Science.gov

Sample records for viscous impeller pump

  1. Cavopulmonary assist for the univentricular Fontan circulation: von Kármán Viscous Impeller Pump (VIP™)

    PubMed Central

    Rodefeld, Mark D; Coats, Brandon; Fisher, Travis; Giridharan, Guruprasad A; Chen, Jun; Brown, John W; Frankel, Steven H

    2010-01-01

    Objectives In a univentricular Fontan circulation, modest augmentation of existing cavopulmonary pressure head (2–5 mmHg) would reduce systemic venous pressure, increase ventricular filling, and thus, substantially improve circulatory status. An ideal means of providing mechanical cavopulmonary support does not exist. We hypothesized that a viscous impeller pump, based on the von Kármán viscous pump principle, is optimal for this role. Methods A 3-dimensional computational model of the total cavopulmonary connection was created. The impeller was represented as a smooth 2-sided conical actuator disk with rotation in the vena caval axis. Flow was modeled under 3 conditions: 1) passive flow with no disc; 2) passive flow with a non-rotating disk, and 3) induced flow with disc rotation (0–5K rpm). Flow patterns and hydraulic performance were examined for each case. Hydraulic performance for a vaned impeller was assessed by measuring pressure rise and induced flow over 0–7K rpm in a laboratory mock loop. Results A nonrotating actuator disc stabilizes cavopulmonary flow, reducing power loss by 88%. Disk rotation (from baseline dynamic flow of 4.4 L/min) resulted in a pressure rise of 0.03 mmHg. A further increase of pressure of 5–20 mmHg and 0–5 L/min flow were obtained with a vaned impeller at 0–7K rpm in a laboratory mock loop. Conclusions A single viscous impeller pump stabilizes and augments cavopulmonary flow in 4 directions, in the desired pressure range, without venous pathway obstruction. It applies to the existing staged protocol as a temporary bridge-to-recovery or –transplant in established univentricular Fontan circulations. It may also enable compressed palliation of single ventricle without need for intermediary surgical staging or use of a systemic-to-pulmonary arterial shunt. PMID:20561640

  2. Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist

    PubMed Central

    Giridharan, GA; Koenig, SC; Kennington, J; Sobieski, MA; Chen, J; Frankel, SH; Rodefeld, MD

    2012-01-01

    Purpose The anatomic and physiologic constraints for pediatric cavopulmonary assist differ markedly from adult Fontan circulations due to smaller vessel sizes and risk of elevated pulmonary resistance. In this study, hemodynamic and hemolysis performance capability of a catheter-based viscous impeller pump (VIP) to power the Fontan circulation is assessed at a pediatric scale (~15 kg) and performance range (0-30 mmHg). Methods Computer simulation and mock circulation studies were conducted to assess the hydraulic performance, acute hemodynamic response to different levels VIP support, and the potential for vena cavae collapse. Computational fluid dynamics (CFD) simulations were used to estimate VIP hydraulic performance, shear rates, and potential for hemolysis. Hemolysis was quantified in a mock loop with fresh bovine blood. Results A VIP augmented 4-way total cavopulmonary connection flow at pediatric scales and restored systemic pressures and flows to biventricular values, without causing flow obstruction or suction. VIP generated flows up to 4.1 L/min and pressure heads of up to 38 mmHg at 11,000 rpm. Maximal shear rate was 160 Pa, predicting low hemolysis risk. Observed hemolysis was low with plasma free hemoglobin of 11.4 mg/dL/hr. Conclusions A VIP will augment Fontan cavopulmonary flow in the proper pressure and flow ranges, with low hemolysis risk under more stringent pediatric scale and physiology compared to adult scale. This technology may be developed to simultaneously reduce systemic venous pressure and improve cardiac output after stage-2 or -3 Fontan repair. It may serve to compress surgical staging, lessening the pathophysiologic burden of repair. PMID:22421403

  3. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  4. Rotordynamic forces on centrifugal pump impellers

    NASA Astrophysics Data System (ADS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  5. Trim or Replace Impellers on Oversized Pumps

    SciTech Connect

    Not Available

    2006-09-01

    One in a series of tip sheets to help manufacturers optimize their industrial pumping systems. As a result of conservative engineering practices, pumps are often substantially larger than they need to be for an industrial plant's process requirements. Centrifugal pumps can often be oversized because of ''rounding up'', trying to accommodate gradual increases in pipe surface roughness and flow resistance over time, or anticipating future plant capacity expansions. In addition, the plant's pumping requirements might not have been clearly defined during the design phase. Because of this conservative approach, pumps can have operating points completely different from their design points. The pump head is often less than expected, while the flow rate is greater. This can cause cavitation and waste energy as the flow rate typically must be regulated with bypass or throttle control. Oversized and throttled pumps that produce excess pressure are excellent candidates for impeller replacement or ''trimming'', to save energy and reduce costs. Trimming involves machining the impeller to reduce its diameter. Trimming should be limited to about 75% of a pump's maximum impeller diameter, because excessive trimming can result in a mismatched impeller and casing. As the impeller diameter decreases, added clearance between the impeller and the fixed pump casing increases internal flow recirculation, causes head loss, and lowers pumping efficiency. For manufacturing standardization purposes, pump casings and shafts are designed to accommodate impellers in a range of sizes. Many pump manufacturers provide pump performance curves that indicate how various models will perform with different impeller diameters or trims. The impeller should not be trimmed any smaller than the minimum diameter shown on the curve. Net positive suction head requirements (NPSHR) usually decrease at lower flow rates and can increase at the higher end of the pump head curve. The NPSHR at a given flow rate will normally be greater with a smaller impeller, but engineers should consult with the pump manufacturer to determine variations in NPSHR before trimming the impeller. Manufacturers can often provide trim correction charts based on historical test data.

  6. High Head Unshrouded Impeller Pump Stage Technology

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)

    2000-01-01

    A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.

  7. CFD analysis of pump consortium impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Williams, R. W.

    1992-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.

  8. Some unsteady fluid forces on pump impellers

    NASA Astrophysics Data System (ADS)

    Miskovish, R. S.; Brennen, C. E.

    1992-12-01

    Special analyses of all the forces and moments acting on a typical centrifugal pump impeller/volute combination are presented. These exhibit shaft frequencies, blade passing frequencies, and beat frequencies associated with a whirl motion imposed on the shaft in order to measure rotordynamic forces. Among other features the unsteady thrust was found to contain a surprisingly large blade passing harmonic. While previous studies have explored the magnitudes of the steady fluid-induced radial forces and the fluid-induced rotordynamic forces for this typical centrifugal pump impeller/volute combination, this paper presents information on the steady bending moments and rotordynamic moments due to the fluid flow. These imply certain axial locations for the lines of action of the radial and rotordynamic forces. Data on the lines of action are presented and allow inferences on the sources of the forces.

  9. Some unsteady fluid forces on pump impellers

    NASA Technical Reports Server (NTRS)

    Miskovish, R. S.; Brennen, C. E.

    1992-01-01

    Special analyses of all the forces and moments acting on a typical centrifugal pump impeller/volute combination are presented. These exhibit shaft frequencies, blade passing frequencies, and beat frequencies associated with a whirl motion imposed on the shaft in order to measure rotordynamic forces. Among other features the unsteady thrust was found to contain a surprisingly large blade passing harmonic. While previous studies have explored the magnitudes of the steady fluid-induced radial forces and the fluid-induced rotordynamic forces for this typical centrifugal pump impeller/volute combination, this paper presents information on the steady bending moments and rotordynamic moments due to the fluid flow. These imply certain axial locations for the lines of action of the radial and rotordynamic forces. Data on the lines of action are presented and allow inferences on the sources of the forces.

  10. Optimization and Inverse Design of Pump Impeller

    NASA Astrophysics Data System (ADS)

    Miyauchi, S.; Zhu, B.; Luo, X.; Piao, B.; Matsumoto, H.; Sano, M.; Kassai, N.

    2012-11-01

    As for pump impellers, the meridional flow channel and blade-to-blade flow channel, which are relatively independent of each other but greatly affect performance, are designed in parallel. And the optimization design is used for the former and the inverse design is used for the latter. To verify this new design method, a mixed-flow impeller was made. Next, we use Tani's inverse design method for the blade loading of inverse design. It is useful enough to change a deceleration rate freely and greatly. And it can integrally express the rear blade loading of various methods by NACA, Zangeneh and Stratford. We controlled the deceleration rate by shape parameter m, and its value became almost same with Tani's recommended value of the laminar airfoil.

  11. Streamlined design of impeller and its effect on pump haemolysis.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-01-01

    To investigate the effect of impeller design on pump haemolysis, five impellers with different numbers of vanes or different vane angles were manufactured and tested in one pump for haemolysis comparison. The impellers had the same dimension and logarithmic spiral vane form that coincided with the stream surfaces in the pump, according to an analytical and three-dimensional design method developed by the authors. Consequently, an impeller with six vanes and a 30 degrees vane angle had the lowest haemolysis index. The result agrees with the theoretical analyses of other investigators searching for the optimal vane number and vane angle to achieve the highest efficiency of the pump. PMID:12102327

  12. [Effect of impeller vane number and angles on pump hemolysis].

    PubMed

    Qian, Kunxi; Feng, Zhigang; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2003-12-01

    To evaluate the effect of impeller design on pump hemolysis, five impellers with different number of vanes or different vane angles were manufactured and tested in one pump for hemolysis comparison. The impellers are made to have the same dimension and same logarithmic spiral vane from which coincide with the stream surfaces in the pump, according to the analytical and three-dimensional design method developed by the authors. Consequently, an impeller with 6 vanes and 30 degrees vane angle has the lowest hemolysis index. This result agrees with the theoretical analyses of other investigators searching optimal number of vanes and vane angle to achieve the highest efficiency of the pump. PMID:14716856

  13. Impeller design for a miniaturized centrifugal blood pump.

    PubMed

    Takano, T; Schulte-Eistrup, S; Yoshikawa, M; Nakata, K; Kawahito, S; Maeda, T; Nonaka, K; Linneweber, J; Glueck, J; Fujisawa, A; Makinouchi, K; Yokokawa, M; Nos, Y

    2000-10-01

    The impeller design for a miniature centrifugal blood pump is an important consideration since the small diameter impeller requires higher rotational speed, which may cause more blood trauma compared to the larger diameter impeller. Three different impeller vanes (straight vanes with a height of 4 mm and 8 mm, and 8 mm curved vanes) of which the diameter was 35 mm were subjected to hydraulic performance and hemolysis tests in the same pump housing. Both straight vane impellers attained left ventricular assist condition (5 L/min against 100 mm Hg) at 2,900 rpm while the curved vane required 3,280 rpm. There was no significant hemolysis difference between the tall and short vanes. The curved impeller vanes did not exhibit sufficient hydraulic performance when compared to the straight vanes. The straight vane impellers, even with different heights, were incorporated into the same pump housings, and the vane heights did not drastically change the hydraulic performance or hemolysis. PMID:11091172

  14. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.

    PubMed

    Nishimura, Ikuya; Ichikawa, S; Mikami, M; Ishitoya, H; Motomura, T; Kawamura, M; Linneweber, J; Glueck, J; Shinohara, T; Nosé, Y

    2013-01-01

    The Gyro centrifugal pump developed as a totally implantable artificial heart was designed with a free impeller, in which the rotational shaft (male bearing) of the impeller was completely separated from the female bearing. For this type of pump, it is very important to keep the proper magnet balance (impeller-magnet and actuator-magnet) in order to prevent thrombus formation and/or bearing wear. When the magnet balance is not proper, the impeller is jerked down into the bottom bearing. On the other hand, if magnet balance is proper, the impeller lifted off the bottom of the pump housing within a certain range of pumping conditions. In this study, this floating phenomenon was investigated in detail. The floating phenomenon was proved by observation of the impeller behavior using a transparent acrylic pump. The impeller floating phenomenon was mapped on a pump performance curve. The impeller floating phenomenon is affected by the magnet-magnet coupling distance and rotational speed of the impeller. In order to keep the proper magnet balance and to maintain the impeller floating phenomenon at the driving condition of right and left pump, the magnet-magnet coupling distance was altered by a spacer which was installed between the pump and actuator. It became clear that the same pump could handle different conditions (right and left ventricular assist), by just changing the thickness of the spacer. When magnet balance is proper, the floating impeller phenomenon occurs automatically in response to the impeller rev. It is called "the dynamic RPM suspension". PMID:23442236

  15. Turbo-pump with isolated two stage impellers for future rocket engine (Trial to drive impellers independently)

    NASA Astrophysics Data System (ADS)

    Kanemoto, Toshiaki; Shimojyo, Makoto; Kawashima, Ryunosuke; Tanaka, Daisuke; Inagaki, Akira; Oba, Shin

    2008-03-01

    To suppress the cavitation in the impellers and to make the turbo-pump lives longer, the inducer was separated from the main impeller and both impellers were driven independently. The performance of the pump and the flow conditions around the impellers were investigated experimentally and the following results were obtained. (1)The main impeller contributes to the flow interaction between the inducer and the main impeller. (2)The rotational speeds of both impellers can be controlled independently in order to suppress simultaneously the cavitation not only in the main impeller, but also in the inducer.

  16. A new total heart design via implantable impeller pumps.

    PubMed

    Qian, K X

    1990-04-01

    Hemolysis and thrombosis have been considered as the main limitations of the impeller pump and other centrifugal pumps to total heart applications. One of the solutions is to choose the impeller shroud and vane according to the stream surfaces of blood flow, so as to vanish the turbulence and stagnation which cause the hemolysis and thrombosis, respectively, in the pump. This paper describes the method of deducing the stream surfaces together with the velocity distributions in the impeller from the fundamental dynamical equations, and presents a prototype design of the impeller total heart which promises to be an ideal alternative to the problematic diaphragm total heart. PMID:2345382

  17. Recent progress in developing durable and permanent impeller pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-04-01

    Since 1980s, the author's impeller pump has successively achieved the device implantability, blood compatibility and flow pulsatility. In order to realize a performance durability, the author has concentrated in past years on solving the bearing problems of the impeller pump. Recent progress has been obtained in developing durable and permanent impeller blood pumps. At first, a durable impeller pump with rolling bearing and purge system has been developed, in which the wear-less rollers made of super-high-molecular weight polythene make the pump to work for years without mechanical wear; and the purge system enables the bearing to work in saline and heparin, and no thrombus therefore could be formed. Secondly, a durable centrifugal pump with rolling bearing and axially reciprocating impeller has been developed, the axial reciprocation of rotating impeller makes the fresh blood in and out of the bearing and to wash the rollers once a circle; in such way, no thrombus could be formed and no fluid infusion is necessary, which may bring inconvenience and discomfort to the receptors. Finally, a permanent maglev impeller pump has been developed, its rotor is suspended and floating in the blood under the action of permanent magnetic force and nonmagnetic forces, without need for position measurement and feed-back control. In conclusion, an implantable, pulsatile, and blood compatible impeller pump with durability may have more extensive applications than ever before and could replace the donor heart for transplantation in the future. PMID:12099505

  18. Origins of hydrodynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  19. Impeller inner diameter in a miniaturized centrifugal blood pump.

    PubMed

    Takano, Tamaki; Schulte-Eistrup, Sebastian; Kawahito, Shinji; Maeda, Tomohiro; Nonaka, Kenji; Linneweber, Joerg; Glueck, Julie; Fujisawa, Akira; Makinouchi, Kenzo; Yokokawa, Michihiro; Nos, Yukihiko

    2002-01-01

    To design a miniaturized centrifugal blood pump, the impeller internal diameter (ID), which is a circle diameter on the inner edge of the vane, is considered one of the important aspects. Hydraulic performance, hemolysis, and thrombogenicity were evaluated with different impeller IDs. Two impellers were fabricated with an outer diameter of 35 mm, of which 1 had an 8 mm ID impeller and the other had a 12 mm ID. These impellers were combined with 2 different housings in which the inlet port was eccentrically positioned 3.8 and 4.5 mm offset from the center. The hydraulic performance and hemolysis were evaluated in a mock circuit, and thrombogenicity was evaluated in a 2 day ex vivo study with each impeller housing combination. Both impellers required 3,000 rpm in the 3.8 mm offset inlet to attain 5 L/min against 100 mm Hg (left ventricular assist device condition). The 8 mm ID impeller required 3,200 rpm, and the 12 mm ID impeller required 3,100 rpm in the 4.5 mm offset housing. The normalized index of hemolysis was 0.0080 +/- 0.0048 g/100 L in the 8 mm ID impeller with the 3.8 mm offset and 0.022 +/- 0.018 g/100 L with 4.5 mm offset. The 12 mm ID impeller had 0.068 +/- 0.028 g/100 L with the 3.8 mm offset and 0.010 +/- 0.002 g/100 L with the 4.5 mm offset. After the 2 day ex vivo study, no blood clot was formed around the top bearing in all the pump heads. The 8 mm ID impeller with 3.8 mm offset inlet and the 12 mm ID impeller with the 4.5 mm offset had less hemolysis compared to the other pump heads that were subjected to 14 day ex vivo and 10 day in vivo studies. The 8 mm ID impeller with the 3.8 mm offset inlet had a blood clot around the top bearing after the 14 day ex vivo study. No thrombus was found around the top bearing of the 12 mm ID impeller with the 4.5 mm offset in the 10 day in vivo study. These results suggest that the ID does not greatly change the hydraulic performance of a small centrifugal blood pump. The proper combination of the impeller ID and inlet port offset obtains less hemolysis. The larger impeller ID is considered to have less thrombogenicity around the top bearing. PMID:11872016

  20. Viscous pumping inspired by flexible propulsion.

    PubMed

    Arco, Roger M; Vélez-Cordero, J Rodrigo; Lauga, Eric; Zenit, Roberto

    2014-09-01

    Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance, ciliated organisms rely on the collective motion of flexible appendages to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such a fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measured experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flexible impellers in mixing operations at low Reynolds numbers. PMID:24667497

  1. Analyses of hydrodynamic radial forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, D. R.; Brennen, C. E.

    1988-01-01

    An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.

  2. Analyses of hydrodynamic radial forces on centrifugal pump impellers

    NASA Astrophysics Data System (ADS)

    Adkins, D. R.; Brennen, C. E.

    1988-03-01

    An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.

  3. Low haemolysis pulsatile impeller pump: design concepts and experimental results.

    PubMed

    Qian, K X

    1989-11-01

    A pulsatile fully implantable impeller pump with low haemolysis has been produced by developing a pulsatile impeller for a nonpulsatile pump also developed in this laboratory. The impeller was designed according to the 3-dimensional theory of fluid dynamics. The impeller shroud retains the same parabolic form and the vane has a form compacted by a radial logarithmic spiral and an axial helical spiral so that the absolute vibration velocity of the blood in a peripheral direction is a minimum as the impeller changes its speed periodically to generate a physiological pulsatile blood flow. Thus the Reynolds shear and the Newton shear are a minimum for the required pulse pressure. The mean volume and mean pressure are controlled by adjusting the voltage. The shape of the pressure pulse is determined by a square wave of voltage and the systole/diastole ratio. In order to abolish regurgitation of the pump, a 40 per cent systole period and a 5 V voltage pulse are desirable for 40 mmHg pulse pressure (80 120 mmHg mean pressure). The pulse frequency has almost no effect on pump output. The pump can delivery 4 l/min mean volume and 100 mmHg mean pressure (40 mmHg pulse pressure), and these conditions result in an index of haemolysis (IH) for porcine blood of 0.020--only slightly more than the nonpulsatile pump (0.016). When the pulsatile impeller was used under nonpulsatile conditions its IH was almost doubled, but when the nonpulsatile impeller was used under pulsatile conditions the IH reached 0.13. The power consumption is approximately equal to that for the nonpulsatile pump: 3W for 4 l/min and 100 mmHg output.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2811347

  4. Modelling of bubble trajectories in a pump impeller

    NASA Astrophysics Data System (ADS)

    Dupoiron, Marine; Linden, Paul

    2015-11-01

    A vertical rotating flow in an annulus gap with an increasing diameter is used to approximate the flow in a pump impeller. We study a spherical gas bubble released at the flow inlet, subject to turbulent drag and added mass forces. Bubbles trajectories have been computed for different geometries, rotation speeds and bubble size, showing a deviation from the liquid streamlines in the angular and radial directions. This effect is related to the pump performance in multiphase conditions: the velocity difference between the gas and the liquid phases changes the final pressure rise produced by the impeller. In some extreme cases, the centrifugal force can be large enough to prevent bubbles from exiting the impeller at all, leading to an unwanted gas accumulation and the blockage of the pump. We eventually quantify the effects of geometrical and operational parameters on the pump behaviour. Work done in collaboration with Schlumberger Gould Research, Cambridge.

  5. The helical flow pump with a hydrodynamic levitation impeller.

    PubMed

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou

    2012-12-01

    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19l/min against 100mmHg of pressure head and 11% maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203days of pumping. In the second experiment, a white thrombus was found in the pump after 23days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP. PMID:22926404

  6. Investigation on impeller radial force for double-suction centrifugal pump with staggered blade arrangement

    NASA Astrophysics Data System (ADS)

    Zhang, Z. C.; Wang, F. J.; Yao, Z. F.; Leng, H. F.; Zhou, P. J.

    2013-12-01

    In order to find the effects of blade arrangement on impeller radial force, a double-suction centrifugal pump with two impeller configurations is investigated by using CFD approach. The two impeller have same geometry, same blade number, and different blade arrangement. One is staggered impeller in which the blades are arranged with half of blade phase angle staggered in circular direction, another is traditional symmetrical impeller with symmetrical blade arrangement. Results show that the radial force vector diagram for symmetrical impeller is a hexagonal, while it is nearly a circle for staggered impeller. The staggered impeller results no radial force saltation which exists in symmetrical impeller. The blade passing frequency dominates the radial force fluctuation in symmetrical impeller, while this frequency is almost not existed in staggered impeller. The results indicate that staggered blade arrangement can significantly reduce radial force fluctuation in double-suction centrifugal pump.

  7. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    NASA Astrophysics Data System (ADS)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  8. Fluid-structure interaction forces at pump-impeller-shroud surfaces for axial vibration analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    The axial forces developed on a pump impeller shroud surfaces are analyzed using a bulk-flow model of the leakage path between the impeller and the housing. Shear stresses at the impeller and the housing surfaces are modeled according to Hirs's turbulent lubrication model. The calculated results yield predictions of resonance peaks of the fluid within the annulus formed by the impeller shroud and housing. Numerical results are presented for a double-suction single-stage pump, showing that the direct stiffness of the perturbed impeller shroud forces is negligible; the forces become important only for pumps with very low axial natural frequencies in comparison to the running speed.

  9. The pulsatile impeller pump for left ventricular assist.

    PubMed

    Wang, S S; Chu, S H; Chou, N K; Qian, K X

    1996-12-01

    Because of severe hemolysis, especially on producing pulsatile flow by changing the rotating speed of the impellers, the traditional centrifugal pump was rarely used for long-term support of the failing heart. We therefore developed a motor driven pulsatile implantable impeller pump. The pulsatility was achieved by changing the rotating speed via introducing a square waveform voltage into the motor coil. The impeller vane was designed to have both radial and axial curves according to the stream surface and stream lines to reduce the thrombosis and hemolysis. Nine calves weighing 80 to 100 kg were used. With the calves under endotracheal general anesthesia, left posterolateral thoracotomy was performed to connect the inflow tube with the left atrial appendage and to anastomose the outflow tube with the descending aorta. The calves usually awoke and stood up within hours after discontinuation of anesthetics. Within 7 days, continuous monitoring of electrocardiogram, systemic and pulmonary arterial pressures, and central venous pressure were performed to adjust the pump flow to 40% to 50% of the cardiac output. During the survival of 4 to 54 days (mean 16.3 +/- 19.3 days with two calves surviving longer than 1 month), no significant deterioration of liver or renal function was noted. Because of bleeding, hemoglobin reduced from 11.4 +/- 1.8 to 9.0 +/- 1.3 g/dl, and the hematocrit decreased from 34.5 +/- 4.7 to 26.7 +/- 4.6%. No significant changes of free hemoglobin were noted. In our results, the device revealed competent pulsatile function without severe blood damage or organ dysfunction. PMID:8947454

  10. Interaction of impeller and guide vane in a series-designed axial-flow pump

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, Y. S.; Lee, K. Y.; Kim, J. H.

    2012-11-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  11. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Woodard, John C

    2004-03-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing. PMID:15046628

  12. Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Oh, K. T.; Pyun, K. B.; Kim, C. K.; Choi, Y. S.; Yoon, J. Y.

    2012-11-01

    In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected and effect of the design parameters on the performance of the pump was analyzed using CFD and Response Surface Method to optimized impeller. This study also proposed the optimization geometry of pump impeller for performance improvement through the results from numerical analysis that was obtained optimum design pump; efficiency 98.2% and head 64.5m. In addition, the pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

  13. Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Yang, Zhengjun; Wang, Fujun; Zhou, Peijian

    2012-09-01

    The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.

  14. Static and Dynamic Analysis of a Pump Impeller with a Balancing Device Part I: Static Analysis

    NASA Astrophysics Data System (ADS)

    Kundera, C.; Martsinkovsky, V. A.

    2014-08-01

    This part of the work presents the design and static analysis of an impeller for a single-stage pump. The impeller is directly connected with a balancing device. The impeller needs to have a properly designed system of longitudinal and lateral clearances on both sides. With the simplifying assumptions concerning the flow and distribution of pressure in the longitudinal and lateral clearances, the static analysis involved deriving relationships between the impeller geometry and the basic performance parameters of the pump. A numerical example was used to show the calculation procedure of static characteristics for the predetermined parameters

  15. Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Guan, Huasheng; Ye, Zhifeng

    2015-12-01

    As typical pump with large flow rate and high reliability, centrifugal pumps in fuel system of aero-engines mostly regulate flow rate by flow bypass, which leads to low efficiency and large fuel temperature rise especially at low flow rate. An innovative fuel centrifugal pump with variable impeller width is a more effective way to regulate flow rate than flow bypass. To find external characteristics of the centrifugal pump with variable impeller width proposed in this paper, flow domain within the pump is simulated numerically and some primary performance parameters and their correlation are analyzed. Results show that flow rate of the pump can be regulated by variable impeller width and that efficiency for this scheme is higher than that for flow bypass. The higher outlet static pressure the pump runs at, the wider range of flow rates can be obtained with stronger nonlinear relationship between flow rate and impeller width.

  16. Recent studies of the centrifugal blood pump with a magnetically suspended impeller.

    PubMed

    Akamatsu, T; Tsukiya, T; Nishimura, K; Park, C H; Nakazeki, T

    1995-07-01

    We have been developing a centrifugal blood pump with a magnetically suspended impeller. To improve pump efficiency, we investigated the pump performances of many kinds of impeller vanes and diffusers, as well as the flow in the gap between the impeller discs and the pump housing. We found the vanes and the diffusers with high pump efficiency; however, high efficiency does not mean low hemolysis. It seems important to prevent generation of small-sized eddies with high shear stress. Hemolysis tests are carried out to find the optimal vane profile and gap clearance. The index of hemolysis and temperature change of our pump is better than those of the Biopump. Short-term in vivo studies show that the layer of white thrombi adheres to the machined rough surface of polycarbonate, which composes the narrow gap (0.2 mm) between the impeller and the pump wall, but a smooth surface coated with silicon prevents adhesion of that layer. PMID:8572964

  17. A Navier-Stokes solution of the three-dimensional viscous compressible flow in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.

    1977-01-01

    A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.

  18. Static and Dynamics of a Pump Impeller with a Balancing Device Part II: Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Martsinkovsky, V. A.; Zhulyov, A.; Kundera, C.

    2014-08-01

    This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with characteristics determined for a real single-stage centrifugal pump

  19. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics. PMID:12873075

  20. Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1987-01-01

    Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.

  1. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  2. The realization of a pulsatile implantable impeller pump with low hemolysis.

    PubMed

    Qian, K X; Fei, Q; Lin, K D; Pi, K D; Wang, Y P

    1989-04-01

    A pulsatile implantable impeller pump with low hemolysis was developed without markedly increasing the complexity of the system compared with the nonpulsatile pump. The key to the question is to design a three-dimensional impeller with twisted vanes, compacted by an axial helical spiral and a radial logarithmic spiral so as to reduce the turbulent shear in the pump as the impeller changes its rotations per minute periodically to generate a physiologic pulsatile flow. Both mathematic computation of velocity distribution in the impeller and geometric illustration of the velocity triangle at the top of the vane have demonstrated that the peripheral velocity variation of blood cells in a twisted impeller will be less than that in an untwisted impeller. Thus, the main mechanical factor of hemolysis in the impeller pump, namely, the turbulent shear, should be reduced because it is proportional to the product of velocity variations measured in two perpendicular directions. In the in vitro experiments, the pump delivered 4 L/min mean flow at 100 mm Hg mean pressure (pulsed between 80-120 mm Hg) for more than 3 h in a circulatory model containing 700 ml of fresh citrated porcine blood. Every half hour, the free hemoglobin level in the plasma was tested, and the resulting index of hemolysis was about 0.020, slightly more than that of a nonpulsatile impeller pump developed in Shanghai. To compare hemolysis, the index of hemolysis of this pump is about 1/6 of that of the self-made diaphragm pump and 1/13 of that of the Polystan Pulsatile Pump.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2705888

  3. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Babayigit, Osman; Kocaaslan, Osman; Hilmi Aksoy, Muharrem; Melih Guleren, Kursad; Ozgoren, Muammer

    2015-05-01

    Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ɛ turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  4. Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing

    NASA Astrophysics Data System (ADS)

    Will, Björn-Christian; Benra, Friedrich-Karl; Dohmen, Hans-Josef

    2012-06-01

    The paper is concerned with the fluid flow in the impeller side clearances of a centrifugal pump with volute casing. The flow conditions in these small axial gaps are of significant importance for a number of effects such as disk friction, leakage losses or hydraulic axial thrust to name but a few. In the investigated single stage pump, the flow pattern in the volute turns out to be asymmetric even at design flow rate. To gain a detailed insight into the flow structure, numerical simulations of the complete pump including the impeller side clearances are accomplished. Additionally, the hydraulic head and the radial pressure distributions in the impeller side clearances are measured and compared with the numerical results. Two configurations of the impeller, either with or without balancing holes, are examined. Moreover, three different operating points, i.e.: design point, part load or overload conditions are considered. In addition, analytical calculations are accomplished to determine the pressure distributions in the impeller side clearances. If accurate boundary conditions are available, the 1D flow models used in this paper can provide reasonable results for the radial static pressure distribution in the impeller side clearances. Furthermore, a counter rotating wake region develops in the rear impeller side clearances in absence of balancing holes which severely affects the inflow and outflow conditions of the cavity in circumferential direction.

  5. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump.

    PubMed

    Qian, K X

    1990-11-01

    In the experimental and clinical support of the failing heart, the impeller-type centrifugal pumps continue to be of interest because of their inherent advantages; however, the blood compatibility of these pumps still remains to be improved. From the viewpoint of haemodynamics, thrombosis and haemolysis could be reduced by eliminating the stagnation and turbulence of blood flow within the pump, which frequently takes place near the blood contracting surfaces of the pump, when the impeller contours do not coincide with the stream surfaces of the blood. It is suggested that it could be advantageous to design impeller contours according to the stream surfaces, by solving the partial differential equations of continuity, motion and energy. An impeller shroud and vane based on this approach would be fully rinsed by non-turbulent flow and there would then be neither stagnation nor turbulence within the pump, with the result that thrombosis and haemolysis could be reduced. A new impeller pump, developed according to this method, was evaluated as a left ventricular device in four dogs. The bypass flow was controlled at 40-50% of the total flow, each test lasting 6 h. All of the haematological parameters, measured every 2 h, remained within normal range. There was no thrombosis, and coagulation in the pump was avoided by a small dose of heparin to maintain the activated coagulation time (ACT) under 200" in the experiments. PMID:2266752

  6. Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor

    NASA Astrophysics Data System (ADS)

    Egusquiza, Eduard; Valero, Carme; Presas, Alex; Huang, Xingxing; Guardo, Alfredo; Seidel, Ulrich

    2016-02-01

    This paper deals with the dynamic response of pump-turbine impellers. A pump-turbine impeller is a complex structure attached to a rotor and rotating inside a casing full of water with very small clearances between the rotating and the stationary parts. The dynamic response of this type of structures is very complex and it is very much affected by the connection to the rotor as well as by the added mass and boundary conditions. As a consequence its calculation presents several uncertainties. First, the dynamic response of pump-turbine impellers is introduced. Second an experimental investigation in a real impeller attached to the rotor and inside the machine was carried out. For this investigation, the impeller of an existing pump-turbine unit with an installed power of 110 MW and a diameter of 2.87 m was studied. For a better analysis of the experimental results a numerical model using FEM was also built-up. Frequencies and mode-shapes were identified numerically and experimentally and the characteristics of the structural response analyzed. To determine the influence of the rotor and supporting structures on the impeller response the results were compared with the ones obtained with the same impeller but suspended (non-connected to the rotor). Experimental and numerical simulation were also used for this case. The changes in the dynamic response due to the rotor connection were determined. Finally the results obtained are compared with the results from other pump-turbine impellers of different designs and general conclusions about the dynamics of this type of structures are given.

  7. Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers

    NASA Technical Reports Server (NTRS)

    Hamkins, C. P.; Flack, R. D.

    1986-01-01

    Shrouded and unshrouded versions of a four-vaned radial flow impeller with a design flow coefficient of 0.063 were tested in a volute pump using a two-component frequency-shifted laser velocimeter. Velocity profiles were measured at six flow rates and at four radial and six circumferential positions in the volute. The variations of the velocity from blade to blade and in the axial direction were measured and are presented. A passage vortex caused by tip leakage and relative casing wall velocity was found in the unshrouded impeller. The tip leakage did not accumulate in the suction wake region; the suction wake region was only 30 to 50 percent as large in the unshrouded impeller as compared to the shrouded impeller. The slip was 30 percent higher in the unshrouded impeller and the variation of slip with flow rate is presented. At no measured position in the impellers did the slip factor reach unity; the closest approach was 0.90. Reverse loadings of the vanes at outer radii were found for flow rates below the impeller/volute matching point for both impellers.

  8. Force and moment rotordynamic coefficients for pump-impeller shroud surfaces

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1987-01-01

    Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.

  9. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps. (author)

  10. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    PubMed

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241

  11. Design Optimization of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Shape

    NASA Astrophysics Data System (ADS)

    Kim, Sung; Choi, Young-Seok; Lee, Kyoung-Yong

    2010-06-01

    In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied by using a commercial CFD code and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. The vane plane development was controlled by using blade-angle in a fixed meridional shape. First the design optimization of the defined impeller geometric variables was done, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed by using 2k factorial designs, and the design optimization of the geometric variables were determined using the response surface method. The objective functions are defined as the total head and the total efficiency at the design flow-rate. From the comparison of CFD results between optimized pump and base design model, the reason for the performance improvement was discussed.

  12. Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.

    1977-01-01

    An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.

  13. Numerical investigation of pressure fluctuation for a mixed flow pump impeller and vanes diffuser

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Li, R. N.; Chen, X. R.; Zhao, W. G.; Shen, L. X.

    2012-11-01

    In order to investigate the effect of rotor-stator interaction between impeller and vanes diffuser on the pressure fluctuation of a mixed flow pump, the pressure fluctuations at three representative locations under the design condition are obtained, unsteady flow feature is analyzed by RNG ?-? turbulence model with sliding mesh technology. Experimental results show that there is the positive slope of head-flow performance curve under 0.6 and 0.85 design condition, which unsteady prediction is not seen based on Reynolds-averaged equation. The pressure fluctuation is analysed by the characteristics of amplitude and frequency, the amplitude of pressure fluctuation, which the maximum is in the rim of impeller outlet and the minimum is in the hub of impeller inlet, is gradually increasing along the hub to rim, the amplitude of monitoring points located the rim of impeller inlet and impeller and vanes diffuser is two times than the hub. The amplitude of pressure fluctuation, which the maximum is in the vanes diffuser outlet, is gradually increasing along impeller inlet to vanes diffuser outlet, while there is a low-frequency pressure fluctuation caused by unsteady flow in the vanes diffuser.

  14. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2006-03-01

    A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP. PMID:16480390

  15. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously. PMID:11924845

  16. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah; Ong, Wendy; Koh, Sy-Yuan; Chong, Victor

    2005-03-01

    A series of numerical models are generated to investigate the flow characteristics and performance of an axial blood pump. The pump model includes a straightener, an inducer-impeller, and diffuser. Numerical studies of the effects of angular alignment of the inducer and impeller blades and the axial clearance gap between the inducer and impeller are presented in this article. The pump characteristics derived from numerical simulation are validated with experimental data. Numerically simulated results showed a sinusoidal variation in the pressure generated across the pump with changes in angular alignment between the inducer and impeller. This is attributed to additional losses when flow is forced or diverted from the trailing edge of the inducer to either the pressure or suction side of the impeller blade when the alignment between the two sets of blades is not optimal. The pressure generated is a maximum when the impeller blades are at 0 or 30 degrees with respect to the inducer. The effect of rotating the impeller with respect to the inducer causes the sinusoidal pressure variation. In addition, it was observed that when the clearance gap between the inducer and impeller is reduced to 1 mm, the pressure generated is a minimum when compared to the other models. This is attributed to the interference between the inducer and impeller when the gap separating them is too small. The location of the maximum pressure on the pressure side of the impeller blade shifts upstream while its magnitude decreases for small clearance gap between the inducer and the impeller. There was no flow separation in the inducer while small regions of backflow are observed at the impeller trailing edge. Recommendations for future modifications and improvements to the pump design and model simulation are also given. PMID:15725228

  17. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    PubMed

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of the prototype MagLev BP. PMID:20528854

  18. Cavitation behaviours of low specyfic speed pump impellers designed according to the "tight inlet" rule

    NASA Astrophysics Data System (ADS)

    Misiewicz, Andrzej; Skrzypacz, Janusz

    2011-06-01

    Cavitation is well-known phenomenon which occurs in the pump and may lead to the pump damage. Thus it is very important to predict cavitation parameters, during the design of the pomp elements. There are a lot of methods to estimate cavitation factor of the pump, but these methods are true only for elements designed in the "standard way" consisted algorithms, commonly known from the literature. This project shows the influence of large angles of the inlet of impeller on the pump cavitation performance. The cavitations characteristics were determined experimentally during the test. The cavitation factor was determined in analytical approaches. The common analytical formulas described in the professional literature were examined and the numerical methods were applied (with and without two — phases model). The analytical results were compared with the results from the performed experiment. In this paper, the best method to determine cavitation factor for non-standard impeller geometry was proposed.

  19. Investigation of CFD calculation method of a centrifugal pump with unshrouded impeller

    NASA Astrophysics Data System (ADS)

    Wu, Dazhuan; Yang, Shuai; Xu, Binjie; Liu, Qiaoling; Wu, Peng; Wang, Leqin

    2014-03-01

    Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ɛ, renormalization group k-ɛ, and Spalart-Allmars models, the Realizable k-ɛ model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.

  20. Analysis on the influence of the pump start transient performance with different inertia impeller

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Cheng, J.; Liu, E. H.; Tang, L. D.

    2012-11-01

    Centrifugal pump start-up time is very short, in the boot process, the instantaneous head and flow will have an impact role to the pipeline, and however the moment of inertia is one of the main factors affecting centrifugal pump boot acceleration. We analyzed the pump start-up transient characteristics with the different moment of inertia of the impeller corresponding to the different materials, there are three different moment of inertia of the impeller have been selected. At first, we use the "Flowmaster" fluid system simulation software do the outer characteristics simulation to the selected-model, get the time - flow and the time - speed curve. Then, do the experiments research in the process when pump start-up, and compare with the simulation result. At last use the outer characteristics simulation result as the boundary, using the ANASYS CFX software do the transient simulation to the three groups with different inertia pump impeller, and draw the pressure distribution picture. In according to the analysis, we can confirm that the impact of inertia is one of the factors in the stability during the pump star, and we can get that the greater moment of inertia, the longer the boot stable. We also can get that combined Flowmaster with ANSYS can solved engineering practice problem in fluid system conveniently, and take it easy to solve the similar problem.

  1. Experimental study of unsteady hydrodynamic force matrices on whirling centrifugal pump impellers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Belgacem, Jery

    1986-01-01

    An experimental facility was constructed and instrumented. A set of centrifugal flow pumps whose impellers were made to follow a controlled circular whirl motion were studied. The aim was to characterize the steady and unsteady fluid forces measured on the impeller under various pump operating conditions. The postulation was that the unsteady lateral forces result from interactions between the impeller and the surrounding diffuser and/or volute (via the working fluid), and that under certain flow regimes these forces can drive unstable lateral motions of the pump rotor. The lateral hydrodynamic forces were decomposed into their steady and unsteady parts, the latter being further expressed in terms of a generalized fluid stiffness matrix. Conclusions regarding the effect of impeller geometry could not be reached given the similarity of the tested designs. However, other results on phenomena such as skin friction and leakage flow are presented. Some of the findings are compared to experimental and theoretical data from other sources. Finally, the rotordynamic consequences of the results are discussed as the present data were applied to the case of the Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP).

  2. Investigations of turbulent flows in a tubular pump and structural stresses of its impeller

    NASA Astrophysics Data System (ADS)

    Tang, X. L.; Jia, Y. X.; Wang, F. J.; Zhou, D. Q.; Xiao, R. F.; Yang, W.; Wu, Y. L.

    2012-11-01

    Based on Navier-Stokes equations and RNG k-epsilon turbulence model, numerical simulation was carried out to investigate turbulent flows in tubular pumps and structural stresses of its impeller using commercial software of ANSYS Workbench. Firstly, the calculated velocity and pressure distributions in tubular pumps show that the whole flow pattern is uniform except for that in the region in the front of the pier in the discharge passage. The predicted spiral streamlines in the front of the discharge passage indicate that there exists an unrecovered velocity circulation. The computed reasonable distributions of the static pressure show the minimum happens at inlet edges on the suction surfaces of the blades which probably causes cavitations. One-way fluid-structure interaction method was then employed to make a further static structural analysis of the impeller, and the predicted stresses and deformations of the blades show that the maximal equivalent stress exists in the joint between the blades and the hub on pressure surfaces of the impeller, the maximum of total deformations of the blades increases as the radius increases. The maximal exists near the impeller rim at the inlet and outlet edges. The calculated results will provide references for further design and research of tubular pumps.

  3. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.

    PubMed

    Kosaka, Ryo; Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku

    2007-01-01

    We have developed a centrifugal blood pump with hydrodynamic bearings and semi-open impeller, and evaluated the levitation performance test and the hemolysis test. This pump is operated without any complicated control circuit and displacement-sensing module. The casing diameter is 74 mm and the height is 38 mm including flanges for volts. The weight is 251 g and the volume is 159 cm3. By changing the stator relative position against the rotor, the levitation characteristics of the impeller can be adjusted. The diameter of impeller is 36 mm and the height is 25 mm. The impeller is levitated by the thrust bearing of spiral groove type and a radial bearing of herringbone type. The pump performance was evaluated through the levitation performance test and the hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.72 g/100 L to 0.024 g/100 L corresponding to the changes of the groove direction of the hydrodynamic bearing and the expansion of the bearing gap. During these studies, we confirmed that the hemolytic property was improved by balancing the fluid dynamic force and the magnetic force. PMID:18002872

  4. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  5. J-2X Fuel Pump Impeller Seal Simulations

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.; West, Jeffrey S.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the previously cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. The rotor-dynamic stability of the fuel turbopump is highly dependent on the tangential velocity of the fluid as it enters the the front face impeller seal. Rotor-dynamic analysis predicts that a much lower tangential velocity will be required for stability than was needed for previous engines. The geometry at the seal entrance for this engine is very complex and vastly different than previous engines. In order to better determine the fluid dynamics and tangential velocity in this seal several CFD simulations were performed. The results of these simulations show that for this seal geometry a great reduction in the tangential velocity is to be expected. The simulations also provided insight into methods that could be employed to drive the swirl velocity to near zero. Unsteady and time-averaged results of several simulations will be presented.

  6. Performance analysis of axial flow pump on gap changing between impeller and guide vane

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Liang, Q. H.; Wang, Y.; Yang, Y.; Yin, G.; Shi, X. X.

    2013-12-01

    In order to study the influence on gap changing of the static and dynamic components in axial flow pump, the axial flow pump model (TJ04-ZL-06) that used in the eastern of south-to-north water diversion project was selected. Steady turbulence field with different gaps was simulated by standard ?-? turbulence model and double-time stepping methods. Information on the pressure distribution and velocity distribution of impeller surfaces were obtained. Then, calculated results were compared with the test results and analyzed. The results show that the performance of pump is not sensitive with the axial gap width under design conditions and the large flow rate condition. With increasing gap width, it will be improved in low flow rate condition. The attack angle of impeller inlet in small flow rate condition become small and the flow separation phenomenon can be observed in this condition. The axial velocity distribution of impeller outlet is nonlinear and to increase the axial gap is to improve the flow pattern near the hub effectively. The trend of calculating results is identical with test. It will play a guiding role to the axial pump operation and design in south-to-north water diversion project.

  7. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  8. Experiments on the unsteady flow field and noise generation in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Soo; McLaughlin, Dennis K.; Thompson, Donald E.

    2003-06-01

    This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations. The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller blades generate noise much more efficiently than the other modes. The paper also clarifies the correlation between unsteady flowfield measurements, in both impeller and laboratory co-ordinates, with the radiated noise properties. Thus some light is shed on the noise generation mechanisms of this particular device.

  9. On the use of a three-dimensional Navier-Stokes solver for rocket engine pump impeller design

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-07-01

    A 3D Reynolds-averaged Navier-Stokes Solver and a Fast Grid Generator (FGG), developed specially for centrifugal impeller design, were incorporated into the pump impeller design process. The impeller performance from the CFD analysis was compared to one-dimensional prediction. Both analyses showed good agreement of the impeller hydraulic efficiency, 94.5 percent, but with an 8 percent discrepancy of Euler head prediction. The impeller blade angle, discharge hub to shroud width, axial length and blade stacking were systematically changed to achieve an optimum impeller design. Impeller overall efficiency, loss distribution, hub-to-tip flow angle distortion and blade-to-blade flow angle change are among those criteria used to evaluate impeller performance. Two grid sizes, one with 10 K grid points and one with 80 K grid points were used to evaluate grid dependency issues. The effects of grid resolution on the accuracy and turnaround time are discussed. In conclusion, it is demonstrated that CFD can be effectively used for design and optimization of rocket engine pump components.

  10. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils

    PubMed

    Kelly; Humphrey

    1998-03-01

    Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers. PMID:9548776

  11. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    NASA Astrophysics Data System (ADS)

    Y Gao, J.; Hou, Y. S.; Xi, S. Z.; Cai, Z. H.; Yao, P. P.; Shi, H. L.

    2013-12-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Qd, 1.0Qd, 1.1Qd) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life.

  12. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  13. Some refinements of the theory of the viscous screw pump.

    NASA Technical Reports Server (NTRS)

    Elrod, H. G.

    1972-01-01

    Recently performed analysis for herringbone thrust bearings has been incorporated into the theory of the viscous screw pump for Newtonian fluids. In addition, certain earlier corrections for sidewall and channel curvature effects have been simplified. The result is a single, refined formula for the prediction of the pressure-flow relation for these pumps.

  14. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width

    NASA Astrophysics Data System (ADS)

    Shi, Weidong; Zhou, Ling; Lu, Weigang; Pei, Bing; Lang, Tao

    2013-01-01

    The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.

  15. Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller.

    PubMed

    Liu, Houlin; Wang, Kai; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Dong, Liang

    2013-01-01

    In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance calculation model and the supertransitive approximation method was applied to fix optimal weight factors of individual objectives. On the basis of hydraulic performance optimization, three-condition automatic computational fluid dynamics (CFD) optimization of impeller meridional plane for the DBCP was realized by means of Isight software integrated Pro/E, Gambit, and Fluent software. The shroud arc radii R0 and R1, shroud angle T1, hub arc radius R2, and hub angle T2 on the meridional plane were selected as the design variables and the maximum of weighted average hydraulic efficiency at the three conditions was chosen as the objective function. Performance characteristic test and particle image velocimetry (PIV) measurements of internal flow in the DBCP were conducted. Performance characteristic test results show that the weighted average efficiency of the impeller after the three-condition optimization has increased by 1.46% than that of original design. PIV measurements results show that vortex or recirculation phenomena in the impeller are distinctly improved under the three conditions. PMID:23917426

  16. The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation

    NASA Technical Reports Server (NTRS)

    Franz, R.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Fluid-induced rotordynamic forces on a centrifugal pump impeller whirling along a trajectory eccentric to its undeflected position in the presence of cavitation were measured using the experimental facility described by Jery (1987). The force measured is a combination of a steady radial force due to the volute asymmetries and an unsteady force due to the eccentric motion of the rotor. It was found that, compared to the noncavitation condition, a cavitation corresponding to a head loss of 3 percent had little effect upon the unsteady force. However, a lesser degree of cavitation at the design point, was found to increase the destabilizing force for a particular set of whirl ratios.

  17. A cost-effective extracorporeal magnetically-levitated centrifugal blood pump employing a disposable magnet-free impeller.

    PubMed

    Hijikata, W; Mamiya, T; Shinshi, T; Takatani, S

    2011-12-01

    In the field of rotary blood pumps, contactless support of the impeller by a magnetic bearing has been identified as a promising method to reduce blood damage and enhance durability. The authors developed a two-degrees-of-freedom radial controlled magnetic bearing system without a permanent magnet in the impeller in order that a low-cost disposable pump-head for an extracorporeal centrifugal blood pump could be manufactured more easily. Stable levitation and contactless rotation of the 'magnet-free' impeller were realized for a prototype blood-pump that made use of this magnetic bearing. The run-out of the impeller position at between 1000 r/min and 3000 r/min was less than 40 microm in the radial-controlled directions. The total power consumption of the magnetic bearing was less than 1 W at the same rotational speeds. When the pump was operated, a flow rate of 5 l/min against a head pressure of 78.66 kPa was achieved at a rotational speed of 4000 r/min, which is sufficient for extracorporeal circulation support. The proposed technology offers the advantage of low-cost mass production of disposable pump heads. PMID:22320054

  18. Numerical study of 3-D inducer and impeller for pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-01-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  19. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation. PMID:16531346

  20. Unsteady flow in a viscous oil transporting centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, Wen-Guang

    2011-12-01

    Acoustic resonances are frequently fatal problems in centrifugal pump operations. Low pressure pulsation of fluid in the blade pass frequency is helpful to prevent from such problems. In addition, for a high quality centrifugal pump, a lower broadband noise level is also on demand. The acoustic resonance and broadband noise are associated with unsteadiness of flow in the pump. Even there exist extensive analyses of unsteady flow in centrifugal pumps by means of CFD so far, the effect of high viscosity of fluid pumped on the unsteadiness of flow feature remains unclear. Thus, the unsteady flow in an experimental centrifugal pump was exploited numerically when it transported the liquids with different viscosities. The velocity profiles at the impeller discharge were validated with the results of LDV measurement for water. The viscosity effect on the fluctuation of flow in the volute was clarified quantitatively. It was shown the increasing viscosity of fluid makes the fluctuation in flow variables less substantial and results into a less noticed tendency of separation of flow from the blade pressure side.

  1. Quantitative approach to control spinning stability of the impeller in the pivot bearing-supported centrifugal pump.

    PubMed

    Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y

    1997-12-01

    The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study. PMID:9423982

  2. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  3. Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Chen, S. X.; Pan, Z. Y.; Wu, Y. L.; Zhang, D. Q.

    2012-11-01

    The effect of clearance of impeller wear-rings on the performance of a centrifugal pump was investigated numerically and experimentally. The whole flow field model including front and back shrouds of pump was designed so as to accurately calculate the head and efficiency of the centrifugal pump. Based on RNG k-ε turbulence model, three wear-rings schemes were established, and the effects of clearance of impeller wear-rings on the hydraulic efficiency and mechanical efficiency of the centrifugal pump was analyzed, chiefly from the turbulent kinetic energy, vorticity and radial force angles. According to the results, it can be drawn that the head and total efficiency of the centrifugal pump increase as the clearance value of wear-rings narrows. The following reasons may account for it: firstly, as the clearance value of wear-rings declines, the turbulent kinetic energy and energy dissipation decrease within the impeller, and the impact of secondary flow at the inlet of impeller on the mainstream weakens slowly, which leads to a lower hydraulic loss, thus a higher hydraulic efficiency; secondly, radial force decreases with the clearance value of wear-rings, so the eccentric whirl of centrifugal pump is dampened, which results in a lower mechanical loss and a higher mechanical efficiency; thirdly, the front shroud leakage diminishes with the clearance value of wear-rings, therefore, the volume loss is reduced and volume efficiency improved. Finally, the first wear-ring scheme of impeller is adopted after comprehensive comparison of these three wear-ring schemes, because its efficiency is highest and it satisfies the requirements of the engineering application.

  4. Generating an indicator for pump impeller damage using half and full spectra, fuzzy preference-based rough sets and PCA

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaomin; Zuo, Ming J.; Patel, Tejas H.

    2012-04-01

    Parameters that vary monotonically with damage propagation are useful in condition monitoring. However, it is not easy to find such parameters especially for complex systems like pumps. A method using half and full spectra, fuzzy preference-based rough sets and principal component analysis (PCA) is proposed to generate such an indicator for tracking impeller damage in a centrifugal slurry pump. Half and full spectra are used for extracting features related to pump health status. A fuzzy preference-based rough set model is employed in the process of selecting features reflecting the damage propagation monotonically. PCA is used to condense the features and generate an indicator which represents the damage propagation. The effectiveness of the proposed method is tested using laboratory experimental data. Results show that the indicator generated by the proposed method can clearly and monotonically distinguish the health status of the pump impeller.

  5. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good correlation to packer test analysis. The absence of significant ambient flows at this test site made the final analysis relatively simple. By testing boreholes across the aquifer a pattern of hydraulic conductivity variation with depth can be established, and compared to the proposed geological and climatic reasons for the variations' existence.

  6. Dynamic stress analysis of sewage centrifugal pump impeller based on two-way coupling method

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2014-03-01

    Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.

  7. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.

    PubMed

    Qian, K X; Feng, Z G; Ru, W M; Zeng, P; Yuan, H Y

    2007-01-01

    Previously it has been found by pump haemolysis testing that the flow rate has a remarkable effect on index of haemolysis (IH), while pressure head does not affect IH. Recent investigation with particle image velocimetry (PIV) technology has demonstrated that IH is directly related to the flow pattern of stream field in impeller vane channels. PIV is a visible approach showing the real flow status in the pump. The different positions of a tracer particle in two PIV pictures taken at 20 micros intervals decide the velocity value and direction. The velocity vectors of many particles draw the flow pattern of the stream field. The same pictures are taken at 2, 4 and 6 l min(-1) flow rates while the pressure head is kept unchanged at 100 mmHg; then the pictures are taken at 4 l min(-1) flow with different pressure heads of 80, 100 and 120 mmHg. Results reveal that the flow rate of 4 l min(-1) (IH = 0.030) has the best stream field, and neither turbulence nor separation can be seen. In other flow rates (IH: 0.048 - 0.082), there is obviously second flow. Meanwhile, no significant difference can be seen among the PIV pictures of different pressure heads pumped, which agrees with the results of haemolysis testing showing that pressure has no effect on pump haemolysis. It may be concluded that the haemolysis property of a centrifugal pump can be assessed approximately by PIV pictures, which are much easier to take than haemolysis tests. PMID:17566927

  8. Physics-driven impeller designs for a novel intravascular blood pump for patients with congenital heart disease.

    PubMed

    Chopski, Steven G; Fox, Carson S; McKenna, Kelli L; Riddle, Michelle L; Kafagy, Dhyaa H; Stevens, Randy M; Throckmorton, Amy L

    2016-07-01

    Mechanical circulatory support offers an alternative therapeutic treatment for patients with dysfunctional single ventricle physiology. An intravascular axial flow pump is being developed as a cavopulmonary assist device for these patients. This study details the development of a new rotating impeller geometry. We examined the performance of 8 impeller geometries with blade stagger or twist angles varying from 100° to 800° using computational methods. A refined range of blade twist angles between 300° and 400° was then identified, and 4 additional geometries were evaluated. Generally, the impeller designs produced 4-26mmHg for flow rates of 1-4L/min for 6000-8000 RPM. A data regression analysis was completed and found the impeller with 400° of blade twist to be the superior performer. A hydraulic test was conducted on a prototype of the 400° impeller, which generated measurable pressure rises of 7-28mmHg for flow rates of 1-4L/min at 6000-8000 RPM. The findings of the numerical model and experiment were in reasonable agreement within approximately 20%. These results support the continued development of an axial-flow, mechanical cavopulmonary assist device as a new clinical therapeutic option for Fontan patients. PMID:27129783

  9. Study on measures to improve gas-liquid phase mixing in a multiphase pump impeller under high gas void fraction

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Zhu, H. W.; Ding, K.; Qiang, R.

    2012-11-01

    Rotodynamic multiphase pump can transport crude gas-liquid mixture produced from oil well, and is regarded as the good choice of oil-gas multiphase transportation in offshore product system, for its advantages that compact structure, large flow rate, not sensitive to solid particles in the fluid. However, it is prone to bring about gas-liquid separation within the impeller under high gas void fraction. To solve the problem, this paper presents several measures to break gas packet and inhibit gas-liquid separation, such as, depositing the short blades, opening holes at the blades where gas packets gather, using T-shaped blades, etc. Then, CFD software was used to simulate the flow fields which were added measures to inhibit gas-liquid separation. The results show that streamlines in three new impellers distribute more evenly than in original impeller, the gas-liquid two phases mixed degree was improved, and the gas-liquid separation was inhibited to some extent. However, adding the short blades and using T-blade impeller failed to improve the differential pressure of impellers. So the placement and the geometrical parameters of the measures inhibiting gas-liquid separation should be further optimized.

  10. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Liu, Q. Z.; Yang, K.; Y Li, D.; Gong, R. Z.

    2013-12-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow.

  11. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  12. Study on Internal Flow and External Performance of a Semi-open Impeller Centrifugal Pump with Different Tip Clearances

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Qi; Cui, Bao-Ling; Zhang, Yu-Liang; Zhu, Zu-Chao

    2015-04-01

    To study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time t, the flow characteristics and the magnitude of leakage rate in tip clearance are obtained in details. The results indicate that the H-Q curve hump of centrifugal pump shows a weakened trend with the increasing of tip clearance Δc. Meanwhile, the leakage rate ΔQ and the ratio of leakage rate to discharge flow rate (ψ) gradually increase. At the same tip clearance, the leakage rate ΔQ increases, while the ratio of leakage rate to discharge flow rate (ψ) decreases with the increasing of discharge flow rate Q. It is found that higher volumetric loss account for a higher percentage of the total loss at small flow rate condition. There easily exist strong leakage vortexes in the impeller inlet, impeller passage and impeller outlet. The pressure difference between suction side and pressure side makes the fluid pass through the tip clearance layer to form a lower pressure region and leakage vortex.

  13. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhai, L. L.; Wu, P.; Jiang, Q. L.; Wang, L. Q.

    2012-11-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  14. Centrifugal acceleration modes for incompressible fluid in the leakage annulus between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    An algorithm is developed for calculating complex eigenvalues and eigenvectors associated with the fluid resonances and is used to analyze the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. The eigenvalues obtained are consistent with the forced-response curves. First- and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitations, and first-natural-frequency eigensolutions are presented for mode shapes corresponding to axial excitation.

  15. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi

    2009-10-01

    We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces. PMID:19681836

  16. Numerical investigation of sediment erosion to the impeller in a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Yang, C. X.; Dong, F. D.; Cheng, X. R.

    2013-12-01

    Based on Euler-Lagrange multiphase flow model and Finnie ductile material erosion model, using phase coupled SIMPLE algorithm, k-e RNG turbulence model and Reynolds Averaged Navier-Stokes (RANS) equation, the solid-liquid two-phase flows in a double-suction centrifugal pump is simulated. The erosion rate and solid mass concentration distribution on the pressure and suction surfaces of blades were obtained in different situations, which include different solid mass concentration (2.17kg/m3, 8.66kg/m3 and 14kg/m3) and different sediment diameter (0.019mm, 0.036mm, and 0.076mm). By comparisons of the test and numerical simulation values, the reliability of numerical calculation method has been verified. The numerical simulation result obtained show that the Finnie ductile material erosion model can accurately predict the erosion rate and erosion areas on the impeller. The erosion rate is increases with solid sediment diameter or solid mass concentration increasing. The main erosion areas on the pressure surface of blades near the blade inlet and outlet and close to the hub, and on the suction surface of blades near the blade inlet and close to the hub. For different sediment diameter or solid mass concentration, the erosion rate on the pressure surface of blades is always greater than that on its suction surface.

  17. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  18. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a particular design. Limited unshrouded - versus - shrouded impeller data from the J-2 pump is used to anchor the CFD. Since no detailed impeller blade force data is available, axial thrust and rotordynamic force predictions are based on the CFD model. For the axial thrust, the impeller front flow passage axial force is integrated from the CFD results and compared to the equivalent shrouded impeller axial force. For the rotordynamics forces, the fluid reaction forces are computed from unsteady flow CFD results using a moving boundary method; the rotor- shaft is moved at several whirl-to-speed frequency ratios to extract the rotordynamics coefficients.

  19. Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.

    1982-01-01

    The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.

  20. Experimental investigation of the hydrodynamic forces on the shroud of a centrifugal pump impeller. Thesis

    NASA Technical Reports Server (NTRS)

    Zhuang, Fei

    1989-01-01

    Fluid-induced forces acting on a rotating impeller are known to cause rotor-dynamic problems in turbomachines. The forces generated by leakage flow along the front shroud surface of a centrifugal turbomachine impeller play an important role among these fluid-induced forces. The present research was aimed to gain a better understanding of these shroud forces. An experimental apparatus was designed and constructed to simulate the impeller shroud leakage flow. Hydrodynamic forces and steady and unsteady pressure distributions on the rotating shroud were measured as functions of eccentricity, width of shroud clearance, face seal clearance and shaft rotating speed. The forces measured from the dynamometer and manometers agreed well. The hydrodynamic force matrices were found skew-symmetric and statically unstable. This is qualitatively similar to the result of previous hydrodynamic volute force measurements. Nondimensionalized normal and tangential forces decrease slightly as Reynolds number increases. As the width of the shroud clearance decreases and/or the eccentricity increases, the hydrodynamic forces increase nonlinearly. There was some evidence found that increased front seal clearance could reduce the radial shroud forces and the relative magnitude of the destabilizing tangential force. Subharmonic pressure fluctuations were also observed which may adversely affect the behavior of the rotor system.

  1. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm. PMID:23442235

  2. Swimming and pumping of helical structures in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio

    2014-11-01

    Many flagellated microorganisms including E. coli swim by rotating slender helical flagella, while ciliated organisms like Paramecia swim by passing helical waves along their surfaces. We will discuss a framework for studying such problems where the Stokes equations describing viscous flow are written in helical coordinates. Analytical predictions match well with full numerical simulations, and suggest optimal geometries. This work may also aid designs in microfluidic manipulation, microswimmer engineering, and the mixing of viscous fluids.

  3. Redesign of turbine-pump impeller and diffuser using hydrodynamic design techniques. Final report

    SciTech Connect

    Hamrick, J.T.

    1980-04-01

    It is indicated that in 1976 the average operating efficiency of well irrigation pumps in the US, including losses in the column pipe and line shaft, was 55.5%, but information is presented to show that losses in a pumping system can be reduced and that it is possible to reach a goal of 82% system efficiency. Hydrodynamic design methods which are used to analyze and modify a commercially available pump are presented. The results of tests with the pump are presented for which delivery losses were reduced by means of a packer at the pump and for which line shaft losses were reduced by means of a high strength line shaft. Methods of designing pumps that have a broader high efficiency range are explored, and a design approach for doing so is presented. The method was not evaluated experimentally. (MCW)

  4. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Astrophysics Data System (ADS)

    Baskharone, Erian A.

    1993-09-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction.

  5. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction. These are the direct and cross-coupled stiffness, damping, and inertia effects of the fluid/rotor interaction.

  6. Real-Time Observation of Thrombus Growth Process in an Impeller of a Hydrodynamically Levitated Centrifugal Blood Pump by Near-Infrared Hyperspectral Imaging.

    PubMed

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Fujiwara, Tatsuki; Nishida, Masahiro; Maruyama, Osamu

    2015-08-01

    Understanding the thrombus formation in cardiovascular devices such as rotary blood pumps is the most important issue in developing more hemocompatible devices. The objective of this study was to develop a hyperspectral imaging (HSI) method to visualize the thrombus growth process within a rotary blood pump and investigate the optical properties of the thrombus. An in vitro thrombogenic test was conducted using fresh porcine blood and a specially designed hydrodynamically levitated centrifugal blood pump with a transparent bottom. The pump rotating at 3000 rpm circulated the blood at 1.0 L/min. The bottom surface of the pump was illuminated with white light pulsed at the same frequency as the pump rotation, and the backward-scattered light was imaged using the HSI system. Using stroboscopic HSI and an image construction algorithm, dynamic spectral imaging at wavelengths ranging from 608 to 752 nm within the rotating pump was achieved. After completing the experiment, we collected the red thrombus formed in the pump impeller and quantified the thrombus hemoglobin concentration (Hbthrombus ). The spectrum changed around the center of the impeller, and the area of change expanded toward the impeller flow path. The shape corresponded approximately to the shape of the thrombus. The spectrum change indicated that the light scattering derived from red blood cells decreased. The Hbthrombus was 4.7 ± 1.3 g/dL versus a total hemoglobin of 13 ± 0.87 g/dL. The study revealed that Hbthrombus was reduced by the surrounding blood flow. PMID:26234451

  7. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  8. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free. PMID:19655978

  9. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  10. Optimal design of non-Newtonian, micro-scale viscous pumps for biomedical devices.

    PubMed

    da Silva, A K; Kobayashi, M H; Coimbra, C F M

    2007-01-01

    The present paper addresses the numerical optimization of geometrical parameters of non-Newtonian micro-scale viscous pumps for biomedical devices. The objective is to maximize the mass flow rate per unit of shaft power consumed by the rotor when an external pressure load is applied along the channel that houses the rotor. Two geometric parameters are considered in the optimization process: (i) the height of the channel that houses the rotor (H) and (ii), the eccentricity (epsilon) of the rotor. Three different micro-scale viscous pump configurations were tested: a straight-housed pump (I-shaped housing) and two curved housed pumps (L- and U-shaped housings). The stress-strain constitutive law is modeled by a power-law relation. The results show that the geometric optimization of micro-scale viscous pumps is critical since the mass flow rate propelled by the rotor is highly dependent on epsilon and H. Numerical simulations indicate that mass flow rate is maximized when epsilon approximately 0, namely when the rotor is placed at a distance of 0.05 radii from the lower wall. The results also show that micro-scale viscous pumps with curved housing provide higher mass flow rate per unit of shaft power consumed when compared with straight-housed pumps. The results are presented in terms optimized dimensions of all three configurations (i.e., H(opt) and epsilon(opt)) and for values of the power-law index varying between 0.5 (shear thinning fluids) and 1.5 (shear-thickening fluids). PMID:16917929

  11. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 1: Model development and applications

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This study concerns the rotor dynamic characteristics of fluid-encompassed rotors, with special emphasis on shrouded pump impellers. The core of the study is a versatile and categorically new finite-element-based perturbation model, which is based on a rigorous flow analysis and what we have generically termed the 'virtually' deformable finite-element approach. The model is first applied to the case of a smooth annular seal for verification purposes. The rotor excitation components, in this sample problem, give rise to a purely cylindrical, purely conical, and a simultaneous cylindrical/conical rotor whirl around the housing centerline. In all cases, the computed results are compared to existing experimental and analytical data involving the same seal geometry and operating conditions. Next, two labyrinth-seal configurations, which share the same tooth-to-tooth chamber geometry but differ in the total number of chambers, were investigated. The results, in this case, are compared to experimental measurements for both seal configurations. The focus is finally shifted to the shrouded-impeller problem, where the stability effects of the leakage flow in the shroud-to-housing secondary passage are investigated. To this end, the computational model is applied to a typical shrouded-impeller pump stage, fabricated and rotor dynamically tested by Sulzer Bros., and the results compared to those of a simplified 'bulk-flow' analysis and Sulzer Bros.' test data. In addition to assessing the computed rotor dynamic coefficients, the shrouded-impeller study also covers a controversial topic, namely that of the leakage-passage inlet swirl, which was previously cited as the origin of highly unconventional (resonance-like) trends of the fluid-exerted forces. In order to validate this claim, a 'microscopic' study of the fluid/shroud interaction mechanism is conducted, with the focus being on the structure of the perturbed flow field associated with the impeller whirl. The conclusions of this study were solidified by the outcome of a numerical-certainty exercise, where the grid dependency of the numerical results is objectively examined. The final phase of the shrouded-impeller investigation involves the validation of a built-in assumption, in all other perturbation models, whereby single-harmonic tangential distributions of all the flow thermophysical properties are imposed. The last phase of the investigation course is aimed at verifying the fine details of the perturbed flow field in light of recent set of detailed LDA measurements in a smooth annular seal. Grid dependency of the fluid-induced forces is also investigated, and specific recommendations are made.

  12. Waterjet Impeller

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Marshall space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for a jet-propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid polycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  13. Design of a high-pressure circulating pump for viscous liquids

    NASA Astrophysics Data System (ADS)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 °C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 °C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 °C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  14. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  15. Waterjet Impeller

    NASA Technical Reports Server (NTRS)

    1996-01-01

    North American Marine Jet (NAMJ), Inc. received assistance from Marshall Space Flight Center engineers in the Computational Fluid Dynamics (CFD) branch of the Structure and Dynamics Laboratory in improving the proposed design of a new impeller for their jet-propulsion systems. Marshall used advanced CFD techniques, which included creating a three-dimensional computer model of the impeller for analysis. With Marshall input, the company modified the design, then Marshall used a computer model to make a solid polycarbonate model. The rapid prototyping allowed the company to avoid many time- consuming and costly steps in creating the impeller model. NAMJ is now able to compete with Pacific-area and European manufacturers who have traditionally dominated the market.

  16. Fluid Dynamics of Small, Rugged Vacuum Pumps of Viscous-Drag Type

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    2002-01-01

    The need to identify spikes in the concentration of hazardous gases during countdowns to space shuttle launches has led Kennedy Space Center to acquire considerable expertise in the design, construction, and operation of special-purpose gas analyzers of mass-spectrometer type. If such devices could be miniaturized so as to fit in a small airborne package or backpack them their potential applications would include integrated vehicle health monitoring in later-generation space shuttles and in hazardous material detection in airports, to name two examples. The bulkiest components of such devices are vacuum pumps, particularly those that function in the low vacuum range. Now some pumps that operate in the high vacuum range (e.g. molecular-drag and turbomolecular pumps) are already small and rugged. The present work aims to determine whether, on physical grounds, one may or may not adopt the molecular-drag principle to the low-vacuum range (in which case viscous-drag principle is the appropriate term). The deliverable of the present effort is the derivation and justification of some key formulas and calculation methods for the preliminary design of a single-spool, spiral-channel viscous-drag pump.

  17. Numerical and experimental study of Newtonian and non-Newtonian flow in a spiral viscous pump

    NASA Astrophysics Data System (ADS)

    Gustafsson, Andreas; Mårtensson, Gustaf

    2008-11-01

    The need to transport small volumes of viscous media is a vital part of microfluidic applications in biotechnology, chemistry and electronics. A novel Archimedean viscous micro-pump was developed in an attempt to achieve the precise and accurate delivery of fluid in a robust and industrially viable package. The pump consists of a two-disc system, where one is patterned with a spiral rectangular channel and the other is smooth and has a rate of rotation ( φ) in order to pump the fluid. The width of the channel is variable along its length in order to achieve a constant local Reynolds number and avoid recirculation zones along the spiral, which is described r = a + b ĉ, where ( r ) is the radius at the spiral centerline and ( θ) is the azimuthal angle. Numerical and analytical studies of the proposed model exhibiting a linear relationship between the flow ( Q ) and ( φ) will be presented, as well as results from experiments with a simplified prototype supporting the analytical and numerical studies.

  18. Influence of impeller and diffuser geometries on the lateral fluid forces of whirling centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro

    1989-01-01

    Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.

  19. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-01

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy@1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  20. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    SciTech Connect

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-10

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy at 1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  1. Numerical and experimental study of Newtonian and non-Newtonian flow in a spiral viscous pump

    NASA Astrophysics Data System (ADS)

    M{Aa}Rtensson, Gustaf; Gustafsson, Andreas

    2009-11-01

    The need to transport small volumes of viscous media is a vital part of microfluidic devices vital to applications in biotechnology, chemistry and electronics. A novel Archimedian viscous micropump was developed in an attempt to achieve precise and accurate delivery of fluid in a robust and industrially viable package. The pump consists of a two-disc system, where one is patterned with a spiral rectangular channel of variable width and the other is smooth and has a rate of rotation ( φ) in order to pump the fluid. The width of the channel is variable along its length in order to achieve a constant local Reynolds number and avoid recirculation zones along the spiral, which is described r = a + b θ^c , where ( r ) is the radius at the spiral centerline and ( θ) is the angle. Numerical and analytical studies of the proposed model will be presented, exhibiting a linear relationship between the flow ( Q ) and ( φ). Results from experiments with a simplified prototype will also be presented supporting the analytical and numerical studies.

  2. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  3. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-01-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  4. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Astrophysics Data System (ADS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-07-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  5. Latest update of tests and improvements to US Coast Guard viscous oil pumping system.

    PubMed

    Drieu, Michael D; Nourse, Peter C; MacKay, Ronald; Cooper, David A; Hvidbak, Flemming

    2003-01-01

    Over the past nine years, the US Coast Guard has incorporated the prevention through people (PTP) philosophy as a "human factors" approach to learn how maritime operations can be regulated safer and be more efficient by evaluating training, management policies, operational procedures, and establishing partnerships with the maritime industry. One of the key elements of applying a PTP approach is identifying and incorporating lessons learned from major marine casualties and pollution incidents. Since 1997, the US Coast Guard National Strike Force has responded to three major oil spills involving foreign freight vessels grounding, which included the removal of highly viscous oil using various lightering equipment and systems. An informal workgroup consisting of the US Coast Guard, US Navy Supervisor of Salvage (NAVSUPSALV), and various representatives from oil pollution clean-up companies met at the following facilities: the Chevron Asphalt Facility in Edmonds, WA (September 1999), the Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) testing facility in Leonardo, New Jersey (November 1999 and March 2000), the Alaska Clean Seas (ACS) warehouse annex in Prudhoe Bay, AK (October 2000), and Cenac Towing Company facility in Houma, LA (May 2002). The group shared ideas and techniques, and tested different pumps and hose lengths with viscous oil. It was during the early tests that the first quantitative results showed just how efficient lubricated transport of heavy oil product could be, and broadened the knowledge of such methods to the entire industry. Although this technology had existed for many years in the oil production and handling industry, its use had never been investigated in a laboratory setting with regard to salvage response lightering systems. PMID:12899890

  6. Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury Service at the Spallation Neutron Source

    SciTech Connect

    Pawel, Steven J

    2007-03-01

    Using a standard vibratory horn apparatus, the relative cavitation-erosion resistance of a number of cast alloys in mercury was evaluated to facilitate material selection decisions for Hg pumps. The performance of nine different alloys - in the as-cast condition as well as following a case-hardening treatment intended to increase surface hardness - was compared in terms of weight loss and surface profile development as a function of sonication time in Hg at ambient temperature. The results indicated that among several potentially suitable alloys, CD3MWCuN perhaps exhibited the best overall resistance to cavitation in both the as-cast and surface treated conditions while the cast irons examined were found unsuitable for service of this type. However, other factors, including cost, availability, and vendor schedules may influence a material selection among the suitable alloys for Hg pumps.

  7. Turbulent flow and pressure fluctuation prediction of the impeller in an axial-flow pump based on LES

    NASA Astrophysics Data System (ADS)

    Shen, J. F.; Li, Y. J.; Liu, Z. Q.; Tang, X. L.

    2013-12-01

    The Large Eddy Simulation method with sliding mesh technique has been used for analyzing the unsteady flow in an axial-flow pump at five different flow rates. The tip leakage flow in the tip-gap region and the pressure pulsations on the blade surface were examined. The results indicate that the agreement between predicted pump performance and experimental data was reasonably good. The dominate tip-leakage vortex(TLV) extended to the pressure side of the neighboring blade for all five investigated flow rates. As the flow rate increases from 0.7Qd to 1.2Qd, the angle between the dominate TLV and the blade reduced from 20 deg to 14 deg. The results also showed that the amplitude of pressure fluctuation on the near-tip zone of the blade surface increases as the flow rate farer from the design flow rate, especially on the pressure side of the blade. At the 0.7Qd operation condition, the pressure fluctuation amplitude of the monitoring point PP3 (at the near-tip zone on the pressure side of the blade close to the blade leading edge) was 8.5 times of the one at design flow rate, and the high-frequency(18fr) pulsation occurred due to tip leakage vortex. When the flow rate was more than 1.0Qd, the pressure fluctuations of PP3 was dominated by the rotation frequency(fr).

  8. Implantable centrifugal blood pump with dual impeller and double pivot bearing system: electromechanical actuator, prototyping, and anatomical studies.

    PubMed

    Bock, Eduardo; Antunes, Pedro; Leao, Tarcisio; Uebelhart, Beatriz; Fonseca, Jeison; Leme, Juliana; Utiyama, Bruno; da Silva, Cibele; Cavalheiro, Andre; Filho, Diolino Santos; Dinkhuysen, Jarbas; Biscegli, Jose; Andrade, Aron; Arruda, Celso

    2011-05-01

    An implantable centrifugal blood pump has been developed with original features for a left ventricular assist device. This pump is part of a multicenter and international study with the objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations and wear evaluation in bearing system were performed followed by prototyping and in vitro tests. In addition, previous blood tests for assessment of normalized index of hemolysis show results of 0.0054±2.46 × 10⁻³ mg/100 L. An electromechanical actuator was tested in order to define the best motor topology and controller configuration. Three different topologies of brushless direct current motor (BLDCM) were analyzed. An electronic driver was tested in different situations, and the BLDCM had its mechanical properties tested in a dynamometer. Prior to evaluation of performance during in vivo animal studies, anatomical studies were necessary to achieve the best configuration and cannulation for left ventricular assistance. The results were considered satisfactory, and the next step is to test the performance of the device in vivo. PMID:21595708

  9. A concept for improving efficiency of multistage centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Gardy, H. F.

    1970-01-01

    Multichannel impeller consists of successive stage impellers arranged concentrically without clearances between them. Reduction in friction is predicted to increase pump efficiency by 5 to 10 percent.

  10. Artificial Heart Rejects High Tech? Lessens Learnt from Non-pulsatile VAD with Straight Impeller Vanes

    PubMed Central

    Qian, Kun-xi

    2007-01-01

    Despite the progresses in developing pulsatile impeller pump and impeller total heart, as well as in applying streamlined impeller vanes, the best results in application of artificial heart pumps have been achieved by nonpulsatile univentricular assist pump with straight impeller vanes until now. It seems all efforts and successes have been done in vain because artificial heart rejects Hi-Tech! This paper recalls some important achievements in R&D of artificial heart in past 25 years and shares author’s experiences with the readers. PMID:19662125

  11. Impeller flow field measurement and analysis

    NASA Technical Reports Server (NTRS)

    Fagan, J. R.; Fleeter, S.

    1991-01-01

    A series of experiments are performed to investigate and quantify the three-dimensional mean flow field in centrifugal compressor flow passages and to evaluate contemporary internal flow models. The experiments include the acquisition and analysis of LDV data in the impeller passages of a low-speed moderate-scale research mixed-flow centrifugal compressor operating at its design point. Predictions from a viscous internal flow model are then correlated with these data. The LDV data show the traditional jet-wake structure observed in many centrifugal compressors, with the wake observed along the shroud 70 percent of the length from the pressure to suction surface. The viscous model predicts the major flow phenomena. However, the correlations of the viscous predictions with the LDV data were poor.

  12. Swimming and pumping by helical waves in viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2015-02-01

    We study helical bodies of arbitrary cross-sectional profile as they swim or transport fluid by the passage of helical waves. Many cases are explored: the external flow problem of swimming in a cylindrical tube or an infinite domain, the internal fluid pumping problem, and confined/unconfined swimming and internal pumping in a viscoelastic (Oldroyd-B) fluid. A helical coordinate system allows for the analytical calculation of swimming and pumping speeds and fluid velocities in the asymptotic regime of nearly cylindrical bodies. In a Newtonian flow, a matched asymptotic analysis results in corrections to the swimming speed accurate to fourth-order in the small wave amplitude, and the results compare favorably with full numerical simulations. We find that the torque-balancing rigid body rotation generally opposes the direction of wave passage, but not always. Confinement can result in local maxima and minima of the swimming speed in the helical pitch, and the effects of confinement decrease exponentially fast with the diameter of the tube. In a viscoelastic fluid, we find that the effects of fluid elasticity on swimming and internal pumping modify the Newtonian results through the mode-dependent complex viscosity, even in a confined domain.

  13. Fluid extraction across pumping and permeable walls in the viscous limit

    NASA Astrophysics Data System (ADS)

    Herschlag, G.; Liu, J.-G.; Layton, A. T.

    2016-04-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.

  14. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  15. Development and Validation of High Performance Unshrouded Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Williams, M.; Paris, John K.; Prueger, G. H.; Williams, Robert; Turner, James E. (Technical Monitor)

    2001-01-01

    The feasibility of using a two-stage unshrouded impeller turbopump to replace the current three-stage reusable launch vehicle engine shrouded impeller hydrogen pump has been evaluated from the standpoint of turbopump weight reduction and overall payload improvement. These advantages are a by-product of the higher tip speeds that an unshrouded impeller can sustain. The issues associated with the effect of unshrouded impeller tip clearance on pump efficiency and head have been evaluated with one-dimensional tools and full three-dimensional rotordynamic fluid reaction forces and coefficients have been established through time dependent computational fluid dynamics (CFD) simulation of the whole 360 degree impeller with different rotor eccentricities and whirling ratios. Unlike the shrouded impeller, the unshrouded impeller forces are evaluated as the sum of the pressure forces on the blade and the pressure forces on the hub using the CFD results. The turbopump axial thrust control has been optimized by adjusting the first stage impeller backend wear ring seal diameter and diverting the second stage backend balance piston flow to the proper location. The structural integrity associated with the high tip speed has been checked by analyzing a 3D-Finite Element Model at maximum design conditions (6% higher than the design speed). This impeller was fabricated and tested in the NASA Marshall Space Flight Center water-test rig. The experimental data will be compared with the analytical predictions and presented in another paper. The experimental data provides validation data for the numerical design and analysis methodology. The validated numerical methodology can be used to help design different unshrouded impeller configurations.

  16. Liquid Scavenger for Separator/Pump

    NASA Technical Reports Server (NTRS)

    Berg, P. F.

    1986-01-01

    Pump for hydrogen modified to remove moisture that condenses in impeller stage. Impeller-pump housing has circumferential groove leading to exit hole near high-pressure outlet. As impeller disk rotates, flings water droplets condensed in pump toward groove. Aerodynamic drag drives water around groove to exit hole.

  17. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  18. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.

    PubMed

    Qian, K X

    1996-01-01

    The impeller blood pump with its simplicity has many advantages compared with the diaphragm pump, but the nonpulsatile property has limited its applications. To make the impeller pump pulsatile, many investigations have been made in vain because of resulting haemolysis. The author has succeeded in producing a pulsatile blood flow with a centrifugal pump, by means of the streamlined design of the impeller. The vane and shroud coincide with the blood stream surface in the pump, to eliminate the turbulence and stasis of the blood flow, which are the main factors in haemolysis and thrombosis. The pulsatility of the blood pressure and flow rate is achieved by changing the rotating speed of the impeller periodically, by introducing a square wave form voltage into the motor coil. The velocity variation of the blood cells due to the changing rotating speed of the impeller is minimized by using twisted impeller vanes, thus reducing the additional Reynolds shear, which causes the additional haemolysis in the pump. In vitro testing demonstrated that the haemolysis index of the pulsatile impeller pump is slightly higher than that of the author's nonpulsatile impeller pump but clearly less than that of other pulsatile blood pumps. The in vivo evaluations indicated that no blood damage occurred and that all haematological and biochemical data kept within a normal range during left ventricular assist experiments in calves for up to 11 days. A pulsatile impeller total heart has been developed. Two pumps are located on both sides of and driven by a d.c. motor. As the motor changes its rotating speed periodically, the left and right pumps eject the blood simultaneously, and the volume equilibrium of both pumps is achieved naturally. Acute biventricular assist experiments in pig confirmed that the device caused no blood damage. PMID:8771040

  19. Osmotic Stress and Viscous Retardation of the Na,K-ATPase Ion Pump

    PubMed Central

    Esmann, Mikael; Fedosova, Natalya U.; Marsh, Derek

    2008-01-01

    The transport function of the Na pump (Na,K-ATPase) in cellular ion homeostasis involves both nucleotide binding reactions in the cytoplasm and alternating aqueous exposure of inward- and outward-facing ion binding sites. An osmotically active, nonpenetrating polymer (poly(ethyleneglycol); PEG) and a modifier of the aqueous viscosity (glycerol) were used to probe the overall and partial enzymatic reactions of membranous Na,K-ATPase from shark salt glands. Both inhibit the steady-state Na,K-ATPase as well as Na-ATPase activity, whereas the K+-dependent phosphatase activity is little affected by up to 50% of either. Both Na,K-ATPase and Na-ATPase activities are inversely proportional to the viscosity of glycerol solutions in which the membranes are suspended, in accordance with Kramers' theory for strong coupling of fluctuations at the active site to solvent mobility in the aqueous environment. PEG decreases the affinity for Tl+ (a congener for K+), whereas glycerol increases that for the nucleotides ATP and ADP in the presence of NaCl but has little effect on the affinity for Tl+. From the dependence on osmotic stress induced by PEG, the aqueous activation volume for the Na,K-ATPase reaction is estimated to be ∼5–6 nm3 (i.e., ∼180 water molecules), approximately half this for Na-ATPase, and essentially zero for p-nitrophenol phosphatase. The change in aqueous hydrated volume associated with the binding of Tl+ is in the region of 9 nm3. Analysis of 15 crystal structures of the homologous Ca-ATPase reveals an increase in PEG-inaccessible water space of ∼22 nm3 between the E1-nucleotide bound forms and the E2-thapsigargin forms, showing that the experimental activation volumes for Na,K-ATPase are of a magnitude comparable to the overall change in hydration between the major E1 and E2 conformations of the Ca-ATPase. PMID:18055532

  20. Slip due to surface roughness for a Newtonian liquid in a viscous microscale disk pump

    NASA Astrophysics Data System (ADS)

    Ligrani, Phil; Blanchard, Danny; Gale, Bruce

    2010-05-01

    In the present study, hydrophobic roughness is used to induce near-wall slip in a single rotating-disk micropump operating with Newtonian water. The amount of induced slip is altered by employing different sizes of surface roughness on the rotating disk. The magnitudes of slip length and slip velocities increase as the average size of the surface roughness becomes larger. In the present study, increased slip magnitudes from roughness are then associated with reduced pressure rise through the pump and lower radial-line-averaged shear stress magnitudes (determined within slip planes). Such shear stress and pressure rise variations are similar to those which would be present if the slip is induced by the intermolecular interactions which are associated with near-wall microscale effects. The present slip-roughness effects are quantified experimentally over rotational speeds from 50 to 1200 rpm, pressure increases from 0 to 312 kPa, net flow rates of 0-100 μl/min, and fluid chamber heights from 6.85 to 29.2 μm. Verification is provided by comparisons with analytic results determined from the rotating Couette flow forms of the Navier-Stokes equations, with different disk rotational speeds, disk roughness levels, and fluid chamber heights. These data show that slip length magnitudes show significant dependence on radial-line-averaged shear stress for average disk roughness heights of 404 and 770 nm. These slip length data additionally show a high degree of organization when normalized using by either the average roughness height or the fluid chamber height. For the latter case, such behavior provides evidence that the flow over a significant portion of the passage height is affected by the roughness, and near-wall slip velocities, especially when the average roughness height amounts to 11% of the h =6.86 μm passage height of the channel. Such scaling of the disk slip length bdisk with fluid chamber height h is consistent with d-type roughness scaling in macroscale flows.

  1. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  2. A novel impeller TAH using magnetic bearings for load reduction.

    PubMed

    Qian, K X; Ru, W M; Zeng, P; Yuan, H Y

    2002-01-01

    A novel impeller TAH (total artificial heart), i.e. bi-ventricular assist impeller pumps, has been developed. The device consists of a rotor with motor magnets and two impellers, a stator with motor coil and iron core, and two pump housings. In both sides of the rotor magnets, as well as the stator coil core, a pair of magnetic bearings was devised to partly counteract the attractive forces between the rotor magnets and the stator coil core. This means the magnetic bearings are used for load reduction. On hydrodynamic testing, the two pumps both produced a flow rate as high as 6 l min(-1) and the left pump had a pressure head of 150 mm Hg, and that of the right pump was 50 mm Hg. The highest efficiency of the device, including the motor, the two pumps and the controller, reached 14.7%. The device, weighing 250 g, had a length of 80 mm and a diameter of 40 mm at its largest point. Currently in the world, this is a unique TAH, which is electrically powered and driven by a single motor and has only one moving part, can produce either pulsatile or non-pulsatile flow, both pumps eject flow synchronistically by pulsatile mode, and the volume equilibrium of the two pumps can be achieved automatically without the need for control. PMID:12487713

  3. Experience in reducing the hemolysis of an impeller assist heart.

    PubMed

    Qian, K X

    1989-01-01

    Blood trauma has been one of the main problems of centrifugal pumps. The difficulties in reducing hemolysis are many, and all the factors causing excessive hemolysis always act together, making them difficult to discover and distinguish. Furthermore, error could occur at many points during hemolysis testing, making it difficult to repeat results. In developing the low hemolysis pulsatile and nonpulsatile impeller pumps the authors established an experimental method for investigating and searching for the hemolysis factors. In this study two pumps with only one differing factor were compared or only one factor on one pump was changed in the middle of the test period. In this way the effect of the individual factor on pump hemolysis could be seen and some factors have been thus confirmed as important reasons for hemolysis: 1) the drift of the pump output (including the volume and efficiency) from the design point; 2) impeller vane angles, i.e., the radial logarithmic spiral angle and the axial helical spiral angle; 3) roughness of vane surface and other blood contacting surfaces of the sealing box and pump housing; 4) vibration of the rotor resulting from dynamic disequilibrium; and 5) prerotation swirl at the inlet of the pump. The blood pressure to be pumped has been shown to have no influence on pump hemolysis. After eliminating the hemolysis factors, the blood trauma of the impeller heart has been reduced remarkably. The index of hemolysis of the nonpulsatile pump is 0.015, about one fifth of a clinically used roller made in Shanghai and two sevenths of one Sarns 7,000 Roller; the index of hemolysis of the pulstile pump is 0.020, about one sixth of a self-made diaphragm pump and one thirteenth of the Polystan pulsa tile pump. PMID:2730808

  4. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  5. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  6. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  7. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Astrophysics Data System (ADS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-07-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several features of both testers were intentionally atypical. A crossover discharge, downstream of the impeller, rather than a volute discharge was used to minimize asymmetric flow conditions that might be reflected in the impeller discharge flow data. Impeller shroud wear ring radial clearances were purposely close to minimize leakage flow, thus increasing confidence in using the inlet data as an input to CFD programs. The empirical study extensively examined the flow fields of the two impellers via performance of laser two-focus velocimeter surveys in an axial plane upstream of the impellers and in multiple radial planes downstream of the impellers. Both studies were performed at the impeller design flow coefficients. Inlet laser surveys that provide CFD code inlet boundary conditions were performed in one axial plane, with ten radial locations surveyed. Three wall static pressures, positioned circumferentially around the impeller inlet, were used to identify asymmetrical pressure distributions in the inlet survey plane. impeller discharge flow characterization consisted of three radial planes for the SSME HPFTP impeller and two radial planes for the Pump Consortium optimized impeller. &Housing wall static pressures were placed to correspond to the radial locations surveyed with the laser velocimeter. Between five and thirteen axial stations across the discharge channel width were examined in each radial plane during the extensive flow mapping. The largely successful empirical flow characterization of two different impellers resulted in a substantial contribution to the limited existing data base, and yielded accurate data for CFD code benchmarking.

  8. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-01-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several features of both testers were intentionally atypical. A crossover discharge, downstream of the impeller, rather than a volute discharge was used to minimize asymmetric flow conditions that might be reflected in the impeller discharge flow data. Impeller shroud wear ring radial clearances were purposely close to minimize leakage flow, thus increasing confidence in using the inlet data as an input to CFD programs. The empirical study extensively examined the flow fields of the two impellers via performance of laser two-focus velocimeter surveys in an axial plane upstream of the impellers and in multiple radial planes downstream of the impellers. Both studies were performed at the impeller design flow coefficients. Inlet laser surveys that provide CFD code inlet boundary conditions were performed in one axial plane, with ten radial locations surveyed. Three wall static pressures, positioned circumferentially around the impeller inlet, were used to identify asymmetrical pressure distributions in the inlet survey plane. The impeller discharge flow characterization consisted of three radial planes for the SSME HPFTP impeller and two radial planes for the Pump Consortium optimized impeller. Housing wall static pressures were placed to correspond to the radial locations surveyed with the laser velocimeter. Between five and thirteen axial stations across the discharge channel width were examined in each radial plane during the extensive flow mapping. The largely successful empirical flow characterization of two different impellers resulted in a substantial contribution to the limited existing data base, and yielded accurate data for CFD code benchmarking.

  9. Apparatus for pumping liquids at or below the boiling point

    DOEpatents

    Bingham, Dennis N. (Idaho Falls, ID)

    2002-01-01

    A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.

  10. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. PMID:20883393

  11. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  12. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Astrophysics Data System (ADS)

    Bache, George

    1992-07-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  13. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  14. Design of centrifugal impeller blades

    NASA Technical Reports Server (NTRS)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  15. Small centrifugal pumps for low thrust rockets

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  16. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  17. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  18. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  19. Hemolytic effect of the secondary vane incorporated into the back side of the impeller.

    PubMed

    Ohara, Y; Murase, M; Nos, Y

    1997-07-01

    The hemolytic effect of the secondary vane system, the antithrombogenic structure incorporated into the back side of the impeller of the C1E3 Gyro pump, was investigated. Impellers with 0, 2, 3, and 4 secondary vanes and an additional impeller with 2 secondary channels were fabricated and incorporated into the C1E3 pump casings. Hemolysis tests were performed under cardiopulmonary bypass conditions (flow rate 4.5 L/min, total pressure head 350 mm Hg) using flesh bovine blood. The normalized indices of hemolysis (NIH) of the pumps with 0, 2, 3, and 4 secondary vanes and the pump with 2 secondary channels were 0.0797, 0.0866, 0.104, 0.157, and 0.0591, respectively. These results indicated that design of the impeller with 2 secondary channels, which was the original design of C1E3 Gyro pump, was less hemolytic than the design with secondary vanes. Additionally, the possibility of the secondary channel system for the impeller bottom was demonstrated favorably. PMID:9212941

  20. Numerical studies in a centrifugal pump with the improved blade considering cavitation

    NASA Astrophysics Data System (ADS)

    Song, P. F.; Zhang, Y. X.; Xu, C.; Zhou, X.; Zhang, J. Y.

    2015-01-01

    In this paper, a centrifugal pump with the improved blade for cavitation is studied numerically. A 3D impeller with logarithmic spiral blade profile was designed by the in-house hydraulic design code using a centrifugal pump geometric parameters, and the blade profile curve of suction side on the designed impeller is replaced by a combination of tangent line and circle arc line. The cavitation flows in the centrifugal pump with designed impeller, modified impeller and centrifugal pump spectrum impeller are respectively calculated by two-phase CFD simulation at three flow rates. The tests of the centrifugal pump have been conducted to verify numerical simulation. The effects of designed impeller and modified impeller on hydraulic efficiency, critical cavitation number, cavitation length, head drop performance and vapor cavity distribution in impeller are investigated. The results show that the modification of blade profile curve of suction side can improve the cavitation performance of an impeller and hydraulic efficiency of centrifugal pump. Compared with designed impeller, the critical cavitation number of centrifugal pump with modified impeller decrease by 26.5% under the same flow rate coefficient, and the cavitation intensity in the modified impeller is weakened effectively. The hydraulic efficiency of modified impeller also increases by 4.9%.

  1. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  2. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    NASA Technical Reports Server (NTRS)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.

  3. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump. PMID:12561356

  4. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  5. Rotor/Stator Interaction In A Diffuser Pump

    NASA Technical Reports Server (NTRS)

    Acosta, A. J.; Brennan, C. E.; Caughey, T. K.

    1990-01-01

    Measurements of steady and fluctuating pressures reported. Report describes experiments designed to investigate interactions between blades of impeller and both vaned and vaneless diffuser (stator) in diffuser pump.

  6. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    PubMed

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased. PMID:26647585

  7. LH2 pump component development testing in the electric pump room at test cell C inducer no. 1

    NASA Technical Reports Server (NTRS)

    Andrews, F. X.; Brunner, J. J.; Kirk, K. G.; Mathews, J. P.; Nishioka, T.

    1972-01-01

    The characteristics of a turbine pump for use with the nuclear engine for rocket vehicles are discussed. It was determined that the pump will be a two stage centrifugal pump with both stages having backswept impellers and an inducer upstream of the first stage impeller. The test program provided demonstration of the ability of the selected design to meet the imposed requirements.

  8. Pressure oscillation in the leakage annulus between a shrouded impeller and its housing due to impeller-discharge-pressure disturbances

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1992-01-01

    The perturbed flow in the leakage path between a shrouded-pump impeller and its housing is analyzed using experiences with the Space Shuttle Main Engine (SSME), high pressure fuel turbopump (HPFTP) wearing-ring seals. Analysis is based on a bulk-flow model which consists of the path-momentum, circumferential momentum, and continuity equations. The pressure oscillations in the leakage annulus are driven by a circumferential variation of the impeller discharge pressure. It is shown that the occurrence and nature of the pressure oscillations depend on the tangential-velocity ratio of the fluid entering the seal, the order of the Fourier coefficient, the closeness of the precessional frequency of the rotating pressure field to the first natural frequency of the fluid annulus, and the clearance of the wearing-ring seal. The results obtained may explain the internal melting observed on SSME HPFTP seal parts.

  9. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  10. Lidocaine Viscous

    MedlinePlus

    ... pain of a sore or irritated mouth and throat often associated with cancer chemotherapy and certain medical ... Lidocaine viscous is not normally used for sore throats due to cold, flu, or infections such as ...

  11. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  12. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  13. Numerical calculation of the internal flow field in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.

    1975-01-01

    An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.

  14. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  15. SSME HPOTP impeller backcavity CFD analysis

    NASA Technical Reports Server (NTRS)

    Hsu, W. W.; Lin, S. J.

    1992-01-01

    The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.

  16. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.

    PubMed

    Yamane, T; Nishida, M; Asztalos, B; Tsutsui, T; Jikuya, T

    1997-01-01

    A monopivot magnetic suspension blood pump is a centrifugal pump under development with a magnetic suspension and a ceramic pivot to support the impeller with minimum contact. The pump size has been reduced by implementing a direct impeller drive mechanism in place of a magnetic coupling and motor. Flow visualization studies revealed that high shear, which seems to be closely related to hemolysis, concentrates in boundary layers near the walls. This implies that fluid dynamic shear can be reduced not by widening the gap, but by reducing the impeller velocity. Therefore, compared with the results of the previous semi-open curved vane impeller model, impeller velocity was reduced by 30% with a closed impeller having radial straight vanes, and smaller impeller/housing gaps. The volute shape around the impeller tip was also changed such that the outflow from the impeller enters along the center plane of the volute. To examine the effect of the improvements, hemolysis testing was conducted and found that the newly developed closed impeller model generated a lower level of hemolysis than the previous semi-open impeller model. PMID:9360122

  17. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  18. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system. PMID:8573818

  19. Viscous cavities

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2013-04-01

    We study experimentally the impact of solid spheres in a viscous liquid at moderate Reynolds numbers (Re ˜ 5-100). We first determine the drag force by following the slowdown dynamics of projectiles. We then focus on the shape of the free surface: such impacts generate cavities, whose original shape is described and modeled.

  20. Viscous Impact

    NASA Astrophysics Data System (ADS)

    Driscoll, Michelle; Stevens, Cacey; Nagel, Sidney

    2008-11-01

    The splashing of both inviscid and viscous drops on smooth, dry surfaces can be completely suppressed by decreasing the pressure of the surrounding gas [1,2,3]. However, at sufficiently high pressure when splashing does occur, the shape and dynamics of the ejected liquid sheets depends strongly on the liquid viscosity. This, as well as the dependence of the threshold pressure on viscosity [2], suggests that the splashing of viscous and inviscid liquids is caused by different mechanisms. When a low-viscosity (˜1 cst) liquid splashes, a corona is ejected immediately upon impact. In more viscous fluids (10 cst silicone oil), our experiments show that a thin sheet, resembling a flattened version of the corona seen in the inviscid case, emerges out of a much thicker spreading film. However, for these viscous fluids, the ejection of the thin sheet does not occur immediately. As the ambient pressure is lowered, the sheet ejection time is delayed longer and longer after impact until no sheet is ejected at all. [1] L. Xu, W.W. Zhang, S.R. Nagel, Phys. Rev. Lett. 94, 184505 (2005). [2] L. Xu, Phys. Rev. E 75, 056316 (2007). [3] C. Stevens et al., FC.00003 DFD 2007

  1. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  2. Experimental results concerning centrifugal impeller excitations

    NASA Technical Reports Server (NTRS)

    Vance, J. M.; Landadio, F. J.

    1980-01-01

    The effect of working fluid on the dynamics of an impeller with radial vanes was investigated. The impeller was supported vertically from a very flexible quill shaft in order to produce a low critical speed, and to allow the fluid dynamic effects on the impeller to predominate. The shaft was supported from ball bearings, so that there was no possibility of oil whip from fluid film bearings as a destabilizing influence. The impeller was run both in the atmosphere, and submerged in working fluids contained in a cylindrical housing, open at the top. Variable speed was obtained with a dc gearmotor drive unit. The speed was measured with a proximity probe pulse tachometer and electronic digital counter.

  3. Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration.

    PubMed

    Corrêa, Luciano Jacob; Badino, Alberto Colli; Cruz, Antonio José Gonçalves

    2016-02-01

    One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical-economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96 h, using 10 % (m/v) SCB, pH 4.8, 50 °C, 10 FPU/g biomass, 470 rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed. PMID:26650719

  4. Magnetically suspended miniature fluid pump and method of designing the same

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson (Inventor)

    2000-01-01

    A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy.

  5. Prediction of Microporosity in Shrouded Impeller Castings

    SciTech Connect

    Viswanathan, S. Nelson, C.D.

    1998-09-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Morris Bean and Company was to link computer models of heat and fluid flow with previously developed quality criteria for the prediction of microporosity in a Al-4.5% Cu alloy shrouded impeller casting. The results may be used to analyze the casting process design for the commercial production of 206 o alloy shrouded impeller castings. Test impeller castings were poured in the laboratory for the purpose of obtaining thermal data and porosity distributions. Also, a simulation of the test impeller casting was conducted and the results validated with porosity measurements on the test castings. A comparison of the predicted and measured microporosity distributions indicated an excellent correlation between experiments and prediction. The results of the experimental and modeling studies undertaken in this project indicate that the quality criteria developed for the prediction of microporosity in Al-4.5% Cu alloy castings can accurately predict regions of elevated microporosity even in complex castings such as the shrouded impeller casting. Accordingly, it should be possible to use quality criteria for porosity prediction in conjunction with computer models of heat and fluid flow to optimize the casting process for the production of shrouded impeller castings. Since high levels of microporosity may be expected to result in poor fatigue properties, casting designs that are optimized for low levels of microporosity should exhibit superior fatigue life.

  6. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  7. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  8. Pump CFD code validation tests

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.

    1993-01-01

    Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.

  9. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  10. Rotary magnetic heat pump

    SciTech Connect

    Kirol, L.D.; Mills, J.I.

    1984-08-01

    Magnetic heat pumps use the magnetocaloric effect to produce entropy changes necessary for heat pumping. A rotary magnetic heat pump has been analyzed and computer models have been developed. The contribution of viscous heat to the regenerator heat balance has been found to significantly restrict performance. The contribution of viscous heating is at least as important as the temperature differences required for regenerator heat transfer. Multiple magnet coils on a single rotor reduce the viscous work per field change cycle and result in greatly improved performance. Operation at 80% of Carnot efficiency with a heat pumping rate of 10 kW per kilogram of magnetic material is predicted.

  11. Emulsification of a very viscous liquid in water

    NASA Astrophysics Data System (ADS)

    Hernandez-Sanchez, J. F.; Zenit, R.; Homsy, G. M.

    2006-11-01

    Although emulsions are used widely, the process of emulsification is still largely based on empiricism. It is our interest to understand the basic mechanism that leads to breakage of a very viscous liquid in water. This particular case is of interest for the petroleum industry, as a means to transport and dispose of oil refining residues. Visualization experiments have been performed to investigate the mechanisms that lead to droplet formation in an ordinary mixing tank configuration. An impeller was immersed in a container with two unmixed immiscible liquids (water/silicon oil) that had a very large viscosity difference (1/30000). The rotational speed of the impeller was gradually increased up to Re 110,000 based on the properties of water, or Re 4, based on those of the oil. The dynamics of the system are, therefore, a combination of turbulent and creeping flows, a regime that has not been widely explored to date. As the rotational speed of the impeller increases the interface between the two liquids develops a curved cup-like shape. When the curved interface reaches the impeller blades, it becomes deformed, disrupted and, if the shear is strong enough, breaks. As a result of the breakage, long viscous filaments form which are stretched and further broken up by a combination of capillary instability and turbulent fluctuations. Visualization images and scaling arguments will be presented. This project is funded by the UC-MEXUS collaboration program.

  12. Axisymmetric supersonic flow in rotating impellers

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1952-01-01

    General equations are developed for isentropic, frictionless, axisymmetric flow in rotating impellers with blade thickness taken into account and with blade forces eliminated in favor of the blade-surface function. It is shown that the total energy of the gas relative to the rotating coordinate system is dependent on the stream function only, and that if the flow upstream of the impeller is vortex-free, a velocity potential exists which is a function of only the radial and axial distances in the impeller. The characteristic equations for supersonic flow are developed and used to investigate flows in several configurations in order to ascertain the effect of variations of the boundary conditions on the internal flow and the work input. Conditions varied are prerotation of the gas, blade turning rate, gas velocity at the blade tips, blade thickness, and sweep of the leading edge.

  13. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.

    PubMed

    Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J

    1996-06-01

    Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans. PMID:8817963

  14. The valvo-pump. An axial, nonpulsatile blood pump.

    PubMed

    Mitamura, Y; Yozu, R; Tanaka, T; Yamazaki, K

    1991-01-01

    The valvo-pump, an axial, nonpulsatile blood pump implanted at the heart valve position while preserving diseased heart muscle, has several advantages over an artificial heart replacement, including 1) a good anatomic fit to the natural heart, 2) less blood contacting surface, and 3) ease of implantation. The housing for the pump is a tube, 37 mm in diameter (maximum) and 33 mm in length. Within the housing there is an impeller with either 10 vanes (33 mm in diameter) or 5 vanes (22 mm in diameter). The impeller is connected to a samarium-cobalt-rare-earth magnet direct current (DC) brushless motor measuring 23.8 mm in diameter and 30.2 mm in length. Sealing is achieved by means of a magnetic fluid seal. A guiding wheel with 4 vanes is located behind the impeller. The pump was studied on a hydraulic mock circulatory system to evaluate its performance characteristics. A pump flow of 6.9 L/min was obtained at a pump differential pressure of 48 mmHg, and flow of 3.1 L/min was obtained at 58 mmHg. The valvo-pump can be made feasible by developing a small, high-output, power motor and an endurable seal, as well as by optimizing the impeller design. PMID:1751257

  15. Pump Design

    NASA Astrophysics Data System (ADS)

    1981-01-01

    A NASA handbook on a general purpose titanium alloy was used by Sundstrand Corporation in design calculation for casting titanium impellers. Information contributed substantially to improved impeller design.

  16. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  17. Investigations on Experimental Impellers for Axial Blowers

    NASA Technical Reports Server (NTRS)

    Encke, W.

    1947-01-01

    A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.

  18. Flow study on a newly developed impeller for a left ventricular assist device.

    PubMed

    Hsu, Cheung-Hwa

    2003-01-01

    Nowadays, left ventricular assist devices are usually designed as high-speed, electric, rotary blood pumps. The pump drains blood from the left ventricular apex via an inlet cannula and ejects into the aortic root via an outlet conduit. To develop a high-performance pump, the present study utilizes partial differential equations to generate a surface representation of the impeller of the blood pump. Flow analysis around the impeller is performed by using the finite volume method to solve the fully incompressible three-dimensional Navier-Stokes equations along with the k-epsilon turbulence model. The numerical results highlight flow features in the end-wall region of the pump, namely the clearance leakage cross-flow, and the vortex associated with this leakage. These secondary flows induce major energy losses in the pumping device. On the test study, a test loop was proposed to measure the performance characteristics. It was shown that the design would provide a flow rate of 4.4 l/min with a pressure head of 122 mmHg. The DC motor power under these conditions was about 6 W and the rotational speed was 4500 rpm. Both the flow rate and head can satisfy the demand for the left artificial heart to work normally. PMID:14598109

  19. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage blockage change without the need to define the region of blockage generation (which may incur a certain degree of arbitrariness). This method has been assessed for its applicability and utility.

  20. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  1. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  2. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124

  3. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  4. Liquid rocket propulsion impeller CFD modeling

    NASA Astrophysics Data System (ADS)

    Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.

    1993-06-01

    Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.

  5. Liquid rocket propulsion impeller CFD modeling

    NASA Technical Reports Server (NTRS)

    Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.

    1993-01-01

    Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.

  6. Method for Reducing Pumping Damage to Blood

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  7. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Steady and unsteady diffuser vane pressure measurements have been conducted with a two-dimensional test impeller, in an experimental investigation of rotor-stator interaction within a centrifugal pump having several vaned diffusers, under conditions of different flow coefficients and different radial gaps between the impeller blade trailing edge and the diffuser vane leading edge. The largest pressure fluctuations on the diffuser vanes and the impeller blades were found to be of the same order of magnitude as the total pressure rise across the pump. Increasing the number of diffuser vanes was found to result in a significant decrease of impeller blade pressure fluctuations.

  8. Optimization and analysis of centrifugal pump considering fluid-structure interaction.

    PubMed

    Zhang, Yu; Hu, Sanbao; Zhang, Yunqing; Chen, Liping

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  9. Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

    PubMed Central

    Hu, Sanbao

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  10. Dynamics of a high speed impeller - Analysis and experimental verification

    NASA Astrophysics Data System (ADS)

    Straub, F. K.; Ngo, H.; Silverthorn, L. J.; Ruopsa, J. A.

    1993-04-01

    Centrifugal compressors are used on numerous aircraft as an efficient and lightweight source of air. The impeller is the key compressor component, both from an aerodynamic and structural dynamics point of view. The present paper investigates the structural dynamics of the blades of a particular impeller, using analytical and experimental methods. Correlation of results show good agreement. The analytical model is then used for design studies to improve the fatigue life of the impeller blades.

  11. Engineering Aspects in Blood Pump Development

    NASA Technical Reports Server (NTRS)

    Golding, Leonard; Veres, Joseph P.

    1997-01-01

    NASA turbomachinery computer codes assisted in the design of the Cleveland Clinic Foundation's centrifugal bladed blood pump. The codes were originally developed for the aerospace industry, but are applicable to the blood pump because of a high degree of synergy with this application. Traditional turbomachinery design criteria were used in the design of the blood pump centrifugal impeller and volute casing. The fluid dynamic performance of the blood pump is meeting the engineering design goals of flow rate and pressure rise.

  12. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  13. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system. PMID:15554937

  14. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  15. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  16. Multiple discharge cylindrical pump collector

    DOEpatents

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  17. Optimization of integrated impeller mixer via radiotracer experiments.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Adnan, M A K

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization. PMID:24741344

  18. Optimization of Integrated Impeller Mixer via Radiotracer Experiments

    PubMed Central

    Othman, N.; Kamarudin, S. K.; Takriff, M. S.; Rosli, M. I.; Engku Chik, E. M. F.; Adnan, M. A. K.

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, Vdead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and Vdead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization. PMID:24741344

  19. Fault-tolerant strategies for an implantable centrifugal blood pump using a radially controlled magnetic bearing.

    PubMed

    Pai, Chi Nan; Shinshi, Tadahiko

    2011-10-01

    In our laboratory, an implantable centrifugal blood pump (CBP) with a two degrees-of-freedom radially controlled magnetic bearing (MB) to support the impeller without contact has been developed to assist the pumping function of the weakened heart ventricle. In order to maintain the function of the CBP after damage to the electromagnets (EMs) of the MB, fault-tolerant strategies for the CBP are proposed in this study. Using a redundant MB design, magnetic levitation of the impeller was maintained with damage to up to two out of a total of four EMs of the MB; with damage to three EMs, contact-free support of the impeller was achieved using hydrodynamic and electromagnetic forces; and with damage to all four EMs, the pump operating point, of 5 l/min against 100 mmHg, was achieved using the motor for rotation of the impeller, with contact between the impeller and the stator. PMID:21382738

  20. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  1. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  2. Detection and effects of pump low-flow operation

    SciTech Connect

    Casada, D.A.; Greene, R.H.

    1993-12-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation.

  3. Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham

    NASA Astrophysics Data System (ADS)

    Rahmani, Lakhdar; Seghier, O.; Draoui, B.; Benachour, E.

    2016-03-01

    A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P). The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.

  4. Gas-liquid dispersion with dual Rushton turbine impellers.

    PubMed

    Hudcova, V; Machon, V; Nienow, A W

    1989-08-20

    Aerated and unaerated power consumption and flow patterns in a 0.56 m diameter agitated vessel containing water with dual Rushton turbines have been studied. Under unaerated conditions with a liquid height-to-diameter ratio of 2, an impeller spacing of 2 to 3 times the impeller is required for each to draw an amount of power equal to a single impeller. For aerated conditions, if a similar spacing is used, equations for the flooding-loading transition and for power consumption for a single Rushton impeller can be extended relatively easily to dual systems. All results for this spacing are explained by reference to bulk flow patterns and gassed-filled cavity structures and the proportion of sparged gas flowing through the upper impeller is also estimated. Such a spacing is generally recommended since it maximizes the power draw and hence the potential for oxygen mass transfer. Data are presented for other spacings but the results do not fit in easily with single agitator studies because strong impeller-impeller flow pattern interactions occur. PMID:18588146

  5. The valvo-pump, an axial blood pump implanted at the heart valve position: concept and initial results.

    PubMed

    Yamazaki, K; Okamoto, E; Yamamoto, K; Mitamura, Y; Tanaka, T; Yozu, R

    1992-06-01

    The valvo-pump, an axial nonpulsatile blood pump implanted at the heart valve position, has been developed. The valvo-pump consists of an impeller and a motor, which are encased in a housing. An impeller with 5 vanes (22.0 mm in diameter) is used. The impeller is connected to a samarium-cobalt-rare earth magnet direct current (DC) brushless motor measuring 21.3 mm in diameter and 18.5 mm in length. Sealing is achieved by means of a ferrofluidic seal. A pump flow of 10.5 L/min was obtained at a pump differential pressure of 3.3 kPa (25 mm Hg), and a flow of 4.9 L/min was obtained at 7.0 kPa (53 mm Hg). Sealing was kept perfect against a pressure of 29.3 kPa (220 mm Hg) at 9,000 rpm. PMID:10078263

  6. Controlling granule size through breakage in a novel reverse-phase wet granulation process: the effect of impeller speed and binder liquid viscosity.

    PubMed

    Wade, J B; Martin, G P; Long, D F

    2015-01-30

    The feasibility of a novel reverse-phase wet granulation process has been established previously highlighting several potential advantages over the conventional wet granulation process and making recommendations for further development of the approach. The feasibility study showed that in the reverse-phase process granule formation proceeds via a controlled breakage mechanism. Consequently, the aim of the present study was to investigate the effect of impeller speeds and binder liquid viscosity on the size distribution and intragranular porosity of granules using this novel process. Impeller tip speed was found to have different effects on the granules produced by a conventional as opposed to a reverse-phase granulation process. For the conventional process, an increase in impeller speed from 1.57 to 3.14 ms(-1) had minimal effect on granule size distribution. However, a further increase in impeller tip speed to 3.93 and 4.71 ms(-1) resulted in a decrease in intragranular porosity and a corresponding increase in mean granule size. In contrast when the reverse-phase process was used, an increase in impeller speed from 1.57 to 4.71 ms(-1) resulted in increased granule breakage and a decrease in the mean granule size. This was postulated to be due to the fact that the granulation process begins with fully saturated pores. Under these conditions further consolidation of granules at increased impeller tip speeds is limited and rebound or breakage occurs. Based on these results and analysis of the modified capillary number the conventional process appears to be driven by viscous forces whereas the reverse-phase process appears to be driven by capillary forces. Additionally, in the reverse-phase process a critical impeller speed, represented by the equilibrium between centrifugal and gravitational forces, appears to represent the point above which breakage of large wet agglomerates and mechanical dispersion of binder liquid take place. In contrast the conventional process appears to be difficult to control due to variations in granule consolidation, which depends upon experimental variables. Such variations meant increased impeller tip speed both decreased and increased granule size. The reverse-phase process appears to offer simple control over granule porosity and size through manipulation of the impeller speed and further evaluation of the approach is warranted. PMID:25475017

  7. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations

    NASA Astrophysics Data System (ADS)

    Peng, G. J.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    The impeller and casing of dredge pump are worn by sediment in the flow. However, there are few studies about abrasion of the impeller and casing for normal pump operating conditions. This paper investigated the relationship between the wear rates on the surfaces of the impeller as well as casing and the sediment concentration, with the distribution of the wear rates for normal pump operating condition analyzed. An Eulerian-Lagrangian Computational Fluid Dynamics (CFD) procedure was used to simulate steady liquid-solid two-phase flow for various operating conditions. The Finnie model was then used to predict the abrasion. The results show that, the wear rate relative value of impeller and casing surface increase as the sediment concentration increases. The wear rate relative value of impeller and casing surface is larger when the pump is in low flow rate condition, and the value of casing surface is larger than that of the impeller. The wear rate relative value of pump is low when pump is in high efficiency condition. This paper shows the abrasion characteristics on the impeller and casing with sediment flow and provides reference data for predicting the abrasion conditions in the flow passage components for a dredge pump.

  8. Improved performance in viscous mycelial fermentations by agitator retrofitting.

    PubMed

    Buckland, B C; Gbewonyo, K; Dimasi, D; Hunt, G; Westerfield, G; Nienow, A W

    1988-05-01

    For viscous mycelial fermentations it was demonstrated at the pilot-plant scale that the replacement of standard radial flow Rushton turbines with larger diameter axial-flow Prochem hydrofoil impellers significantly improved oxygen transfer efficiency. It was also determined that the Streptomyces broth under evaluation is highly shear thinning. Separate experiments using a Norcardia broth with similar Theological properties demonstrated that the oxygen transfer coefficient, K(L)a, can be greatly increased by use of water additions to reduce broth viscosity. These observations are consistent with the hypothesis that the improvement in oxygen transfer by changing agitator types is primarily due to an improvement in bulk mixing. A model is presented, based on the concepts of Bajpai and Reuss, which explains this improvement in performance in terms of enlargement of the well mixed micromixer region for viscous mycelial broths. PMID:18584673

  9. Novel maglev pump with a combined magnetic bearing.

    PubMed

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device. PMID:15745134

  10. Computer code for analysing three-dimensional viscous flows in impeller passages and other duct geometries

    NASA Technical Reports Server (NTRS)

    Tatchell, D. G.

    1979-01-01

    A code, CATHY3/M, was prepared and demonstrated by application to a sample case. The preparation is reviewed, a summary of the capabilities and main features of the code is given, and the sample case results are discussed. Recommendations for future use and development of the code are provided.

  11. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  12. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  13. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  14. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    PubMed

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications. PMID:15644080

  15. Analysis of Viscous Micropumps and Microturbines

    NASA Astrophysics Data System (ADS)

    Decourtye, David; Sen, Mihir; Gad-El-Hak, Mohamed

    1997-11-01

    A numerical study of the three-dimensional viscous fluid flow in a novel pump/turbine device appropriate for microscale applications is performed. The device essentially consists of a rotating or free-to-rotate cylinder eccentrically placed in a channel, and is shown to be capable of generating a net flow against an externally imposed pressure gradient, or, conversely, generating a net torque in the presence of an externally imposed bulk flow. Full Navier-Stokes, finite-element simulations are carried out to study the influence of the width and other geometric as well as dynamic parameters, and the results are compared to our previous two-dimensional numerical and physical experiments. The three-dimensional simulations indicate a gradual decrease of the bulk velocity and pump performance as the two side walls become closer providing increased viscous resistance to the flow. However, effective pumping is still observed with extremely narrow channels. The utility of the device as a microturbine is also demonstrated for the first time in the present simulations. Particularly, the angular velocity of the rotor and the viscous torque are determined when a bulk velocity is imposed.

  16. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  17. Calculation and optimization of parameters in low-flow pumps

    NASA Astrophysics Data System (ADS)

    Kraeva, E. M.; Masich, I. S.

    2016-04-01

    The materials on balance tests of high-speed centrifugal pumps with low flow rate are presented. On the bases of analysis and research synthesis, we demonstrate the rational use of impellers of semi-open and open types providing high values for energy parameters of feed system of low-flow pumps.

  18. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    NASA Astrophysics Data System (ADS)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  19. The margin of safety in the use of a straight path centrifugal blood pump.

    PubMed

    Kijima, T; Nojiri, C; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Ogihara, M; Katsuda, H S; Amano, N; Fukasawa, H

    1994-09-01

    A new centrifugal blood pump with a rotor that arranges 6 straight paths radially was developed for open heart surgery and temporary circulatory support. We describe comparative studies of the margin of safety in the practical use of the new pump. This pump was evaluated for temperature increase, cavitation, and pressure sensitivity. Two commercially available centrifugal pumps, the Biomedicus cone type and the Sarns 3M impeller type, were used as control pumps. The temperature increase in the new pump was four times slower than in the impeller pump when the outlet and the inlet of the pump was clamped. No sign of cavitation was observed when 0.1 ml air was introduced to the pump inlet under a negative pressure of 200 mm Hg in fresh bovine blood. As for pressure sensitivity of centrifugal pumps in practical applications, circuit resistance was a more essential factor than flow-pressure curves of the pump. PMID:7998886

  20. Integrable viscous conservation laws

    NASA Astrophysics Data System (ADS)

    Arsie, Alessandro; Lorenzoni, Paolo; Moro, Antonio

    2015-06-01

    We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named the viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlevé I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe.

  1. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  2. Dependence of mycelial morphology on impeller type and agitation intensity.

    PubMed

    Jüsten, P; Paul, G C; Nienow, A W; Thomas, C R

    1996-12-20

    The influence of the agitation conditions on the morphology of Penicillium chrysogenum (freely dispersed and aggregated forms) was examined using radial (Rushton turbines and paddles), axial (pitched blades, propeller, and Prochem Maxflow T), and counterflow impellers (Intermig). Culture broth was taken from a continuous fermentation at steady state and was agitated for 30 min in an ungassed vessel of 1.4-L working volume. The power inputs per unit volume of liquid in the tank, P/V(L), ranged from 0.6 to 6 kW/m(3). Image analysis was used to measure mycelial morphology. To characterize the intensity of the damage caused by different impellers, the mean total hyphal length (freely dispersed form) and the mean projected area (all dispersed types, i.e., also including aggregates) were used. [In this study, breakage of aggregates was taken into account quantitatively for the first time.]At 1.4-L scale and a given P/V(L), changes in the morphology depended significantly on the impeller geometry. However, the morphological data (obtained with different geometries and various P/V(L)) could be correlated on the basis of equal tip speed and two other, less simple, mixing parameters. One is based on the specific energy dissipation rate in the impeller region, which is simply related to P/V(L) and particular impeller geometrical parameters. The other which is developed in this study is based on a combination of the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. For convenience, the function arising from this concept is called the "energy dissipation/circulation" function.To test the broader validity of these correlations, scale-up experiments were carried out in mixing tanks of 1.4, 20, and 180 L using a Rushton turbine and broth from a fed-batch fermentation. The energy dissipation/circulation function was a reasonable correlating parameter for hyphal damage over this range of scales, whereas tip speed, P/V(L), and specific energy dissipation rate in the impeller region were poor. Two forms of the energy dissipation/circulation function were considered, one of which additionally allowed for the numbers of vortices behind the blades of each impeller type. Although both forms were successful at correlating the data for the standard impeller designs considered here, there was preliminary evidence that allowing for the vortices would be valuable. (c) 1996 John Wiley & Sons, Inc. PMID:18629946

  3. Centrifugal Pumps for Swimming Pools. National Sanitation Foundation Standard Number 17.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Committee for Swimming Pool Equipment Standards.

    The pumps discussed herein are intended to be used for recirculating water in swimming pools, both public and private. Included are the basic components which may be a part of a pump such as the housing, strainer, impeller, valves, and such other parts as are attached or a part of the pump as supplied by the manufacturer. This standard is intended…

  4. Fluid pumping apparatus

    DOEpatents

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  5. Design optimization for a shaft-less double suction mini turbo pump

    NASA Astrophysics Data System (ADS)

    Zhuang, B.; Luo, X.; Zhang, Y.; Wang, X.; Xu, H.; Nishi, M.

    2010-08-01

    In order to further satisfy the operation needs for social applications, a shaft-less double suction mini turbo pump with outer impeller diameter of 24 mm and specific speed of 188 min-1·m3min-1·m has been designed. In order to simulate the three dimensional steady turbulent flow in the mini pump so as to improve the pump impeller design, RANS equations and k-ω SST turbulence model are used. Based on the detailed analysis of the internal flow in the pump, six new impellers have been designed to investigate the effects of impeller parameters on the performance of the mini pump. Based on those results, the following conclusions are drawn: (1) For the double-suction shaft-less mini turbo pump, the averaged wall shear stress has very low level and the maximum hydraulic efficiency is larger than 80%. Those favourable features must be related to the symmetric suction design of the mini pump; (2) Large vane angle at the trailing edge is suitable for a mini turbo pump in many applications so as to obtain higher head and smaller impeller size. On the other hand, the impellers with β1=90° may result in large wall shear stress at the vane leading edge at small flow rate; (3) Because the radial impeller is much convenient for manufacture and creates much larger head, it is preferable for a mini turbo pump if the wall shear stress can be controlled within the acceptable range due to further design optimization.

  6. A seal-less centrifugal pump (Baylor Gyro Pump) for application to long-term circulatory support.

    PubMed

    Minato, N; Sakuma, I; Sasaki, T; Shiono, M; Ohara, Y; Takatani, S; Noon, G P; Nosé, Y

    1993-01-01

    We are developing a new centrifugal pump, the Baylor Gyro Centrifugal Pump (Gyro Pump), which can function for more than 2 weeks. The concept of the Gyro Pump is that a one-piece rotor-impeller with embedded permanent magnets, driven directly by a brushless direct current motor stator placed outside, rotates like a "gyroscope," and the rotor-impeller is supported by one pivot bearing at the bottom in accordance with the gyroscopic principle. This concept enables us to eliminate a driving shaft and a seal between the driving shaft and the blood chamber, which results in extending the life of the centrifugal pump. The blood passes through the space between the motor stator and the rotor to the impeller portion. In this preliminary phase, two pivot bearings were applied to support the rotor-impeller at the top and the bottom inside the blood chamber. Both pivot bearings showed less blood trauma and less thrombogenicity in in vitro and in vivo studies. The Gyro Pump is a promising second-generation centrifugal pump for long-term circulatory support in the near future. PMID:8422233

  7. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  8. Computational fluid dynamic design of rocket engine pump components

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-07-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  9. Numerical simulation of impeller-volute interaction in centrifugal compressors

    SciTech Connect

    Hillewaert, K.; Van den Braembussche, R.A.

    1999-07-01

    A numerical procedure to predict the impeller-volute interaction in a single-stage centrifugal compressor is presented. The method couples a three-dimensional unsteady flow calculation in the impeller with a three-dimensional time-averaged flow calculation in the volute through an iterative updating of the boundary conditions on the interface of both calculation domains. The method has been used to calculate the flow in a compressor with an external volute at off-design operation. Computed circumferential variations of flow angles, total temperature, and pressure are shown and compared with measurements. The good agreement between the predictions and measurements confirms the validity of the approach.

  10. Rotating Instability of a Centrifugal Compressor with 2-Dimensional Impeller

    NASA Astrophysics Data System (ADS)

    Kang, Kyung Jun; Shin, You Hwan; Kim, Kwang Ho

    2010-06-01

    This study investigated on details of flow characteristics of a compressor with 2-dimensional impeller at various flow rates. Experiment for a low speed compressor model in a water reservoir was performed to analyze the flow field in the vaneless diffuser and volute casing, which was done by PIV measurement. It was also focused on the periodic flow patterns occurring at low flow rate near unstable operating region of the compressor. At low flow rate condition, the flow visualization clearly shows that the flow energy from impeller is highly accumulated at the compressor exit by the blockage effect of a flow damper and consequently the reverse flow occurs in the diffuser.

  11. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  12. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    NASA Astrophysics Data System (ADS)

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  13. Numerical simulation of pump-intake vortices

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  14. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.

    PubMed

    Ungerman, Andrew J; Heindel, Theodore J

    2007-01-01

    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding. PMID:17326659

  15. Analysis of the performances of an axial flow tandem pump based on CFD computations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Bai, Z. Y.; Zhang, M. D.; Wang, G. Y.

    2012-11-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Significant reduction of the axial geometry scale, resulting from lack of guide vanes, makes great sense to high-speed propulsion. Direct interactions between front and rear impellers may lead to special flows, which are different from those in a multistage pump. There are few studies of these differences. In this article, CFD computations of flows in an axial flow tandem pump are conducted to predict the performances. FBM turbulence model, which is introduced to commercial software, is used for the simulations. Circulation coefficient is defined to help analyze energy characteristics. The results demonstrate that power of the tandem pump increases slowly as discharge is getting larger. The tandem pump has better adaptability under large discharge conditions. The head of the rear impeller is not sensitive to discharge's change, which results from that the front impeller weakens the influence of discharge's change on the rear impeller, so pump's energy characteristics may be improved.

  16. The effect of gas fraction on centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  17. A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics

    PubMed Central

    Hu, Jinfei; Tse, Peter W.

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  18. A relevance vector machine-based approach with application to oil sand pump prognostics.

    PubMed

    Hu, Jinfei; Tse, Peter W

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  19. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  20. Resilient shaft mounting for pump

    SciTech Connect

    Valentine, W.

    1990-06-12

    This patent describes a pump. It comprises: a tube having a centrifugal pump mounted on an upper end thereof, the centrifugal pump having an inlet coaxial with the tube, an outlet disposed radially and an impeller rotatable in a housing to pump a liquid; at least one propeller disposed in the tube below the centrifugal pump, the propeller being rotatable to draw fluid upwardly in the tube; a shaft connecting the impeller of the centrifugal with the propeller in the tube; at least one triangular support for the shaft, having three resilient planar plates dimensioned to be bowed inwardly in the tube and enclosing the shaft. The plates are discrete sections, each having ends disposed against an inner surface of the tube and against an adjoining one of the plates, an intermediate portion of each of the plates resiliently bearing inwardly toward the shaft; and, a resilient bushing disposed between the plates and the shaft, the resilient bushing being a round tube deformed into a triangular shape by pressure of the plates; whereby the shaft is supported coaxially in the tube.

  1. Analysis of novel low specific speed pump designs

    NASA Astrophysics Data System (ADS)

    Klas, R.; Pochylý, F.; Rudolf, P.

    2014-03-01

    Centrifugal pumps with very low specific speed present significant design challenges. Narrow blade channels, large surface area of hub and shroud discs relative to the blade area, and the presence of significant of blade channel vortices are typical features linked with the difficulty to achieve head and efficiency requirements for such designs. This paper presents an investigation of two novel designs of very low specific speed impellers: impeller having blades with very thick trailing edges and impeller with thick trailing edges and recirculating channels, which are bored along the impeller circumference. Numerical simulations and experimental measurements were used to study the flow dynamics of those new designs. It was shown that thick trailing edges suppress local eddies in the blade channels and decrease energy dissipation due to excessive swirling. Furthermore the recirculating channels will increase the circumferential velocity component on impeller outlet thus increasing the specific energy, albeit adversely affecting the hydraulic efficiency. Analysis of the energy dissipation in the volute showed that the number of the recirculating channels, their geometry and location, all have significant impact on the magnitude of dissipated energy and its distribution which in turn influences the shape of the head curve and the stability of the pump operation. Energy dissipation within whole pump interior (blade channels, volute, rotor- stator gaps) was also studied.

  2. Research on design multi-points performance curves of pump

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Xu, D. H.

    2012-11-01

    The centrifugal pump's performance curves are the most important chart to reveal relevance of different performance parameters. They can show pump's function comprehensively and graphically. However these curves can't be predicted and designed precisely, duo to the complicated flow inside the impeller and the incomplete way to design pump. The complete shape of performance curves can be gained only after test. With the development of industry, many applications need the pump operating well at different flow conditions. It means the pump's performance curves should pass some specific points. This is a problem to the designer who still uses the traditional way to design pumps. In this paper, the Design of experiments was applied to arrange a plan of experiments. Because the theory equations of performance curves contain many geometry factors of impeller, changing these factors have different influence on the shape of curves, the relationship between geometry factors and the performance under different operation points been attained after using variance analysis to deal with experiment data. The relevant regression models and graphs were drawn to help understand these relationships. Depending on the predicted values of geometry factors pump's impeller was redesigned, and the pump's performance been simulated for saving time and cost. Test shows that the shape of performance curves satisfy design objective, this example can be taken as a reference of pump's specific designs.

  3. Transformation of vibration signals in rotary blood pumps: the diagnostic potential of pump failure.

    PubMed

    Kawahito, Koji

    2013-09-01

    Although non-destructive and continuous monitoring is indispensable for long-term circulatory support with rotary blood pumps, a practical monitoring system has not yet been developed. The objective of this study was to investigate the possibility of detecting pump failure caused by thrombus formation through the monitoring of vibration signals. The data acquisition equipment included vibration pickups, a charge amplifier, vibration analysis systems, and exclusive hardware. A pivot-bearing centrifugal pump with a mock circuit was investigated for vibration analysis. To simulate the four common areas of thrombus formation, we used a piece of silicon attached to each of the following four locations: the total area of the bottom of the impeller, an eccentric shape on the bottom of the impeller, a circular shape around the shaft top, and an eccentric shape on the top of the impeller. Vibration signals were picked up, and the power spectrum density analysis was performed at pump rotational speeds of 2100, 2400, and 3000 rpm. In this study, pump failure could be detected, and the types of imitation thrombi could be determined. We conclude that vibration detection with a computerized analysis system is a potentially valuable diagnostic tool for long-term circulatory support with rotary blood pumps. PMID:23625149

  4. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings. PMID:16183322

  5. Magnetically suspended centrifugal blood pump with a radial magnetic driver.

    PubMed

    Hoshi, Hideo; Katakoa, Kiroyuki; Ohuchi, Katsuhiro; Asama, Jun-ichi; Shinshi, Tadahiko; Shimokohbe, Akira; Takatani, Setsuo

    2005-01-01

    A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the two gap sensor signals. The magnetic bearing was assembled into a centrifugal rotary blood pump (CRBP) driven with a radial, magnetic coupled driver. The impeller vane shape was designed based upon the computational fluid dynamic simulation. The diameter and height of the CRBP were 75 mm and 50 mm, respectively. The magnetic bearing system required the power of 1.0-1.4 W. The radial impeller movement was controlled to within +/- 10 microm. High stiffness in the noncontrolled axes, Z, phi, and theta, was obtained by the passive magnetic forces. The pump flow of 5 L/min against 100 mm Hg head pressure was obtained at 1,800 rpm with the electrical to hydraulic efficiency being greater than 15%. The Normalized Index of Hemolysis (NIH) of the magnetic bearing CRBP was one fifth of the BioPump BP-80 and one half of the NIKKISO HPM-15 after 4 hours. The newly designed magnetic bearing with two degrees of freedom control in combination with optimized impeller vane was successful in achieving an excellent hemolytic performance in comparison with the clinical centrifugal blood pumps. PMID:15745136

  6. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  7. VISCOUS CHARACTERICTICS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1994-01-01

    Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.

  8. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  9. Effect of fluid forces on rotor stability of centrifugal compressors and pumps

    NASA Technical Reports Server (NTRS)

    Colding-Jorgensen, J.

    1980-01-01

    A simple two dimensional model for calculating the rotordynamic effects of the impeller force in centrifugal compressors and pumps is presented. It is based on potential flow theory with singularities. Equivalent stiffness and damping coefficients are calculated for a machine with a vaneless volute formed as a logarithmic spiral. It is shown that for certain operating conditions, the impeller force has a destablizing effect on the rotor.

  10. A Method to Determine the Slip Factor of Centrifugal Pumps through Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Xiao, Jun-Jian

    2015-04-01

    In this paper, a method to determine the slip factor of centrifugal impellers is proposed based on the experimental result of the external performance of centrifugal pumps. This proposed method is superior to the conventional experimental method, which needs not to measure the flow parameters at impeller outlet. The results show that the present method can be used to obtain the slip factor at offdesign condition in a wide range of flow rate besides at the design point.

  11. Causes and cures of a localized cavitation problem in a double-suction centrifugal pump

    SciTech Connect

    Shen, F.T.

    1994-12-31

    A case history of trouble shooting a localized cavitation problem in a 1000hp circulation water use double-suction centrifugal pump is presented. This paper describes a combined experimental and analytical approach that lead to find out the correct causes and cures of the severe impeller blade pitting problem. From practical and economical considerations, upgrading the material of impeller is the best measure to minimize the damage.

  12. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  13. Raft river geothermal pump disassembly and inspection

    SciTech Connect

    Van Treeck, R.

    1983-02-01

    The disassembly and postoperation inspection of the Peerless geothermal water pump used in teh RRGE-1 well at the Raft River Geothermal Test Site are summarized. Disassembly was hampered by scale that froze some of the pump bearings onto the impeller shaft after operation ceased. The pump appeared otherwise in generally excellent condition after more than 1600 h running time in a geothermal environment. Most postoperation diameters of rotating parts were still within factory tolerance. The few out-of-tolerance bearing diameters could not be attributed to wear and could have been out of tolerance when received. This possibility points to a need for preoperation quality-control inspection of the bearings.

  14. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  15. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  16. Development of the hydrotransport boost pump. Open file report September 1981-December 1984

    SciTech Connect

    Rubin, L.S.; Cardenas, R.L.; Burnette, M.; Roberge, J.; Harvey, A.

    1984-12-31

    A ventilated helical boost pump was developed that can handle varying flow rates and/or solids concentrations while operating at a single rotational speed and without computer assisted feedback controls. The boost pump developed and briefly tested during this program was designed to accomodate flows suitable for a 3-in-diam pipeline. The boost pump's ventilated design provides the automatic pressure regulation needed to meet the system's requirements for supporting transient pipeline flow. A maximum discharge pressure of 120 psi was achieved at an operating speed of 3,000 rpm. The boost pump efficiency at maximum discharge pressure was 65 pct. Coal flow rates of up to 1,000 lb/min were successfully processed with a nonshrouded single vane impeller. Further redesign is required to develop a shrouded impeller that can be combined with stationary wear rings to minimize impeller wear.

  17. Laser cleaning of sulfide scale on compressor impeller blade

    NASA Astrophysics Data System (ADS)

    Tang, Q. H.; Zhou, D.; Wang, Y. L.; Liu, G. F.

    2015-11-01

    Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  18. Soft-iron impellers in the Madison Sodium Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, Mark; Clark, M. M.; Forest, C. B.; Plihon, N.

    2014-10-01

    In an attempt to increase the magnetic flux amplification of the two-vortex flow in the Madison Sodium Dynamo Experiment, the stainless steel impellers were replaced with soft-iron disks similar in design to the VKS dynamo experiment. Past attempts at creating a homogeneous dynamo in the Madison Sodium Dynamo Experiment relied on stainless steel impellers to drive a two-vortex flow predicted to be unstable to dynamo excitation. The resulting induction process was much weaker than laminar predictions due to the turbulent enhancement of the resistivity. The measured amplification and pulse-decay times with the soft-iron disks show an improvement in the flux amplification, but not sufficient for self-excitation. Despite the similarities in the impeller design with the VKS experiment, the differences in geometry still play a significant role in determining the threshold conditions for dynamo action. This work is supported by the DOE, NSF, the Center for Magnetic Self-Organization, and a CNRS travel grant.

  19. Advanced direct-design procedure for centrifugal impellers

    NASA Astrophysics Data System (ADS)

    Al-Zubaidy, Sarum N. J.

    1993-02-01

    The design of centrifugal impellers usually starts with a preliminary design making use of one-dimensional flow analysis thus enabling the skeletal dimensions of the impeller to be determined. This is followed by a detailed design that requires the complete description of the three-dimensional geometry which is subsequently modified by means of successive aerodynamic analysis (indirect approach). The initial description of the blade geometry relies heavily on the experience and the engineering judgement of the designer. This article will present a method that will replace this arbitrary stage of the design sequence by a design procedure that will effectively generate the three-dimensional coordinate of impellers designed for a prescribed velocity schedule (direct-design approach). The study suggests that the degree of blade wrapping could - and was controlled by - adjusting the magnitude and the distribution characteristics of the relative pressure loading parameter. The leaning of the mean streamline forward is caused by increasing the loading distribution while a background lean is achieved by decreasing the blade loading. The rate at which the radial relative velocity accelerates was used to eliminate undesirable blade curvatures during the design procedure.

  20. Research on energy conversion mechanism of a screw centrifugal pump under the water

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Su, Q. M.; Han, W.; Cheng, X. R.; Shen, Z. J.

    2013-12-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase.

  1. [Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].

    PubMed

    Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan

    2004-02-01

    A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation. PMID:15022483

  2. Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools

    NASA Astrophysics Data System (ADS)

    Asuaje, Miguel; Bakir, Farid; Kouidri, Smane; Rey, Robert

    2004-02-01

    A process that enables us to improve the design of 2D centrifugal and helico-centrifugal pumps is presented. First of all, the definition of the impeller geometry as well as the analysis of its global performances are carried out starting from the mean streamline method (1D), based at the same time on ideal models and experimental correlations. A second stage of optimisation is achieved from a quasi three-dimensional (Q3D) method, by studying the meridional flow and blade-to-blade flow. Finally, 3D flow solution is performed by CFD tools. Nowadays, we have a group of tools which help the designers improve the performance of new machines. These digital tools are built around two computer programs, HELIOX developed for design and performance analysis in any centrifugal and mixed flow pumps equipped with volute or deswirl vanes, and also the module REMIX that gathers the meridional flow analysis and the simplified blade-to-blade one. To validate this procedure, a centrifugal machine with a volute (NS32) was modified and studied with it, and the results were simultaneously compared with the previous trial runs and with the software CFX-BladeGEN+ and CFX-TASCflow. The results for a machine equipped with a deswirl (VM51) are also presented.

  3. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.

    PubMed

    Sakuma, I; Fukui, Y; Dohi, T

    1996-06-01

    Four pump models with different vane configurations were evaluated with flow visualization techniques using a high-speed video camera. These models also were evaluated through in vivo hemolysis tests using bovine blood. The impeller having the greatest fluid velocity relative to the impeller, the largest velocity variance, and the most irregular local flow patterns in the flow passage caused the most hemolysis. Even if the pumps were operated at almost the same speed (rpm) at the same output, the impeller showing more irregular flow patterns had a statistically greater rate of hemolysis. This fact confirms that the existence of local irregular flow patterns in a centrifugal blood pump deteriorates its hemolytic performance. Thus, to optimize the design of the pump, it is very important to examine the secondary flow patterns in the centrifugal blood pump in detail using flow visualization with a high-speed video camera. PMID:8817952

  4. Parametric performance evaluation of a hydraulic centrifugal pump

    NASA Astrophysics Data System (ADS)

    Heo, M. W.; Y Kim, K.; Ma, S. B.; Yoo, I. S.; Choi, W. C.; Kim, J. H.; Choi, Y. S.

    2014-03-01

    Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump.

  5. Inlet and outlet devices for rotary blood pumps.

    PubMed

    Song, Xinwei; Wood, Houston G; Allaire, Paul E; Antaki, James F; Olsen, Don B

    2004-10-01

    The purposes of inlet and outlet devices for rotary blood pumps, including inducers and diffusers for axial pumps, inlet and exit volutes for centrifugal pumps, and inlet and outlet cannulas, are to guide the blood into the impeller, where the blood is accelerated, and to convert the high kinetic energy into pressure after the impeller discharge, respectively. The designs of the inlet and outlet devices have an important bearing on the pump performance. Their designs are highly dependent on computational fluid dynamics (CFD) analysis, guided by intuition and experience. For inlet devices, the design objectives are to eliminate separated flow, to minimize recirculation, and to equalize the radial components of velocity. For outlet devices, the design goals are to reduce speed, to minimize energy loss, and to avoid flow separation and whirl. CFD analyses indicate the velocity field and pressure distribution. Geometrical optimization of these components has been implemented in order to improve the flow pattern. PMID:15384997

  6. Backswept impeller and vane island diffuser and shroud for NASA advanced-concepts compressor test rig

    NASA Technical Reports Server (NTRS)

    Perrone, G. L.; Holbrook, M. R.; Mcvaugh, J. M.

    1973-01-01

    A centrifugal impeller based on an existing backswept design was defined. In addition, a vaned diffuser was designed to match this impeller and also to be compatible with an existing 6:1 compressor test rig. The mechanical integrity of this design was verified by analysis. Hardware was procured and inspected to insure conformity with design tolerances. An overspeed test was successfully conducted on one of the impellers fabricated under this program.

  7. Study on the performance deterioration of mixed flow impeller due to change in tip clearance

    NASA Astrophysics Data System (ADS)

    Ramesh Rajakumar, D.; Ramamurthy, S.; Govardhan, M.

    2013-12-01

    Performance of mixed flow compressor with un-shrouded impeller strongly depends upon unsteady, asymmetrical flow fields in the axial directions. The flow through the mixed flow impeller is complex due to three-dimensional nature of geometry. In mixed flow impeller, there are clearances between the rotating impeller blades and the casing as the high pressure ratio compressors are usually open shrouded impellers. As a result, certain amount of reduction in the performance is unavoidable due to clearance flows. In the present investigations, numerical analysis is performed using a commercial code to investigate tip clearance effects on through flow. The performance of mixed flow impeller with four different clearances between impeller and stationary shroud are evaluated and compared with experimental results. The impeller performance map was obtained for different operating speeds and mass flow rates with different tip clearances. The result shows that the tip leakage flow strongly interacts with mainstream and contributes to total pressure loss and performance reduction. The pressure and performance decrement are approximately linearly proportional to the gap between impeller and stationary shroud. The analysis showed scope for improvement in design of the compressor for better performance in terms of efficiency and operating range.

  8. Seal cooling for plastic pumps

    SciTech Connect

    Raab, A.

    1988-05-24

    In a centrifugal pump having a thermally non-conductive plastic pump body, a rotatable impeller mounted on a rotatable drive shaft, and a mechanical seal between the pump body and the drive shaft separating a dry zone from a wet zone and comprising a rotatable seal member and a non-rotatable seal member, a cooling arrangement for the mechanical seal is described comprising: a thin metal thermally conductive stamping, cup shaped in configuration, and a retaining member positioned between the stamping and the non-rotatable seal member sufficiently thin so as to transfer heat from the non-rotatable seal member to the stamping. The stamping is thermally connected to the mechanical seal and operates as a heat sink and radiator to dissipate the heat buildup of the seal into the dry zone by radiation cooling.

  9. Bouncing cosmologies with viscous fluids

    NASA Astrophysics Data System (ADS)

    Singh, T.; Chaubey, R.; Singh, Ashutosh

    2016-03-01

    The bounce in viscous fluid cosmology with inhomogeneous viscous fluids in Friedman-Robertson-Walker (FRW) space-time has been investigated. Different forms for the scale factor have been considered. The general features of the fluids which realize them and the possibility to have an acceleration after the bounce have been discussed.

  10. Skylab viscous damper study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.

  11. Viscous sludge sample collector

    DOEpatents

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  12. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    NASA Astrophysics Data System (ADS)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  13. An experimental study of a small high speed LH2 rocket pump: Fundamental mechanical design

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masataka; Suzuki, Mineo; Shimura, Takashi; Watanabe, Mitsuo; Kamijo, Kenjiro; Nosaka, Masataka; Warashina, Shougo

    1991-09-01

    A small high speed Liquid Hydrogen (LH2) pump was designed, fabricated, and tested in order to obtain technical data necessary for the development of upper stage rocket engines, e.g., the LE-5 and Orbiter Transfer Vehicle (OTV) engines. The pump's basic mechanical design is described, as well as its mechanical performance during tests using LH2 (both at nominal operating and rapid start and stop conditions). It was confirmed that the same materials employed for liquid oxygen pump components can be used, except for the impeller. An impeller made of titanium alloy (Ti-5Al-2.5Sn) was machined and then diffusion bonded, and subsequently withstood a high speed operating condition (50,000 rpm) for 350 sec. A balance piston configuration was selected for axial thrust control, where the impeller acts as a balance disk. The piston's performance was satisfactory, although the impeller's balance position during the tests was different from design calculations. Post-test examinations revealed light rubbing traces on the impeller and casing at the balance piston orifice. This positional discrepancy was caused by an inaccurate estimate of the orifice flow coefficients and leakage flow rate. Stress analysis on other components and machine specifications for critical mating parts were also verified as satisfactory. Self lubricated ball bearings and rotating shaft seals showed adequate performance. Results indicate that smooth operation was achieved, thus confirming the soundness of the pump's mechanical design.

  14. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear. PMID:17343698

  15. Numerical Research on Flow Characteristics of Vortex Stage in Dry High Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Gu, Xiao-guang; Ba, De-chun; Li, Pei-yin; Du, Guang-yu; Yue, Xiang-ji; Yang, Naiheng

    With the development of dry high vacuum pump, researches of pumping mechanism of vortex-stage are greatly concerned. This paper presents a horizontal dry high vacuum pump and establishes a numerical model of vortex stage. And then numerical simulation of flow is carried out with FLUENT software. Moreover, it studies how flow regions work on the internal flow and work performance of the vortex stage under various conditions, such as different number of blades and impeller with different blade rake. As a result, numerical simulation shows that there is a large impact on the pumping for different numbers of blades distributed on the impeller, the number of blades of single impeller should be obtained by combining with practical design sizes. In fact, this paper selects the best number of blades as forty-three by calculating and optimizing. In the mean time, there are three cases for the blade rake: pitched vanes, radial vanes and retroverted vanes. For each case, there are both longitudinal vortex and radial vortex existing in the impeller. Considering comprehensively, impeller with radial vanes is selected in the design after simulation and comparisons.

  16. The optimization of a low specific speed pipeline pump

    NASA Astrophysics Data System (ADS)

    Zhao, A.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    A low specific speed pipeline pump is researched to improve work performance through several certain modifications. The target is to raise the pump's head up to 80m and increase its total efficiency to 26.5% when the volume flow rate is 6.3m3/h with a rotatory speed of 2960rpm. CFD Numerical simulation is employed to predict the hydraulic performance of the pump. The volute is redesigned and splitters are imported to change the structure of the impeller. A lot of factors are taken into account, for instance number of vanes, forms of vanes, width of the volute, shape of volute's cross section, etc. These transformations ameliorate the distribution of pressure and velocity in the impeller and volute that finally increase the pump's hydraulic efficiency. The impeller trim has also been made according to the affinity law to fatherly decrease the disc friction which causes pump's mechanical loss and then achieves the optimization goal finally. It is a practical case in low specific speed pump's optimization and conclusions given at the end may be experience in the design of this sort of device.

  17. Arbitrary surface flank milling of fan, compressor, and impeller blades

    SciTech Connect

    Wu, C.Y.

    1995-07-01

    It is generally conceived that a blade surface is flank millable if it can be closely approximated by a ruled surface; otherwise the slow machining process of point milling has to be employed. However, the authors have now demonstrated that the ruled surface criterion for flank milling is neither necessary nor sufficient. Furthermore, many complex arbitrary surfaces typical of the blades in fans, axial compressors, and centrifugal impellers in aviation gas turbines are actually closely flank millable and can be rendered exactly flank millable with one or more passes per surface often without sacrificing, indeed usually with gain, in performance.

  18. Numerical simulation of 3D turbulent flow through an entire stage in a multistage centrifugal pump

    NASA Astrophysics Data System (ADS)

    Huang, Si; Islam, Mohammed F.; Liu, Pengfei

    2006-06-01

    A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k ? turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in asymmetric and unsteady flow field. There is a considerable interference on the velocity field at the impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3D computational flow field. The current computation is verified by comparing predicted and measured head.

  19. Interaction effects on the unstable discharge-energy characteristic of pump-turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Tao, R.; Xiao, R. F.; Yang, W.; Liu, W. C.

    2013-12-01

    For a pump-turbine, unstable discharge-energy characteristic is an important factor for operating stability. In this study, the rotor-stator interaction effects on the pump-turbine which has the unstable discharge-energy characteristic has been studied. A series of transient CFD simulations under different discharge conditions have been conducted. Through the contrast between the simulations and experiments, it is found out that the energy decline is strongly affected by the flow loss in the adjustable vane. More importantly, the magnitude and direction of fluid flowing into the adjustable vane are varying with the impeller rotating. Disordered flow structure occurs in the adjustable vane and causes the energy losses due to the interaction effects. Based on this study, improvements on the flow uniformity at impeller outlet will help us to solve the unstable discharge-energy problem.

  20. Split driveshaft pump for hazardous fluids

    DOEpatents

    Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  1. Concrete volute pumps: technology review and improvement

    NASA Astrophysics Data System (ADS)

    Prunires, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  2. Fluid mixing from viscous fingering

    NASA Astrophysics Data System (ADS)

    Jha, B.; Cueto-Felgueroso, L.; Juanes, R.

    2010-12-01

    We characterize the evolution of the degree of mixing between two fluids of different viscosity using numerical simulation and analysis. It is well known that when a less viscous fluid displaces a more viscous fluid, the displacement front is unstable and leads to the formation of a pattern known as viscous fingering. We show that viscous fingering leads to two competing effects. On one hand, it enhances mixing by inducing disorder in the velocity field, and increasing the interfacial area between the fluids. On the other, it causes channeling of the low viscosity fluid, which bypasses large areas of the flow domain - these regions remain unswept thereby reducing the overall mixing efficiency. This competition between creation of fluid-fluid interfacial area and channeling results in nontrivial mixing behavior. We develop a two-equation dynamic model for concentration variance and mean dissipation rate to quantify the degree of mixing in a viscously unstable displacement. The model reproduces accurately the evolution of these two quantities as observed in high-resolution numerical simulations. It also provides a measure of effective diffusivity due to convective and diffusive mixing processes. We then use our analysis to predict the range of viscosity contrast that maximizes mixing by maximizing the interfacial area. Interesting fingering patterns such as channeling and tip-splitting play an important role in this balancing act which makes degree of mixing a non-monotonic function of the viscosity contrast and the Peclet number. Snapshot from viscous fingering simulation for mobility ratio M = 33 and Peclet number Pe = 8000. Fingering creates additional interfacial area that accelerates the diffusive mixing process. Snapshots from viscous fingering simulation in a blobs setup (blobs of less viscous fluid inside a more viscous medium). Mobility ratio = 20 and Peclet number = 10000. Notice the development of channels at late times slows down mixing across the domain.

  3. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    NASA Astrophysics Data System (ADS)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  4. Constraining relativistic viscous hydrodynamical evolution

    SciTech Connect

    Martinez, Mauricio; Strickland, Michael

    2009-04-15

    We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.

  5. Trailing edge noise reduction in a backward-curved impeller

    NASA Astrophysics Data System (ADS)

    Lauchle, Gerald C.

    2002-05-01

    Motorized impellers are used in many air-moving applications including room circulation, duct flow, roof and wall exhaust, and cooling of electronic components in cabinets. These fans are backward-curved centrifugal blowers that operate with no volute casing. These fans radiate broadband noise due to turbulence ingestion and trailing edge (TE) noise generating mechanisms. Considered here are trailing edge noise generation and its reduction in a typical motorized impeller. The sound power of the subject fans is measured in an acoustically transparent test plenum according to ANSI Standard S12.11-1987. Two different serrated TE treatments are designed. The designs assume that a turbulent boundary layer exists at the blade TE, but the actual fan Reynolds number based on chord length is transitional. Therefore, to assure that a turbulent boundary layer exists at the TE, two different inlet turbulators are implemented. These trip the blade boundary layer to a turbulent state. Reported are the effects of the TE serrations and turbulators acting individually on the fan noise, along with the synergistic effects of using them in combinations. Up to 6 dBA of noise reduction is observed when the two are used together. [Work supported by Nortel Networks.

  6. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  7. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  8. New mechanism to reduce the size of the monopivot magnetic suspension blood pump: direct drive mechanism.

    PubMed

    Yamane, T; Nishida, M; Kijima, T; Maekawa, J

    1997-07-01

    Size reduction of the monopivot magnetic suspension blood pump has been achieved by reducing the size of the magnetic suspension and employing a direct drive mechanism in place of a brushless DC motor and a magnetic coupling. The flow has also been improved using a closed hollow impeller to remove flow obstruction at the inlet and using radial straight vanes to reduce the impeller speed by 30%. Hemolysis testing was conducted for the new models. Results showed that model DD1 presented only a slightly higher level of hemolysis than a regular extracorporeal centrifugal pump. PMID:9212927

  9. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (ESTSC)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore » which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  10. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (ESTSC)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore »which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  11. Viscous dark fluid universe

    SciTech Connect

    Hipolito-Ricaldi, W. S.; Velten, H. E. S.; Zimdahl, W.

    2010-09-15

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  12. Investigation of Three Design Modifications of the NACA Injection Impeller in an R-3350 Engine

    NASA Technical Reports Server (NTRS)

    Hickel, Robert O.; Michel, Donald J.

    1946-01-01

    An investigation was conducted to determine the effects of three design modifications of the original NACA injection impeller on the performance of an R-3350 engine. Different methods of injecting the fuel into the impeller air stream were studied and evaluated from the individual cylinder fuel-air ratios and the resulting cylinder temperatures. Each impeller was tested for a range of engine powers normally used in flight operation. The relatively simple design of the original injection impeller produced approximately the same mixture- and temperature-distribution characteristics as the modified impellers of more complex design. None of the modifications appreciably affected the manifold pressure, the combustion-air flow, nor the throttle angle required to maintain a given engine power,

  13. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  14. Experiment of a centrifugal pump during changing speed operation

    NASA Astrophysics Data System (ADS)

    Yuan, H. J.; Shao, J.; Wu, Y. L.; Liu, S. H.

    2012-11-01

    In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.

  15. Numerical study of cavitation flows inside a tubular pumping station

    NASA Astrophysics Data System (ADS)

    Tang, X. L.; Huang, W.; Wang, F. J.; Yang, W.; Wu, Y. L.

    2012-11-01

    Based on RNG k-epsilon turbulence model and the full cavitation model, the cavitation flows inside a low-head tubular-pump model were predicted by using the FLUENT software. For a operating case of given flow rate, cavitation happens near the inlet on the suction surfaces of the impeller blades at the initial cavitating stage, and the cavitating area spreads to the impeller passage and hub as NPSH (net positive suction head) decreases, which will affect energy transformation. For various operating cases of cavitation flows at the given flow rates, the predicted velocity and pressure distributions as well as the vapor volumetric fraction are systematically analyzed. Finally, the cavitation performance curve of the tubular-pump model is obtained by means of the further post-processing. All the comparisons and analysis can be further employed to optimize the hydraulic and structural design of the tubular pump and to guide its safe operation.

  16. Capillary Displacement of Viscous Liquids.

    PubMed

    Walls, Peter L L; Dequidt, Grégoire; Bird, James C

    2016-04-01

    When a capillary tube is brought into contact with a wetting liquid, surface tension forces overcome gravity and the liquid spontaneously rises into the tube until an equilibrium height is reached. The early viscous dynamics of the rise typically follow the well-known Lucas-Washburn law, which is independent of gravity and neglects the displaced fluid. Here we explore the early viscous dynamics when the properties of displaced fluid are significant. Using a combination of experiments and theory, we show how the characteristic behavior of the Lucas-Washburn law is modified when the viscosity of the displaced fluid is comparable to or exceeds the wetting fluid. Additionally, we find that the effects of gravity reshape the dynamics of the capillary rise not only in the late viscous regime but also in the early viscous regime. PMID:26974014

  17. Effect of Impeller Design and Spacing on Gas Exchange in a Percutaneous Respiratory Assist Catheter

    PubMed Central

    Jeffries, R. Garrett; Frankowski, Brian J.; Burgreen, Greg W.; Federspiel, William J.

    2014-01-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2–5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m2 (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5–10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2–13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. PMID:24749994

  18. Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.; Clark, D. A.; Wood, J. R.

    1986-01-01

    A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

  19. Hydrodynamic characteristics of the helical flow pump.

    PubMed

    Ishii, Kohei; Hosoda, Kyohei; Nishida, Masahiro; Isoyama, Takashi; Saito, Itsuro; Ariyoshi, Koki; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Sato, Masami; Hara, Sintaro; Lee, Xinyang; Wu, Sheng-Yuan; Imachi, Kou; Abe, Yusuke

    2015-09-01

    The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape. PMID:25784463

  20. Global design optimization for an axial-flow tandem pump based on surrogate method

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  1. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level. PMID:26736996

  2. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  3. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  4. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  5. A straight path centrifugal blood pump concept in the Capiox centrifugal pump.

    PubMed

    Kijima, T; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Amano, N; Nojiri, C; Fukasawa, H; Akutsu, T

    1993-07-01

    This article describes comparative studies of a newly developed "straight path" centrifugal pump (Capiox centrifugal pump) targeted for open-heart surgery and circulatory support. A unique straight path design of the rotor was very effective in reducing the pump's rotational speed and prime volume. This pump was evaluated for hydraulics, hemolysis, depriming characteristics, cavitation, and heat generation. Two commercially available centrifugal pumps, the Biomedicus cone-type pump and the Sarns 3M impeller-type pump, were used as controls. The new pump required the lowest pump speed to produce the same flow rates under the same pressure loads and demonstrated the lowest hemolysis and the lowest temperature rise with the outlet clamped. The air volume required to deprime the new pump was one-third to one-half that for the other pumps, and no sign of cavitation was observed even if a small amount of air was introduced to the pump inlet under a negative pressure of 200 mm Hg. PMID:8338432

  6. Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-? turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination. PMID:25170524

  7. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    PubMed Central

    Othman, N.; Kamarudin, S. K.; Takriff, M. S.; Rosli, M. I.; Engku Chik, E. M. F.; Meor Adnan, M. A. K.

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination. PMID:25170524

  8. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  9. Characterization of a centrifugal pump in He II

    NASA Technical Reports Server (NTRS)

    Weisend, J. G., II; Van Sciver, S. W.

    1988-01-01

    As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.

  10. Predicting the Inception Cavitation of a Reversible Pump- Turbine in Pump Mode

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Xiao, Ruofu; Zhu, Di; Liu, Weichao

    2015-12-01

    Inception cavitation is a crucial indicator for reversible pump-turbines especially in pump mode. In actual applications, it is difficult to use CFD for the inception cavitation character. In this study, CFD simulation is conducted to find a proper way to evaluate the inception cavitation, different levels of vapor volume fraction in the impeller is predicted based on the tested results. Results show that the prediction of the location and scale of cavitation is accurate. The predicted cavitation number also matches the experimental data well. The vapor volume fraction levels from 0.0001% to 0.001% are recommended as the criterion of inception cavitation.

  11. Quasiadiabatic modes from viscous inhomogeneities

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-04-01

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a nonperturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely based on relativistic viscous fluids. If the dominant adiabatic mode is not affected by the viscosity of the background a sufficiently small fraction of entropic fluctuations of viscous origin cannot be a priori ruled out.

  12. Low NPSH process pumps solve instability problems in fuel-grade ethanol plant

    SciTech Connect

    Andersen, R.B.; Gaines, A.

    1984-12-01

    South Point Ethanol, one of the nation's largest producers of denatured ethyl alcohol for blending with motor fuels, encountered severe instability problems with certain pumps when the plant in South Point, Ohio went on-stream in September 1982. The ethanol is produced by fermenting the starch in cooked corn and other grains. Two 4 x 3'' centrifugal pumps with 13'' casing and 11'' impellers were originally installed to transfer the 185/sup 0/F slurry of cooked grain, or mash, through a series of coolers and into the fermenters. The single stage pumps were driven by 3600 rpm motors to provide flow rates to 600 gpm and up to 480' tdh, but developed instability problems due to the high tip speed of the 11'' impellers. The pumps transferring the degassed beer were replaced with pumps which feature a semi-open reverse vane impeller that is specifically designed to minimize stuffing box pressure and provide superior performance when operating at very low net positive suction head (NPSH) with volatile and near-boiling fluids. Two 6 x 4 x 10'' pumps with the reverse vane, low NPSH impeller were purchased to replace the 4 x 3 x 13'' mash transfer pumps that had to be overhauled about once a week. The new pumps were installed on the same bases and are driven by the original 3600 rpm electric motors. The four pumps have provided smooth, trouble-free transfer of the hot mash and degassed beer for over a year without any replacement parts or other than routine maintenance. The plant currently operates about 40 of the pumps in sizes from 1 1/2 x 1 x 6'' to 10 x 8 x 16'' to provide flow rates to 825 gpm and up to 490' tdh in various applications.

  13. The free compressible viscous vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    The present study investigates the effects of compressibility on free (unsteady) viscous heat-conducting vortices. Analytical solutions are found in the limit of large but finite Reynolds number and small but finite Mach number. It is shown that the spreading of the vortex causes a radial flow. This flow is given by the solution of an ordinary differential equation, which gives the dependence of the radial velocity on the tangential velocity, density, and temperature profiles of the vortex. Estimates of the radial velocity found by solving this equation are found to be in good agreement with numerical solutions of the full equations. The equations for the viscous evolution are expanded in powers of Mach number to obtain detailed analytical solutions. It is shown that swirling axisymmetric compressible flows generate negative radial velocities far from the vortex core owing to viscous effects, regardless of the initial distributions of vorticity, density, and entropy.

  14. Literature survey, numerical examples, and recommended design studies for main-coolant pumps. Final report. [PWR; BWR

    SciTech Connect

    Allaire, P.E.; Barrett, L.E.

    1982-06-01

    This report presents an up-to-date literature survey, examples of calculations of seal forces or other pump properties, and recommendations for future work pertaining to primary coolant pumps and primary recirculating pumps in the nuclear power industry. Five main areas are covered: pump impeller forces, fluid annuli, bearings, seals, and rotor calculations. The main conclusion is that forces in pump impellers is perhaps the least well understood area, seals have had some good design work done on them recently, fluid annuli effects are being discussed in the literature, bearing designs are fairly well known, and rotor calculations have been discussed widely in the literature. It should be noted, however, that usually the literature in a given area is not applied to pumps in nuclear power stations. The most immediate need for a combined theoretical and experimental design capability exists in mechanical face seals.

  15. Method for producing viscous hydrocarbons

    DOEpatents

    Poston, Robert S.

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  16. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  17. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  18. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation

    PubMed

    Spicer; Keller; Pratsinis

    1996-12-01

    The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty. PMID:8954644

  19. Numerical simulation and performance prediction in multi-stage submersible centrifugal pump

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Li, G. D.; Wang, Y.; Cui, Y. R.; Yin, G.; Peng, S.

    2013-12-01

    In order to study the inner flow field of multi-stage submersible centrifugal pump, the model named QD3-60/4-1.1 was selected. Steady turbulence characteristics of impellers, diffusers and return channel were calculated by Fluent software, the SIMPLEC algorithm and RNG κ-ε turbulence model with sliding mesh technology. Then, the distributions of pressure, velocity and Turbulence kinetic energy was obtained and the distributions of velocity field of a channel were analysed. The results show that the static pressure in impeller is increasing with the increasing of radius. The circumferential component of relative velocity is in the opposite direction of impeller rotating. At the same radius, the component value of pressure surface is larger than suction surface. With the increasing of flow rate, absolute velocity and relative velocity flow angle are becoming small, in opposite of the relative velocity and absolute velocity flow angle. The high turbulent zone of impeller is located in the gap of impellers and diffusers. Flow similarity and structure similarity of the multi-stage submersible pump are confirmed.

  20. Counter-rotating type pump-turbine unit cooperating with wind power unit

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  1. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use. PMID:11722342

  2. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  3. Development of a portable bridge-to-decision blood pump.

    PubMed

    Yamane, T; Kitamura, K

    2013-01-01

    We are developing an axial-flow pump with a cylindrical-impeller without airfoils. In the mock experiments of HA02 model a pressure of 13.3 kPa was obtained at a rotational speed of 12500 rpm and flow of 5L/min. The obtained pressure with HA02 was almost double than an airfoil-type impeller. The 2D analysis of hydrodynamic bearings for the pump revealed that a section with 3 or more arcs is stable with respect to angular position, and a minimum bearing gap of 100 µm can be attained at a design bearing gap of 150 µm and at a groove depth of 100 µm. PMID:24110291

  4. Reduced-order modeling for mistuned centrifugal impellers with crack damages

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia

    2014-12-01

    An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.

  5. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  6. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, Z. W.; Y Luo, Y.; Liu, M.

    2013-12-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased.

  7. Application of two turbulence models for computation of cavitating flows in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    He, M.; Guo, Q.; Zhou, L. J.; Wang, Z. W.; Wang, X.

    2013-12-01

    To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ε and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ε model in calculating the unsteady cavitating flow in a centrifugal pump.

  8. Development of an implantable centrifugal blood pump.

    PubMed

    Goldstein, A H; Pacella, J J; Trumble, D R; Clark, R E

    1992-01-01

    The efficacy of centrifugal pumps for short-term (0-30 days) ventricular support has been widely reported and favorably compared with pulsatile systems. A small, durable, implantable centrifugal blood pump is being developed for medium-term use (up to 6 months). The pump is based on the Medtronic Hemadyne system that has existed in multiple forms over the past 30 years. The pump is approximately the size of a tennis ball, weighs 240 g, and is comprised of a 2.5 cm plastic impeller driven by a radially coupled brushless DC motor. In vitro hydraulic performance was recorded over a wide range of flow conditions on a mock circulatory loop. The pump generated 7 L/min flow against an afterload of 100 mmHg pressure, with a maximum power draw of 10.4 watts. Pulsatile flow was preserved when placed in conjunction with a simulated left ventricle. In vivo testing was performed in 10 healthy sheep for 10-292 hr. Heparin was used to facilitate cannulation, and no anticoagulation was administered after pump implantation. Blood chemistries reflecting hematologic, pulmonary, renal, and hepatic functions were recorded and demonstrated no adverse effects with normal pump operation. Complications were related to kinking of blood conduits and thrombus formation within the cannulae. These results are encouraging and warrant further studies to prove feasibility of this pump as a medium-term implantable ventricular assist device. PMID:1457882

  9. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.

    PubMed

    Masuzawa, T; Tsukiya, T; Endo, S; Tatsumi, E; Taenaka, Y; Takano, H; Yamane, T; Nishida, M; Asztalos, B; Miyazoe, Y; Ito, K; Sawairi, T; Konishi, Y

    1999-08-01

    The purpose of this study was to examine the relationship between local flow conditions and the hemolysis level by integrating hemolysis tests, flow visualization, and computational fluid dynamics to establish practical design criteria for centrifugal blood pumps with lower levels of hemolysis. The Nikkiso centrifugal blood pump was used as a standard model, and pumps with different values of 3 geometrical parameters were tested. The studied parameters were the radial gap between the outer edge of the impeller vane and the casing wall, the position of the outlet port, and the discharge angle of the impeller vane. The effect of a narrow radial gap on hemolysis was consistent with no evidence that the outlet port position or the vane discharge angle affected blood trauma in so far as the Nikkiso centrifugal blood pump was concerned. The radial gap should be considered as a design parameter of a centrifugal blood pump to reduce blood trauma. PMID:10463503

  10. Optically driven viscous micropump using a rotating microdisk

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Inoue, Hiroyuki

    2007-08-01

    An optically driven micropump using viscous drag exerted on a rotating disk microrotor was developed. The disk microrotor (diameter of 10μm), which has three columns as targets for the optical trap, is confined to a U-shaped microchannel. To pump fluid, the disk microrotor is rotated by a time-shared optical trapping technique. The flow field inside the U-shaped microchannel was analyzed using finite element method (FEM) based on the Navier-Stokes equation. The optimized micropump was fabricated using a two-photon microfabrication technique. The flow rate of the micropump agreed with simulation result obtained by FEM analysis.

  11. Fjords in viscous fingering: selection of width and opening scale

    SciTech Connect

    Mineev-weinstein, Mark; Ristroph, Leif; Thrasher, Matthew; Swinney, Harry

    2008-01-01

    Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths {lambda}{sub c}/2, where {lambda}{sub c} is the most unstable wavelength from a linear stability analysis. Further, fjords open at an angle of 8.0{sup o}{+-}1.0{sup o}. These selection rules hold for a wide range of pumping rates and fjord lengths, widths, and directions.

  12. Particle stress and viscous compaction

    SciTech Connect

    Prasad, D.; Kytoemaa, H.K.

    1994-12-31

    This study describes the transition between the quasi-static and the viscous regimes of shearing of thin layers of spheres in a viscous fluid at high solid loadings. Experiments were conducted in a Couette-type shear cell in two complementary modes: (a) constant particle normal stress, variable solid fraction and (b) constant solid fraction, variable particle normal stress. In steady shearing under the constraint of constant solid fraction, transition from a strain rate independent stress to a linearly dependent on was found to occur with a local minimum in the stresses with respect to strain rage; correspondingly, the solid fraction assumed a maximum with respect to strain rate under conditions of constant normal stress. At sufficiently high strain rates, the mixture exhibited a linear Newtonian-like scaling between strain rate and both shear and normal stresses. These measurements of normal stress are the first since those of Bagnold (1954).

  13. Fluid mixing from viscous fingering.

    PubMed

    Jha, Birendra; Cueto-Felgueroso, Luis; Juanes, Ruben

    2011-05-13

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling dissipation due to fingering at unresolved scales. PMID:21668165

  14. Periodic folding of viscous sheets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  15. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  16. Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller.

    PubMed

    Treat, W J; Engler, C R; Soltes, E J

    1989-11-01

    Photomixotrophic suspensions of Glycine max (soybean) and Pinus elliottii (slash pine) have been successfully cultured in a hybrid stirred tank photobioreactor using a novel cell-lift impeller. A cell-lift impeller exhibited cell viabilities over 90% and an average cell aggregate size of 1.0 mm or less. Flat-bladed turbines produced equivalent biomass to the cell-lift impeller, but cell viability was reduced (85%) and cell aggregate size increased (3-5 mm diameter). Maximum fresh weights of 82 g L(-1) (soybean) and 52 g L(-1) (slash pine) were achieved in 15 days using continuous lighting (90-100 microE m(-2) s(-1)) and supplemental 2% CO(2) inlet gas. Maximum biomass was achieved using an impeller speed of 60 rpm with air-flow rate of 0.2 vvm for the cell-lift impeller and the pair of flat bladed turbines. The lag and early exponential phases were characterized by (1) rapid hydrolysis of sucrose followed by preferential use of glucose and (2) a reduction in chlorophyll levels. Carbon dioxide (2%-5%) was an essential nutrient for photomixotrophic cell culture in the bioreactors. PMID:18588217

  17. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump.

    PubMed

    Bhavsar, Sonya S; Moskowitz, William B; Throckmorton, Amy L

    2010-10-01

    This study evaluated the performance of an intravascular, percutaneously-inserted, axial flow blood pump in an idealized total cavopulmonary connection (TCPC) model of a Fontan physiology. This blood pump, intended for placement in the inferior vena cava (IVC), is designed to augment pressure and blood flow from the IVC to the pulmonary circulation. Three different computational models were examined: (i) an idealized TCPC without a pump; (ii) an idealized TCPC with an impeller pump; and (iii) an idealized TCPC with an impeller and diffuser pump. Computational fluid dynamics analyses of these models were performed to assess the hydraulic performance of each model under varying physiologic conditions. Pressure-flow characteristics, fluid streamlines, energy augmentation calculations, and blood damage analyses were evaluated. Numerical predictions indicate that the pump with an impeller and diffuser blade set produces pressure generations of 1 to 16 mm Hg for rotational speeds of 2000 to 6000 rpm and flow rates of 1 to 4 L/min. In contrast, for the same flow range, the model with the impeller only in the IVC demonstrated pressure generations of 1 to 9 mm Hg at rotational speeds of 10,000 to 12,000 rpm. Influence of blood viscosity was found to be insignificant at low rotational speeds with minimal performance deviation at higher rotational speeds. Results from the blood damage index analyses indicate a low probability for damage with maximum damage index levels less than 1% and maximum fluid residence times below 0.6 s. The numerical predictions further indicated successful energy augmentation of the TCPC with a pump in the IVC. These results support the continued design and development of this cavopulmonary assist device. PMID:20964699

  18. Numerical investigation of unsteady turbulent flow in a centrifugal pump at partial load

    NASA Astrophysics Data System (ADS)

    Lei, T.; Baoshan, Z.; ShuLiang, C.; Yuchuan, W.; Xuhe, W.

    2014-03-01

    The unsteady non-cavitation and cavitation turbulent flows in a centrifugal pump at partial load condition are numerically investigated by CFX 13.0. The numerical framework employs the combination of RNG k-ε turbulence model and transport equation cavitation model, in which the effects of compressibility of fluid on cavitation region and pressure fluctuation on saturation pressure are both taken into consideration. The good agreement between the numerical and experimental values validates that the numerical framework can accurately predict the turbulent flows in the centrifugal pump. The complex flow characteristics in impeller at non-cavitation and cavitation conditions are revealed. For the noncavitation flow, the dominant frequencies of pressure fluctuation of monitoring points in impeller are all the Impeller Rotation Frequency 24.17Hz. The maximum value of pressure fluctuation on the blade pressure side appears at the 0.8 chord length from the blade leading edge due to a clockwise rotating vortex, which incepts, develops and disappears when the corresponding blade passes through the volute tongue. The dominant frequencies of pressure fluctuation of monitoring points in volute are the Blade Pass Frequency 145 Hz or twice of it. The maximum value of pressure fluctuation in the volute appears near the tongue region, where the flow fields are uneven with strong second flow in the cross section. For the cavitation flow, as the cavitation develops at the blade leading edge, the turbulent flows in the impeller are greatly influenced by the bubble shedding and collapse. The maximum values of pressure fluctuation in impeller increase with the development of cavitation, and reach the largest magnification of about 2.0 in comparison to the non-cavitation flow when the pressure at the pump inlet is very low. The complicated phenomenon of unsteady turbulent flow in a centrifugal pump indicates that the vortex has great influence on the flow pattern.

  19. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  20. Effect of NACA Injection Impeller on Mixture Distribution of Double-Row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E; Ritter, William K; Miller, Mahlon A

    1945-01-01

    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller and thus to promote a thorough mixing of fuel and charge air. Experiments with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 1500, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values.

  1. A status of the activities of the NASA/MSFC pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Williams, R.; Dakhoul, Y.

    1992-01-01

    The Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology was established to aid the transfer of CFD related advancements among academia, government agencies, and industry. The specific goals of the Consortium are to develop CFD methodologies necessary to solve propulsion problems, to validate these methodologies, and to apply these methodologies in the design process. To accomplish these goals, a team of experts in various related fields was formed, a schedule of activities necessary to meet the goals was generated, and funding for the activities was obtained from NASA. During the past year (Mar. 1991 - Mar. 1992) the team's activities have focused on preliminary code validation and on the design of an advanced impeller. Six codes were used to calculate the flow in a Rocketdyne 0.3 flow coefficient inducer, and the results were compared to L2F data available for the inducer. This activity identified shortcomings in the experimental data sets and in the analytical solutions which must be surmounted in any future team activity. The design of the advanced impeller relied heavily on CFD results to obtain an optimized geometry. The optimized geometry was analyzed using four different codes, at design and off-design conditions. Activities for the next year include the optimization of a tandem blade impeller design, benchmark of CFD codes for diffuser and volute flows, the collection of L2F data for 'state-of-the-art' impeller and inducer, and the verification of the advanced pump team impeller design in a water rig.

  2. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  3. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    NASA Astrophysics Data System (ADS)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  4. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  5. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  6. A theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki

    1989-01-01

    The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.

  7. Numerical investigation of the effects of splitter blades on the cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Yuan, S. Q.; Zhang, J. F.; Feng, Y. N.; Lu, J. X.

    2014-03-01

    For the centrifugal pump, additional splitter blades are sometimes necessary in order to improve the head and efficiency. On the other hand, the additional splitter blades will have effect on the cavitation performance due to the changes at the impeller inlet channel. In order to investigate this influence, three impeller schemes were proposed based on a model pump IS50-32-160, one without splitter blades and another two with splitter blades of different inlet diameters. Numerical simulations were carried out to investigate the characteristics of internal flow and the pump cavitation performances at different NPSHA with the CFD technique. The results show that the additional splitter blades will have some positive effect on the pump cavitation performance if the inlet diameter of the splitter blade is properly selected. The reason behind such improvement is that it helps to avoid the flow blocking at the impeller inlet and the vortex cavitation inside the blade passages effectively. For the pump model under our investigation, the cavitation performance reaches its best when the inlet diameter of the splitter blade is 0.725D2.

  8. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    NASA Astrophysics Data System (ADS)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  9. Relativistic Shock Waves in Viscous Gluon Matter

    SciTech Connect

    Bouras, I.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Molnar, E.; Niemi, H.; Rischke, D. H.

    2009-07-17

    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio eta/s from zero to infinity. We show that an eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.

  10. Relativistic shock waves in viscous gluon matter.

    PubMed

    Bouras, I; Molnár, E; Niemi, H; Xu, Z; El, A; Fochler, O; Greiner, C; Rischke, D H

    2009-07-17

    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio eta/s from zero to infinity. We show that an eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings. PMID:19659268

  11. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  12. Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.

    PubMed

    Yuhki, A; Nogawa, M; Takatani, S

    2000-06-01

    In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation. PMID:10886073

  13. Mechanical axial flow blood pump to support cavopulmonary circulation.

    PubMed

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  14. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  15. Gas calculations aid submersible pump selections

    SciTech Connect

    Beavers, J.; Bearden, J.; Vandevier, J.

    1981-07-01

    Two basic types of gas separators currently are available from submersible pump suppliers. In one, the reverse flow effect of 180/degree/ change in direction of fluid flow into an impeller with upturned eye gives gas an opportunity to separate and flow upward in the annulus. In the other, a rotary separator takes in the fluid mixture, centrifugally removes free gas from the mixture, and discharges liquid to the pump and gas to the casing annulus. Laboratory and field tests show that the gas-handling capability of the reverse flow gas separator is about 10% free gas by volume, which is only slightly better performance than a pump with no gas separator. Since gas occupies a portion of the volume which the pump sees, the percentage of free gas, V/sub g/, in the total volume V/sub t/ must be determined and the increase in mixture volume due to gas must be taken into account. If not, an improper pump selection will be made. The pump must be selected for the volume at the intake and not stock tank volume. The value of three factors must be determined. Calculational procedures are presented by means of examples. A calculation program is given.

  16. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  17. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  18. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  19. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  20. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  1. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8268533

  2. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Cao, Shu-Liang; Wang, Yu-Ming; Zhu, Bao-Shan

    2012-01-01

    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-in turbulence model by the density function, a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are verified. Based on the result of numerical simulation, the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed. Cavities first appear on the suction side of the blade head near the front shroud. A large number of cavities block the impeller channels, which leads to the sudden drop of head at the cavitation critical point. With the reduction of NPSHa, the distribution of pressure at the impeller inlet is more uniform.

  3. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.

    PubMed

    Meng, Chen; Huang, Jianke; Ye, Chunyu; Cheng, Wenchao; Chen, Jianpei; Li, Yuanguang

    2015-07-01

    In this study, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of circular ponds with three different impellers (hydrofoil, four-pitched-blade turbine, and grid plate). The reliability of the CFD model was validated by particle image velocimetry (PIV). Hydrodynamic analyses were conducted to evaluate the average velocity magnitude along the light direction (Uz), turbulence properties, average shear stress, pressure loss and the volume percentage of dead zone inside circular ponds. The simulation results showed that Uz value of hydrofoil was 58.9, 40.3, and 28.8% higher than those of grid plate with single arm, grid plate with double arms and four-pitched blade turbines in small-scale circular ponds, respectively. In addition, hydrofoil impeller with down-flow operation had outstanding mixing characteristics. Lastly, the results of Chlorella pyrenoidosa cultivation experiments indicated that the biomass concentration of hydrofoil impeller with down-flow operation was 65.2 and 88.8% higher than those of grid plate with double arms and four-pitched-blade turbine, respectively. Therefore, the optimal circular pond mixing system for microalgae cultivation involved a hydrofoil impeller with down-flow operation. PMID:25680396

  4. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  5. Aerodynamic stiffness of an unbound eccentric whirling centrifugal impeller with an infinite number of blades

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Branagan, L. A.; Kocur, J. A.

    1982-01-01

    An unbounded eccentric centrifugal impeller with an infinite number of log spiral blades undergoing synchronous whirling in an incompressible fluid is considered. The forces acting on it due to coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotating and changes in pressure due to changes in linear momentum are evaluated.

  6. Sudden Viscous Dissipation of Compressing Turbulence

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-01

    Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  7. Sudden Viscous Dissipation of Compressing Turbulence.

    PubMed

    Davidovits, Seth; Fisch, Nathaniel J

    2016-03-11

    Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion. PMID:27015488

  8. Shape Optimization in Viscous Compressible Fluids

    SciTech Connect

    Feireisl, E.

    2002-12-19

    We present a method for solving the optimal shape problems for profiles surrounded by viscous compressible fluids. The class of admissible profiles is quite general including the minimal volume condition and a constraint on the thickness of the boundary. The fluid flow is modelled by the Navier-Stokes system for a general viscous barotropic fluid.

  9. Viscous-pendulum damper suppresses structural vibrations

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1964-01-01

    The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.

  10. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  11. Viscous-sludge sample collector

    DOEpatents

    Not Available

    1979-01-01

    A vertical core sample collection system for viscous sludge is disclosed. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  12. Viscous Disks in Be Stars

    NASA Astrophysics Data System (ADS)

    Carciofi, Alex C.; Rocha Rimulo, Leandro

    2013-06-01

    The fast-spinning Be stars offer a testbed for developing and testing astrophysical theories in their limit. For the star proper, rapid rotation allows for studying the effects of rotation on the stellar evolution and structure. Recent interferometric studies of the photosphere, for instance, allowed for measuring the gravity darkening coefficient and the results present a challenge for current models. Be star phenomenology is strongly associated with their circumstellar disks. On one hand, the disk acts as a sink of angular momentum, and this fact couples the disk with the evolution of the central object. On the other hand, the disk reprocesses starlight, thereby modifying the emerging spectrum. In the past decade our understanding of these disks saw a major leap forward; with the very high angular resolution that can be achieved with modern interferometers we can now resolve the disk up to the immediate vicinity of the star, as well as determining the disk kinematical properties. Coupled with advancements in the physical modeling of these systems, these observations allowed for establishing the viscous decretion disk model as the most viable scenario for disk formation and evolution. In this model, material that is ejected with Keplerian or super-Keplerian speeds at the base of the star and diffuses outwards by means of viscous forces. More recently, models became available for the temporal evolution of these disks when subject to variable feeding rates. In this contribution we will discuss how these dynamical disk models can be used for constraining fundamental disk parameters, such as the ? viscosity parameter, and we will report on an ongoing effort to model light curves of a large number of stars.

  13. Remotely maintained waste transfer pump

    SciTech Connect

    Eargle, J.C.

    1990-01-01

    Westinghouse Savannah River Company (WSRC) operates the Savannah River Site (SRS) for the Department of Energy (DOE). Waste from the processing of irradiated material is stored in large shielded tanks. Treated liquid wastes are to be transferred from these tanks to the Defense Waste Processing Facility (DWPF) for incorporation in glass suitable for storage in a federal repository. Characteristics of the wastes range from water-like liquid to highly viscous wastes containing suspended solids. Pumping head requirements for various conditions ranged from 10 meters (35 feet) to 168 meters (550 feet). A specially designed, cantilever type, remotely operated and maintained pump was designed and built to transfer the wastes. To demonstrate the design, a prototype pump was built and testing thoroughly with simulated waste. Severe vibration problems were overcome by proper drive shaft selection and careful control of the space between the pump shaft and fixed running clearances (sometimes called seals). Eleven pumps are now installed and six pumps have been successfully run in water service.

  14. Remotely maintained waste transfer pump

    SciTech Connect

    Eargle, J.C.

    1990-12-31

    Westinghouse Savannah River Company (WSRC) operates the Savannah River Site (SRS) for the Department of Energy (DOE). Waste from the processing of irradiated material is stored in large shielded tanks. Treated liquid wastes are to be transferred from these tanks to the Defense Waste Processing Facility (DWPF) for incorporation in glass suitable for storage in a federal repository. Characteristics of the wastes range from water-like liquid to highly viscous wastes containing suspended solids. Pumping head requirements for various conditions ranged from 10 meters (35 feet) to 168 meters (550 feet). A specially designed, cantilever type, remotely operated and maintained pump was designed and built to transfer the wastes. To demonstrate the design, a prototype pump was built and testing thoroughly with simulated waste. Severe vibration problems were overcome by proper drive shaft selection and careful control of the space between the pump shaft and fixed running clearances (sometimes called seals). Eleven pumps are now installed and six pumps have been successfully run in water service.

  15. Properly choose mechanical agitators for viscous liquids

    SciTech Connect

    Bakker, A.; Gates, L.E.

    1995-12-01

    High-viscosity mixing applications occur in most chemical process industries (CPI) plants. High-viscosity applications occur in the production of food, paint, drilling mud, and greases, to name a few. Mixing can occur in pipeline systems with motionless mixers, or in vessels using mechanical agitators, depending on the application and the process requirements. A wide variety of both motionless mixers and mechanical agitators is available to handle specific mixing problems and fluid types. This article gives an overview of designing the most commonly used agitator for blending applications: a top-entering agitator with a single shaft. The agitator can be equipped with multiple turbine-style impellers of different design, or with helical-ribbon or anchor-style impellers to optimize the agitator for the specific application and blending problem on hand. Although turbulent blending will be briefly discussed here also, this article will focus on blending in the laminar and transitional regimes. Also, the authors will discuss the special requirements for blending non-newtonian fluids, with and without yield stress. They first discuss the flow patterns and applicability of different impeller types and then present some design guidelines.

  16. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    PubMed

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan. PMID:20051837

  17. Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.

  18. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  19. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.

    PubMed

    Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, José F; Andrade, Aron

    2013-11-01

    A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 ± 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests. PMID:24219168

  20. Study of a centrifugal blood pump in a mock loop system.

    PubMed

    Uebelhart, Beatriz; da Silva, Bruno Utiyama; Fonseca, Jeison; Bock, Eduardo; Leme, Juliana; da Silva, Cibele; Leão, Tarcísio; Andrade, Aron

    2013-11-01

    An implantable centrifugal blood pump (ICBP) is being developed to be used as a ventricular assist device (VAD) in patients with severe cardiovascular diseases. The ICBP system is composed of a centrifugal pump, a motor, a controller, and a power supply. The electricity source provides power to the controller and to a motor that moves the pump's rotor through magnetic coupling. The centrifugal pump is composed of four parts: external conical house, external base, impeller, and impeller base. The rotor is supported by a pivot bearing system, and its impeller base is responsible for sheltering four permanent magnets. A hybrid cardiovascular simulator (HCS) was used to evaluate the ICBP's performance. A heart failure (HF) (when the heart increases beat frequency to compensate for decrease in blood flow) was simulated in the HCS. The main objective of this work is to analyze changes in physiological parameters such as cardiac output, blood pressure, and heart rate in three situations: healthy heart, HF, and HF with left circulatory assistance by ICBP. The results showed that parameters such as aortic pressure and cardiac output affected by the HF situation returned to normal values when the ICBP was connected to the HCS. In conclusion, the test results showed satisfactory performance for the ICBP as a VAD. PMID:24237361

  1. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump. PMID:17380386

  2. 241-SY-101 mixer pump lifetime expectancy. Final report

    SciTech Connect

    Shaw, C.P.

    1995-12-08

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ``safety envelope``. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ``how long will this test pump last and how will the essential features fail?`` During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually.

  3. Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.

    1946-01-01

    For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.

  4. CFD applications in pump flows

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Liang; Kwak, Dochan

    1992-01-01

    The objective of the proposed paper is to develop a computational procedure that solves incompressible Navier-Stokes equations for pump flows. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. As a benchmark problem, the flow through the Rocketdyne inducer is numerically simulated. A coarse grid solution is obtained with a single zone by using an algebraic turbulence model. In multi-zone fine grid computation, a one-equation Baldwin-Barth turbulence model is utilized. Numerical results are compared with experimental measurements and a good agreement is found between the two. The resulting computer code is then applied to the flow analysis inside a two-stage fuel pump impeller operating at 80 percent, 100 percent, and 120 percent of design flow.

  5. Experimental study and numerical simulation of the solid-phase particles' influence on outside characteristics of slurry pump

    NASA Astrophysics Data System (ADS)

    Wang, P. W.; Zhao, J.; Zou, W. J.; Hu, S. G.

    2012-11-01

    At present solid-liquid two-phase flow pump faces two big problems: the low efficiency, the short life, then the concentration of the conveyed solid-phase media are the important factors which affect the outside characteristics about this two phase flow pump. This article presents the outside characteristics' experimental research and internal flow field's simulation analysis on AH type slurry pump which is product by Shijiazhuang Shi- Jiang pump industry, discusses the flow rule in the impeller, and summaries the influence of the solid phased particles' concentration on the performance of the slurry pump's outside characteristics. At last, the rationality and accuracy of the numerical calculation method are verified through the way of comparing numerical simulation with experimental results in this two phase flow pump. And the relation between slurry pump's outside characteristics and granule concentration is summarized, which provided theoretical guidance for the slurry pump's optimization design and selection.

  6. Turbomolecular Pump

    NASA Astrophysics Data System (ADS)

    Odaka, Kenji

    Turbomolecular pumps (TMPs) are fully grown products. There are four points to say so. First, hydrodynamic designing method is well established because there is no change in the pumping speed in the last ten years. Second, ultimate pressures of the order of 10-10 Pa are achieved. This corresponds to the lowest outgassing rate developed for metals. Third, they have extended operating range to pressures as high as 100 Pa with combination of turbo-drag pumps. Fourth, TMPs with electro-magnetic bearings produce perfectly clean vacuum with clean roughing pumps. For further development TMPs might focus on special usages.

  7. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.

  8. Impact of a viscous drop

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy W.; Schroll, Robert D.; Josserand, Christophe; Zaleski, Stephane

    2009-03-01

    Recent experiments [1] reveal that reducing the ambient air pressure entirely suppresses the splash generated by the impact of an oil drop at several m/s onto a dry smooth wall. Motivated by these observations, we simulate two types of drop impact: impact onto a smooth, dry solid wall and head-on collision of two identical liquid drops. In both cases we make the additional simplification that impact simply arrests the downward fall and redirects the liquid radially outwards in a thin, expanding sheet. It does not break the drop surface. Since experiments suggest that splash is created by airflow deforming the thin sheet, we focus on the time-evolution of the thin liquid sheet but restrict ourselves to the simpler situation of negligible airflow effects. In this regime, we find that the ejected sheet is always characterized by two different lengthscales. Surface tension controls the rim size. The thickness over the rest of the sheet is controlled by a different mechanism. Impact onto a solid surface creates a pancake whose thickness is controlled by viscous dissipation. Head-on collision creates a sheet that thins continuously with distance from the collision center. Its thickness is controlled by the kinematics of impact.[0pt][1] Stevens, Keim, Zhang & Nagel, FC03 APS DFD meeting (2007)

  9. Numerical analysis of head degrade law under cavitation condition of contra-rotating axial flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Huang, D.; Pan, Z. Y.

    2015-01-01

    In order to study the flow-head characteristic curve, the SST turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in contra-rotating axial flow waterjet pump under different conditions based on ANSYS CFX software. The distribution of cavity, pressure coefficient of the blade at the design point under different cavitation conditions were obtained. The analysis results of flow field show that the vapour volume distribution on the impeller indicates that the vapour first appears at the leading edge of blade and then extends to the outlet of impeller with the reduction of Net Positive Suction Head Allowance (NPSHA). The present study illustrates that the main reason for the decline of the pump performance is the development of cavitation, and the simulation can truly reflect the cavitation performance of the contra-rotating axial flow waterjet pump.

  10. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    PubMed

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  11. Flow visualization evaluation of secondary flow in a centrifugal blood pump.

    PubMed

    Sakuma, I; Fukui, Y; Ohara, Y; Makinouchi, K; Takatani, S; Nos, Y

    1993-01-01

    To design a less hemolytic and more antithrombogenic centrifugal blood pump, secondary flow, i.e., vortex and turbulent flow, must be properly controlled. An irregular stream pattern is a cause of hemolysis, and good wash-out around the shaft minimizes thrombus formation. In this study, flow visualization methods were applied to evaluate secondary flow in a centrifugal blood pump. Correlation with results of in vitro hemolysis tests was investigated. Separation of the stream lines from the vanes and patterns implying the existence of vortices were observed in the impeller that showed high hemolysis. By adjustment of vane angles, these irregular patterns could be minimized, and hemolysis decreased as well. Using a similar technique, the flow pattern at the back of the impeller could be visualized, which enabled further investigation of the effects of secondary flow on thrombus formation. This flow visualization was effective in examining secondary flow patterns. PMID:8268573

  12. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  13. Suppression of secondary flows in a double suction centrifugal pump with different loading distributions

    NASA Astrophysics Data System (ADS)

    Leng, H. F.; Wang, F. J.; Zhang, Z. C.; Yao, Z. F.; Zhou, P. J.

    2013-12-01

    Secondary flow is one of the main reasons for low efficiency in double suction centrifugal pump. In a 3-D inverse design method, the pump blade could be designed by a specified loading distribution to control the flow field in pump. In order to study the influence of loading distribution on secondary flow of a double suction centrifugal pump, the external characteristics and the internal flow field of the pump with three kinds of loading distributions are analysed by using CFD approach. According to the simulation results, it is found that the form of fore-loading distribution at shroud and aft-loading distribution at hub could improve the optimal efficiency and broaden the high efficiency area of the pump. Furthermore, the secondary flow in impeller exit region and volute could be significantly suppressed if the slope of loading distribution curve of shroud is set to be -0.7.

  14. Cavitation performance improvement of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Chen, T.; Sun, Y. B.; Wu, D. Z.; Wang, L. Q.

    2012-11-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  15. Saddle–node bifurcation of viscous profiles

    PubMed Central

    Achleitner, Franz; Szmolyan, Peter

    2012-01-01

    Traveling wave solutions of viscous conservation laws, that are associated to Lax shocks of the inviscid equation, have generically a transversal viscous profile. In the case of a non-transversal viscous profile we show by using Melnikov theory that a parametrized perturbation of the profile equation leads generically to a saddle–node bifurcation of these solutions. An example of this bifurcation in the context of magnetohydrodynamics is given. The spectral stability of the traveling waves generated in the saddle–node bifurcation is studied via an Evans function approach. It is shown that generically one real eigenvalue of the linearization of the viscous conservation law around the parametrized family of traveling waves changes its sign at the bifurcation point. Hence this bifurcation describes the basic mechanism of a stable traveling wave which becomes unstable in a saddle–node bifurcation. PMID:23576830

  16. Study of Impeller Design for Pipe Flow Generator with CFD and RP

    NASA Astrophysics Data System (ADS)

    Wang, Song-Hao; Porres, Carlos Fernando Hernandez; Zuo, Mong-Yee; Xiao, Wen-Jia

    2010-06-01

    Design optimization is performed in this study for Pipe Flow Generator. Emphasize are on the impeller parameters including the geometry and the number of the blades. Modern engineering tools such as Computational-Fluid-Dynamics software and Rapid-Prototyping technology are utilized, to facilitate both numerical and experimental studies. In CFD numerical simulation, two dimensional transient analyses are conducted to investigate the relationship between the flow rate and the blade geometry, as well as the number of the blades. During experimentation, Rapid Prototyping technology is used to fabricate more than 30 different blades for comparison. RPM and corresponding Voltages are measured for different impeller designs. The study leads to several important findings and the results are very informative for better design of the pipe flow generator.

  17. Design and performance of family of diffusing scrolls with mixed-flow impeller and vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Bradshaw, Guy R

    1949-01-01

    A family of diffusing scrolls was designed for use with a mixed-flow impeller and a small-diameter vaneless diffuser. The design theory, intended to maintain a uniform pressure around the scroll inlet, permits determination of the position of scroll cross sections of preassigned area by considering the radial variation in fluid density and the effects of friction along the scroll. Inasmuch as the design method leaves the cross-sectional shape undetermined, the effect of certain variations in scroll shape was investigated by studying scrolls having angles of divergence (of the scroll walls downstream of the entrance section) of 24 degrees, 40 degrees, and 80 degrees. A second 80 degree scroll was of asymmetrical construction and a third was plaster-cast instead of sand-cast. Each scroll was tested as a compressor component at actual impeller tip speeds of 700 to 1300 feet per second from full throttle to surge.

  18. Impact of Impellers on the Axisymmetric Magnetic Mode in the VKS2 Dynamo Experiment

    SciTech Connect

    Laguerre, R.; Nore, C.; Ribeiro, A.; Leorat, J.; Guermond, J.-L.; Plunian, F.

    2008-09-05

    In the von Karman Sodium 2 (VKS2) successful dynamo experiment of September 2006, the observed magnetic field showed a strong axisymmetric component, implying that nonaxisymmetric components of the flow field were acting. By modeling the induction effect of the spiraling flow between the blades of the impellers in a kinematic dynamo code, we find that the axisymmetric magnetic mode is excited. The control parameters are the magnetic Reynolds number of the mean flow, the coefficient measuring the induction effect {alpha}, and the type of boundary conditions. We show that using realistic values of {alpha}, the observed critical magnetic Reynolds number, Rm{sup c}{approx_equal}32, can be reached easily with ferromagnetic boundary conditions. We conjecture that the dynamo action achieved in this experiment may not be related to the turbulence in the bulk of the flow, but rather to the {alpha} effect induced by the impellers.

  19. Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions.

    PubMed

    Dronawat, S N; Svihla, C K; Hanley, T R

    1997-01-01

    Volumetric gas-liquid mass transfer coefficients were measured in suspensions of cellulose fibers with concentrations ranging from 0 to 20 g/L. The mass transfer coefficients were measured using the dynamic method. Results are presented for three different combinations of impellers at a variety of gassing rates and agitation speeds. Rheological properties of the cellulose fibers were also measured using the impeller viscometer method. Tests were conducted in a 20 L stirred-tank fermentor and in 65 L tank with a height to diameter ratio of 3:1. Power consumption was measured in both vessels. At low agitation rates, two Rushton turbines gave 20% better performance than the Rushton and hydrofoil combination and 40% better performance than the Rushton and propeller combination for oxygen transfer. At higher agitation rates, the Rushton and hydrofoil combination gave 14 and 25% better performance for oxygen transfer than two Rushton turbines and the Rushton and hydrofoil combination, respectively. PMID:18576095

  20. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    PubMed

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. PMID:20471599

  1. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  2. A numerical study on the flow and sound fields of centrifugal impeller located near a wedge

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo

    2003-09-01

    Centrifugal fans are widely used and the noise generated by these machines causes one of the serious problems. In general, the centrifugal fan noise is often dominated by tones at blade passage frequency and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cut-off in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and considering the scattering effect of the casing. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of the centrifugal impeller. A discrete vortex method is used to model the centrifugal impeller and a wedge and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. In order to consider the scattering and diffraction effects of the casing, Kirchhoff-Helmholtz boundary element method (BEM) is developed. The source of Kirchhoff-Helmholtz BEM is newly developed, so the sound field of the centrifugal fan can be obtained. A centrifugal impeller and wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effect of the wedge.

  3. Optimization of centrifugal pump cavitation performance based on CFD

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  4. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.

    PubMed

    Pereira, Leonardo Tupi Caldas; Pereira, Lucas Tupi Caldas; Teixeira, Ricardo Sposina Sobral; Bon, Elba Pinto da Silva; Freitas, Suely Pereira

    2011-08-01

    The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, ?-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion. PMID:20844924

  5. Experimental Impeller Fragmentation of Iliocaval Thrombosis Under Tulip Filter Protection: Preliminary Results

    SciTech Connect

    Schmitz-Rode, Thomas; Vorwerk, Dierk; Schuermann, Karl; Guenther, Rolf W.

    1996-04-15

    Purpose: To assess the efficacy of catheter fragmentation of massive caval thrombosis and of filter protection against procedure-related pulmonary embolism. Methods: In 10 sheep, a self-expanding tulip-shaped filter made from Wallstent mesh (diameter 25 mm) was introduced from the right jugular approach into the proximal inferior vena cava. Experimentally induced massive iliocaval thrombosis was fragmented by an impeller catheter (expanded diameter 14 mm), which was advanced coaxially through the sheath of the expanded filter. Post-procedural cavography and pulmonary angiography were performed to document the extent of caval recanalization and pulmonary embolism. Results: In all cases, impeller fragmentation cleared the inferior vena cava and the iliac veins of thrombi completely. Fragments washed downstream were trapped in the filter. In two of the first cases, parts of the clots caused pulmonary embolism before the filter was in place. Further events were avoided by a modification of the experimental setup. Except for some small peripheral perfusion defects in two cases, pulmonary angiograms did not show any incidence of pulmonary embolism. Conclusion: Our preliminary results suggest that impeller fragmentation of iliocaval thrombi under tulip filter protection is effective and does not cause significant pulmonary embolism.

  6. Two-phase flow centrifugal pump performance

    NASA Astrophysics Data System (ADS)

    Chisely, Eugene Andras

    The performance of centrifugal pumps subjected to a liquid-gas-mixture flow is a significant concern to manufacturers and to some users such as Chemical, Nuclear Power Plants, and Gas-Oil Industries. Particularly in the nuclear power industry, the prediction of performance degradation under the two-phase flow conditions occurring in a Loss of Coolant Accident (LOCA) is a significant part of the overall analysis of that accident. In this experimental work, the pressure distribution was measured in a rotating, partially shrouded, open, radial impeller and volute under a wide range of air-water two-phase flow conditions. To obtain these pressure measurements, small-diameter pressure-tap holes were drilled through the casing of the radial pump. High speed photography was used to determine the flow regime of the air-water mixture through the vane and in the volute. An analytical model was developed to predict the radial pump single- and two-phase flow pressure distribution. This distribution was compared with the test data for different suction void fractions. The physical mechanism responsible for pump performance degradation was also investigated.

  7. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  8. Leakage flow simulation in a specific pump model

    NASA Astrophysics Data System (ADS)

    Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.

    2014-03-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

  9. Modeling gas-liquid head performance of electrical submersible pumps

    NASA Astrophysics Data System (ADS)

    Sun, Datong

    The objectives of this study are to develop a simple and accurate theoretical model and to implement the model into a computational tool to predict Electrical Submersible Pumps (ESP) head performance under two-phase flow conditions. A new two-phase model including a set of one-dimensional mass and momentum balance equations was developed. The derived gas-liquid momentum equations along pump channels has improved Sachdeva (1992, 1994)'s model in petroleum industry and generalized Minemura (1998)'s model in nuclear industry. The resulting pressure ODE for frictionless incompressible single-phase flow is consistent with the pump Euler equation. In the two-phase momentum equations, new models for wall frictional losses for each phase, through using gas-liquid stratified assumption and existing correlations for impeller rotating effect, channel curvature effect, and channel cross section effect, have been proposed. New equations for radius of curvature along ESP channels, used in the curvature effect calculation, have been derived. A new shock loss model incorporating rotational speeds has been developed. A new correlation for drag coefficient and interfacial characteristic length effects has been obtained through fitting the model results with experimental data. An algorithm to solve the model equations has been developed and implemented. The model predicts pressure and void fraction distributions along impellers and diffusers and can also be used to predict the pump head performance curve under different fluid properties, pump intake conditions, and rotational speeds. The new two-phase model is validated with air-water experimental data. Results show the model provides a very good prediction for pump head performance under different gas flow rates, liquid flow rates, and different intake pressures. The new model is capable of predicting surging and gas lock conditions.

  10. Mechanics of viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Hussain, Fazle; Duraisamy, Karthik

    2011-02-01

    This work is motivated by our long-standing claim that reconnection of coherent structures is the dominant mechanism of jet noise generation and plays a key role in both energy cascade and fine-scale mixing in fluid turbulence [F. Hussain, Phys. Fluids 26, 2816 (1983); J. Fluid Mech. 173, 303 (1986)]. To shed further light on the mechanism involved and quantify its features, the reconnection of two antiparallel vortex tubes is studied by direct numerical simulation of the incompressible Navier-Stokes equations over a wide range (250-9000) of the vortex Reynolds number, Re (=circulation/viscosity) at much higher resolutions than have been attempted. Unlike magnetic or superfluid reconnections, viscous reconnection is never complete, leaving behind a part of the initial tubes as threads, which then undergo successive reconnections (our cascade and mixing scenarios) as the newly formed bridges recoil from each other by self-advection. We find that the time tR for orthogonal transfer of circulation scales as tR≈Re-3/4. The shortest distance d between the tube centroids scales as d ≈a[Re(t0-t)]3/4 before reconnection (collision) and as d ≈b[Re(t -t0)]2 after reconnection (repulsion), where t0 is the instant of smallest separation between vortex centroids. We find that b is a constant, thus suggesting self-similarity, but a is dependent on Re. Bridge repulsion is faster than collision and is more autonomous as local induction predominates, and, given the associated acceleration of vorticity, is potentially a source of intense sound generation. At the higher Re studied, the tails of the colliding threads are compressed into a planar jet with multiple vortex pairs. For Re>6000, there is an avalanche of smaller scales during the reconnection, the rate of small scale generation and the spectral content (in vorticity, transfer function and dissipation spectra) being quite consistent with the structures visualized by the λ2 criterion. The maximum rate of vortex circulation transfer, enstrophy production, and dissipation scale as Re1, Re7/4, and Re-1/2, respectively. A more detailed study of subsequent reconnection of threads requires much higher-resolution simulations that are currently not feasible.

  11. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    PubMed

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. PMID:22040356

  12. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  13. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  14. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.

    PubMed

    Yang, Xiao-Chen; Zhang, Yan; Gui, Xing-Min; Hu, Sheng-Shou

    2011-10-01

    The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result. PMID:21517911

  15. On Improvement of Characteristic Instability and Internal Flow in Mixed Flow Pumps

    NASA Astrophysics Data System (ADS)

    Miyabe, Masahiro; Furukawa, Akinori; Maeda, Hideaki; Umeki, Isamu; Jittani, Yoshinori

    The difference of pump characteristics between two kinds of mixed flow pumps with low specific speed of 350 (min-1, m3/min, m), which have the same impeller and the different diffuser vanes, is presented in the present paper. It was confirmed from the previous study that a diffuser rotating stall (DRS) occurs in the original type of mixed flow pump at about 65% flow rate of best efficiency point (BEP) and there is an abrupt drop of the total head characteristic. The relationship between pump characteristic instability and internal flow is investigated in detail by using a dynamic PIV measurement system (DPIV) and a commercial CFD code. As a result, the cause of characteristic instability is supposed for the original type as follows. The flow on the vaned diffuser hub-side becomes unstable due to adverse pressure gradient and strong backflow occurs at partial flow rate. Then it impinges against downstream flow from the impeller and the secondary flow from hub- to casing-sides occurs. This secondary flow blocks the downstream flow from the impeller and the inlet flow angle at the leading edge of adjacent diffuser vane decreases. Therefore, the flow separates on the suction surface of the adjacent diffuser vane inlet and a strong vortex is generated. After that, it develops and becomes a stall core. Next, the modified type of pump, where only diffuser vanes are modified, is tested. As a result, the flow rate, at which characteristic instability occurs, is shifted to lower one and the pump operating range becomes widened. It is clarified upon above considerations that the secondary flow has been restricted and diffuser performance has been improved in comparison with the original type.

  16. Preliminary validation of a new magnetic wireless blood pump.

    PubMed

    Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2013-10-01

    In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8?cc, respectively, and weighs 52?g. The pump produces a flow rate of approximately 8?L/min at 80?mm?Hg and the power generator produces 0.3?W of electrical power at 120??. The pump also produces a minimum flow rate of 1.5?L/min and a pressure of 30?mm?Hg for circulation at a maximum distance of 7.5?cm. PMID:23634711

  17. Dependence of penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity

    PubMed

    J sten P; Paul; Nienow; Thomas

    1998-09-20

    The influence of the agitation conditions on the growth, morphology, vacuolation, and productivity of Penicillium chrysogenum has been examined in 6 L fed-batch fermentations. A standard Rushton turbine, a four-bladed paddle, and a six-bladed pitched blade impeller were compared. Power inputs per unit volume of liquid, P/VL, ranged from 0.35 to 7.4 kW/m3. The same fermentation protocol was used in each fermentation, including holding the dissolved oxygen concentration above 40% air saturation by gas blending. The mean projected area (for all dispersed types, including clumps) and the clump roughness were used to characterize the morphology. Consideration of clumps was vital as these were the predominant morphological form. For a given impeller, the batch-phase specific growth rates and the overall biomass concentrations increased with agitation intensity. Higher fragmentation at higher speeds was assumed to have promoted growth through increased formation of new growing tips. The mean projected area increased during the rapid growth phase followed by a sharp decrease to a relatively constant value dependent on the agitation conditions. The higher the speed, the lower the projected area for a given impeller type. The proportion by volume of hyphal vacuoles and empty regions decreased with speed, possibly due to fragmentation in the vacuolated regions. The specific penicillin production rate was generally higher with lower impeller speed for a given impeller type. The highest value of penicillin production as well as its rate was obtained using the Rushton turbine impeller at the lowest speed. At given P/VL, changes in morphology, specific growth rate, and specific penicillin production rate depended on impeller geometry. The morphological data could be correlated with either tip speed or the "energy dissipation/circulation function," but a reasonable correlation of the specific growth rate and specific production rate was only possible with the latter. Copyright 1998 John Wiley & Sons, Inc. PMID:10099397

  18. Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; Li, Bing; He, Zhengjia

    2015-10-01

    A novel reduced-order modeling method is presented in this paper for dynamics analysis of rotating impeller-shaft-bearing assembly with cracked impellers. Based on three-dimensional finite element model, the complex component mode synthesis (CMS) method is employed to generate an efficient reduced-order model (ROM) for studying the effects of crack on the global vibration of the rotating assembly. First, a modeling framework for impeller-shaft-bearing systems in rotating frame is presented. Rotational effects, including Coriolis matrix and centrifugal softening, have been taken into account. Then, the governing equation of motion of the damped gyroscopic system is reduced by the complex CMS method. Finally, the obtained ROM is employed to study the effects of crack on assembly's vibration. During the steady-state response analysis, external excitations on the impeller due to rotor-stator interactions have been taken into account, which was however neglected in previous investigations on rotordynamics. Numerical results show that the lower-order eigenvalues and the unbalance response of the assembly are not sensitive to the local crack on impeller. Nevertheless, the flexible coupling between impeller and shaft becomes more complex when the air flow-induced excitations are considered. Under EO1 traveling wave excitations, a crack leads to slight changes in the assembly's response. In contrast, the effect of crack becomes significant when the assembly is excited by EO2 and higher EO excitations. Moreover, the nonlinear crack breathing effects affect the assembly's response obviously. Finally, a potential technique for detecting the crack on impeller during operation is discussed.

  19. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  20. A flow visualization study of centrifugal blood pumps developed for long-term usage.

    PubMed

    Araki, K; Taenaka, Y; Masuzawa, T; Inoue, K; Nakatani, T; Kinoshita, M; Akagi, H; Baba, Y; Matsuo, Y; Sakaki, M

    1993-05-01

    We have developed centrifugal pumps for long-term circulatory assistance, with the final goal of a completely implantable ventricular assist device or total artificial heart. The previous model, NCVC-0, was characterized by a nonseal design and few flow-stagnating parts and acquired high durability and antithrombogenicity. To improve its pumping performance, NCVC-0 was modified. In the new model, NCVC-1, the profile shape of the impeller was changed from flat to conical, the number of vanes from 4 to 6, and the vane entrance angle from 30 degrees to 60 degrees. A flow visualization study performed by means of a combination of the polystyrene tracer method and the light-cutting method indicated decreased flow turbulence between vanes in NCVC-1, which corresponded well with the increased pumping performance. Flow visualization is a useful method to evaluate the design elements that are closely related to the pumping performance of a centrifugal blood pump. PMID:8507164

  1. Initial hydrodynamic study on a new intraaortic axial flow pump: Dynamic aortic valve.

    PubMed

    Li, G; Zhao, H; Hu, S; Zhu, X; Wu, Q; Ren, B; Ma, W

    2001-04-01

    Rotary blood pumps have been researched as implantable ventricular assist devices for years. To further reduce the complex of implanted axial pumps, the authors proposed a new concept of intraaortic axial pump, termed previously as "dynamic aortic valve (DAV)". Instead of being driven by an intraaortic micro-electric motor, it was powered by a magnetic field from outside of body. To ensure the perfusion of coronary artery, the axial flow pump is to be implanted in the position of aortic valve. It could serve as either a blood pump or a mechanical valve depending on the power input. This research tested the feasibility of the new concept in model study. A column, made from permanent magnet, is jointed to an impeller in a concentric way to form a "rotor-impeller". Supported by a hanging shaft cantilevered in the center of a rigid cage, the rotor-impeller can be turned by the magnetic field in the surrounding space. In the present prototype, the rotor is 8 mm in diameter and 15 mm in length, the impeller has 3 vanes with an outer diameter of 18 mm. The supporting cage is 22 mm in outer diameter and 20 mm in length. When tested, the DAV prototype is inserted into the tube of a mock circuit. The alternative magnetic field is produced by a rotating magnet placed side by side with the rotor-impeller at a distance of 30 mm. Once the alternative magnetic field is presented in the surrounding space, the DAV starts to turn, leading to a pressure difference and liquid flow in the tube. The flow rate or pressure difference is proportioned to rotary speed. At the maximal output of hydraulic power, the flow rate reached 5 L/min against an afterload of 100 mmHg. The maximal pressure difference generated by DAV at a rotation rate of 12600 r/min was 147 mmHg. The preliminary results demonstrated the feasibility of "DAV", further research on this concept is justifiable. PMID:18726438

  2. Optimal hydraulic design of new-type shaft tubular pumping system

    NASA Astrophysics Data System (ADS)

    Zhu, H. G.; Zhang, R. T.; Zhou, J. R.

    2012-11-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG ?-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  3. Oil pump arrangement for supplying oil under pressure in an internal combustion engine

    SciTech Connect

    Kasting, E.W.

    1986-03-04

    An oil pump arrangement is described for supplying oil under pressure in an internal combustion engine, which comprises in combination: an internal combustion engine, one side of a portion of which is provided with a recess in a planar end wall thereof; an oil pump having a two part housing comprised of an open-sided housing part and a closure means for closing off the open side of the housing part, and wherein the pump housing is of a size, relative to the size of the recess, for enabling the oil pump to be received within the recess with sufficient clearance to form a clearance space between the oil pump housing and walls of the engine defining the recess, the clearance space forming a suction space for the oil pump; impeller gears which are provided in the pump housing and which mesh with one another; driving means operatively connected to the internal combustion engine for driving at least one of the impeller gears; a suction passage formed in the body of the internal combustion engine for providing communication between the suction space and a source of oil, the pump housing including an opening for providing communication between the suction space and the interior thereof; and a pressure passage means for communicating the interior of the pump housing with the internal combustion engine comprising a pressure passage formed in the body of the internal combustion engine and opening into the recess, a passage formed through the pump housing and means for interconnecting the pressure passage of the housing and the pressure passage of the engine body in a manner sealing-off the pressure passage means relative to the suction space.

  4. Inverse transonic airfoil design including viscous interaction

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.

  5. Simultaneous viscous-inviscid coupling via transpiration

    SciTech Connect

    Yiu, K.F.C.; Giles, M.B.

    1995-09-01

    In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs.

  6. Viscous shock profiles and primitive formulations

    NASA Technical Reports Server (NTRS)

    Karni, S.

    1990-01-01

    Weak solutions of hyperbolic systems in primitive (non-conservation) form for which a consistent conservation form exists are considered. It is shown that primitive formulations, shock relations are not uniquely defined by the states to either side of the shock but also depend on the viscous path connecting the two. Scheme-dependent high order correction terms are derived that enforce consistent viscous shock profiles. The resulting primitive algorithm is conservative to the order of approximation. One dimensional Euler calculations of flows containing strong shocks clearly show that conservation errors in primitive flow calculations are of comparable quality.

  7. Third-generation blood pumps with mechanical noncontact magnetic bearings.

    PubMed

    Hoshi, Hideo; Shinshi, Tadahiko; Takatani, Setsuo

    2006-05-01

    This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.) DuraHeart is an example where the impeller is levitated in the axial or z-direction. The disadvantage of this system is the mechanical wear in the mechanical bearings of the external motor. In the second system, the impeller is made into the rotor of the motor, and the magnetic flux, through the external stator, rotates the impeller, while the impeller levitation is maintained through another electromagnetic system. The Berlin Heart (Berlin, Germany) INCOR is the best example of this principle where one-axis control combination with hydrodynamic force achieves high performance. In the third system, the stator core is shared by the levitation and drive coil to make it as if the bearing does not exist. Levitronix CentriMag (Zürich, Switzerland), which appeared recently, employs this concept to achieve stable and safe operation of the extracorporeal system that can last for a duration of 14 days. Experimental systems including HeartMate III (Thoratec, Woburn, MA, U.S.A.), HeartQuest (WorldHeart, Ottawa, ON, Canada), MagneVAD (Gold Medical Technologies, Valhalla, NY, U.S.A.), MiTiHeart (MiTi Heart, Albany, NY, U.S.A.), Ibaraki University's Heart (Hitachi, Japan) and Tokyo Medical and Dental University/Tokyo Institute of Technology's disposable and implantable maglev blood pumps are also reviewed. In reference to second-generation blood pumps, such as the Jarvik 2000 (Jarvik Heart, New York, NY, U.S.A.), which is showing remarkable achievement, a question is raised whether a complicated system such as the maglev system is really needed. We should pay careful attention to future clinical outcomes of the ongoing clinical trials of the second-generation devices before making any further remarks. What is best for patients is the best for everyone. We should not waste any efforts unless they are actually needed to improve the quality of life of heart-failure patients. PMID:16683949

  8. The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Wilson, Ernest E

    1929-01-01

    This report presents the results of tests made on three sizes of roots type aircraft engine superchargers. The impeller contours and diameters of these machines were the same, but the length were 11, 8 1/4, and 4 inches, giving displacements of 0.509, 0.382, and 0.185 cubic foot per impeller revolution. The information obtained serves as a basis for the examination of the individual effects of impeller speed and displacement on performance and of the comparative performance when speed and displacement are altered simultaneously to meet definite service requirements. According to simple theory, when assuming no losses, the air weight handled and the power required for a given pressure difference are directly proportional to the speed and the displacement. These simple relations are altered considerably by the losses. When comparing the performance of different sizes of machines whose impeller speeds are so related that the same service requirements are met, it is found that the individual effects of speed and displacement are canceled to a large extent, and the only considerable difference is the difference in the power losses which decrease with increase in the displacement and the accompanying decrease in speed. This difference is small in relation to the net power of the engine supercharger unit, so that a supercharger with short impellers may be used in those applications where the space available is very limited with any considerable sacrifice in performance.

  9. Movement of Solid Particles on and off Bottom of an Unbaffled Vessel Agitated by Unsteadily Forward-Reverse Rotating Impeller

    NASA Astrophysics Data System (ADS)

    Yoshida, Masanori; Kimura, Akihiro; Yamagiwa, Kazuaki; Ohkawa, Akira; Tezura, Shuichi

    An unbaffled agitated vessel having an unsteadily rotating impeller was employed as an apparatus mixing liquid and solid particles with the density larger than that of liquid. For this type of vessel, the movement of solid particles on and off the vessel bottom was studied in relation to the liquid flow produced by the impeller. When a disk turbine impeller with six flat blades was rotated in the forward-reverse mode, the liquid flow and the particle movement were visualized. Concurrently, the agitation requirement for complete solid suspension where no particle remains on the vessel bottom for more than a short period and all particles are in motion was determined as a minimum rotation rate of impeller. The liquid flow and the particle movement around a tiny heap of solid particles configured on the vessel bottom were characterized through measurement of their velocities by the particle tracking velocimetry (PTV). The relative velocity of rising with off-bottom suspension of solid particles was uniform in its distribution and wholly large in its magnitude, compared with that in a baffled vessel with a unidirectionally rotating impeller of the identical design, which revealed an effectiveness of this type of vessel as an apparatus for the solid-liquid mass transfer.

  10. Submersible pump

    SciTech Connect

    Setterberg Jr., J. R.

    1985-03-05

    A submersible pump system for petroleum production in which the pump is suspended from an H-member with production passing up one leg of the H-member and gas passing up the other leg of the H-member. Valve means provide for alternately directing the liquid in a recirculating path through the H-member to the pump while closing in gas flow and closing the crossmember in the H-member and providing for gas and liquid flow through the separate legs of the H-member. The system is coordinated with a subsurface safety valve in the tubing above the H-member and the valve means and subsurface safety valve are controlled by the same pressure line.

  11. Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.; Skoch, Gary J.

    2013-01-01

    Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: 1) a k-epsilon turbulence model computation on a 6.8 million point grid using wall functions, 2) a k-epsilon turbulence model computation on a 14 million point grid integrating to the wall, and 3) a k-omega turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-epsilon and k-omega computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-epsilon computations which extended from 70% to 100% span at the exit rating plane, whereas the k-omega computation had reversed flow from 95% to 100% span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-epsilon case resulted in an under-prediction in adiabatic efficiency of 8.3 points, whereas the k-omega case was 1.2 points lower in efficiency.

  12. Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.; Skoch, Gary J.

    2013-01-01

    Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: (1) a k-e turbulence model computation on a 6.8 million point grid using wall functions, (2) a k-e turbulence model computation on a 14 million point grid integrating to the wall, and (3) a k-? turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-e and k-? computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-e computations which extended from 70 to 100 percent span at the exit rating plane, whereas the k-? computation had reversed flow from 95 to 100 percent span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-e case resulted in an underprediction in adiabatic efficiency of 8.3 points, whereas the k-? case was 1.2 points lower in efficiency.

  13. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  14. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  15. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing to see more research on the psychosocial aspects of CSII during the year, both from the point of view of how psychological beliefs influence outcomes on CSII (is there a type of patient who does particularly well or poorly on CSII?) and how CSII affects psychological factors like mood, behaviour and quality of life. Quality of life is a difficult topic with doubts that the instruments always capture the aspects of quality of life important to the patient, and there have been conflicting results over the years about whether CSII alters quality of life. Patients in the clinic usually say that it does, and more evidence for quality of life improvement in pump therapy is reviewed here. PMID:21323808

  16. Performance of J33-A-23 Turbojet-Engine Compressor. II; Over-All Performance Characteristics of Compressor with 34-Blade Impeller at Equivalent Impeller Speeds from 6000 to 11.750 RPM

    NASA Technical Reports Server (NTRS)

    Beede, William L.; Kovach, Karl

    1948-01-01

    The J33-A-23 compressor with a 34-blade impeller was operated at ambient inlet temperature and an inlet pressure of 14 inches mercury absolute over a range of equivalent impeller speeds from 6000 to 11,750 rpm. Additional runs at equivalent speeds of 7,000, 10,000, and 11,750 rpm and ambient inlet temperature were made at inlet pressures of 5 and 10 inches mercury absolute. The results of this investigation are compared with those of the J33-A-23 compressor with a 17-blade impeller. At the design equivalent speed of 11,750 rpm the 533-A-23 compressor with a 34-blade impeller had a peak pressure ratio of 4.49 at an equivalent weight flow of 82.4 pounds per second and an adiabatic temperature-rise efficiency of 0.740. The maximum equivalent flow at design speed was 91.8 pounds per second. The peak efficiency at design speed (0.757) occurred at an equivalent weight flow of 85.5 pounds per second. The maximum adiabatic temperature- rise efficiency of 0.773 was obtained at an equivalent impeller speed of 10,000 rpm, an equivalent weight flow of 65.8 pounds per second, and a pressure ratio of 3.27. At equivalent impeller speeds of.l0,000 and 11,75O rpm a decrease in inlet pressure resulted in a decrease in maximum equivalent weight flow, peak pressure ratio, and peak adiabatic temperature- rise efficiency.

  17. Dilepton production in schematic causal viscous hydrodynamics

    SciTech Connect

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming

    2011-02-15

    Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4{pi} for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.

  18. Viscous Driven-Cavity Solver: User's Manual

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The viscous driven-cavity problem is solved using a stream-function and vorticity formulation for the incompressible Navier-Stokes equations. This report provides the user's manual and FORTRAN code for the set of governing equations presented in NASA TM-110262.

  19. VHD: Viscous pseudo-Newtonian accretion

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Gammie, Charles F.

    2013-06-01

    VHD is a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. VHD is based on ZEUS-2D (Stone & Norman 1992) with the addition of an explicit scheme for the viscosity.

  20. Viscous fingering with partial miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2015-11-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.

  1. The study of a reactor cooling pump under two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yuan, S. Q.; Wang, X. L.; Zhang, F.

    2015-01-01

    In this paper, the steady pressure field has been investigated numerically by computational fluid dynamics (CFD) in a nuclear reactor cooling pump. As a multiphase approach the Eulerian-Eulerian two fluid model has been applied to calculated five computational models with different kinds of blades. The analysis of inner flow field of the five model pumps shows that the pressure in the impeller increases with the increase of the gas contents and the pressure distributions are irregular at the inlet of different blades when the gas contents less than 20%. With the increase of the number of blades, the vortexes at the outlet of impeller decrease whereas the vortexes in the deep of the volute markedly increases and high velocity of the fluid huddle is generated gradually at the outlet pipes. Under the action of centrifugal force and Coriolis force, gas phase mainly concentrated at the lower velocity and lower pressure area. The radial force on the impeller gradually increases with the increase of the gas contents.

  2. Suppression of the secondary flow in a suction channel of a large centrifugal pump

    NASA Astrophysics Data System (ADS)

    Torii, D.; Nagahara, T.; Okihara, T.

    2013-12-01

    The suction channel configuration of a large centrifugal pump with a 90-degree bend was studied in detail to suppress the secondary flow at the impeller inlet for improving suction performance. Design of experiments (DOE) and computational fluid dynamics (CFD) were used to evaluate the sensitivity of several primary design parameters of the suction channel. A DOE is a powerful tool to clarify the sensitivity of objective functions to design parameters with a minimum of trials. An L9 orthogonal array was adopted in this study and nine suction channels were designed, through which the flow was predicted by steady state calculation. The results indicate that a smaller bend radius with a longer straight nozzle, distributed between the bend and the impeller, suppresses the secondary flow at the impeller inlet. An optimum ratio of the cross sectional areas at the bend inlet and outlet was also confirmed in relationship to the contraction rate of the downstream straight nozzle. These findings were obtained by CFD and verified by experiments. The results will aid the design of large centrifugal pumps with better suction performance and higher reliability.

  3. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  4. Pump jack

    SciTech Connect

    Stanton, G. E.

    1985-02-26

    A pump jack of the type comprising a rocker arm pivotably mounted intermediate its ends on a support member, said rocker arm being divided by said pivot mounting into a sucker-rod limb and a drive limb wherein the improvement comprises a pneumatic motor pivotably attached to the drive support member and further pivotably attached to the mounting base of the pump jack to provide the power to reciprocate the pump jack. The working fluid of said pneumatic motor being natural gas which is available from the well casing of the well without any interference with the flow of the oil in the oil tube of the well thereby making use of an energy source available at any oil well without having to provide gasoline to drive a rotating type gasoline engine or electricity to drive an electric motor usually of the rotating variety. Also the stroke of a pneumatic cylinder inherently smooths out and eliminates the shock loading at the extremes of motion at the piston mounted to the sucker rods of such pump jack at the bottom of the well.

  5. Magnetically suspended rotary blood pump with radial type combined motor-bearing.

    PubMed

    Masuzawa, T; Kita, T; Matsuda, K; Okada, Y

    2000-06-01

    A magnetically suspended centrifugal blood pump is being developed with a combined motor-bearing for long-term ventricular assist systems. The combined motor-bearing actively suspends a rotor in a radial direction to deal with radial force unbalance in the pump and rotates the rotor by using the electric magnetic field. Therefore, the pump has no mechanical parts such as bearings of the motor and has a long lifetime. The developed pump consists of a thin rotor with a semi open-type 6 vane impeller and a stator to suspend and rotate the rotor. The rotor has 4-pole permanent magnets on the circumferential surface. The outer diameter and the thickness of the rotor are 60 mm and 8 mm, respectively. Axial movement and tilt of the rotor are restricted by passive stability based on the thin rotor structure. Radial movements of the rotor, such as levitation in radial direction and rotation, are controlled actively by using electric magnets of the stator. The electric magnet coils to produce levitation and rotation forces are constructed on the periphery stator. The p +/- 2-pole algorithm and the synchronous motor mechanism are adopted to levitate and rotate the rotor. The radial gap between the rotor and the stator is 1 mm. A closed-loop circuit filled with water was connected to the developed pump to examine the basic performance of the pump and the magnetic suspension system. Maximum rotational speed, flow rate, and head were 2,800 rpm, 11 L/min, and 270 mm Hg, respectively. The rotor with the impeller could be suspended completely during the entire pumping process. We conclude the pump with the combined motor-bearing has sufficient performance for the blood pump. PMID:10886067

  6. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    NASA Astrophysics Data System (ADS)

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  7. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters

    USGS Publications Warehouse

    Newhouse, M.W.; Izbicki, J.A.; Smith, G.A.

    2005-01-01

    Previous studies have used flowmeters in environments that are within the expectations of their published ranges. Electromagnetic flowmeters have a published range from 0.1 to 79.0 m/min, and impeller flowmeters have a published range from 1.2 to 61.0 m/min. Velocity-log data collected in five long-screened production wells in the Pleasant Valley area of southern California showed that (1) electromagnetic flowmeter results were comparable within ??2% to results obtained using an impeller flowmeter for comparable depths; (2) the measured velocities from the electromagnetic flowmeter were up to 36% greater than the published maximum range; and (3) both data sets, collected without the use of centralizers or flow diverters, produced comparable and interpretable results. Although either method is acceptable for measuring wellbore velocities and the distribution of flow, the electromagnetic flowmeter enables collection of data over a now greater range of flows. In addition, changes in fluid temperature and fluid resistivity, collected as part of the electromagnetic flowmeter log, are useful in the identification of flow and hydrogeologic interpretation.

  8. Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions

    SciTech Connect

    Dronawat, S.N.; Svihla, C.K.; Hanley, T.R.

    1997-12-31

    Volumetric gas-liquid mass transfer coefficients were measured in suspensions of cellulose fibers with concentrations ranging from 0 to 20 g/L. The mass transfer coefficients were measured using the dynamic method. Results are presented for three different combinations of impellers at a variety of gassing rates and agitation speeds. Rheological properties of the cellulose fibers were also measured using the impeller viscometer method. Tests were conducted in a 20 L stirred-tank fermentor and in 65 L tank with a height to diameter ratio of 3:1. Power consumption was measured in both vessels. At low agitation rates, two Rushton turbines gave 20% better performance than the Rushton and hydrofoil combination and 40% better performance than the Rushton and propeller combination for oxygen transfer. At higher agitation rates, the Rushton and hydrofoil combination gave 14 and 25% better performance for oxygen transfer than two Rushton turbines and the Rushton and hydrofoil combination, respectively. 8 refs., 11 figs., 1 tab.

  9. Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor.

    PubMed

    Shukla, V B.; Parasu Veera, U; Kulkarni, P R.; Pandit, A B.

    2001-07-01

    The gas-liquid mass transfer coefficient K(L)a in the fermenter is a strong function of mode of energy dissipation and physico-chemical properties of the liquid media. A combination of disc turbine (DT) and pitched blade turbine down flow (PTD) impellers has been tested in laboratory bioreactor for gas hold-up and gas-liquid mass transfer performance for the growth and biotransformation medium for an yeast isolate VS1 capable of biotransforming benzaldehyde to L-phenyl acetyl carbinol (L-PAC) and compared with those in water.Correlations have been developed for the prediction of the fractional gas hold-up and gas-liquid mass transfer coefficient for the above media. The mass transfer coefficient and respiration rate have been determined in the shake flask for the growth as well as for biotransformation medium. These results, then have been used to optimize the operating parameters (impeller speed and aeration) for growth and biotransformation in a laboratory bioreactor. The comparison of cell mass production and L-PAC production in the bioreactor has been done with that obtained in shake flask studies. PMID:11356367

  10. Orthogonal decomposition as a design tool: With application to a mixing impeller

    SciTech Connect

    Sloan, Benjamin

    2013-05-15

    Digital manufacturing eliminates the expense and time required to develop custom products. By utilizing this technology, designers can quickly create a customized product specifically for their performance needs. But the timescale and expense from the engineering design workflows used to develop these customized products have not been adapted from the workflows used in mass production. In many cases these customized designs build upon already successful mass-produced products that were developed using conventional engineering design workflows. Many times as part of this conventional design process significant time is spent creating and validating high fidelity models that accurately predict the performance of the final design. These existing validated high fidelity models used for the mass-produced design can be reused for analysis and design of unknown products. This thesis explores the integration of reduced order modeling and detailed analysis into the engineering design workflow developing a customized design using digital manufacturing. Specifically, detailed analysis is coupled with proper orthogonal decomposition to enable the exploration of the design space while simultaneously shaping the model representing the design. This revised workflow is examined using the design of a laboratory scale overhead mixer impeller. The case study presented here is compared with the design of the Kar Dynamic Mixer impeller developed by The Dow Chemical Company. The result of which is a customized design for a refined set of operating conditions with improved performance.

  11. Effect of soft-iron impellers on the von Kármán-sodium dynamo.

    PubMed

    Xu, Mingtian

    2014-01-01

    The explanation for the observed axisymmetric magnetic field in the von Kármán-sodium (VKS) dynamo experiment is still an unresolved question. In this paper, the integral equation approach is extended to investigate the VKS dynamo action by taking into account the discontinuity of the magnetic permeability and electrical conductivity in the conducting region. When the relative magnetic permeability of the soft-iron impellers is set to 65, a steady toroidal field that is apparently axisymmetric is excited at the critical magnetic Reynolds number, Rmc≈27.23, which is close to the experimental result, Rmc≈30. Our results show that the critical magnetic Reynolds number declines as the relative magnetic permeability of the impellers increases. Furthermore, when the relative magnetic permeability is not greater than 37, an equatorial magnetic field with an azimuthal wave number m=1 is the dominant mode, otherwise a steady toroidal field with an azimuthal wave number m=0 predominates the magnetic field generated by the VKS dynamo action. PMID:24580325

  12. Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    2006-01-01

    This paper represents a status report documenting the work on creep of superalloys performed under Project Prometheus. Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, are being screened to compare their respective capabilities for impeller applications. Several wrought superalloys including Hastelloy X, (Haynes International, Inc., Kokomo, IN), Inconel 617, Inconel 740, Nimonic 263, and Incoloy MA956 (Special Metals Corporation, Huntington, WV) are also being screened to compare their capabilities for duct applications. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Conventional tensile and creep tests were performed at temperatures up to 1200 K on specimens extracted from the materials. Initial microstructure evaluations were also undertaken.

  13. Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, john; Garg, Anita

    2007-01-01

    Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, have been screened to compare their respective capabilities for impeller applications. Mar-M247LC has been selected for additional long term evaluations. Initial tests in helium indicate this inert environment may debit long term creep resistance of this alloy. Several wrought superalloys including Hastelloy(Registered TradeMark) X, Inconel(Registered TradeMark) 617, Inconel(Registered TradeMark) 740, Nimonic(Registered TradeMark) 263, Incoloy(Registered TradeMark) MA956, and Haynes 230 are also being screened to compare their capabilities for duct applications. Haynes 230 has been selected for additional long term evaluations. Initial tests in helium are just underway for this alloy. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Therefore, long term microstructural stability is also being screened.

  14. Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    NASA Astrophysics Data System (ADS)

    Gabb, Timothy P.; Gayda, John; Garg, Anita

    2007-01-01

    Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, have been screened to compare their respective capabilities for impeller applications. Mar-M247LC has been selected for additional long term evaluations. Initial tests in helium indicate this inert environment may debit long term creep resistance of this alloy. Several wrought superalloys including Hastelloy® X, Inconel® 617, Inconel® 740, Nimonic® 263, Incoloy® MA956, and Haynes 230 are also being screened to compare their capabilities for duct applications. Haynes 230 has been selected for additional long term evaluations. Initial tests in helium are just underway for this alloy. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Therefore, long term microstructural stability is also being screened.

  15. High-speed flow visualization in a pump-turbine under off-design operating conditions

    NASA Astrophysics Data System (ADS)

    Hasmatuchi, V.; Roth, S.; Botero, F.; Avellan, F.; Farhat, M.

    2010-08-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  16. A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Langthjem, M. A.; Olhoff, N.

    2004-04-01

    This paper is concerned with the simulation of the flow in a flat, `two-dimensional' laboratory centrifugal pump. The main concern of the study is the calculation of the flow-induced noise. The aim of the present paper is to develop a computationally simple and fast method which is capable of giving a useful estimate of the noise-generating `background-flow'. A companion paper describes the hydroacoustic part of the analysis. In the numerical flow model of the pump, the inlet is modelled by a point source and the blades of the impeller are covered with vortex elements with discrete, bound vortices. The casing is covered with source panels. Vortices are shed from the trailing edges of the impeller blades and convected with the streaming fluid in order to satisfy Kelvin's theorem. After computation of the velocity field, the fluid forces acting on the impeller blades are calculated by application of the unsteady Bernoulli equation. Some case studies of pump flows are presented. The acoustic properties of these flows is the subject of the second part of the paper.

  17. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. Hydraulic design, numerical simulation and BVF diagnosis of high efficiency centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Chen, L.; Zhou, X.; Jiangand, C. W.; Su, M.

    2012-11-01

    Under the Two-dimensional Flow Theory and the Velocity Coefficient Theory, a centrifugal-pump impeller has been designed, based on the parameters of IS150-125-250 centrifugal pump. And self-compiled programs have been used to complete the hydraulic design of the whole flow passage of centrifugal pump. The space bending and twisting characteristics of the design blade are more obvious. Then, numerical simulation is applied to the inner flow field of the two pumps using RANS (Reynolds Averaged N-S) Equation with a standard k-ε two-equation turbulence model. The compare of the numerical simulation data of two centrifugal pumps, getting from 13 working points including design condition, shows that, the design pump has higher head and efficiency in the range of lower flow rate. Based on the numerical results of the inner flow of the design pump and model pump, the boundary vorticity flux (BVF) diagnostics has been used to analyze the BVF distribution of suction surface and pressure surface of two pumps. The result shows that, the BVF distribution of the design pump is more uniform and smooth, with smaller peak value.

  19. Computational Approach for Developing Blood Pump

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides an overview of the computational approach to developing a ventricular assist device (VAD) which utilizes NASA aerospace technology. The VAD is used as a temporary support to sick ventricles for those who suffer from late stage congestive heart failure (CHF). The need for donor hearts is much greater than their availability, and the VAD is seen as a bridge-to-transplant. The computational issues confronting the design of a more advanced, reliable VAD include the modelling of viscous incompressible flow. A computational approach provides the possibility of quantifying the flow characteristics, which is especially valuable for analyzing compact design with highly sensitive operating conditions. Computational fluid dynamics (CFD) and rocket engine technology has been applied to modify the design of a VAD which enabled human transplantation. The computing requirement for this project is still large, however, and the unsteady analysis of the entire system from natural heart to aorta involves several hundred revolutions of the impeller. Further study is needed to assess the impact of mechanical VADs on the human body

  20. A 2.5D Single Passage CFD Model for Centrifugal Pumps

    NASA Technical Reports Server (NTRS)

    Nakamura S.; Ding, W.; Yano, K.

    1998-01-01

    This paper describes the single passage model based on CFD to analyze the flow in blade passages of a centrifugal pump. The model consists of the flow passage between two impeller blades and the spaces in the inlet eye as well as in the volute. The incompressible Navier-Stokes equations in the conservation form are solved by a finite difference method. The code is designed to investigate the velocity and pressure distributions and intended to investigate how the pump design affects fluid flow through the rotor as well as the pump performance. An early part of the paper investigates the behavior of the model as well as validity of the assumptions made in the model. Then, applications to a rotodynamic heart pump are presented.

  1. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    NASA Astrophysics Data System (ADS)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  2. Numerical simulation of the effect of solid-volume fraction on induction force of screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Han, W.; Ma, W.; Li, R. N.; Gao, Y.; Gao, H.

    2012-11-01

    The solid-liquid two-phase unsteady flow in a screw centrifugal pump was simulated with unsteady Reynolds averaged Navier-Stokes equations and sliding mesh technology. The distribution of the pressure at volute outlet, radial force, axial force and total moment are presented in this paper. The effects of solid-phase volume fractions on the value and direction of the induction thrust are analyzed. Seven monitor points are arranged on the inner surface of volute along the impeller rotation. The characters of the induced force on the monitor points with different solid-phase volume fractions are investigated. The results indicated that different solid-volume fractions have litter effects on the trend and direction of pressure at volute, radial force, axial force and total moment during one period, but the value of induction forces increase with the increasing of solid-volume fraction; The pressure fluctuation on the monitor points has with different trends during one period, which depends on the direction of the monitor points and the rotor-stator interaction strength of impeller and volute. With the rotation of impeller, the values of pressure in the whole passage are further increased along the rotation direction with the role of impeller vane. Solid-phase volume fraction has few effects on change trend of induced thrust as radial force and axial force on the monitor points, but the values of pressure on the monitor points increase with the increasing of solid-volume fraction.

  3. Effect of impeller type and agitation on the performance of pilot scale ASBR and AnSBBR applied to sanitary wastewater treatment.

    PubMed

    de Novaes, Luciano Farias; Saratt, Bruna Luckmann; Rodrigues, Jos Alberto Domingues; Ratusznei, Suzana Maria; de Moraes, Deovaldo; Ribeiro, Rogers; Zaiat, Marcelo; Foresti, Eugenio

    2010-08-01

    The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m(3), treated 0.65 m(3) sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45 degrees -inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible. PMID:20363066

  4. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  5. Heat pump

    SciTech Connect

    Apte, A.J.

    1982-11-30

    A single working fluid heat pump system having a turbocompressor with a first fluid input for the turbine and a second fluid input for the compressor, and a single output volute or mixing chamber for combining the working fluid output flows of the turbine and the compressor. The system provides for higher efficiency than single fluid systems whose turbine and compressor are provided with separate output volutes.

  6. An implantable centrifugal blood pump for long term circulatory support.

    PubMed

    Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P

    1997-01-01

    A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function. PMID:9360134

  7. A viscous-inviscid interactive compressor calculations

    NASA Technical Reports Server (NTRS)

    Johnston, W.; Sockol, P. M.

    1978-01-01

    A viscous-inviscid interactive procedure for subsonic flow is developed and applied to an axial compressor stage. Calculations are carried out on a two-dimensional blade-to-blade region of constant radius assumed to occupy a mid-span location. Hub and tip effects are neglected. The Euler equations are solved by MacCormack's method, a viscous marching procedure is used in the boundary layers and wake, and an iterative interaction scheme is constructed that matches them in a way that incorporates information related to momentum and enthalpy thicknesses as well as the displacement thickness. The calculations are quasi-three-dimensional in the sense that the boundary layer and wake solutions allow for the presence of spanwise (radial) velocities.

  8. High order accurate solutions of viscous problems

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli

    1993-01-01

    We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.

  9. The stability of viscous liquid filaments

    NASA Astrophysics Data System (ADS)

    Driessen, Theo; Jeurissen, Roger; Wijshoff, Herman; Lohse, Detlef

    2012-11-01

    The stability of liquid filaments is relevant both in industrial applications, such as inkjet printing and atomization, and in nature, where the stability of filaments has a large influence on the final drop size distribution of rain droplets and waterfalls. The liquid filament may either stably collapse into a single droplet, or break up into multiple droplets. Which scenario is realized depends on the viscosity and the aspect ratio of the filament. Here we study the collapse of an axisymmetric liquid filament is analytically and with a numerical model. We find that a long, high viscous filament can only break up due to the Rayleigh-Plateau instability, whereas a low viscous filament can break up due to end-pinching. The theory shows quantitative agreement with recent experimental findings by Castréjon-Pita et al., PRL 108, 074506 (2012).

  10. Generation of highly-viscous microjets

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Onuki, Hajime; Oi, Yuto

    2015-11-01

    An ink-jet printing system (or a liquid-dispensing device) has ecological and cost advantages compared to other printing systems such as offset printing and gravure printing since it requires a small amount of liquids. However, most ink-jet printers are not able to eject high-viscous liquids more than 10 cSt. This limitation severely restricts applications of the ink-jet system. Here we present a novel jet-generation system, discharging jets of high-viscous liquids up to 1,000 cSt. The system employs an impulsive force and converges the force efficiently in order to accelerate the liquid-air interface strongly for generating viscous jets: It consists of a liquid container and a thin tube partially inserted in the liquid. The liquid-air interface inside the thin tube is set deeper than that outside of the tube. We then add an impulsive force on the bottom of the container, leading to the microjet generation inside the thin tube. The pressure field under the impulsive force is estimated using pressure-impulse approach, deriving the jet velocity. The jet velocity is experimentally measured with varying the impulsive force and liquid levels in the tube and the container. It is found that the measured velocities agree with the estimation. Owing to the simple structure of the generation system and an ability for ejecting viscous liquids, it could extend the limits of existing ink-jet printers and may be applicable for next-generation technologies such as 3D printing systems and needle-free injection devices. JSPS KAKENHI Grant Number 26709007.

  11. The partially filled viscous ring damper.

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  12. Chemical evolution of viscously evolving galactic discs

    NASA Technical Reports Server (NTRS)

    Clarke, Catherine J.

    1989-01-01

    The ability of the Lin-Pringle (1987) model of galactic disk formation to reproduce the observed radial distributions of total gas surface density and metals in disk galaxies is investigated. It is found that a satisfactory fit is obtained provided that there exists an outer cut-off to the star-forming disk beyond which gas is allowed to viscously evolve. The metallicity gradient is then established by radial inflow of gas from beyond this cut-off.

  13. Computation of viscous blast wave flowfields

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1991-01-01

    A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.

  14. A hyperbolic model for viscous Newtonian flows

    NASA Astrophysics Data System (ADS)

    Peshkov, Ilya; Romenski, Evgeniy

    2016-03-01

    We discuss a pure hyperbolic alternative to the Navier-Stokes equations, which are of parabolic type. As a result of the substitution of the concept of the viscosity coefficient by a microphysics-based temporal characteristic, particle settled life (PSL) time, it becomes possible to formulate a model for viscous fluids in a form of first-order hyperbolic partial differential equations. Moreover, the concept of PSL time allows the use of the same model for flows of viscous fluids (Newtonian or non-Newtonian) as well as irreversible deformation of solids. In the theory presented, a continuum is interpreted as a system of material particles connected by bonds; the internal resistance to flow is interpreted as elastic stretching of the particle bonds; and a flow is a result of bond destructions and rearrangements of particles. Finally, we examine the model for simple shear flows, arbitrary incompressible and compressible flows of Newtonian fluids and demonstrate that Newton's viscous law can be obtained in the framework of the developed hyperbolic theory as a steady-state limit. A basic relation between the viscosity coefficient, PSL time, and the shear sound velocity is also obtained.

  15. Nonisothermal viscous sintering of volcanic ash

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jrmie; Aulock, Felix W.; Hess, Kai-Uwe; Scheu, Bettina; Lavalle, Yan; Dingwell, Donald B.

    2014-12-01

    Volcanic ash is often deposited in a hot state. Volcanic ash containing glass, deposited above the glass transition interval, has the potential to sinter viscously both to itself (particle-particle) and to exposed surfaces. Here we constrain the kinetics of this process experimentally under nonisothermal conditions using standard glasses. In the absence of external load, this process is dominantly driven by surface relaxation. In such cases the sintering process is rate limited by the melt viscosity, the size of the particles and the melt-vapor interfacial tension. We propose a polydisperse continuum model that describes the transition from a packing of particles to a dense pore-free melt and evaluate its efficacy in describing the kinetics of volcanic viscous sintering. We apply our model to viscous sintering scenarios for cooling crystal-poor rhyolitic ash using the 2008 eruption of Chaitn volcano as a case example. We predict that moderate linear cooling rates of > 0.1C min-1 can result in the common observation of incomplete sintering and the preservation of pore networks.

  16. Viscous Glass Sealants for SOFC Applications

    SciTech Connect

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  17. Leapfrogging of multiple coaxial viscous vortex rings

    SciTech Connect

    Cheng, M. Lou, J.; Lim, T. T.

    2015-03-15

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  18. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Su, M.; Hou, H. C.; Song, P. F.

    2013-12-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model.

  19. Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by optimizing step bearings.

    PubMed

    Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-01-01

    We have developed a hydrodynamic levitation centrifugal blood pump with a semi-open impeller for a mechanically circulatory assist. The impeller levitated with original hydrodynamic bearings without any complicated control and sensors. However, narrow bearing gap has the potential for causing hemolysis. The purpose of the study is to investigate the geometric configuration of the hydrodynamic step bearing to minimize hemolysis by expansion of the bearing gap. Firstly, we performed the numerical analysis of the step bearing based on Reynolds equation, and measured the actual hydrodynamic force of the step bearing. Secondly, the bearing gap measurement test and the hemolysis test were performed to the blood pumps, whose step length were 0 %, 33 % and 67 % of the vane length respectively. As a result, in the numerical analysis, the hydrodynamic force was the largest, when the step bearing was around 70 %. In the actual evaluation tests, the blood pump having step 67 % obtained the maximum bearing gap, and was able to improve the hemolysis, compared to those having step 0% and 33%. We confirmed that the numerical analysis of the step bearing worked effectively, and the blood pump having step 67 % was suitable configuration to minimize hemolysis, because it realized the largest bearing gap. PMID:22254562

  20. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed.

    PubMed

    Lai, Zee-Wei; Rahim, Raha Abdul; Ariff, Arbakariya B; Mohamad, Rosfarizan

    2012-09-01

    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used. PMID:22608992