the hairs move in-phase with the exciting signal up to frequencies in the order of 10 kHz, responding to the vibration modes of the plate with a signal attenuation of 12 to 20 dB. The chirp experiment revealed the presence of rotational resonant modes at 6850 and 11300 Hz. No clear effect of hair length was perceivable on the vibration response of the filiform sensors. The obtained results proved promising to support the mechanical and vibration characterisation of the hairs and suggest that scanning Laser vibrometry can be used extensively on highly dampened biological materials.

  16. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments

    Microsoft Academic Search

    Xiao-Lin Huang; Hui-Shen Shen

    2004-01-01

    This paper deals with the nonlinear vibration and dynamic response of functionally graded material plates in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded

  17. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments

    Microsoft Academic Search

    Xiao-Lin Huang; Hui-Shen Shen

    2006-01-01

    This paper deals with the nonlinear vibration and dynamic response of a functionally graded material (FGM) plate with surface-bonded piezoelectric layers in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction of the plate, and

  18. Study of T53 engine vibration

    NASA Technical Reports Server (NTRS)

    Walter, T. J.

    1978-01-01

    Vibration characteristics for overhauled T53 engines, including rejection rate, principal sources of vibration, and normal procedures taken by the overhaul center to reduce engine vibration are summarized. Analytical and experimental data were compared to determine the engine's dynamic response to unbalance forces with results showing that the engine operates through bending critical speeds. Present rigid rotor balancing techniques are incapable of compensating for the flexible rotor unbalance. A comparison of typical test cell and aircraft vibration levels disclosed significant differences in the engine's dynamic response. A probable spline shift phenomenon was uncovered and investigated. Action items to control costs and reduce vibration levels were identified from analytical and experimental studies.

  19. Coupled vibration response of a shaft with a breathing crack

    NASA Astrophysics Data System (ADS)

    Giannopoulos, G. I.; Georgantzinos, S. K.; Anifantis, N. K.

    2015-02-01

    The accurate and detailed knowledge of the local flexibility which is introduced by a crack into a structure may be used in damage diagnosis. This paper investigates the variation of the local flexibility of cracked shafts under harmonic type of loadings causing tensional as well as compressional stresses around the crack faces in a periodic manner which inevitably lead to the opening and closure of the crack, i.e. the breathing mechanism. Time-dependent nonlinear finite element method (FEM) is adopted to analyze various crack sizes as well as time-dependent axial, bending and torsional types of loading. Special boundary conditions are adopted between crack faces to avoid penetration along the contact area and simultaneously permit the existence of stick or slip contact zones according to Coulomb's law. Deflection differences at the loaded edge between uncracked and cracked shaft are used for the computation of the local flexibilities. Apart from the computation of the diagonal terms of local flexibility matrix intensive emphasis is given to its off-diagonal coefficients which cause the coupling of motion between different degrees of freedom and thus may affect considerably the overall vibrational behavior of the shaft.

  20. Experimental studies for determining human discomfort response to vertical sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1975-01-01

    A study was conducted to investigate several problems related to methodology and design of experiments to obtain human comfort response to vertical sinusoidal vibration. Specifically, the studies were directed to the determination of (1) the adequacy of frequency averaging of vibration data to obtain discomfort predictors, (2) the effect of practice on subject ratings, (3) the effect of the demographic factors of age, sex, and weight, and (4) the relative importance of seat and floor vibrations in the determination of measurement and criteria specification location. Results indicate that accurate prediction of discomfort requires knowledge of both the acceleration level and frequency content of the vibration stimuli. More importantly, the prediction of discomfort was shown to be equally good based upon either floor accelerations or seat accelerations. Furthermore, it was demonstrated that the discomfort levels in different seats resulting from similar vibratory imputs were equal. Therefore, it was recommended that criteria specifications and acceleration measurements be made at the floor location. The results also indicated that practice did not systematically influence discomfort responses nor did the demographic factors of age, weight, and sex contribute to the discomfort response variation.

  1. Exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments.

    PubMed

    Sharp, Calum; Woodcock, James; Sica, Gennaro; Peris, Eulalia; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    In this work, exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments are developed, so as to better understand the differences in human response to these two sources of environmental vibration. Data for this research come from a field study comprising interviews with respondents and measurements of their vibration exposure (N?=?752). A logistic regression model is able to accurately classify 96% of these measured railway vibration signals as freight or passenger based on two signal properties that quantify the duration and low frequency content of each signal. Exposure-response relationships are then determined using ordinal probit modeling with fixed thresholds. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. In terms of a community tolerance level, the population studied is 15?dB (re 10(-6) m?s(-2)) more tolerant to passenger railway vibration than freight railway vibration. These results have implications for the expansion of freight traffic on rail, or for policies to promote passenger railway. PMID:24437760

  2. The Gamow-Teller response within Skyrme random-phase approximation plus particle-vibration coupling

    E-print Network

    Yifei Niu; Gianluca Colo; Marco Brenna; Marco Brenna; Pier Francesco Bortignon; Jie Meng

    2012-03-28

    Although many random-phase approximation (RPA) calculations of the Gamow-Teller (GT) response exist, this is not the case for calculations going beyond the mean-field approximation. We apply a consistent model that includes the coupling of the GT resonance to low-lying vibrations, to nuclei of the $fp$ shell. Among other motivations, our goal is to see if the particle-vibration coupling can redistribute the low-lying GT$^+$ strength that is relevant for electron-capture processes in core-collapse supernova. We conclude that the lowering and fragmentation of that strength are consistent with the experimental findings and validate our model. However, the particle-vibration coupling cannot account for the quenching of the total value of the low-lying strength.

  3. Gamow-Teller response within Skyrme random-phase approximation plus particle-vibration coupling

    NASA Astrophysics Data System (ADS)

    Niu, Y. F.; Colò, G.; Brenna, M.; Bortignon, P. F.; Meng, J.

    2012-03-01

    Although many random-phase approximation (RPA) calculations of the Gamow-Teller (GT) response exist, this is not the case for calculations going beyond the mean-field approximation. We apply a consistent model, that includes the coupling of the GT resonance to low-lying vibrations, to nuclei of the fp shell. Among other motivations, our goal is to see if the particle-vibration coupling can redistribute the low-lying GT+ strength that is relevant for electron-capture processes in core-collapse supernova. We conclude that the lowering and fragmentation of that strength are consistent with the experimental findings and validate our model. However, the particle-vibration coupling cannot account for the quenching of the total value of the low-lying strength.

  4. Short term response of insulin, glucose, growth hormone and corticosterone to acute vibration in rats.

    NASA Technical Reports Server (NTRS)

    Dolkas, C. B.; Leon, H. A.; Chackerian, M.

    1971-01-01

    Study carried out to obtain some notion of the initial phasing and interactive effects among some hormones known to be responsive to vibration stress. Sprague-Dawley derived rats were exposed to the acute effects of confinement and confinement with lateral (plus or minus G sub y) vibration. The coincident monitoring of glucose, insulin, growth hormone, and corticosterone plasma levels, during and immediately subsequent to exposure to brief low level vibration, exhibits the effects of inhibition of insulin release by epinephrine. The ability of insulin (IRI) to return rapidly to basal levels, from appreciably depressed levels during vibration, in the face of elevated levels of glucose is also shown. Corticosterone responds with almost equal rapidity, but in opposite phase to the IRI. The immuno-assayable growth hormone (IGH) dropped from a basal level of 32 ng/ml to 7.3 ng/ml immediately subsequent to vibration and remained at essentially that level throughout the experiment (60 min). Whether these levels represent a real fall in the rat or whether they merely follow the immuno-logically deficient form is still in question.

  5. The characteristics of vibration fracture of Pb-Sn and lead-free Sn-Zn eutectic solders

    Microsoft Academic Search

    C. M. Chuang; T. S. Lui; L. H. Chen

    2001-01-01

    This work investigated the fatigue fracture characteristics of Sn-7?11wt.%Zn and Sn-30?50wt.%PPb solder alloys under resonant\\u000a vibration. For the alloys containing proeutectic Sn-rich grains, the results show stratum appearance on the deformation of\\u000a coarse proeutectic grains. This stratum-type deformation will reduce the vibration resistance of Pb-Sn solder by inducing\\u000a cracks. For the Sn-Zn system, fine eutectic structure will cause cracks to

  6. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution.

    PubMed

    Zhu, Tao; He, Qian; Xiao, Xianghui; Bao, Xiaoyi

    2013-02-11

    A distributed optical fiber sensing system merged Mach-Zehnder interferometer and phase sensitive optical time domain reflectometer (?-OTDR) system for vibration measurement with high-frequency response and high spatial resolution is demonstrated, where modulated pulses are proposed to be used as sensing source. Frequency response and location information are obtained by Mach-Zehnder interferometer and ?-OTDR technology, respectively. In order to simulate high-frequency vibration of crack of cable and civil structure, experiments on detection of piezoelectric transducer and pencil-break are carried out. Spatial resolution of 5 m and the maximum frequency response of ~3 MHz are achieved in 1064 m fiber link when the narrow pulse width is 50 ns. PMID:23481753

  7. White Noise Responsiveness of an AlN Piezoelectric MEMS Cantilever Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    This paper reports the design, analysis and experimental characterisation of a piezoelectric MEMS cantilever vibration energy harvester, the enhancement of its power output by adding various values of end mass, as well as assessing the responsiveness towards white noise. Devices are fabricated using a 0.5 ?m AlN on 10 ?m doped Si process. Cantilevers with 5 mm length and 2 mm width were tested at either unloaded condition (MC0: fn 577 Hz) or subjected to estimated end masses of 2 mg (MC2: fn 129 Hz) and 5 mg (MC5: fn 80 Hz). While MC0 was able to tolerate a higher drive acceleration prior to saturation (7 g with 0.7 ?W), MC5 exhibited higher peak power attainable at a lower input vibration (2.56 ?W at 3 ms?2). MC5 was also subjected to band-limited (10 Hz to 2 kHz) white noise vibration, where the power response was only a fraction of its resonant counterpart for the same input: peak instantaneous power >1 ?W was only attainable beyond 2 g of white noise, whereas single frequency resonant response only required 2.5 ms?2. Both the first resonant response and the band-limited white noise response were also compared to a numerical model, showing close agreements.

  8. Auditory Brainstem Response Latency: Headphone Versus Bone Vibrator Procedures

    Microsoft Academic Search

    Massoumeh Roozbahani; Hassan Haddadzadeh Niri; Mohammad Reza Keyhani

    Objective: Comparison of Air conduction (AC) and Bone conduction (BC) auditory brain stem response (ABR) latencies. Materials and Methods: In this cross-sectional study, 34 (17 males, 17 females) normal-hearing young subjects tested with AC- and BC-ABR .Wave V latencies of both procedures were compared Results: BC- wave V latency significantly prolonged about 0.5 ms. That prolongation was less with decreasing

  9. A method for assessing the effectiveness of anti-vibration gloves using biodynamic responses of the hand arm system

    NASA Astrophysics Data System (ADS)

    Dong, R. G.; Rakheja, S.; McDowell, T. W.; Welcome, D. E.; Wu, J. Z.; Warren, C.; Barkley, J.; Washington, B.; Schopper, A. W.

    2005-04-01

    Anti-vibration gloves are widely used to help minimize hand-arm vibration exposure. In this study, an alternative method is proposed to assess the vibration isolation effectiveness of these gloves using the biodynamic responses of the bare- and gloved-hand-arm system exposed to vibration. The laboratory experiments were performed with a total of five human subjects using a typical anti-vibration air bladder glove subjected to a broad-band random vibration spectrum in conjunction with a specially designed instrumented handle. The measured data were analyzed to derive the biodynamic responses of the bare as well as gloved human hand-arm system in terms of the apparent mass and the mechanical impedance. The two biodynamic responses were applied to estimate the vibration isolation effectiveness of the glove. The validity of the proposed concept was examined by comparing the estimated vibration transmissibility magnitudes of the glove with those obtained using a palm adapter method. The comparison of the results suggests that the proposed method offers a good alternative for estimating glove vibration transmissibility. The measured data and the proposed method based upon the biodynamic responses were further used to investigate the effect of the palm adapter on the vibration transmissibility of the glove. The results suggest that the presence of the palm adapter between the subject's palm and the glove may not alter the basic trends in the transmissibility response, but it would affect the transmissibility magnitudes in the middle- and high-frequency ranges. A distinct advantage of the proposed method is that it eliminates the use of an adapter in assessing the vibration isolation effectiveness of the gloves.

  10. Dynamic characteristics of the output light from a vibrating hole assisted fiber curl cord and its application to intrusion location

    NASA Astrophysics Data System (ADS)

    Tateda, Mitsuhiro; Mizushima, Akihiro

    2014-05-01

    When a hole assisted fiber (HAF) curl cord expands and contracts, the polarization direction of the light emitted from it rotates. A curl cord is divided into several sections by fixing it at several points. When the curl cord is flipped at a point within one of these sections, then vibration is observed with the characteristic frequency to the flipped section. The vibration period of a HAF curl cord can be detected by monitoring the light power emitted from the curl cord after passing through a polarizer. We confirmed theoretically and experimentally that the vibration period of the polarization change is proportional to the length of the section including the flipped point, which can be applied to intrusion location.

  11. The characteristics of vibration fracture of Pb-Sn and lead-free Sn-Zn eutectic solders

    NASA Astrophysics Data System (ADS)

    Chuang, C. M.; Lui, T. S.; Chen, L. H.

    2001-09-01

    This work investigated the fatigue fracture characteristics of Sn-7˜11wt.%Zn and Sn-30˜50wt.%PPb solder alloys under resonant vibration. For the alloys containing proeutectic Sn-rich grains, the results show stratum appearance on the deformation of coarse proeutectic grains. This stratum-type deformation will reduce the vibration resistance of Pb-Sn solder by inducing cracks. For the Sn-Zn system, fine eutectic structure will cause cracks to form and coalesce easily in the regions concentrated with small fibrous deformation grains, whereas hypereutectic structure shows coarse proeutectic Zn-rich particles as the crack initiation sites. Sn-t-Zn solders have better damping capacity than Pb-Sn solders. With hypoeutectic composition to induce stratum-type deformation and under lower vibration strain, these lead-free solders tend to exhibit superior crack propagation resistance, and, in that respect, are possible to replace Pb-Sn solders.

  12. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review

    Microsoft Academic Search

    S. W. Doebling; C. R. Farrar; M. B. Prime; D. W. Shevitz

    1996-01-01

    This report contains a review of the technical literature concerning the detection, location, and characterization of structural damage via techniques that examine changes in measured structural vibration response. The report first categorizes the methods according to required measured data and analysis technique. The analysis categories include changes in modal frequencies, changes in measured mode shapes (and their derivatives), and changes

  13. Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules

    SciTech Connect

    Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

    2012-09-01

    The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

  14. Dynamic characteristics of a cable-stayed bridge measured from traffic-induced vibrations

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Chen, Chern-Hwa

    2012-09-01

    This paper studies the dynamic characteristics of the Kao-Ping-Hsi cable-stayed bridge under daily traffic conditions. Experimental data were measured from a structural monitoring system, and system-identification techniques, such as the random decrement (RD) technique and Ibrahim time-domain (ITD) method, were adopted. The first five modes of the bridge were identified for their natural frequencies and damping ratios under different traffic loading conditions, in terms of root-mean-square (RMS) deck velocities. The magnitude of the torsion mode of the Kao-Ping-Hsi cable-stayed bridge is found to be one order-of-magnitude less than the transfer mode, and two orders-of-magnitude less than the vertical modes. Out results indicated that vibrations induced by traffic flow can be used as an indicator to monitor the health of the bridge due to their insensitivity to the natural frequencies of the cable-stayed bridge. Furthermore, the damping ratios may be used as a more sensitive indicator to describe the condition of the bridge.

  15. Evaluating Attenuation of Vibration Response using Particle Impact Damping for a Range of Equipment Assemblies

    NASA Technical Reports Server (NTRS)

    Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben

    2013-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  16. Experimental analysis of dynamic characteristics for vibration-impact process of steam turbine blades with integral shroud

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Lu-ping; Lu, Xu-xiang; Rao, Hong-de; Liu, Yu-jing

    2008-11-01

    Integral shroud is an advanced technique used to improve reliability of steam turbine blades. In this paper, dynamic characteristics of vibration-impact process of steam turbine blades with integral shroud are studied. To test and verify the reliability of calculation result, a series of experiments are well performed on the platform of contracting and impacting of blades tips. The dynamic strain data under different gaps, different loads and different rotating speeds are surveyed through which the log decrement at each condition is obtained, and the effects of vibration damping are obtained by comparing the log decrement. The results of experimental study show that larger log decrement means larger system damping and better effectives of vibration reduction. Besides, the effects of vibro-impact reduction of different parameters are got and the experimental study results show that the vibro-impact structure is a good vibration damper. The dynamic stress of the blade with integral shroud is insensitive to loads when the gap between adjacent integral shrouds is small. In short, the achievements gained in the paper have revealed dynamic characteristics for vibro-impact process of steam turbine blades with integral shroud, which will bring important engineering application to development and modification design of the integrally shrouded blades.

  17. Minimization of the mean square velocity response of dynamic structures using an active-passive dynamic vibration absorber.

    PubMed

    Cheung, Y L; Wong, W O; Cheng, L

    2012-07-01

    An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber. PMID:22779469

  18. Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.

    1976-01-01

    An experimental investigation determined that the psychophysical relationships between subjective discomfort evaluations to vibratory stimuli and subjective evaluations of the intensity of vibratory stimuli can be expressed in a linear fashion. Furthermore, significant differences were found to exist between discomfort and intensity subjective response for several but not all discrete frequencies investigated. The implication of these results is that ride quality criteria based upon subjective evaluation of vibration intensity should be applied cautiously in the development of criteria for human comfort.

  19. Numerical study on the vibration characteristics of automobile brake disk and pad

    Microsoft Academic Search

    Xianjie Meng; Guangqiang Wu; Lin He

    2009-01-01

    Based on the review of researches on the vibration and noise related to automobile brake, a four degrees of freedom nonlinear dynamics model of brake disk and pads is established, the stability of vibration system at the equilibrium points is analyzed. Finally the numerical method is taken to study the impacts of brake pressure, shape parameter and the brake disk's

  20. Lateral stiffness and vibration characteristics of RC shear walls bonded with thin composite plates

    Microsoft Academic Search

    S. A. Meftah; A. Tounsi; A. Megueni; E. A. Adda Bedia

    2006-01-01

    This paper deal with the bending and vibration analysis of shear wall structures strengthened by bonded composite plates. In the analytical formulation, the adherents and the adhesives are all modeled as shear walls elements, using the mixed finite element method. A free vibration analysis is carried out to determine the frequencies of multistory strengthened shear wall structures. Several test problems

  1. ALIENATION, ENVIRONMENTAL CHARACTERISTICS, AND WORKER RESPONSES

    Microsoft Academic Search

    MILTON R. BLOOD; CHARLES L. HULIN

    1967-01-01

    DATA GATHERED FROM 1900 MALE WORKERS LOCATED IN 21 PLANTS IN THE EASTERN UNITED STATES ARE PRESENTED AND ANALYZED TO DETERMINE THE INFLUENCE OF ENVIRONMENTAL CHARACTERISTICS PRESUMED TO INDEX FEELINGS OF ALIENATION FROM MIDDLE-CLASS NORMS. PREDICTIONS WERE MADE THAT WORKERS IN COMMUNITIES WHICH SHOULD FOSTER INTEGRATION WITH MIDDLE-CLASS NORMS WOULD STRUCTURE THEIR JOBS DIFFERENTLY AND WOULD RESPOND DIFFERENTLY THAN ALIENATED

  2. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  3. The application of finite element analysis to investigate the vibrational response of a turbine blade under thermosonic excitation

    NASA Astrophysics Data System (ADS)

    Bolu, Gabriel; Gachagan, Anthony; Pierce, Gareth; Barden, Tim

    2013-01-01

    This paper presents a methodology, using a combination of experimental vibration measurements and finite element analysis (FEA), to model the vibrational energy within a turbine blade corresponding to a typical thermosonic inspection scenario. Laser vibrometry measurements were used to determine the steady-state vibration response at several locations on a blade and used to identify the prominent spectral components. These were then used to generate an excitation function for the FEA approach. After validation of the FEA model, the vibration response across the whole blade was simulated. Finally, the predicted displacement field was used to determine the vibrational energy at every point on the blade which was mapped onto a CAD representation of the blade, thereby highlighting areas on the blade that may be below the defect detection threshold.

  4. 2-D differential quadrature solution for vibration characteristics of two-dimensional functionally graded metal\\/ceramic open cylindrical shells

    Microsoft Academic Search

    H. Hedayati; M. Hedayati; B. Sobhani Aragh; E. Borzabadi Farahani

    2012-01-01

    In this paper, Semi-analytical 3-D elasticity solutions are presented to study the vibration characteristics of two-dimensional functionally graded (2-D FGM) metal\\/ceramic open cylindrical shells under various boundary conditions. In the present formulation, the shell has a smooth variation of volume fractions of metal and ceramic in the radial and axial directions with power law functions. The study is carried out

  5. Hormonal and Neuromuscular Responses to Mechanical Vibration Applied to Upper Extremity Muscles

    PubMed Central

    Di Giminiani, Riccardo; Fabiani, Leila; Baldini, Giuliano; Cardelli, Giovanni; Giovannelli, Aldo; Tihanyi, Jozsef

    2014-01-01

    Objective To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. Methods Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]). Results The GH increased significantly over time only in the HVG (P?=?0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P?=?0.011) and the HVG (P?=?0.001). MVC during bench press decreased significantly in the LVG (P?=?0.001) and the HVG (P?=?0.002). In the HVG, the EMGrms decreased significantly in the TB (P?=?0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P?=?0.009) and FCR (P?=?0.006) muscles. Conclusion Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness. PMID:25368995

  6. Real distributed vibration sensing with high frequency response based on pulse pair

    NASA Astrophysics Data System (ADS)

    He, Qian; Zhu, Tao; Xiao, Xianghui; Diao, Dongmei; Huang, Wei; Bao, Xiaoyi

    2014-05-01

    In conventional phase-sensitive optical time domain reflectometry (?-OTDR), the length of sensing fiber mainly determines the repetition rate of probe light pulses, which limits the extent of detectable frequency range. Moreover, averaging method, which is adopted to enhance the location signal-to-noise-ratio (SNR), further decreases the maximum detectable frequency. This paper demonstrates a distributed vibration sensor with satisfied location SNR and extended frequency response range by using a probe pulse pair with a frequency difference. Experimental results show that this method is able to break the trade-off between the given sensing fiber length and the traditional maximum detectable frequency response of ?-OTDR system.

  7. A forced response analysis and application of impact dampers to rotordynamic vibration suppression in a cryogenic environment

    E-print Network

    Moore, James Jeffrey

    1993-01-01

    A FORCED RESPONSE ANALYSIS AND APPLICATION OF IMPACT DAMPERS TO ROTORDYNAMIC VIBRATION SUPPRESSION IN A CRYOGENIC ENVIRONMENT A Thesis by JAMES JEFFREY MOORE Submitted to the Office of Graduate Studies of Texas ARM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1993 Major Subject: Mechanical Engineering A FORCED RESPONSE ANALYSIS AND APPLICATION OF IMPACT DAMPERS TO ROTORDYNAMIC VIBRATION SUPPRESSION IN A CRYOGENIC ENVIRONMENT A Thesis...

  8. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Köpke, Uwe G.; Howard, Carl Q.; Petersen, Dick

    2014-10-01

    This paper provides insights into the physical mechanism by which defect-related impulsive forces, and consequently, vibrations are generated in defective rolling element bearings. A dynamic nonlinear finite element model of a rolling element bearing with an outer raceway defect was numerically solved using the explicit dynamics finite element software package, LS-DYNA. A hypothesis was developed to explain the numerical noise observed in the predicted vibrations and contact forces, and the noise frequencies were analytically estimated. In-depth analyses of the numerically estimated dynamic contact forces between the rolling elements and the raceways of a bearing, which are not measured in practice, and have not been reported previously, are presented in this paper. Several events associated with the traverse of the rolling elements through the outer raceway defect are elaborated, and the impulsive force generating mechanism is explained. It was found that the re-stressing of the rolling elements that occurs near the end of a raceway defect generates a burst of multiple short-duration force impulses. The modelling results also highlight that much higher contact forces and accelerations are generated on the exit of the rolling elements out of defect compared to when they strike the defective surface. A bearing with a machined outer raceway defect was tested in a controlled experiment; the measured acceleration response compared favourably with the numerically modelled acceleration results, thereby, validating the low- and high-frequency characteristics of the de-stressing and re-stressing of the rolling elements, respectively.

  9. Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.

    2014-08-01

    In recent years, synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) has led to extensive studies on their exceptional properties. In this study, the torsional vibration behavior of boron-nitride nanotubes (BNNTs) is explored on the basis of molecular dynamics (MD) simulation. The results show that the torsional frequency is sensitive to geometrical parameters such as length and boundary conditions. The axial vibration is found to be induced by torsional vibration of nanotubes which can cause instability in the nanostructure. It is also observed that the torsional frequency of BNNTs is higher than that of their carbon counterpart. Moreover, the shear modulus is predicted by incorporating MD simulation numerical results into torsional vibration frequency obtained through continuum-based model of tubes. Finally, it is seen that the torsional frequency of double-walled boron-nitride nanotubes (DWBNNTs) is between the frequencies of their constituent inner and outer tubes.

  10. Vibration analysis of shell-and-tube heat exchangers: an overview—Part 2: vibration response, fretting-wear, guidelines

    Microsoft Academic Search

    M. J. Pettigrew; C. E. Taylor

    2003-01-01

    Design guidelines were developed to prevent tube failures due to excessive flow-induced vibration in shell-and-tube heat exchangers. An overview of vibration analysis procedures and recommended design guidelines is presented in this paper. This paper pertains to liquid, gas and two-phase heat exchangers such as nuclear steam generators, reboilers, coolers, service water heat exchangers, condensers, and moisture-separator-reheaters. Part 2 of this

  11. Modeling “unilateral” response in the cross-ties of a cable network: Deterministic vibration

    NASA Astrophysics Data System (ADS)

    Giaccu, Gian Felice; Caracoglia, Luca; Barbiellini, Bernardo

    2014-09-01

    Cross-ties are employed as passive devices for the mitigation of stay-cable vibrations, exhibited on cable-stayed bridges under wind and wind-rain excitation. Large-amplitude oscillation can result in damage to the cables or perceived discomfort to bridge users. The “cable-cross-ties system” derived by connecting two or more stays by transverse cross-ties is often referred to as an “in-plane cable network”. Linear modeling of network dynamics has been available for some time. This framework, however, cannot be used to detect incipient failure in the restrainers due to slackening or snapping. A new model is proposed in this paper to analyze the effects of a complete loss in the pre-tensioning force imparted to the cross-ties, which leads to the “unilateral” free-vibration response of the network (i.e., a cross-tie with linear-elastic internal force in tension and partially inactive in compression). Deterministic free vibrations of a three-cable network are investigated by using the “equivalent linearization method”. A performance coefficient is introduced to monitor the relative reduction in the average (apparent) stiffness of the connector during free vibration response (“mode by mode”), exhibiting unilateral behavior. A reduction of fifty percent in the apparent stiffness was observed in the cross-tie when the pre-tensioning force is small in comparison with the tension force in the stay. This coefficient may be used as a damage indicator for the selection of the initial pre-tensioning force in the cross-ties needed to avoid slackening.

  12. On multiple manifestations of the second response branch in streamwise vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Balabani, S.

    2013-07-01

    The structural motion and velocity field in the wake of a cylinder exhibiting vortex-induced vibration (VIV) in the streamwise direction were measured using Particle-Image Velocimetry. The effect of hysteresis on the amplitude response of the cylinder and the existence of multiple wake modes in the region of the second response branch were examined. As the reduced velocity was decreased, there was a reduction in the lock-in range; outside this range the amplitude response was found to be negligible and the A-II mode (which is similar to the von Kármán vortex street) was observed in the wake. When the reduced velocity was increased the second branch could be manifested in two forms, depending on whether the wake exhibited the SA or the A-IV mode (in which two and four vortices are shed per wake cycle, respectively). The A-IV mode has been observed in studies in which a cylinder was forced to oscillate in the streamwise direction; however, this represents the first time that it has been recorded in the wake of a freely oscillating body, and it was not previously known that the A-IV mode was capable of exciting self-sustaining vibrations. Both the SA and A-IV modes were stable and no intermittent mode-switching was observed; however, it was found to be unpredictable which mode would dominate as the reduced velocity was varied and the cylinder entered the second response branch. Analysis of the cylinder displacement signals measured while each mode was dominant indicated that the SA mode excited larger amplitude vibrations than the A-IV mode. A reduced velocity near the second response branch was identified at which the wake could exhibit either the SA, A-IV, or A-II modes, with the latter occurring as the reduced velocity was decreased. Although bi-modal behaviour is well established in VIV studies, as far as the authors are aware, this represents the first time that a point has been observed in the response regime of a freely oscillating structure in which three stable states have been observed, each corresponding to a different wake mode and vibration amplitude, for the same structural parameters, reduced velocity, and Reynolds number. This suggests that the mechanism determining which wake mode dominates and the fluid-structure interaction in the case of streamwise VIV may be more complex than has previously been thought. Finally, the vortex-formation and shedding processes associated with the A-II, SA, and A-IV modes were described using phase-averaged vorticity fields, and the differences between the SA and A-IV modes were discussed.

  13. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  14. G-seat system step input and sinusoidal response characteristics

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.; Miller, R. J.

    1978-01-01

    The step input and sinusoidal response characteristics of a pneumatically driven computer controlled G set are examined in this study. The response data show that this system can be modeled as a first order system with an 0.08 sec time lag and a 0.53 sec time constant.

  15. Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.

    PubMed

    Huang, Yu-Hsi; Ma, Chien-Ching

    2009-12-01

    The dynamic characteristics of parallel-type and series-type piezoelectric bimorphs are analyzed in this study. The transverse (out-of-plane) and planar (in-plane) vibrations for piezoceramic bimorphs in normal and abnormal connections are investigated experimentally by 2 noncontact optical techniques and impedance analyzer. Electronic speckle pattern interferometry (ESPI) is the major experimental technique for measuring the resonant frequency and corresponding vibration mode shape. Out-of-plane and in-plane vibrations of piezoelectric bimorphs at resonance are obtained by a self-arranged ESPI optical setup. The laser Doppler vibrometer (LDV) is a point-wise measurement technique for out-of-plane displacement and is used to determine the out-of-plane resonant frequencies. The impedance analyzer is used to measure the resonant frequencies for in-plane motions. It is noted from the experimental results that the out-of-plane modes are the dominant motion for the normal connection and only symmetric vibration mode shapes can be excited. The in-plane motions are large enough to be measured using the ESPI method for normal connections. The in-plane resonant modes are observed for parallel-type piezoelectric bimorph in parallel connections; however, the in-plane mode shapes are similar to the out-of-plane mode shapes for the series-type piezoelectric bimorph in series connection. Hence, the particle motions of the piezoelectric bimorph at resonance are essentially 3-D for the normal connection. It is interesting to note that both symmetric and asymmetric out-of-plane vibration mode shapes can be excited with large applied voltage but no in-plane motion is observed for the abnormal connection. In addition to experimental methods, numerical computations based on the finite element method are used to verify the experimental results. Good agreements of the resonant frequencies and mode shapes are obtained for experimental and numerical results. PMID:20040397

  16. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  17. Constrained Tibial Vibration Does Not Produce an Anabolic Bone Response in Adult Mice

    PubMed Central

    Christiansen, Blaine A.; Kotiya, Akhilesh A.; Silva, Matthew J.

    2009-01-01

    Osteoporosis is characterized by low bone mass and increased fracture risk. High frequency, low-amplitude whole-body vibration (WBV) has been proposed as a treatment for osteoporosis because it can stimulate new bone formation and prevent trabecular bone loss. We developed constrained tibial vibration (CTV) as a method for controlled vibrational loading of the lower leg of a mouse. We first subjected mice to five weeks of daily CTV loading (0.5 G maximum acceleration) with loading parameters chosen to independently investigate the effects of strain magnitude, loading frequency, and cyclic acceleration on the adaptive response to vibration. We hypothesized that mice subjected to the highest magnitude of dynamic strain would have the largest bone formation response. We observed a slight, local benefit of CTV loading on trabecular bone, as BV/TV was 5.2% higher in the loaded vs. non-loaded tibia of mice loaded with the highest bone strain magnitude. However, despite these positive differences, we observed significantly lower measures of trabecular structure in both loaded and non-loaded tibias from CTV loaded mice compared to Sham and Baseline Control animals, indicating a negative systemic effect of CTV on trabecular bone. Based on this evidence, we conducted a follow-up study wherein mice were subjected to CTV or sham loading, and tibias were scanned at the beginning and end of the study period using in vivo microCT. Consistent with the findings of the first study, trabecular BV/TV in both tibias of CTV loaded and Sham mice was, on average, 36% and 31% lower on day 36 than day 0, respectively, compared to 20% lower in Age-Matched Controls over the same time period. Contrary to the first study, there were no differences between loaded and non-loaded tibias in CTV loaded mice, providing no evidence for a local benefit of CTV. In summary, 5 weeks of daily CTV loading of mice was, at best, weakly anabolic for trabecular bone in the proximal tibia, while daily handling and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic. PMID:19576309

  18. Energy-dependent characteristics of collisinal vibration-energy exchange in vapors of polyatomic molcules

    SciTech Connect

    Zalesskaya, G.A.; Yakovlev, D.L. [Institute of Molecular and Atomic Physics, Minsk (Belarus)

    1995-02-01

    CO{sub 2} laser-induced delayed fluorescence was used to study the collisional vibration-energy exchange between the polyatomic molecules in gases. The efficiency of collisional exchange, the mean amount of energy transfer in one collision, as well as their correlation with the vibration energy and with the size of excited molecule were determined for diacetyl, acetophenone, benzophenone, and anthraquinone molecules form the experimentally observed pressure dependences of the decay rates and fluorescence intensities. It was shown that the mean amount of energy transfer per collision decreases with the molecular size and increases as E{sup m}, with m>2, with increasing the vibration energy. 25 refs., 4 figs., 1 tab.

  19. Solar Ultraviolet Magnetograph Investigation (SUMI) Component Responses to Payload Vibration Testing

    NASA Technical Reports Server (NTRS)

    Hunt, Ronald A.

    2011-01-01

    Vibration testing of SUMI was performed at both the experiment and payload levels. No accelerometers were installed inside the experiment during testing, but it is certain that component responses were very high. The environments experienced by optical and electronic components in these tests is an area of ongoing concern. The analysis supporting this presentation included a detailed finite element model of the SUMI experiment section, the dynamic response of which, correlated well with accelerometer measurements from the testing of the experimental section at Marshall Space Flight Center. The relatively short timeframe available to complete the task and the limited design information available was a limitation on the level of detail possible for the non-experiment portion of the model. However, since the locations of interest are buried in the experimental section of the model, the calculated responses should be enlightening both for the development of test criteria and for guidance in design.

  20. Semilinear response for the heating rate of cold atoms in vibrating traps

    E-print Network

    Alexander Stotland; Doron Cohen; Nir Davidson

    2009-03-11

    The calculation of the heating rate of cold atoms in vibrating traps requires a theory that goes beyond the Kubo linear response formulation. If a strong "quantum chaos" assumption does not hold, the analysis of transitions shows similarities with a percolation problem in energy space. We show how the texture and the sparsity of the perturbation matrix, as determined by the geometry of the system, dictate the result. An improved sparse random matrix model is introduced: it captures the essential ingredients of the problem, and leads to a generalized variable range hopping picture.

  1. Distributed vibration/acoustic sensing with high frequency response and spatial resolution based on time-division multiplexing

    NASA Astrophysics Data System (ADS)

    Qin, Zengguang; Chen, Liang; Bao, Xiaoyi

    2014-11-01

    A novel time-division multiplexing scheme is proposed and demonstrated for distributed vibration/acoustic sensing with broad frequency response range and high spatial resolution. By setting the time delay between a narrow pulse and a quasi-continuous wave properly, conventional phase optical time-domain reflectometry and polarization diversity scheme can be combined without crosstalk to determine position and frequency of vibration event, respectively. Detections of high vibration frequency of 0.6 MHz and low frequency of 1 Hz are presented with 1 m spatial resolution over 680 m single-mode sensing fiber.

  2. A Study of the Temperature Characteristics of Vibration Mode Axes for Vibratory Cylinder Gyroscopes

    PubMed Central

    Wu, Yulie; Xi, Xiang; Tao, Yi; Wu, Xiaomei; Wu, Xuezhong

    2011-01-01

    The zero bias stability, which is an important performance parameter for vibratory cylinder gyroscopes, is high sensitive to temperature change. It is considered that the varying temperature makes the vibration mode axes unstable, which has significant influence on the zero bias stability. This paper will investigate this problem in detail. First, the relationships between the angular positions of vibration mode axes and the zero bias are analyzed. Secondly, the thermal-modal model of the cylinder resonator with several defects such as mass imbalance, frequency split (FS), and geometry errors are developed by ANSYS. Simulation results show that with the increase of temperature, angular positions of the vibration mode axes obviously change, which leads to a dramatic zero bias drift. Finally, several major influence factors on the angular position stability of vibration mode axes, including frequency split, geometry errors, thermal elastic modulus coefficient (TEMC) and thermal expansion coefficient (TEC) are analyzed in detail. Simulation results in this paper will be helpful for deep understanding of the drift principle of zero bias induced by temperature for vibratory cylinder gyroscopes and also be helpful for further temperature compensation or control. PMID:22164038

  3. Lateral stiffness and vibration characteristics of damaged RC coupled shear walls strengthened with thin composite plates

    Microsoft Academic Search

    Sid Ahmed Meftah; Abdelouahed Tounsi

    2007-01-01

    This paper deals with the bending and vibration analysis of moderately damaged coupled shear wall structures with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. In the analytical formulation, the adherent and the adhesive layers are all modelled as shear walls, using the mixed finite-element method (FEM). The anisotropic damage model is adopted to describe the damage extent of the RC

  4. [Identification of the characteristic vibrations for 16 PAHs based on Raman spectrum].

    PubMed

    Zeng, Ya-Ling; Jiang, Long; Cai, Xiao-Yu; Li, Yu

    2014-11-01

    In the present paper, by means of density functional theory in B3LYP/6-311++G(d, p) method, 16 kinds of pollutants, i. e. polycyclic aromatic hydrocarbons (PAHs): naphthalene (Nap), acenaphthylene (AcPy), acenaphthene (Acp), fluorene (Flu), phenanthrene (PA), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo [a] anthracene (BaA), fused two naphthalene (CHR), benzo [b] fluoranthene (BbF), benzo [k] fluoranthene (BkF), benzo [a] pyrene (BaP), dibenzo (a, h) anthracene (DahA), dibenzo [g, h, i] pyrene (BghiP) and indene benzene (1, 2, 3-cd) pyrene (IcdP) among the U. S. EPA priority pollutants were selected, whose structures were optimized and Raman vibrational frequencies and depolarization were calculated. The structure, Raman vibrational frequencies and depolarization were basis of identification of PAHs. Studies have shown that Raman vibrations of 16 PAHs are mainly distributed in three frequency regions: 200-1 000 cm(-1) (fingerprint region), 1 000-1 700 cm(-1) and 3 000-3 200 cm(-1) (group frequency region), corresponding vibrations were assigned to ring deformation (ring def), C-C stretching (CCStr), C-H wiggle (CHw) and of these two patterns (CCStrCCw), and C-H stretching (CHStr). Further analysis showed that in fingerprint region the depolarization of 16 PAHs was reduced with the symmetry of benzene deformation vibration enhanced. At the point of minimum depolarization, symmetry and Raman peak of benzene ring breathing vibration were found strongest. At the minimum differential wave number the strongest peak in fingerprint region was distinguishable by micro-Raman spectroscopy. Therefore, 16 PAHs can be individually identified by depolarization and the strongest peak in fringerprint region. Vibration frequencies and peak intensity distribution of alkanes (Akn), olefin (Oe), alkyne (Aye), alcohols and phenols (Aap), aliphatic ether (Ape), arylalkyl ether (Aae), aldehydes (Ahd), ketones (Ktn), carboxylic acid (Cba), esters (Etr), amines (Aie), nitriles (Nte), amides (Aid), acid anhydride (Ahr), aromatic hydrocarbons (Ahc) were not completely consistent with each other, and interference can be discharged by the differences of frequency and peak intensity distribution. PMID:25752046

  5. Display of response characteristics of seismic source arrays

    SciTech Connect

    Bowman, B.F.; Pann, K.; Pedeker, M.S.

    1986-05-20

    In seismic exploration wherein an array of seismic sources is moved along a line of exploration on the earth's surface and the reflections and/or refractions of seismic energy from the sources are recorded as seismograms, a method of displaying the response characteristics of the array is described which consists of: determining the amplitude response of the array at a plurality of locations at different azimuth angles and at different dip angles from the array; selecting equal values of determined amplitude response; and displaying contours of the equal values of amplitude response as a function of azimuth and dip angle in a stereoscopic polar projection.

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  7. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:

  8. Temperature modulation of the vibrational responses of a flexible fluid-conveying pipe

    NASA Astrophysics Data System (ADS)

    Adelaja, Adekunle

    2013-12-01

    In this study, the nonlinear transverse vibration of a flexible pipe conveying hot, pressurized fluid is investigated. The pipe which is subjected to a pinned-pinned end condition extends as a result of several operating variables such as internal fluid temperature variation, pre-stress and internal pressurization. The equation of motion is solved analytically by hybrid Fourier-Laplace transforms, and the effects of inlet temperature, temperature gradient, and coefficient of area deformation are investigated on the natural frequencies and transverse dynamic response of the pipeline. While the inlet temperature and temperature gradient are found to be inversely proportional to the natural frequencies and amplitude of the dynamic response, increase in the coefficient of area deformation has little effect on the natural frequencies for the particular case considered.

  9. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    PubMed Central

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  10. Damage assessment in multiple-girder composite bridge using vibration characteristics

    Microsoft Academic Search

    H. W. Shih; D. P. Thambiratnam; T. H. T. Chan

    This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal

  11. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry.

    PubMed Central

    Bovenzi, M

    1994-01-01

    OBJECTIVES--To investigate the occurrence of disorders associated with the hand arm vibration syndrome in a large population of stone workers in Italy. The dose-response relation for vibration induced white finger (VWF) was also studied. METHODS--The study population consisted of 570 quarry drillers and stonecarvers exposed to vibration and 258 control stone workers who performed only manual activity. Each subject was interviewed with health and workplace assessment questionnaires. Sensorineural and VWF disorders were staged according to the Stockholm workshop scales. Vibration was measured on a representative sample of percussive and rotary tools. The 8 h energy equivalent frequency weighted acceleration (A (8)) and lifetime vibration doses were calculated for each of the exposed stone workers. RESULTS--Sensorineural and musculoskeletal symptoms occurred more frequently in the workers exposed to vibration than in the controls, but trend statistics did not show a linear exposure-response relation for these disorders. The prevalence of VWF was found to be 30.2% in the entire group exposed to vibration. Raynaud's phenomenon was discovered in 4.3% of the controls. VWF was strongly associated with exposure to vibration and a monotonic dose-response relation was found. According to the exposure data of this study, the expected percentage of stone workers affected with VWF tends to increase roughly in proportion to the square root of A(8) (for a particular exposure period) or in proportion to the square root of the duration of exposure (for a constant magnitude of vibration). CONCLUSION--Even although limited to a specific work situation, the dose-response relation for VWF estimated in this study suggests a time dependency such that halving the years of exposure allows a doubling of the energy equivalent vibration. According to these findings, the vibration exposure levels currently under discussion within the European Community seem to represent reasonable exposure limits for the protection of workers against the harmful effects of hand transmitted vibration. PMID:7951792

  12. Poststimulus Response Characteristics of the Human Cone Flicker Electroretinogram

    PubMed Central

    Gowrisankaran, Sowjanya; McAnany, J. Jason; Alexander, Kenneth R.

    2013-01-01

    At certain temporal frequencies, the human cone flicker electroretinogram (ERG) contains multiple additional responses following the termination of a flicker train. The purpose of this study was to determine whether these poststimulus responses are a continuing response to the terminated flicker train or represent the oscillation of a resonant system. ERGs were recorded from 10 visually normal adults in response to full-field sinusoidally modulated flicker trains presented against a short-wavelength rod-saturating adapting field. The amplitude and timing properties of the poststimulus responses were evaluated within the context of a model of a second-order resonant system. At stimulus frequencies between 41.7 and 71.4 Hz, the majority of subjects showed at least three additional ERG responses following the termination of the flicker train. The interval between the poststimulus responses was approximately constant across stimulus frequency, with a mean of 14.4 ms, corresponding to a frequency of 69.4 Hz. The amplitude and timing characteristics of the poststimulus ERG responses were well described by an underdamped second-order system with a resonance frequency of 70.3 Hz. The observed poststimulus ERG responses may represent resonant oscillations of retinal ON bipolar cells, as has been proposed for electrophysiological recordings of poststimulus responses from retinal ganglion cells. However, further investigation is required to determine the types of retinal neurons involved in the generation of the poststimulus responses of the human flicker ERG. PMID:24016531

  13. A Comparison of Energy-Resolved Vibrational Activation/Dissociation Characteristics of Protonated and Sodiated High Mannose N-Glycopeptides

    NASA Astrophysics Data System (ADS)

    Aboufazeli, Forouzan; Kolli, Venkata; Dodds, Eric D.

    2015-04-01

    Fragmentation of glycopeptides in tandem mass spectrometry (MS/MS) plays a pivotal role in site-specific protein glycosylation profiling by allowing specific oligosaccharide compositions and connectivities to be associated with specific loci on the corresponding protein. Although MS/MS analysis of glycopeptides has been successfully performed using a number of distinct ion dissociation methods, relatively little is known regarding the fragmentation characteristics of glycopeptide ions with various charge carriers. In this study, energy-resolved vibrational activation/dissociation was examined via collision-induced dissociation for a group of related high mannose tryptic glycopeptides as their doubly protonated, doubly sodiated, and hybrid protonated sodium adduct ions. The doubly protonated glycopeptide ions with various compositions were found to undergo fragmentation over a relatively low but wide range of collision energies compared with the doubly sodiated and hybrid charged ions, and were found to yield both glycan and peptide fragmentation depending on the applied collision energy. By contrast, the various doubly sodiated glycopeptides were found to dissociate over a significantly higher but narrow range of collision energies, and exhibited only glycan cleavages. Interestingly, the hybrid protonated sodium adduct ions were consistently the most stable of the precursor ions studied, and provided fragmentation information spanning both the glycan and the peptide moieties. Taken together, these findings illustrate the influence of charge carrier over the energy-resolved vibrational activation/dissociation characteristics of glycopeptides, and serve to suggest potential strategies that exploit the analytically useful features uniquely afforded by specific charge carriers or combinations thereof.

  14. Frequency Domain Controller Design 9.2 Frequency Response Characteristics

    E-print Network

    Gajic, Zoran

    Frequency Domain Controller Design 9.2 Frequency Response Characteristics The frequency transfer functions are defined for sinusoidal inputs having all possible frequencies . They are obtained from (9.1) by simply setting , that is (9.1) Typical diagrams for the magnitude and phase of the open-loop frequency

  15. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengrong; Yan, Zhi; Jiang, Liying

    2014-07-01

    Flexoelectricity, referring to the coupling between electric polarization and strain gradients, is a universal effect in all dielectrics and may become manifest at the nano-scale. The current work aims to investigate the flexoelectric effect on the electroelastic responses and the free vibrational behaviors of a piezoelectric nanoplate (PNP). Based on the conventional Kirchhoff plate theory and the extended linear piezoelectricity theory, the governing equation and the boundary conditions of a clamped PNP with the consideration of the static bulk flexoelectricity are derived. Ritz approximate solutions of the electroelastic fields and the resonant frequencies demonstrate the size-dependency of the flexoelectric effect, which is more prominent for thinner plates with smaller thickness as expected. Simulation results also indicate that the influence of the flexoelectricity upon the electroelastic fields of a bending PNP and the transverse vibration of the PNP is sensitive to the plate in-plane dimensions as well as the applied electric voltage. Moreover, it is suggested that the possible frequency tuning of a PNP resonator by adjusting applied electrical load warrants the consideration of the flexoelectricity. This study is claimed to provide a theoretical predicition on the trend of the flexoelectric effect upon the static and dynamic behaviors of a bending PNP, thus sheding light on understanding the underlying physics of electromechanical coupling at the nano-scale to some extent.

  16. Tensor decomposition techniques in the solution of vibrational coupled cluster response theory eigenvalue equations

    NASA Astrophysics Data System (ADS)

    Godtliebsen, Ian H.; Hansen, Mads Bøttger; Christiansen, Ove

    2015-01-01

    We show how the eigenvalue equations of vibrational coupled cluster response theory can be solved using a subspace projection method with Davidson update, where basis vectors are stacked tensors decomposed into canonical (CP, Candecomp/Parafac) form. In each update step, new vectors are first orthogonalized to old vectors, followed by a tensor decomposition to a prescribed threshold TCP. The algorithm can provide excitation energies and eigenvectors of similar accuracy as a full vector approach and with only a very modest increase in the number of vectors required for convergence. The algorithm is illustrated with sample calculations for formaldehyde, 1,2,5-thiadiazole, and water. Analysis of the formaldehyde and thiadiazole calculations illustrate a number of interesting features of the algorithm. For example, the tensor decomposition threshold is optimally put to rather loose values, such as TCP = 10-2. With such thresholds for the tensor decompositions, the original eigenvalue equations can still be solved accurately. It is thus possible to directly calculate vibrational wave functions in tensor decomposed format.

  17. Acute Bone Marker Responses to Whole-Body Vibration and Resistance Exercise in Young Women

    PubMed Central

    Sherk, Vanessa D.; Chrisman, Carmen; Smith, Jessica; Young, Kaelin C.; Singh, Harshvardhan; Bemben, Michael G.; Bemben, Debra A.

    2014-01-01

    Whole-body vibration (WBV) augments the musculoskeletal effects of resistance exercise (RE). However, its acute effects on bone turnover markers (BTM) have not been determined. This study examined BTM responses to acute high intensity RE and high intensity RE with WBV (WBV+RE) in young women (n=10) taking oral contraceptives in a randomized, cross-over repeated measures design. WBV+RE exposed subjects to 5 one-minute bouts of vibration (20 Hz, 3.38 peak–peak displacement, separated by 1 minute of rest) prior to RE. Fasting blood samples were obtained before (Pre), immediately post WBV (PostVib), immediately post RE (IP), and 30 minutes post RE (P30). Bone ALP did not change at any time point. TRAP5b significantly (p<0.05) increased from the Pre to PostVib, then decreased from IP to P30 for both conditions. CTX significantly decreased (p<0.05) from Pre to PostVib and from Pre to P30 only for WBV+RE. WBV+RE showed a greater decrease in CTX than RE (-12.6 ± 4.7% vs. -1.13 ± 3.5%). In conclusion, WBV was associated with acute decreases in CTX levels not elicited with resistance exercise alone in young women. PMID:22902255

  18. Experimental and theoretical assignment of the vibrational spectra of triazoles and benzotriazoles. Identification of IR marker bands and electric response properties.

    PubMed

    Aziz, Saadullah G; Elroby, Shabaan A; Alyoubi, Abdulrahman; Osman, Osman I; Hilal, Rifaat

    2014-03-01

    The FTIR spectra of a series of 1H- and 2H- 1,2,3- and 1,2,4- triazoles and benzotriazoles were measured in the solid state. Assignments of the observed bands were facilitated by computation of the spectra using the density functional B3LYP method with the 6-311++G** basis set. The theoretical spectra show very good agreement with experiment. Rigorous normal coordinate analyses have been performed, and detailed vibrational assignment has been made on the basis of the calculated potential energy distributions. Several ambiguities and contradictions in the previously reported vibrational assignments have been clarified. "Marker bands" characterize the triazole ring were identified. The effect of substituents, the nature of the characteristic "marker bands" and quenching of intensities of some bands are discussed. Comparison of the topology of the charge density distribution, and the electric response properties of the 1H-, and 2H- isomers of both 1,2,3- and 1,2,4 triazole have been made using the quantum theory of atoms-in-molecules (QTAIM) by calculating the Laplacian of the electron density (?²?(r)). Analysis of the contour plots and relief maps of ?²?(r) reveals that 1,2,3- and 1,2,4-triazoles show completely different topological features for the distribution of the electron density. Thus, while the 1,2,3-isomer is a very polar molecule, the 1,2,4-isomer is much more polarizable. Bonding characteristics show also different features. This would thus underlie the different features of their vibrational spectra. The reported vibrational assignment can be used for further spectroscopic studies of new drugs and biological compounds containing the triazole ring. PMID:24562851

  19. On the analytic representation of the correlation function of linear random vibration systems

    E-print Network

    On the analytic representation of the correlation function of linear random vibration systems J characteristics of the response of discrete vibration systems with a random external excitation. The excitation Mathematical modeling of real­world vibration systems (e. g. vehicles moving on a rough guideway, rotating

  20. Test and Processing of Gun's Shooting Vibration Signal Based on Wavelet Threshold DeNoising

    Microsoft Academic Search

    Yin Junhui; Zheng Jian; Teng Hongzhi; Li Feng

    2009-01-01

    The gun brings with acute vibration during its shooting, which greatly impacts gun's firing accuracy and reliability. If vibration response has been tested and analyzed when the gun shooting, gun's dynamic characteristic would be obtained which can afford important references for gun's optimization and technology improving. The paper designs the testing system for gun's shooting vibration, according to the test

  1. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng

    2015-01-01

    In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

  2. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng

    2014-08-01

    In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

  3. Static strain and vibration characteristics of a metal semimonocoque helicopter tail cone of moderate size

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.; Hefner, Rachel E.; Castagna, Andre

    1991-01-01

    The results are presented of an analytic and experimental research program involving a Sikorsky S-55 helicopter tail cone directed ultimately to the improved structural analysis of airframe substructures typical of moderate sized helicopters of metal semimonocoque construction. Experimental static strain and dynamic shake-testing measurements are presented. Correlation studies of each of these tests with a PC-based finite element analysis (COSMOS/M) are described. The tests included static loadings at the end of the tail cone supported in the cantilever configuration as well as vibrational shake-testing in both the cantilever and free-free configurations.

  4. Calibration characteristics of IRAD GAGE vibrating wire stressmeter at normal and high temperature. Volume 1

    SciTech Connect

    Dutta, P. K.; Hatfield, R. W.; Runstadler, Jr., P. W.

    1981-10-01

    This report describes calibration studies of the IRAD GAGE Vibrating Wire Stressmeter. The work has been performed for the University of California, Lawrence Livermore Laboratory, to understand and interpret the behavior and performance of the stressmeter in Climax granite. To help interpret the results obtained in Climax granite, the study also included calibration tests of the gage in other materials: Barre granite, aluminum, and Lucite. Stressmeter calibrations were carried out in thin rock slabs by determining the relation between the stressmeter readings and uniaxial plane stresses. Calibrations were also conducted under biaxial and triaxial stress fields.

  5. Analysis of lateral and torsional vibration characteristics of beams and shafts with end located rotational masses

    NASA Technical Reports Server (NTRS)

    Robertson, D. K.

    1984-01-01

    Partial differential equations are derived for free lateral and torsional vibration of a uniform free-free beam with a rotational mass attached to each extremity. For appropriate boundary conditions, nonlinear algebraic equations are obtained using a symbolic manipulation computer program, the solutions of which enable the computation of the neutral frequencies and mode-shapes. The mode-shapes are linear combinations of trigonometric and hyperbolic sine and cosine functions. A computer program is written for the numerical solution of the algebraic equations mentioned above, which can compute the natural frequencies, mode-shapes, and node points for any given set of parameters, for any given number of modes.

  6. Vibrational response of free standing single copper nanowire through transient reflectivity microscopy

    NASA Astrophysics Data System (ADS)

    Belliard, Laurent; Cornelius, Thomas W.; Perrin, Bernard; Kacemi, Nazim; Becerra, Loïc; Thomas, Olivier; Eugenia Toimil-Molares, Maria; Cassinelli, Marco

    2013-11-01

    We report on the ultrafast vibrational response of single copper nanowires investigated by femtosecond transient reflectivity measurements. The oscillations of the sample reflectivity are correlated with individual modes of resonance for wires with a diameter ranging from 100 to 500 nm and are compared with 2D finite element simulation. Fluctuation of the sample-substrate coupling is illustrated through its effect on the damping rate. We demonstrate elastic confinement in free standing wires which allowed the detection of up to the third harmonic of the breathing mode. By removing the energy relaxation channel towards the substrate, we obtained nano-oscillators with quality factors up to 130. Finally, taking advantage of the very high spectral resolution achieved on free standing wires, we could observe the elastic coupling between two close wires via their polymer cladding.

  7. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  8. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  9. Orbiting response in vortex-induced vibrations of a two-degree-of-freedom pivoted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Yarusevych, S.; Narasimhan, S.

    2012-01-01

    Vortex-induced vibrations of a pivoted, rigid, circular cylinder were investigated experimentally. A cylinder with a mass ratio of 15.9 and a moment of inertia ratio of 66.8 was investigated at a constant Reynolds number of 2100 for a range of reduced velocities, 3.4?U*?11.3, and damping ratios, 0.4%???1.1%. A novel experimental set-up was designed to reproduce the orbiting response observed in some engineering applications involving vortex induced vibrations of cylindrical structures. The results show that, in the synchronization region, the frequencies of transverse and streamwise vibrations lock onto the natural frequency of the structure, and the cylinder traces elliptic trajectories. A mathematical model is introduced to investigate the mechanism responsible for the occurrence of the elliptic trajectories or the figure-8 type trajectories observed in previous laboratory studies. The results show that the occurrence of either elliptic or figure-8 type trajectory is governed primarily by structural coupling between vibrations in streamwise and transverse directions. Based on the experimental results, four distinct types of orbiting motion are identified in the synchronization region. Each of these four types corresponds to a specific range of phase angles between the streamwise and transverse vibrations defining the orientation of the trajectory and the direction of orbiting. The results indicate that the identified four types of elliptic trajectories are associated with four distinct ranges of a dimensionless parameter used to quantify structural coupling.

  10. RANDOM VIBRATION RESPONSE OF A CANTILEVER BEAM TO ACOUSTIC FORCING BY SUPERSONIC ROCKET EXHAUSTS DURING A SPACE SHUTTLE LAUNCH

    Microsoft Academic Search

    R. N. Margasahayam; R. E. Caimi

    This paper presents a brief overview of recently completed research in the area of rocket noise and resulting dynamic behavior of launch pad structures. To gain accurate insight into the vibratory behav- ior of these structures, dynamic tests were integrated into the design process. Aspects of the acoustic load characterization procedure and the test-analysis correlation of random vibration structural response

  11. Characteristic Timescales of Shoreface Response to Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Ashton, A. D.; Ortiz, A.; Lane, P.; Donnelly, J. P.

    2011-12-01

    On open ocean, wave-dominated, sandy coasts, the response of the shore to sea-level rise is dominated not by inundation, but rather by the dynamic response of sediment transport processes to perturbations of the sea level. In a regime of sea level change, the predominant response of the wave-dominated shoreface depends upon the time-dependent response of the shoreface itself to changes in sea level as well as the potential changes to the shoreline. On a barrier coast, persistent, long-term changes to the shoreline are caused by storm overwash, which transports marine sediment landward, moving the shoreline boundary. Raised sea levels increase the impact and frequency of this overwash as relative barrier elevation is reduced. Overall, sediment transport processes on the shoreface remain poorly understood, complicating predictions of equilibrium shoreface shapes and even net sediment transport directions. However, presuming an equilibrium geometry, energetics-based, time-averaged relationships for cross-shore sediment transport provide a framework to understand the characteristic rates and types of shoreface response to perturbations to either the sea level or the shoreline boundary. In the case of a sea-level rise, we find that the dominant perturbation for a barrier system is not the sea-level rise itself, but rather the movement of the shoreline by overwash. The characteristic response time of the shoreface itself increases significantly at depth, suggesting that the lower shoreface response to a sea level change can be significantly delayed. We estimate the importance of extreme events on shoreface evolution by analyzing decade-long data series of wave characteristics along different open ocean coasts with barriers (Florida Gulf Coast, North Carolina, Marthas Vineyard). Analogous to the effect of floods in fluvial systems, although storm events can move significant sediment, the infrequency of the larger events limits their effect on the shoreface-the morphologically significant event for shoreface evolution has a return interval of less than two years. However, numerical simulations of tens of thousands of synthetic storm strikes at the same locations suggest that the return interval of storm events expected to cause significant overwash is longer, on the order of at least 50 years. To study the interactions between the characteristic timescales of shoreface evolution and barrier overwash, we apply a numerical model of barrier profile evolution that couples shoreface evolution with barrier overwash. This integrated model provides a tool to understand the response of barrier systems to changes in sea level over the late Holocene to the modern. The model also investigates the potential behavior of barrier systems as they (and their human occupants) respond to predicted increased rates of sea-level rise over the coming centuries.

  12. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    NASA Astrophysics Data System (ADS)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and middle ear. These signals are used for diagnostic purposes, and therefore it is important to have an estimate the non-linear middle ear contribution to these emissions.

  13. Probabilistic analysis of mean-response along-wind induced vibrations on wind turbine towers using wireless network data sensors

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, Raymond A.

    2011-04-01

    Wind turbine systems are attracting considerable attention due to concerns regarding global energy consumption as well as sustainability. Advances in wind turbine technology promote the tendency to improve efficiency in the structure that support and produce this renewable power source, tending toward more slender and larger towers, larger gear boxes, and larger, lighter blades. The structural design optimization process must account for uncertainties and nonlinear effects (such as wind-induced vibrations, unmeasured disturbances, and material and geometric variabilities). In this study, a probabilistic monitoring approach is developed that measures the response of the turbine tower to stochastic loading, estimates peak demand, and structural resistance (in terms of serviceability). The proposed monitoring system can provide a real-time estimate of the probability of exceedance of design serviceability conditions based on data collected in-situ. Special attention is paid to wind and aerodynamic characteristics that are intrinsically present (although sometimes neglected in health monitoring analysis) and derived from observations or experiments. In particular, little attention has been devoted to buffeting, usually non-catastrophic but directly impacting the serviceability of the operating wind turbine. As a result, modal-based analysis methods for the study and derivation of flutter instability, and buffeting response, have been successfully applied to the assessment of the susceptibility of high-rise slender structures, including wind turbine towers. A detailed finite element model has been developed to generate data (calibrated to published experimental and analytical results). Risk assessment is performed for the effects of along wind forces in a framework of quantitative risk analysis. Both structural resistance and wind load demands were considered probabilistic with the latter assessed by dynamic analyses.

  14. Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain

    NASA Astrophysics Data System (ADS)

    Jiang, Kejian; Zhu, Changsheng

    2011-05-01

    A method for multi-frequency periodic vibration suppressing in active magnetic bearing (AMB)-rotor systems is proposed, which is based on an adaptive finite-duration impulse response (FIR) filter in time domain. Firstly, the theoretic feasibility of the method is proved. However, two problems would be unavoidable, if the conventional adaptive FIR filter is adopted in practical application. One is that the convergence rate of the different frequency components may be highly disparate in multi-frequency vibration control. The other is that the computational complexity is significantly increased because the long memory FIR filter is required to match the transient response time of the AMB-rotor system. To overcome the problems above, the Fast Block Least Mean Square (FBLMS) algorithm is adopted to efficiently implement the computation in frequency domain at a computational cost far less than that of the conventional FIR filter. By the FBLMS algorithm, regardless of the number of the considered frequency components in vibration disturbance, the computational complexity would be invariable. Moreover, filter's weights in the FBLMS algorithm have the intuitional relation with signal's frequency. As a result, the convergence rate of each frequency component can be adjusted by assigning the individual step size parameter for each weight. Experiments with the reciprocating simulating disturbance test and the rotating harmonic vibration test were carried out on an AMB-rigid rotor test rig with a vertical shaft. The experiment results indicate that the proposed method with the FBLMS algorithm can achieve the good effectiveness for suppressing the multi-frequency vibration. The convergence property of each frequency component can be adjusted conveniently. Each harmonic component of the vibration can be addressed, respectively, by reconfiguring the frequency components of the reference input signal.

  15. Effect of size polydispersity on the structural and vibrational characteristics of two-dimensional granular assemblies

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Sun, Qi-Cheng; Shi, Zhi-Ping; Feng, Xu; Gu, Qiang; Jin, Feng

    2014-07-01

    Two-dimensional disordered granular assemblies composed of 2048 polydispersed frictionless disks are simulated using the discrete element method. The height of the first peak of the pair correlation function, g1, the local and global bond orientational parameters ?6l and ?6g, and the fluctuations of these parameters decrease with increasing polydispersity s, implying the transition from a polycrystalline state to an amorphous state in the system. As s increases, the peak position of the boson peak ?BP shifts towards a lower frequency and the intensity of the boson peak D(?BP)/?BP increases, indicating that the position and the strength of the boson peak are controlled by the polydispersity of the system. Moreover, the inverse of the boson peak intensity ?BP/D(?BP), the shear modulus G, and the basin curvature SIS all have a similar dependence on s, implying that the s dependence of the vibrational density of states at low frequencies likely originates from the s dependence of the basin curvature.

  16. Direct quantum mechanical/molecular mechanical simulations of two-dimensional vibrational responses: N-methylacetamide in water

    NASA Astrophysics Data System (ADS)

    Jeon, Jonggu; Cho, Minhaeng

    2010-06-01

    Multidimensional infrared (IR) spectroscopy has emerged as a viable tool to study molecular structure and dynamics in condensed phases, and the third-order vibrational response function is the central quantity underlying various nonlinear IR spectroscopic techniques, such as pump-probe, photon echo and two-dimensional (2D) IR spectroscopy. In this paper, a new computational method is presented that calculates this nonlinear response function in the classical limit from a series of classical molecular dynamics (MD) simulations, employing a quantum mechanical/molecular mechanical (QM/MM) force field. The method relies on the stability matrix formalism where the dipole-dipole quantum mechanical commutators appearing in the exact quantum response function are replaced by the corresponding Poisson brackets. We present the formulation and computational algorithm of the method for both the classical and the QM/MM force fields and apply it to the 2D IR spectroscopy of carbon monoxide (CO) and N-methylacetamide (NMA), each solvated in a water cluster. The conventional classical force field with harmonic bond potentials is shown to be incapable of producing a reliable 2D IR signal because intramolecular vibrational anharmonicity, essential to the production of the nonlinear signal, is absent in such a model. The QM/MM force field, on the other hand, produces distinct 2D spectra for the NMA and CO systems with clear vertical splitting and cross peaks, reflecting the vibrational anharmonicities and the vibrational couplings between the underlying vibrational modes, respectively. In the NMA spectrum, the coupling between the amide I and II modes is also well reproduced. While attaining the converged spectrum is found to be challenging with this method, with an adequate amount of computing it can be straightforwardly applied to new systems containing multiple chromophores with little modeling effort, and therefore it would be useful in understanding the multimode 2D IR spectrum of complex molecular systems.

  17. NEUROMOTOR RESPONSE TO WHOLE BODY VIBRATION TRANSMISSIBILITY IN THE HORIZONTAL DIRECTION AND ITS MATHEMATICAL MODEL

    E-print Network

    Hanumanthareddygari, Vinay

    2010-09-02

    ................................................................................... 6 1.5 Overview of Whole Body Vibration Research in General: ...................................................... 7 1.5.1 Vibration-Induced Muscular Fatigue: ................................................................................ 8 1...-right) directions relative to the body. Typical 7 exposures include: driving automobiles and trucks, piloting helicopters and other aircraft and operating industrial vehicles such as off-road construction vehicles and forklifts. Transmission of WBV...

  18. Preliminary Calibration Report of an Apparatus to Measure Vibration Characteristics of Low Frequency Disturbance Source Devices

    NASA Technical Reports Server (NTRS)

    Russell, James W.; Marshall, Robert A.; Finley, Tom D.; Lawrence, George F.

    1994-01-01

    This report presents a description of the test apparatus and the method of testing the low frequency disturbance source characteristics of small pumps, fans, camera motors, and recorders that are typical of those used in microgravity science facilities. The test apparatus will allow both force and acceleration spectra of these disturbance devices to be obtained from acceleration measurements over the frequency range from 2 to 300 Hz. Some preliminary calibration results are presented.

  19. Active Inertial Vibration Isolators And Dampers

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren; Blackburn, John; Smith, Dennis

    1994-01-01

    Report describes development of active inertial vibration isolators and dampers in which actuators electromagnet coils moving linearly within permanent magnetic fields in housings, somewhat as though massive, low-frequency voice coils in loudspeakers. Discusses principle of operation, electrical and mechanical considerations in design of actuators, characteristics of accelerometers, and frequency responses of control systems. Describes design and performance of one- and three-degree-of-freedom vibration-suppressing system based on concept.

  20. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach.

    PubMed

    Goel, V K; Park, H; Kong, W

    1994-11-01

    A nonlinear, three-dimensional finite element model of the ligamentous L4-S1 segment was developed to analyze the dynamic response of the spine in the absence of damping. The effects of the upper body mass were simulated by including a mass of 40 kg on the L4 vertebral body. The modal analyses of the model indicated a resonant frequency of 17.5 Hz in axial mode and 3.8 Hz in flexion-extension mode. Accordingly, the predicted responses for the cyclic load of -400 +/- 40 N applied at four different frequencies (5, 11, 16.5, and 25 Hz) were compared with the corresponding results for axial compressive static loads (-360, and -440 N). As compared to the static load cases, the predicted responses were higher for the cyclic loading. For example, the effect of cyclic load at 11 Hz was to produce significant changes (9.7-19.0 percent) in stresses, loads transmitted through the facets, intradiscal pressure (IDP), disk bulge, as compared to the static load predictions. The responses were found to be frequency dependent as well; supporting the in vivo observations of other investigators that the human spine has a resonant frequency. For example, the 11 Hz model (DYN11) compared to the DYN5 model showed an increase in majority of the predicted parameters. The parameters showed an increase with frequency until 17.5 Hz (resonant frequency of the model); thereafter a decrease at 25 Hz.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7869712

  1. Study of passenger subjective response to ideal and real-vehicle vibration environments

    NASA Technical Reports Server (NTRS)

    Kirby, R. H.; Mikulka, P. J.

    1975-01-01

    The stimulus received by subjects tested on the passenger ride quality apparatus (PRQA) is defined. Additional analyses on the data collected from field tests using buses, were conducted to assess the relation between subjective ratings of ride quality and vibrations measured on the buses, and to better define the vibration stimulus measured in the field. The relation of subjective evaluation of simulations of bus rides produced by the DRQA to subjective evaluations of the actual bus rides is discussed. The relative contribution of the seat and floor vibration to human comfort in a simulated aircraft ride environment is discussed along with the determination of equal comfort curves through magnitude estimation.

  2. The use of a digital computer for investigation of the dynamic characteristics of a man while pressing vertically downward with the straight arm on the handle of a vibrator (instrument)

    NASA Technical Reports Server (NTRS)

    Zazhivikhina, A. I.; Rosin, G. S.; Ryzhov, Y. I.

    1973-01-01

    The dynamic characteristics of a man were investigated by the resonance method, by means of recordings of the amplitude-frequency characteristics of a vibrator straight arm human body system on a standard automatic recorder. Experiments were carried out with a specially constructed vibrator, the moving system of which was fastened to a bronze suspension with small losses. Vibrations of the handle, fastened to the moving system, were recorded with an accelerometer. The mass of the moving system m, rigidity of the suspension k and friction coefficient r of the vibrator (calibration) were determined by exact formulas.

  3. The influence of dynamic properties of ground soil on vibration characteristics of rigid body on sand ground

    Microsoft Academic Search

    Yoon-Sang Kim; Tae-Gyun Ha; Jae-Jin Choi; Choong-Ki Chung

    2007-01-01

    This study aims to investigate the influence of dynamic properties of the ground soil on vibration properties of a rigid body\\u000a placed on the sand ground surface to clarify the vibration behavior of a structure in terms of the interaction between the\\u000a structure and the ground. A series of cyclic triaxial tests and three types of model vibration tests were

  4. Quasi-Static and Dynamic Response Characteristics of F-4 Bias-Ply and Radial-Belted Main Gear Tires

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1997-01-01

    An investigation was conducted at Langley Research Center to determine the quasi-static and dynamic response characteristics of F-4 military fighter 30x11.5-14.5/26PR bias-ply and radial-belted main gear tires. Tire properties were measured by the application of vertical, lateral, and fore-and-aft loads. Mass moment-of-inertia data were also obtained. The results of the study include quasi-static load-deflection curves, free-vibration time-history plots, energy loss associated with hysteresis, stiffness and damping characteristics, footprint geometry, and inertia properties of each type of tire. The difference between bias-ply and radial-belted tire construction is given, as well as the advantages and disadvantages of each tire design. Three simple damping models representing viscous, structural, and Coulomb friction are presented and compared with the experimental data. The conclusions discussed contain a summary of test observations.

  5. Effects of Vibration and G-Loading on Heart Rate, Breathing Rate, and Response Time

    NASA Technical Reports Server (NTRS)

    Godinez, Angelica; Ayzenberg, Ruthie; Liston, Dorian B.; Stone, Leland S.

    2013-01-01

    Aerospace and applied environments commonly expose pilots and astronauts to G-loading and vibration, alone and in combination, with well-known sensorimotor (Cohen, 1970) and performance consequences (Adelstein et al., 2008). Physiological variables such as heart rate (HR) and breathing rate (BR) have been shown to increase with G-loading (Yajima et al., 1994) and vibration (e.g. Guignard, 1965, 1985) alone. To examine the effects of G-loading and vibration, alone and in combination, we measured heart rate and breathing rate under aerospace-relevant conditions (G-loads of 1 Gx and 3.8 Gx; vibration of 0.5 gx at 8, 12, and 16 Hz).

  6. Vibration characteristics of Z-ring-stiffened 60 deg conical shell models of a planetary entry spacecraft

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Mixon, J. S.

    1971-01-01

    An experimental investigation of the vibration characteristics of a 60 deg conical shell model of a planetary entry vehicle is described and the results presented. Model configurations include the shell with or without one or two Z-ring stiffeners and with or without a simulated payload. Tests were conducted with the model clamped at the small diameter and with the model suspended at the simulated payload. Additionally, calculated results obtained from application of several analytical procedures reported in the literature are presented together with comparisons between experimental and calculated frequencies and meridional mode shapes. Generally, very good frequency agreement between experimental and calculated results was obtained for all model configurations. For small values of circumferential mode number, however, the frequency agreement decreased as the number of ring stiffeners increased. Overall agreement between experimental and calculated mode shapes was generally good. The calculated modes usually showed much larger curvatures in the vicinity of the rings than were observed in the experimentally measured mode shapes. Dual resonances associated with modal preference were noted for the shell without Z-ring stiffeners, whereas the addition of stiffeners produced resonances for which the model responded in two or more modes over different sections of the shell length.

  7. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  8. The response characteristics of tetrazolium violet solutions to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Emi-Reynolds, G.; Kovács, András; Fletcher, J. J.

    2007-08-01

    The dosimetry characteristics of various solutions of tetrazolium violet, TV, (2,5-diphenyl-3-(1-naphthyl)-2H-tetrazolium chloride) to gamma irradiation are reported. The optical absorption spectra of these solutions show peaks between 400 and 600 nm with a shoulder at around 550 nm. The dose response of the optical absorbance values of aqueous and aqueous-alcoholic solutions containing different concentrations of TV was measured in the 250 Gy up to 75 kGy dose range. The formation of formazan product was observed due to radiolytic reduction in both solutions. Its formation was found more pronounced in N 2-saturated as well as in alkaline solutions. The results indicate that the 1 mM TV solution can be used for food irradiation and medical sterilization dosimetry at gamma irradiation facilities.

  9. The negative and positive electrorheological behavior and vibration damping characteristics of colemanite and polyindene/colemanite conducting composite

    NASA Astrophysics Data System (ADS)

    Cetin, B.; Unal, H. I.; Erol, O.

    2012-12-01

    In this study, the electrorheological (ER) properties of colemanite and polyindene (94.8% PIn)/colemanite (5.2%) conducting composite were investigated by dispersion in silicone oil (SO). The zeta (?)-potentials and antisedimentation ratios of the materials were determined. Some parameters which affect the ER properties of all the dispersions such as the volume fraction, electric field strength (E), shear rate, frequency and temperature were investigated. The rather unusual behavior known as the negative ER effect was observed for colemanite/SO above E = 1.5 kV mm-1 and for PIn/colemanite/SO under all values of the electric field strength even at high volume fraction. This negative ER response was converted to a positive one by the addition of non-ionic surfactant. Furthermore, glycerol was used as a polar promoter and observed to enhance the ER activity of the colemanite/SO system. Creep-recovery tests were applied to all the dispersions studied to investigate their behavior under sustained shear stress. Finally, 28% and 30% vibration damping capacities were achieved using an automobile shock absorber for the glycerol/colemanite/SO and non-ionic surfactant/PIn/colemanite/SO systems under the E = 0.17 kV mm-1 condition, respectively.

  10. Static and free-vibrational response of semi-circular graphite-epoxy frames with thin-walled open sections

    NASA Technical Reports Server (NTRS)

    Collins, J. Scott; Johnson, Eric R.

    1989-01-01

    Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.

  11. The Effect of Vibration on Postural Response of Down Syndrome Individuals on the Seesaw

    ERIC Educational Resources Information Center

    Carvalho, Regiane Luz; Almeida, Gil Lucio

    2009-01-01

    In order to better understand the role of proprioception in postural adjustments on unstable surfaces, we analyzed the effect of vibration on the pattern of muscle activity and joint displacements (ankle, knee and hip) of eight intellectually normal participants (control group-CG) and eight individuals with Down syndrome (DS) while balancing on…

  12. Nonlinear response of vibrational excitons: Simulating the two-dimensional infrared spectrum of liquid water

    E-print Network

    Mukamel, Shaul

    for the study of dynamics in complex systems. As the optical equivalent of two- dimensional 2D nuclear magnetic and Department of Chemistry and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H6 increases computational feasibility and performance. The electrostatic map for the OH stretching vibrations

  13. Responses of Diaphorina citri (Hemiptera: Psyllidae) to conspecific vibrational signals and synthetic mimics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mate-seeking in Diaphorina citri Kuwayama, a vector of the economically damaging huanglongbing citrus disease, typically includes male-female duetting behaviors. First, the male calls by beating its wings at ca. 170-250 Hz, producing vibrations that are transmitted along the host tree branches to th...

  14. Random vibration of mechanical and structural systems

    Microsoft Academic Search

    T. T. Soong; Mircea Grigoriu

    1993-01-01

    This book addresses random vibration of mechanical and structural systems commonly encountered in aerospace, mechanical, and civil engineering. Techniques are examined for determining probabilistic characteristics of the response of dynamic systems subjected to random loads or inputs and for calculating probabilities related to system performance or reliability. Emphasis is given to applications.

  15. EMG and Heart Rate Responses Decline within 5 Days of Daily Whole-Body Vibration Training with Squatting

    PubMed Central

    Rosenberger, André; Liphardt, Anna-Maria; Bargmann, Arne; Müller, Klaus; Beck, Luis; Mester, Joachim; Zange, Jochen

    2014-01-01

    In this study, we examined the acute effects of a 5-day daily whole-body vibration (WBV) training on electromyography (EMG) responses of the m. rectus femoris and m. gastrocnemius lateralis, heart rate (HR, continuously recorded), and blood lactate levels. The purpose of the study was to investigate the adaptation of muscle activity, heart rate and blood lactate levels during 5 days of daily training. Two groups of healthy male subjects performed either squat exercises with vibration at 20 Hz on a side alternating platform (SE+V, n?=?20, age ?=?31.9±7.5 yrs., height ?=?178.8±6.2 cm, body mass ?=?79.2±11.4 kg) or squat exercises alone (SE, n?=?21, age ?=?28.4±7.3 years, height ?=?178.9±7.4 cm, body mass ?=?77.2±9.7 kg). On training day 1, EMG amplitudes of the m. rectus femoris were significantly higher (P<0.05) during SE+V than during SE. However, this difference was no longer statistically significant on training days 3 and 5. The heart rate (HR) response was significantly higher (P<0.05) during SE+V than during SE on all training days, but showed a constant decline throughout the training days. On training day 1, blood lactate increased significantly more after SE+V than after SE (P<0.05). On the following training days, this difference became much smaller but remained significantly different. The specific physiological responses to WBV were largest on the initial training day and most of them declined during subsequent training days, showing a rapid neuromuscular and cardiovascular adaptation to the vibration stimulus. PMID:24905721

  16. Secondary Periodicity in the Structural and Vibrational Characteristics of 3,3-DIMETHYLCYCLOPROPENES - and Monosubstituted by -X{(CH_3)}_3 (x = C, Si, Ge, Sn, Pb)

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Abramenkov, A. V.; de Maré, G. R.

    2009-06-01

    The regularities of changes in the structural parameters and vibrational wavenumbers have been traced for certain moieties of the title compounds. The optimized geometrical parameters and the force fields of disubstituted 3,3-dimethylcyclopropenes and monosubstituted 3,3-dimethylcyclopropenes were determined at the HF/3-21G* and DDAll levels, respectively. The choice of these theoretical levels was brought about by peculiarities of GAUSSIAN 03 suite of programs for Sn and Pb atoms. The theoretical vibrational wavenumbers were calculated from the corresponding scaled force fields. The regularities obtained in the form of the zigzag lines are analogous to regularities that are characteristic to the atoms of the 14 (IVA) group of the Mendeleyev Periodic Table. This is known as the secondary periodicity phenomenon. Yu. N. Panchenko, G. R. De Maré, A. V. Abramenkov, and A. de Meijere, Spectrochim. Acta 65A, 575 (2006). G. R. De Maré, Yu. N. Panchenko, and A. V. Abramenkov, Spectrochim. Acta 67A, 1094 (2007).

  17. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of nicotinic acid and its N-oxide

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Yadav, R. A.

    2011-09-01

    FTIR and Raman spectra of nicotinic acid and its N-oxide have been recorded and analyzed. The stabilities, optimized molecular geometries, APT charges and vibrational characteristics for the two possible conformers of nicotinic acid and its N-oxide have been computed using DFT method. The E (trans) conformers of both the molecules are found to be more stable and less polar than their respective Z (cis) conformers. Due to addition of an O atom at the N 1 site in nicotinic acid the magnitudes of atomic charges on all the H atomic sites of the nicotinic acid N-oxide molecule are found to increase. Most of the vibrational frequencies have nearly the same magnitude for the two conformers of both the molecules. However, significant changes are noticed in their IR intensities, Raman activities and depolarization ratios of the Raman bands. The calculated frequencies have been correlated with the experimental frequencies.

  18. Visual and oculomotor responses induced by neck vibration in normal subjects and labyrinthine-defective patients

    Microsoft Academic Search

    K. E. Popov; H. Lekhel; M. Faldon; A. M. Bronstein; M. A. Gresty

    1999-01-01

    Three-dimensional scleral search coil eye movement recordings were obtained in five normal subjects and four patients with\\u000a absent vestibular function, during unilateral vibration of the neck in the supine position. The purpose of the experiments\\u000a was to investigate any role played by eye movements in the illusion that a small fixation target, viewed in an otherwise dark\\u000a room, moves when

  19. EFFECTS OF 6?WEEK WHOLE BODY VIBRATION TRAINING ON THE REFLEX RESPONSE OF THE ANKLE MUSCLES: A RANDOMIZED CONTROLLED TRIAL

    PubMed Central

    Rubio, Jacobo A.; Ramos, Domingo J.; Esteban, Paula; Mendizábal, Susana; Jiménez, Fernando

    2013-01-01

    Background: The ligament sprain of the lateral ankle is the most frequent injury that occurs when participating in sports. Whole body vibration (WBV) is a training method that has been recently introduced as a rehabilitative tool for treatment of athletes. It has been hypothesized that the transmission of mechanical oscillations from the vibrating platform may lead to physiological changes in muscle spindles, joint mechanoreceptors, as well as improve balance. Propose: The aim of this study was to assess the effects of a 6?week WBV training program on the reflex response mechanism of the peroneus longus (PL), peroneus brevis (PB) and anterior tibialis (AT) muscles in ankle inversion at 30º from horizontal, in a static position. Methods: This study was a single?blinded and randomized controlled trial. Forty?four healthy, physically active participants were randomly split into two groups: the experimental group (n = 26) (the WBV training) and control group (n = 18). Reaction time (RT), maximum electromyographic (EMG) peak (peak EMG), time to the maximum peak EMG (peak EMG time) and reflex electrical activity of all the muscles were assessed before and after the WBV training through surface EMG. Results: After 6?weeks WBV training, there were no significant changes in the variables analysed for all the muscles involved. Conclusion: A 6?week WBV training does not improve the reflex response mechanism of the lateral stabilizing muscles of the ankle. Level of evidence: 1b PMID:23439725

  20. Dynamic responses and vibration control of the transmission tower-line system: a state-of-the-art review.

    PubMed

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  1. Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review

    PubMed Central

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  2. Hybrid health monitoring of PSC girder bridges using vibration and impedance based methods

    Microsoft Academic Search

    Dong-Soo Hong; Jeong-Tae Kim; Won-Bae Na; Han-Sung Do

    2007-01-01

    To develop a promising hybrid structural health monitoring (SHM) system, which enables to detect damage by the dynamic response of the entire structure and more accurately locate damage with denser sensor array, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance

  3. Seasonal variations in vibrational spectra of the sea surface nanolayer and their relation to characteristic parameters for phytoplankton activity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Bange, Hermann W.; Friedrichs, Gernot

    2013-04-01

    The sea surface nanolayer is a very thin organic substance layer, down to monomolecular thickness. It is found on top of the sea surface microlayer, which in turn comprises roughly the uppermost millimeter of the water column. The nanolayer constitutes the actual interface between ocean and atmosphere and plays an important role in all exchange processes of matter and energy between ocean and atmosphere. Nevertheless, knowledge about formation and development of the sea surface nanolayer in the course of the year is very limited. In this study we present surface-specific observations of the sea surface nanolayer development over a period of three and a half years. Samples of the sea surface have been taken monthly at Boknis Eck Time Series Station (Eckernförde Bay, southwestern Baltic Sea) by screen sampling. From surface-sensitive vibrational spectra obtained by nonlinear sum frequency generation spectroscopy (SFG), information on amount, structure and composition of the organic nanolayer material was extracted. SFG has been introduced by us as a new method to study the ocean nanolayer quite recently [1,2]. The abundance of nanolayer material was found to follow a pronounced yearly periodicity, with larger amounts of material present from mid to end of summer. A substantial time lag of about 2.5 months between spring algal bloom maxima and abundance maxima of nanolayer material has been observed. In contrast to common perception, this shows that high phytoplankton abundance and pronounced nanolayers are not directly related to each other. Variations in the appearance of the spectra serve as indicators for changes in structure and chemical composition of the nanolayer. The accumulation of carbohydrate-rich material in late summer provides a possible explanation for the observed spectral changes. We propose that sloppy feeding of zooplankton as well as photochemical and/or microbial processing of organic material present in the microlayer is responsible for the periodicity of nanolayer intensity and its temporal shift with respect to other influential factors. References [1] K. Laß, G. Friedrichs, J. Geophys. Res. 116 (2011) C08042/1-15 [2] K. Laß, J. Kleber, G. Friedrichs, Limnol. Oceanogr.: Methods 8 (2010) 216-228

  4. Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane.

    PubMed

    Koike, Takuji; Sakamoto, Chiaki; Sakashita, Tasuku; Hayashi, Ken; Kanzaki, Sho; Ogawa, Kaoru

    2012-01-01

    In this study, a three-dimensional finite-element model of the passive human cochlea was created. Dynamic behavior of the basilar membrane caused by the vibration of the stapes footplate was analyzed considering a fluid-structure interaction with the cochlear fluid. Next, the effects of a perilymphatic fistula (PLF) on the vibration of the cochlea were examined by making a small hole on the wall of the cochlea model. Even if a PLF existed in the scala vestibuli, a traveling wave was generated on the basilar membrane. When a PLF existed at the basal end of the cochlea, the shape of the traveling wave envelope showed no remarkable change, but the maximum amplitude became smaller at the entire frequency range from 0.5 to 5kHz and decreased with decreasing frequency. In contrast, when a PLF existed at the second turn of the cochlea, the traveling wave envelope showed a notch at the position of the PLF and the maximum amplitude also became smaller. This model assists in elucidating the mechanisms of hearing loss due to a PLF from the view of dynamics. PMID:22115725

  5. Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake

    NASA Astrophysics Data System (ADS)

    Natarajan, Thulasiraman; Rajendran, Kusala

    2015-02-01

    We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our H/V curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f0) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low H/V peak amplitudes (A0 = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the H/V method to study complex geological settings as Kachchh.

  6. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  7. Heart rate variability in response to psychological test in hand-arm vibration syndrome patients assessed by frequency domain analysis.

    PubMed

    Laskar, M S; Iwamoto, M; Toibana, N; Morie, T; Wakui, T; Harada, N

    1999-10-01

    To investigate heart rate variability in response to psychological tests (Japanese version of Stroop color word test and mirror drawing test) in 29 hand-arm vibration syndrome (HAVS) patients, 16 of them with vibration-induced white finger (VWF) and 13 without VWF, and 10 healthy controls of similar age, heart rate variability during spontaneous and deep (6 cycles a minute) breathing in supine position before and after exposure to the psychological tests was examined calculating frequency domain components such as low frequency (LF) power-index of both the sympathetic and parasympathetic activity, high frequency (HF) power-index of the parasympathetic activity and LF/HF-index of the sympathovagal balance. The group of all patients and the group without VWF indicated significant increase in LF/HF in the deep breathing measurement after exposure to the psychological tests. The result suggests that the sympathetic tone in the sympathovagal balance predominated in the HAVS patients which means that they had larger sensitivity of the sympathetic nervous system to the psychological tests. PMID:10547953

  8. Nonlinear terahertz spectroscopy of electronic and vibrational responses in condensed matter systems

    E-print Network

    Hwang, Harold Young

    2012-01-01

    In this work, I describe experiments utilizing high-field terahertz (THz) pulses to initiate nonlinear responses in several classes of materials. We have developed several methods for interrogating the nonlinear THz response ...

  9. LINKING WITHIN-FIELD CROP RESPONSE WITH SOIL CHARACTERISTICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management zones for precision farming can be determined by identifying areas where soil, water, and management factors result in similar crop responses. Given the spatial distribution of LAI of a field, factors determining response patterns may be obtained via inversion of a model linking environme...

  10. Responsibility attitudes and interpretations are characteristic of obsessive compulsive disorder

    Microsoft Academic Search

    P. M. Salkovskis; A. L. Wroe; A. Gledhill; N. Morrison; E. Forrester; C. Richards; M Reynolds; S Thorpe

    2000-01-01

    The cognitive–behavioural theory of Obsessive Compulsive Disorder (OCD) proposes that a key factor influencing obsessional behaviour is the way in which the intrusive cognitions are interpreted. The present paper reports an investigation of links between clinical symptoms (of anxiety, depression and obsessionality) and responsibility beliefs. These beliefs include not only measures of general responsibility attitudes (assumptions) but also more specific

  11. Characteristics of Gamma-Oscillations in Responses of Neurons of the Cat Lateral Geniculate Body

    Microsoft Academic Search

    N. F. Podvigin; T. V. Bagaeva; N. B. Kiseleva; E. V. Boikova; E. Poppel

    2002-01-01

    There were studied characteristics of gamma-oscillations in responses of neurons of the lateral geniculate body (LGB) in cat to exposure in their receptive fields (RF) of half-tone and binary test images. The gamma-oscillations were observed in 38.8% of cases (69 cells). The spectral characteristics (SC) (the band 20–100 Hz) of the neuronal responses to adequate stimuli (on- and off-responses correspondingly

  12. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    PubMed

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-01

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation. PMID:23609967

  13. Ionospheric characteristics in response to gradients of magnetic eta index

    NASA Astrophysics Data System (ADS)

    Dziak-Jankowska, Beata; Stanislawska, Iwona; Tomasik, Lukasz; Ernst, Tomasz

    We present the analysis of correlation of typical ionospheric characteristics with the changes of the magnetic eta index. The eta index is defined as the square root of a ratio of the energy of the external part of the vertical component to that of the horizontal components. The values of eta typical ranged between 0 and 0.1 sometimes exceeds 1 or even higher values which means that the changes of the vertical component of magnetic field is larger than the changes of the horizontal magnetic field components. In most cases when eta index indicate some magnetic disturbances other magnetic indices (i.e. Kp, Dst) inform about quiet conditions. During increasing phase of eta index value ionospheric characteristics present large deviations from their monthly median. Our analysis for 2004 present deviations of foE up to +/- 0.9 MHz and both deviations negative and positive appear during enormous increase of eta index. Another ionospheric characteristic, the virtual height of F2 layer (h’F2) decreases in some cases up to 90 km from monthly median value. Here the analysis of correlation between ionospheric characteristics and the eta index will be presented taking into account time interval covering the whole solar cycle for European region.

  14. Comparative vibration environments of transportation vehicles

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.

    1977-01-01

    Measured vibration data are presented for a number of air and surface vehicles. Consideration is given to the importance of direction effects; of vehicle operating modes such as takeoff, cruise, and landing; and of measurement location on the level and frequency of the measurements. Various physical measurement units or descriptors are used to quantify and compare the data. Results suggest the range of vibration associated with a particular mode of transportation and illustrate the comparative levels in terms of each of the descriptors. Collectively, the results form a data base which may be useful in assessing the ride of existing or future systems relative to vehicles in current operation. In addition, subjective response data obtained from vibration simulator studies are presented to illustrate human response characteristics as well as to indicate a laboratory approach for the development of ride-quality criteria.

  15. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics.

    PubMed

    Ehrick, Jason D; Deo, Sapna K; Browning, Tyler W; Bachas, Leonidas G; Madou, Marc J; Daunert, Sylvia

    2005-04-01

    Certain proteins undergo a substantial conformational change in response to a given stimulus. This conformational change can manifest in different manners and result in an actuation, that is, catalytic or signalling event, movement, interaction with other proteins, and so on. In all cases, the sensing-actuation process of proteins is initiated by a recognition event that translates into a mechanical action. Thus, proteins are ideal components for designing new nanomaterials that are intelligent and can perform desired mechanical actions in response to target stimuli. A number of approaches have been undertaken to mimic nature's sensing-actuating process. We now report a new hybrid material that integrates genetically engineered proteins within hydrogels capable of producing a stimulus-responsive action mechanism. The mechanical effect is a result of an induced conformational change and binding affinities of the protein in response to a stimulus. The stimuli-responsive hydrogel exhibits three specific swelling stages in response to various ligands offering additional fine-tuned control over a conventional two-stage swelling hydrogel. The newly prepared material was used in the sensing, and subsequent gating and transport of biomolecules across a polymer network, demonstrating its potential application in microfluidics and miniaturized drug-delivery systems. PMID:15765106

  16. Response prediction of long flexible risers subject to forced harmonic vibration

    Microsoft Academic Search

    Carlos Alberto Riveros; Tomoaki Utsunomiya; Katsuya Maeda; Kazuaki Itoh

    2010-01-01

    Several research efforts have been directed toward the development of models for response prediction of flexible risers. The\\u000a main difficulties arise from the fact that the dynamic response of flexible risers involves highly nonlinear behavior and\\u000a a self-regulated process. This article presents a quasi-steady approach for response prediction of oscillating flexible risers.\\u000a Amplitude-dependent lift coefficients are considered, as is an

  17. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  18. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-01

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  19. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    SciTech Connect

    Yoshida, Tsutomu; Watanabe, Takeshi [Department of Mechanical Systems Engineering, Faculty of Engineering, Takushoku University, 815-1 Tatemachi, Hachioji, Tokyo (Japan)

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  20. Application of a photonic crystal fiber LPG for vibration monitoring

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Chesini, G.; Sousa, Marco; Osório, Jonas H.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, Pedro A. S.

    2013-05-01

    A fiber optic sensor based on a long-period grating (LPG) inscribed in a photonic crystal fiber is investigated for vibration sensing for structural monitoring applications. In this paper, preliminary results are shown demonstrating the sensor ability to detect vibration induced in a test structure. The sensor frequency response when attached to a loudspeaker-acrylic plate stimulation system (tested in the range from 40 Hz to 2.5 kHz) is analyzed using an intensity based scheme with a tunable laser. An alternative interrogation scheme, where the vibration signal is retrieved from a spectral scan, is also demonstrated and analyzed showing promising characteristics for structural health monitoring.

  1. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  2. Experimental investigation of the vibrational and thermal response of a laser spark plug

    NASA Astrophysics Data System (ADS)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit the variability of these key parameters. Under the influence of thermal and oscillatory perturbations, the q-switch delay of the laser was found to vary significantly. For application on an IC engine, such variation in qswitch delay would result in an ignition timing variation by as much as +/-4.6 crank angle (CA) degrees in the most extreme setpoint on a cycle-to-cycle basis. Every setpoint tested was calculated to be capable of generating a plasma spark in air (>100 GW/cm2), however the resulting focal intensity was found to vary by as much as +/-13 GW/cm2.

  3. Polymerization Parameters Influencing the QCM Response Characteristics of BSA MIP

    PubMed Central

    Phan, Nam V. H.; Sussitz, Hermann F.; Lieberzeit, Peter A.

    2014-01-01

    Designing Molecularly Imprinted Polymers for sensing proteins is still a somewhat empirical process due to the inherent complexity of protein imprinting. Based on Bovine Serum Albumin as a model analyte, we explored the influence of a range of experimental parameters on the final sensor responses. The optimized polymer contains 70% cross linker. Lower amounts lead to higher sensitivity, but also sensor response times substantially increase (to up to 10 h) at constant imprinting effect (signal ratio MIP/NIP on quartz crystal microbalance—QCM). However, by shifting the polymer properties to more hydrophilic by replacing methacrylic acid by acrylic acid, part of the decreased sensitivity can be recovered leading to appreciable sensor responses. Changing polymer morphology by bulk imprinting and nanoparticle approaches has much lower influence on sensitivity. PMID:25587416

  4. NIST torsion oscillator viscometer response: Performance on the LeRC active vibration isolation platform

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Grodsinsky, Carlos M.

    1992-01-01

    Critical point viscosity measurements are limited to their reduced temperature approach to T(sub c) in an Earth bound system, because of density gradients imposed by gravity. Therefore, these classes of experiments have been proposed as good candidates for 'microgravity' science experiments where this limitation is not present. The nature of these viscosity measurements dictate hardware that is sensitive to low frequency excitations. Because of the vibratory acceleration sensitivity of a torsion oscillator viscometer, used to acquire such measurements, a vibration isolation sensitivity test was performed on candidate 'microgravity' hardware to study the possibility of meeting the stringent oscillatory sensitivity requirements of a National Institute of Standards and Technology (NIST) torsion oscillator viscometer. A prototype six degree of freedom active magnetic isolation system, developed at NASA Lewis Research Center, was used as the isolation system. The ambient acceleration levels of the platform were reduced to the noise floor levels of its control sensors, about one microgravity in the 0.1 to 10 Hz bandwidth.

  5. School Refusal Behavior: Prevalence, Characteristics, and the Schools' Response.

    ERIC Educational Resources Information Center

    Stickney, Marcella I.; Miltenberger, Raymond G.

    1998-01-01

    A survey of 288 elementary and secondary North Dakota schools found 75% had a school refusal behavior (SRB) identification system in place, 57% had a school psychologist available, principals were most frequently responsible for identifying school refusers, 2.3% of students were identified as school refusers of which 49% falsely claimed illness,…

  6. Characteristics of Nonlinear Response of Deep Saturated Soil Deposits

    Microsoft Academic Search

    Shean-Der Ni; Raj V. Siddharthan; John G. Anderson

    1997-01-01

    Recent EPRI seismic design guidelines call for dynamic soil properties (shear modulus ratio and damping) and liquefaction strength curves to be character- ized as a function of the effective vertical stress (or depth). A modified version of the DESRA2 constitutive model for saturated soil has been applied to study the nonlinear seismic response including liquefaction of medium dense soil deposits

  7. Ulcerated hemangiomas: Clinical characteristics and response to therapy

    Microsoft Academic Search

    Ho Jin Kim; Mary Colombo; Ilona J. Frieden

    2001-01-01

    Background: Hemangiomas represent the most common benign tumor of infancy, with ulceration its most frequent complication. Objective: Our purpose was to review our experience with this challenging problem by evaluating the clinical features, management, and therapeutic responses of ulcerated hemangiomas. Methods: A retrospective analysis of ulcerated hemangiomas at the University of California, San Francisco outpatient pediatric dermatology clinics and Oakland

  8. VIBRA: An interactive computer program for steady-state vibration response analysis of linear damped structures

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1984-01-01

    An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.

  9. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-03-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p-n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 ?m was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  10. Review of bubble detector response characteristics and results from space.

    PubMed

    Lewis, B J; Smith, M B; Ing, H; Andrews, H R; Machrafi, R; Tomi, L; Matthews, T J; Veloce, L; Shurshakov, V; Tchernykh, I; Khoshooniy, N

    2012-06-01

    A passive neutron-bubble dosemeter (BD), developed by Bubble Technology Industries, has been used for space applications. Both the bubble detector-personal neutron dosemeter and bubble detector spectrometer have been studied at ground-based facilities in order to characterise their response due to neutrons, heavy ion particles and protons. This technology was first used during the Canadian-Russian collaboration aboard the Russian satellite BION-9, and subsequently on other space missions, including later BION satellites, the space transportation system, Russian MIR space station and International Space Station. This paper provides an overview of the experiments that have been performed for both ground-based and space studies in an effort to characterise the response of these detectors to various particle types in low earth orbit and presents results from the various space investigations. PMID:21890528

  11. Responses to Mild Cold Stress Are Predicted by Different Individual Characteristics in Young and Older Subjects

    NSDL National Science Digital Library

    David W DeGroot (Pennsylvania State University Kinesiology)

    2006-12-01

    Journal article "Responses to Mild Cold Stress Are Predicted by Different Individual Characteristics in Young and Older Subjects", from the Journal of Applied Physiology, by David W. Degroot, W. Larry Kenny, and George Havenith.

  12. Vibration Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of Multiple HTS Bulks and Permanent Magnets

    Microsoft Academic Search

    M. Tsuda; T. Kojima; T. Yagai; T. Hamajima

    2007-01-01

    An HTS bulk field-cooled by a permanent magnet can levitate stably without any other control systems. The stable levitation can be realized by a specific characteristic of the HTS bulk that the HTS bulk returns to its original position by restoring force against horizontal displacement. We devised a magnetic levitation type seismic isolation device taking advantage of the specific characteristic

  13. Road condition evaluation using the vibration response of ordinary vehicles and synchronously recorded movies

    NASA Astrophysics Data System (ADS)

    Nagayama, Tomonori; Miyajima, Akira; Kimura, Shunya; Shimada, Yuuki; Fujino, Yozo

    2013-04-01

    Frequent and quantitative assessment of road condition is important as the maintenance of the road infrastructure needs to be performed with a limited budget. Vehicle Intelligent Monitoring System (VIMS) has been developed to estimate an index of road ride comfort (International Roughness Index; IRI) by obtaining the acceleration responses of ordinary vehicles together with GPS position data. VIMS converts the vertical acceleration of the measurement vehicle to acceleration RMS of the sprung mass of the standard Quarter Car model, and then to IRI using an approximate expression. By driving over a hump of a known profile and comparing the responses with Quarter Car simulation responses, a variety of vehicles can be calibrated; a non-linear quarter car model equivalent to the vehicle is identified. By performing numerical simulation using the nonlinear vehicle model, the difference in driving speed can also be calibrated. The measurement results can be exported to maps to comprehend road condition in a geographical view and to other data base systems. In addition, smartphones which can record motions, GPS data, and movies synchronously are utilized to improve VIMS. Because practical installation locations of smartphones are limited and because angular velocity responses are less subjective to difference in installation locations, VIMS is extended to utilize the pitching angular velocity. Furthermore, high frequency components of acceleration responses are analyzed to distinguish local pavement damages or joints from rough road sections. The examination of synchronously recorded movies confirmed the capability to distinguish the local conditions.

  14. Investigation of frequency-response characteristics of engine speed for a typical turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Taylor, Burt L , III; Oppenheimer, Frank L

    1951-01-01

    Experimental frequency-response characteristics of engine speed for a typical turbine-propeller engine are presented. These data were obtained by subjecting the engine to sinusoidal variations of fuel flow and propeller-blade-angle inputs. Correlation is made between these experimental data and analytical frequency-response characteristics obtained from a linear differential equation derived from steady-state torque-speed relations.

  15. Inelastic Response of Reinforced Concrete Frames to Seismic Ground Motions Having Different Characteristics

    Microsoft Academic Search

    Tian-Jian Zhu

    1989-01-01

    Observations of structural damage following recent major earthquakes have indicated that ground motion characteristics have a significant effect on the damage of building structures. An analytical study is undertaken to investigate the effect of ground motion characteristics on the inelastic response of multistorey reinforced concrete frame structures and to evaluate the seismic performance of reinforced concrete frame structures designed in

  16. Measuring the vibrational response of the mouse ear using coherently interleaved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shelton, Ryan; Gao, Simon; Oghalai, John S.; Applegate, Brian E.

    2012-01-01

    Optical coherence tomography (OCT) is becoming a popular tool for imaging morphology in the middle and inner ear. Vibratory measurements of the structures of the ear facilitate better understanding of the function and limitations of the ear. We have developed an algorithm that enables a standard spectrometer based OCT system to measure the full spectrum (90 kHz) frequency response of the mouse ear by incorporating coherently interleaved sampling, increasing the effective Nyquist rate of the system by a factor of 5+. The algorithm is evaluated by measuring the frequency response of a mouse tympanic membrane to a pure tone stimulus.

  17. Roman Catholic beliefs produce characteristic neural responses to moral dilemmas

    PubMed Central

    Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J.; Munar, Enric

    2014-01-01

    This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances—but thou shalt not kill. PMID:23160812

  18. Characteristics of wind forces and responses of rectangular tall buildings

    NASA Astrophysics Data System (ADS)

    Amin, J. A.; Ahuja, A. K.

    2014-09-01

    This paper presents the results of wind tunnel tests on rectangular building models having the same plan area and height but different side ratios of 1, 1.56, 2.25, 3.06 and 4. The models were made from perspex sheet at a geometrical scale of 1:300. The wind pressure coefficients on all the models were evaluated from pressure records measured in a closed circuit wind tunnel under boundary layer flow for wind directions of 0° to 90° at an interval of 15°. The mean responses of rectangular tall buildings having different side ratios were also evaluated from the experimentally obtained wind loads. Effectiveness of side ratio of buildings in changing the surface pressure distribution and mean responses of prototype buildings is assessed for wind directions of 0° to 90° at an interval of 15°. It is observed that the side ratio of buildings significantly affects the wind pressures on leeward and sidewalls, whereas wind pressure on windward wall is almost independent of side ratio. Further, the wind incidence angles and side ratio of the buildings significantly affect its mean displacements as well as torque.

  19. Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in Nezara viridula (L.).

    PubMed

    de Groot, Maarten; Cokl, Andrej; Virant-Doberlet, Meta

    2010-09-15

    Animals often communicate in environments with high levels of biotic noise that arises from the signals of other individuals. Although effects of background biotic noise on mate recognition and discrimination have been widely studied in air-born sound communication, little is known about incidental interference between signallers that use substrate-borne vibrational signals. In this study we investigated the ability of males of the southern green stink bug Nezara viridula (L.) (Heteroptera: Pentatomidae) to recognize conspecific female song in the presence of biotic noise originating from conspecific and heterospecific vibrational signals. We tested male responsiveness on a bean plant in playback experiments. One leaf was vibrated with conspecific female song, while to the other one we simultaneously applied either heterospecific female signal or various altered conspecific signals with different temporal parameters. We tested males in three levels of biotic noise, ranging from +6 dB to -6 dB and we compared male responsiveness in each treatment with response obtained in unilateral treatment with unaltered conspecific female calling song. Male responsiveness was reduced in the presence of heterospecific signals or when background noise from conspecific signals obscured the species-specific temporal pattern of conspecific female song. By contrast, the presence of two sources of conspecific female songs had a positive effect on male responsiveness, for as long as the signal repetition rate of perceived song did not differ from the species-specific value. In the presence of interfering background signals, searching activity was less affected than male signalling. Increased signal-to-noise ratio restored male responsiveness to the level expressed in unilateral stimulation with conspecific female song. The results are discussed with regard to male behavioural strategies for vibrational communication in a noisy environment. PMID:20802124

  20. Whole-body vibration decreases the proliferative response of TCD4+ cells in elderly individuals with knee osteoarthritis

    PubMed Central

    Tossige-Gomes, R.; Avelar, N.C.P.; Simão, A.P.; Neves, C.D.C.; Brito-Melo, G.E.A.; Coimbra, C.C.; Rocha-Vieira, E.; Lacerda, A.C.R.

    2012-01-01

    The aim of this study was to investigate the effect of adding whole-body vibration (WBV; frequency = 35 to 40?Hz; amplitude = 4?mm) to squat training on the T-cell proliferative response of elderly patients with osteoarthritis (OA) of the knee. This study was a randomized controlled trial in which the selected variables were assessed before and after 12 weeks of training. Twenty-six subjects (72 ± 5 years of age) were divided into three groups: 1) squat training with WBV (WBV, N = 8); 2) squat training without WBV (N = 10), and 3) a control group (N = 8). Women who were ?60 years of age and had been diagnosed with OA in at least one knee were eligible. The intervention consisted of 12 uninterrupted weeks of squatting exercise training performed 3 times/week. Peripheral blood mononuclear cells were obtained from peripheral blood collected before and after training. The proliferation of TCD4+ and TCD8+ cells was evaluated by flow cytometry measuring the carboxyfluorescein succinimidyl ester fluorescence decay before and after the intervention (?). The proliferative response of TCD4+ cells (P = 0.02, effect size = 1.0) showed a significant decrease (23%) in the WBV group compared to the control group, while there was no difference between groups regarding the proliferative response of TCD8+ cells (P = 0.12, effect size = 2.23). The data suggest that the addition of WBV to squat exercise training might modulate T-cell-mediated immunity, minimizing or slowing disease progression in elderly patients with OA of the knee. PMID:22948377

  1. Identification of welding residual stresses in rectangular plates using vibration responses

    Microsoft Academic Search

    A. B. Vieira Jr; D. A. Rade; A. Scotti

    2006-01-01

    A novel hybrid numerical\\/experimental identification procedure for the assessment of welding-induced residual stresses in rectangular plates is proposed and evaluated. This procedure explores the influence of the stress state on the dynamic responses of structural components, according to the so-named stress-stiffening effect. The technique consists in using a set of experimental natural frequencies of the welded plate and a mathematical

  2. Social responsibility disclosure and corporate characteristics: the case of Jordanian industrial companies

    Microsoft Academic Search

    Mishiel Said Suwaidan; Ahmad Moh'd Al-omari; Ruwaidah Hanna Haddad

    2004-01-01

    The main objectives of this paper are to evaluate social responsibility disclosure practices in the annual reports of Jordanian industrial companies and to determine the effect of certain company characteristics in explaining variation in social responsibility information found in companies' annual reports. To accomplish these objectives, a disclosure index including 37 items was applied to the annual reports of 65

  3. Plant growth in controlled environments in response to characteristics of nutrient solutions

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.

    1982-01-01

    Plant growth in controlled environments in response to characteristics of nutrient solutions is discussed. Descriptions of experimental results concerning root acclimation to temperature, root and shoot acclimation to nitrogen stress, and growth response to NH4(+) and NO3(-) nutrition are included. A preliminary model validation to changing temperatures is presented.

  4. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing requirements by increasing harvested power, shifting optimal conditioning impedance, inducing significant voltage supply fluctuations and ultimately rendering idealized sinusoidal and random analyses insufficient.

  5. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  6. Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume

    NASA Technical Reports Server (NTRS)

    Osterholt, Douglas J.; Knox, Douglas M.

    2011-01-01

    The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.

  7. Vibrational circular dichroism spectroscopy of selected oligopeptide conformations

    Microsoft Academic Search

    Timothy A Keiderling; R. A. G. D Silva; Gorm Yoder; Rina K Dukor

    1999-01-01

    Vibrational circular dichroism (VCD) has been shown to be a useful technique for characterization of the qualitative secondary structure type for linear polypeptides and oligopeptides. A brief review of characteristic spectral responses and applications is given. Since VCD is dependent on relatively short range interactions, it detects residual structure in such oligomers even if long range order is lost. VCD

  8. Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics.

    E-print Network

    Johnson, Erik A.

    1 ABSTRACT Stay cables, such as used in cable-stayed bridges, are prone to vibration due steel cables, such as are used in cable-stayed bridges and other structures, are prone to vibration in such cables, typically on the order of a fraction of a percent, is insufficient to eliminate this vibration

  9. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  10. Demonstrating the Effect of Particle Impact Dampers on the Random Vibration Response and Fatigue Life of Printed Wiring Assemblies

    NASA Technical Reports Server (NTRS)

    Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert

    2013-01-01

    In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.

  11. Theory of the distribution of the characteristic frequencies of elastic bodies and its application to problems of random vibrations

    Microsoft Academic Search

    V. V. Bolotin

    1972-01-01

    Although the concept of the distribution of characteristic frequencies arose in the consideration of mechanical models, it did not find applications in mechanics for a long time. The interest of engineers in this concept has arisen only in the course of the last decade, mainly, in connection with the influence of wide-band random loads on structural calculations, and also in

  12. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Chunchao; Xing, Chenxi; Li, Aiqun

    2014-09-01

    A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.

  13. Vibrational structure theory: new vibrational wave function methods for calculation of anharmonic vibrational energies and vibrational contributions to molecular properties.

    PubMed

    Christiansen, Ove

    2007-06-21

    A number of recently developed theoretical methods for the calculation of vibrational energies and wave functions are reviewed. Methods for constructing the appropriate quantum mechanical Hamilton operator are briefly described before reviewing a particular branch of theoretical methods for solving the nuclear Schrödinger equation. The main focus is on wave function methods using the vibrational self-consistent field (VSCF) as starting point, and includes vibrational configuration interaction (VCI), vibrational Møller-Plesset (VMP) theory, and vibrational coupled cluster (VCC) theory. The convergence of the different methods towards the full vibrational configuration interaction (FVCI) result is discussed. Finally, newly developed vibrational response methods for calculation of vibrational contributions to properties, energies, and transition probabilities are discussed. PMID:17551617

  14. Noninvasive Determination of Bone Mechanical Properties using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Steele, C. R.; Kiratli, B. J.; Martin, R. B.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical Response Tissue Analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(MRTA) and theoretical EI values for padded aluminum rods was R(exp 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal Bone Mineral Density (BMD) measurements were also made. The relationship between E(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(exp 2) = 0.947) and better than that using the older model (R(exp 2) = 0.645). EI(MRTA) and BMD are also highly correlated (R(exp 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(exp 2) = 0.915 and R(exp 2) = 0.894, respectively). This is the first biological validation of a non-invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  15. Noninvasive Determination of Bone Mechanical Properties Using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Kiratli, B. J; Steele, C. R.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(sub MRTA) and theoretical EI values for padded aluminum rods was R(sup 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal bone mineral density (BMD) measurements were also made. The relationship between EI(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(sup 2) = 0.947) and better than that using the older model (R(sup 2) = 0.645). EI(sub MRTA) and BMD are also highly correlated (R(sup 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(sup 2) = 0.915 and R(sup 2) = 0.894, respectively). This is the first biological validation of a non- invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  16. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  17. A Branched Beam-Based Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Guangcheng; Hu, Junhui

    2014-09-01

    In this paper, a strategy to utilize a branched beam system to improve the frequency response characteristic of vibration energy harvesting is demonstrated. A basic unit of the device consists of several branch beams with proof mass at their ends and one main cantilever beam with a piezoelectric component at its root and proof mass at its end. The device can utilize the resonance of the branch beams and main beam to generate multiple output voltage peaks, providing a better frequency response characteristic than that of the conventional piezoelectric vibration energy harvester. Multiple branch structure and multiple basic units with similar structures can be connected to generate more output voltage peaks in the frequency response characteristic. Only one piezoelectric component is needed in the device, which makes it competitive in the management of harvested electric energy.

  18. Ocular Vestibular Evoked Myogenic Potentials in Response to Bone-Conducted Vibration of the Midline Forehead at Fz

    Microsoft Academic Search

    S. Iwasaki; Y. E. Smulders; A. M. Burgess; L. A. McGarvie; H. G. MacDougall; G. M. Halmagyi; I. S. Curthoys

    2008-01-01

    If a patient, who is lying supine and looking upward, is given bone-conducted vibration (BCV) of the forehead at the hairline in the midline (Fz) with a clinical reflex hammer or a powerful bone conduction vibrator, short-latency surface potentials called ocular vestibular evoked myogenic potentials (oVEMP) can be recorded from just beneath the eyes. The early negative (excitatory) component (n10)

  19. Estimation of some characteristics of driver responses at freeway entrance ramps by probit analysis

    E-print Network

    LaMotte, Lynn Roy

    1966-01-01

    ESTIMATION OF SOME CHARACTERISTICS OF DRIVER RESPONSES AT FREEWAY ENTRANCE RAMPS BY PROBIT ANALYSIS A Thesis Lynn Roy LaMotte Submitted to the Graduate College of the Texas A6M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1966 Major Subject: STATISTICS ESTIMATION OF 'SOME CHARACTERISTICS OF DRIVER RESPONSES AT 'FREEWAY ENTRANCE, RAMPS BY PROBIT ANALYSIS A Thesis By Lynn Roy LaMotte Approved as to style and content by C a rman o...

  20. The effect of the contact model on the impact-vibration response of continuous and discrete systems

    NASA Astrophysics Data System (ADS)

    Brake, M. R.

    2013-07-01

    Impact is a phenomenon that is ubiquitous in mechanical design; however, the modeling of impacts in complex systems is often a simplified, imprecise process. In many high fidelity finite element simulations, an impractically large number of elements are required to model the constitutive properties of an impact event accurately. As a result, rigid body dynamics with approximate representations of the impact dynamics are commonly used. These approximations can include a constant coefficient of restitution, an artificially large penalty stiffness, or a single degree of freedom constitutive model for the impact dynamics that is specific to the type of materials involved (elastic, plastic, viscoelastic, etc.). In this paper, the effect of the contact model on the prediction of a system's dynamics is analyzed. In order to understand the effect of the impact model on the system's dynamics, simulations are conducted to investigate a single degree of freedom system, a two degrees of freedom system, and a continuous system, each with rigid stops limiting the amplitude of vibration. Five different contact models are considered: a coefficient of restitution method, a penalty stiffness method, two similar elastic-plastic constitutive models, and a dissimilar elastic-plastic constitutive model. Frequency sweeps and parametric studies show that simplified contact models can lead to incorrect assessments of the system's dynamics. In the worst case, periodic behavior can be predicted in a chaotic regime. Additionally, the choice of contact model can significantly affect the prediction of wear and damage in the system, as is evidenced by the prominence of chatter and high amplitude responses.

  1. A finite element procedure for studying the acoustic radiation of a vibrating plate

    NASA Astrophysics Data System (ADS)

    Sung, S. H.

    1982-11-01

    A finite element technique is developed for studying the acoustic radiation associated with a vibrating plate. This technique can be used to calculate the detailed distribution of acoustic pressure and acoustic intensity at a vibrating surface. The dynamic response of a plate in free and forced vibration is obtained using this finite element technique which includes the initial in-plane stress effect. The Helmhotz integral formula is used to obtain the detailed acoustic pressure distribution on the plate from the dynamic response of the plate. Various acoustic quantities such as acoustic intensity, acoustic power, and radiation efficiency can be calculated from the structural vibrations and the near-field acoustic pressures. Several examples are presented in order to show the acoustic radiation and transmission characteristics of a vibrating plate with pre-stress and with external forcing input. It is concluded that this finite element technique can be used to investigate the effects of structural stiffness and material properties on radiated noise.

  2. A Study of the Characteristics of Human-Pilot Control Response to Simulated Aircraft Lateral Motions

    NASA Technical Reports Server (NTRS)

    Cheatham, Donald C

    1954-01-01

    Report presents the results of studies made in an attempt to provide information on the control operations of the human pilot. These studies included an investigation of the ability of pilots to control simulated unstable yawing oscillations, a study of the basic characteristics of human-pilot control response, and a study to determine whether and to what extent pilot control response can be represented in an analytical form.

  3. String Vibrations

    NSDL National Science Digital Library

    Davidhazy, Andrew

    This site, by Andrew Davidhazy at the Rochester Institute of Technology, describes how to make interesting and artistic photographs of a vibrating string. Davidhazy explains how the string is vibrated, how the string is lit, and even the exposure time and the effect it has on the resulting image. Four images of the vibrating string are included.

  4. Free in-plane vibration of circular arches.

    NASA Technical Reports Server (NTRS)

    Veletsos, A. S.; Austin, W. J.; Lopes Pereira, C. A.; Wung, S.-J.

    1972-01-01

    Numerical data are presented for the natural frequencies and modes of vibration of hinged and fixed, uniform, circular arches vibrating in their own plane, and the effects of the various parameters affecting the response are analyzed. It is shown that the vibrational modes may be almost purely flexural, or almost purely extensional, or the extensional and flexural actions may be strongly coupled. The conditions of occurrence of each type of behavior are defined, and simple approximate formulas are derived; using these formulas, the free vibrational characteristics of arches may be estimated to a satisfactory degree of accuracy for most practical applications. The approach used to derive the approximate formulas may also be applied to arches having other boundary conditions, shapes, or distributions of stiffness and mass.

  5. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  6. Flow-induced vibrations-1987

    SciTech Connect

    Au-Yang, M.K.; Chen, S.S.

    1987-01-01

    This book contains 20 selections. Some of the titles are: Acoustic resonance in heat exchanger tube bundles--Part 1. Physical nature of the phenomenon; Theoretical and experimental studies on heat exchanger U-bend tube bundle vibration characteristics; Experimental model analysis of metallic pipeline conveying fluid; Leakage flow-induced vibration of an eccentric tube-in-tube slip joint; and A study on the vibrations of pipelines caused by internal pulsating flows.

  7. Migration Characteristics of Prostate Cancer Cells in Response to Epidermal Growth Factor (EGF)

    E-print Network

    Chiao, Jung-Chih

    Migration Characteristics of Prostate Cancer Cells in Response to Epidermal Growth Factor (EGF) S to the desired cell number in the cell reservoir. Growth media was added to the chemoattractant reservoir. After. The main cause of mortality is metastasis of cancer cells from primary sites to secondary sites

  8. Fast Response Characteristics in Liquid Crystal Display in Operating Mode of the Nematic Liquid Crystal

    Microsoft Academic Search

    Yu-Han Bae; Jeoung-Yeon Hwang; Kang-Woo Kim; Dae-Shik Seo

    2005-01-01

    In this study, we investigated response characteristics of liquid crystal display (LCD) with different operating mode of nematic liquid crystals (NLCs) such as 45° twisted nematic (TN), 67.3° TN and electrical controlled birefringence (ECB) on the rubbed polyimide (PI) surface with side chains. The pretilt angles generated on polyimide surfaces of the three kinds of LCD operating modes were about

  9. Characteristic of surface water resources and response to climate change in northwest of China

    Microsoft Academic Search

    Jianying Feng; Landong Sun; Hui Guo

    2007-01-01

    In this paper, the variability characteristic and response to climate change of surface water resources, such as glacier, snow, lake and runoff of rivers in northwest China are analyzed by meteorological, hydrological and remote sensing data. The results show that the melting water has been increasing while glacier has been thinning and deteriorating along with global warming. The runoff of

  10. The Association between SAT Prompt Characteristics, Response Features, and Essay Scores

    ERIC Educational Resources Information Center

    Kobrin, Jennifer L.; Deng, Hui; Shaw, Emily J.

    2011-01-01

    This study investigated the relationship of prompt characteristics and response features with essay scores on the SAT Reasoning Test. A sample of essays was coded on a variety of features regarding their length and content. Analyses included descriptive statistics and computation of effect sizes, correlations between essay features and scores, and…

  11. Characteristics of growth hormone response to the administration of growth hormone-releasing

    E-print Network

    Paris-Sud XI, Université de

    Characteristics of growth hormone response to the administration of growth hormone-releasing hormone (GRF) in the lamb B. BARENTON M. DUCLOS, J. DIAZ F. DELETANG J.-P. DULOR M. BLANCHARD, J. CHARRIER. (*) SANOFI Recherche, Montpellier. Summary. Human growth hormone releasing hormone (GRF 1-44 or GRF 1

  12. Relationships of Examinee Pair Characteristics and Item Response Similarity. ACT Research Report Series, 2012 (8)

    ERIC Educational Resources Information Center

    Allen, Jeff

    2012-01-01

    Detecting unusual similarity in the item responses of a pair of examinees usually conditions on the pair's overall test performance (e.g., raw scores). Doing this, however, often requires assumptions about the invariance of other examinee pair characteristics. In this study, we examined the appropriateness of such assumptions about selected…

  13. Surface characteristics and osteoblastic cell response to titanium-8tantalum-3neobium alloy

    NASA Astrophysics Data System (ADS)

    Cui, De-zhe; Park, Ki-Deog; Lee, Kyung-Ku; Jung, Young-Suk; Lee, Bo-Ah; Lee, Yang-Jin; Kim, Ok-Su; Chung, Hyun-Ju; Kim, Young-Joon

    2012-12-01

    In the present study, the surface properties and osteblastic responses to a titanium-8%tantalum-3%niobium (Ti-8Ta-3Nb) alloy were investigated in vitro. The surface roughness and morphology of all samples appeared similar. The surface of the Ti-8Ta-3Nb alloy was more hydrophilic than those of commercially pure titanium (Tisbnd S) and Ti-6Al-4V alloy. The Ti-8Ta-3Nb alloy had a better cellular response with regard to proliferation and ALP activity. The present study showed improved surface characteristics and osteoblastic response to the Ti-8Ta-3Nb alloy compared to Tisbnd S and Ti-6Al-4V alloy.

  14. TECHNICAL NOTE: A piezostack-based active mount for broadband frequency vibration control: experimental validation

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Bok; Sohn, Jung Woo; Choi, Sang-Min; Nguyen, Vien Quoc; Moon, Seok-Jun

    2009-09-01

    This paper presents an experimental investigation on vibration control using an active mount activated by piezostack actuators. After describing the schematic configuration and operational principle of the proposed active mount, dynamic characteristics of the rubber element and the piezostack are experimentally identified. An active mount is then manufactured using a rubber element and two piezostack elements. Prior to validating vibration control of the proposed active mount, fundamental characteristics such as resonant frequency, deflection at rated load, strength, shock and fatigue characteristics are experimentally investigated. A two-degree-of-freedom control system in which an active mount is installed with a supported mass of 100 kg is established for evaluating vibration control performance. In order to actively attenuate the vibration transmitted from the base excitation (50-1000 Hz), a negative velocity feedback controller is experimentally realized. Control responses such as mass acceleration are evaluated in both frequency and time domains.

  15. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes.

    PubMed

    Saidi, Wissam A

    2014-09-01

    Defects are ubiquitous in carbon nanotubes (CNTs), despite their large formation energies, and have astounding effects on their physicochemical properties. In this study, we employ density-functional theory (DFT) calculations to study systematically the atomic structure, stability, and characteristic vibrations of pristine and defected zigzag CNTs, where the defects are of the form of Stone-Wales (SW) and diatom vacancies (DV). The DFT optimized structures and the phonon modes are subsequently used in conjunction with a semiempirical bond-polarization model to study the nonresonant Raman spectra. For each defect type, we find two CNT structures with defects parallel or oblique to the tube axis. For the SW defects, the two structures have similar formation energies, whereas for the DV defect, only defects parallel to the tube axis are likely to exist. The results show that the defects induce a blue shift in the radial breathing mode (RBM) of metallic CNTs, whereas this mode is not shifted for semiconducting CNTs. However, the RBM shift or its Raman profile is not sensitive to the defect type. The G-band showed more sensitivity to the defects in the form of a red/blue shift in the frequency, or a partial/complete defragmentation of the G bands. PMID:24279772

  16. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste.

    PubMed

    Valenzuela Melendres, M; Camou, J P; Torrentera Olivera, N G; Alvarez Almora, E; González Mendoza, D; Avendaño Reyes, L; González Ríos, H

    2014-05-01

    Response surface methodology was used to study the effect of flaxseed flour (FS) and tomato paste (TP) addition, from 0 to 10% and 0 to 20% respectively, on beef patty quality characteristics. The assessed quality characteristics were color (L, a, and b), pH and texture profile analysis (TPA). Also, sensory analysis was performed for the assessment of color, juiciness, firmness, and general acceptance. FS addition reduced L and a values and decreased weight loss of cooked products (P<0.05). An opposite effect was observed when TP was added (P<0.05). All TPA parameters decreased when percentages of FS and TP were increased in the formulation of beef patties. Furthermore, FS and TP addition adversely affected the sensory characteristics of the cooked product (P<0.05); nevertheless, all sensory characteristics evaluated had an acceptable score (>5.6). Thus FS and TP are ingredients that can be used in beef patty preparation. PMID:24509360

  17. Using Surface Electromyography To Assess Sex Differences in Neuromuscular Response Characteristics

    PubMed Central

    Shultz, Sandra J.; Perrin, David H.

    1999-01-01

    Objective: To provide an overview of the continuum of muscular responses that typically occur with joint perturbation. The applications and limitations of surface electromyography (sEMG) in evaluating these responses are also addressed. Research applications assessing sex differences in these neuromuscular response characteristics are discussed along with suggestions for future research. Data Sources: MEDLINE was searched from 1969 through 1998. Sport DISCUS was searched from 1975 through 1998. Terms searched included “anterior cruciate ligament,” “epidemiology,” “neuromuscular control,” “neuromuscular performance,” “electromyography,” “latency,” “reflex,” “electromechanical delay,” “dynamic stability,” “intrinsic stiffness,” “short-range stiffness,” “muscle,” “mechanoreceptors,” and “reaction time.” Data Synthesis: It is widely accepted that efficient neuromuscular control is essential to dynamic joint stability and protection. Many studies have established the significant role of the muscles, and particularly the hamstrings, in providing knee stability. By observing the timing, phasing, and recruitment of reflexive muscular activation after a loading stress to the knee, we can better understand the coordinative mechanisms necessary to protect the joint and prevent ligament injury. A number of research models have employed the use of sEMG to evaluate neuromuscular responses at the knee after joint loading or perturbation. However, very few studies have specifically addressed potential sex differences in these response characteristics. Conclusions/Recommendations: From the limited research available, it appears that a sex difference may exist in some aspects of neuromuscular responses. However, further research is needed to explore these differences at the knee and their potential role as predisposing factors to the higher incidence of anterior cruciate ligament injuries in females. Future studies should examine sex differences in neuromuscular response characteristics at the knee under functional, weight-bearing conditions while controlling for training and other confounding variables. The limitations of sEMG should be considered when interpreting neuromuscular response studies. PMID:16558560

  18. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron

    2013-01-01

    Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.

  19. Fuzzy control of vibration on smart materials incorporating electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Du, Shanyi; Li, Q. L.; Wang, Duo

    1997-03-01

    The smart composite beam featuring the electrorheological (ER) fluids which is designed in this paper is composed of three kinds of materials that are structural material, damping material and sealant material. The elastodynamic frequency response characteristics of smart beam are studied in details by using experimental method. The results demonstrate clearly the ability to significantly change the vibration characteristics of beam fabricated in smart composite by changing the electric field intensity imposed on the fluid domains. Meantime, a control algorithm based on fuzzy-like logic are employed in the active vibration control of cantilevered beam featuring electrorheological fluids. The study results are shown that the beam's structural vibration can be controlled more effectively using the proposed active control rule.

  20. Antibody Response to Bacterial Antigens: Characteristics of Antibody Response to Somatic Antigens of Salmonella typhimurium

    PubMed Central

    Fukazawa, Y.; Shinoda, T.; Yomoda, T.; Tsuchiya, T.

    1970-01-01

    The character of the antibody response in the rabbit to Salmonella typhimurium somatic (O) antigen was similar to the response to each of several serotypes of Shigella flexneri O antigens, namely a predominance of production of immunoglobulin M (IgM) antibody. Lipopolysaccharide protein (LPSP) and lipopolysaccharide (LPS) fractions of Salmonella O antigen differed significantly in both quantitative and qualitative aspects of their immunogenicity. LPSP elicited high levels of agglutinins and also induced the production of a significant amount of immunoglobulin G (IgG) antibody at a late period. LPS antigen elicited low levels of agglutinins which were exclusively IgM antibody. These results suggested that the chemical nature of the antigen is one important factor in the determination of the character of the antibody response. Further, it is suggested that the protein moiety of the O antigen complex is a carrier active in allowing induction of early IgM and of late IgG antibodies; in contrast, the lipid moiety may compete with this action of the carrier protein, thereby suppressing IgG antibody in the primary stage of the antibody-forming process. PMID:16557720

  1. Health Systems' Responsiveness and Its Characteristics: A Cross-Country Comparative Analysis

    PubMed Central

    Robone, Silvana; Rice, Nigel; Smith, Peter C

    2011-01-01

    Objectives Responsiveness has been identified as one of the intrinsic goals of health care systems. Little is known, however, about its determinants. Our objective is to investigate the potential country-level drivers of health system responsiveness. Data Source Data on responsiveness are taken from the World Health Survey. Information on country-level characteristics is obtained from a variety of sources including the United Nations Development Program (UNDP). Study Design A two-step procedure. First, using survey data we derive a country-level measure of system responsiveness purged of differences in individual reporting behavior. Secondly, we run cross-sectional country-level regressions of responsiveness on potential drivers. Principal Findings Health care expenditures per capita are positively associated with responsiveness, after controlling for the influence of potential confounding factors. Aspects of responsiveness are also associated with public sector spending (negatively) and educational development (positively). Conclusions From a policy perspective, improvements in responsiveness may require higher spending levels. The expansion of nonpublic sector provision, perhaps in the form of increased patient choice, may also serve to improve responsiveness. However, these inferences are tentative and require further study. PMID:21762144

  2. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of Central Florida, Orlando, in March 2010. Several speakers at this meeting were invited to contribute to the special section in this issue. As is clear from the articles in this special section, the phenomenon of vibrations at surfaces continues to be a dynamic field of investigation. In fact, there is a resurgence of effort because the insights provided by surface dynamics are still fundamental to the development of an understanding of the microscopic factors that control surface structure formation, diffusion, reaction and structural stability. Examination of dynamics at surfaces thus complements and supplements the wealth of information that is obtained from real-space techniques such as scanning tunneling microscopy. Vibrational dynamics is, of course, not limited to surfaces. Surfaces are important since they provide immediate deviation from the bulk. They display how lack of symmetry can lead to new structures, new local atomic environments and new types of dynamical modes. Nanoparticles, large molecules and nanostructures of all types, in all kinds of local environments, provide further examples of regions of reduced symmetry and coordination, and hence display characteristic vibrational modes. Given the tremendous advance in the synthesis of a variety of nanostructures whose functionalization would pave the way for nanotechnology, there is even greater need to engage in experimental and theoretical techniques that help extract their vibrational dynamics. Such knowledge would enable a more complete understanding and characterization of these nanoscale systems than would otherwise be the case. The papers presented here provide excellent examples of the kind of information that is revealed by vibrations at surfaces. Vibrations at surface contents Poisoning and non-poisoning oxygen on Cu(410)L Vattuone, V Venugopal, T Kravchuk, M Smerieri, L Savio and M Rocca Modifying protein adsorption by layers of glutathione pre-adsorbed on Au(111)Anne Vallée, Vincent Humblot, Christophe Méthivier, Paul Dumas and Claire-Marie Pradier Relating temperature dependence of atom

  3. [The effect of whole-body vibration: an unrecognized medical problem].

    PubMed

    Bogadi-Sare, A

    1993-09-01

    Exposure to whole-body vibration is a growing concern in industry, traffic and in other branches of the economy. This harmful physical factor endangers work efficiency and human health not only at work but also in everyday life, in public transportation and even at home. In spite of increasing exposure to vibrations, our medical practice does not pay adequate attention to the health effects of whole-body vibration. The paper deals with the basic characteristics of vibration (frequency, amplitude, velocity and acceleration), its adequate evaluation (effective or weighted average value, peak values, rating and weighting procedure of vibration measurement) and exposure (vibration direction, exposure time, transmission and dissipation). In industry and traffic, vibrations present complex oscillatory motions, characterized by a wide frequency spectrum, variable amplitude and acceleration, and different directions. To assess the harmful effects of vibration, the International Organization for Standardization (ISO) has proposed three standards for acceptable human exposure to whole-body vibration: fatigue-decreased proficiency boundary, exposure limit and reduced comfort boundary. Quantitative parameters of vibration for some vehicles, and for constructional, industrial and agricultural machinery are also given. The most pronounced long-term effect of whole-body vibration is damage to the spine. The spinal region most frequently affected is the lumbar part, where spinal deformation, lumbago and sciatica can develop. The possible cause of spinal damage could be mechanical overload and metabolic changes of the intervertebral disc. Other organ systems, such as peripheral and autonomic nervous, vestibular, vascular, digestive and female reproductive systems are also liable to become affected. Risk assessment of chronic health effects is based on the appropriate evaluation of whole-body vibration exposure and individual response. Health risk increases with the intensity and duration of vibration exposure. The concomitant factors are forced sitting posture and heavy physical work. Human response to whole-body vibration depends on factors promoting the development of degenerative changes such as constitution, previous spine disease and young age. The main problems in diagnosing whole-body vibration syndrome are differentiation of vibration induced disorders from age dependent changes of the spine and lack of a specific diagnostic method for assessing those changes. Therefore, only permanent medical surveillance can guarantee proper assessment of the damage induced by whole-body vibration. For vibration exposed workers preplacement and periodic examinations are recommended. Those should include a basic medical examination and an X-ray of the spine, or at least of its lumbar part. PMID:8311700

  4. Postural response to vibration of triceps surae, but not quadriceps muscles, differs between people with and without knee osteoarthritis.

    PubMed

    Shanahan, Camille J; Wrigley, Tim V; Farrell, Michael J; Bennell, Kim L; Hodges, Paul W

    2014-08-01

    Although proprioceptive impairments are reported in knee osteoarthritis (OA), there has been little investigation of the underlying causes. Muscle spindles make an important contribution to proprioception. This study investigated whether function of quadriceps, triceps surae, and tibialis anterior muscle spindles is altered in individuals with knee OA. Thirty individuals with knee OA (17 females, 66?±?7 [mean?±?SD] years) and 30 healthy asymptomatic controls (17 females, 65?±?8 years) stood comfortably and blindfolded on a force plate. Mechanical vibration (60?Hz) was applied bilaterally over the quadriceps, triceps surae, or tibialis anterior muscles for the middle 15?s (Vibration) of a 45?s trial (preceded and followed by 15?s Baseline and Recovery periods). Two trials were recorded for each muscle site. Mean anterior-posterior displacement of centre of pressure was analysed. Although there were no differences between groups for trials with vibration applied to the quandriceps or tibialis anterior, participants with knee OA were initially perturbed more by triceps surae vibration and accommodated less to repeated exposure than controls. This indicates that people with knee OA have less potential to detect or compensate for disturbed input to triceps surae, possibly due to an inability to compensate using muscles spindles in the quadriceps muscle. PMID:24797419

  5. Experimental implementation of switching and sweeping tuneable vibration absorbers for broadband vibration control

    NASA Astrophysics Data System (ADS)

    Zilletti, Michele; Gardonio, Paolo

    2015-01-01

    This paper describes the laboratory implementation of two semi-active tuned vibration absorbers (TVAs): a switching TVA and a sweeping TVA. The two absorbers are designed to control the low frequency total flexural response of a cylindrical duct excited by a stationary broadband random force. The two TVAs are composed by a seismic mass mounted on a axial spring. Both TVAs are equipped with a relative displacement and relative velocity feedback control system, which is used to vary the characteristic stiffness and damping, that is the characteristic natural frequency and damping ratio, of the TVA. The switching TVA cyclically tunes its characteristic natural frequency and damping ratio to iteratively control the resonant responses due to three targeted flexural natural modes of the duct. Alternatively the sweeping TVA continuously varies its characteristic natural frequency and damping ratio within given ranges to blindly control the resonant responses due to the same three flexural natural modes of the duct. The paper presents both simulation and experimental results regarding the feedback loop used to iteratively or continuously tune the TVAs and about the reduction of vibration produced by the two semi-active TVAs. The simulation and the experimental results show that both TVAs effectively control the flexural response of the duct in the low frequency band, which is characterised by the resonances of the three targeted flexural natural modes of the duct.

  6. Damping phenomena in a wire rope vibration isolation system

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.; Cutchins, M. A.

    1992-01-01

    A study is presented of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators, with emphasis placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase plane trajectories, and frequency response curves are obtained. A semiempirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed, and the results are compared to experimental data. Several observations and conclusions are made about the dynamic phenomena in a typical wire rope vibration isolation system based on the experimental and semiempirical results.

  7. Multivariate analysis and prediction of wind turbine response to varying wind field characteristics based on machine learning

    E-print Network

    Stanford University

    acquisition units and an on-site server located in the wind turbine. The wind turbine has a hub height of 65 mMultivariate analysis and prediction of wind turbine response to varying wind field characteristics characteristics have a significant impact on the structural response and the lifespan of wind turbines. This paper

  8. Characteristics of invertebrates consumed by mallards and prey response to wetland flooding schedules

    Microsoft Academic Search

    Darold P. Batzer; Monica McGee; Vincent H. Resh; R. Robert Smith

    1993-01-01

    We examined characteristics of the invertebrates consumed by mallards (Anas platyrhynchos) and green-winged teals (Anas crecca) and responses of these invertebrates to manipulations of flooding date in Suisun Marsh, Solano County, CA. Numbers ofChironomus stigmaterus midge larvae (Chironomidae) andEogammarus confervicolus amphipods (Gammaridae) in mallard esophageal samples were positively correlated with abundance of these invertebrates in\\u000a wetlands. Mallards primarily consumed large

  9. Characteristics of identifying linear dynamic models from impulse response data using Prony analysis

    SciTech Connect

    Trudnowski, D.J.

    1992-12-01

    The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general ``rules-of-thumb`` for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.

  10. Characteristics of identifying linear dynamic models from impulse response data using Prony analysis

    SciTech Connect

    Trudnowski, D.J.

    1992-12-01

    The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general rules-of-thumb'' for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.

  11. Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources

    Microsoft Academic Search

    Jinmiao Lu; Chao Peng; Xiao-Jun Ji; Jiangying You; Leilei Cong; Pingkai Ouyang; He Huang

    2011-01-01

    The fermentation characteristics of Mortierella alpina were investigated in response to various nitrogen sources. Influences on nitrogen source and glucose uptake rate, mycelial\\u000a morphology of M. alpina, and pH of medium in relation to different nitrogen sources were discussed. Effects of different nitrogen sources on cell\\u000a growth, fatty acid composition, arachidonic acid (ARA), and total lipid concentration were also evaluated.

  12. Seismic response characteristics of high-rise RC wall buildings having different irregularities in lower stories

    Microsoft Academic Search

    Han-Seon Lee; Dong-Woo Ko

    2007-01-01

    Three 1:12 scale 17-story RC wall building models having different types of irregularity at the bottom two stories were subjected to the same series of simulated earthquake excitations to observe their seismic response characteristics. The first model has a symmetrical moment-resisting frame (Model 1), the second has an infilled shear wall in the central frame (Model 2), and the third

  13. Active vibration control system of smart structures based on FOS and ER actuator

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Asundi, A.

    1999-04-01

    An active vibration control system based on fiber optic sensor (FOS) and electrorheological (ER) actuator is established in this paper. A new intensity modulated fiber optic vibration sensor is developed following the face coupling theory. The experimental results show that this new type of intensity modulated fiber optic vibration sensor has higher sensitivity in measuring the vibration frequency. At the same time, experimental investigations are focused on evaluating the dynamic response characteristics of a beam fabricated with ER fluid. It is noted that the most significant change in the material properties of ER fluid is the change of material stiffness and damping which varies with the electric field intensity imposed upon the ER fluid. Finally, the structural vibration of the smart composite beam based on ER fluid, fiber optic sensor and piezoelectric transducer has been monitored and controlled actively utilizing a fuzzy-logic algorithm.

  14. The integration of multiple proprioceptive information: effect of ankle tendon vibration on postural responses to platform tilt

    Microsoft Academic Search

    Vassilia Hatzitaki; Marousa Pavlou; Adolfo M. Bronstein

    2004-01-01

    Previous studies have looked at co-processing of multiple proprioceptive inputs but few have investigated the effect of separate dynamic and tonic predominantly proprioceptive disruptions applied concurrently at the same segment. The purpose of the present study was to investigate how simultaneous ankle tendon vibration, a tonic stimulus, with a dynamic toes-up (TU) or toes-down (TD) platform perturbation (1) affects postural

  15. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data. A simple two degree of freedom system is shown and the governing equations for basic force limiting results for this system are reviewed. The design and results of the shuttle vibration forces (SVF) experiments are reviewed. The Advanced Composition Explorer (ACE) also was used to validate force limiting. Test instrumentation and supporting equipment are reviewed including piezo-electric force transducers, signal processing and conditioning systems, test fixtures, and vibration controller systems. Several examples of force limited vibration testing are presented with some results.

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Microsoft Academic Search

    Martin E. Cobern

    2004-01-01

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues

  17. Vibrational Coupling

    SciTech Connect

    None

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  18. Good Vibrations

    NSDL National Science Digital Library

    OMSI

    2004-01-01

    In this activity, learners experiment with their voices and noisemakers to understand the connections between vibrations and the sounds created by those vibrations. This resource includes three quick demonstration activities that can be used independently or as a group to introduce learners to the basic elements of sound.

  19. A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the Brussels Region.

    PubMed

    Kouroussis, G; Pauwels, N; Brux, P; Conti, C; Verlinden, O

    2014-06-01

    Nowadays, damage potentially caused by passing train in dense cities is of increasing concern and restricts improvement to the interconnection of various public transport offers. Although experimental studies are common to quantify the effects of noise and vibration on buildings and on people, their reach is limited since the causes of vibrations can rarely be deduced from data records. This paper presents the numerical calculations that allow evaluating the main contributions of railway-induced ground vibrations in the vicinity of buildings. The reference case is the Brussels Region and, more particularly, the T2000 tram circulating in Brussels city. Based on a pertinent selection of the vibration assessment indicators and a numerical prediction approach, various results are presented and show that the free-field analysis is often improperly used in this kind of analysis as the interaction of soil and structure is required. Calculated high ground vibrations stem from singular rail surface defects. The use of resilient wheels is recommended in order to reduce the ground-borne noise and vibration to permissible values. PMID:23786851

  20. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7?dB reductions of the global flexural vibration of a rectangular plate between 20 and 120?Hz. PMID:24180774

  1. Performance of some coupling methods for blast vibration monitoring

    NASA Astrophysics Data System (ADS)

    Segarra, P.; Sanchidrián, J. A.; Castedo, R.; López, L. M.; del Castillo, I.

    2015-01-01

    Field guidelines and recommendations for blasting vibration monitoring on a hard surface, suggest that the geophone mount should be coupled to the ground in a way that depends on the anticipated vibration level. However, the quantitative performance of the coupling method is basically unknown. In order to investigate this, the ground-to-mount coupling transmissibility (i.e. ratio of the response of the geophones mount to the rock motion, as a function of frequency) was measured between 16 and 200 Hz in 43 tests using a vibration exciter. The geophone mounts were freely placed, hold with a sandbag and anchored on granite. Free placed mounts applied outside the suggested range of vibrations (i.e. frequencies above 50-70 Hz at 5 mm/s) lead to the largest expected errors (up to 7.5 dB). Distortion is still significant (1.02 dB), though to a minor degree, at lower levels where this method is recommended. Sandbagging limits the maximum expected error to 1.6 dB, but it is ranked as the worst method irrespective of the vibration level and the sandbag planting at frequencies below 40 Hz. Anchoring appears as the only analyzed method that achieves a stiff rock-to-mount coupling, ensuring consistent measurements for the frequencies commonly found in blasting independently of the vibration level and the mount characteristics.

  2. Vibration modal analysis using all-optical photorefractive processing

    SciTech Connect

    Hale, T.; Telschow, K.

    1996-12-31

    A new experimental method for vibration modal analysis based on all- optical photorefractive processing is presented. The method utilizes an optical lock-in approach to measure phase variations in light scattered from optically rough, continuously vibrating surfaces. In this four-wave mixing technique, all-optical processing refers to mixing the object beam containing the frequency modulation due to vibration with a single frequency modulated pump beam in the photorefractive medium that processes the modulated signals. This allows for simple detection of the conjugate wavefront image at a CCD. The conjugate intensity is shown to be a function of the first-order ordinary Bessel function and linearly dependent on the vibration displacement induced phase. Furthermore, the results demonstrate the unique capabilities of the optical lock-in vibration detection technique to measure vibration signals with very narrow bandwidth (< 1 Hz) and high displacement sensitivity (sub-Angstrom). This narrow bandwidth detection can be achieved over a wide frequency range from the photorefractive response limit to the reciprocal of the photoinduced carrier recombination time. The technique is applied to determine the modal characteristics of a rigidly clamped circular disc from 10 kHz to 100 kHz.

  3. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  4. Granular metamaterials for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  5. Dynamic response characteristics of dual flow-path integrally bladed rotors

    NASA Astrophysics Data System (ADS)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  6. Role of growth temperature on the frequency response characteristics of pentacene-based organic devices

    NASA Astrophysics Data System (ADS)

    Shao, Yayun; Zhang, Yang; He, Wenqiang; Liu, Chuan; Minari, Takeo; Wu, Sujuan; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.

    2015-03-01

    The ac frequency response characteristics (FRC) of organic thin film transistors and metal-insulator semiconductor diodes were highly improved by controlling the morphology and electrical characteristics of semiconducting pentacene films. The devices with films grown at 50 °C show much higher cutoff frequency and better frequency stability of flat-band voltage, as compared to those with films grown at other temperatures below or above. The improvement mainly originates from the maximum field effect carrier mobility of 0.78 cm2 V?1 s?1 and a small metal/organic contact resistance (Rc) obtained in the optimum thin film transistors. Our results indicate growth temperature precisely tunes the film microstructure and metal/semiconductor interface, which together determine the FRC of pentacene-based organic devices.

  7. Point Response Characteristics for the CERES/EOS-PM, FM3 & FM4 instruments.

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Smith, G. Louis; Lee, Robert B., III; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1999-01-01

    This paper describes the point source functions (PSF s) of the Clouds and the Earth s Radiant Energy System (CERES,) Earth Observing System (EOS,) afternoon platform (PM,) Flight Model 3 (FM3,) and Flight Model 4 (FM4) scanning instruments. The PSF (also known as the Point Response Function, or PRF) is vital to the accurate geo-location of the remotely sensed radiance measurements acquired by the instrument. This paper compares the characteristics of the FM3 and FM4 instruments with the earlier Proto Flight Model (PFM) on the Tropical Rainfall Measuring Mission (TRMM) platform, and the FM1 and FM2 Models on the EOS morning orbiting (AM) platform, which has recently been renamed "Terra". All of the PSF s were found to be quite comparable, and the previously noted "spreading" characteristic of the window (water vapor) channel PSF is analyzed Keywords: PSF, PRF, CERES, TRMM, EOS, Earth Radiation Budget

  8. Research and optimization of the ESD response characteristic in a ps-LDMOS transistor

    NASA Astrophysics Data System (ADS)

    Hao, Wang; Siyang, Liu; Weifeng, Sun; Tingting, Huang

    2014-01-01

    The ESD response characteristic in a p-type symmetric lateral DMOS (ps-LDMOS) has been investigated. The experimental results show that the ps-LDMOS has weak ESD robustness due to an absence of the “snapback" characteristic. In addition, the location of the hot spot changes little for the special device. The method for reducing the lattice temperature of the hot spot can be used to enhance the ESD capacity of the ps-LDMOS, thereby, a novel and easily-achievable ps-LDMOS structure with a p-type lightly doped drain (p-LDD) has been proposed. The special region p-LDD lowers the electric field at the edge of the poly gate, making the whole distribution of the surface electric field more uniform. Therefore, the ESD robustness is improved two times and no obvious change of other electric parameters is introduced.

  9. Discomfort criteria for single-axis vibrations

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.; Clevenson, S. A.

    1979-01-01

    Experimental investigations were conducted to determine the fundamental relationships governing human subjective discomfort response to single-axis vibrations. The axes investigated were vertical, lateral, longitudinal, roll, and pitch, and the vibrations used were both sinusoidal and random in nature. Results of these investigations provided the basis for: (1) development of a scale of passenger discomfort that is common to all axes of vibration; and (2) generation of discomfort criteria for each axis of each axis and for both types of vibration. Furthermore, empirical equations describing discomfort responses within each axis of vibration are included.

  10. Vibration Labs to Help Achieve a Resonance in Learning

    NSDL National Science Digital Library

    Cornwell, Philip

    A sequence of laboratories has been designed and implemented in an undergraduate course in mechanical vibrations to introduce students to experimental aspects of vibrations and experimental modal analysis. Unfortunately, undergraduate vibration courses, especially if they do not have a lab associated with them, are often perceived by many students to be courses in differential equations. By exposing students to vibration measurement instrumentation such as accelerometers and dynamic signal analyzers, and by allowing them to take experimental data, calculate frequency response functions, and identify system parameters and mode shapes, student learning and motivation is enhanced. One characteristic of the labs described in this paper, in contrast to other vibrations labs discussed in the literature, is the way each lab builds upon the previous one and the fact students test real engineering structures. The initial labs in the course use Electronic Control Products (ECP) hardware and introduce the idea of frequency response functions (FRFs) and system identification. After students are familiar with these ideas, they progress to using PHOTON IIs (a 32 bit, 4 channel data acquisition system), RT Pro for data acquisition and signal processing, and DIAMOND for system identification and mode shape animation. In this paper the labs will be described and assessment results presented as to their efficacy.

  11. Effect of handle size and hand-handle contact force on the biodynamic response of the hand-arm system under z h-axis vibration

    NASA Astrophysics Data System (ADS)

    Marcotte, P.; Aldien, Y.; Boileau, P.-É.; Rakheja, S.; Boutin, J.

    2005-05-01

    The influences of the handle size and of the hand forces exerted on a vibrating tool handle on the driving-point mechanical impedance (DPMI) response of the human hand-arm system have been investigated through laboratory measurements performed on seven adult male subjects. Measurements were performed with three instrumented cylindrical handles with different diameters (30, 40 and 50 mm) exposed to two different levels of broadband random vibration (2.5 and 5.0 m/s 2) along the z h axis, while the variations in the hand forces were realized through nine different combinations of grip (10, 30 and 50 N) and push (25, 50 and 75 N) forces. The static hand-handle contact forces were also evaluated for each combination of grip and push forces, and each handle size through measurements of pressure distribution at the hand-handle interface. The results have shown that the average contact force is a linear combination of the push and grip forces, while the contribution due to grip force is considerably larger than the push force and dependent upon the handle size. The hand-handle coupling force, as defined in ISO/WD-15230, was further evaluated by summing the grip and push forces, which is independent of the handle size. The results have shown that the DPMI magnitude tends to increase with an increase in both the grip and push forces at frequencies above 25 Hz, while the increase in DPMI magnitude was better correlated with the coupling force below 200 Hz. A better correlation with the contact force, however, was attained at frequencies above 200 Hz, suggesting a stronger dependence on the grip force at higher frequencies. The DPMI magnitude response was also found to be influenced by the handle diameter. Increasing the handle size yielded higher peak DPMI magnitude response, specifically under medium to high hand-handle coupling forces (30 N grip and 50 N push; 50 N grip and 75 N push).

  12. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  13. An experimental investigation of dual-resonant and non-resonant responses for vortex-induced vibration of a long slender cylinder

    NASA Astrophysics Data System (ADS)

    Wu, XiaoDong; Ge, Fei; Hong, YouShi

    2014-01-01

    Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations (VIV) of a long slender cylinder. The cylinder has a diameter of 10mm and a length of 3.31 m, giving an aspect ratio of 331. The cylinder was towed by a carriage with the velocity up to 1.5 m/s, with the Reynolds number varying from 2500 to 38000. Three different weights were used to provide the initial tension. Dual resonance means that resonance occurs simultaneously in both the cross-flow (CF) and in-line (IL) directions. The experiments were conducted in two stages. At the first stage, dual-resonant dynamic features of the cylinder subjected to vortex-induced excitation were investigated. The features of CF and IL vibration amplitude, motion orbits, phase angle differences, dominant frequencies and mode order numbers are presented. At the second stage of the experiments, particular emphasis was placed on non-resonant dynamic features. The variation of multi-mode modal displacement amplitudes was investigated in detail.

  14. Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C{sub 60}

    SciTech Connect

    Yang, Dezhi; Xu, Kai; Zhou, Xiaokang; Wang, Yanping; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-06-28

    We studied the transient response characteristics of organic photodetectors composing of high mobility materials of rubrene and C{sub 60}, respectively, as donor and acceptor. It was found that the response speed was limited by the delay time of both exciton diffusion and transit, and an anomalous phenomenon that the bandwidth decreases as the reverse bias increases was found for the first time. The investigation of frequency dependence at different device structures and light excitations demonstrated that the light absorption of rubrene prevents the photodetector from obtaining a fast response. With the help of magnetic field effect study, it was clearly elucidated that the slow diffusion time of the long lifetime triplet excitons generated from singlet fission in rubrene limited the bandwidth of the device. Moreover, the simulation of the response of photodetector under transient and steady state by exciton transport-diffusion equation showed that the exciton dissociation efficiency in rubrene increases more quickly than that in C{sub 60}, which should account for the negative dependence of bandwidth on the reverse bias in rubrene-based device.

  15. Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60

    NASA Astrophysics Data System (ADS)

    Yang, Dezhi; Xu, Kai; Zhou, Xiaokang; Wang, Yanping; Ma, Dongge

    2014-06-01

    We studied the transient response characteristics of organic photodetectors composing of high mobility materials of rubrene and C60, respectively, as donor and acceptor. It was found that the response speed was limited by the delay time of both exciton diffusion and transit, and an anomalous phenomenon that the bandwidth decreases as the reverse bias increases was found for the first time. The investigation of frequency dependence at different device structures and light excitations demonstrated that the light absorption of rubrene prevents the photodetector from obtaining a fast response. With the help of magnetic field effect study, it was clearly elucidated that the slow diffusion time of the long lifetime triplet excitons generated from singlet fission in rubrene limited the bandwidth of the device. Moreover, the simulation of the response of photodetector under transient and steady state by exciton transport-diffusion equation showed that the exciton dissociation efficiency in rubrene increases more quickly than that in C60, which should account for the negative dependence of bandwidth on the reverse bias in rubrene-based device.

  16. Nonlinear response and failure characteristics of internally pressurized composite cylindrical panels

    NASA Technical Reports Server (NTRS)

    Boitnott, R. L.; Johnson, E. R.; Starnes, J. H.

    1985-01-01

    Results of an experimental and analytical study of the nonlinear response and failure characteristics of internally pressurized 4- to 16-ply-thick graphite-epoxy cylindrical panels are presented. Specimens with clamped boundaries simulating the skin between two frames and two stringers of a typical transport fuselage were tested to failure. Failure results of aluminum specimens are compared with the graphite-epoxy test results. The specimens failed at their edges where the local bending gradients and interlaminar stresses are maximum. STAGS nonlinear two-dimensional shell analysis computer code results are used to identify regions of the panels where the response is independent of the axial coordinate. A geometrically nonlinear one-dimensional cylindrical panel analysis was derived and used to determine panel response and interlaminar stresses. Inclusion of the geometric nonlinearity was essential for accurate prediction of panel response. The maximum stress failure criterion applied to the predicted tensile stress in the fiber direction agreed best with the experimentally determined first damage pressures.

  17. Comparison of aortic and carotid baroreflex stimulus-response characteristics in humans

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Querry, R. G.; Fadel, P. J.; Weiss, M. W.; Olivencia-Yurvati, A.; Shi, X.; Raven, P. B.

    2001-01-01

    In order to characterize the stimulus-response relationships of the arterial, aortic, and carotid baroreflexes in mediating cardiac chronotropic function, we measured heart rate (HR) responses elicited by acute changes in mean arterial pressure (MAP) and carotid sinus pressure (CSP) in 11 healthy individuals. Arterial (aortic + carotid) baroreflex control of HR was quantified using ramped changes in MAP induced by bolus injection of phenylephrine (PE) and sodium nitroprusside (SN). To assess aortic-cardiac responses, neck pressure (NP) and suction (NS) were applied during PE and SN administration, respectively, to counter alterations in CSP thereby isolating the aortic baroreflex. Graded levels of NP and NS were delivered to the carotid sinus using a customized neck collar device to assess the carotid-cardiac baroreflex, independent of drug infusion. The operating characteristics of each reflex were determined from the logistic function of the elicited HR response to the induced change in MAP. The arterial pressures at which the threshold was located on the stimulus-response curves determined for the arterial, aortic and carotid baroreflexes were not significantly different (72+/-4, 67+/-3, and 72+/-4 mm Hg, respectively, P > 0.05). Similarly, the MAP at which the saturation of the reflex responses were elicited did not differ among the baroreflex arcs examined (98+/-3, 99+/-2, and 102+/-3 mm Hg, respectively). These data suggest that the baroreceptor populations studied operate over the same range of arterial pressures. This finding indicates each baroreflex functions as both an important anti-hypotensive and anti-hypertensive mechanism. In addition, this investigation describes a model of aortic baroreflex function in normal healthy humans, which may prove useful in identifying the origin of baroreflex dysfunction in disease- and training-induced conditions.

  18. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  19. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  20. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  1. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates.

    PubMed Central

    Xu, D; Martin, C; Schulten, K

    1996-01-01

    Molecular dynamics simulations have been carried out to study the J625 and K590 intermediates of bacteriorhodopsin's (bRs) photocycle starting from a refined structure of bR568. The coupling between the electronic states of retinal and the protein matrix is characterized by the energy difference delta E(t) between the excited state and the ground state to which the protein contributes through the Coulomb interaction. Our simulations indicate that the J625 intermediate is related to a polarization of the protein matrix due to the brief (200 fs) change of retinal's charge distribution in going to the excited state and back to the ground state, and that the rise time of the K590 intermediate is determined by vibrational cooling of retinal. Images FIGURE 1 PMID:8770221

  2. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres

    NASA Astrophysics Data System (ADS)

    Yin, Jianbo; Shui, Yongjun; Dong, Yuezhen; Zhao, Xiaopeng

    2014-01-01

    Electric field-induced particle polarization is essential to the electro-responsive electrorheological (ER) effect of particle suspensions. In this work, we use graphene oxide (GO) as a soft and polar coating shell to prepare GO-wrapped titania dielectric microspheres for use as the dispersal phase of an ER suspension. Under a DC electric field, the ER characteristic of GO-wrapped titania microspheres dispersed in silicone oil is investigated by rheological tests, and then compared with that of a suspension of bare titania microspheres. The results show that the suspension of GO-wrapped titania microspheres possesses an enhanced ER characteristic. Its field-induced shear yield stress and storage modulus are much higher than those of the suspension of bare titania microspheres. The soft and polar GO shell is regarded as the origin of the ER enhancement. Dielectric analysis indicates that wrapping GO can enhance the interfacial polarization and thus improve the ER characteristics of titania microspheres. Wrapping GO onto the surface of titania microspheres can also reduce the particle sedimentation velocity of the suspension.

  3. Individual characteristics and response to Contingency Management treatment for cocaine addiction.

    PubMed

    García-Fernández, Gloria; Secades-Villa, Roberto; García-Rodríguez, Olaya; Alvarez-López, Heli; Sánchez-Hervás, Emilio; Fernández-Hermida, José Ramón; Fernández-Artamendi, Sergio

    2011-02-01

    Voucher-based contingency management (CM) research has demonstrated efficacy for treating cocaine addiction, but few studies have examined associations between individual baseline characteristics and response to CM treatments. The aim of this study, involving 50 cocaine outpatients receiving CM for cocaine addiction, was to assess the impact of baseline characteristics on abstinence outcomes after six months of treatment. Patients who were abstinent after six months of treatment accounted for 58% of the sample. Patients with higher scores on the Alcohol area of the EuropASI and patients that were non-abstinent during the first month of treatment were less likely to achieve abstinence. These outcome predictors have implications both for treatment research and for clinical practice. Patients who do not respond early to treatment may need a more intensive intervention, and concomitant problematic alcohol use should be detected and treated. The remaining baseline variables examined were not statistically significant predictors of abstinence. This finding is important for the generalizability of CM across the range of individual characteristics of treatment-seeking cocaine abusers. PMID:21266151

  4. Clinical Characteristics, Response to Therapy, and Survival of African American Patients Diagnosed With Chronic Lymphocytic Leukemia

    PubMed Central

    Falchi, Lorenzo; Keating, Michael J.; Wang, Xuemei; Coombs, Catherine C.; Lanasa, Mark C.; Strom, Sara; Wierda, William G.; Ferrajoli, Alessandra

    2015-01-01

    Background Little is known regarding racial disparities in characteristics and outcomes among patients with chronic lymphocytic leukemia (CLL). Methods The characteristics and outcomes of untreated African American (AA) patients with CLL (n=84) were analyzed and compared with a reference nonblack (NB) patient population (n=1571). Results At the time of presentation, AA patients had lower median hemoglobin levels (12.9 g/dL vs 13.7 g/dL), higher ?2 microglobulin levels (2.7 mg/dL vs 2.4 mg/dL), greater frequency of constitutional symptoms (27% vs 10%), unmutated immunoglobulin heavy-chain variable region (IGHV) mutation status (65% vs 47%), ?-chain-associated protein kinase 70 (ZAP70) expression (58% vs 32%), and deletion of chromosome 17p or chromosome 11q (28% vs 17%; P ? 02 for each comparison). Fifty-one percent of AA patients and 39% of NB patients required first-line therapy and 91% and 88%, respectively, received chemoimmunotherapy. Overall response rates to treatment were 85% for AA patients and 94% for NB patients (P=.06); and the complete response rates were 56% and 58%, respectively (P=.87). The median survival of AA patients was shorter compared with that of NB patients (event-free survival: 36 months vs 61 months; P=.007; overall survival: 152 months vs not reached; P=.0001). AA race was an independent predictor of shorter event-free and overall survival in multivariable regression models. Conclusions The current results indicated that AA patients with CLL have more unfavorable prognostic characteristics and shorter survival compared with their NB counterparts. PMID:24022787

  5. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    USGS Publications Warehouse

    Krauss, K.W.; Twilley, R.R.; Doyle, T.W.; Gardiner, E.S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings. ?? 2006 Heron Publishing.

  6. Physiological responses and characteristics of table tennis matches determined in official tournaments.

    PubMed

    Zagatto, Alessandro M; Morel, Erika A; Gobatto, Claudio A

    2010-04-01

    The purpose of this study was to verify the physiological responses and the match characteristics of table tennis and also to compare these responses in 2 different performance-level athletes from official tournaments. Twenty male table tennis players (12 regional experience-RP and 8 national and international experience-NP) were participants in the study. Blood lactate concentration ([LAC]) and heart rate (HR) were measured as physiological parameters in 21 official table tennis matches, and other 12 matches had recorded the duration of rally (DR), rest time, effort and rest ratio (E:R), total playing time (TPT), effective playing time (EPT), and frequency of shots by video analyses. The [LAC] verified in all matches was 1.8 mmol.L (+/-0.8), whereas the [LAC] peak was 2.2 mmol.L (+/-0.8). There were no significant differences between the 2 groups (p > 0.05) in both parameters. The HR was 164 b.min (+/-14), corresponding to 81.2% (+/-7.4) of the predicted maximum HR. As characteristics of the matches, the DR corresponded to 3.4 seconds (+/-1.7), rest time to 8.1 seconds (+/-5.1), E:R to 0.4 (+/-0.2), TPT to 970.5 seconds (+/-336.1), EPT to 44.3% (+/-23.7), and frequency of shots to 35.3 balls.min (+/-7.7). Among groups, the rest time was lower in RP than in NP. Consistently, the E:R and EPT were higher in RP than in NP (p < 0.05). The results suggest that table tennis matches present the aerobic system as a principal output energy, the phosphagenic system being the most important during efforts. The information pertaining to the physiological profile and the characteristics of table tennis should be used by coaches planning physical training and specific exercise prescriptions aiming at achieving maximal sport performance. PMID:20300034

  7. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  8. The Effects of Impact Vibration on Peripheral Blood Vessels and Nerves

    PubMed Central

    KRAJNAK, Kristine M.; WAUGH, Stacey; JOHNSON, Claud; MILLER, G. Roger; XU, Xueyan; WARREN, Christopher; DONG, Ren G.

    2013-01-01

    Research regarding the risk of developing hand-arm vibration syndrome after exposure to impact vibration has produced conflicting results. This study used an established animal model of vibration-induced dysfunction to determine how exposure to impact vibration affects peripheral blood vessels and nerves. The tails of male rats were exposed to a single bout of impact vibration (15 min exposure, at a dominant frequency of 30?Hz and an unweighted acceleration of approximately 345 m/s2) generated by a riveting hammer. Responsiveness of the ventral tail artery to adrenoreceptor-mediated vasoconstriction and acetylcholine-mediated re-dilation was measured ex vivo. Ventral tail nerves and nerve endings in the skin were assessed using morphological and immunohistochemical techniques. Impact vibration did not alter vascular responsiveness to any factors or affect trunk nerves. However, 4 days following exposure there was an increase in protein-gene product (PGP) 9.5 staining around hair follicles. A single exposure to impact vibration, with the exposure characteristics described above, affects peripheral nerves but not blood vessels. PMID:24077447

  9. Frequency response characteristics of whole body autoregulation of blood flow in rats.

    PubMed

    Stauss, Harald M; Rarick, Kevin R; Deklotz, Richard J; Sheriff, Don D

    2009-05-01

    Previously, we demonstrated that very low-frequency (VLF) blood pressure variability (BPV) depends on voltage-gated L-type Ca(2+)-channels, suggesting that autoregulation of blood flow and/or myogenic vascular function significantly contributes to VLF BPV. To further substantiate this possibility, we tested the hypothesis that the frequency response characteristic of whole body autoregulation of blood flow is consistent with the frequency range of VLF BPV (0.02-0.2 Hz) in rats. In anesthetized rats (n = 11), BPV (0.016-0.5 Hz) was induced by computer-regulated cardiac pacing while blood pressure, heart rate, and cardiac output (CO) were recorded during control conditions (NaCl, 1 ml/h iv) and during alpha(1)-adrenergic receptor stimulation (phenylephrine, 1 mg.ml(-1).h(-1) iv) that has been reported to facilitate myogenic vascular function. Baroreceptor-heart rate reflex responses were elicited to confirm a functional baroreflex despite anesthesia. During control conditions, transfer function analyses between mean arterial pressure (MAP) and CO, and between MAP and total vascular conductance (CO/MAP) indicated autoregulation of blood flow at 0.016 Hz, passive vascular responses between 0.033 and 0.2 Hz, and vascular responses compatible with baroreflex-mediated mechanisms at 0.333 and 0.5 Hz. Stimulation of alpha(1)-adrenergic receptors extended the frequency range of autoregulation of blood flow to frequencies up to 0.033 Hz. In conclusion, depending on sympathetic vascular tone, whole body autoregulation of blood flow operates most effectively at frequencies below 0.05 Hz. This frequency range overlaps with the lower end of the frequency band of VLF BPV in rats. Baroreceptor reflex-like mechanisms contribute to LF (0.2-0.6 Hz) but not VLF BPV-induced vascular responses. PMID:19252087

  10. 3D Analysis of Structural Response Monitored Using Integrated GPS and Accelerometer System

    Microsoft Academic Search

    Xiaojing Li; Chris Rizos; Linlin Ge; Eliathamby Ambikairajah

    Structural responses to severe loads such as due to typhoons and earthquakes are very complicated, with nonlinear and non-stationary characteristics. When external forces are applied to the structure, vibrations of different frequencies and magnitudes are excited. If any of the vibrations cannot be damped within a reasonable period of time, damage to the structure is inevitable. The damage would cause

  11. Application of 3D Time-frequency Analysis in Monitoring Full-scale Structural Response

    Microsoft Academic Search

    Xiaojing Li; Chris Rizos; Linlin Ge; Eliathamby Ambikairajah

    Structural responses to severe loads such as due to typhoons and earthquakes are very complicated, with nonlinear and non-stationary characteristics. When external forces are applied to the structure, vibrations of different frequencies and magnitudes are excited. If any of the vibrations cannot be damped within a reasonable period of time, damage to the structure is inevitable. The damage would cause

  12. The genesis of torsional drillstring vibrations

    SciTech Connect

    Brett, J. (Oil and Gas Consultants International Inc., Tulsa, OK (US))

    1992-09-01

    Inherent drilling characteristics of polycrystalline diamond compact (PDC) bits alone can be sufficient to excite severe torsional drillstring vibrations. The work presented in this paper augments previous findings that torsional vibrations can result from the drilling characteristics of the bit itself. Laboratory and field torsional measurements are compared with model results to show that the observed vibrations can be explained by a reduction in PDC bit torque as rotary speed increases. These torsional vibrations are important because they can cause drillpipe fatigue and may be severe enough to damage the bit. The model also is used to pinpoint possible solutions to the problem.

  13. Apparatus and method of preloading vibration-damping bellows

    DOEpatents

    Cutburth, Ronald W. (Tracy, CA)

    1988-01-01

    An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.

  14. Study on DFIG wind turbines control strategy for improving frequency response characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu

    2011-12-01

    The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.

  15. Study on DFIG wind turbines control strategy for improving frequency response characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu

    2012-01-01

    The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.

  16. Monte Carlo calculation of the energy response characteristics of a RadFET radiation detector

    NASA Astrophysics Data System (ADS)

    Belicev, P.; Spasic Jokic, V.; Mayer, S.; Milosevic, M.; Ilic, R.; Pesic, M.

    2010-07-01

    The Metal -Oxide Semiconductor Field-Effect-Transistor (MOSFET, RadFET) is frequently used as a sensor of ionizing radiation in nuclear-medicine, diagnostic-radiology, radiotherapy quality-assurance and in the nuclear and space industries. We focused our investigations on calculating the energy response of a p-type RadFET to low-energy photons in range from 12 keV to 2 MeV and on understanding the influence of uncertainties in the composition and geometry of the device in calculating the energy response function. All results were normalized to unit air kerma incident on the RadFET for incident photon energy of 1.1 MeV. The calculations of the energy response characteristics of a RadFET radiation detector were performed via Monte Carlo simulations using the MCNPX code and for a limited number of incident photon energies the FOTELP code was also used for the sake of comparison. The geometry of the RadFET was modeled as a simple stack of appropriate materials. Our goal was to obtain results with statistical uncertainties better than 1% (fulfilled in MCNPX calculations for all incident energies which resulted in simulations with 1 - 2×109 histories.

  17. Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures.

    PubMed

    Bartnikowski, Michal; Klein, Travis J; Melchels, Ferry P W; Woodruff, Maria A

    2014-07-01

    Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (? 45% to ? 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment. PMID:24473931

  18. Theoretical and experimental study on characteristics of slow response type superconducting generator for high harmonic armature current

    Microsoft Academic Search

    Orie Sakamoto; Toshihide Nakano; Tanzo Nitta; Hideyuki Kameda; Teruhisa Kumano; Minoru Asada; Akifumi Izumi

    2004-01-01

    Superconducting generators (SCG's) are considered to have high tolerance for harmonic currents. To confirm the effects, some experiments on characteristics of a slow response excitation type SCG for harmonic armature currents were carried out by use of a real-time power system simulator. Furthermore, to analyze the results, analytical expressions on the eddy currents of the slow response type SCG were

  19. Vibration analysis and experiment of the helicopter rotor test stand transmission

    Microsoft Academic Search

    Su Xunwen; Wang Shaoping; Zhu Dongmei

    2011-01-01

    The transmission vibration characteristics of the helicopter test stand was analyzed using the transfer matrix method, including the torsional vibration and the lateral vibration. The torsional vibration modal frequencies and the modal shapes of each order were obtained by analyzing the torsional vibration of the rotor test stand transmission; What's more, each order natural frequency and the relationship between the

  20. The sense of flutter-vibration evoked by stimulation of the hairy skin of primates: Comparison of human sensory capacity with the responses of mechanoreceptive afferents innervating the hairy skin of monkeys

    Microsoft Academic Search

    Michael M. Merzenich; Thomas Harrington

    1969-01-01

    We have studied the response properties of peripheral myelinated fibers ending in the hairy skin of the Rhesus monkey, activated by sinusoidal mechanical stimulation. In parallel experiments we measured thresholds of the sensations evoked in man by identical stimuli, delivered under similar conditions to corresponding areas of the hairy skin. We found that the sense of low frequency vibration (i.

  1. Vibration absorber for reduction of the in-plane vibration in an optical disk drive

    Microsoft Academic Search

    Jintai Chung

    2004-01-01

    A new type of vibration absorber is developed to reduce the in-plane vibration of the feeding deck system in an optical disk drive. In order to derive the equations of motion for the feeding deck system with the absorbers, a vibration model is established. After the frequency response function is obtained from the equations, the effects of absorber mass, stiffness

  2. TLR7- and TLR9-Responsive Human B Cells Share Phenotypic and Genetic Characteristics.

    PubMed

    Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-04-01

    B cells activated by nucleic acid-sensing TLR7 and TLR9 proliferate and secrete immune globulins. Memory B cells are presumably more responsive due to higher TLR expression levels, but selectivity and differential outcomes remain largely unknown. In this study, peripheral blood human B cells were stimulated by TLR7 or TLR9 ligands, with or without IFN-?, and compared with activators CD40L plus IL-21, to identify differentially responsive cell populations, defined phenotypically and by BCR characteristics. Whereas all activators induced differentiation and Ab secretion, TLR stimulation expanded IgM(+) memory and plasma cell lineage committed populations, and favored secretion of IgM, unlike CD40L/IL-21, which drove IgM and IgG more evenly. Patterns of proliferation similarly differed, with CD40L/IL-21 inducing proliferation of most memory and naive B cells, in contrast with TLRs that induced robust proliferation in a subset of these cells. On deep sequencing of the IgH locus, TLR-responsive B cells shared patterns of IgHV and IgHJ usage, clustering apart from CD40L/IL-21 and control conditions. TLR activators, but not CD40L/IL-21, similarly promoted increased sharing of CDR3 sequences. TLR-responsive B cells were characterized by more somatic hypermutation, shorter CDR3 segments, and less negative charges. TLR activation also induced long positively charged CDR3 segments, suggestive of autoreactive Abs. Testing this, we found culture supernatants from TLR-stimulated B cells to bind HEp-2 cells, whereas those from CD40L/IL-21-stimulated cells did not. Human B cells possess selective sensitivity to TLR stimulation, with distinctive phenotypic and genetic signatures. PMID:25740945

  3. Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja

    2015-04-01

    The moisture supply and El Niño Southern Oscillation (ENSO) characteristics are investigated for different intraseasonal modes of the East Asian summer monsoon (EASM) identified as the Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. The investigation is conducted with a type of artificial neural network known as self-organizing map analysis. The major modes tend to be dominated by the moisture convergence of the moisture budget equation along the rain-band. The Meiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear, which is related to baroclinic instability with warm air rising and cold air sinking. The Changma mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability by the low-level warm advection of moisture-laden air and upper-level cold advection of dry air. In late summer, the post-Changma and dry-spell modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. In response to the preceding El Niño, the Meiyu-Baiu and Changma modes occur more frequently, while the post-Changma and dry-spell modes show the opposite. The response to the La Niña exhibits a relatively weak connection, indicating asymmetric response on the preceding ENSO. This prominent difference in response to the ENSO leads to different behaviors of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intraseasonal modes.

  4. Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja

    2014-08-01

    The moisture supply and El Niño Southern Oscillation (ENSO) characteristics are investigated for different intraseasonal modes of the East Asian summer monsoon (EASM) identified as the Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. The investigation is conducted with a type of artificial neural network known as self-organizing map analysis. The major modes tend to be dominated by the moisture convergence of the moisture budget equation along the rain-band. The Meiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear, which is related to baroclinic instability with warm air rising and cold air sinking. The Changma mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability by the low-level warm advection of moisture-laden air and upper-level cold advection of dry air. In late summer, the post-Changma and dry-spell modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. In response to the preceding El Niño, the Meiyu-Baiu and Changma modes occur more frequently, while the post-Changma and dry-spell modes show the opposite. The response to the La Niña exhibits a relatively weak connection, indicating asymmetric response on the preceding ENSO. This prominent difference in response to the ENSO leads to different behaviors of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intraseasonal modes.

  5. Microparticle Response to Two-Dimensional Streaming Flows in Rectangular Chambers Undergoing Low-Frequency Horizontal Vibrations

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant; Gandhi, Prasanna S.; Neild, Adrian

    2014-12-01

    Manipulation of submicron-sized particles using second-order acoustic radiation forces at ultrasonic frequencies is hindered by the time-independent streaming flows. A similar phenomenon occurs when open fluid volumes are vibrated at low frequencies in the range of 100 Hz. The streaming phenomenon, in this lower-frequency range, is studied here by using horizontally actuated liquid-filled rectangular chambers. The formation of capillary waves at the liquid-air interface generates spatially varying flow fields in the bulk fluid, which can be used to collect particles at stable locations. However, the same spatial variation is the source of the streaming fields, which, under some conditions, can drag particles away from these stable locations. The governing equations for the second-order flow are derived and simulated, after which a particle-tracing algorithm is executed in the obtained flow field. Critical particle parameters are determined in multiple simulated chambers of different dimensions, with the aim of reducing the effect of the streaming field on the particle's movement. The simulation results are then applied experimentally to demonstrate the ability of this system to collect particles as small as 50 nm in diameter.

  6. CHARADE: A characteristic code for calculating rate-dependent shock-wave response

    SciTech Connect

    Johnson, J.N.; Tonks, D.L.

    1991-01-01

    In this report we apply spatially one-dimensional methods and simple shock-tracking techniques to the solution of rate-dependent material response under flat-plate-impact conditions. This method of solution eliminates potential confusion of material dissipation with artificial dissipative effects inherent in finite-difference codes, and thus lends itself to accurate calculation of elastic-plastic deformation, shock-to-detonation transition in solid explosives, and shock-induced structural phase transformation. Equations are presented for rate-dependent thermoelastic-plastic deformation for (100) planar shock-wave propagation in materials of cubic symmetry (or higher). Specific numerical calculations are presented for polycrystalline copper using the mechanical threshold stress model of Follansbee and Kocks with transition to dislocation drag. A listing of the CHARADE (for characteristic rate dependence) code and sample input deck are given. 26 refs., 11 figs.

  7. Clinical characteristics and treatment response to SSRI in a female pedophile.

    PubMed

    Chow, Eva W C; Choy, Alberto L

    2002-04-01

    Although much investigation has been done with male sex offenders, there have been few studies on female sex offenders. Female sex offenders have been reported as having a high incidence of psychiatric disorders, but female paraphilics were rarely described. The literature on the treatment of female sex offenders is also limited and treatment with a selective serotonin reuptake inhibitor (SSRI) has not been reported. This paper presents the case of a woman with DSM-IV pedophilia. Her clinical characteristics, her offense history, and her positive response to treatment with sertraline (a SSRI) are described. This case adds to the limited literature on female pedophiles and suggests that SSRIs may be an effective treatment for paraphilic disorders in female sex offenders. PMID:11974646

  8. Study on Development of the Seated Human Body System Exposed to Vehicular Ride Vibration Environment

    Microsoft Academic Search

    S. Rodean; M. Arghir

    \\u000a This paper tries to find an appropriate structure of human model, which can better represent the characteristics of the real\\u000a human body, using the apparent mass (APMS) and head transmissibility (STHT) in vertical vibrations. The model parameters were\\u000a identified through minimizing an error function comprising the measured and model response in terms of magnitude and phase\\u000a characteristics of APMS and

  9. Chaotic vortex induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Leontini, J. S.; Lo Jacono, D.; Sheridan, J.

    2014-12-01

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  10. Comparison of the frequency response characteristics of catheter-mounted piezoelectric and micromanometric phonotransducers.

    PubMed

    Garcia, J C; Layton, S A; Rubal, B J

    1989-05-01

    This study compares the frequency response characteristics of catheter-mounted piezoelectric sound transducers with micromanometric transducers. The tip of a 8F catheter with two piezoelectric transducers and two micromanometers was inserted into a water-filled chamber that had a speaker fixed at one end. The speaker was driven by a power amplifier and sine wave generator. The outputs of the transducers were connected to a low-level amplifier. The piezoelectric transducer behaved as a tunable high-pass filter that could be modified by altering the input impedance of the low level amplifier; the frequency response characteristics were examined at five input impedances ranging from 0.96 to 11.8 megohms. The peak-to-peak outputs of the piezoelectric and pressure transducers were recorded at frequency ranges from DC to 1 kHz with a wide-band oscilloscope. The ratio of the outputs from the piezotransducer and micromanometer (Vph/Vpr) was plotted vs. frequency for each input impedance and analyzed to determine the piezotransducer's output resistance and equivalent capacitance; roll-off frequencies were then calculated. The equivalent capacitance of the piezo-element was determined to be 500-700 picofarads. Series capacitance acted with network resistance to produce a predictable frequency-dependent change in signal amplitude and phase angle. The inherent noise of the pressure transducer was found to be approximately 0.2 mm Hg, while the noise of the piezoelectric transducer was immeasurably low. The piezoelectric phonotransducers were superior to micromanometer transducers in their higher gain and lower noise, suggesting that these transducers may prove useful to physiologic and clinical studies for measuring intravascular sound. PMID:2720766

  11. Frequency characteristics of contralateral sound suppression of 40-Hz auditory steady-state response.

    PubMed

    Kiyokawa, Hiromichi; Kawase, Tetsuaki; Oshima, Hidetoshi; Maki, Atsuko; Kobayashi, Toshimitsu

    2012-03-01

    Sound presented to the contralateral ear suppresses the amplitude of the 40-Hz auditory steady-state response (ASSR). The frequency characteristics of this suppression of the 40-Hz ASSR for amplitude modulated (AM) tones at 1,000 Hz (79-dB SPL) were examined in 12 healthy volunteers (10 males and 2 females, mean age 32.3 years) using contralateral AM tones (500, 1,000, 2,000, and 4,000 Hz) and 1/3 octave-band noise (500, 1,000, 2,000, and 4,000 Hz). The 40-Hz ASSR at 1,000 Hz was suppressed by a relatively wide frequency range of contralateral sound than expected from the known characteristics of psychophysical central masking by contralateral sound: the greatest suppression was obtained with 500- and 1,000-Hz sounds, but considerable suppression was also obtained with 2,000- and 4,000-Hz sounds. Substantial differences in the suppression pattern were not observed between two types of contra-suppressors; i.e., AM tones and 1/3 octave-band noise. Therefore, any sound presented to the contralateral ear, regardless of the frequency, can suppress the 40-Hz ASSR. Moreover, the different frequency characteristics of the contralateral sound effects between the psychophysical central masking and the 40-Hz ASSR would support the idea that the 40-Hz ASSR has an additive role in the processing of auditory signals to simple threshold judgment. Investigation of the type of psychophysical measurement using the AM signal showing similar suppression patterns by the presentation of contralateral sound would be helpful to reveal the functional relevance of ASSRs. PMID:21826563

  12. Helicopter rotor blade design for minimum vibration

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1984-01-01

    The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.

  13. Food vibrations: Asian spice sets lips trembling

    PubMed Central

    Hagura, Nobuhiro; Barber, Harry; Haggard, Patrick

    2013-01-01

    Szechuan pepper, a widely used ingredient in the cuisine of many Asian countries, is known for the tingling sensation it induces on the tongue and lips. While the molecular mechanism by which Szechuan pepper activates tactile afferent fibres has been clarified, the tingling sensation itself has been less studied, and it remains unclear which fibres are responsible. We investigated the somatosensory perception of tingling in humans to identify the characteristic temporal frequency and compare this to the established selectivity of tactile afferents. Szechuan pepper was applied to the lower lip of participants. Participants judged the frequency of the tingling sensation on the lips by comparing this with the frequencies of mechanical vibrations applied to their right index finger. The perceived frequency of the tingling was consistently at around 50 Hz, corresponding to the range of tactile RA1 afferent fibres. Furthermore, adaptation of the RA1 channel by prolonged mechanical vibration reliably reduced the tingling frequency induced by Szechuan pepper, confirming that the frequency-specific tactile channel is shared between Szechuan pepper and mechanical vibration. Combining information about molecular reactions at peripheral receptors with quantitative psychophysical measurement may provide a unique method for characterizing unusual experiences by decomposing them into identifiable minimal units of sensation. PMID:24026819

  14. Food vibrations: Asian spice sets lips trembling.

    PubMed

    Hagura, Nobuhiro; Barber, Harry; Haggard, Patrick

    2013-11-01

    Szechuan pepper, a widely used ingredient in the cuisine of many Asian countries, is known for the tingling sensation it induces on the tongue and lips. While the molecular mechanism by which Szechuan pepper activates tactile afferent fibres has been clarified, the tingling sensation itself has been less studied, and it remains unclear which fibres are responsible. We investigated the somatosensory perception of tingling in humans to identify the characteristic temporal frequency and compare this to the established selectivity of tactile afferents. Szechuan pepper was applied to the lower lip of participants. Participants judged the frequency of the tingling sensation on the lips by comparing this with the frequencies of mechanical vibrations applied to their right index finger. The perceived frequency of the tingling was consistently at around 50 Hz, corresponding to the range of tactile RA1 afferent fibres. Furthermore, adaptation of the RA1 channel by prolonged mechanical vibration reliably reduced the tingling frequency induced by Szechuan pepper, confirming that the frequency-specific tactile channel is shared between Szechuan pepper and mechanical vibration. Combining information about molecular reactions at peripheral receptors with quantitative psychophysical measurement may provide a unique method for characterizing unusual experiences by decomposing them into identifiable minimal units of sensation. PMID:24026819

  15. Boundary spanning by nurse managers: effects of managers' characteristics and scope of responsibility on teamwork.

    PubMed

    Meyer, Raquel M; O'Brien-Pallas, Linda; Doran, Diane; Streiner, David; Ferguson-Paré, Mary; Duffield, Christine

    2014-06-01

    Increasing role complexity has intensified the work of managers in supporting healthcare teams. This study examined the influence of front-line managers' characteristics and scope of responsibility on teamwork. Scope of responsibility considers the breadth of the manager's role. A descriptive, correlational design was used to collect cross-sectional survey and administrative data in four acute care hospitals. A convenience sample of 754 staff completed the Relational Coordination Scale as a measure of teamwork that focuses on the quality of communication and relationships. Nurses (73.9%), allied health professionals (14.7%) and unregulated staff (11.7%) worked in 54 clinical areas, clustered under 30 front-line managers. Data were analyzed using hierarchical linear modelling. Leadership practices, clinical support roles and compressed operational hours had positive effects on teamwork. Numbers of non-direct report staff and areas assigned had negative effects on teamwork. Teamwork did not vary by span, managerial experience, worked hours, occupational diversity or proportion of full-time employees. Large, acute care teaching hospitals can enable managers to foster teamwork by enhancing managers' leadership practices, redesigning the flow or reporting structure for non-direct reports, optimizing managerial hours relative to operational hours, allocating clinical support roles, reducing number of areas assigned and, potentially, introducing co-manager models. PMID:25073056

  16. Effects of train noise and vibration on human heart rate during sleep: an experimental study

    PubMed Central

    Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson

    2013-01-01

    Objectives Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Design Case–control. Setting Healthy participants. Participants 24 healthy volunteers (11 men, 13 women, 19–28?years) spent six consecutive nights in the sleep laboratory. Interventions All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Primary and secondary outcome measures Polysomnographical data and ECG were recorded. Results The train exposure led to a significant change of HR within 1?min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3?bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Conclusions Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways. PMID:23793667

  17. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz. PMID:17471715

  18. Assessing the Value of Regulation Resources Based on Their Time Response Characteristics

    SciTech Connect

    Makarov, Yuri V.; Lu, Shuai; Ma, Jian; Nguyen, Tony B.

    2008-06-01

    Fast responsive regulation resources are potentially more valuable as a power system regulation resource (more efficient) because they allow applying controls at the exact moment and in the exact amount as needed. Faster control is desirable because it facilitates more reliable compliance with the NERC Control Performance Standards at relatively lesser regulation capacity procurements. The current California ISO practices and markets do not provide a differentiation among the regulation resources based on their speed of response (with the exception of some minimum ramping capabilities). Some demand response technologies, including some generation and energy storage resources, can provide quicker control actions. California ISO practices and markets could be updated to welcome more fast regulation resources into the California ISO service area. The project work reported in this work was pursuing the following objectives: • Develop methodology to assess the relative value of generation resources used for regulation and load following California ISO functions • This assessment should be done based on physical characteristics including the ability to quickly change their output following California ISO signals • Evaluate what power is worth on different time scales • Analyze the benefits of new regulation resources to provide effective compliance with the mandatory NERC Control Performance Standards • Evaluate impacts of the newly proposed BAAL and FRR standards on the potential value of fast regulation and distributed regulation resources • Develop a scope for the follow-up projects to pave a road for the new efficient types of balancing resources in California. The work included the following studies: • Analysis of California ISO regulating units characteristics • California ISO automatic generation system (AGC) analysis • California ISO regulation procurement and market analysis • Fast regulation efficiency analysis • Projection of the California ISO load following and regulation requirements into the future • Value of fast responsive resources depending on their ramping capability • Potential impacts of the balancing authority area control error limit (BAAL), which is a part of the newly proposed NERC standard “Balancing Resources and Demand” • Potential impacts of the Western Electricity Coordinating Council (WECC) frequency responsive reserve (FRR) standard • Recommendations for the next phase of the project. The following main conclusions and suggestions for the future have been made: • The analysis of regulation ramping requirements shows that the regulation system should be able to provide ramps of at least 40-60 MW per minute for a period up to 6 minutes. • Evaluate if changes are needed in the California ISO AGC system to effectively accommodate new types of fast regulation resources and minimize the California ISO regulation procurement. • California ISO may consider creating better market opportunities for and incentives for fast responsive resources. • An additional study of low probability high ramp events can be recommended to the California ISO. • The California ISO may be willing to consider establishing a more relaxed target CPS2 compliance level. • A BAAL-related study can be recommended for the California ISO as soon as more clarity is achieved concerning the actual enforcement of the BAAL standard and its numerical values for the California ISO. The study may involve an assessment of advantages of the distributed frequency-based control for the California ISO system. The market-related issues that arise in this connection can be also investigated. • A FRR-related study can be recommended for the California ISO as soon as more clarity is achieved concerning the actual enforcement of the FRR standard and its numerical values for the California ISO.

  19. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  20. Vibrotactile thresholds at the sole of the foot: effect of vibration frequency and contact location.

    PubMed

    Gu, Cheng; Griffin, Michael J

    2011-01-01

    Studies of vibration perception in the glabrous skin of the human hand have identified four mechanoreceptor channels, with each channel showing characteristic variations in thresholds with variations in the frequency of vibration and the area of vibration excitation. To advance understanding of the channels mediating vibration perception on the sole of the foot, this study determined how thresholds depend on the frequency of vibration, the location on the foot (the big toe, the ball of the foot, and the heel), and the gap between a vibrating probe and a fixed surround. Thresholds at the three locations were obtained at the 12 preferred one-third octave centre frequencies from 20 to 250 Hz using a 6-mm diameter probe with both a 10-mm and a 20-mm diameter surround. With the 10-mm surround, the displacement thresholds at all three locations showed flat responses from 20 to 40 Hz. With both the 10-mm and the 20-mm surround, the displacement thresholds at the three locations showed "U-shaped" responses from 40 to 250 Hz. Relative to thresholds obtained with the 20-mm surround, thresholds obtained with the 10-mm surround were lower at the toe and the heel with 20- and 25-Hz vibration, but higher at the ball of the foot with 31.5- to 250-Hz vibration. It is concluded that absolute thresholds for the perception of vibration at the sole of the foot show important variations with location and with contact conditions and tend to be mediated by the NP I channel in the range from about 20 to 40 Hz and the P channel from about 40 to 250 Hz. PMID:22115026

  1. Approximate inclusion of four-mode couplings in vibrational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Zoccante, Alberto; Seidler, Peter; Hansen, Mikkel Bo; Christiansen, Ove

    2012-05-01

    The vibrational coupled cluster (VCC) equations are analyzed in terms of vibrational Møller-Plesset perturbation theory aiming specifically at the importance of four-mode couplings. Based on this analysis, new VCC methods are derived for the calculation of anharmonic vibrational energies and vibrational spectra using vibrational coupled cluster response theory. It is shown how the effect of four-mode coupling and excitations can be efficiently and accurately described using approximations for their inclusion. Two closely related approaches are suggested. The computational scaling of the so-called VCC[3pt4F] method is not higher than the fifth power in the number of vibrational degrees of freedom when up to four-mode coupling terms are present in the Hamiltonian and only fourth order when only up to three-mode couplings are present. With a further approximation, one obtains the VCC[3pt4] model which is shown to scale with at most the fourth power in the number of vibrational degrees of freedom for Hamiltonians with both three- and four-mode coupling levels, while sharing the most important characteristics with VCC[3pt4F]. Sample calculations reported for selected tetra-atomic molecules as well as the larger dioxirane and ethylene oxide molecules support that the new models are accurate and useful.

  2. Approximate inclusion of four-mode couplings in vibrational coupled-cluster theory.

    PubMed

    Zoccante, Alberto; Seidler, Peter; Hansen, Mikkel Bo; Christiansen, Ove

    2012-05-28

    The vibrational coupled cluster (VCC) equations are analyzed in terms of vibrational Mo?ller-Plesset perturbation theory aiming specifically at the importance of four-mode couplings. Based on this analysis, new VCC methods are derived for the calculation of anharmonic vibrational energies and vibrational spectra using vibrational coupled cluster response theory. It is shown how the effect of four-mode coupling and excitations can be efficiently and accurately described using approximations for their inclusion. Two closely related approaches are suggested. The computational scaling of the so-called VCC[3pt4F] method is not higher than the fifth power in the number of vibrational degrees of freedom when up to four-mode coupling terms are present in the Hamiltonian and only fourth order when only up to three-mode couplings are present. With a further approximation, one obtains the VCC[3pt4] model which is shown to scale with at most the fourth power in the number of vibrational degrees of freedom for Hamiltonians with both three- and four-mode coupling levels, while sharing the most important characteristics with VCC[3pt4F]. Sample calculations reported for selected tetra-atomic molecules as well as the larger dioxirane and ethylene oxide molecules support that the new models are accurate and useful. PMID:22667551

  3. Electrical and acoustical resonances of vibrators

    NASA Technical Reports Server (NTRS)

    Khvingiya, M. V.; Tatishvili, T. G.; Zilberg, A. G.

    1973-01-01

    The basic sources of vibration in electrical machines are identified as: (1) unbalanced masses of the rotor, (2) condition of the bearings, and (3) the electromagnetic field gap. Methods for improving the vibration characteristics of electrical machines are proposed. A mathematical model is developed for calculating the damping elements located between the bearings and the mounts.

  4. On Transverse Vibration of Aircraft Landing Gear

    Microsoft Academic Search

    N. P. Plakhtienko; B. M. Shifrin

    2002-01-01

    Transverse elastic-frictional vibrations of landing gear with respect to a hull of infinite mass during an airplane high-speed motion on the runway are studied theoretically within the framework of the nonlinear shift hypothesis. The authors have derived approximate amplitude-phase equations that describe vibration in one-dimensional mechanical systems with arbitrary analytical velocity-dependent friction characteristics.

  5. New PDC bit design reduces vibrational problems

    Microsoft Academic Search

    G. Mensa-Wilmot; W. L. Alexander

    1995-01-01

    A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or

  6. Vibrations transmitted to human subjects through passenger seats and considerations of passenger comfort

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.

    1975-01-01

    An experimental study was conducted to determine the vertical and lateral vibration-transmission characteristics of several types of transport vehicle seats (two aircraft and one bus) to obtain preliminary estimates and comparisons of the ride acceptability of the various seat types. Results of this investigation indicate that from the standpoint of human comfort the seats exhibit undesirable dynamic response characteristics. Amplification of floor vibrations occurred at the frequencies known to be most critical for human comfort in both vertical and lateral axes. An average transmissibility function for aircraft seats was tabulated together with the associated variability for use by designers who incorporate similar types of seats in their vehicles. The acceptability of vibrations resulting from floor inputs of 0.10g and 0.15g was low over a broad range of frequencies for both axes and all seat types, and was especially low at frequencies where the input was being amplified.

  7. Influence of In doping on the structural, photo-luminescence and alcohol response characteristics of the SnO{sub 2} nanoparticles

    SciTech Connect

    Mishra, R.K. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Pandey, Shiv K. [Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Nanotechnology Application Center, Science Faculty, University of Allahabad, Allahabad (India); Sahay, P.P., E-mail: dr_ppsahay@rediffmail.com [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211004 (India)

    2013-10-15

    Graphical abstract: When the sample is exposed to air, the atmospheric oxygen O{sub 2} adsorbs on the sample surface in the form of ionic species O{sup ?} by capturing electrons from the conduction band. The adsorbed ionic species O{sup ?} react with the test alcohol molecules and are responsible for sensing mechanism. - Highlights: • In-doped SnO{sub 2} samples show smaller crystallinity with crystallite size: ?7–9 nm. • EDX analyses confirm the incorporation of indium ions in the SnO{sub 2} lattice. • Raman spectra are consistent with the results of XRD and SAED pattern. • Alcohol response has been found to increase with the indium dopant concentration. • 3 at% In-doped sample exhibits maximum response (96.5%) to propan-2-ol at 250 °C. - Abstract: Undoped and In-doped SnO{sub 2} nanoparticles were synthesized by the co-precipitation method. Upon In doping, the samples exhibit reduced crystallinity as compared to the undoped SnO{sub 2}. The Raman spectra of the undoped samples exhibit three fundamental peaks at 467.3, 633.4 and 774.6 cm{sup ?1} corresponding to E{sub g}, A{sub 1g} and B{sub 2g} vibration modes, respectively. The PL spectra show two strong emission bands at the wavelengths 417 nm and 479 nm, along with five weak emission peaks in the visible region. Alcohol response characteristics of the In-doped SnO{sub 2} samples were investigated for various concentrations (10–50 ppm) at different operating temperatures (150–250 °C). Among all the samples examined, the 3 at% In-doped SnO{sub 2} sample shows maximum response (96.5%) to propan-2-ol, followed by ethanol (92%) and methanol (90%) at the operating temperature of 250 °C for 50 ppm concentration. For each test alcohol, the response has been found to increase with the In dopant concentration.

  8. "20 Tons Moved Mass" - The Ariane 5 ESC-A Lower Assembly Vibration Test

    NASA Astrophysics Data System (ADS)

    Baumgartl, R.

    2004-08-01

    The new cryogenic upper stage of the Ariane 5 launcher (ESC-A) underwent a mechanical test campaign at IABG's Space Test Centre in 2003 under the responsibility of EADS Space Transportation. The campaign focussed on ESC-A's Lower Assembly and was highlighted by a vibration test of a configuration consisting of the filled LOX Tank, the Inter Tank Structure, the Equipped Thrust Frame and the Engine. The requirements for this vibration test exceeded the nominal system limitations of the test facility in several respects. The test configuration required a stiff vibration input interface at a height of 3 m above the shaker table, realized by a heavy conical test adapter. The resulting test set-up had dimensions of 5.4 m in diameter and 4.5 m in height and an overall test set-up mass of 25 t, including the required vibration tables and test adapters. For the measurement of all responses of interest, more than 520 measurement channels had to be provided. This presentation explains how the challenges of the ESC-A Lower Assembly Vibration Test were mastered. It describes the facility set-up, the mechanical and measurement set-up as well as some characteristic features of the test performance of this extraordinary vibration test.

  9. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  10. Investigation on dielectric response characteristics of thermally aged insulating pressboard in vacuum and oil-impregnated ambient

    Microsoft Academic Search

    Shi-Qiang Wang; Guan-Jun Zhang; Jian-Lin Wei; Shuang-Suo Yang; Ming Dong; Xin-Bo Huang

    2010-01-01

    Dielectric response measurements are non-invasive and promising diagnostic methods that are being gradually used for assessing the insulation and aging condition of transformer oil-paper insulation system. It is known that moisture content in oil-impregnated insulation has significant effect on its dielectric response phenomena, and whereas at present there is few research about the characteristics of aged cellulose without the impact

  11. Influence of vibration resistance training on knee extensor and plantar flexor size, strength, and contractile speed characteristics after 60 days of bed rest.

    PubMed

    Mulder, Edwin R; Horstman, Astrid M; Stegeman, Dick F; de Haan, Arnold; Belavý, Daniel L; Miokovic, Tanja; Armbrecht, Gabi; Felsenberg, Dieter; Gerrits, Karin H

    2009-12-01

    Spaceflight and bed rest (BR) result in loss of muscle mass and strength. This study evaluated the effectiveness of resistance training and vibration-augmented resistance training to preserve thigh (quadriceps femoris) and calf (triceps surae) muscle cross-sectional area (CSA), isometric maximal voluntary contraction (MVC), isometric contractile speed, and neural activation (electromyogram) during 60 days of BR. Male subjects participating in the second Berlin Bed Rest Study underwent BR only [control (CTR), n = 9], BR with resistance training (RE; n = 7), or BR with vibration-augmented resistance training (RVE; n = 7). Training was performed three times per week. Thigh CSA and MVC torque decreased by 13.5 and 21.3%, respectively, for CTR (both P < 0.001), but were preserved for RE and RVE. Calf CSA declined for all groups, but more so (P < 0.001) for CTR (23.8%) than for RE (10.7%) and RVE (11.0%). Loss in calf MVC torque was greater (P < 0.05) for CTR (24.9%) than for RVE (12.3%), but not different from RE (14.8%). Neural activation at MVC remained unchanged in all groups. For indexes related to rate of torque development, countermeasure subjects were pooled into one resistance training group (RT, n = 14). Thigh maximal rate of torque development (MRTD) and contractile impulse remained unaltered for CTR, but MRTD decreased 16% for RT. Calf MRTD remained unaltered for both groups, whereas contractile impulse increased across groups (28.8%), despite suppression in peak electromyogram (12.1%). In conclusion, vibration exposure did not enhance the efficacy of resistance training to preserve thigh and calf neuromuscular function during BR, although sample size issues may have played a role. The exercise regimen maintained thigh size and MVC strength, but promoted a loss in contractile speed. Whereas contractile speed improved for the calf, the exercise regimen only partially preserved calf size and MVC strength. Modification of the exercise regimen seems warranted. PMID:19797694

  12. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation.

    PubMed

    Slade, Eleanor M; Merckx, Thomas; Riutta, Terhi; Bebber, Daniel P; Redhead, David; Riordan, Philip; Macdonald, David W

    2013-07-01

    How best to manage forest patches, mitigate the consequences of forest fragmentation, and enable landscape permeability are key questions facing conservation scientists and managers. Many temperate forests have become increasingly fragmented, resulting in reduced interior forest habitat, increased edge habitats, and reduced connectivity. Using a citizen science landscape-scale mark-release-recapture study on 87 macro-moth species, we investigated how both life-history traits and landscape characteristics predicted macro-moth responses to forest fragmentation. Wingspan, wing shape, adult feeding, and larval feeding guild predicted macro-moth mobility, although the predictive power of wingspan and wing shape depended on the species' affinity to the forest. Solitary trees and small fragments functioned as "stepping stones," especially when their landscape connectivity was increased, by being positioned within hedgerows or within a favorable matrix. Mobile forest specialists were most affected by forest fragmentation: despite their high intrinsic dispersal capability, these species were confined mostly to the largest of the forest patches due to their strong affinity for the forest habitat, and were also heavily dependent on forest connectivity in order to cross the agricultural matrix. Forest fragments need to be larger than five hectares and to have interior forest more than 100 m from the edge in order to sustain populations of forest specialists. Our study provides new insights into the movement patterns of a functionally important insect group, with implications for the landscape-scale management of forest patches within agricultural landscapes. PMID:23951712

  13. [Response of winter wheat (Triticum aestivum L. ) hyperspectral characteristics to low temperature stress].

    PubMed

    Ren, Peng; Feng, Mei-Chen; Yang, Wu-De; Wang, Chao; Liu, Ting-Ting; Wang, Hui-Qin

    2014-09-01

    The simple winter wheat variety was conducted under the low temperature treatment at -2, -4, and -6 °C, the canopy reflectance was measured and the red edge parameters were extracted to study the winter wheat canopy spectral characteristics effected by the low temperature stress and the hyperspectral response to the low temperature stress of winter wheat at jointing stage. The results showed that the canopy reflectance decreased in visible region and increases at near infrared band with the high intensively low temperature stress, and "green peak" was weakened and "red well" was not distinctive. Moreover, the derivate spectrum had the trend of shift to short wavelength direction with the strengthening of low temperature stress and the red edge presented the blue shift. The area of red edge and red edge amplitude exhibit increase. It indicated that the canopy spectrum of winter wheat is sensitive to the low temperature stress, and the hyperspectral technology can be used to monitor the low temperature stress of winter wheat at jointing stage. PMID:25532351

  14. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  15. The relationship between visual orienting responses and clinical characteristics in children attending special education for the visually impaired.

    PubMed

    Kooiker, Marlou J G; Pel, Johan J M; van der Steen, Johannes

    2015-05-01

    We recently introduced a method based on quantification of orienting responses toward visual stimuli to assess the quality of visual information processing in children. In the present study, we examined the relationship between orienting responses and factors that are associated with visual processing impairments in current clinical practice. Response time and fixation quality to visual features such as form, contrast, motion, and color stimuli were assessed in 104 children from 1 to 12 years attending special education for the visually impaired. Using regression analysis, we investigated whether these parameters were affected by clinical characteristics of children. Response times significantly depended on stimulus type. Responses to high-contrast cartoons were significantly slower in children with a clinical diagnosis of cerebral visual impairment. Fixation quality was significantly affected by visual acuity and nystagmus. The results suggest that the quantitative measurement of orienting responses is strongly related to cerebral visual impairment in children. PMID:25038127

  16. Multi-rate vibration control of smart piezoelectric cantilever beam

    Microsoft Academic Search

    Cao Qingsong; He Yuehai

    2010-01-01

    Sensor often needs a high sampling frequency to earn good performance while computer is used as the vibration controller. However, actuator does not apply good dynamic characteristics usually. So vibration control system is essential a multi-rate discrete control system. This paper tries to investigate multi-rate vibration control system for the first time. The finite element model of piezoelectric cantilever beam

  17. Flow-induced vibration

    Microsoft Academic Search

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid

  18. Vibrational circular dichroism of monosaccharides

    Microsoft Academic Search

    Pranati K Bose; Prasad L Polavarapu

    1999-01-01

    Vibrational absorption and circular dichroism spectra of several monosaccharides in the 1500–1180 cm?1 region are presented. The spectra are analyzed for similarities and differences among anomeric, homomorphic and epimeric pairs of sugars. Among the anomeric sugars, distinct bands characteristic of anomers are present that can be used to characterize the anomers. The homomorphic sugars are found to give rise to

  19. The pathways responsible for the characteristic head posture produced by lesions of the interstitial nucleus of Cajal in the cat

    Microsoft Academic Search

    K. Fukushima; J. Fukushima; T. Terashima

    1987-01-01

    (1) Experiments were performed in cats to examine effects of lesion of the interstitial nucleus of Cajal (INC) on head posture and the responsible pathway. Unilateral INC lesions resulted in lateral tilt of the head to the opposite side, and bilateral INC lesions resulted in dorsiflexion of the head as reported earlier. Such characteristic head posture was produced by successful

  20. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  1. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  2. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  3. New PDC bit design reduces vibrational problems

    SciTech Connect

    Mensa-Wilmot, G.; Alexander, W.L. [Smith International Inc., Houston, TX (United States)

    1995-05-22

    A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization, vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.

  4. Analysis of response lag in hydraulic power steering system

    Microsoft Academic Search

    Shinji Nishimura; Tsugiharu Matsunaga

    2000-01-01

    Response lag during rapid steering in the hydraulic power steering system of a vehicle was analyzed with a numerical simulation mathematical model which considered the propagation of pressure waves in a hydraulic line and visco-elastic characteristics of the hose. Pressure perturbation by pump flow ripple and self-excited vibration which were incompatible with the response, were analyzed by the simulation. From

  5. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    SciTech Connect

    Bilbao, Jose I., E-mail: Jibilbao@unav.e [Clinica Universitaria de Navarra, Universidad de Navarra, Department of Radiology (Spain); Martino, Alba de [Universidad de Zaragoza, Department of Histology, School of Veterinary (Spain); Luis, Esther de; Diaz-Dorronsoro, Lourdes; Alonso-Burgos, Alberto; Martinez de la Cuesta, Antonio [Clinica Universitaria de Navarra, Universidad de Navarra, Department of Radiology (Spain); Sangro, Bruno [Clinica Universitaria de Navarra, Universidad de Navarra, Department of Internal Medicine (Liver Unit) (Spain); Garcia de Jalon, Jose A. [Universidad de Zaragoza, Department of Histology, School of Veterinary (Spain)

    2009-07-15

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 {mu}m in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and portal space fibrosis were not observed. In conclusion, resin microspheres (15-30 {mu}m diameter) trigger virtually no inflammatory response in target tissues (liver and kidney). Clusters rather than individual microspheres were associated with a mild to moderate perivascular inflammatory reaction. There was no evidence of either a prolonged inflammatory reaction or fibrosis in the liver parenchyma following recannalization.

  6. Effects of Rearing Systems on Performance, Egg Characteristics and Immune Response in Two Layer Hen Genotype

    PubMed Central

    Küçüky?lmaz, Kamil; Bozkurt, Mehmet; Herken, Emine Nur; Ç?nar, Mustafa; Çatl?, Abdullah U?ur; Binta?, Erol; Çöven, Fethiye

    2012-01-01

    White (Lohmann LSL) and Brown (ATAK-S) laying hens, were reared under organic and conventional cage rearing systems, and the effects of the rearing system on performance parameters, egg production, egg characteristics, and immune response were investigated. For this purpose, a total of 832 laying hens of two commercial hybrids, i.e., 416 white (Lohmann LSL) and 416 Brown (ATAK-S) layers, were used. The experiment lasted between 23 and 70 wk of age. In this study, the white layers yielded more eggs as compared to the brown layers in both organic and conventional production systems. Egg weight exhibited a similar pattern to that of laying performance. However, the total hen-housed egg number for the white birds in the organic system was fewer than that of white birds in the conventional cage facility; conversely, a contradictory tendency was observed for the brown birds. Livability of the white layers in the organic system was remarkably lower (14%) than that of the brown line, whereas the white line survived better (3.42%) than their brown counterparts in conventional cages. The feed conversion ratio of the white hens was markedly inferior in the organic system as compared to that of the white hens in the conventional system, whereas relatively lower deterioration was reported in brown layers when reared in an organic system. The organic production system increased egg albumen height and the Haugh unit in eggs of the brown layers. The yolk color score of organic eggs was lower than that of conventional eggs for both brown and white hens. The egg yolk ratio of eggs from white layers was found to be higher in organic eggs as compared to those obtained in the conventional system. All organic eggs had heavier shells than those produced in the conventional system. Eggs from brown layers had more protein content than eggs from white layers. Neither housing systems nor genotype influenced egg yolk cholesterol concentration. When compared to conventional eggs, n-3 fatty acid content was lower in organic eggs, and the n-6:n-3 ratio was higher in organic eggs. In conclusion, two hen genotypes showed different responses in terms of performance and egg quality to two different rearing systems. A commercial white strain produced more eggs with higher egg quality as compared to a native brown strain. The brown strain was found to have adapted well to organic production conditions when survival and total egg number was taken into consideration. PMID:25049597

  7. Sound and structural vibration - A review

    NASA Astrophysics Data System (ADS)

    Fahy, F. J.

    The fundamental principles of fluid-structure interaction are reviewed. Modern fields of application are discussed with attention given to sound radiation from vibrating structures, fluid loading of vibrating structures, airborne sound transmission through structural partitions, and acoustically induced response of structures. Theoretical and experimental techniques are outined with particular emphasis on recent developments.

  8. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    PubMed Central

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  9. Investigation of crystal structure, vibrational characteristics and molecular conductivity of 2,3-dichloro-5,6-dicyno-p-benzoquinone.

    PubMed

    Rani, Poonam; Rajput, Gunjan; Yadav, R A

    2015-02-25

    Molecular geometries and vibrational spectra for the ground state of 2,3-dichloro-5,6-dicyno-p-benzoquinone (DDQ) and its anion (DDQ(-)) were computed using DFT method at the B3LYP level employing 6-311++G(d,p) basis set whereas for the first excited state (DDQ(?)), these were calculated using TD-DFT at the B3LYP level employing the 6-311++G(d,p) basis set available with the Gaussian 09 package. The spectra have been experimentally investigated and the observed IR and Raman bands have been assigned to different normal modes on the basis of the calculated potential energy distributions (PEDs). XRD of single crystal has been investigated to determine molecular and crystal structures of DDQ. In order to elucidate the transfer of electrons, electronic structure and electronic absorption have been calculated with the TD-DFT method. Vibronic interaction and its role in the appearance of superconductivity in the DDQ, DDQ(-) and DDQ(?) molecules have been investigated. The present XRD, molecular, electronic and vibronic studies indicate that mainly the ag C=O stretching and ring stretching modes participate in the charge transfer process. PMID:25305626

  10. Electromechanical characteristics of discal piezoelectric transducers with spiral interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Chengliang; Xiao, Guangjun; Feng, Zhihua; Liao, Wei-Hsin

    2014-12-01

    In this study, piezoceramic thin disks with spiral interdigitated electrodes on their surfaces are proposed to generate in-plane torsional vibrations. Electromechanical characteristics of the discal piezoelectric transducers are investigated. Working principles of the transducers are explained while their static deformations are formulated. Dynamic models are derived to analyze the in-plane torsional vibrations of the disks together with the radial vibrations. The corresponding electromechanical equivalent circuits are also obtained. With different boundary conditions and structural parameters, frequency responses of their electric admittances are calculated numerically. Resonant frequencies, mode shapes, and electromechanical coupling coefficients of the vibration modes are also extracted. Prototype transducers are fabricated and tested to validate the theoretical results.

  11. Downhole vibration sensing by vibration energy harvesting

    E-print Network

    Trimble, A. Zachary

    2007-01-01

    This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

  12. Nonlinear Vibration in Gear Systems

    E-print Network

    Grzegorz Litak; Michael I. Friswell

    2003-02-22

    Gear box dynamics is characterised by a periodically changing stiffness and a backlash which can lead to a loss of the contact between the teeth. Due to backlash, the gear system has piecewise linear stiffness characteristics and, in consequence, can vibrate regularly or chaoticaly depending on the system parameters and the initial conditions. We examine the possibility of a nonfeedback system control by introducing a weak resonant excitation term and through adding an additional degree of freedom to account for shaft flexibility on one side of the gearbox. We shall show that by correctly choosing the coupling values the system vibrations may be controlled.

  13. Topographical representations of taste response characteristics in the rostral nucleus of the solitary tract in the rat.

    PubMed

    Yokota, T; Eguchi, K; Hiraba, K

    2014-01-01

    The rostral nucleus of the solitary tract (rNST) is the first-order taste relay in rats. This study constructed topographical distributions of taste response characteristics (best-stimulus, response magnitude, and taste-tuning) from spike discharges of single neurons in the rNST. The rNST is divided into four subregions along the rostrocaudal (RC) axis, which include r1-r4. We explored single-neuron activity in r1-r3, using multibarreled glass microelectrodes. NaCl (N)-best neurons were localized to the rostral half of r1-r3, while HCl (H)-best and sucrose (S)-best neurons showed a tendency toward more caudal locations. NaCl and HCl (NH)-best neurons were distributed across r2-r3. The mean RC values and Mahalanobis distance indicated a significant difference between the distributions of N-best and NH-best neurons in which N-best neurons were located more rostrally. The region of large responses to NaCl (net response >5 spikes/s) overlapped with the distribution of N-best neurons. The region of large responses to HCl extended widely over r1-r3. The region of large responses to sucrose was in the medial part of r2. The excitatory region (>1 spike/s) for quinine overlapped with that for HCl. Neurons with sharp to moderate tuning were located primarily in r1-r2, while those with broad tuning were located in r2-r3. The robust responses to NaCl in r1-r2 primarily contributed to sharp to moderate taste-tuning. Neurons in r3 tended to have broad tuning, apparently due to small responses to both NaCl and HCl. Therefore, the rNST is spatially organized by neurons with distinct taste response characteristics, suggesting that these neurons serve different functional roles. PMID:24133228

  14. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  15. Concorde noise-induced building vibrations, Sully Plantation - Report no. 2, Chantilly, Virginia

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Noise-induced building vibrations associated with Concorde operations were studied. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles International Airport. Representative data are presented which were recorded at Sully Plantation, Chantilly, Virginia during the periods of May 20 through May 28, 1976, and June 14 through June 17, 1976. Recorded data provide relationships between the vibration levels of windows, walls, floors, and the noise associated with Concorde operations, other aircraft, and nonaircraft events. The results presented are drawn from the combined May-June data base which is considerably larger than the May data base covered. The levels of window, wall and floor vibratory response resulting from Concorde operations are higher than the vibratory levels associated with conventional aircraft. Furthermore, the vibratory responses of the windows are considerably higher than those of the walls and floors. The window response is higher for aircraft than recorded nonaircraft events and exhibits a linear response relationship with the overall sound pressure level. For a given sound pressure level, the Concorde may cause more vibration than a conventional aircraft due to spectral or other differences. However, the responses associated with Concorde appear to be much more dependent upon sound pressure level than spectral or other characteristics of the noise.

  16. Research of an Active Tunable Vibration Absorber for Helicopter Vibration Control

    Microsoft Academic Search

    Chen Yong; David G. Zimcik; Viresh K. Wickramasinghe; Fred Nitzsche

    2003-01-01

    Significant structural vibration is an undesirable characteristic in helicopter flight that leads to structural fatigue, poor ride quality for passengers and high acoustic signature. Previous Individual Blade Control (IBC) techniques to reduce these effects have been hindered by electromechanical limitations of piezoelectric actuators. The Smart Spring is an active tunable vibration absorber using IBC approach to adaptively alter the “structural

  17. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ?100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ?200 nm down to ?20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  18. Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Wang, Huakun; Zhao, Dongliang; Yang, Wenyu; Yu, Guoliang

    2015-02-01

    Flow-induced vibration (FIV) of a triangular cylinder is numerically investigated at a Reynolds number of Re = 100. The four-step fractional finite element method is employed to solve the two-dimensional (2D) incompressible Navier–Stokes equations. The cylinder is endowed with a two-degree-of-freedom motion with the reduced mass ratio of Mr = 2. Three typical flow incidence angles, ? = 0°, 30° and 60°, are examined to identify the effect of incidence angle on the vibration characteristics of the cylinder. For each ?, computations are conducted in a wide range of reduced velocities 2 Ur ? 18. The numerical results show that at ? = 0° and 30°, the responses of the cylinder are dominated by vortex-induced vibration which resembles that of a circular cylinder. At ? = 0°, the peak amplitude of transverse vibration is the smallest among the three investigated ?, and most of the cylinder motions exhibit a regular figure-eight trajectory. Some single-loop trajectories are observed at ? = 30°, where the vibration frequency in the in-line direction is always identical to that in the transverse direction. At ? = 60°, the triangular cylinder undergoes a typical transverse galloping with large amplitude and low frequency, and the vibration trajectories appear to be regular or irregular figure-eight patterns, which are strongly affected by the reduced velocity.

  19. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography

    Microsoft Academic Search

    J. P. Roll; J. P. Vedel

    1982-01-01

    The characteristics of vibration-induced illusory joint movements were studied in healthy human subjects. Unseen by the subject, constant frequency vibration trains applied to the distal tendon of the Triceps or Biceps induced an almost constant velocity illusory movement of the elbow whose direction corresponded to that of a joint rotation stretching the vibrated muscle. Vibration trains of the same duration

  20. Study on the Application of H-Infinity Control to Double-Layer Vibration Isolation System

    Microsoft Academic Search

    Zeng Qianghong; Zhu Shijian; Luo Jingjun; Zhang Xin

    2010-01-01

    Double-layer vibration isolation device can significantly reduce the vibration of machinery and equipment delivered to the base or the environment. However, the passive approach is difficult to isolate the low-frequency vibration effectively. Active vibration isolation technology can set the control law according to the adjustment of dynamic characteristics parameters of the system, realize isolation requirements that passive isolation can not

  1. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model

    NASA Astrophysics Data System (ADS)

    Meng, Jing-Hui; Zhang, Xin-Xin; Wang, Xiao-Dong

    2014-01-01

    The practical application environments of thermoelectric generators (TEGs) always change, which make a requirement for studying the dynamic response characteristics of TEGs. This work develops a complete, three-dimensional and transient model to investigate this issue. The model couples the energy and electric potential equations. Seebeck effect, Peltier effect, Thomson effect, Joule heating and Fourier heat conduction are taken into account in this model. Dynamic output power and conversion efficiency of the TEG, which are caused by variations of the hot end temperature, cold end temperature and load current, are studied. The response hysteresis of the output power to the hot end and cold end temperatures, the overshoot or undershoot of the conversion efficiency are found and attributed to the delay of thermal diffusion. However, the output power is synchronous with the load current due to much faster electric response than thermal response.

  2. Apply modified projective synchronization to nonlinear vibration isolation system

    Microsoft Academic Search

    Zhang Xing; Zhu Shijian; Zeng Qianghong

    2010-01-01

    One method was proposed which realize the modified projective synchronization between two degree nonlinear vibration isolation system and four dimension chaos system based on active control, in order to solve the conflict between the linear spectra reduction based on chaotifiy vibration responses and the capability of vibration isolation. The effectiveness of the proposed scheme was validated by the numerical simulation,

  3. PRINCIPAL COMPONENTS ANALYSIS OF TRIAXIAL VIBRATION DATA FROM HELICOPTER TRANSMISSIONS

    Microsoft Academic Search

    Irem Y. Tumer

    2002-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In

  4. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    NASA Astrophysics Data System (ADS)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  5. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    SciTech Connect

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  6. Boundary layer flow on a vibrating surface

    NASA Astrophysics Data System (ADS)

    Carlsson, Fredrik; Bakchinov, Andrey; Löfdahl, Lennart

    2000-11-01

    Boundary layers subjected to vibrating surfaces occur in many engineering applications. The surfaces of vehicles may vibrate, for instance, a ship’s hull vibrates at varying eigenfrequencies and eigenmodes due to the power plant of these vessels. There is little information available on this subject, and it is therefore not generally understood how these vibrations affect the fluid flows on the vibrating surface. To investigate these phenomena in greater detail, a test rig is designed and evaluated. The rig consists of a vibrating surface attached to a larger flat plate mounted in a low-speed wind tunnel. Two-dimensional vibrations of the surface in the fundamental mode are considered, and therefore the vibrating surface is clamped only on two sides to the flat plate. The surface is excited in the centerline using a crankshaft with adjustable amplitude (0-5 mm), designed and manufactured for this purpose. A frequency range of zero up to the first fundamental frequency of the surface can be studied. Detailed information of the rig and its performance characteristics along with preliminary measurements in the boundary layer over the vibrating surface will be presented.

  7. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  8. Frequency response characteristics of trichel pulses and the behavior of the cathode spot in a negative corona discharge

    NASA Astrophysics Data System (ADS)

    Asinovski?, É. I.; Petrov, A. A.; Samoylov, I. S.

    2007-11-01

    A negative corona discharge in the regime of Trichel pulses has been investigated in air at atmospheric pressure. Correlation between the behavior of the cathode spot and oscillograms of the discharge current has been revealed. The frequency response characteristics of the negative corona current have been measured as functions of voltage, tip curvature, interelectrode distance, and cathode material. It has been determined that the curvature of the tip surface in the cathode-spot localization region decisively affects the amplitude of pulses.

  9. Frequency response characteristics of trichel pulses and the behavior of the cathode spot in a negative corona discharge

    Microsoft Academic Search

    É. I. Asinovskii; A. A. Petrov; I. S. Samoylov

    2007-01-01

    A negative corona discharge in the regime of Trichel pulses has been investigated in air at atmospheric pressure. Correlation\\u000a between the behavior of the cathode spot and oscillograms of the discharge current has been revealed. The frequency response\\u000a characteristics of the negative corona current have been measured as functions of voltage, tip curvature, interelectrode distance,\\u000a and cathode material. It has

  10. Course Information Mechanical Vibrations

    E-print Network

    for proportionally damped systems, modal analysis, vibration absorbers, vibration transmission, Fourier transforms-degree-of-freedom systems. Natural frequencies and modes of vibrations, resonance, beat phenomenon, effect of damping- sient and steady-state forced vibrations, viscous and hysteric damping. (A, E, L) ii. Become proficient

  11. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  12. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  13. Damping phenomena in a wire rope vibration isolation system

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Cutchins, Malcolm A.

    1990-01-01

    A study of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators is presented. Emphasis is placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase trajectories, and frequency response curves were obtained. A semi-empirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed and results are compared to experimental data. Conclusions about dynamic phenomena in the wire rope system are made based on the experimental and semi-empirical results.

  14. The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams.

    PubMed

    Gerbi, B J

    1993-01-01

    A new plane-parallel ionization chamber has been designed by Attix to overcome the shortcoming of previous commercially available parallel-plate ionization chambers for dosimetry in high-energy photon and electron beams in radiation oncology. This investigation details the performance characteristics of this new, commercially available plane-parallel chamber. The magnitude of the polarity effect in high-energy electron beams is shown to be less than 1% while the polarity effect in high-energy photon beams is lower than several other plane-parallel ionization chambers. The over response of the chamber in the buildup region of normally incident high-energy photon beams is less than 1% for 6- and 24-MV x rays while the response of the new chamber to obliquely incident x-ray beams was affected much less by the angle of beam incidence than the other chambers tested. These superior response characteristics are primarily due to the construction characteristics of the collecting electrode arrangement. The Attix chamber, with a wall diameter (w) of 40 mm and a plate separation (s) of 1 mm, has an aspect ratio, (w/s), of 40. This exceeds the previously reported design criterion of w/s > or = 25 required to properly measure surface and buildup dose in either conventional therapy beams or in beams that are highly contaminated. PMID:8289723

  15. Correlation between auditory thalamic area evoked responses and species-specific call characteristics

    Microsoft Academic Search

    K. M. Mudry; R. R. Capranica

    1987-01-01

    Evoked potentials were recorded from the posterior dorsal thalamus of green treefrogs (Hyla cinerea) in response to single tones and combinations of two and three tones.1.The responses to two tones were largest when one of the component tones was 500 Hz and when the second component was between 2000 and 4000 Hz (Fig. 3).2.The response to 500+3000 Hz showed non-linear

  16. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  17. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  18. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures

    NASA Astrophysics Data System (ADS)

    Aykan, Murat; Çelik, Mehmet

    2009-04-01

    The work reported in this paper compared the fatigue damage accumulated under uni-axial loading (a procedure promoted by the vibration testing standards) to that induced by multi-axial loading. The comparison was performed for a helicopter structural element (the flare dispenser bracket of the self-defensive system's Chaff), which is exposed to the particular combination of wide-band random with sinusoidal vibrations, which is characteristic to the helicopter dynamic environment. The evaluation of the fatigue damage induced by these loads requires the calculation or measurement of the structure's dynamic response in terms of stresses or strains, and the application of the appropriate methodology to this response. In this work, dynamic response was calculated in the frequency domain based on the relations between the power spectral density matrixes of the excitations to that of the responses for a linear system. The transfer matrix that relates the excitation to the responses was evaluated numerically. The power spectral densities of the responses evaluated at different locations on the structure were used in the determination of the responses' statistics (the counting of the loading cycles), which, combined with an appropriate physics of failure model (fatigue model), enabled the evaluation of the accumulated fatigue damage. The uni-axial-induced fatigue was evaluated from vibration tests of the kind promoted by military standards (it is assumed that axis-by-axis loading is cumulatively equal to multi-axial loading), and compared to that evaluated by analysis for the multi-axial loading. Also a numerical comparison of the effects of the two kinds of loading was performed. The results showed that the error of uni-axial testing varied for a wide range of parameters. The work led to the conclusion that simultaneous multi-axis vibration testing can improve significantly the laboratory's vibration simulation realism.

  19. Experimental Analysis of Steady-State Maneuvering Effects on Transmission Vibration Patterns Recorded in an AH-1 Cobra Helicopter

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)

    2000-01-01

    Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.

  20. The influence of domain size on the response characteristics of a hurricane storm surge model

    Microsoft Academic Search

    C. A. Blain; J. J. Westerink; R. A. Luettich Jr

    1994-01-01

    The influence of domain size on boundary condition specification and on computed storm surge response is investigated. Storm surge response along the Florida shelf in the Gulf of Mexico due to Hurricane Kate is examined over three domains using two different open ocean boundary forcing functions, a still water (or zero elevation) condition and an inverted barometer condition which accounts

  1. A neural network approach for detection of damage in a vibrating beam

    NASA Astrophysics Data System (ADS)

    Dihoru, L.; Alexander, N.; Taylor, C. A.; Grumbar, H.; Newton, E.

    2012-12-01

    This study investigates the potential of using measured data of modal frequency for detecting the location and the size of defects in a vibrating beam. The experimental layout included a beam on which defects were emulated via masses attached to the beam in user-defined locations. The beam was subjected to forced vibration using a wide bandwidth white noise input. The measured natural frequencies of the beam's first five modes of vibration, the location and the size of damage were employed in training a neural network (NN). Neural networks present a viable computational method, with both pattern recognition and prediction capabilities for dynamic system response. A NN for the direct problem was designed, when the damage characteristics were known and the modal frequencies were predicted. A NN for the inverse problem when location and size of damage were predicted based on the measured modal frequencies, was also built. The performance and prediction capabilities of both NNs are assessed.

  2. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  3. Response characteristics of pruriceptive and nociceptive trigeminoparabrachial tract neurons in the rat.

    PubMed

    Jansen, Nico A; Giesler, Glenn J

    2015-01-01

    We tested the possibility that the trigeminoparabrachial tract (VcPbT), a projection thought to be importantly involved in nociception, might also contribute to sensation of itch. In anesthetized rats, 47 antidromically identified VcPbT neurons with receptive fields involving the cheek were characterized for their responses to graded mechanical and thermal stimuli and intradermal injections of pruritogens (serotonin, chloroquine, and ?-alanine), partial pruritogens (histamine and capsaicin), and an algogen (mustard oil). All pruriceptive VcPbT neurons were responsive to mechanical stimuli, and more than half were additionally responsive to thermal stimuli. The majority of VcPbT neurons were activated by injections of serotonin, histamine, capsaicin, and/or mustard oil. A subset of neurons were inhibited by injection of chloroquine. The large majority of VcPbT neurons projected to the ipsilateral and/or contralateral external lateral parabrachial and Kölliker-Fuse nuclei, as evidenced by antidromic mapping techniques. Analyses of mean responses and spike-timing dynamics of VcPbT neurons suggested clear differences in firing rates between responses to noxious and pruritic stimuli. Comparisons between the present data and those previously obtained from trigeminothalamic tract (VcTT) neurons demonstrated several differences in responses to some pruritogens. For example, responses of VcPbT neurons to injection of serotonin often endured for nearly an hour and showed a delayed peak in discharge rate. In contrast, responses of VcTT neurons endured for roughly 20 min and no delayed peak of firing was noted. Thus the longer duration responses to 5-HT and the delay in peak firing of VcPbT neurons better matched behavioral responses to stimulation in awake rats than did those of VcTT neurons. The results indicate that VcPbT neurons may have important roles in the signaling of itch as well as pain. PMID:25298386

  4. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data

    NASA Astrophysics Data System (ADS)

    Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.

    2013-07-01

    The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.

  5. LANDSAT 3 return beam vidicon response artifacts: A report on RBV photographic product characteristics and quality coding system

    NASA Technical Reports Server (NTRS)

    Clark, B. P.

    1981-01-01

    Analysis of large volumes of LANDSAT 3 RBV digital data that were converted to photographic form led to the firm identification of several visible artifacts (objects or structures not normally present, but producted by an external agency or action) in the imagery. These artifacts were identified, categorized, and traced directly to specific sensor response characteristics. None of these artifacts is easily removed and all cases remain under active study of possible future enhancement. The seven generic categories of sensor response artifacts identified to date include: (1) shading and stairsteps; (2) corners out of focus; (3) missing reseaus; (4) reseau distortion and data distortion; (5) black vertical line; (6) grain effect; and (7) faceplate contamination. An additional category under study, but not yet determined to be caused by sensor response, is a geometric anomaly. Examples of affected imagery are presented to assist in distinguishing between image content and innate defects caused by the sensor system.

  6. Characteristics of the earliest cross-neutralizing antibody response to HIV-1.

    PubMed

    Mikell, Iliyana; Sather, D Noah; Kalams, Spyros A; Altfeld, Marcus; Alter, Galit; Stamatatos, Leonidas

    2011-01-01

    Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%-30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2-3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination. PMID:21249232

  7. Control and response characteristics of a magnetorheological fluid damper for passenger vehicles

    Microsoft Academic Search

    Seung-Bok Choi; HwanSoo Lee; SungRyong Hong; ChaeCheon Cheong

    2000-01-01

    This paper presents control characteristics of a semi-active magneto-rheological (MR) fluid damper for a passenger vehicle. A cylindrical MR damper is devised and its governing equation is derived. After verifying that the damping force of the MR damper can be continuously tuned by the intensity of the magnetic field, PID controller is employed to achieve the desired damping force. The

  8. REPRODUCTIVE RESPONSES AND CARCASS CHARACTERISTICS OF RAM LAMBS FED ENDOPHYTE-INFECTED TALL FESCUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the influence of endophyte-infected tall fescue on reproductive development and function and carcass characteristics of ram lambs. Hampshire and Suffolk rams, 214 d of age, were fed individually a diet of endophyte-free (EF; n = 8) or infected (EI; n = 9) ...

  9. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics

    Microsoft Academic Search

    Sarah L. Honour; J. Nigel B. Bell; Trevor W. Ashenden; J. Neil Cape; Sally A. Power

    2009-01-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NOx) representative of urban

  10. Responsiveness in Interactions of Mothers and Sons with ADHD: Relations to Maternal and Child Characteristics

    Microsoft Academic Search

    Charlotte Johnston; Candice Murray; Stephen P. Hinshaw; William E. Pelham Jr; Betsy Hoza

    2002-01-01

    We observed mother–child interactions, at baseline, in 136 families of 7–10-year-old boys with attention-deficit\\/hyperactivity disorder (ADHD) who were part of a large clinical trial, the Multimodal Treatment Study of Children with ADHD. Independent coders rated stylistic aspects of maternal behavior and factor analyses revealed a responsiveness factor that included overall responsiveness and sensitivity to the child, warmth and acceptance, and

  11. A procedure to develop scalable models for the transient response of sleepers in conventional and high-speed railway lines and implementation to the vertical vibration mode

    Microsoft Academic Search

    E. Leon; D. C. Rizos; J. M. Caicedo

    2011-01-01

    This paper presents a procedure to develop scalable reduced models for the through-the soil interaction and traveling wave effects of distant sleepers in a long railway track. For development purposes, and, without loss of generality, the geometry of the sleepers is consistent with the UIC-60 track system commonly used in European high speed rail and the vertical vibration mode is

  12. Optimal ossicular site for maximal vibration transmissions to coupled transducers.

    PubMed

    Chung, Juyong; Song, Won Joon; Sim, Jae Hoon; Kim, Wandoo; Oh, Seung-Ha

    2013-07-01

    Totally implantable middle-ear prosthetic devices, such as the Esteem system (Envoy Medical Corporation), detect vibrational motion of the middle-ear ossicles rather than acoustic stimulation to the eardrum. This eliminates the need for a subcutaneous microphone, which is susceptible to interference by ambient noises. Study of the vibrational characteristics of the human ossicles provides valuable information for determining the site of maximum ossicular motion that would be optimal for attachment of the sensor portion of the prosthesis. In this study, vibrational responses at seven locations on the middle-ear ossicles (i.e., the malleus head, 4 different points on the incus body, middle of the incus long process, tip of the incus long process) in human temporal bones (n = 6) were measured using a laser Doppler vibrometer. The measurements were repeated after separating the incudostapedial joint (ISJ). Measured displacement at each location was normalized with the sound pressure level near the tympanic membrane (TM) for representation in the form of a displacement transfer function (DTF). The normalized squared sum of the DTFs (NSSDTF) was then calculated as a measure of vibration motion through a specific frequency range at the considered sites. The relatively large NSSDTF was observed at the sites on the superior part of the malleus head (MH), on the lateral part of the incus body (IBL), and on the superior part of the incus body near the incudomalleal joint (IBS1) for the frequency ranges of 1-4 kHz and 1-9 kHz, regardless of the condition of the ISJ. This indicates that maximum vibrational motion of the middle-ear is deliverable to the piezoelectric transducer of totally implantable devices through these sites. This article is part of a special issue entitled "MEMRO 2012". PMID:23337694

  13. Selected new developments in vibrational structure theory: potential construction and vibrational wave function calculations.

    PubMed

    Christiansen, Ove

    2012-04-10

    This perspective addresses selected recent developments in the theoretical calculation of vibrational spectra, energies, wave functions and properties. The theoretical foundation and recently developed computational protocols for constructing hierarchies of vibrational Hamiltonian operators are reviewed. A many-mode second quantization (SQ) formulation is discussed prior to the discussion of anharmonic wave functions. Emphasis is put on vibrational self-consistent field (VSCF) based methods and in particular vibrational coupled cluster (VCC) theory. Other issues are also reviewed briefly, such as inclusion of thermal effects, response theoretical calculation of spectra, and the difficulty in treating dense spectra. PMID:22491444

  14. Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies

    E-print Network

    Melnik, Roderick

    Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies 2010 Accepted 8 September 2012 Available online 18 October 2012 Keywords: Vibration tuning Frequency and vibration tuning of various structures, seismic response mitigation, and others. In vibration tuning in many

  15. Vibration modeling and supression in tennis racquets.

    SciTech Connect

    Farrar, C. R. (Charles R.); Buechler, M. A. (Miles A.); Espino, Luis; Thompson, G. A. (Gordon A.)

    2003-01-01

    The size of the 'sweet spot' is one measure of tennis racquet performance. In terms of vibration, the sweet spot is determined by the placement of nodal lines across the racquet head. In this studx the vibrational characteristics of a tennis racquet are explorod to discover the size and location of the sweet spot. A numerical model of the racquet is developed using finite element analysis and the model is verified using the results from an experimental modal analysis. The affects of string tension on the racquet's sweet spot and mode shapes are then quantified. An investigation is also carried out to determine how add-on vibrational datnpers affect the sweet spot.

  16. Random vibrations of a damped rotating shaft

    Microsoft Academic Search

    M. F. Dimentberg; B. Ryzhik; L. Sperling

    2005-01-01

    Response of a simple Jeffcott rotor to random excitation is considered with both external and internal damping taken into account. Mean square responses are predicted by the method of moments for the cases of transverse and angular (tilting) oscillations. Contrary to unbalance-induced response the random vibrations are shown to depend on the internal or “rotating” damping; in particular, their level

  17. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  18. Harvesting traffic-induced bridge vibrations

    Microsoft Academic Search

    T. Galchev; J. McCullagh; R. L. Peterson; K. Najafi

    2011-01-01

    This paper demonstrates the harvesting of low-frequency and low-amplitude vibration energy from a suspension bridge. The performance of a Parametric Frequency Increased Generator (PFIG) (1) is evaluated at different locations along the bridge. Bridge vibrations have very low acceleration 0.1-1 m\\/s 2 and variable frequency characteristics (1-40 Hz), making them very challenging to harvest. Field test results show consistent operation

  19. Finite element programs for structural vibrations

    Microsoft Academic Search

    C. T. F. Ross

    1991-01-01

    This publication describes six finite-element computer programs for determining the vibration characteristics of a range of problems and matrix sizes and provides the necessary software. The programs are examined within the context of the finite-element method in general with specific attention given to the vibrations of such elements as pin-jointed trusses, continuous beams, rigid-jointed plane frames, space trusses, and grillages.

  20. Energy harvesting vibration sources for microsystems applications

    Microsoft Academic Search

    S P Beeby; M J Tudor; N M White

    2006-01-01

    This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric,

  1. BRIDGES IN VIBRATED GRANULAR MEDIA

    Microsoft Academic Search

    Anita Mehta

    We study a particular consequence of the dynamics of vibrated granular media, which is the spontaneous formation of stable\\u000a bridges. Here we examine their geometrical characteristics, and compare the results of a simple theory with those of independent\\u000a simulations of three-dimensional hard spheres. Our conclusion is that bridges are the signatures of spatiotemporal inhomogeneities,\\u000a the carriers of the so-called ‘force

  2. Off-axis dose response characteristics of an amorphous silicon electronic portal imaging device

    SciTech Connect

    Greer, Peter B. [Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia); University of Newcastle, Newcastle, New South Wales (Australia)

    2007-10-15

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) have typically been calibrated to dose at central axis (CAX). Division of acquired images by the flood-field (FF) image that corrects for pixel sensitivity variation as well as open field energy-dependent off-axis response variation should result in a flat EPID response over the entire matrix for the same field size. While the beam profile can be reintroduced to the image by an additional correction matrix, the CAX EPID response to dose calibration factor is assumed to apply to all pixels in the detector. The aim of this work was to investigate the dose response of the Varian aS500 amorphous silicon detector across the entire detector area. First it was established that the EPID response across the panel became stable (within {approx}0.2%) for MU settings greater than {approx}200 MU. The EPID was then FF calibrated with a high MU setting of {approx}400 for all subsequent experiments. Whole detector images with varying MU settings from 2-500 were then acquired for two dose rates (300 and 600 MU/min) for 6 MV photons for two EPIDs. The FF corrected EPID response was approximately flat or uniform across the detector for greater than 100 MU delivered (within 0.5%). However, the off-axis EPID response was greater than the CAX response for small MU irradiations, giving a raised EPID profile. Up to 5% increase in response at 20 cm off-axis compared to CAX was found for very small MU settings for one EPID, while it was within 2% for the second (newer) EPID. Off-axis response nonuniformities attributed to detector damage were also found for the older EPID. Similar results were obtained with the EPID at 18 MV energy and operating in asynchronous mode (acquisition not synchronized with beam pulses), however the profiles were flatter and more irregular for the small MU irradiations. By moving the detector laterally and repeating the experiments, the increase in response off-axis was found to depend on the pixel position relative to the beam CAX. When the beam was heavily filtered by a phantom the off-axis response variation was reduced markedly to within 0.5% for all MU settings. Independent measurements of off-axis point doses with ion chamber did not show any change in off-axis factor with MUs. Measurements of beam quality (TMR{sub 20-10}) for MU settings of 2, 5, and 100 at central axis and at 15 cm off-axis could not explain the effect. The response change is unlikely to be significant for clinical IMRT verification with this imaging/acclerator system where MUs are of the order of 100-300, provided the detector does not exhibit radiation damage artifacts.

  3. Effect of Achilles tendon vibration on posture in children.

    PubMed

    McKay, Sandra M; Wu, Jianhua; Angulo-Barroso, Rosa M

    2014-05-01

    This study investigated the effect of unilateral Achilles tendon vibration on postural response in children and young adults during standing. Thirty healthy subjects participated in this study including ten 6-year-old children (YC group), ten 10-year-old children (OC group), and ten young adults (YA group). Eight-second vibration was elicited in each trial from a small vibrator attached above the right Achilles tendon when participants stood barefoot on a force platform. Three 40-s trials were collected under both eyes-open and eyes-closed conditions. Center of pressure (COP) was calculated to examine postural response during the pre-vibration, vibration and post-vibration phases. Results show that both the YC and OC groups had a greater COP average velocity than the YA group in all three phases. Tendon vibration induced a directionally specific postural response in all three groups such that the onset of vibration induced a posterior and medial COP shift during the vibration phase, and the offset of vibration induced an anterior and lateral COP shift during the post-vibration phase. Timing of the maximal COP shift was comparable among three groups in both anterior-posterior (AP) and medial-lateral (ML) directions. However, only the OC group showed an adult-like magnitude of the maximal COP shift during the post-vibration phase in the AP direction. These results suggest that 6-year-old children may start showing an adult-like directionally specific response and temporal parameter to tendon vibration during standing; however, the development of an adult-like spatial postural response to tendon vibration may take more than 10 years. PMID:24613462

  4. [Characteristics of soil salinity profiles and their electromagnetic response under various vegetation types in coastal saline area].

    PubMed

    Yang, Jing-Song; Yao, Rong-Jiang; Zou, Ping; Liu, Guang-Ming

    2008-10-01

    Aiming at the intrinsic relationships between vegetation type and soil salinity in coastal saline area, and by using electromagnetic induction EM38 and field sampling method, the characteristics of soil salinity profiles under various vegetation types in typical coastal saline region of the Yellow River Delta were analyzed, and the electromagnetic response characters of the salinity profiles were compared. The results showed that across the study area, soil salinity exhibited the characteristics of top enrichment and strong spatial variation. The horizontal electromagnetic conductivity EM(h) responded well to soil salinity at upper layers, and the response of vertical electromagnetic conductivity EM(v) to soil salinity at deeper layers was superior to that of EM(h). Soil salinity profiles were classified into inverted, normal, and uniform types. The vegetation types of inverted salinity profiles were mainly bare land and Suaeda salsa, while those of normal and uniform salinity profiles were cotton and weed, respectively. The sequence of top enrichment intensity was bare land > S. salsa land > weed land > cotton land. With the change of vegetation type of cotton-weed-S. salsa-bare land, the EM(v)/EM(h) value of salinity profiles decreased gradually. Nonparametric test results showed that there was a significant correlation between vegetation type and electromagnetic response characters, and the distribution characters of EM(v)/EM(h) under various vegetation types varied significantly. PMID:19123343

  5. Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome

    PubMed Central

    Lane, R.; Barrett, M.; Woodrow, D.; Moss, J.; Fletcher, R.; Archard, L.

    1998-01-01

    OBJECTIVES—To examine the proportions of type 1 and type 2 muscle fibres and the degree of muscle fibre atrophy and hypertrophy in patients with chronic fatigue syndrome in relation to lactate responses to exercise, and to determine to what extent any abnormalities found might be due to inactivity.?METHODS—Quadriceps needle muscle biopsies were obtained from 105 patients with chronic fatigue syndrome and the proportions of type 1 and 2 fibres and fibre atrophy and hypertrophy factors were determined from histochemical preparations, using a semiautomated image analysis system. Forty one randomly selected biopsies were also examined by electron microscopy. Lactate responses to exercise were measured in the subanaerobic threshold exercise test (SATET).?RESULTS—Inactivity would be expected to result in a shift to type 2 fibre predominance and fibre atrophy, but type 1 predominance (23%) was more common than type 2 predominance (3%), and fibre atrophy was found in only 10.4% of cases. Patients with increased lactate responses to exercise did have significantly fewer type 1 muscle fibres (p<0.043 males, p<0.0003 females), but there was no evidence that this group was less active than the patients with normal lactate responses. No significant ultrastructural abnormalities were found.?CONCLUSION—Muscle histometry in patients with chronic fatigue syndrome generally did not show the changes expected as a result of inactivity. However, patients with abnormal lactate responses to exercise had a significantly lower proportion of mitochondria rich type 1 muscle fibres.?? PMID:9527150

  6. Some buffet response characteristics of a twin-vertical-tail configuration

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Moss, Steven W.; Doggett, Robert V., Jr.

    1990-01-01

    A rigid, 1/6 size, full span model of an F-18 airplane was fitted with flexible vertical tails of two different levels of stiffness that were buffet tested in the Langley Transonic Dynamics Tunnel. Vertical tail buffet response results that were obtained over the range of angles of attack from -10 to 40 degs, and over the range of Mach numbers from 0.30 to 0.95 are presented. These results indicate the following: (1) the response occurs in the first bending mode; (2) the response increases with increasing dynamic pressure, but changes in response are not linearly proportional to the changes in dynamic pressure; (3) the response is larger at M = 0.30 than it is at the higher Mach numbers; (4) the maximum intensity of the buffeting is described as heavy to severe using an assessment criteria proposed by another investigator; and (5) the data at different dynamic pressures and for the different tails correlate reasonably well using the buffet excitation parameter derived from the dynamic analysis of buffeting.

  7. Characteristics of Antibody Responses in West Nile Virus-Seropositive Blood Donors

    PubMed Central

    Prince, Harry E.; Biggerstaff, Brad J.; Lanciotti, Robert; Tobler, Leslie H.; Busch, Michael

    2014-01-01

    West Nile virus (WNV) is now endemic in the United States. Protection against infection is thought to be conferred in part by humoral immunity. An understanding of the durability and specificity of the humoral response is not well established. We studied the magnitude and specificity of antibody responses in 370 WNV-seropositive blood donors. We also recalled 18 donors who were infected in 2005 to compare their antibody responses at 6 months following infection versus at 5 years postinfection. There were no significant differences in IgG antibody levels based on age, sex, or recent infection (as evidenced by IgM positivity). Specific antibody responses by viral plaque reduction neutralization testing (PRNT) were seen in 51/54 subjects evaluated. All donors who were seropositive in 2005 remained seropositive at 5 years and maintained neutralizing antibodies. IgG levels at 5 years postinfection showed fairly minimal decreases compared with the paired levels at 6 months postinfection (mean of paired differences,?0.54 signal-to-cutoff ratio (S/CO) units [95% confidence interval {CI}, ?0.86 to ?0.21 S/CO units]) and only minimal decreases in PRNT titers. WNV induces a significant antibody response that remains present even 5 years after infection. PMID:24131687

  8. Characteristics of antibody responses in West Nile virus-seropositive blood donors.

    PubMed

    Carson, Paul J; Prince, Harry E; Biggerstaff, Brad J; Lanciotti, Robert; Tobler, Leslie H; Busch, Michael

    2014-01-01

    West Nile virus (WNV) is now endemic in the United States. Protection against infection is thought to be conferred in part by humoral immunity. An understanding of the durability and specificity of the humoral response is not well established. We studied the magnitude and specificity of antibody responses in 370 WNV-seropositive blood donors. We also recalled 18 donors who were infected in 2005 to compare their antibody responses at 6 months following infection versus at 5 years postinfection. There were no significant differences in IgG antibody levels based on age, sex, or recent infection (as evidenced by IgM positivity). Specific antibody responses by viral plaque reduction neutralization testing (PRNT) were seen in 51/54 subjects evaluated. All donors who were seropositive in 2005 remained seropositive at 5 years and maintained neutralizing antibodies. IgG levels at 5 years postinfection showed fairly minimal decreases compared with the paired levels at 6 months postinfection (mean of paired differences,-0.54 signal-to-cutoff ratio (S/CO) units [95% confidence interval {CI}, -0.86 to -0.21 S/CO units]) and only minimal decreases in PRNT titers. WNV induces a significant antibody response that remains present even 5 years after infection. PMID:24131687

  9. Dose Response and Post-irradiation Characteristics of the Sunna 535-nm Photo-Fluorescent Film Dosimeter

    SciTech Connect

    Murphy, Mark K.; Kovacs, Andras; Miller, Steven D.; Mclaughlin, William L.

    2003-06-09

    Results of characterization studies on one of the first versions of the Sunna photo-fluorescent dosimeter ? have previously been reported, and describe the performance of the red fluorescence component. This present paper describes dose response and post-irradiation characteristics of the green fluorescence component from the same dosimeter film (Sunna Model ?), which is manufactured using the injection molding technique. This production method may supply batch sizes on the order of 1 million dosimeter film elements while maintaining a signal precision (1?) on the order of ?1% without the need to correct for variability of film thickness. The dosimeter is a 1-cm by 3-cm polymeric film of 0.5-mm thickness that emits green fluorescence at intensities increasing almost linearly with dose. The data presented include dose response, post-irradiation growth, heat treatment, dosimeter aging, dose rate dependence, energy dependence, dose fractionation, variation of response within a batch, and the stability of the fluorimeter response. The results indicate that, as a routine dosimeter, the green signal provides a broad range of response at food irradiation (0.3 to 5 kGy), medical sterilization (5 to 40 kGy), and polymer cross-linking (40 to 250 kGy) dose levels.

  10. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics

    PubMed Central

    Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.

    2013-01-01

    In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936

  11. Lesion characteristics and responses after CO2 laser vaporization in five patients With gingival leukoplakia.

    PubMed

    Chainani-Wu, Nita; Silverman, Sol

    2013-10-01

    Gingival leukoplakia, a premalignant condition, can pose difficulties to surgical access because of the presence of teeth and potential extensions into the periodontal ligament. We present a series of five patients with gingival leukoplakia who were treated with carbon dioxide laser vaporization. We describe lesion characteristics and recurrence patterns suggesting that presence of gingival leukoplakia on facial and palatal/lingual aspect through the interproximal areas may increase the risk of recurrence after conservative surgical removal. PMID:24340428

  12. Growth characteristics and response to climate change of Larix Miller tree-ring in China

    Microsoft Academic Search

    Yu Sun; LiLi Wang; Jin Chen; JianPing Duan; XueMei Shao; KeLong Chen

    2010-01-01

    As one of the earliest species used in dendrochronological studies, Larix responds sensitively to climate change. In this study, nine larch species and one variety from eleven sites were collected\\u000a to study the growth characteristics of tree-ring width using dendrochronological methods. Ten residual tree-ring chronologies\\u000a were developed to analyze their relationships with regional standardized anomaly series by Pearson’s correlation analysis.

  13. Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics

    SciTech Connect

    Zhang, Ke; Liu, Ying Dan [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)] [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Choi, Hyoung Jin, E-mail: hjchoi@inha.ac.kr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2012-10-15

    The core–shell structured snowman-like (SL) microparticles coated by functionalized multi-walled carbon nanotube (MWNT) were prepared in the presence of different surfactants including cationic surfactant-cetyl trimethylammonium bromide (CTAB) and anionic surfactant-sodium lauryl sulfate (SDS). The effect of surfactants on adsorption onto SL particles was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and conductivity. The cationic surfactant is found to be more effective than anionic surfactant for helping nanotube adsorbed onto microparticle due to the presence of electrostatic interaction between the functionalized MWNT and the surfactant. Furthermore, the MWNT/SL particles dispersed in silicone oil exhibited a typical fibril structure of the electrorheological characteristics under an applied electric field observed by an optical microscope (OM), in which the state of nanotubes wrapped on the particles strongly affects their electro-responsive characteristics.

  14. Manipulating the jasmonate response: How do methyl jasmonate additions mediate characteristics of

    E-print Network

    Adler, Lynn

    of jasmonates, a group of plant hormones that prime the plant's defense system upon attack. However, defense jasmonate (MeJA)] are naturally occurring plant hormones biosynthe- sized in response to wounding, abiotic, 1081 HV Amsterdam, The Netherlands; 2 Department of Plant, Soil and Insect Science, University

  15. Assessing the Value of Regulation Resources Based on Their Time Response Characteristics

    Microsoft Academic Search

    Yuri V. Makarov; Shuai Lu; Jian Ma; Tony B. Nguyen

    2008-01-01

    Fast responsive regulation resources are potentially more valuable as a power system regulation resource (more efficient) because they allow applying controls at the exact moment and in the exact amount as needed. Faster control is desirable because it facilitates more reliable compliance with the NERC Control Performance Standards at relatively lesser regulation capacity procurements. The current California ISO practices and

  16. Stimulus Concreteness, Response Characteristics, and the Recognition-Recall Method in Paired-Associate Learning

    ERIC Educational Resources Information Center

    Wicker, Frank W.; And Others

    1978-01-01

    Attempts to help specify the boundary conditions for use of the recognition-recall method, i.e., recall made conditional upon recognition, and to use this method to evaluate a hypothesis about stimulus-concreteness effects with low-meaningful responses. (Author/RK)

  17. Experimental Taenia solium cysticercosis in pigs: characteristics of the infection and antibody response

    Microsoft Academic Search

    A. S. de Aluja; A. N. M. Villalobos; A. Plancarte; L. F. Rodarte; M. Hernández; E. Sciutto

    1996-01-01

    Pigs were infected with taeniid eggs to study the susceptibility to infection and reinfection of the animals of mixed breeds and of different ages, the viability and death of the metacestodes in the host tissue, and the antibody response which accompanies these events. Sixteen pigs were infected with Taenia solium eggs for this purpose. At necropsy metacestodes were counted in

  18. Acute administration of methylphenidate alters the prefrontal cortex neuronal activity in a dose–response characteristic

    PubMed Central

    Claussen, Catherine M; Dafny, Nachum

    2014-01-01

    The prefrontal cortex (PFC) is part of the collective structures known as the motive circuit. The PFC acts to enhance higher cognitive functions as well as mediate the effects of psychostimulants. Previous literature shows the importance of PFC neuronal adaptation in response to acute and chronic psychostimulant exposure. The PFC receives input from other motive circuit structures, including the ventral tegmental area, which mediates and facilitates the rewarding effects of psychostimulant exposure. PFC neuronal and locomotor activity from freely behaving rats previously implanted with permanent semimicroelectrodes were recorded concomitantly using a telemetric (wireless) recording system. Methylphenidate (MPD) is used as a leading treatment for behavioral disorders and more recently as a cognitive enhancer. Therefore, the property of MPD dose response on PFC neuronal activity was investigated. The results indicate that MPD modulates PFC neuronal activity and behavioral activity in a dose-dependent manner. PFC neuronal responses to 0.6 mg/kg elicited mainly a decrease in PFC neuronal activity, while higher MPD doses (2.5 and 10.0 mg/kg) elicited mainly increased neuronal activity in response to MPD. The correlation between MPD effects on PFC neuronal activity and animal behavior is discussed. PMID:24883018

  19. Dynamic Response Characteristics of a Novel Electrolyte Michael C. Hollenbeck1,2

    E-print Network

    Stevens, Ken

    a multiphysics model for a polymer- electrolyte transistor (PET) simulated in COMSOL Multiphysics. Dynamic are obtained, which leads to custom logic built in to the device chemistry. Keywords: Polymer-electrolyte the dynamic response of the LSL polymer-electrolyte transistor (PET), utilizing the finite element solver

  20. "Can't Nobody Sleep" and Other Characteristics of Culturally Responsive English Instruction

    ERIC Educational Resources Information Center

    Adkins, Theresa A.

    2012-01-01

    In this article the author presents a collective case study of two English teachers identified as particularly successful with Black students. Through the use of ethnographic techniques, the study provides a snapshot of how these teachers facilitated academic gains in urban high schools through their use of culturally responsive English…

  1. Nonlinear vibration isolator with adjustable restoring force

    NASA Astrophysics Data System (ADS)

    Araki, Yoshikazu; Asai, Takehiko; Kimura, Kosuke; Maezawa, Kosei; Masui, Takeshi

    2013-11-01

    This paper presents a vertical quasi-zero stiffness (QZS) vibration isolator with a mechanism for adjusting restoring force. QZS vibration isolators have high initial stiffness and QZS around the static equilibrium position. This way, excessive deformation due to self-weight can be avoided while having enough vibration reduction capability to dynamic excitations. One of the main issues left for QZS vibration isolators is the difficulty in keeping the vibration reduction capability when the vibration isolated object is replaced. In such a case, adjustment of its restoring force becomes necessary in accordance with the self-weight of the newly placed vibration isolated object. This paper attempts to address this issue by proposing a mechanism that enables quick and easy adjustment of the restoring force of a QZS vibration isolator. The proposed mechanism consists of cranks and a screw jack. With the present mechanism, the restoring force provided by horizontally placed springs can be converted into the vertical restoring force of the vibration isolator. In the conversion, the vertical resisting force can be adjusted simply by applying and removing torque to the screw jack to change and hold the angle of inclined bars placed in the cranks. In this study, a prototype of a class of QZS vibration isolator having the proposed mechanism is produced. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the produced prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the produced prototype can reduce the response acceleration within the same tolerance even when the mass of the vibration isolated object is changed.

  2. NSLS II Vibration and Acoustic Criteria Vibration Experiment Hall

    E-print Network

    Ohta, Shigemi

    NSLS II Vibration and Acoustic Criteria Vibration ­ Experiment Hall The vibration limits at this time. It may only be possible to represent the vibration requirements of this space using generic vibration criteria. The vibration needs of the vast majority of research equipment available today would

  3. Correlation between auditory evoked responses in the thalamus and species-specific call characteristics

    Microsoft Academic Search

    K. M. Mudry; R. R. Capranica

    1987-01-01

    This evoked potential study of the bullfrog's auditory thalamic area (an auditory responsive region in the posterior dorsal thalamus) shows that complex processing, distinct from that reported in lower auditory regions, occurs in this center.1.An acoustic stimulus consisting of two tones, one which stimulates either the low-frequency or the mid-frequency sensitive population of auditory nerve fibers from the amphibian papillaand

  4. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells

    Microsoft Academic Search

    Tatiana J. P Freire; Ernesto R Gonzalez

    2001-01-01

    In this work, an experimental study of the impedance response of H2\\/O2 polymer electrolyte membrane fuel cells (PEMFC) was carried out with single cells with four Nafion® membranes (117, 115, 1135 and 112) of different thicknesses, at four temperatures in the range 25–80°C, with reactant gases humidified under different conditions. The impedance results were analysed in terms of the high

  5. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was begun.

  6. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  7. Primary hemochromatosis: anatomic and physiologic characteristics of the cardiac ventricles and their response to phlebotomy

    SciTech Connect

    Dabestani, A.; Child, J.S.; Henze, E.; Perloff, J.K.; Schon, H.; Figueroa, W.G.; Schelbert, H.R.; Thessomboon, S.

    1984-07-01

    M-mode and 2-dimensional echocardiography and gated equilibrium blood pool imaging (rest and exercise) were used in 10 patients with primary hemochromatosis to characterize the spectrum of pathophysiologic abnormalities of the cardiac ventricles and to determine the response to chronic therapeutic phlebotomy. Dilated and restrictive cardiomyopathic patterns were identified in 1 patient each, but our data do not permit conclusions on when in the natural history a given pattern becomes overt. On entry into study, 3 patients had normal ventricles and 7 had ventricular abnormalities on echocardiography and blood pool angiography. In 2 of the latter patients, biventricular dysfunction and increased left ventricular (LV) mass normalized after phlebotomy; 1 patient achieved a normal LV response to exercise. Of the 4 patients with isolated abnormal LV ejection fraction responses to exercise, the EF normalized in 2 after phlebotomy. In 1 patient, isolated right ventricular enlargement and dysfunction (echocardiographic and radionuclide imaging) normalized after phlebotomy. Thus, primary hemochromatosis can effect LV and RV size and function; clinically occult cardiac involvement can be identified by echocardiography and equilibrium blood pool imaging; therapeutic phlebotomy can ameliorate or reverse the deleterious effects of excess cardiac iron deposition which appears to exert its harm, at least in part, by a mechanism other than irreversible connective tissue replacement.

  8. Spent fuel waste form characteristics: Grain and fragment size statistical dependence for dissolution response

    SciTech Connect

    Stout, R.B.; Leider, H.; Weed, H.; Nguyen, S.; McKenzie, W.; Prussin, S. [Lawrence Livermore National Lab., CA (USA); Wilson, C.N.; Gray, W.J. [Pacific Northwest Lab., Richland, WA (USA)

    1991-04-01

    The Yucca Mountain Project of the US Department of Energy is investigating the suitability of the unsaturated zone at Yucca Mountain, NV, for a high-level nuclear waste repository. All of the nuclear waste will be enclosed in a container package. Most of the nuclear waste will be in the form of fractured UO{sub 2} spent fuel pellets in Zircaloy-clad rods from electric power reactors. If failure of both the container and its enclosed clad rods occurs, then the fragments of the fractured UO{sub 2} spent fuel will be exposed to their surroundings. Even though the surroundings are an unsaturated zone, a possibility of water transport exists, and consequently, UO{sub 2} spent fuel dissolution may occur. A repository requirement imposes a limit on the nuclide release per year during a 10,000 year period; thus the short term dissolution response from fragmented fuel pellet surfaces in any given year must be understood. This requirement necessitates that both experimental and analytical activities be directed toward predicting the relatively short term dissolution response of UO{sub 2} spent fuel. The short term dissolution response involves gap nuclides, grain boundary nuclides, and grain volume nuclides. Analytical expressions are developed that describe the combined geometrical influences of grain boundary nuclides and grain volume nuclides on the dissolution rate of spent fuel. 7 refs., 1 fig.

  9. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  10. Shear flow induced vibrations of long slender cylinders with a wake oscillator model

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Lu, Wei; Wang, Lei; Hong, You-Shi

    2011-06-01

    A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations (VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fluid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model, such as the spanwise average displacement, vibration frequency, dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.

  11. Study of the dynamic characteristics of the AC dipole-girder system for CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Hong; Qu, Hua-Min; Zhang, Jun-Song; Kang, Ling; Wang, Mo-Tuo; Wang, Guang-Yuan; Wang, Hai-Jing

    2014-07-01

    China Spallation Neutron Source (CSNS) is a high intensity proton accelerator-based facility. Its accelerator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates an 80 MeV proton beam and accelerates it to 1.6 GeV, with a repetition rate of 25 Hz. The AC dipole of the CSNS/RCS is operated at a 25 Hz sinusoidal alternating current which causes severe vibration. The vibration will influence the long-term safety and reliable operation of the magnet. The CSNS/RCS AC dipole-girder system takes vibration isolator to decrease the vibratory force and the vibration amplitude of the dipole. For the long-term safety and reliable operation of the dipole, it is very important to study the dynamic characteristics of the dipole-girder system. This paper takes the dipole-girder as a specific model system. A method for studying the dynamic characteristics of the system is put forward by combining theoretical calculation with experimental testing. The modal parameters with and without vibration isolator of the dipole-girder system are obtained through ANSYS simulation and testing. Then, the dynamic response of the system is calculated with modal analysis and vibration testing data. With the simulation and testing method, the dynamic characteristics of the AC dipole-girder are studied.

  12. ROTATION-VIBRATION TETRAHEDRAL

    E-print Network

    Sadovskií, Dmitrií

    ANALYSIS OF ROTATION-VIBRATION RELATIVE EQUILIBRIA ON THE EXAMPLE OF A TETRAHEDRAL FOUR ATOM (RE) of a nonrigid molecule which vibrates about a well de#12;ned equilibrium con#12;guration and rotates as a whole. Our analysis uni#12;es the theory of rotational and vibrational RE. We rely

  13. Optical vibration detection spectral analysis assembly and method for detecting vibration in an object of interest

    DOEpatents

    Hale, T.C.; Telschow, K.L.

    1998-10-27

    A vibration detection assembly is described which includes an emitter of light which has object and reference beams, the object beam reflected off of a vibrating object of interest; and a photorefractive substance having a given response time and which passes the reflected object beam and the reference beam, the reference beam and the object beam interfering within the photorefractive substance to create a space charge field which develops within the response time of the photorefractive substance. 6 figs.

  14. Optical vibration detection spectral analysis assembly and method for detecting vibration in an object of interest

    DOEpatents

    Hale, Thomas C. (Los Alamos, NM); Telschow, Kenneth L. (Idaho Falls, ID)

    1998-01-01

    A vibration detection assembly is described which includes an emitter of light which has object and reference beams, the object beam reflected off of a vibrating object of interest; and a photorefractive substance having a given response time and which passes the reflected object beam and the reference beam, the reference beam and the object beam interfering within the photorefractive substance to create a space charge field which develops within the response time of the photorefractive substance.

  15. Response Characteristics of Soil Fractal Features to Different Land Uses in Typical Purple Soil Watershed

    PubMed Central

    Luo, Bang-lin; Chen, Xiao-yan; Ding, Lin-qiao; Huang, Yu-han; Zhou, Ji; Yang, Tian-tian

    2015-01-01

    As a fundamental characteristic of soil physical properties, the soil Particle Size Distribution (PSD) is important in the research on soil moisture migration, solution transformation, and soil erosion. In this research, the PSD characteristics with distinct methods in different land uses are analyzed. The results show that the upper bound of the volume domain of the clay domain ranges from 5.743?m to 5.749?m for all land-use types. For the silt domain of purple soil, the value ranges among 286.852~286.966 ?m. For all purple soil land-use types, the order of the volume domain fractal dimensions is DclayDsilt(U)>Dsand (U)>Dsand and Dsilt>Dsilt(U)>Dsand>Dsand(U), respectively. As it is compared with all Dvi, the Dsilt has the most significant correlativity to the soil texture and organic matter in different land uses of the typical purple soil watersheds. Therefore, Dsilt will be a potential indictor for evaluating the proportion of fine particles in the PSD, as well as a key measurement in soil quality and productivity studies. PMID:25856376

  16. Effects of User and System Characteristics on Perceived Usefulness and Perceived Ease of Use of the Web-Based Classroom Response System

    ERIC Educational Resources Information Center

    Ke, Chih-Horng; Sun, Huey-Min; Yang, Yuan-Chi; Sun, Huey-Min

    2012-01-01

    This study explores the effect of user and system characteristics on our proposed web-based classroom response system (CRS) by a longitudinal design. The results of research are expected to understand the important factors of user and system characteristics in the web-based CRS. The proposed system can supply interactive teaching contents,…

  17. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  18. Gene Profiling Characteristics of Radioadaptive Response in AG01522 Normal Human Fibroblasts

    PubMed Central

    Hou, Jue; Wang, Fan; Kong, Peizhong; Yu, Peter K. N.; Wang, Hongzhi; Han, Wei

    2015-01-01

    Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose. PMID:25886619

  19. Gene Profiling Characteristics of Radioadaptive Response in AG01522 Normal Human Fibroblasts.

    PubMed

    Hou, Jue; Wang, Fan; Kong, Peizhong; Yu, Peter K N; Wang, Hongzhi; Han, Wei

    2015-01-01

    Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose. PMID:25886619

  20. Modulation response characteristics of optical injection-locked cascaded microring laser

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Pei, Li; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2014-09-01

    Modulation bandwidth and frequency chirping of the optical injection-locked (OIL) microring laser (MRL) in the cascaded configuration are investigated. The unidirectional operation of the MRL under strong injection allows simple and cost-saving monolithic integration of the OIL system on one chip as it does not need the use of isolators between the master and slave lasers. Two cascading schemes are discussed in detail by focusing on the tailorable modulation response. The chip-to-power ratio of the cascaded optical injection-locked configuration has decreased by up to two orders of magnitude, compared with the single optical injection-locked configuration.