Science.gov

Sample records for viscous impeller pump

  1. A parametric study for improving the centrifugal pump impeller for use in viscous fluid pumping

    NASA Astrophysics Data System (ADS)

    Shojaeefard, M. H.; Tahani, M.; Khalkhali, A.; Ehghaghi, M. B.; Fallah, H.; Beglari, M.

    2013-02-01

    Essentially, performance of centrifugal pumps is affected when pumping viscous fluids. In this paper a new idea is proposed to overcome the undesirable effects of viscosity on the pump performance parameters. This idea based on this matter that one specific impeller can be designed, made and installed on the pump for pumping of one fluid with specific viscosity. Therefore a specific pump can be used for pumping of different fluids with different viscosity, by replacement of pump impeller. Replacement of the impeller is more cost effective in comparison to the replacement of the whole of the pump. Passage width and outlet angle of impeller are considered as design variables and the effects of such variables investigated using experimentally validated numerical model. The H-Q, P-Q and ?-Q graphs are extracted experimentally for the improved impeller, which show good improvement in comparison with original impeller.

  2. Pump impeller

    SciTech Connect

    Wickoren, D.R.

    1990-02-27

    This patent describes an impeller for pumping highly viscous liquids. It comprises: a substantially circular drive plate having first and second sides, a geometric center, and a marginal edge. The drive plate being adapted for rotation within a pump housing; a plurality of symmetrical, evenly spaced blades extending radially outwardly to present a tip. Each of the blades being connected only to the drive plate and extending substantially normal thereto to present a sharpened top edge opposite the drive plate. Each of the blades including a leading face corresponding to the direction of rotation of the impeller during operation and a trailing face oriented away from a direction of rotation of the impeller during operation thereof. Each of the blades including winglet means secured to the leading face thereof and located intermediate aid top edge and the drive plate and positioned more proximate to the top edge than to the drive plate.

  3. Cavopulmonary assist for the univentricular Fontan circulation: von Kármán Viscous Impeller Pump (VIP™)

    PubMed Central

    Rodefeld, Mark D; Coats, Brandon; Fisher, Travis; Giridharan, Guruprasad A; Chen, Jun; Brown, John W; Frankel, Steven H

    2010-01-01

    Objectives In a univentricular Fontan circulation, modest augmentation of existing cavopulmonary pressure head (2–5 mmHg) would reduce systemic venous pressure, increase ventricular filling, and thus, substantially improve circulatory status. An ideal means of providing mechanical cavopulmonary support does not exist. We hypothesized that a viscous impeller pump, based on the von Kármán viscous pump principle, is optimal for this role. Methods A 3-dimensional computational model of the total cavopulmonary connection was created. The impeller was represented as a smooth 2-sided conical actuator disk with rotation in the vena caval axis. Flow was modeled under 3 conditions: 1) passive flow with no disc; 2) passive flow with a non-rotating disk, and 3) induced flow with disc rotation (0–5K rpm). Flow patterns and hydraulic performance were examined for each case. Hydraulic performance for a vaned impeller was assessed by measuring pressure rise and induced flow over 0–7K rpm in a laboratory mock loop. Results A nonrotating actuator disc stabilizes cavopulmonary flow, reducing power loss by 88%. Disk rotation (from baseline dynamic flow of 4.4 L/min) resulted in a pressure rise of 0.03 mmHg. A further increase of pressure of 5–20 mmHg and 0–5 L/min flow were obtained with a vaned impeller at 0–7K rpm in a laboratory mock loop. Conclusions A single viscous impeller pump stabilizes and augments cavopulmonary flow in 4 directions, in the desired pressure range, without venous pathway obstruction. It applies to the existing staged protocol as a temporary bridge-to-recovery or –transplant in established univentricular Fontan circulations. It may also enable compressed palliation of single ventricle without need for intermediary surgical staging or use of a systemic-to-pulmonary arterial shunt. PMID:20561640

  4. Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist

    PubMed Central

    Giridharan, GA; Koenig, SC; Kennington, J; Sobieski, MA; Chen, J; Frankel, SH; Rodefeld, MD

    2012-01-01

    Purpose The anatomic and physiologic constraints for pediatric cavopulmonary assist differ markedly from adult Fontan circulations due to smaller vessel sizes and risk of elevated pulmonary resistance. In this study, hemodynamic and hemolysis performance capability of a catheter-based viscous impeller pump (VIP) to power the Fontan circulation is assessed at a pediatric scale (~15 kg) and performance range (0-30 mmHg). Methods Computer simulation and mock circulation studies were conducted to assess the hydraulic performance, acute hemodynamic response to different levels VIP support, and the potential for vena cavae collapse. Computational fluid dynamics (CFD) simulations were used to estimate VIP hydraulic performance, shear rates, and potential for hemolysis. Hemolysis was quantified in a mock loop with fresh bovine blood. Results A VIP augmented 4-way total cavopulmonary connection flow at pediatric scales and restored systemic pressures and flows to biventricular values, without causing flow obstruction or suction. VIP generated flows up to 4.1 L/min and pressure heads of up to 38 mmHg at 11,000 rpm. Maximal shear rate was 160 Pa, predicting low hemolysis risk. Observed hemolysis was low with plasma free hemoglobin of 11.4 mg/dL/hr. Conclusions A VIP will augment Fontan cavopulmonary flow in the proper pressure and flow ranges, with low hemolysis risk under more stringent pediatric scale and physiology compared to adult scale. This technology may be developed to simultaneously reduce systemic venous pressure and improve cardiac output after stage-2 or -3 Fontan repair. It may serve to compress surgical staging, lessening the pathophysiologic burden of repair. PMID:22421403

  5. Centrifugal pump impeller

    SciTech Connect

    Lovisetto, P.

    1988-01-19

    An impeller for a centrifugal pump is described comprising: a rotatable impeller shaft; circumferentially spaced vanes mounted for rotation with the impeller shaft, the vanes extending outwardly relative to the impeller shaft and each including first and second axially-spaced edges; first and second axially-spaced cover members for vanes, the cover members being mounted for rotation with the impeller shaft and extending outwardly relative to the axial direction of the impeller shaft, the first cover member being disposed adjacent to the first edges of the vanes and the second cover member being disposed adjacent to the second edges of the vanes so as to provide an impeller chamber between the first and second cover members which is divided into subchambers by the vanes. One of the first and second cover members has a centrally disposed inlet opening therethrough for admitting fluid into the impeller chamber to then be conducted outwardly upon rotation of the impeller shaft; and the fist cover member being so constructed and mounted relative to the vanes that a portion thereof is free to flex axially away from respective portions of the first edges of the vanes in response to fluid pressure pulsations within the impeller chamber to temporarily increase the distance between the portion of the first cover and the respective portions of the first edges of the vanes.

  6. Rotordynamic forces on centrifugal pump impellers

    NASA Astrophysics Data System (ADS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  7. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  8. High Head Unshrouded Impeller Pump Stage Technology

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)

    2000-01-01

    Objective to develop an unshrouded impeller design, which a meets the performance requirements of a 3-stage fuel pump with a 2-stage pump design, has been accomplished. Performance of the baseline unshrouded impeller has been experimentally verified. Unshrouded impeller trade study and final 6+6 unshrouded impeller configuration has been presented. Structurally viable, 6+6-impeller design concept has been produced. Based on results presented in this study, at a nominal 10% tip-clearance, the 6+6 impeller design would increase payload to orbit by almost 625 lbs. per engine. The RLV vehicle requires 7 engines, therefore, application of high head unshrouded technology would increase payload capability by as much as 4,375 lbs. per vehicle.

  9. Trim or Replace Impellers on Oversized Pumps

    SciTech Connect

    Not Available

    2006-09-01

    One in a series of tip sheets to help manufacturers optimize their industrial pumping systems. As a result of conservative engineering practices, pumps are often substantially larger than they need to be for an industrial plant's process requirements. Centrifugal pumps can often be oversized because of ''rounding up'', trying to accommodate gradual increases in pipe surface roughness and flow resistance over time, or anticipating future plant capacity expansions. In addition, the plant's pumping requirements might not have been clearly defined during the design phase. Because of this conservative approach, pumps can have operating points completely different from their design points. The pump head is often less than expected, while the flow rate is greater. This can cause cavitation and waste energy as the flow rate typically must be regulated with bypass or throttle control. Oversized and throttled pumps that produce excess pressure are excellent candidates for impeller replacement or ''trimming'', to save energy and reduce costs. Trimming involves machining the impeller to reduce its diameter. Trimming should be limited to about 75% of a pump's maximum impeller diameter, because excessive trimming can result in a mismatched impeller and casing. As the impeller diameter decreases, added clearance between the impeller and the fixed pump casing increases internal flow recirculation, causes head loss, and lowers pumping efficiency. For manufacturing standardization purposes, pump casings and shafts are designed to accommodate impellers in a range of sizes. Many pump manufacturers provide pump performance curves that indicate how various models will perform with different impeller diameters or trims. The impeller should not be trimmed any smaller than the minimum diameter shown on the curve. Net positive suction head requirements (NPSHR) usually decrease at lower flow rates and can increase at the higher end of the pump head curve. The NPSHR at a given flow rate will normally be greater with a smaller impeller, but engineers should consult with the pump manufacturer to determine variations in NPSHR before trimming the impeller. Manufacturers can often provide trim correction charts based on historical test data.

  10. High Head Unshrouded Impeller Pump Stage Technology

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)

    2000-01-01

    A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.

  11. CFD analysis of pump consortium impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Williams, R. W.

    1992-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.

  12. Sonic impeller for sonic well pump

    SciTech Connect

    Bodine, A.G.

    1987-09-22

    This patent describes a pumping system for pumping fluid out of a well comprising a tubing string for conducting the fluid, the tubing string running down the well. It consists of a rod string fabricated of elastic material contained within the tubing string and running therealong, the rod string being spaced from the tubing string, vibration generator means for providing vibrational energy to the rod string at a frequency such as to effect resonant standing wave vibration of the rod string, and sonic impeller elements fixedly mounted on the rod string at spaced intervals. The impeller elements each have a cylindrical sleeve with an elongated cylindrical body portion with an outside diameter slightly less than the inside diameter of the tubing string to form a narrow annular gap. The annular gap fills with the fluid to form a fluid annulus. The fluid annulus presents acoustic mass impedance which provides a fluid dynamic seal against leak back flow past the body portion, the sonic energy effecting pumping action of the impeller elements to pump the well fluid up the tubing string.

  13. Some unsteady fluid forces on pump impellers

    NASA Astrophysics Data System (ADS)

    Miskovish, R. S.; Brennen, C. E.

    1992-12-01

    Special analyses of all the forces and moments acting on a typical centrifugal pump impeller/volute combination are presented. These exhibit shaft frequencies, blade passing frequencies, and beat frequencies associated with a whirl motion imposed on the shaft in order to measure rotordynamic forces. Among other features the unsteady thrust was found to contain a surprisingly large blade passing harmonic. While previous studies have explored the magnitudes of the steady fluid-induced radial forces and the fluid-induced rotordynamic forces for this typical centrifugal pump impeller/volute combination, this paper presents information on the steady bending moments and rotordynamic moments due to the fluid flow. These imply certain axial locations for the lines of action of the radial and rotordynamic forces. Data on the lines of action are presented and allow inferences on the sources of the forces.

  14. Some unsteady fluid forces on pump impellers

    NASA Technical Reports Server (NTRS)

    Miskovish, R. S.; Brennen, C. E.

    1992-01-01

    Special analyses of all the forces and moments acting on a typical centrifugal pump impeller/volute combination are presented. These exhibit shaft frequencies, blade passing frequencies, and beat frequencies associated with a whirl motion imposed on the shaft in order to measure rotordynamic forces. Among other features the unsteady thrust was found to contain a surprisingly large blade passing harmonic. While previous studies have explored the magnitudes of the steady fluid-induced radial forces and the fluid-induced rotordynamic forces for this typical centrifugal pump impeller/volute combination, this paper presents information on the steady bending moments and rotordynamic moments due to the fluid flow. These imply certain axial locations for the lines of action of the radial and rotordynamic forces. Data on the lines of action are presented and allow inferences on the sources of the forces.

  15. Streamlined design of impeller and its effect on pump haemolysis.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-01-01

    To investigate the effect of impeller design on pump haemolysis, five impellers with different numbers of vanes or different vane angles were manufactured and tested in one pump for haemolysis comparison. The impellers had the same dimension and logarithmic spiral vane form that coincided with the stream surfaces in the pump, according to an analytical and three-dimensional design method developed by the authors. Consequently, an impeller with six vanes and a 30 degrees vane angle had the lowest haemolysis index. The result agrees with the theoretical analyses of other investigators searching for the optimal vane number and vane angle to achieve the highest efficiency of the pump. PMID:12102327

  16. [Effect of impeller vane number and angles on pump hemolysis].

    PubMed

    Qian, Kunxi; Feng, Zhigang; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2003-12-01

    To evaluate the effect of impeller design on pump hemolysis, five impellers with different number of vanes or different vane angles were manufactured and tested in one pump for hemolysis comparison. The impellers are made to have the same dimension and same logarithmic spiral vane from which coincide with the stream surfaces in the pump, according to the analytical and three-dimensional design method developed by the authors. Consequently, an impeller with 6 vanes and 30 degrees vane angle has the lowest hemolysis index. This result agrees with the theoretical analyses of other investigators searching optimal number of vanes and vane angle to achieve the highest efficiency of the pump. PMID:14716856

  17. Impeller design for a miniaturized centrifugal blood pump.

    PubMed

    Takano, T; Schulte-Eistrup, S; Yoshikawa, M; Nakata, K; Kawahito, S; Maeda, T; Nonaka, K; Linneweber, J; Glueck, J; Fujisawa, A; Makinouchi, K; Yokokawa, M; Nos, Y

    2000-10-01

    The impeller design for a miniature centrifugal blood pump is an important consideration since the small diameter impeller requires higher rotational speed, which may cause more blood trauma compared to the larger diameter impeller. Three different impeller vanes (straight vanes with a height of 4 mm and 8 mm, and 8 mm curved vanes) of which the diameter was 35 mm were subjected to hydraulic performance and hemolysis tests in the same pump housing. Both straight vane impellers attained left ventricular assist condition (5 L/min against 100 mm Hg) at 2,900 rpm while the curved vane required 3,280 rpm. There was no significant hemolysis difference between the tall and short vanes. The curved impeller vanes did not exhibit sufficient hydraulic performance when compared to the straight vanes. The straight vane impellers, even with different heights, were incorporated into the same pump housings, and the vane heights did not drastically change the hydraulic performance or hemolysis. PMID:11091172

  18. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.

    PubMed

    Nishimura, Ikuya; Ichikawa, S; Mikami, M; Ishitoya, H; Motomura, T; Kawamura, M; Linneweber, J; Glueck, J; Shinohara, T; Nosé, Y

    2013-01-01

    The Gyro centrifugal pump developed as a totally implantable artificial heart was designed with a free impeller, in which the rotational shaft (male bearing) of the impeller was completely separated from the female bearing. For this type of pump, it is very important to keep the proper magnet balance (impeller-magnet and actuator-magnet) in order to prevent thrombus formation and/or bearing wear. When the magnet balance is not proper, the impeller is jerked down into the bottom bearing. On the other hand, if magnet balance is proper, the impeller lifted off the bottom of the pump housing within a certain range of pumping conditions. In this study, this floating phenomenon was investigated in detail. The floating phenomenon was proved by observation of the impeller behavior using a transparent acrylic pump. The impeller floating phenomenon was mapped on a pump performance curve. The impeller floating phenomenon is affected by the magnet-magnet coupling distance and rotational speed of the impeller. In order to keep the proper magnet balance and to maintain the impeller floating phenomenon at the driving condition of right and left pump, the magnet-magnet coupling distance was altered by a spacer which was installed between the pump and actuator. It became clear that the same pump could handle different conditions (right and left ventricular assist), by just changing the thickness of the spacer. When magnet balance is proper, the floating impeller phenomenon occurs automatically in response to the impeller rev. It is called "the dynamic RPM suspension". PMID:23442236

  19. Turbo-pump with isolated two stage impellers for future rocket engine (Trial to drive impellers independently)

    NASA Astrophysics Data System (ADS)

    Kanemoto, Toshiaki; Shimojyo, Makoto; Kawashima, Ryunosuke; Tanaka, Daisuke; Inagaki, Akira; Oba, Shin

    2008-03-01

    To suppress the cavitation in the impellers and to make the turbo-pump lives longer, the inducer was separated from the main impeller and both impellers were driven independently. The performance of the pump and the flow conditions around the impellers were investigated experimentally and the following results were obtained. (1)The main impeller contributes to the flow interaction between the inducer and the main impeller. (2)The rotational speeds of both impellers can be controlled independently in order to suppress simultaneously the cavitation not only in the main impeller, but also in the inducer.

  20. A new total heart design via implantable impeller pumps.

    PubMed

    Qian, K X

    1990-04-01

    Hemolysis and thrombosis have been considered as the main limitations of the impeller pump and other centrifugal pumps to total heart applications. One of the solutions is to choose the impeller shroud and vane according to the stream surfaces of blood flow, so as to vanish the turbulence and stagnation which cause the hemolysis and thrombosis, respectively, in the pump. This paper describes the method of deducing the stream surfaces together with the velocity distributions in the impeller from the fundamental dynamical equations, and presents a prototype design of the impeller total heart which promises to be an ideal alternative to the problematic diaphragm total heart. PMID:2345382

  1. Impeller for a moderate-flow centrifugal pump

    SciTech Connect

    Ryazanov, S.D.

    1985-07-01

    The author explains the problems in design that cause the inefficiency of conventional low-discharge centrifugal pumps. He then describes the design and operation of an impeller with improved energy characteristics. He concludes that the new design, intermediate between an impeller with cylindrical channels and the conventional impellers with straight vanes, makes it possible to expand the recommended adjustment range of the pump's delivery and to increase the pressure and efficiency by approximately 9%.

  2. Recent progress in developing durable and permanent impeller pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-04-01

    Since 1980s, the author's impeller pump has successively achieved the device implantability, blood compatibility and flow pulsatility. In order to realize a performance durability, the author has concentrated in past years on solving the bearing problems of the impeller pump. Recent progress has been obtained in developing durable and permanent impeller blood pumps. At first, a durable impeller pump with rolling bearing and purge system has been developed, in which the wear-less rollers made of super-high-molecular weight polythene make the pump to work for years without mechanical wear; and the purge system enables the bearing to work in saline and heparin, and no thrombus therefore could be formed. Secondly, a durable centrifugal pump with rolling bearing and axially reciprocating impeller has been developed, the axial reciprocation of rotating impeller makes the fresh blood in and out of the bearing and to wash the rollers once a circle; in such way, no thrombus could be formed and no fluid infusion is necessary, which may bring inconvenience and discomfort to the receptors. Finally, a permanent maglev impeller pump has been developed, its rotor is suspended and floating in the blood under the action of permanent magnetic force and nonmagnetic forces, without need for position measurement and feed-back control. In conclusion, an implantable, pulsatile, and blood compatible impeller pump with durability may have more extensive applications than ever before and could replace the donor heart for transplantation in the future. PMID:12099505

  3. Viscous pumping inspired by flexible propulsion.

    PubMed

    Arco, Roger M; Vlez-Cordero, J Rodrigo; Lauga, Eric; Zenit, Roberto

    2014-09-01

    Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance, ciliated organisms rely on the collective motion of flexible appendages to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such a fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measured experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flexible impellers in mixing operations at low Reynolds numbers. PMID:24667497

  4. Origins of hydrodynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  5. Impeller inner diameter in a miniaturized centrifugal blood pump.

    PubMed

    Takano, Tamaki; Schulte-Eistrup, Sebastian; Kawahito, Shinji; Maeda, Tomohiro; Nonaka, Kenji; Linneweber, Joerg; Glueck, Julie; Fujisawa, Akira; Makinouchi, Kenzo; Yokokawa, Michihiro; Nos, Yukihiko

    2002-01-01

    To design a miniaturized centrifugal blood pump, the impeller internal diameter (ID), which is a circle diameter on the inner edge of the vane, is considered one of the important aspects. Hydraulic performance, hemolysis, and thrombogenicity were evaluated with different impeller IDs. Two impellers were fabricated with an outer diameter of 35 mm, of which 1 had an 8 mm ID impeller and the other had a 12 mm ID. These impellers were combined with 2 different housings in which the inlet port was eccentrically positioned 3.8 and 4.5 mm offset from the center. The hydraulic performance and hemolysis were evaluated in a mock circuit, and thrombogenicity was evaluated in a 2 day ex vivo study with each impeller housing combination. Both impellers required 3,000 rpm in the 3.8 mm offset inlet to attain 5 L/min against 100 mm Hg (left ventricular assist device condition). The 8 mm ID impeller required 3,200 rpm, and the 12 mm ID impeller required 3,100 rpm in the 4.5 mm offset housing. The normalized index of hemolysis was 0.0080 +/- 0.0048 g/100 L in the 8 mm ID impeller with the 3.8 mm offset and 0.022 +/- 0.018 g/100 L with 4.5 mm offset. The 12 mm ID impeller had 0.068 +/- 0.028 g/100 L with the 3.8 mm offset and 0.010 +/- 0.002 g/100 L with the 4.5 mm offset. After the 2 day ex vivo study, no blood clot was formed around the top bearing in all the pump heads. The 8 mm ID impeller with 3.8 mm offset inlet and the 12 mm ID impeller with the 4.5 mm offset had less hemolysis compared to the other pump heads that were subjected to 14 day ex vivo and 10 day in vivo studies. The 8 mm ID impeller with the 3.8 mm offset inlet had a blood clot around the top bearing after the 14 day ex vivo study. No thrombus was found around the top bearing of the 12 mm ID impeller with the 4.5 mm offset in the 10 day in vivo study. These results suggest that the ID does not greatly change the hydraulic performance of a small centrifugal blood pump. The proper combination of the impeller ID and inlet port offset obtains less hemolysis. The larger impeller ID is considered to have less thrombogenicity around the top bearing. PMID:11872016

  6. Analyses of hydrodynamic radial forces on centrifugal pump impellers

    NASA Astrophysics Data System (ADS)

    Adkins, D. R.; Brennen, C. E.

    1988-03-01

    An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.

  7. Analyses of hydrodynamic radial forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, D. R.; Brennen, C. E.

    1988-01-01

    An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.

  8. Nuclear reactor coolant pump impeller/shaft assembly

    SciTech Connect

    Jenkins, L.S.

    1987-09-01

    A pump is described comprising: (a) a casing having an inlet and an outlet in fluid communication for circulating fluid coolant through the pump; (b) a shaft positioned in the casing; (c) an impeller nut connected to the shaft; (d) a lockbolt fixedly connecting the impeller nut relative to the shaft; (e) passageway means with first and second ends for directing fluid from the lockbolt to the shaft; (f) first conduit means formed in the impeller nut in fluid communication with the first end of the passageway means and the inlet of the casing; and (g) second conduit means formed in the impeller nut in fluid communication with the second end of the passageway means and the outlet of the casing. A portion of the fluid coolant circulating through the inlet of the casing is pumped through the first conduit means, through the passageway means, out the second conduit means and into the outlet of the casing.

  9. Low haemolysis pulsatile impeller pump: design concepts and experimental results.

    PubMed

    Qian, K X

    1989-11-01

    A pulsatile fully implantable impeller pump with low haemolysis has been produced by developing a pulsatile impeller for a nonpulsatile pump also developed in this laboratory. The impeller was designed according to the 3-dimensional theory of fluid dynamics. The impeller shroud retains the same parabolic form and the vane has a form compacted by a radial logarithmic spiral and an axial helical spiral so that the absolute vibration velocity of the blood in a peripheral direction is a minimum as the impeller changes its speed periodically to generate a physiological pulsatile blood flow. Thus the Reynolds shear and the Newton shear are a minimum for the required pulse pressure. The mean volume and mean pressure are controlled by adjusting the voltage. The shape of the pressure pulse is determined by a square wave of voltage and the systole/diastole ratio. In order to abolish regurgitation of the pump, a 40 per cent systole period and a 5 V voltage pulse are desirable for 40 mmHg pulse pressure (80 120 mmHg mean pressure). The pulse frequency has almost no effect on pump output. The pump can delivery 4 l/min mean volume and 100 mmHg mean pressure (40 mmHg pulse pressure), and these conditions result in an index of haemolysis (IH) for porcine blood of 0.020--only slightly more than the nonpulsatile pump (0.016). When the pulsatile impeller was used under nonpulsatile conditions its IH was almost doubled, but when the nonpulsatile impeller was used under pulsatile conditions the IH reached 0.13. The power consumption is approximately equal to that for the nonpulsatile pump: 3W for 4 l/min and 100 mmHg output.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2811347

  10. The helical flow pump with a hydrodynamic levitation impeller.

    PubMed

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou

    2012-12-01

    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19l/min against 100mmHg of pressure head and 11% maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203days of pumping. In the second experiment, a white thrombus was found in the pump after 23days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP. PMID:22926404

  11. Investigation on impeller radial force for double-suction centrifugal pump with staggered blade arrangement

    NASA Astrophysics Data System (ADS)

    Zhang, Z. C.; Wang, F. J.; Yao, Z. F.; Leng, H. F.; Zhou, P. J.

    2013-12-01

    In order to find the effects of blade arrangement on impeller radial force, a double-suction centrifugal pump with two impeller configurations is investigated by using CFD approach. The two impeller have same geometry, same blade number, and different blade arrangement. One is staggered impeller in which the blades are arranged with half of blade phase angle staggered in circular direction, another is traditional symmetrical impeller with symmetrical blade arrangement. Results show that the radial force vector diagram for symmetrical impeller is a hexagonal, while it is nearly a circle for staggered impeller. The staggered impeller results no radial force saltation which exists in symmetrical impeller. The blade passing frequency dominates the radial force fluctuation in symmetrical impeller, while this frequency is almost not existed in staggered impeller. The results indicate that staggered blade arrangement can significantly reduce radial force fluctuation in double-suction centrifugal pump.

  12. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    NASA Astrophysics Data System (ADS)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  13. Research on performance of centrifugal pump with different-type open impeller

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Wang, Canfei; Zhu, Zuchao; Jin, Yingzi; Jin, Yuzhen

    2013-12-01

    To investigate the influence of impeller type on the performance and inner flow of centrifugal pump, the numerical simulation and experimental research were carried out on the same centrifugal pump with straight-blade and curved-blade open impeller. Based on SIMPLEC algorithm, time-averaged N-S equation and the standard k-? turbulence model, the numerical results are obtained. The pressure distribution in the different type impellers is uniform, while the low pressure area in straight-blade inlet is larger. The vortexes in the passage of impeller exist in both cases. Relative to curved-blade impeller, there are larger vortexes in most of the flow passages except the passage near the tongue in straight-blade impeller. Also some small backflow regions are found at the blade inlet of two impellers. The characteristic curves achieved by numerical simulation basically agree with those by experiment, and straight-blade open impeller centrifugal pump has a better hydraulic performance.

  14. Fluid-structure interaction forces at pump-impeller-shroud surfaces for axial vibration analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    The axial forces developed on a pump impeller shroud surfaces are analyzed using a bulk-flow model of the leakage path between the impeller and the housing. Shear stresses at the impeller and the housing surfaces are modeled according to Hirs's turbulent lubrication model. The calculated results yield predictions of resonance peaks of the fluid within the annulus formed by the impeller shroud and housing. Numerical results are presented for a double-suction single-stage pump, showing that the direct stiffness of the perturbed impeller shroud forces is negligible; the forces become important only for pumps with very low axial natural frequencies in comparison to the running speed.

  15. A study of the outlet velocity characteristics of slurry pump impellers

    SciTech Connect

    Hergt, P.; Brodersen, S.; Pagalthivarti, K.V.; Visintainer, R.J.

    1994-12-31

    The outlet velocity characteristics of an impeller is one factor that determines the hydraulic performance as well as the wear in the casing of a slurry pump. In this study the results of detailed flow field measurements of three similar sized impellers with different design of the meridional section are reported. Two impellers are slurry pump impellers of two different manufacturers, the third one is an impeller for pure water handling designed with respect of high efficiency. The measuring results are then applied in a quasi three-dimensional computer code to determine casing wear. This shows the role of the impeller design on wear. The results also show, which component of the impeller outlet velocity is the important one. In a first step pump operation at BEPQ is considered.

  16. The pulsatile impeller pump for left ventricular assist.

    PubMed

    Wang, S S; Chu, S H; Chou, N K; Qian, K X

    1996-12-01

    Because of severe hemolysis, especially on producing pulsatile flow by changing the rotating speed of the impellers, the traditional centrifugal pump was rarely used for long-term support of the failing heart. We therefore developed a motor driven pulsatile implantable impeller pump. The pulsatility was achieved by changing the rotating speed via introducing a square waveform voltage into the motor coil. The impeller vane was designed to have both radial and axial curves according to the stream surface and stream lines to reduce the thrombosis and hemolysis. Nine calves weighing 80 to 100 kg were used. With the calves under endotracheal general anesthesia, left posterolateral thoracotomy was performed to connect the inflow tube with the left atrial appendage and to anastomose the outflow tube with the descending aorta. The calves usually awoke and stood up within hours after discontinuation of anesthetics. Within 7 days, continuous monitoring of electrocardiogram, systemic and pulmonary arterial pressures, and central venous pressure were performed to adjust the pump flow to 40% to 50% of the cardiac output. During the survival of 4 to 54 days (mean 16.3 +/- 19.3 days with two calves surviving longer than 1 month), no significant deterioration of liver or renal function was noted. Because of bleeding, hemoglobin reduced from 11.4 +/- 1.8 to 9.0 +/- 1.3 g/dl, and the hematocrit decreased from 34.5 +/- 4.7 to 26.7 +/- 4.6%. No significant changes of free hemoglobin were noted. In our results, the device revealed competent pulsatile function without severe blood damage or organ dysfunction. PMID:8947454

  17. Interaction of impeller and guide vane in a series-designed axial-flow pump

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, Y. S.; Lee, K. Y.; Kim, J. H.

    2012-11-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  18. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Woodard, John C

    2004-03-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing. PMID:15046628

  19. Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Yang, Zhengjun; Wang, Fujun; Zhou, Peijian

    2012-09-01

    The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.

  20. A Navier-Stokes solution of the three-dimensional viscous compressible flow in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.

    1977-01-01

    A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.

  1. Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Oh, K. T.; Pyun, K. B.; Kim, C. K.; Choi, Y. S.; Yoon, J. Y.

    2012-11-01

    In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected and effect of the design parameters on the performance of the pump was analyzed using CFD and Response Surface Method to optimized impeller. This study also proposed the optimization geometry of pump impeller for performance improvement through the results from numerical analysis that was obtained optimum design pump; efficiency 98.2% and head 64.5m. In addition, the pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

  2. Static and Dynamic Analysis of a Pump Impeller with a Balancing Device Part I: Static Analysis

    NASA Astrophysics Data System (ADS)

    Kundera, C.; Martsinkovsky, V. A.

    2014-08-01

    This part of the work presents the design and static analysis of an impeller for a single-stage pump. The impeller is directly connected with a balancing device. The impeller needs to have a properly designed system of longitudinal and lateral clearances on both sides. With the simplifying assumptions concerning the flow and distribution of pressure in the longitudinal and lateral clearances, the static analysis involved deriving relationships between the impeller geometry and the basic performance parameters of the pump. A numerical example was used to show the calculation procedure of static characteristics for the predetermined parameters

  3. Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Guan, Huasheng; Ye, Zhifeng

    2015-12-01

    As typical pump with large flow rate and high reliability, centrifugal pumps in fuel system of aero-engines mostly regulate flow rate by flow bypass, which leads to low efficiency and large fuel temperature rise especially at low flow rate. An innovative fuel centrifugal pump with variable impeller width is a more effective way to regulate flow rate than flow bypass. To find external characteristics of the centrifugal pump with variable impeller width proposed in this paper, flow domain within the pump is simulated numerically and some primary performance parameters and their correlation are analyzed. Results show that flow rate of the pump can be regulated by variable impeller width and that efficiency for this scheme is higher than that for flow bypass. The higher outlet static pressure the pump runs at, the wider range of flow rates can be obtained with stronger nonlinear relationship between flow rate and impeller width.

  4. Recent studies of the centrifugal blood pump with a magnetically suspended impeller.

    PubMed

    Akamatsu, T; Tsukiya, T; Nishimura, K; Park, C H; Nakazeki, T

    1995-07-01

    We have been developing a centrifugal blood pump with a magnetically suspended impeller. To improve pump efficiency, we investigated the pump performances of many kinds of impeller vanes and diffusers, as well as the flow in the gap between the impeller discs and the pump housing. We found the vanes and the diffusers with high pump efficiency; however, high efficiency does not mean low hemolysis. It seems important to prevent generation of small-sized eddies with high shear stress. Hemolysis tests are carried out to find the optimal vane profile and gap clearance. The index of hemolysis and temperature change of our pump is better than those of the Biopump. Short-term in vivo studies show that the layer of white thrombi adheres to the machined rough surface of polycarbonate, which composes the narrow gap (0.2 mm) between the impeller and the pump wall, but a smooth surface coated with silicon prevents adhesion of that layer. PMID:8572964

  5. Static and Dynamics of a Pump Impeller with a Balancing Device Part II: Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Martsinkovsky, V. A.; Zhulyov, A.; Kundera, C.

    2014-08-01

    This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with characteristics determined for a real single-stage centrifugal pump

  6. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics. PMID:12873075

  7. Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1987-01-01

    Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.

  8. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  9. The realization of a pulsatile implantable impeller pump with low hemolysis.

    PubMed

    Qian, K X; Fei, Q; Lin, K D; Pi, K D; Wang, Y P

    1989-04-01

    A pulsatile implantable impeller pump with low hemolysis was developed without markedly increasing the complexity of the system compared with the nonpulsatile pump. The key to the question is to design a three-dimensional impeller with twisted vanes, compacted by an axial helical spiral and a radial logarithmic spiral so as to reduce the turbulent shear in the pump as the impeller changes its rotations per minute periodically to generate a physiologic pulsatile flow. Both mathematic computation of velocity distribution in the impeller and geometric illustration of the velocity triangle at the top of the vane have demonstrated that the peripheral velocity variation of blood cells in a twisted impeller will be less than that in an untwisted impeller. Thus, the main mechanical factor of hemolysis in the impeller pump, namely, the turbulent shear, should be reduced because it is proportional to the product of velocity variations measured in two perpendicular directions. In the in vitro experiments, the pump delivered 4 L/min mean flow at 100 mm Hg mean pressure (pulsed between 80-120 mm Hg) for more than 3 h in a circulatory model containing 700 ml of fresh citrated porcine blood. Every half hour, the free hemoglobin level in the plasma was tested, and the resulting index of hemolysis was about 0.020, slightly more than that of a nonpulsatile impeller pump developed in Shanghai. To compare hemolysis, the index of hemolysis of this pump is about 1/6 of that of the self-made diaphragm pump and 1/13 of that of the Polystan Pulsatile Pump.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2705888

  10. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Babayigit, Osman; Kocaaslan, Osman; Hilmi Aksoy, Muharrem; Melih Guleren, Kursad; Ozgoren, Muammer

    2015-05-01

    Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-? turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18, 20, 25, 30 and 35. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  11. Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing

    NASA Astrophysics Data System (ADS)

    Will, Björn-Christian; Benra, Friedrich-Karl; Dohmen, Hans-Josef

    2012-06-01

    The paper is concerned with the fluid flow in the impeller side clearances of a centrifugal pump with volute casing. The flow conditions in these small axial gaps are of significant importance for a number of effects such as disk friction, leakage losses or hydraulic axial thrust to name but a few. In the investigated single stage pump, the flow pattern in the volute turns out to be asymmetric even at design flow rate. To gain a detailed insight into the flow structure, numerical simulations of the complete pump including the impeller side clearances are accomplished. Additionally, the hydraulic head and the radial pressure distributions in the impeller side clearances are measured and compared with the numerical results. Two configurations of the impeller, either with or without balancing holes, are examined. Moreover, three different operating points, i.e.: design point, part load or overload conditions are considered. In addition, analytical calculations are accomplished to determine the pressure distributions in the impeller side clearances. If accurate boundary conditions are available, the 1D flow models used in this paper can provide reasonable results for the radial static pressure distribution in the impeller side clearances. Furthermore, a counter rotating wake region develops in the rear impeller side clearances in absence of balancing holes which severely affects the inflow and outflow conditions of the cavity in circumferential direction.

  12. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump.

    PubMed

    Qian, K X

    1990-11-01

    In the experimental and clinical support of the failing heart, the impeller-type centrifugal pumps continue to be of interest because of their inherent advantages; however, the blood compatibility of these pumps still remains to be improved. From the viewpoint of haemodynamics, thrombosis and haemolysis could be reduced by eliminating the stagnation and turbulence of blood flow within the pump, which frequently takes place near the blood contracting surfaces of the pump, when the impeller contours do not coincide with the stream surfaces of the blood. It is suggested that it could be advantageous to design impeller contours according to the stream surfaces, by solving the partial differential equations of continuity, motion and energy. An impeller shroud and vane based on this approach would be fully rinsed by non-turbulent flow and there would then be neither stagnation nor turbulence within the pump, with the result that thrombosis and haemolysis could be reduced. A new impeller pump, developed according to this method, was evaluated as a left ventricular device in four dogs. The bypass flow was controlled at 40-50% of the total flow, each test lasting 6 h. All of the haematological parameters, measured every 2 h, remained within normal range. There was no thrombosis, and coagulation in the pump was avoided by a small dose of heparin to maintain the activated coagulation time (ACT) under 200" in the experiments. PMID:2266752

  13. Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor

    NASA Astrophysics Data System (ADS)

    Egusquiza, Eduard; Valero, Carme; Presas, Alex; Huang, Xingxing; Guardo, Alfredo; Seidel, Ulrich

    2016-02-01

    This paper deals with the dynamic response of pump-turbine impellers. A pump-turbine impeller is a complex structure attached to a rotor and rotating inside a casing full of water with very small clearances between the rotating and the stationary parts. The dynamic response of this type of structures is very complex and it is very much affected by the connection to the rotor as well as by the added mass and boundary conditions. As a consequence its calculation presents several uncertainties. First, the dynamic response of pump-turbine impellers is introduced. Second an experimental investigation in a real impeller attached to the rotor and inside the machine was carried out. For this investigation, the impeller of an existing pump-turbine unit with an installed power of 110 MW and a diameter of 2.87 m was studied. For a better analysis of the experimental results a numerical model using FEM was also built-up. Frequencies and mode-shapes were identified numerically and experimentally and the characteristics of the structural response analyzed. To determine the influence of the rotor and supporting structures on the impeller response the results were compared with the ones obtained with the same impeller but suspended (non-connected to the rotor). Experimental and numerical simulation were also used for this case. The changes in the dynamic response due to the rotor connection were determined. Finally the results obtained are compared with the results from other pump-turbine impellers of different designs and general conclusions about the dynamics of this type of structures are given.

  14. Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers

    NASA Technical Reports Server (NTRS)

    Hamkins, C. P.; Flack, R. D.

    1986-01-01

    Shrouded and unshrouded versions of a four-vaned radial flow impeller with a design flow coefficient of 0.063 were tested in a volute pump using a two-component frequency-shifted laser velocimeter. Velocity profiles were measured at six flow rates and at four radial and six circumferential positions in the volute. The variations of the velocity from blade to blade and in the axial direction were measured and are presented. A passage vortex caused by tip leakage and relative casing wall velocity was found in the unshrouded impeller. The tip leakage did not accumulate in the suction wake region; the suction wake region was only 30 to 50 percent as large in the unshrouded impeller as compared to the shrouded impeller. The slip was 30 percent higher in the unshrouded impeller and the variation of slip with flow rate is presented. At no measured position in the impellers did the slip factor reach unity; the closest approach was 0.90. Reverse loadings of the vanes at outer radii were found for flow rates below the impeller/volute matching point for both impellers.

  15. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method. Part 1: Design and numerical validation

    SciTech Connect

    Zangeneh, M.; Goto, A.; Takemura, T.

    1996-07-01

    This paper describes the design of the blade geometry of a medium specific speed mixed flow pump impeller by using a three-dimensional inverse design method in which the blade circulation (or rV{sub {theta}}) is specified. The design objective is the reduction of impeller exit flow nonuniformity by reducing the secondary flows on the blade suction surface. The paper describes in detail the aerodynamic criteria used for the suppression of secondary flows with reference to the loading distribution and blade stacking condition used in the design. The flow through the designed impeller is computed by Dawes` viscous code, which indicates that the secondary flows are well suppressed on the suction surface. Comparison between the predicted exit flow field of the inverse designed impeller and a corresponding conventional impeller indicates that the suppression of secondary flows has resulted in substantial improvement in the exit flow field. Experimental comparison of the flow fields inside and at exit from the conventional and the inverse designed impeller is made in Part 2 of the paper.

  16. Numerical prediction and experimental evaluation of cavitation inception on centrifugal pump impellers

    SciTech Connect

    Ardizzon, G.; Pavesi, G.

    1994-12-31

    A procedure, based on a simplified Quasi 3-D flow analysis, is proposed to predict the cavitation inception on centrifugal pump impellers. The effects due to the impeller geometry and the incidence angle are described and discussed. The merits of the present formulation are demonstrated by comparison with measured values as well as with other published relations. Design and off-design NPSH values predicted with the procedure here proposed appears to be in close agreement with experimental observations.

  17. Force and moment rotordynamic coefficients for pump-impeller shroud surfaces

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1987-01-01

    Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.

  18. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps. (author)

  19. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    PubMed

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241

  20. Design Optimization of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Shape

    NASA Astrophysics Data System (ADS)

    Kim, Sung; Choi, Young-Seok; Lee, Kyoung-Yong

    2010-06-01

    In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied by using a commercial CFD code and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. The vane plane development was controlled by using blade-angle in a fixed meridional shape. First the design optimization of the defined impeller geometric variables was done, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed by using 2k factorial designs, and the design optimization of the geometric variables were determined using the response surface method. The objective functions are defined as the total head and the total efficiency at the design flow-rate. From the comparison of CFD results between optimized pump and base design model, the reason for the performance improvement was discussed.

  1. Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.

    1977-01-01

    An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.

  2. Numerical investigation of pressure fluctuation for a mixed flow pump impeller and vanes diffuser

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Li, R. N.; Chen, X. R.; Zhao, W. G.; Shen, L. X.

    2012-11-01

    In order to investigate the effect of rotor-stator interaction between impeller and vanes diffuser on the pressure fluctuation of a mixed flow pump, the pressure fluctuations at three representative locations under the design condition are obtained, unsteady flow feature is analyzed by RNG ?-? turbulence model with sliding mesh technology. Experimental results show that there is the positive slope of head-flow performance curve under 0.6 and 0.85 design condition, which unsteady prediction is not seen based on Reynolds-averaged equation. The pressure fluctuation is analysed by the characteristics of amplitude and frequency, the amplitude of pressure fluctuation, which the maximum is in the rim of impeller outlet and the minimum is in the hub of impeller inlet, is gradually increasing along the hub to rim, the amplitude of monitoring points located the rim of impeller inlet and impeller and vanes diffuser is two times than the hub. The amplitude of pressure fluctuation, which the maximum is in the vanes diffuser outlet, is gradually increasing along impeller inlet to vanes diffuser outlet, while there is a low-frequency pressure fluctuation caused by unsteady flow in the vanes diffuser.

  3. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2006-03-01

    A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP. PMID:16480390

  4. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah; Ong, Wendy; Koh, Sy-Yuan; Chong, Victor

    2005-03-01

    A series of numerical models are generated to investigate the flow characteristics and performance of an axial blood pump. The pump model includes a straightener, an inducer-impeller, and diffuser. Numerical studies of the effects of angular alignment of the inducer and impeller blades and the axial clearance gap between the inducer and impeller are presented in this article. The pump characteristics derived from numerical simulation are validated with experimental data. Numerically simulated results showed a sinusoidal variation in the pressure generated across the pump with changes in angular alignment between the inducer and impeller. This is attributed to additional losses when flow is forced or diverted from the trailing edge of the inducer to either the pressure or suction side of the impeller blade when the alignment between the two sets of blades is not optimal. The pressure generated is a maximum when the impeller blades are at 0 or 30 degrees with respect to the inducer. The effect of rotating the impeller with respect to the inducer causes the sinusoidal pressure variation. In addition, it was observed that when the clearance gap between the inducer and impeller is reduced to 1 mm, the pressure generated is a minimum when compared to the other models. This is attributed to the interference between the inducer and impeller when the gap separating them is too small. The location of the maximum pressure on the pressure side of the impeller blade shifts upstream while its magnitude decreases for small clearance gap between the inducer and the impeller. There was no flow separation in the inducer while small regions of backflow are observed at the impeller trailing edge. Recommendations for future modifications and improvements to the pump design and model simulation are also given. PMID:15725228

  5. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously. PMID:11924845

  6. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    PubMed

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of the prototype MagLev BP. PMID:20528854

  7. Cavitation behaviours of low specyfic speed pump impellers designed according to the "tight inlet" rule

    NASA Astrophysics Data System (ADS)

    Misiewicz, Andrzej; Skrzypacz, Janusz

    2011-06-01

    Cavitation is well-known phenomenon which occurs in the pump and may lead to the pump damage. Thus it is very important to predict cavitation parameters, during the design of the pomp elements. There are a lot of methods to estimate cavitation factor of the pump, but these methods are true only for elements designed in the "standard way" consisted algorithms, commonly known from the literature. This project shows the influence of large angles of the inlet of impeller on the pump cavitation performance. The cavitations characteristics were determined experimentally during the test. The cavitation factor was determined in analytical approaches. The common analytical formulas described in the professional literature were examined and the numerical methods were applied (with and without two — phases model). The analytical results were compared with the results from the performed experiment. In this paper, the best method to determine cavitation factor for non-standard impeller geometry was proposed.

  8. Investigation of CFD calculation method of a centrifugal pump with unshrouded impeller

    NASA Astrophysics Data System (ADS)

    Wu, Dazhuan; Yang, Shuai; Xu, Binjie; Liu, Qiaoling; Wu, Peng; Wang, Leqin

    2014-03-01

    Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-?, renormalization group k-?, and Spalart-Allmars models, the Realizable k-? model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.

  9. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.

    PubMed

    Kosaka, Ryo; Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku

    2007-01-01

    We have developed a centrifugal blood pump with hydrodynamic bearings and semi-open impeller, and evaluated the levitation performance test and the hemolysis test. This pump is operated without any complicated control circuit and displacement-sensing module. The casing diameter is 74 mm and the height is 38 mm including flanges for volts. The weight is 251 g and the volume is 159 cm3. By changing the stator relative position against the rotor, the levitation characteristics of the impeller can be adjusted. The diameter of impeller is 36 mm and the height is 25 mm. The impeller is levitated by the thrust bearing of spiral groove type and a radial bearing of herringbone type. The pump performance was evaluated through the levitation performance test and the hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.72 g/100 L to 0.024 g/100 L corresponding to the changes of the groove direction of the hydrodynamic bearing and the expansion of the bearing gap. During these studies, we confirmed that the hemolytic property was improved by balancing the fluid dynamic force and the magnetic force. PMID:18002872

  10. Experimental study of unsteady hydrodynamic force matrices on whirling centrifugal pump impellers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Belgacem, Jery

    1986-01-01

    An experimental facility was constructed and instrumented. A set of centrifugal flow pumps whose impellers were made to follow a controlled circular whirl motion were studied. The aim was to characterize the steady and unsteady fluid forces measured on the impeller under various pump operating conditions. The postulation was that the unsteady lateral forces result from interactions between the impeller and the surrounding diffuser and/or volute (via the working fluid), and that under certain flow regimes these forces can drive unstable lateral motions of the pump rotor. The lateral hydrodynamic forces were decomposed into their steady and unsteady parts, the latter being further expressed in terms of a generalized fluid stiffness matrix. Conclusions regarding the effect of impeller geometry could not be reached given the similarity of the tested designs. However, other results on phenomena such as skin friction and leakage flow are presented. Some of the findings are compared to experimental and theoretical data from other sources. Finally, the rotordynamic consequences of the results are discussed as the present data were applied to the case of the Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP).

  11. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  12. Tiny magnetic wireless pump: Fabrication of magnetic impeller and magnetic wireless manipulation for blood circulation in legs

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Yu, Chang Ho; Ishiyama, K.

    2015-05-01

    This paper introduces a wireless pump that uses magnetic wireless manipulation to pump blood in the legs. A compact size and sufficient hydrodynamic performance were the most important requirements. Because the bonded magnet technique allows for a complex shape and various magnetization orientations, we fabricated a magnetic impeller from magnetic SmFeN powder. The impellers demonstrated a magnetic moment of 2772.64 emu and coercive force of 7.55 kOe. Using the impeller, we developed a tiny blood pump with a diameter of 22 mm and height of 6 mm. The pump allows for a maximum flow rate of 2.7 l/min and maximum pump head of approximately 170 mm Hg at a rotating speed of 6000 rpm. This level of hydrodynamic performance is sufficient to circulate blood in the legs. In this paper, we present the magnetic properties of the magnetic impeller and the hydrodynamic performance with wireless operation.

  13. J-2X Fuel Pump Impeller Seal Simulations

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.; West, Jeffrey S.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the previously cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. The rotor-dynamic stability of the fuel turbopump is highly dependent on the tangential velocity of the fluid as it enters the the front face impeller seal. Rotor-dynamic analysis predicts that a much lower tangential velocity will be required for stability than was needed for previous engines. The geometry at the seal entrance for this engine is very complex and vastly different than previous engines. In order to better determine the fluid dynamics and tangential velocity in this seal several CFD simulations were performed. The results of these simulations show that for this seal geometry a great reduction in the tangential velocity is to be expected. The simulations also provided insight into methods that could be employed to drive the swirl velocity to near zero. Unsteady and time-averaged results of several simulations will be presented.

  14. Axial reciprocation of rotating impeller: a novel approach to preventing thrombosis in centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-01-01

    For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Some investigators choose the magnetic bearing for zero friction and to provide no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and have found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability, and implantability, and have therefore developed a much simpler approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised, and its friction is about 1/15 that of the sliding bearing. Furthermore, a wearproof material of ultra high molecular weight polythene has been adopted to make the rollers, and its antiwear property is eight times better than metal. The service life of the bearing has thus been prolonged. To prevent thrombus formation along the bearing, the impeller reciprocates axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in washout with fresh blood once a cycle. This obviously helps to prevent thrombosis along the bearing and in the pump. Endurance tests with saline of this novel pump demonstrated device durability, promising long-term assisted circulation. PMID:12296579

  15. Performance analysis of axial flow pump on gap changing between impeller and guide vane

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Liang, Q. H.; Wang, Y.; Yang, Y.; Yin, G.; Shi, X. X.

    2013-12-01

    In order to study the influence on gap changing of the static and dynamic components in axial flow pump, the axial flow pump model (TJ04-ZL-06) that used in the eastern of south-to-north water diversion project was selected. Steady turbulence field with different gaps was simulated by standard ?-? turbulence model and double-time stepping methods. Information on the pressure distribution and velocity distribution of impeller surfaces were obtained. Then, calculated results were compared with the test results and analyzed. The results show that the performance of pump is not sensitive with the axial gap width under design conditions and the large flow rate condition. With increasing gap width, it will be improved in low flow rate condition. The attack angle of impeller inlet in small flow rate condition become small and the flow separation phenomenon can be observed in this condition. The axial velocity distribution of impeller outlet is nonlinear and to increase the axial gap is to improve the flow pattern near the hub effectively. The trend of calculating results is identical with test. It will play a guiding role to the axial pump operation and design in south-to-north water diversion project.

  16. Some refinements of the theory of the viscous screw pump.

    NASA Technical Reports Server (NTRS)

    Elrod, H. G.

    1972-01-01

    Recently performed analysis for herringbone thrust bearings has been incorporated into the theory of the viscous screw pump for Newtonian fluids. In addition, certain earlier corrections for sidewall and channel curvature effects have been simplified. The result is a single, refined formula for the prediction of the pressure-flow relation for these pumps.

  17. Static stress and modal analysis on the impeller of screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Yuan, S. Q.; Li, T.; Yuan, J. P.; Zhou, J. J.

    2012-11-01

    The modeling of the screw centrifugal pump was set up with Pro/E, the meshing of the fluid domain and the impeller were completed with ICEM, CFD and Workbench respectively. The 3-D steady turbulence flow in the pump was simulated by using ANSYS CFX under the design condition to get the pressure distribution on the surface of the blades. The static pressure and modal analysis were set using sequential coupling technique based on the simulation result. The results show that the maximum equivalent stress which is far less than the permissible stress occurs at the blade connected with the hub; the maximum deformation of the impeller occurs at the edge of the blade inlet; the deformation domain increase with the frequency ascended.

  18. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  19. Hydraulic optimization of a double-channel pump's impeller based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Binjuan; Wang, Yu; Chen, Huilong; Qiu, Jing; Hou, Duohua

    2015-03-01

    Computational fluid dynamics (CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm (MOGA) and artificial neural networks (ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.

  20. On the use of a three-dimensional Navier-Stokes solver for rocket engine pump impeller design

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    A 3D Reynolds-averaged Navier-Stokes Solver and a Fast Grid Generator (FGG), developed specially for centrifugal impeller design, were incorporated into the pump impeller design process. The impeller performance from the CFD analysis was compared to one-dimensional prediction. Both analyses showed good agreement of the impeller hydraulic efficiency, 94.5 percent, but with an 8 percent discrepancy of Euler head prediction. The impeller blade angle, discharge hub to shroud width, axial length and blade stacking were systematically changed to achieve an optimum impeller design. Impeller overall efficiency, loss distribution, hub-to-tip flow angle distortion and blade-to-blade flow angle change are among those criteria used to evaluate impeller performance. Two grid sizes, one with 10 K grid points and one with 80 K grid points were used to evaluate grid dependency issues. The effects of grid resolution on the accuracy and turnaround time are discussed. In conclusion, it is demonstrated that CFD can be effectively used for design and optimization of rocket engine pump components.

  1. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  2. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    NASA Astrophysics Data System (ADS)

    Y Gao, J.; Hou, Y. S.; Xi, S. Z.; Cai, Z. H.; Yao, P. P.; Shi, H. L.

    2013-12-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Qd, 1.0Qd, 1.1Qd) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life.

  3. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.

    PubMed

    Boehning, Fiete; Timms, Daniel L; Amaral, Felipe; Oliveira, Leonardo; Graefe, Roland; Hsu, Po-Lin; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2011-08-01

    In many state-of-the-art rotary blood pumps for long-term ventricular assistance, the impeller is suspended within the casing by magnetic or hydrodynamic means. For the design of such suspension systems, profound knowledge of the acting forces on the impeller is crucial. Hydrodynamic bearings running at low clearance gaps can yield increased blood damage and magnetic bearings counteracting high forces consume excessive power. Most current rotary blood pump devices with contactless bearings are centrifugal pumps that incorporate a radial diffuser volute where hydraulic forces on the impeller develop. The yielding radial forces are highly dependent on impeller design, operating point and volute design. There are three basic types of volute design--singular, circular, and double volute. In this study, the hydraulic radial forces on the impeller created by the volute in an investigational centrifugal blood pump are evaluated and discussed with regard to the choice of contactless suspension systems. Each volute type was tested experimentally in a centrifugal pump test setup at various rotational speeds and flow rates. For the pump's design point at 5 L/min and 2500 rpm, the single volute had the lowest radial force (?0 N), the circular volute yielded the highest force (?2 N), and the double volute possessed a force of approx. 0.5 N. Results of radial force magnitude and direction were obtained and compared with a previously performed computational fluid dynamics (CFD) study. PMID:21843297

  4. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width

    NASA Astrophysics Data System (ADS)

    Shi, Weidong; Zhou, Ling; Lu, Weigang; Pei, Bing; Lang, Tao

    2013-01-01

    The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.

  5. Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller.

    PubMed

    Liu, Houlin; Wang, Kai; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Dong, Liang

    2013-01-01

    In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance calculation model and the supertransitive approximation method was applied to fix optimal weight factors of individual objectives. On the basis of hydraulic performance optimization, three-condition automatic computational fluid dynamics (CFD) optimization of impeller meridional plane for the DBCP was realized by means of Isight software integrated Pro/E, Gambit, and Fluent software. The shroud arc radii R0 and R1, shroud angle T1, hub arc radius R2, and hub angle T2 on the meridional plane were selected as the design variables and the maximum of weighted average hydraulic efficiency at the three conditions was chosen as the objective function. Performance characteristic test and particle image velocimetry (PIV) measurements of internal flow in the DBCP were conducted. Performance characteristic test results show that the weighted average efficiency of the impeller after the three-condition optimization has increased by 1.46% than that of original design. PIV measurements results show that vortex or recirculation phenomena in the impeller are distinctly improved under the three conditions. PMID:23917426

  6. The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation

    NASA Technical Reports Server (NTRS)

    Franz, R.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Fluid-induced rotordynamic forces on a centrifugal pump impeller whirling along a trajectory eccentric to its undeflected position in the presence of cavitation were measured using the experimental facility described by Jery (1987). The force measured is a combination of a steady radial force due to the volute asymmetries and an unsteady force due to the eccentric motion of the rotor. It was found that, compared to the noncavitation condition, a cavitation corresponding to a head loss of 3 percent had little effect upon the unsteady force. However, a lesser degree of cavitation at the design point, was found to increase the destabilizing force for a particular set of whirl ratios.

  7. Unsteady flow in a viscous oil transporting centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, Wen-Guang

    2011-12-01

    Acoustic resonances are frequently fatal problems in centrifugal pump operations. Low pressure pulsation of fluid in the blade pass frequency is helpful to prevent from such problems. In addition, for a high quality centrifugal pump, a lower broadband noise level is also on demand. The acoustic resonance and broadband noise are associated with unsteadiness of flow in the pump. Even there exist extensive analyses of unsteady flow in centrifugal pumps by means of CFD so far, the effect of high viscosity of fluid pumped on the unsteadiness of flow feature remains unclear. Thus, the unsteady flow in an experimental centrifugal pump was exploited numerically when it transported the liquids with different viscosities. The velocity profiles at the impeller discharge were validated with the results of LDV measurement for water. The viscosity effect on the fluctuation of flow in the volute was clarified quantitatively. It was shown the increasing viscosity of fluid makes the fluctuation in flow variables less substantial and results into a less noticed tendency of separation of flow from the blade pressure side.

  8. A cost-effective extracorporeal magnetically-levitated centrifugal blood pump employing a disposable magnet-free impeller.

    PubMed

    Hijikata, W; Mamiya, T; Shinshi, T; Takatani, S

    2011-12-01

    In the field of rotary blood pumps, contactless support of the impeller by a magnetic bearing has been identified as a promising method to reduce blood damage and enhance durability. The authors developed a two-degrees-of-freedom radial controlled magnetic bearing system without a permanent magnet in the impeller in order that a low-cost disposable pump-head for an extracorporeal centrifugal blood pump could be manufactured more easily. Stable levitation and contactless rotation of the 'magnet-free' impeller were realized for a prototype blood-pump that made use of this magnetic bearing. The run-out of the impeller position at between 1000 r/min and 3000 r/min was less than 40 microm in the radial-controlled directions. The total power consumption of the magnetic bearing was less than 1 W at the same rotational speeds. When the pump was operated, a flow rate of 5 l/min against a head pressure of 78.66 kPa was achieved at a rotational speed of 4000 r/min, which is sufficient for extracorporeal circulation support. The proposed technology offers the advantage of low-cost mass production of disposable pump heads. PMID:22320054

  9. Numerical study of 3-D inducer and impeller for pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-01-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  10. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation. PMID:16531346

  11. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ?-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  12. Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Chen, S. X.; Pan, Z. Y.; Wu, Y. L.; Zhang, D. Q.

    2012-11-01

    The effect of clearance of impeller wear-rings on the performance of a centrifugal pump was investigated numerically and experimentally. The whole flow field model including front and back shrouds of pump was designed so as to accurately calculate the head and efficiency of the centrifugal pump. Based on RNG k-? turbulence model, three wear-rings schemes were established, and the effects of clearance of impeller wear-rings on the hydraulic efficiency and mechanical efficiency of the centrifugal pump was analyzed, chiefly from the turbulent kinetic energy, vorticity and radial force angles. According to the results, it can be drawn that the head and total efficiency of the centrifugal pump increase as the clearance value of wear-rings narrows. The following reasons may account for it: firstly, as the clearance value of wear-rings declines, the turbulent kinetic energy and energy dissipation decrease within the impeller, and the impact of secondary flow at the inlet of impeller on the mainstream weakens slowly, which leads to a lower hydraulic loss, thus a higher hydraulic efficiency; secondly, radial force decreases with the clearance value of wear-rings, so the eccentric whirl of centrifugal pump is dampened, which results in a lower mechanical loss and a higher mechanical efficiency; thirdly, the front shroud leakage diminishes with the clearance value of wear-rings, therefore, the volume loss is reduced and volume efficiency improved. Finally, the first wear-ring scheme of impeller is adopted after comprehensive comparison of these three wear-ring schemes, because its efficiency is highest and it satisfies the requirements of the engineering application.

  13. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good correlation to packer test analysis. The absence of significant ambient flows at this test site made the final analysis relatively simple. By testing boreholes across the aquifer a pattern of hydraulic conductivity variation with depth can be established, and compared to the proposed geological and climatic reasons for the variations' existence.

  14. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  15. Dynamic stress analysis of sewage centrifugal pump impeller based on two-way coupling method

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2014-03-01

    Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-? turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.

  16. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.

    PubMed

    Qian, K X; Feng, Z G; Ru, W M; Zeng, P; Yuan, H Y

    2007-01-01

    Previously it has been found by pump haemolysis testing that the flow rate has a remarkable effect on index of haemolysis (IH), while pressure head does not affect IH. Recent investigation with particle image velocimetry (PIV) technology has demonstrated that IH is directly related to the flow pattern of stream field in impeller vane channels. PIV is a visible approach showing the real flow status in the pump. The different positions of a tracer particle in two PIV pictures taken at 20 micros intervals decide the velocity value and direction. The velocity vectors of many particles draw the flow pattern of the stream field. The same pictures are taken at 2, 4 and 6 l min(-1) flow rates while the pressure head is kept unchanged at 100 mmHg; then the pictures are taken at 4 l min(-1) flow with different pressure heads of 80, 100 and 120 mmHg. Results reveal that the flow rate of 4 l min(-1) (IH = 0.030) has the best stream field, and neither turbulence nor separation can be seen. In other flow rates (IH: 0.048 - 0.082), there is obviously second flow. Meanwhile, no significant difference can be seen among the PIV pictures of different pressure heads pumped, which agrees with the results of haemolysis testing showing that pressure has no effect on pump haemolysis. It may be concluded that the haemolysis property of a centrifugal pump can be assessed approximately by PIV pictures, which are much easier to take than haemolysis tests. PMID:17566927

  17. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump

    SciTech Connect

    Dong, R.; Chu, S.; Katz, J.

    1997-07-01

    Particle Image Velocimetry (PIV), pressure, and noise measurements are used to study the effect of modifications to tongue and impeller geometries on the flow structure and resulting noise in a centrifugal pump. It is demonstrated that the primary sources of noise are associated with interactions of the nonuniform outflux from the impeller (jet/wake phenomenon) with the tongue. Consequently, significant reduction of noise is achieved by increasing the gap between the tongue and the impeller up to about 20% of the impeller radius. Further increase in the gap affects the performance adversely with minimal impact on the noise level. When the gap is narrow, the primary sources of noise are impingement of the wake on the tip of the tongue, and tongue oscillations when the pressure difference across it is high. At about 20% gap, the entire wake and its associated vorticity trains miss the tongue, and the only (quite weak) effect of nonuniform outflux is the impingement of the jet on the tongue. An attempt is also made to reduce the nonuniformity in outflux from the impeller by inserting short vanes between the blades. They cause reduction in the size of the original wakes, but generate an additional jet/wake phenomenon of their own. Both wakes are weak to a level that their impacts on local pressure fluctuations and noise are insignificant. The only remaining major contributor to noise is tongue oscillations. This effect is shown to be dependent on the stiffness of the tongue.

  18. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Liu, Q. Z.; Yang, K.; Y Li, D.; Gong, R. Z.

    2013-12-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow.

  19. Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades

    SciTech Connect

    Visser, F.C.; Brouwers, J.J.H.; Badie, R.

    1994-06-01

    Using the theory of functions of a complex variable, in particular the method of conformal mapping, the irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers fitted with equiangular blades is analyzed. Exact solutions are given for the fluid velocity along straight radial pump and turbine impeller blades, while for logarithmic spiral pump impeller blades solutions are given which hold asymptotically as (r(sub 1)/r(sub 2))(exp n) approaches 0, in which r(sub 1) is impeller inner radius, r(sub 2) is impeller outer radius, and n is the number of blades. Both solutions are given in terms of a Fourier series, with the Fourier coefficients being given by the (Gauss) hypergeometric function and the beta function respectively. The solutions are used to derive analytical expressions for a number of parameters which are important for practical design of radial turbomachinery, and which reflect the two-dimensional nature of the flow field. Parameters include rotational slip of the flow leaving radial impellers, conditions to avoid reverse flow between impeller blades, and conditions for shockless flow at impeller entry, with the number of blades and blade curvature as variables. Furthermore, analytical extensions to classical one-dimensional Eulerian-based expressions for developed head of pumps and delivered work of turbines are given. 30 refs.

  20. Study on Internal Flow and External Performance of a Semi-open Impeller Centrifugal Pump with Different Tip Clearances

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Qi; Cui, Bao-Ling; Zhang, Yu-Liang; Zhu, Zu-Chao

    2015-04-01

    To study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time t, the flow characteristics and the magnitude of leakage rate in tip clearance are obtained in details. The results indicate that the H-Q curve hump of centrifugal pump shows a weakened trend with the increasing of tip clearance ?c. Meanwhile, the leakage rate ?Q and the ratio of leakage rate to discharge flow rate (?) gradually increase. At the same tip clearance, the leakage rate ?Q increases, while the ratio of leakage rate to discharge flow rate (?) decreases with the increasing of discharge flow rate Q. It is found that higher volumetric loss account for a higher percentage of the total loss at small flow rate condition. There easily exist strong leakage vortexes in the impeller inlet, impeller passage and impeller outlet. The pressure difference between suction side and pressure side makes the fluid pass through the tip clearance layer to form a lower pressure region and leakage vortex.

  1. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data

    NASA Astrophysics Data System (ADS)

    Ullum, Ulrik; Wright, Jennifer; Dayi, Oguz; Ecder, Ali; Soulaimani, Azzeddine; Pich, Robert; Kamath, Hemant

    2006-11-01

    Experimental data, which was acquired in two centrifugal pumps and provided by Grundfos A/S, were analysed to determine if rotating stall could be detected from the velocity and pressure time series. The pressure data, which were uniformly acquired in time at high sample rates(10 kHz), were measured simultaneously in four adjacent di.user channels just downstream of the impeller outlet. The velocity data, which were non-uniformly sampled in time at fairly low rates(100 Hz to 3.5 kHz), were acquired either in or downstream of the impeller. Two di.erent methodologies were employed for detection of stall. The first method, which involved direct analysis of raw data, yielded qualitatively useful flow reversal information from the time series for the radial velocity. The second approach, which was based on power spectrum analysis of velocity and pressure data, could detect the onset and identify the frequency of rotating stall to a satisfactory extent in one of the two pumps. Nearly identical stall frequencies were observed in both velocity and pressure power spectra and this rotating stall phenomenon, which occurred at a very low frequency relative to the impeller speed, did not reveal any noticeable degree of sensitivity to the flow rate. In the other pump, where the available data was limited to velocity time series, the power spectrum analysis was successful in detecting stationary stall for a 6 bladed impeller but did not provide conclusive results for the existence of stall in the case of the 7 bladed impeller. Recommendations on the type of experimental data required for accurate detection of stall are provided based upon the present study.

  2. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhai, L. L.; Wu, P.; Jiang, Q. L.; Wang, L. Q.

    2012-11-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  3. Centrifugal acceleration modes for incompressible fluid in the leakage annulus between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    An algorithm is developed for calculating complex eigenvalues and eigenvectors associated with the fluid resonances and is used to analyze the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. The eigenvalues obtained are consistent with the forced-response curves. First- and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitations, and first-natural-frequency eigensolutions are presented for mode shapes corresponding to axial excitation.

  4. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi

    2009-10-01

    We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces. PMID:19681836

  5. Numerical investigation of sediment erosion to the impeller in a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Yang, C. X.; Dong, F. D.; Cheng, X. R.

    2013-12-01

    Based on Euler-Lagrange multiphase flow model and Finnie ductile material erosion model, using phase coupled SIMPLE algorithm, k-e RNG turbulence model and Reynolds Averaged Navier-Stokes (RANS) equation, the solid-liquid two-phase flows in a double-suction centrifugal pump is simulated. The erosion rate and solid mass concentration distribution on the pressure and suction surfaces of blades were obtained in different situations, which include different solid mass concentration (2.17kg/m3, 8.66kg/m3 and 14kg/m3) and different sediment diameter (0.019mm, 0.036mm, and 0.076mm). By comparisons of the test and numerical simulation values, the reliability of numerical calculation method has been verified. The numerical simulation result obtained show that the Finnie ductile material erosion model can accurately predict the erosion rate and erosion areas on the impeller. The erosion rate is increases with solid sediment diameter or solid mass concentration increasing. The main erosion areas on the pressure surface of blades near the blade inlet and outlet and close to the hub, and on the suction surface of blades near the blade inlet and close to the hub. For different sediment diameter or solid mass concentration, the erosion rate on the pressure surface of blades is always greater than that on its suction surface.

  6. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  7. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Astrophysics Data System (ADS)

    Cao, Nhai The

    1993-12-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit.

  8. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a particular design. Limited unshrouded - versus - shrouded impeller data from the J-2 pump is used to anchor the CFD. Since no detailed impeller blade force data is available, axial thrust and rotordynamic force predictions are based on the CFD model. For the axial thrust, the impeller front flow passage axial force is integrated from the CFD results and compared to the equivalent shrouded impeller axial force. For the rotordynamics forces, the fluid reaction forces are computed from unsteady flow CFD results using a moving boundary method; the rotor- shaft is moved at several whirl-to-speed frequency ratios to extract the rotordynamics coefficients.

  9. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method. Part 2: Experimental validation

    SciTech Connect

    Goto, A.; Takemura, T.; Zangeneh, M.

    1996-07-01

    In Part 1 of this paper, a mixed-flow pump impeller was designed by a fully three-dimensional inverse design method, aimed at suppressing the secondary flows on the blade suction surface. In this part, the internal flow fields of the impeller are investigated experimentally, using flow visualization and phase-locked measurements of the impeller exit flow, in order to validate the effects of secondary flow suppression. The flow fields are compared with those of a conventional impeller, and it is confirmed that the secondary flows on the blade suction surface are well suppressed and the uniformity of the exit flow fields is improved substantially, in both circumferential and spanwise directions. The effects of tip clearance and the number of blades for the inverse designed impeller are also investigated experimentally and numerically.

  10. Impeller shroud to casing leakage flow simulations in the Space Shuttle Main Engine high pressure fuel pump

    NASA Technical Reports Server (NTRS)

    Sindir, Munir M.

    1987-01-01

    Quasi-three-dimensional Navier-Stokes calculations were carried out for the Space Shuttle Main Engine high-pressure fuel pump to simulate the impeller shroud to casing leakage flow. This flow geometry was modeled as an axisymmetric cavity flow with a stationary surface representing the casing, and a rotating surface denoting the impeller. A 63 x 81-node mesh provided sufficient resolution in the regions of greatest flow variations and reduced the effects of numerical diffusion. The turbulence field was closed with the high Reynolds number form of the k-epsilon model supplemented with wall functions in the vicinity of the walls. Finally, a parametric study quantified the effects of through mass flow changes on this leakage flow.

  11. Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.

    1982-01-01

    The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.

  12. Experimental study on a centrifugal pump with an open impeller during startup period

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Zhu, Zuchao; Jin, Yingzi; Cui, Baoling; Li, Yi; Dou, Huashu

    2013-02-01

    Transient performance of fluid machinery during transient operating periods, such as startup and stopping, has been drawn more attentions recently due to the growing engineering needs. In this paper, the transient behavior of a prototype centrifugal pump with an open impeller during rapid startup period is studied experimentally. The variations of the rotational speed, flow rate, head, and shaft power during rapid startup period are recorded in experiments at different discharge valve openings. In addition, the non-dimensional flow rate and head are also used to analyze the transient behavior. The research result shows that the rise characteristic of the rotational speed is not basically changed by working points, while mainly depends on the startup characteristics of the driving motor. Compared with the rapid rise of the rotational speed, the flow rate rises slowly in the initial stage of startup. Moreover, the flow rate lags behind the rotational speed to rise to final stable value, and the delay becomes more severe with the increase of the discharge valve opening. The shaft power impact phenomenon generally exists in the process of startup. The non-dimensional analysis shows that the non-dimensional head is very high at the very beginning of startup, and quickly falls to the minimum, then gradually rises to final stable value, while the non-dimensional flow rate always shows the rise tendency during whole startup period. In conclusion, it is found from the non-dimensional results that the quasi-steady analysis is unable to accurately assess the transient flow during startup period.

  13. Experimental investigation of the hydrodynamic forces on the shroud of a centrifugal pump impeller. Thesis

    NASA Technical Reports Server (NTRS)

    Zhuang, Fei

    1989-01-01

    Fluid-induced forces acting on a rotating impeller are known to cause rotor-dynamic problems in turbomachines. The forces generated by leakage flow along the front shroud surface of a centrifugal turbomachine impeller play an important role among these fluid-induced forces. The present research was aimed to gain a better understanding of these shroud forces. An experimental apparatus was designed and constructed to simulate the impeller shroud leakage flow. Hydrodynamic forces and steady and unsteady pressure distributions on the rotating shroud were measured as functions of eccentricity, width of shroud clearance, face seal clearance and shaft rotating speed. The forces measured from the dynamometer and manometers agreed well. The hydrodynamic force matrices were found skew-symmetric and statically unstable. This is qualitatively similar to the result of previous hydrodynamic volute force measurements. Nondimensionalized normal and tangential forces decrease slightly as Reynolds number increases. As the width of the shroud clearance decreases and/or the eccentricity increases, the hydrodynamic forces increase nonlinearly. There was some evidence found that increased front seal clearance could reduce the radial shroud forces and the relative magnitude of the destabilizing tangential force. Subharmonic pressure fluctuations were also observed which may adversely affect the behavior of the rotor system.

  14. Performance correction chart of centrifugal oil pump for handling viscous liquids

    NASA Astrophysics Data System (ADS)

    Cao, G. J.; Zhang, W. H.; Chen, J.; Fu, S. H.

    2013-12-01

    The viscosity of oil has a pronounced impact on the operating conditions of the pump. Pumps that are tested with water but are used to transport viscous fluids must have their head, flow, and efficiency values corrected to approximate their performance with the viscous fluid. In this article the hydraulic characteristics of centrifugal oil pumps with different specific speeds for pumping viscous fluids are studied experimentally. The relationship of correction factor with performance characteristics, rotational speed and oil viscosity is investigated. According to the affinity law by KSB, the performance correction chart of flow rate, head and efficiency is plotted. The typical calculated examples show that the calculated results by the diagram methods are consistent with the experiments.

  15. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm. PMID:23442235

  16. Application of a computational engineering system to analysis of a rocket engine pump impeller

    NASA Astrophysics Data System (ADS)

    Barson, Steven L.; Ascoli, Edward P.; Chan, Daniel C.; Decroix, Michele E.; Sindir, Munir M.

    1992-07-01

    Computational Fluid Dynamics (CFD) has extensive potential as an engineering analysis tool and is being applied in the aerospace industry with increasing frequency. A computational design system that integrates CFD flow solvers and related analysis tools is being developed. This system addresses all aspects of the CFD analysis cycle including hardware surface definition, grid generation, flow solution, and postprocessing. The framework for this system is described in detail. Finally, use of the system is illustrated through application to analysis of the Space Transportation Main Engine impeller.

  17. Impeller shroud

    SciTech Connect

    Chamberlain, S.S.

    1987-08-18

    In a compressor for a gas turbine engine, an engine housing, a rotor assembly including an impeller, the impeller has an inlet portion with an axial component and an outlet portion with a radial component. The impeller includes a hub having a flared cantilever radial configuration and unshrouded blade tips, the rotor assembly being mounted to the engine housing by bearing means, a stator assembly including a shroud surrounding and concentric with the rotor assembly, the shroud including an impeller shroud member. The impeller has a flared shape with an inlet portion fixed to the shroud and an outlet portion being unsupported, means mounting the stator assembly shroud to the engine housing only in the area of the bearing downstream of the compressor relative to the impeller, such that the shroud including the impeller shroud are supported at the area of the bearing in a cantilever manner and the thermal expansion growth distance of the impeller shroud is the same as the expansion growth distance of the impeller from the bearing, the impeller shroud surrounding the blade tips of the impeller with minimum clearance and whereby any deflection of the impeller shroud will occur at the outlet portion thereof in correspondence with any deflection of the outlet portion of the impeller.

  18. Swimming and pumping of rigid helical bodies in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2014-04-01

    Rotating helical bodies of arbitrary cross-sectional profile and infinite length are explored as they swim through or transport a viscous fluid. The Stokes equations are studied in a helical coordinate system, and closed form analytical expressions for the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical bodies. High-order accurate expressions for the velocity field and swimming speed are derived for helical bodies of finite pitch angle through a double series expansion. The analytical predictions match well with the results of full numerical simulations, and accurately predict the optimal pitch angle for a given cross-sectional profile. This work may improve the modeling and design of helical structures used in microfluidic manipulation, synthetic microswimmer engineering, and the transport and mixing of viscous fluids.

  19. Redesign of turbine-pump impeller and diffuser using hydrodynamic design techniques. Final report

    SciTech Connect

    Hamrick, J.T.

    1980-04-01

    It is indicated that in 1976 the average operating efficiency of well irrigation pumps in the US, including losses in the column pipe and line shaft, was 55.5%, but information is presented to show that losses in a pumping system can be reduced and that it is possible to reach a goal of 82% system efficiency. Hydrodynamic design methods which are used to analyze and modify a commercially available pump are presented. The results of tests with the pump are presented for which delivery losses were reduced by means of a packer at the pump and for which line shaft losses were reduced by means of a high strength line shaft. Methods of designing pumps that have a broader high efficiency range are explored, and a design approach for doing so is presented. The method was not evaluated experimentally. (MCW)

  20. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Astrophysics Data System (ADS)

    Baskharone, Erian A.

    1993-09-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction.

  1. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction. These are the direct and cross-coupled stiffness, damping, and inertia effects of the fluid/rotor interaction.

  2. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free. PMID:19655978

  3. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  4. Real-Time Observation of Thrombus Growth Process in an Impeller of a Hydrodynamically Levitated Centrifugal Blood Pump by Near-Infrared Hyperspectral Imaging.

    PubMed

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Fujiwara, Tatsuki; Nishida, Masahiro; Maruyama, Osamu

    2015-08-01

    Understanding the thrombus formation in cardiovascular devices such as rotary blood pumps is the most important issue in developing more hemocompatible devices. The objective of this study was to develop a hyperspectral imaging (HSI) method to visualize the thrombus growth process within a rotary blood pump and investigate the optical properties of the thrombus. An in vitro thrombogenic test was conducted using fresh porcine blood and a specially designed hydrodynamically levitated centrifugal blood pump with a transparent bottom. The pump rotating at 3000 rpm circulated the blood at 1.0 L/min. The bottom surface of the pump was illuminated with white light pulsed at the same frequency as the pump rotation, and the backward-scattered light was imaged using the HSI system. Using stroboscopic HSI and an image construction algorithm, dynamic spectral imaging at wavelengths ranging from 608 to 752 nm within the rotating pump was achieved. After completing the experiment, we collected the red thrombus formed in the pump impeller and quantified the thrombus hemoglobin concentration (Hbthrombus ). The spectrum changed around the center of the impeller, and the area of change expanded toward the impeller flow path. The shape corresponded approximately to the shape of the thrombus. The spectrum change indicated that the light scattering derived from red blood cells decreased. The Hbthrombus was 4.7 ± 1.3 g/dL versus a total hemoglobin of 13 ± 0.87 g/dL. The study revealed that Hbthrombus was reduced by the surrounding blood flow. PMID:26234451

  5. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  6. Design of a high-pressure circulating pump for viscous liquids

    NASA Astrophysics Data System (ADS)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 °C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 °C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 °C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  7. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 1: Model development and applications

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This study concerns the rotor dynamic characteristics of fluid-encompassed rotors, with special emphasis on shrouded pump impellers. The core of the study is a versatile and categorically new finite-element-based perturbation model, which is based on a rigorous flow analysis and what we have generically termed the 'virtually' deformable finite-element approach. The model is first applied to the case of a smooth annular seal for verification purposes. The rotor excitation components, in this sample problem, give rise to a purely cylindrical, purely conical, and a simultaneous cylindrical/conical rotor whirl around the housing centerline. In all cases, the computed results are compared to existing experimental and analytical data involving the same seal geometry and operating conditions. Next, two labyrinth-seal configurations, which share the same tooth-to-tooth chamber geometry but differ in the total number of chambers, were investigated. The results, in this case, are compared to experimental measurements for both seal configurations. The focus is finally shifted to the shrouded-impeller problem, where the stability effects of the leakage flow in the shroud-to-housing secondary passage are investigated. To this end, the computational model is applied to a typical shrouded-impeller pump stage, fabricated and rotor dynamically tested by Sulzer Bros., and the results compared to those of a simplified 'bulk-flow' analysis and Sulzer Bros.' test data. In addition to assessing the computed rotor dynamic coefficients, the shrouded-impeller study also covers a controversial topic, namely that of the leakage-passage inlet swirl, which was previously cited as the origin of highly unconventional (resonance-like) trends of the fluid-exerted forces. In order to validate this claim, a 'microscopic' study of the fluid/shroud interaction mechanism is conducted, with the focus being on the structure of the perturbed flow field associated with the impeller whirl. The conclusions of this study were solidified by the outcome of a numerical-certainty exercise, where the grid dependency of the numerical results is objectively examined. The final phase of the shrouded-impeller investigation involves the validation of a built-in assumption, in all other perturbation models, whereby single-harmonic tangential distributions of all the flow thermophysical properties are imposed. The last phase of the investigation course is aimed at verifying the fine details of the perturbed flow field in light of recent set of detailed LDA measurements in a smooth annular seal. Grid dependency of the fluid-induced forces is also investigated, and specific recommendations are made.

  8. Fluid Dynamics of Small, Rugged Vacuum Pumps of Viscous-Drag Type

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    2002-01-01

    The need to identify spikes in the concentration of hazardous gases during countdowns to space shuttle launches has led Kennedy Space Center to acquire considerable expertise in the design, construction, and operation of special-purpose gas analyzers of mass-spectrometer type. If such devices could be miniaturized so as to fit in a small airborne package or backpack them their potential applications would include integrated vehicle health monitoring in later-generation space shuttles and in hazardous material detection in airports, to name two examples. The bulkiest components of such devices are vacuum pumps, particularly those that function in the low vacuum range. Now some pumps that operate in the high vacuum range (e.g. molecular-drag and turbomolecular pumps) are already small and rugged. The present work aims to determine whether, on physical grounds, one may or may not adopt the molecular-drag principle to the low-vacuum range (in which case viscous-drag principle is the appropriate term). The deliverable of the present effort is the derivation and justification of some key formulas and calculation methods for the preliminary design of a single-spool, spiral-channel viscous-drag pump.

  9. Waterjet Impeller

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Marshall space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for a jet-propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid polycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  10. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  11. Waterjet Impeller

    NASA Technical Reports Server (NTRS)

    1996-01-01

    North American Marine Jet (NAMJ), Inc. received assistance from Marshall Space Flight Center engineers in the Computational Fluid Dynamics (CFD) branch of the Structure and Dynamics Laboratory in improving the proposed design of a new impeller for their jet-propulsion systems. Marshall used advanced CFD techniques, which included creating a three-dimensional computer model of the impeller for analysis. With Marshall input, the company modified the design, then Marshall used a computer model to make a solid polycarbonate model. The rapid prototyping allowed the company to avoid many time- consuming and costly steps in creating the impeller model. NAMJ is now able to compete with Pacific-area and European manufacturers who have traditionally dominated the market.

  12. Three-dimensional calculation of air-water two-phase flow in centrifugal pump impeller based on a bubbly flow model

    SciTech Connect

    Minemura, Kiyoshi; Uchiyama, Tomomi

    1993-12-01

    To predict the behavior of gas-liquid two-phase flows in a centrifugal pump impeller, a three-dimensional numerical method is proposed on the basis of a bubbly flow model. Under the assumption of homogeneous bubbly flow entraining fine bubbles, the equation of motion of the mixture is represented by that of liquid-phase and the liquid velocity is expressed as a potential for a quasi-harmonic equation. This equation is solved with a finite element method to obtain the velocities, and the equation of motion of an air bubble is integrated numerically in the flow field to obtain the void fraction. These calculations are iterated to obtain a converged solution. The method has been applied to a radial-flow pump, and the results obtained have been confirmed by experiments within the range of bubbly flow regime.

  13. Influence of impeller and diffuser geometries on the lateral fluid forces of whirling centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro

    1989-01-01

    Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.

  14. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  15. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    SciTech Connect

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-10

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy at 1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  16. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-01

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy@1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  17. Effect of impeller cutdown on developed head

    SciTech Connect

    Yedidiah, S.

    1996-12-31

    This paper discusses the manner, in which a new approach towards calculating the head developed by a centrifugal impeller can be applied towards predicting the head developed by a pump with a cut-down impeller. A comparison with actual test-data demonstrates, that this approach is capable of producing more reliable results, than any of the presently known methods.

  18. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Astrophysics Data System (ADS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-07-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  19. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-01-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  20. Damping Vibration at an Impeller

    NASA Technical Reports Server (NTRS)

    Hager, J. A.; Rowan, B. F.

    1982-01-01

    Vibration of pump shaft is damped at impeller--where vibration-induced deflections are greatest--by shroud and seal. Damping reduces vibrational motion of shaft at bearings and load shaft places on them. Flow through clearance channel absorbs vibration energy.

  1. Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury Service at the Spallation Neutron Source

    SciTech Connect

    Pawel, Steven J

    2007-03-01

    Using a standard vibratory horn apparatus, the relative cavitation-erosion resistance of a number of cast alloys in mercury was evaluated to facilitate material selection decisions for Hg pumps. The performance of nine different alloys - in the as-cast condition as well as following a case-hardening treatment intended to increase surface hardness - was compared in terms of weight loss and surface profile development as a function of sonication time in Hg at ambient temperature. The results indicated that among several potentially suitable alloys, CD3MWCuN perhaps exhibited the best overall resistance to cavitation in both the as-cast and surface treated conditions while the cast irons examined were found unsuitable for service of this type. However, other factors, including cost, availability, and vendor schedules may influence a material selection among the suitable alloys for Hg pumps.

  2. Power recovery turbine pump

    SciTech Connect

    Oklejas, R.A.; Oklejas, E. Jr.

    1991-09-17

    This patent describes an energy recovery pump turbine for use in industrial processes where a fluid is pumped at a high pressure into the process and at least a portion of the fluid is discharged from the process at a high pressure. It comprises a central body portion that defines a turbine impeller cavity and a pump impeller cavity; a turbine inlet nozzle extending from the turbine impeller cavity through the central body portion; the turbine inlet nozzle being located adjacent the outer periphery of the turbine impeller cavity, a turbine exhaust passageway passing into the turbine impeller cavity, the turbine exhaust passageway being located adjacent the center of the turbine impeller; a turbine positioned in the turbine impeller cavity to receive the high pressure fluid discharged from the process, the turbine having an impeller positioned on a shaft, the fluid engaging the impeller and causing the impeller and shaft to rotate.

  3. Centrifugal elastomeric coated impellers

    SciTech Connect

    Hyll, J.

    1988-03-22

    A closed shrouded impeller is described comprising: a pair of elastomeric-covered, disk-like shrouds; and elastomeric-covered upstanding vanes positioned between the pair of shrouds and mounted to each shroud respectively. The impeller operates to introduce an axial inlet flow through the throat to a right-angle peripheral flow within the impeller with a minimum eddying effect.

  4. Creating A Data Base For Design Of An Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Chen, Wei-Chung

    1993-01-01

    Report describes use of Taguchi method of parametric design to create data base facilitating optimization of design of impeller in centrifugal pump. Data base enables systematic design analysis covering all significant design parameters. Reduces time and cost of parametric optimization of design: for particular impeller considered, one can cover 4,374 designs by computational simulations of performance for only 18 cases.

  5. Advanced impeller geometry boosts liquid agitation

    SciTech Connect

    Fasano, J.B.; Bakker, A.; Penney, W.R. )

    1994-08-01

    A traditional agitator impeller often functions as a rather inefficient pump because of the way it produces fluid motion and pressure head. However, one can improve the amount of flow or shear generated by an impeller at constant power consumption and torque by changing its design. For example, a high-efficiency, axial-flow impeller produces more fluid motion per unit of power at constant torque than an otherwise similar pitched-blade turbine. The more-vigorous fluid motion cuts blend time and enhances heat-transfer in various flow-controlled mixing operations, such as blending of miscible fluids. For most applications, a higher degree of agitation intensity can be achieved on the same machine by substituting a high-efficiency impeller for a conventional pitched-blade unit. The high-efficiency impeller features a larger geometric pitch angle (30--60 deg) at the hub than at the tip (10--30 deg). Results from recently conducted controlled experiments indicate the beneficial effects of the high-efficiency impeller on blend time and heat-transfer coefficients in liquid-liquid mixing as well as solids suspension. This articles focuses on liquid agitation, with discussions of solids suspension set aside for a forthcoming piece in this series of articles on mixing.

  6. A concept for improving efficiency of multistage centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Gardy, H. F.

    1970-01-01

    Multichannel impeller consists of successive stage impellers arranged concentrically without clearances between them. Reduction in friction is predicted to increase pump efficiency by 5 to 10 percent.

  7. Computer Program Aids Design Of Impeller Blades

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Galazin, John V.

    1992-01-01

    Impeller blades for centrifugal turbopumps designed quickly with help of computer program. Generates blade contours and continually subjects them to evaluation. Checks physical parameters to ensure they are compatible with required performance and recycles design if criteria not met. Program written for centrifugal turbomachinery, also adapted to such axial pump components as inducer blades and stator vanes.

  8. Swimming and pumping by helical waves in viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2015-02-01

    We study helical bodies of arbitrary cross-sectional profile as they swim or transport fluid by the passage of helical waves. Many cases are explored: the external flow problem of swimming in a cylindrical tube or an infinite domain, the internal fluid pumping problem, and confined/unconfined swimming and internal pumping in a viscoelastic (Oldroyd-B) fluid. A helical coordinate system allows for the analytical calculation of swimming and pumping speeds and fluid velocities in the asymptotic regime of nearly cylindrical bodies. In a Newtonian flow, a matched asymptotic analysis results in corrections to the swimming speed accurate to fourth-order in the small wave amplitude, and the results compare favorably with full numerical simulations. We find that the torque-balancing rigid body rotation generally opposes the direction of wave passage, but not always. Confinement can result in local maxima and minima of the swimming speed in the helical pitch, and the effects of confinement decrease exponentially fast with the diameter of the tube. In a viscoelastic fluid, we find that the effects of fluid elasticity on swimming and internal pumping modify the Newtonian results through the mode-dependent complex viscosity, even in a confined domain.

  9. Viscous to inertial pumping transitions in a robotic gill plate array

    NASA Astrophysics Data System (ADS)

    Larson, Mary; Kiger, Ken

    2010-11-01

    Biological oscillating appendage systems are known to exhibit distinct patterns of movement based on their Reynolds number. Flapping kinematics (net flow perpendicular to appendage stroke plane) are associated with Re > 100, while rowing kinematics (flow in the direction of appendage motion) are typically associated with Re < 1. Previous studies of pumping by mayfly nymph gill plate arrays have shown a transition between rowing and flapping at a Re 5. Although the flow generated by the animal could be documented, the limited range of behavior of the animal prevented a detailed study of why and how such a pumping mechanism might be optimized. Towards this end, a two-degree-of-freedom robotic oscillating plate array has been constructed, which allows for the variation of the Reynolds number, plate spacing, plate shape, and stroke/pitch amplitude beyond what is exhibited by the animal system. Using PIV, these combinations allow the individual influence of each feature on the pumping efficiency to be observed, and elucidate how it may be optimized for engineered devices. The current results will compare this simplified system to the flow generated by the typical mayfly, to determine how effectively the model performs in comparison to the more complex animal system.

  10. Impeller flow field measurement and analysis

    NASA Technical Reports Server (NTRS)

    Fagan, J. R.; Fleeter, S.

    1991-01-01

    A series of experiments are performed to investigate and quantify the three-dimensional mean flow field in centrifugal compressor flow passages and to evaluate contemporary internal flow models. The experiments include the acquisition and analysis of LDV data in the impeller passages of a low-speed moderate-scale research mixed-flow centrifugal compressor operating at its design point. Predictions from a viscous internal flow model are then correlated with these data. The LDV data show the traditional jet-wake structure observed in many centrifugal compressors, with the wake observed along the shroud 70 percent of the length from the pressure to suction surface. The viscous model predicts the major flow phenomena. However, the correlations of the viscous predictions with the LDV data were poor.

  11. Artificial Heart Rejects High Tech? Lessens Learnt from Non-pulsatile VAD with Straight Impeller Vanes

    PubMed Central

    Qian, Kun-xi

    2007-01-01

    Despite the progresses in developing pulsatile impeller pump and impeller total heart, as well as in applying streamlined impeller vanes, the best results in application of artificial heart pumps have been achieved by nonpulsatile univentricular assist pump with straight impeller vanes until now. It seems all efforts and successes have been done in vain because artificial heart rejects Hi-Tech! This paper recalls some important achievements in R&D of artificial heart in past 25 years and shares author’s experiences with the readers. PMID:19662125

  12. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  13. Development and Validation of High Performance Unshrouded Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Williams, M.; Paris, John K.; Prueger, G. H.; Williams, Robert; Turner, James E. (Technical Monitor)

    2001-01-01

    The feasibility of using a two-stage unshrouded impeller turbopump to replace the current three-stage reusable launch vehicle engine shrouded impeller hydrogen pump has been evaluated from the standpoint of turbopump weight reduction and overall payload improvement. These advantages are a by-product of the higher tip speeds that an unshrouded impeller can sustain. The issues associated with the effect of unshrouded impeller tip clearance on pump efficiency and head have been evaluated with one-dimensional tools and full three-dimensional rotordynamic fluid reaction forces and coefficients have been established through time dependent computational fluid dynamics (CFD) simulation of the whole 360 degree impeller with different rotor eccentricities and whirling ratios. Unlike the shrouded impeller, the unshrouded impeller forces are evaluated as the sum of the pressure forces on the blade and the pressure forces on the hub using the CFD results. The turbopump axial thrust control has been optimized by adjusting the first stage impeller backend wear ring seal diameter and diverting the second stage backend balance piston flow to the proper location. The structural integrity associated with the high tip speed has been checked by analyzing a 3D-Finite Element Model at maximum design conditions (6% higher than the design speed). This impeller was fabricated and tested in the NASA Marshall Space Flight Center water-test rig. The experimental data will be compared with the analytical predictions and presented in another paper. The experimental data provides validation data for the numerical design and analysis methodology. The validated numerical methodology can be used to help design different unshrouded impeller configurations.

  14. Liquid Scavenger for Separator/Pump

    NASA Technical Reports Server (NTRS)

    Berg, P. F.

    1986-01-01

    Pump for hydrogen modified to remove moisture that condenses in impeller stage. Impeller-pump housing has circumferential groove leading to exit hole near high-pressure outlet. As impeller disk rotates, flings water droplets condensed in pump toward groove. Aerodynamic drag drives water around groove to exit hole.

  15. Slip due to surface roughness for a Newtonian liquid in a viscous microscale disk pump

    NASA Astrophysics Data System (ADS)

    Ligrani, Phil; Blanchard, Danny; Gale, Bruce

    2010-05-01

    In the present study, hydrophobic roughness is used to induce near-wall slip in a single rotating-disk micropump operating with Newtonian water. The amount of induced slip is altered by employing different sizes of surface roughness on the rotating disk. The magnitudes of slip length and slip velocities increase as the average size of the surface roughness becomes larger. In the present study, increased slip magnitudes from roughness are then associated with reduced pressure rise through the pump and lower radial-line-averaged shear stress magnitudes (determined within slip planes). Such shear stress and pressure rise variations are similar to those which would be present if the slip is induced by the intermolecular interactions which are associated with near-wall microscale effects. The present slip-roughness effects are quantified experimentally over rotational speeds from 50 to 1200 rpm, pressure increases from 0 to 312 kPa, net flow rates of 0-100 μl/min, and fluid chamber heights from 6.85 to 29.2 μm. Verification is provided by comparisons with analytic results determined from the rotating Couette flow forms of the Navier-Stokes equations, with different disk rotational speeds, disk roughness levels, and fluid chamber heights. These data show that slip length magnitudes show significant dependence on radial-line-averaged shear stress for average disk roughness heights of 404 and 770 nm. These slip length data additionally show a high degree of organization when normalized using by either the average roughness height or the fluid chamber height. For the latter case, such behavior provides evidence that the flow over a significant portion of the passage height is affected by the roughness, and near-wall slip velocities, especially when the average roughness height amounts to 11% of the h =6.86 μm passage height of the channel. Such scaling of the disk slip length bdisk with fluid chamber height h is consistent with d-type roughness scaling in macroscale flows.

  16. Floating portable pump

    SciTech Connect

    Eberhardt, H. A.

    1985-11-19

    A floating portable pump is constructed of a float defining a well for containing water, a centrifugal pump supported on the float with its impeller shaft extending vertically and with its suction inlet submerged in water in the well, and an internal combustion engine arranged to drive the pump impeller. The pump and engine are secured together on the float in an arrangement such that the engine causes rotation of the pump impeller to cause the pump to draw water from the well through its suction inlet and discharge water from the pump discharge.

  17. Investigation of the HPFTP first stage impeller crack

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The occurrence of a crack in the HPFTP first stage impeller of pump 2608 R2 during test 750-245 prompted this analysis to examine possible causes of the failure. Preliminary analysis, using an existing NASTRAN model of the impeller, showed a deficiency in the model's ability to reliably calculate stress in the area of concern (outboard edge of the impeller shroud). A new NASTRAN model was constructed to better define the stress state in the area of crack initiations. Static stress analysis and normal models analysis were performed on the new model. Results are presented.

  18. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.

    PubMed

    Qian, K X

    1996-01-01

    The impeller blood pump with its simplicity has many advantages compared with the diaphragm pump, but the nonpulsatile property has limited its applications. To make the impeller pump pulsatile, many investigations have been made in vain because of resulting haemolysis. The author has succeeded in producing a pulsatile blood flow with a centrifugal pump, by means of the streamlined design of the impeller. The vane and shroud coincide with the blood stream surface in the pump, to eliminate the turbulence and stasis of the blood flow, which are the main factors in haemolysis and thrombosis. The pulsatility of the blood pressure and flow rate is achieved by changing the rotating speed of the impeller periodically, by introducing a square wave form voltage into the motor coil. The velocity variation of the blood cells due to the changing rotating speed of the impeller is minimized by using twisted impeller vanes, thus reducing the additional Reynolds shear, which causes the additional haemolysis in the pump. In vitro testing demonstrated that the haemolysis index of the pulsatile impeller pump is slightly higher than that of the author's nonpulsatile impeller pump but clearly less than that of other pulsatile blood pumps. The in vivo evaluations indicated that no blood damage occurred and that all haematological and biochemical data kept within a normal range during left ventricular assist experiments in calves for up to 11 days. A pulsatile impeller total heart has been developed. Two pumps are located on both sides of and driven by a d.c. motor. As the motor changes its rotating speed periodically, the left and right pumps eject the blood simultaneously, and the volume equilibrium of both pumps is achieved naturally. Acute biventricular assist experiments in pig confirmed that the device caused no blood damage. PMID:8771040

  19. Fuel pump apparatus for internal combustion engine

    SciTech Connect

    Matsuda, T.; Miyamoto, M.; Takei, T.

    1987-09-08

    This patent describes a fuel pump to be positioned in a fuel tank of an internal combustion engine. The fuel pump has a pump housing and an upright drive shaft, comprising: (1) a first stage pump section including (a) a first pump passage formed in the pump housing and communicated at one end with an inlet port of the pump housing; (b) a first impeller operatively connected to the shaft and operatively arranged in the first pump passage for separating, during rotation, fuel vapor from liquid fuel, (2) a second stage pump section including (c) a second pump passage formed in the pump housing and communicated at one end to the other end of the first pump passage and at the other end to an outlet port of the pump; (d) a second impeller operatively arranged in the second pump passage and operatively connected to the first impeller for further pressurizing the liquid fuel supplied from the first pump passage. The second impeller has a large diameter than the first impeller. The second impeller is arranged at a vertically upper side of the first impeller; (e) a vapor discharge port formed in the second impeller at a radially inward portion facing the first impeller and communicated at a vertically lower side with the radial inward portion of the first pump passage; and (f) a vapor discharge passage formed upwardly and radially in the pump housing for communicating a vertically upper side of the vapor discharge port with the outside of the pump within the fuel tank.

  20. High efficiency centrifugal pump

    SciTech Connect

    Nasvytis, P.J.; Jahrstorfer, G.W.

    1983-10-11

    A high speed fuel pump for a gas turnbine engine has a positively-driven shroud positioned between a main impeller and the wall of a pumping cavity to reduce impeller drag. The shroud is formed by a first disc having a boost impeller connected to its central hub portion and a second disc having a gear carried by its central hub portion. The main drive shaft assembly to which the main impeller is connected, carries a gear which meshes with gear mounted upon a shaft. The shaft also carries a gear which meshes with the gear. The gears are sized so that the shroud is driven at one-half the speed of the main impeller in order to maximize impeller drag reduction and enhance pumping capability when severe inlet conditions are present at the pump inlet.

  1. Steady and Unsteady Simulations of the Flow in an Impeller/Diffuser Stage

    NASA Technical Reports Server (NTRS)

    Canabal, Francisco; Dorney, Daniel J.; Garcia, Roberto; Turner, James E. (Technical Monitor)

    2002-01-01

    SLI engine designs will require pumps to throttle over a wide flow range while maintaining high performance. Unsteadiness generated by impeller/diffuser interaction is one of the major factors affecting off-design performance. Initial unsteady simulations are completed for impeller/diffuser stage. The Corsair simulations will continue across a wide flow range and for inducer/impeller/diffuser combinations. Results of unsteady simulations are being used to guide and explore new designs.

  2. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  3. A novel impeller TAH using magnetic bearings for load reduction.

    PubMed

    Qian, K X; Ru, W M; Zeng, P; Yuan, H Y

    2002-01-01

    A novel impeller TAH (total artificial heart), i.e. bi-ventricular assist impeller pumps, has been developed. The device consists of a rotor with motor magnets and two impellers, a stator with motor coil and iron core, and two pump housings. In both sides of the rotor magnets, as well as the stator coil core, a pair of magnetic bearings was devised to partly counteract the attractive forces between the rotor magnets and the stator coil core. This means the magnetic bearings are used for load reduction. On hydrodynamic testing, the two pumps both produced a flow rate as high as 6 l min(-1) and the left pump had a pressure head of 150 mm Hg, and that of the right pump was 50 mm Hg. The highest efficiency of the device, including the motor, the two pumps and the controller, reached 14.7%. The device, weighing 250 g, had a length of 80 mm and a diameter of 40 mm at its largest point. Currently in the world, this is a unique TAH, which is electrically powered and driven by a single motor and has only one moving part, can produce either pulsatile or non-pulsatile flow, both pumps eject flow synchronistically by pulsatile mode, and the volume equilibrium of the two pumps can be achieved automatically without the need for control. PMID:12487713

  4. CFD parametric study of consortium impeller

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-07-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform. Due to the complexity of blade geometries, the TANDEM blade configurations were analyzed with the multi-zone grid structure. Both the 7.5 deg- and the 22.5 deg-clocking TANDEM blade cases utilized a 80K mesh system. The numerical result of two TANDEM blade modifications indicates the efficiency and the head are worse than those of the baseline case due to larger flow distortion. The gap between the TANDEM blade and the full blade allows the flow passes through and heavily loads the pressure side of the partial blade such that flow reversal occurs near the suction side of the splitter. The flow split at the exit of impeller blades is very non-uniform for TANDEM blade cases, and this will greatly induce the side load on the diffuser. impeller.

  5. CFD Parametric Study of Consortium Impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform. Due to the complexity of blade geometries, the TANDEM blade configurations were analyzed with the multi-zone grid structure. Both the 7.5 deg- and the 22.5 deg-clocking TANDEM blade cases utilized a 80K mesh system. The numerical result of two TANDEM blade modifications indicates the efficiency and the head are worse than those of the baseline case due to larger flow distortion. The gap between the TANDEM blade and the full blade allows the flow passes through and heavily loads the pressure side of the partial blade such that flow reversal occurs near the suction side of the splitter. The flow split at the exit of impeller blades is very non-uniform for TANDEM blade cases, and this will greatly induce the side load on the diffuser. Therefore, the TANDEM blade modification in the present CFD analysis does not improve the performance of the consortium impeller.

  6. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  7. Experience in reducing the hemolysis of an impeller assist heart.

    PubMed

    Qian, K X

    1989-01-01

    Blood trauma has been one of the main problems of centrifugal pumps. The difficulties in reducing hemolysis are many, and all the factors causing excessive hemolysis always act together, making them difficult to discover and distinguish. Furthermore, error could occur at many points during hemolysis testing, making it difficult to repeat results. In developing the low hemolysis pulsatile and nonpulsatile impeller pumps the authors established an experimental method for investigating and searching for the hemolysis factors. In this study two pumps with only one differing factor were compared or only one factor on one pump was changed in the middle of the test period. In this way the effect of the individual factor on pump hemolysis could be seen and some factors have been thus confirmed as important reasons for hemolysis: 1) the drift of the pump output (including the volume and efficiency) from the design point; 2) impeller vane angles, i.e., the radial logarithmic spiral angle and the axial helical spiral angle; 3) roughness of vane surface and other blood contacting surfaces of the sealing box and pump housing; 4) vibration of the rotor resulting from dynamic disequilibrium; and 5) prerotation swirl at the inlet of the pump. The blood pressure to be pumped has been shown to have no influence on pump hemolysis. After eliminating the hemolysis factors, the blood trauma of the impeller heart has been reduced remarkably. The index of hemolysis of the nonpulsatile pump is 0.015, about one fifth of a clinically used roller made in Shanghai and two sevenths of one Sarns 7,000 Roller; the index of hemolysis of the pulstile pump is 0.020, about one sixth of a self-made diaphragm pump and one thirteenth of the Polystan pulsa tile pump. PMID:2730808

  8. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  9. Comparison Between Predicted and Experimentally Measured Flow Fields at the Exit of the SSME HPFTP Impeller

    NASA Technical Reports Server (NTRS)

    Bache, George

    1993-01-01

    Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.

  10. Consider zig-zag impeller for desalination projects

    SciTech Connect

    O'Keefe, W.

    1993-10-01

    This article describes the application of a novel pump with a zig-zag impeller that is suited for vapor condensation. The pump is proposed to be used as the vapor condensation portion of a vapor desalination plant. Small scale testing is currently under way. No additional heat needs to be added to the seawater which boils by application of a vacuum to the desalting tank. The zig-zag pump then condenses the resulting pure water vapor and pumps it to a holding tank.

  11. Experimental and numerical study of three-dimensional flows in a mixed-flow pump stage

    SciTech Connect

    Takemura, T.; Goto, A.

    1996-07-01

    Internal flows of a low-specific-speed pump stage, having a mixed-flow impeller and a vaned bowl diffuser combination, have been investigated experimentally and numerically. Air was used as the test fluid, and the internal flows were measured at various locations and under various capacities. Flow calculations were made, for both the isolated impeller case and the complete stage case, using Denton viscous codes LOSS3D and MULTSTAGE14, by which the three-dimensional steady flow through multiple blade rows can be calculated using the interrow mixing process. Experimental results showed the effects of the interaction between the impeller and the reverse flow, originating in the downstream diffuser, even at the design point capacity. While an impeller exit reverse flow occurred at the shroud side in the isolated impeller calculation, it was observed at the hub side in the complete stage case, showing good agreement with the experimental results. Although the flow in the diffuser was highly distorted due to a strong swirl flow, patterns of total pressure distribution could be predicted well by the complete stage calculation.

  12. Apparatus for pumping liquids at or below the boiling point

    DOEpatents

    Bingham, Dennis N. (Idaho Falls, ID)

    2002-01-01

    A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.

  13. Impeller for Water Jet Propulsion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  14. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-01-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several features of both testers were intentionally atypical. A crossover discharge, downstream of the impeller, rather than a volute discharge was used to minimize asymmetric flow conditions that might be reflected in the impeller discharge flow data. Impeller shroud wear ring radial clearances were purposely close to minimize leakage flow, thus increasing confidence in using the inlet data as an input to CFD programs. The empirical study extensively examined the flow fields of the two impellers via performance of laser two-focus velocimeter surveys in an axial plane upstream of the impellers and in multiple radial planes downstream of the impellers. Both studies were performed at the impeller design flow coefficients. Inlet laser surveys that provide CFD code inlet boundary conditions were performed in one axial plane, with ten radial locations surveyed. Three wall static pressures, positioned circumferentially around the impeller inlet, were used to identify asymmetrical pressure distributions in the inlet survey plane. The impeller discharge flow characterization consisted of three radial planes for the SSME HPFTP impeller and two radial planes for the Pump Consortium optimized impeller. Housing wall static pressures were placed to correspond to the radial locations surveyed with the laser velocimeter. Between five and thirteen axial stations across the discharge channel width were examined in each radial plane during the extensive flow mapping. The largely successful empirical flow characterization of two different impellers resulted in a substantial contribution to the limited existing data base, and yielded accurate data for CFD code benchmarking.

  15. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Astrophysics Data System (ADS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-07-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several features of both testers were intentionally atypical. A crossover discharge, downstream of the impeller, rather than a volute discharge was used to minimize asymmetric flow conditions that might be reflected in the impeller discharge flow data. Impeller shroud wear ring radial clearances were purposely close to minimize leakage flow, thus increasing confidence in using the inlet data as an input to CFD programs. The empirical study extensively examined the flow fields of the two impellers via performance of laser two-focus velocimeter surveys in an axial plane upstream of the impellers and in multiple radial planes downstream of the impellers. Both studies were performed at the impeller design flow coefficients. Inlet laser surveys that provide CFD code inlet boundary conditions were performed in one axial plane, with ten radial locations surveyed. Three wall static pressures, positioned circumferentially around the impeller inlet, were used to identify asymmetrical pressure distributions in the inlet survey plane. impeller discharge flow characterization consisted of three radial planes for the SSME HPFTP impeller and two radial planes for the Pump Consortium optimized impeller. &Housing wall static pressures were placed to correspond to the radial locations surveyed with the laser velocimeter. Between five and thirteen axial stations across the discharge channel width were examined in each radial plane during the extensive flow mapping. The largely successful empirical flow characterization of two different impellers resulted in a substantial contribution to the limited existing data base, and yielded accurate data for CFD code benchmarking.

  16. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  17. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. PMID:20883393

  18. An analytical investigation into the performance of centrifugal pumps flowing two-phase non-condensable mixtures

    SciTech Connect

    Sterrett, J.D.; Knight, R.W.; Reece, J.W.

    1996-08-01

    A compressible, viscous, non-homogeneous analytical two-phase centrifugal pump impeller model is presented. Results from this model show improved agreement to experimental data over previously published two-phase pump model results. The non-dimensional form of this model provides significant insight into the issue of scaling two-phase experimental results from the reduced-scale laboratory to full-scale prototype systems. The results from this analysis show that two-phase dimensional similitude is not consistent with single-phase pump dimensional similitude and that the pump head degradation occurs at a lower gas void fraction in reduced-scale pumps than in larger prototype systems. The results from this effort also show that the magnitude of the pump suction pressure is an important scaling parameter.

  19. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  20. Small centrifugal pumps for low thrust rockets

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  1. Design of centrifugal impeller blades

    NASA Technical Reports Server (NTRS)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  2. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  3. Measuring axial pump thrust

    SciTech Connect

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  4. Hemolytic effect of the secondary vane incorporated into the back side of the impeller.

    PubMed

    Ohara, Y; Murase, M; Nos, Y

    1997-07-01

    The hemolytic effect of the secondary vane system, the antithrombogenic structure incorporated into the back side of the impeller of the C1E3 Gyro pump, was investigated. Impellers with 0, 2, 3, and 4 secondary vanes and an additional impeller with 2 secondary channels were fabricated and incorporated into the C1E3 pump casings. Hemolysis tests were performed under cardiopulmonary bypass conditions (flow rate 4.5 L/min, total pressure head 350 mm Hg) using flesh bovine blood. The normalized indices of hemolysis (NIH) of the pumps with 0, 2, 3, and 4 secondary vanes and the pump with 2 secondary channels were 0.0797, 0.0866, 0.104, 0.157, and 0.0591, respectively. These results indicated that design of the impeller with 2 secondary channels, which was the original design of C1E3 Gyro pump, was less hemolytic than the design with secondary vanes. Additionally, the possibility of the secondary channel system for the impeller bottom was demonstrated favorably. PMID:9212941

  5. Numerical studies in a centrifugal pump with the improved blade considering cavitation

    NASA Astrophysics Data System (ADS)

    Song, P. F.; Zhang, Y. X.; Xu, C.; Zhou, X.; Zhang, J. Y.

    2015-01-01

    In this paper, a centrifugal pump with the improved blade for cavitation is studied numerically. A 3D impeller with logarithmic spiral blade profile was designed by the in-house hydraulic design code using a centrifugal pump geometric parameters, and the blade profile curve of suction side on the designed impeller is replaced by a combination of tangent line and circle arc line. The cavitation flows in the centrifugal pump with designed impeller, modified impeller and centrifugal pump spectrum impeller are respectively calculated by two-phase CFD simulation at three flow rates. The tests of the centrifugal pump have been conducted to verify numerical simulation. The effects of designed impeller and modified impeller on hydraulic efficiency, critical cavitation number, cavitation length, head drop performance and vapor cavity distribution in impeller are investigated. The results show that the modification of blade profile curve of suction side can improve the cavitation performance of an impeller and hydraulic efficiency of centrifugal pump. Compared with designed impeller, the critical cavitation number of centrifugal pump with modified impeller decrease by 26.5% under the same flow rate coefficient, and the cavitation intensity in the modified impeller is weakened effectively. The hydraulic efficiency of modified impeller also increases by 4.9%.

  6. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  7. Impeller system for a gas turbine engine

    SciTech Connect

    Narayana, A.D.; Stanley, R.L.

    1993-07-13

    An impeller system is described for use with a gas turbine engine of a type having a first stage disk mounted on a rotating turbine shaft, the system comprising: annular impeller means positioned rearwardly of the first stage disk about the shaft and including means for securing the impeller means at a base thereof to the disk; and interlocking means, extending between the impeller means and the disk, positioned radially outwardly of the securing means, whereby the impeller is restrained from axial deflection, but permitted radial deflection in response to thermal changes; and wherein the securing means comprises a plurality of bolts.

  8. Lidocaine Viscous

    MedlinePLUS

    ... pain of a sore or irritated mouth and throat often associated with cancer chemotherapy and certain medical ... Lidocaine viscous is not normally used for sore throats due to cold, flu, or infections such as ...

  9. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    NASA Technical Reports Server (NTRS)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.

  10. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  11. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump. PMID:12561356

  12. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    PubMed

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased. PMID:26647585

  13. LH2 pump component development testing in the electric pump room at test cell C inducer no. 1

    NASA Technical Reports Server (NTRS)

    Andrews, F. X.; Brunner, J. J.; Kirk, K. G.; Mathews, J. P.; Nishioka, T.

    1972-01-01

    The characteristics of a turbine pump for use with the nuclear engine for rocket vehicles are discussed. It was determined that the pump will be a two stage centrifugal pump with both stages having backswept impellers and an inducer upstream of the first stage impeller. The test program provided demonstration of the ability of the selected design to meet the imposed requirements.

  14. Measurement of the steady-state shear characteristics of filamentous suspensions using turbine, vane, and helical impellers

    SciTech Connect

    Svihla, C.K.; Dronawat, S.N.; Donnelly, J.A.

    1997-12-31

    The impeller viscometer technique is frequently used to characterize the rheology of filamentous suspensions in order to avoid difficulties encountered with conventional instruments. This work presents the results of experiments conducted with vane, turbine, and helical impellers. The validity of the assumptions made in the determination of the torque and shear-rate constants were assessed for each impeller type. For the turbine and vane impellers, an increase in the apparent torque constant c was observed with increasing Reynolds number even when measurements were confined to the viscous regime. The shear-rate constants determined for the vane and turbine impellers varied for different calibration fluids, which contradicts the assumptions usually invoked in the analysis of data for this technique. When the helical impeller was calibrated, consistent values for the torque and shear-rate constants were obtained. The three impeller types were also used to characterize the rheology of cellulose fiber suspensions and the results compared for consistency and reproducibility. The results have application in design of rheometers for use in process control and product quality assessment in the fermentation and pulp and paper industries. 5 refs., 3 figs., 6 tabs.

  15. Wind-powered impeller-mixer

    SciTech Connect

    Freeman, P.A.; Thompson, W.J.

    1981-09-29

    The invention is an energy-saving means for providing turbulence as well as circulation to liquids in a controlled natural purification system for advanced waste water treatment and algae farming. The wind-powered impeller-mixers are used in the algae growing reactors of a controlled natural purification system. The invention consists of a vertical vane type windmill that turns an impeller blade to cause turbulence in waste water being treated. The impeller blade may be geared to operate from a horizontal position to a vertical position to provide circulation movement. A motor-generator hook-up is combined with windmill-impeller system so that generated energy may be stored for use in turning the impeller blade when there is no wind or not enough wind to operate the system. A clutch arrangement is used to disengage the impeller when the algae growing reactor is to be drained.

  16. Pressure oscillation in the leakage annulus between a shrouded impeller and its housing due to impeller-discharge-pressure disturbances

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1992-01-01

    The perturbed flow in the leakage path between a shrouded-pump impeller and its housing is analyzed using experiences with the Space Shuttle Main Engine (SSME), high pressure fuel turbopump (HPFTP) wearing-ring seals. Analysis is based on a bulk-flow model which consists of the path-momentum, circumferential momentum, and continuity equations. The pressure oscillations in the leakage annulus are driven by a circumferential variation of the impeller discharge pressure. It is shown that the occurrence and nature of the pressure oscillations depend on the tangential-velocity ratio of the fluid entering the seal, the order of the Fourier coefficient, the closeness of the precessional frequency of the rotating pressure field to the first natural frequency of the fluid annulus, and the clearance of the wearing-ring seal. The results obtained may explain the internal melting observed on SSME HPFTP seal parts.

  17. Performance evaluation of a novel erosion-resistant pump design

    SciTech Connect

    Hauserman, W.B.; Musich, M.A.

    1990-09-12

    This is the final report on the evaluation of the Burly pump; a novel, semi-open impeller pump designed to offer exceptional resistance to wear by erosive slurries. It has a recessed or pocket type impeller, with a pattern of vanes designed to transfer momentum from the impeller to a vortex of fluid, consequently minimizing either the frequency or velocity of impact of suspended solids upon the impeller. This study compared the Burly pump with a more conventional Gorman-Rupp slurry pump by the method of accelerated wear simulation. Both pumps, with aluminum replicas of their standard impellers, were operated with a highly erosive slurry of quartz in water, achieving a degree of impeller destruction in hours compared to days using conventional cast iron impellers with a slurry of coal. The Gorman-Rupp pump, as expected, showed a rapid decrease in delivered hydraulic horsepower as the vanes on its impeller were worn away. The Burly pump, though delivering less hydraulic horsepower at the same speed, substantially improved its performance as the surface details of the impeller were worn away. No loss of performance by the Burly pump was found during this study. The limiting factor was the life of seals and bearings after exposure to the intentionally highly erosive slurries used. 8 refs., 17 figs., 1 tab.

  18. Realization of a permanent implantable pulsatile impeller heart with magnetically suspended motor.

    PubMed

    Qian, K X; Zheng, M

    1997-07-01

    A permanent impeller heart that could work for years was once an idea. However, now this idea is turning into reality through the use of the magnetically suspended motor. Recently, with our implantable pulsatile impeller pump, 3 left ventricular assisted calves survived for about 2 months (62, 54, and 46 days, respectively). The termination of the experiments was related to wear of the mechanical bearing, which resulted in vibration of the rotor and pump failure. All the experimental animals were in good condition prior to pump failure. It seemed as if the experiments could have lasted indefinitely if the bearing had not failed. All the hematological and biochemical data of the calves remained in normal or acceptable ranges; neither blood damage nor organ dysfunction of any animal was detected. During autopsy, no severe thrombus formation was found in the pump or vessels although a low dose of heparin (0.5-0.8 g/h) was given to increase the activated coagulation time (ACT) to 1.5-2.0 times its normal value. To solve the problem of bearing wear, a magnetically suspended motor was investigated and applied to the impeller pump. On the opposite sides of a disc connected to the rotor, 2 permanent magnet rings were embedded, one for driving and the other for axial suspension. Because both the driving and suspending coils with iron cores attract the disc, no radial bearing was needed. This newly devised impeller heart promises to have long-term and permanent applications. PMID:9212937

  19. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  20. Numerical calculation of the internal flow field in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.

    1975-01-01

    An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.

  1. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  2. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  3. Centrifugal pump design

    SciTech Connect

    Hickman, R.S.

    1986-06-01

    This report describes the program which permits the design of a centrifugal pump for use with water. The user enters the main design characteristics required and the program carries out the design. The program varies the number of impeller blades in order to optimize the net hydraulic efficiency of the pump. (FI)

  4. Viscous withdrawal

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Venkataramani, Shankar; Eggers, Jens

    2001-11-01

    In a viscous withdrawal experiment, a pipette is inserted into the top layer of two fluid layers. Fluid is withdrawn through the pipette. At low flow rates, the two-fluid interface develops a "hump" directly under the pipette. Only fluid from the top layer is withdrawn. Past a critical withdrawal rate, a thin thread of the lower fluid, a "spout", is entrained along with the outer fluid into the pipette. Experiments by Cohen et al. (Science 292, 2001) show that when the top layer is more viscous than the lower layer, the curvature at the hump tip becomes large as the flow rate approaches the critical value. Also, at flow rates slightly above the critical value, the entrained thread thickness is small, and can be on the order of microns. The creation of such a small lengthscale make a number of applications, from the manufacture of micron-sized drops to the encapsulation of particles, possible. We here model viscous withdrawal and show how the maximum curvature at the hump tip, which is related to the minimum spout radius that can be achieved, varies with experimental parameters.

  5. SSME HPOTP impeller backcavity CFD analysis

    NASA Technical Reports Server (NTRS)

    Hsu, W. W.; Lin, S. J.

    1992-01-01

    The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.

  6. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.

    PubMed

    Yamane, T; Nishida, M; Asztalos, B; Tsutsui, T; Jikuya, T

    1997-01-01

    A monopivot magnetic suspension blood pump is a centrifugal pump under development with a magnetic suspension and a ceramic pivot to support the impeller with minimum contact. The pump size has been reduced by implementing a direct impeller drive mechanism in place of a magnetic coupling and motor. Flow visualization studies revealed that high shear, which seems to be closely related to hemolysis, concentrates in boundary layers near the walls. This implies that fluid dynamic shear can be reduced not by widening the gap, but by reducing the impeller velocity. Therefore, compared with the results of the previous semi-open curved vane impeller model, impeller velocity was reduced by 30% with a closed impeller having radial straight vanes, and smaller impeller/housing gaps. The volute shape around the impeller tip was also changed such that the outflow from the impeller enters along the center plane of the volute. To examine the effect of the improvements, hemolysis testing was conducted and found that the newly developed closed impeller model generated a lower level of hemolysis than the previous semi-open impeller model. PMID:9360122

  7. Pullulan fermentation using a prototype rotational reciprocating plate impeller.

    PubMed

    Lin, Yun; Thibault, Jules

    2013-05-01

    A rotational reciprocating plate impeller prototype, designed to improve the mixing homogeneity of viscous non-Newtonian fermentation broth, has been tested in pullulan fermentations. With this new impeller, the operating levels of several factors were investigated to improve pullulan production with Aureobasidium pullulans ATCC 42023 in a 22-L bioreactor using experimental designs. Because both high molecular weight (MW) and high concentration of pullulan were desired; the exopolysaccharide (EPS) concentration and the broth viscosity were used as optimization objective functions to be maximized. A 6-run uniform design was used to investigate five factors. Under the best operating conditions among the six runs, 29.0gL(-1) EPS was produced at 102h. This condition was used as the starting point for further investigation on the two statistically significant factors, the pH and the agitation speed. An 8-run 3-level custom design that investigates up to second-order effects was used in the second stage. An optimal zone of operating conditions for large quantity of high MW pullulan production was identified. A concentration of 23.3gL(-1) EPS was produced at 78h. This is equivalent to an EPS productivity of 0.30gL(-1)h(-1). The corresponding apparent viscosity of the broth was 0.38Pas at the shear rate of 10s(-1). PMID:22940838

  8. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system. PMID:8573818

  9. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  10. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  11. [The study of noninvasive ventilator impeller based on ANSYS].

    PubMed

    Hu, Zhaoyan; Lu, Pan; Xie, Haiming; Zhou, Yaxu

    2011-06-01

    An impeller plays a significant role in the non-invasive ventilator. This paper shows a model of impeller for noninvasive ventilator established with the software Solidworks. The model was studied for feasibility based on ANSYS. Then stress and strain of the impeller were discussed under the external loads. The results of the analysis provided verification for the reliable design of impellers. PMID:21774201

  12. Magnetically suspended miniature fluid pump and method of designing the same

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson (Inventor)

    2000-01-01

    A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy.

  13. Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration.

    PubMed

    Corra, Luciano Jacob; Badino, Alberto Colli; Cruz, Antonio Jos Gonalves

    2016-02-01

    One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical-economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96h, using 10% (m/v) SCB, pH 4.8, 50C, 10 FPU/gbiomass, 470rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed. PMID:26650719

  14. Experimental results concerning centrifugal impeller excitations

    NASA Technical Reports Server (NTRS)

    Vance, J. M.; Landadio, F. J.

    1980-01-01

    The effect of working fluid on the dynamics of an impeller with radial vanes was investigated. The impeller was supported vertically from a very flexible quill shaft in order to produce a low critical speed, and to allow the fluid dynamic effects on the impeller to predominate. The shaft was supported from ball bearings, so that there was no possibility of oil whip from fluid film bearings as a destabilizing influence. The impeller was run both in the atmosphere, and submerged in working fluids contained in a cylindrical housing, open at the top. Variable speed was obtained with a dc gearmotor drive unit. The speed was measured with a proximity probe pulse tachometer and electronic digital counter.

  15. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage

    SciTech Connect

    Abramian, M. ); Howard, J.H.G. . Dept. of Mechanical Engineering)

    1994-04-01

    The behavior of the relative flow in centrifugal turbomachines is extremely complex due to the existence of various fluid dynamic phenomena and their interaction. At design and off-design operating conditions, the relative flow is subject to stationary unsteadiness, which includes flow separation and wakes associated with passage pressure gradients, secondary flows, and boundary layer stability. It may also be subject to periodic unsteadiness, as are the rotating stall and cyclic flow phenomena induced by the casing. This paper describes detailed measurements of the relative velocity field in a very low specific speed centrifugal pump impeller (N[sub s] = 515). Measurements were conducted by means of a recently developed rotating laser-Doppler anemometry system. Detailed quantitative descriptions of the mean and fluctuating components of the primary and secondary velocity fields are presented for an impeller without volute at design, 50 percent design, and shut-off conditions. The flow pattern in this low specific speed impeller with high blade loading is dominated by the relative eddy (a phenomenon also present in potential flow), which has suppressed suction side separation. The cyclic variation of the impeller exit flow, induced by the volute at low flow rates, is also presented for an impeller fitted with a volute.

  16. Prediction of Microporosity in Shrouded Impeller Castings

    SciTech Connect

    Viswanathan, S. Nelson, C.D.

    1998-09-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Morris Bean and Company was to link computer models of heat and fluid flow with previously developed quality criteria for the prediction of microporosity in a Al-4.5% Cu alloy shrouded impeller casting. The results may be used to analyze the casting process design for the commercial production of 206 o alloy shrouded impeller castings. Test impeller castings were poured in the laboratory for the purpose of obtaining thermal data and porosity distributions. Also, a simulation of the test impeller casting was conducted and the results validated with porosity measurements on the test castings. A comparison of the predicted and measured microporosity distributions indicated an excellent correlation between experiments and prediction. The results of the experimental and modeling studies undertaken in this project indicate that the quality criteria developed for the prediction of microporosity in Al-4.5% Cu alloy castings can accurately predict regions of elevated microporosity even in complex castings such as the shrouded impeller casting. Accordingly, it should be possible to use quality criteria for porosity prediction in conjunction with computer models of heat and fluid flow to optimize the casting process for the production of shrouded impeller castings. Since high levels of microporosity may be expected to result in poor fatigue properties, casting designs that are optimized for low levels of microporosity should exhibit superior fatigue life.

  17. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  18. Pump CFD code validation tests

    NASA Astrophysics Data System (ADS)

    Brozowski, L. A.

    1993-12-01

    Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.

  19. Pump CFD code validation tests

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.

    1993-01-01

    Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.

  20. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  1. Computation of incompressible viscous flows through turbopump components

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Leon

    1993-01-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.

  2. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrn M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  3. Pumps and compressors/Applying vertical turbine pumps

    SciTech Connect

    Griffith, J.M.

    1980-01-14

    A discussion of vertical canned turbine pumps and their applications covers reasons for using them, including the ability to adjust their net positive suction head (by digging a hole in the ground and reducing the distance between pump and fluid), their suitability for underground caverns and hydrocarbon liquid storage, space savings, and low capital investment requirements; 15 sets of options as to shaft, spacer coupling, impeller, bearings, etc. in process turbine pump selection and the advantages and disadvantages of each; the desirability of using vertical turbine pumps with fluids that have good lubricating properties at pumping temperatures; problems associated with the use of vertical pumps (e.g., wear-ring wear on closed impellers) and procedures for eliminating these problems; and the problem of wear-ring and bushing seizure in pumps handling water-saturated LPG in cavern service.

  4. Axisymmetric supersonic flow in rotating impellers

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1952-01-01

    General equations are developed for isentropic, frictionless, axisymmetric flow in rotating impellers with blade thickness taken into account and with blade forces eliminated in favor of the blade-surface function. It is shown that the total energy of the gas relative to the rotating coordinate system is dependent on the stream function only, and that if the flow upstream of the impeller is vortex-free, a velocity potential exists which is a function of only the radial and axial distances in the impeller. The characteristic equations for supersonic flow are developed and used to investigate flows in several configurations in order to ascertain the effect of variations of the boundary conditions on the internal flow and the work input. Conditions varied are prerotation of the gas, blade turning rate, gas velocity at the blade tips, blade thickness, and sweep of the leading edge.

  5. Pump Design

    NASA Astrophysics Data System (ADS)

    1981-01-01

    A NASA handbook on a general purpose titanium alloy was used by Sundstrand Corporation in design calculation for casting titanium impellers. Information contributed substantially to improved impeller design.

  6. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1994-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field was conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a back-swept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and, in several cases, provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  7. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1993-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  8. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  9. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    PubMed

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. PMID:8817965

  10. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  11. Investigations on Experimental Impellers for Axial Blowers

    NASA Technical Reports Server (NTRS)

    Encke, W.

    1947-01-01

    A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.

  12. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  13. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124

  14. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage blockage change without the need to define the region of blockage generation (which may incur a certain degree of arbitrariness). This method has been assessed for its applicability and utility.

  15. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  16. Research on energy conversion mechanism of a screw centrifugal pump under the water

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Su, Q. M.; Han, W.; Cheng, X. R.; Shen, Z. J.

    2013-12-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-? equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase.

  17. Radial loads and axial thrusts on centrifugal pumps

    SciTech Connect

    Not Available

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump.

  18. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  19. Method for Reducing Pumping Damage to Blood

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  20. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Steady and unsteady diffuser vane pressure measurements have been conducted with a two-dimensional test impeller, in an experimental investigation of rotor-stator interaction within a centrifugal pump having several vaned diffusers, under conditions of different flow coefficients and different radial gaps between the impeller blade trailing edge and the diffuser vane leading edge. The largest pressure fluctuations on the diffuser vanes and the impeller blades were found to be of the same order of magnitude as the total pressure rise across the pump. Increasing the number of diffuser vanes was found to result in a significant decrease of impeller blade pressure fluctuations.

  1. Design optimization for a shaft-less double suction mini turbo pump

    NASA Astrophysics Data System (ADS)

    Zhuang, B.; Luo, X.; Zhang, Y.; Wang, X.; Xu, H.; Nishi, M.

    2010-08-01

    In order to further satisfy the operation needs for social applications, a shaft-less double suction mini turbo pump with outer impeller diameter of 24 mm and specific speed of 188 min-1m3min-1m has been designed. In order to simulate the three dimensional steady turbulent flow in the mini pump so as to improve the pump impeller design, RANS equations and k-? SST turbulence model are used. Based on the detailed analysis of the internal flow in the pump, six new impellers have been designed to investigate the effects of impeller parameters on the performance of the mini pump. Based on those results, the following conclusions are drawn: (1) For the double-suction shaft-less mini turbo pump, the averaged wall shear stress has very low level and the maximum hydraulic efficiency is larger than 80%. Those favourable features must be related to the symmetric suction design of the mini pump; (2) Large vane angle at the trailing edge is suitable for a mini turbo pump in many applications so as to obtain higher head and smaller impeller size. On the other hand, the impellers with ?1=90 may result in large wall shear stress at the vane leading edge at small flow rate; (3) Because the radial impeller is much convenient for manufacture and creates much larger head, it is preferable for a mini turbo pump if the wall shear stress can be controlled within the acceptable range due to further design optimization.

  2. Recent advances in upgrading large pumps

    SciTech Connect

    Nolt, J.R. Jr.; Russell, G.J.

    1995-12-31

    The benefits of upgrading hydraulic turbines and pump/turbines via the installation of custom designed replacement runners has been well documented in recent years. The increased operating efficiency and capacity, and improved cavitation and operating characteristics of modern replacement runners bears strong testimony to the specialized design an manufacturing techniques developed by turbine manufacturers who specialize in the upgrade business. The integration of computerized design and manufacturing technologies has resulted in the production of turbine and pump/turbine runners with a quality level not approachable with traditional techniques. This same technology can have dramatic results when applied to the upgrade of large pumps. The energy utilized to operate large irrigation, storage and cooling water pumps represents a major cost to the owners of the pumps. The operation of a 25,000 horsepower pump through one irrigation season represents an energy cost of approximately $4,000,000 per year. An increase in efficiency of 2% could result in an energy cost savings of over $100,000 per year. Pump impellers are subject to cavitation and erosion damage which reduces pump efficiency and capacity and may require costly maintenance and repairs. When designed and manufactured using modern computerized methods, an upgraded impeller can operate cavitation free at higher capacities and efficiencies than the original design. The costs of pump operation and maintenance can be substantially reduced by the replacement of the impellers with impellers of modern, custom design.

  3. Liquid rocket propulsion impeller CFD modeling

    NASA Technical Reports Server (NTRS)

    Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.

    1993-01-01

    Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.

  4. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  5. Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

    PubMed Central

    Hu, Sanbao

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  6. Optimization and analysis of centrifugal pump considering fluid-structure interaction.

    PubMed

    Zhang, Yu; Hu, Sanbao; Zhang, Yunqing; Chen, Liping

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  7. Swirl brake effect on the rotordynamic stability of a shrouded impeller

    SciTech Connect

    Baskharone, E.A.

    1999-01-01

    The swirling motion of the shroud-to-housing leakage flow in pumps is known to have an adverse impact on the impeller rotordynamic stability. Swirl brakes, under such circumstances, would enhance the stability margin by reducing or, ideally, eliminating, the prerotation at the leakage passage inlet station. The numerical analysis outlined in this paper provides a quantitative means of predicting the effectiveness of such devices. The computed results also illustrate the mechanism with which the fluid/rotor interaction, with the aid of a typical brake, is altered towards relative overall rotordynamic stability. This is done through a comparative examination of the pressure perturbation distribution over the shroud surface for a wide range of backward and forward impeller-whirl frequencies. The conclusions in this study are consistent with recent experimental findings and have important design implications.

  8. Pumping stage for multi-stage centrifugal pump

    SciTech Connect

    Erickson, J.W.

    1981-07-14

    An improved diffusion bowl and pumping vanes of a centrifugal pump stage are employed in axially stacked, multi-stage pumps for use in oil wells. The wall thickness of the annular casing portion of the diffusion bowl element is reduced to a minimum consistent with the axial loading on the pump stage and the impeller vanes are radially extended to terminate closely adjacent the minimum wall thickness portion of the casing, thereby significantly increasing the pumping pressure developed by the stage without reducing the efficiency of the stage.

  9. Engineering Aspects in Blood Pump Development

    NASA Technical Reports Server (NTRS)

    Golding, Leonard; Veres, Joseph P.

    1997-01-01

    NASA turbomachinery computer codes assisted in the design of the Cleveland Clinic Foundation's centrifugal bladed blood pump. The codes were originally developed for the aerospace industry, but are applicable to the blood pump because of a high degree of synergy with this application. Traditional turbomachinery design criteria were used in the design of the blood pump centrifugal impeller and volute casing. The fluid dynamic performance of the blood pump is meeting the engineering design goals of flow rate and pressure rise.

  10. Impeller improves mixing efficiency, reduces capital and operating costs

    SciTech Connect

    Not Available

    1982-11-01

    This article is an evaluation of an impeller which improves mixing efficiency, thereby reducing capital and operating costs. Designed with contoured blades shaped like airplane wings, the impeller provides a significantly increased axial flow component as compared to a conventional flat bladed axial flow turbine impeller. This strong downward flow not only improves mixing and/or reduces power consumption, but also allows the impeller to be positioned higher above the tank bottom. Developed by using lasers to measure flow patterns in test vessels, the impeller concentrates its flow component, up to 70% more mixing is achieved at the same power input. To achieve process results equivalent to that of a conventional axial flow turbine, use of this impeller reduces power consumption by 50%. This provides not only energy savings, bur reduces the size and capital cost of motors and agitator drive systems.

  11. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  12. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system. PMID:15554937

  13. Multiple discharge cylindrical pump collector

    DOEpatents

    Dunn, Charlton (Calabasas, CA); Bremner, Robert J. (Woodland Hills, CA); Meng, Sen Y. (Reseda, CA)

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  14. Fault-tolerant strategies for an implantable centrifugal blood pump using a radially controlled magnetic bearing.

    PubMed

    Pai, Chi Nan; Shinshi, Tadahiko

    2011-10-01

    In our laboratory, an implantable centrifugal blood pump (CBP) with a two degrees-of-freedom radially controlled magnetic bearing (MB) to support the impeller without contact has been developed to assist the pumping function of the weakened heart ventricle. In order to maintain the function of the CBP after damage to the electromagnets (EMs) of the MB, fault-tolerant strategies for the CBP are proposed in this study. Using a redundant MB design, magnetic levitation of the impeller was maintained with damage to up to two out of a total of four EMs of the MB; with damage to three EMs, contact-free support of the impeller was achieved using hydrodynamic and electromagnetic forces; and with damage to all four EMs, the pump operating point, of 5 l/min against 100 mmHg, was achieved using the motor for rotation of the impeller, with contact between the impeller and the stator. PMID:21382738

  15. Over the shaft fuel pumping system

    SciTech Connect

    Hoopes, J.N.; Eick, C.D.; Williamson, J.R.

    1991-06-11

    This patent describes a high speed rotary liquid pump, adapted to be driven by a shaft in the core of a gas turbine engine. It comprises a rotatable impeller having a plurality of straight blades extending radially from an annular hub, the hub having a central aperture of sufficient size to engage the shaft for rotation therewith; a pump housing surrounding the impeller and defining a generally annular pump cavity for receiving the rotatable impeller; the housing also defining an annular fluid inlet aperture leading axially into the cavity adjacent the hub, a shield member axially adjacent the aperture and disposed between fluid entering the aperture and the shaft, whereby circumferential swirl of the fluid due to contact with the shaft is minimized, and at least one fluid outlet passage extending tangentially from the periphery of the cavity adjacent the tips of the blades.

  16. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  17. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  18. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  19. Flow characteristics of a centrifugal pump

    SciTech Connect

    Liu, C.H.; Vafidis, C.; Whitelaw, J.H. . Dept. of Mechanical Engineering)

    1994-06-01

    Measurements of velocity have been obtained in a centrifugal pump in terms of angle-resolved values in the impeller passages, the volute, the inlet and exit ducts and are presented in absolute and relative frames. The pump comprised a radial flow impeller with four backswept blades and a single volute, and the working liquid had the same refractive index as the transparent casing to facilitate the use of a laser-Doppler velocimeter. The flows in the impeller passages wee found to depart from the curvature of the blade surfaces at off-design conditions with separation from the suction surface and from the shroud. Secondary flows from the suction to pressure surfaces were dominated by the influences of the relative motion between the shroud and impeller surfaces and the tip leakage. Geometric differences of 0.5 mm and one degree in spacing of the four blades caused differences in passage velocity of up to 6 percent at the lowest discharge. The flowrate from each impeller passage varied with volute circumferential position by up to 25 percent at an off-design flowrate. Poor matching of the impeller and volute at off-design conditions caused swirl and separation in the inlet and exit pipes.

  20. Wastewater purification via impeller fluidized microemulsion liquid membranes

    SciTech Connect

    Petrik, M.

    1989-09-25

    The Impeller Fluidizer uses impeller generated fluid flows to concentrate a dense slurry of fine particles. The application of the fluidizer to wastewater treatment using emulsion liquid membranes extends the Impeller Fluidizer's scope to include liquid-liquid interactions. Liquid-liquid fluidization requires two immiscible phases and is otherwise analogous to solid-liquid contacting. The project develops a suitable liquid membrane which could operate in an Impeller Fluidizer while separating contaminants from an aqueous stream. Experiments were conducted to determine: (1) the effect of shear rate and fluidizer configuration on leakage stability and fluidization of emulsion liquid membranes; (2) the kinetics of single contaminant removal from aqueous solution; and (3) the feasibility of multiple contaminant separation in a staged series of Impeller Fluidizers. The separation technique will benefit not only wastewater treatment industries, but can also be applied to biochemical recovery, hydrometallurgy, and commodity chemical recovery. Utilizing simple, inexpensive equipment, the technology will yield high mass transfer and high flow rates.

  1. Optimization of Integrated Impeller Mixer via Radiotracer Experiments

    PubMed Central

    Othman, N.; Kamarudin, S. K.; Takriff, M. S.; Rosli, M. I.; Engku Chik, E. M. F.; Adnan, M. A. K.

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, Vdead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and Vdead (%) using radiotracer experiments. The optimum conditions for the experiments were 100?rpm impeller speed, 50?mm impeller clearance, Type A mixer, and 900?s sampling time to reach optimization. PMID:24741344

  2. Optimization of integrated impeller mixer via radiotracer experiments.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Adnan, M A K

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization. PMID:24741344

  3. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  4. Detection and effects of pump low-flow operation

    SciTech Connect

    Casada, D.A.; Greene, R.H.

    1993-12-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation.

  5. Controlling granule size through breakage in a novel reverse-phase wet granulation process: the effect of impeller speed and binder liquid viscosity.

    PubMed

    Wade, J B; Martin, G P; Long, D F

    2015-01-30

    The feasibility of a novel reverse-phase wet granulation process has been established previously highlighting several potential advantages over the conventional wet granulation process and making recommendations for further development of the approach. The feasibility study showed that in the reverse-phase process granule formation proceeds via a controlled breakage mechanism. Consequently, the aim of the present study was to investigate the effect of impeller speeds and binder liquid viscosity on the size distribution and intragranular porosity of granules using this novel process. Impeller tip speed was found to have different effects on the granules produced by a conventional as opposed to a reverse-phase granulation process. For the conventional process, an increase in impeller speed from 1.57 to 3.14 ms(-1) had minimal effect on granule size distribution. However, a further increase in impeller tip speed to 3.93 and 4.71 ms(-1) resulted in a decrease in intragranular porosity and a corresponding increase in mean granule size. In contrast when the reverse-phase process was used, an increase in impeller speed from 1.57 to 4.71 ms(-1) resulted in increased granule breakage and a decrease in the mean granule size. This was postulated to be due to the fact that the granulation process begins with fully saturated pores. Under these conditions further consolidation of granules at increased impeller tip speeds is limited and rebound or breakage occurs. Based on these results and analysis of the modified capillary number the conventional process appears to be driven by viscous forces whereas the reverse-phase process appears to be driven by capillary forces. Additionally, in the reverse-phase process a critical impeller speed, represented by the equilibrium between centrifugal and gravitational forces, appears to represent the point above which breakage of large wet agglomerates and mechanical dispersion of binder liquid take place. In contrast the conventional process appears to be difficult to control due to variations in granule consolidation, which depends upon experimental variables. Such variations meant increased impeller tip speed both decreased and increased granule size. The reverse-phase process appears to offer simple control over granule porosity and size through manipulation of the impeller speed and further evaluation of the approach is warranted. PMID:25475017

  6. Analysis of Viscous Micropumps and Microturbines

    NASA Astrophysics Data System (ADS)

    Decourtye, David; Sen, Mihir; Gad-El-Hak, Mohamed

    1997-11-01

    A numerical study of the three-dimensional viscous fluid flow in a novel pump/turbine device appropriate for microscale applications is performed. The device essentially consists of a rotating or free-to-rotate cylinder eccentrically placed in a channel, and is shown to be capable of generating a net flow against an externally imposed pressure gradient, or, conversely, generating a net torque in the presence of an externally imposed bulk flow. Full Navier-Stokes, finite-element simulations are carried out to study the influence of the width and other geometric as well as dynamic parameters, and the results are compared to our previous two-dimensional numerical and physical experiments. The three-dimensional simulations indicate a gradual decrease of the bulk velocity and pump performance as the two side walls become closer providing increased viscous resistance to the flow. However, effective pumping is still observed with extremely narrow channels. The utility of the device as a microturbine is also demonstrated for the first time in the present simulations. Particularly, the angular velocity of the rotor and the viscous torque are determined when a bulk velocity is imposed.

  7. Integrable viscous conservation laws

    NASA Astrophysics Data System (ADS)

    Arsie, Alessandro; Lorenzoni, Paolo; Moro, Antonio

    2015-06-01

    We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named the viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlev I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe.

  8. Apparatus for controlling flow through a centrifugal impeller

    SciTech Connect

    Amr, Y.M.; Salvattera, J.F.

    1988-05-31

    In an air conditioning unit having a housing containing a heat exchanger and a centrifugal impeller blower has an inlet opening facing the back of the heat exchanger so that the impeller draws comfort zone air over the heat exchanger surfaces and return the air to the comfort zone, the unit is described including: a hollow orifice mounted behind the heat exchanger having a passage for conducting comfort zone air to the inlet region of the impeller, the discharge end of the orifice being spaced from the inlet face of the impeller to provide a circular throat around the impeller, and a circular shield surrounding the orifice and having an end face that is positioned adjacent the inlet face of the impeller to provide a narrow gap therebetween, the width of the gap being less than the width of the throat, whereby the air flow drawn radially through the gap is expanded rapidly in the throat to reduce its velocity prior to entering the inlet region of the impeller.

  9. Gas-liquid dispersion with dual Rushton turbine impellers.

    PubMed

    Hudcova, V; Machon, V; Nienow, A W

    1989-08-20

    Aerated and unaerated power consumption and flow patterns in a 0.56 m diameter agitated vessel containing water with dual Rushton turbines have been studied. Under unaerated conditions with a liquid height-to-diameter ratio of 2, an impeller spacing of 2 to 3 times the impeller is required for each to draw an amount of power equal to a single impeller. For aerated conditions, if a similar spacing is used, equations for the flooding-loading transition and for power consumption for a single Rushton impeller can be extended relatively easily to dual systems. All results for this spacing are explained by reference to bulk flow patterns and gassed-filled cavity structures and the proportion of sparged gas flowing through the upper impeller is also estimated. Such a spacing is generally recommended since it maximizes the power draw and hence the potential for oxygen mass transfer. Data are presented for other spacings but the results do not fit in easily with single agitator studies because strong impeller-impeller flow pattern interactions occur. PMID:18588146

  10. Computer code for analysing three-dimensional viscous flows in impeller passages and other duct geometries

    NASA Technical Reports Server (NTRS)

    Tatchell, D. G.

    1979-01-01

    A code, CATHY3/M, was prepared and demonstrated by application to a sample case. The preparation is reviewed, a summary of the capabilities and main features of the code is given, and the sample case results are discussed. Recommendations for future use and development of the code are provided.

  11. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations

    NASA Astrophysics Data System (ADS)

    Peng, G. J.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    The impeller and casing of dredge pump are worn by sediment in the flow. However, there are few studies about abrasion of the impeller and casing for normal pump operating conditions. This paper investigated the relationship between the wear rates on the surfaces of the impeller as well as casing and the sediment concentration, with the distribution of the wear rates for normal pump operating condition analyzed. An Eulerian-Lagrangian Computational Fluid Dynamics (CFD) procedure was used to simulate steady liquid-solid two-phase flow for various operating conditions. The Finnie model was then used to predict the abrasion. The results show that, the wear rate relative value of impeller and casing surface increase as the sediment concentration increases. The wear rate relative value of impeller and casing surface is larger when the pump is in low flow rate condition, and the value of casing surface is larger than that of the impeller. The wear rate relative value of pump is low when pump is in high efficiency condition. This paper shows the abrasion characteristics on the impeller and casing with sediment flow and provides reference data for predicting the abrasion conditions in the flow passage components for a dredge pump.

  12. Novel maglev pump with a combined magnetic bearing.

    PubMed

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device. PMID:15745134

  13. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  14. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  15. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  16. Cavitation in transiently operating centrifugal pumps

    SciTech Connect

    Lefebvre, P.J.; Barker, W.P.

    1994-12-31

    The effect of transient operation on a centrifugal pump`s cavitation performance was investigated experimentally in the Naval Undersea Warfare Center`s Impeller Test Facility. For low facility pressures where cavitation occurred, its inception and desinence during the transient were determined by acoustic and visualization methods whose results agreed closely with predicted values based on quasi-steady analysis. The minimum facility pressure for cavitation-free operation also correlated well with quasi-steady predictions. Impeller suction performance continuously degraded (i.e., reduced suction pressure) as facility pressure was lowered from the minimum non-cavitating pressure and as the severity of cavitation increased. This degradation was actually a redistribution of pressure across the impeller since the total head rise was unaffected. The appearance of suction pressure degradation can be used as an alternate means of determining the minimum facility pressure for cavitation-free operation.

  17. 27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) AND FOLDING SCALE (MEASURED IN INCHES). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. Impeller Metrology for Pipeline Compressors Using Computed Radiography

    SciTech Connect

    Nelson, G.; Gordon, T.; Bueno, C.; Noonan, D.; George, S.; Mahesh, A.; Korukonda, S.; Fabbri, M.; Cantelli, U.; Marcucci, N.

    2006-03-06

    A new, quantitative method is described to measure features in pipeline impellers using computed radiography (CR). This capability, with an accuracy approaching 5 mils, is required to optimize the impeller design for high efficiency. The large area coverage, simplicity, and high spatial resolution of CR are ideal for this application. A novel phantom and image processing algorithm chain was used to demonstrate measurement repeatability of 99.9% (1 mil) using CR.

  19. Nonconformal viscous anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Martinez, Mauricio

    2015-06-01

    We generalize the derivation of viscous anisotropic hydrodynamics from kinetic theory to allow for nonzero particle masses. The macroscopic theory is obtained by taking moments of the Boltzmann equation after expanding the distribution function around a spheroidally deformed local momentum distribution whose form has been generalized by the addition of a scalar field that accounts nonperturbatively (i.e., already at leading order) for bulk viscous effects. Hydrodynamic equations for the parameters of the leading-order distribution function and for the residual (next-to-leading order) dissipative flows are obtained from the three lowest moments of the Boltzmann equation. The approach is tested for a system undergoing (0 +1 )-dimensional boost-invariant expansion for which the exact solution of the Boltzmann equation in the relaxation time approximation is known. Nonconformal viscous anisotropic hydrodynamics is shown to approximate this exact solution more accurately than any other known hydrodynamic approximation.

  20. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  1. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  2. Research of the cavitation performance of the condensate pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Pan, Z. B.; He, M. H.; Ji, K.; Zhou, W. C.; Min, S. M.

    2013-12-01

    Condensate pump is an important part of power plant circulation systems, which is used to pump condensate water. Because the condensate water pressure is very low, the first impeller of the condensate pump must have a good cavitation performance. Numerical simulation was employed to study the first impeller cavitation performance. The first impeller was set in the condensate pump barrel, and the double suction casing was kept, the parts after the double suction casing was simplified as tube. The simplicity can guarantee the inlet and outlet conditions of the impeller. Based on the RANS and SST k - ? turbulence model, CFD software was used to simulate the condensate pump at different working conditions. The numerical simulation shows that cavitation occurred at the suction side of the blades closing to the leading edge. The cavitation performance of the impeller was predicted based on the numerical calculation. Comparing with the experimental results, the numerical simulation result is smaller than that of the experiment in small flux, and the cavitation performance trend is agreed with that of the experiments.

  3. The margin of safety in the use of a straight path centrifugal blood pump.

    PubMed

    Kijima, T; Nojiri, C; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Ogihara, M; Katsuda, H S; Amano, N; Fukasawa, H

    1994-09-01

    A new centrifugal blood pump with a rotor that arranges 6 straight paths radially was developed for open heart surgery and temporary circulatory support. We describe comparative studies of the margin of safety in the practical use of the new pump. This pump was evaluated for temperature increase, cavitation, and pressure sensitivity. Two commercially available centrifugal pumps, the Biomedicus cone type and the Sarns 3M impeller type, were used as control pumps. The temperature increase in the new pump was four times slower than in the impeller pump when the outlet and the inlet of the pump was clamped. No sign of cavitation was observed when 0.1 ml air was introduced to the pump inlet under a negative pressure of 200 mm Hg in fresh bovine blood. As for pressure sensitivity of centrifugal pumps in practical applications, circuit resistance was a more essential factor than flow-pressure curves of the pump. PMID:7998886

  4. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  5. Preventing cavitation in high energy centrifugal pumps

    SciTech Connect

    Garbers, A.W.F.; Wasfi, A.K. Ltd. )

    1990-07-01

    Large-eye impellers for high energy centrifugal pumps were developed to meet the specification of reduced NPSH{sub r} at rated flow conditions. Unfortunately, this improved NPSH performance was not without adverse tradeoffs because an abnormal increase in noise, vibration and cavitation erosion were experienced at low flows. Centrifugal pumps are often used under widely varying and adverse conditions, and in the case of high energy and large-eye impeller pumps, these conditions should be evaluated very carefully. At petrochemical complexes in Secunda in the Republic of South Africa, a centrifugal pump application for lean carbonate solution experienced frequent failures. An investigation and literature survey indicated the cause was low flow cavitation. The purpose of this article is but to give design guidelines as obtained from literature and experience.

  6. Motor-pump aggregate

    SciTech Connect

    Schneider, W.; Gaffal, K.; Peters, J.

    1983-10-04

    A motor-pump aggregate whose pump is a glandless centrifugal pump and is intended for use in a nuclear reactor plant has hollow coaxial pump and motor shafts which are sealingly coupled to each other. To this end, the first end portion of the pump shaft extends into the adjacent first end portion of the motor shaft and has an external conical shoulder for engagement with an internal conical seat of the first end portion of the motor shaft. A feather holds the first end portions against rotation relative to one another, and the shoulder is urged against the seat by a pair of threaded connectors one of which is anchored in a disc-shaped member in the region of the second end portion of the motor shaft and the other of which is anchored in the first end portion of the pump shaft. The disc-shaped member and the second end portion of the motor shaft have mating ring gears to ensure accurate and a reproducible centering. The connection between the second end portion of the pump shaft and an impeller is similar to that between the second end portion of the motor shaft and the disc-shaped member except that one of the respective connectors is anchored in a transverse end wall which is inserted into the second end portion of and is welded to the pump shaft.

  7. Centrifugal Pumps for Swimming Pools. National Sanitation Foundation Standard Number 17.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Committee for Swimming Pool Equipment Standards.

    The pumps discussed herein are intended to be used for recirculating water in swimming pools, both public and private. Included are the basic components which may be a part of a pump such as the housing, strainer, impeller, valves, and such other parts as are attached or a part of the pump as supplied by the manufacturer. This standard is intended

  8. Fluid pumping apparatus

    DOEpatents

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  9. Optimization of a Centrifugal Impeller Design Through CFD Analysis

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto

    1993-01-01

    This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.

  10. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  11. Measurements of the velocity field downstream of an impeller

    SciTech Connect

    Petersson, P.; Joensson, L.; Larson, M.

    1996-09-01

    The velocity field downstream of a model impeller operating in water was measured using a two-component laser doppler velocimeter. The investigation focused on the spatial development of the mean velocity in the axial, radial, and circumferential direction, although simultaneous measurements were performed of the velocity unsteadiness from which turbulence characteristics were inferred. The measurements extended up to 12 impeller diameters downstream of the blades displaying the properties of the generated swirling jet both in the zone of flow establishment and the zone of established flow. The division between these zones was made based on similarity of the mean axial velocity profile. Integral properties of the flow such as volume and momentum flux were computed from the measured velocity profiles. The transverse spreading of the impeller jet and its development towards self-similarity were examined and compared with non-swirling jets and swirling jets generated by other means.

  12. Impeller response calculation due to complex pressure loading

    NASA Technical Reports Server (NTRS)

    Wellstein, Carl

    1990-01-01

    An analysis technique is described to calculate the harmonic response of the first-stage impeller of the Space Shuttle Main Engine high pressure fuel turbopump. The excitation is a complex pressure loading at various locations on the impeller blades. The pressure loading was predicted using computational fluid dynamic techniques and was given as a Fourier series at 48 different locations on each of the three impeller blade types. The analysis consisted of mapping the pressures onto a three-dimensional finite element model, then converting these pressure loads to complex nodal force vectors at specified equal time intervals. The resulting vectors were then converted to modal force time histories that were then transformed into the frequency domain where the frequency response was calculated directly. This technique resulted in an improvement to the previously used direct integration technique and in a substantial analysis cost reduction.

  13. VISCOUS CHARACTERICTICS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1994-01-01

    Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.

  14. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    NASA Astrophysics Data System (ADS)

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  15. Cope with dissolved gases in pump calculations

    SciTech Connect

    Chen, C.C. )

    1993-10-01

    The pressure of the liquid at the inlet of a centrifugal pump must be high enough to prevent vaporization within the pump, because this vaporization hinders the pumping and can damage the impellers. This pressure requirement must be taken into account when deciding how high to place the pump feed vessel relative to the height of the pump itself. Basically, the pump suction pressure must be greater than the fluid's vapor pressure at the pumping temperature. The difference between pump suction pressure and vapor pressure is the net positive suction head (NPSH). For cases in which the liquid contains no dissolved gases, the vapor-pressure determination is straightforward. With dissolved gases, the situation is more complicated, because vapor-pressure data for such systems are usually not at hand. Adding to the complication is the fact that centrifugal pumps generally can, as it happens, tolerate a small amount of vapor at the impeller eye. If the solubility of the dissolved gas is low and the temperature is far below the boiling point of liquid, the amount of vapor released in a pump is likely not to exceed the tolerable value unless the pressure reduction is substantial.

  16. Numerical simulation of pump-intake vortices

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  17. Impeller of centrifugal fluid-type rotary machine

    SciTech Connect

    Katayama, K.; Izaki, S.; Fujita, K.

    1988-01-19

    An impeller of a centrifugal fluid-type rotary machine is described comprising impeller blades disposed between the main plate and a side plate of the machine symmetrically arranged around the rotary shaft. The blades are formed in a curved shape and have a convex front surface and a concave back surface. The front curved surface and the back curved surface of the blades are formed by parallel geneatrices inclined with respect to the rotary shaft. The blade has edged surfaces with a leading edge at the suction side which is more deflected from the rotary shaft at the outer ends than at their inner ends.

  18. Rotating Instability of a Centrifugal Compressor with 2-Dimensional Impeller

    NASA Astrophysics Data System (ADS)

    Kang, Kyung Jun; Shin, You Hwan; Kim, Kwang Ho

    2010-06-01

    This study investigated on details of flow characteristics of a compressor with 2-dimensional impeller at various flow rates. Experiment for a low speed compressor model in a water reservoir was performed to analyze the flow field in the vaneless diffuser and volute casing, which was done by PIV measurement. It was also focused on the periodic flow patterns occurring at low flow rate near unstable operating region of the compressor. At low flow rate condition, the flow visualization clearly shows that the flow energy from impeller is highly accumulated at the compressor exit by the blockage effect of a flow damper and consequently the reverse flow occurs in the diffuser.

  19. Numerical simulation of impeller-volute interaction in centrifugal compressors

    SciTech Connect

    Hillewaert, K.; Van den Braembussche, R.A.

    1999-07-01

    A numerical procedure to predict the impeller-volute interaction in a single-stage centrifugal compressor is presented. The method couples a three-dimensional unsteady flow calculation in the impeller with a three-dimensional time-averaged flow calculation in the volute through an iterative updating of the boundary conditions on the interface of both calculation domains. The method has been used to calculate the flow in a compressor with an external volute at off-design operation. Computed circumferential variations of flow angles, total temperature, and pressure are shown and compared with measurements. The good agreement between the predictions and measurements confirms the validity of the approach.

  20. Theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a volute

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Y.; Acosta, A. J.; Brennen, C. E.

    1988-01-01

    Fluid forces on a rotating and whirling centrifugal impeller in a volute are analyzed with the assumption of a two-dimensional rotational, inviscid flow. For simplicity, the flow is assumed to be perfectly guided by the impeller vanes. The theory predicts the tangential and the radial force on the whirling impeller as functions of impeller geometry, volute spacing, and whirl ratio. A good qualitative agreement with experiment is found.

  1. Analysis of the performances of an axial flow tandem pump based on CFD computations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Bai, Z. Y.; Zhang, M. D.; Wang, G. Y.

    2012-11-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Significant reduction of the axial geometry scale, resulting from lack of guide vanes, makes great sense to high-speed propulsion. Direct interactions between front and rear impellers may lead to special flows, which are different from those in a multistage pump. There are few studies of these differences. In this article, CFD computations of flows in an axial flow tandem pump are conducted to predict the performances. FBM turbulence model, which is introduced to commercial software, is used for the simulations. Circulation coefficient is defined to help analyze energy characteristics. The results demonstrate that power of the tandem pump increases slowly as discharge is getting larger. The tandem pump has better adaptability under large discharge conditions. The head of the rear impeller is not sensitive to discharge's change, which results from that the front impeller weakens the influence of discharge's change on the rear impeller, so pump's energy characteristics may be improved.

  2. The effect of gas fraction on centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  3. A relevance vector machine-based approach with application to oil sand pump prognostics.

    PubMed

    Hu, Jinfei; Tse, Peter W

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  4. A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics

    PubMed Central

    Hu, Jinfei; Tse, Peter W.

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  5. [Artificial heart--turbo type blood pump for long-term use].

    PubMed

    Akamatsu, Teruaki

    2003-05-01

    Shortage of donor heart for transplantation necessitates long-term artificial assist heart. Turbo-pump is smaller, simpler and cheaper than the pulsatile displacement type pump, but the turbo-pump has defect of thrombus formation at the shaft seal. Our centrifugal pump with magnetically suspended impellers overcomes this defect and is ready for clinical trials now. The structures and functions are described and are compared with the other newly-developed pump of the same kinds with us. And also the pumps of centrifugal type and axial-type, of which impellers are supported by pivots, are reviewed briefly from the stand point for long-term use. Other pumps are referred too: pumps with hydrodynamic bearing and a pump with the shaft seal which is washed and cooled by saline solution. PMID:12755019

  6. Resilient shaft mounting for pump

    SciTech Connect

    Valentine, W.

    1990-06-12

    This patent describes a pump. It comprises: a tube having a centrifugal pump mounted on an upper end thereof, the centrifugal pump having an inlet coaxial with the tube, an outlet disposed radially and an impeller rotatable in a housing to pump a liquid; at least one propeller disposed in the tube below the centrifugal pump, the propeller being rotatable to draw fluid upwardly in the tube; a shaft connecting the impeller of the centrifugal with the propeller in the tube; at least one triangular support for the shaft, having three resilient planar plates dimensioned to be bowed inwardly in the tube and enclosing the shaft. The plates are discrete sections, each having ends disposed against an inner surface of the tube and against an adjoining one of the plates, an intermediate portion of each of the plates resiliently bearing inwardly toward the shaft; and, a resilient bushing disposed between the plates and the shaft, the resilient bushing being a round tube deformed into a triangular shape by pressure of the plates; whereby the shaft is supported coaxially in the tube.

  7. Analysis of novel low specific speed pump designs

    NASA Astrophysics Data System (ADS)

    Klas, R.; Pochyl, F.; Rudolf, P.

    2014-03-01

    Centrifugal pumps with very low specific speed present significant design challenges. Narrow blade channels, large surface area of hub and shroud discs relative to the blade area, and the presence of significant of blade channel vortices are typical features linked with the difficulty to achieve head and efficiency requirements for such designs. This paper presents an investigation of two novel designs of very low specific speed impellers: impeller having blades with very thick trailing edges and impeller with thick trailing edges and recirculating channels, which are bored along the impeller circumference. Numerical simulations and experimental measurements were used to study the flow dynamics of those new designs. It was shown that thick trailing edges suppress local eddies in the blade channels and decrease energy dissipation due to excessive swirling. Furthermore the recirculating channels will increase the circumferential velocity component on impeller outlet thus increasing the specific energy, albeit adversely affecting the hydraulic efficiency. Analysis of the energy dissipation in the volute showed that the number of the recirculating channels, their geometry and location, all have significant impact on the magnitude of dissipated energy and its distribution which in turn influences the shape of the head curve and the stability of the pump operation. Energy dissipation within whole pump interior (blade channels, volute, rotor- stator gaps) was also studied.

  8. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  9. Optimum design of radial flow impellers for variable load operation

    SciTech Connect

    Tuccillo, R.; Senatore, A.

    1994-12-31

    The authors present, in this paper, an improved methodology for optimum design of radial flow impellers. The base methodology was recently proposed by the authors and consisted of a mathematical optimization technique matched to a flow model based upon an inviscid ``quasi 3-D`` method linked to a prediction of the boundary layer growth along both blade and end-wall surfaces. The enhanced strategy proposed in the present paper utilizes a genetic optimization algorithm and a number of refinement steps. This allows an effective exploration of a wide range of the independent variables. The latter define the impeller geometry defined under several aspects related to blade curvature and twisting, inlet and discharge angles, axial and radial displacements. The objective of maximum in total-to-total efficiency for a given level of pressure ratio is pursued within constraints on load levels, inlet and discharge Mach numbers, peripheral velocity. In this paper, the authors also deal with the search of an impeller configuration for satisfactory performance in an assigned field of operation. Off-design could, in fact, emphasize some problems related to choking or flow separation which are satisfactory solved at the design point. The control exerted by the optimizing procedure on the flow model, also in terms of boundary layer development, is helpful for finding more impeller characteristics for a better fitting of the operating field.

  10. Suspending Insoluble Solids Waste Tanks with Shrouded Axial Impeller Mixers

    SciTech Connect

    Poirier, M.R.

    1998-11-09

    The Savannah River Site is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The authors are conducted a test program to determine mixer requirements for suspending sludge heels using shrouded axial impeller mixers. The authors will present and discuss the data generated during the tests.

  11. Effects of outlet blade angle of centrifugal pump on the pump performance under air-water two-phase flow conditions

    SciTech Connect

    Minemura, Kiyoshi; Kinoshita, Katsuhiko; Ihara, Masaru; Furukawa, Hironori; Egashira, Kazuyuki

    1995-12-31

    To establish the optimum design parameters of offshore oil well centrifugal pumps, which should deliver crude oil containing a large amount of gas, various shapes of pump impeller with different outlet blade angles, locations of leading-edge and numbers of impeller blades as the design parameters were tested with various rotating speeds and suction pressures under air-water two-phase flow conditions. The greater the outlet blade angle, the less the degradation of the pump performance becomes, showing the optimum blade angle approximately equals to 90{degree}.

  12. Transformation of vibration signals in rotary blood pumps: the diagnostic potential of pump failure.

    PubMed

    Kawahito, Koji

    2013-09-01

    Although non-destructive and continuous monitoring is indispensable for long-term circulatory support with rotary blood pumps, a practical monitoring system has not yet been developed. The objective of this study was to investigate the possibility of detecting pump failure caused by thrombus formation through the monitoring of vibration signals. The data acquisition equipment included vibration pickups, a charge amplifier, vibration analysis systems, and exclusive hardware. A pivot-bearing centrifugal pump with a mock circuit was investigated for vibration analysis. To simulate the four common areas of thrombus formation, we used a piece of silicon attached to each of the following four locations: the total area of the bottom of the impeller, an eccentric shape on the bottom of the impeller, a circular shape around the shaft top, and an eccentric shape on the top of the impeller. Vibration signals were picked up, and the power spectrum density analysis was performed at pump rotational speeds of 2100, 2400, and 3000rpm. In this study, pump failure could be detected, and the types of imitation thrombi could be determined. We conclude that vibration detection with a computerized analysis system is a potentially valuable diagnostic tool for long-term circulatory support with rotary blood pumps. PMID:23625149

  13. Seismic-induced impeller/blade rubs in rotating power plant components

    SciTech Connect

    Padovan, J.; Choy, F.K.; Batur, C.; Canilang, L. . Dept. of Mechanical Engineering)

    1988-11-01

    During seismic or blade/impeller loss events, the potential for rubs in rotating nuclear and fossil fuel power plant components is quite high. Generally, such events involve interactions between blade/impeller tips and machinery components. This also includes the possibility of seal casing rubs. The paper develops methodologies to: evaluate the blade impeller-casing rub event; establish the associated stress, strain and force fields; enable signature analysis defining blade/impeller/seal participation; and establish procedure enabling evaluation of blade/impeller/seal fatigue life. Additionally, the paper presents benchmarking examples of prototypical power plant components.

  14. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings. PMID:16183322

  15. Magnetically suspended centrifugal blood pump with a radial magnetic driver.

    PubMed

    Hoshi, Hideo; Katakoa, Kiroyuki; Ohuchi, Katsuhiro; Asama, Jun-ichi; Shinshi, Tadahiko; Shimokohbe, Akira; Takatani, Setsuo

    2005-01-01

    A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the two gap sensor signals. The magnetic bearing was assembled into a centrifugal rotary blood pump (CRBP) driven with a radial, magnetic coupled driver. The impeller vane shape was designed based upon the computational fluid dynamic simulation. The diameter and height of the CRBP were 75 mm and 50 mm, respectively. The magnetic bearing system required the power of 1.0-1.4 W. The radial impeller movement was controlled to within +/- 10 microm. High stiffness in the noncontrolled axes, Z, phi, and theta, was obtained by the passive magnetic forces. The pump flow of 5 L/min against 100 mm Hg head pressure was obtained at 1,800 rpm with the electrical to hydraulic efficiency being greater than 15%. The Normalized Index of Hemolysis (NIH) of the magnetic bearing CRBP was one fifth of the BioPump BP-80 and one half of the NIKKISO HPM-15 after 4 hours. The newly designed magnetic bearing with two degrees of freedom control in combination with optimized impeller vane was successful in achieving an excellent hemolytic performance in comparison with the clinical centrifugal blood pumps. PMID:15745136

  16. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  17. Bouncing cosmologies with viscous fluids

    NASA Astrophysics Data System (ADS)

    Singh, T.; Chaubey, R.; Singh, Ashutosh

    2016-03-01

    The bounce in viscous fluid cosmology with inhomogeneous viscous fluids in Friedman-Robertson-Walker (FRW) space-time has been investigated. Different forms for the scale factor have been considered. The general features of the fluids which realize them and the possibility to have an acceleration after the bounce have been discussed.

  18. Viscous sludge sample collector

    DOEpatents

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  19. Skylab viscous damper study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.

  20. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  1. Causes and cures of a localized cavitation problem in a double-suction centrifugal pump

    SciTech Connect

    Shen, F.T.

    1994-12-31

    A case history of trouble shooting a localized cavitation problem in a 1000hp circulation water use double-suction centrifugal pump is presented. This paper describes a combined experimental and analytical approach that lead to find out the correct causes and cures of the severe impeller blade pitting problem. From practical and economical considerations, upgrading the material of impeller is the best measure to minimize the damage.

  2. A Method to Determine the Slip Factor of Centrifugal Pumps through Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Xiao, Jun-Jian

    2015-04-01

    In this paper, a method to determine the slip factor of centrifugal impellers is proposed based on the experimental result of the external performance of centrifugal pumps. This proposed method is superior to the conventional experimental method, which needs not to measure the flow parameters at impeller outlet. The results show that the present method can be used to obtain the slip factor at offdesign condition in a wide range of flow rate besides at the design point.

  3. Effect of fluid forces on rotor stability of centrifugal compressors and pumps

    NASA Technical Reports Server (NTRS)

    Colding-Jorgensen, J.

    1980-01-01

    A simple two dimensional model for calculating the rotordynamic effects of the impeller force in centrifugal compressors and pumps is presented. It is based on potential flow theory with singularities. Equivalent stiffness and damping coefficients are calculated for a machine with a vaneless volute formed as a logarithmic spiral. It is shown that for certain operating conditions, the impeller force has a destablizing effect on the rotor.

  4. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  5. Canned pump having a high inertia flywheel

    SciTech Connect

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  6. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  7. Raft river geothermal pump disassembly and inspection

    SciTech Connect

    Van Treeck, R.

    1983-02-01

    The disassembly and postoperation inspection of the Peerless geothermal water pump used in teh RRGE-1 well at the Raft River Geothermal Test Site are summarized. Disassembly was hampered by scale that froze some of the pump bearings onto the impeller shaft after operation ceased. The pump appeared otherwise in generally excellent condition after more than 1600 h running time in a geothermal environment. Most postoperation diameters of rotating parts were still within factory tolerance. The few out-of-tolerance bearing diameters could not be attributed to wear and could have been out of tolerance when received. This possibility points to a need for preoperation quality-control inspection of the bearings.

  8. Pumps and pumping

    SciTech Connect

    Ionel, I.I.

    1986-01-01

    This book addresses the increasing demand for water and the increasing limitations on energy use. Attention is focussed on variable-speed pumps. All aspects of pumps and pumping systems theory are considered.

  9. Development of the hydrotransport boost pump. Open file report September 1981-December 1984

    SciTech Connect

    Rubin, L.S.; Cardenas, R.L.; Burnette, M.; Roberge, J.; Harvey, A.

    1984-12-31

    A ventilated helical boost pump was developed that can handle varying flow rates and/or solids concentrations while operating at a single rotational speed and without computer assisted feedback controls. The boost pump developed and briefly tested during this program was designed to accomodate flows suitable for a 3-in-diam pipeline. The boost pump's ventilated design provides the automatic pressure regulation needed to meet the system's requirements for supporting transient pipeline flow. A maximum discharge pressure of 120 psi was achieved at an operating speed of 3,000 rpm. The boost pump efficiency at maximum discharge pressure was 65 pct. Coal flow rates of up to 1,000 lb/min were successfully processed with a nonshrouded single vane impeller. Further redesign is required to develop a shrouded impeller that can be combined with stationary wear rings to minimize impeller wear.

  10. Two-phase velocity distributions and overall performance of a centrifugal slurry pump

    SciTech Connect

    Cader, T.; Masbernat, O.; Roco, M.C. . Dept. of Mechanical Engineering)

    1994-06-01

    Back-scattering LDV has been used to investigate particulate two-phase flow in a centrifugal slurry pump. The measurements reported here have been made with a dilute suspension of 0.8 mm glass beads at the impeller-casing flow interface. This interface is of practical importance because the corresponding velocity and concentration results can be used to determine the pump head and flowrate. The present study evaluates the connection between the liquid and solids velocity distribution measured around the impeller and the pump performance determined from measurements at the pump inlet and outlet. The analysis of the velocity triangles for both phases shows the effect of the pump flowrate and inlet recirculation on the pump head at the impeller outlet, as well as the effect of particle slip on pump energy efficiency. A separate group of characteristic curves is proposed to represent the periodical fluctuations of the pump flowrate, head, and loss of efficiency due to particle slip, as a function of the impeller position.

  11. Laser cleaning of sulfide scale on compressor impeller blade

    NASA Astrophysics Data System (ADS)

    Tang, Q. H.; Zhou, D.; Wang, Y. L.; Liu, G. F.

    2015-11-01

    Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  12. Engine water pump assembly and method of making same

    SciTech Connect

    Hale, K.F.; Paliwoda, J.; Propst, V.

    1988-05-24

    In an automotive engine water pump assembly having a rotatable shaft with a drive end provided with connection means for rotating the shaft and an opposite impeller end upon which a water impeller is mounted, and with the shaft being divided along its length into a bearing portion adjacent the drive end and a sealing portion adjacent the impeller end; and having a bearing surrounding the shaft bearing portion; with a housing having a body surrounding the shaft and bearing along their lengths and having an enlarged chamber around the impeller end of the shaft, within which the impeller is positioned; and a seal surrounding the shaft seal portion for sealing against the flow of water from the housing impeller chamber to the housing bearing surrounding part, the improvement is described comprising: the bearing being formed for a unitary, tubular bushing whose interior surface is adjacent the overlapped bearing portion of the shaft; and the bearing having an integral, annular flange formed on one end for surrounding the part of the shaft sealing portion which is adjacent the shaft bearing portion. The housing is formed of an integral plastic molding, with the bearing being bonded to the surrounding surface of the interior of the wall of the housing body; and the seal extending within and sealing the shaft against the bearing flange. The housing and bearing may be formed in a single subassembly, and the shaft and seal may be formed as a separate subassembly, and the shaft and seal subassemblies may be inserted in an axial direction into the housing through the impeller chamber to position the shaft bearing portion within the bearing for assembly of the pump.

  13. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.

    PubMed

    Sakuma, I; Fukui, Y; Dohi, T

    1996-06-01

    Four pump models with different vane configurations were evaluated with flow visualization techniques using a high-speed video camera. These models also were evaluated through in vivo hemolysis tests using bovine blood. The impeller having the greatest fluid velocity relative to the impeller, the largest velocity variance, and the most irregular local flow patterns in the flow passage caused the most hemolysis. Even if the pumps were operated at almost the same speed (rpm) at the same output, the impeller showing more irregular flow patterns had a statistically greater rate of hemolysis. This fact confirms that the existence of local irregular flow patterns in a centrifugal blood pump deteriorates its hemolytic performance. Thus, to optimize the design of the pump, it is very important to examine the secondary flow patterns in the centrifugal blood pump in detail using flow visualization with a high-speed video camera. PMID:8817952

  14. Fluid mixing from viscous fingering

    NASA Astrophysics Data System (ADS)

    Jha, B.; Cueto-Felgueroso, L.; Juanes, R.

    2010-12-01

    We characterize the evolution of the degree of mixing between two fluids of different viscosity using numerical simulation and analysis. It is well known that when a less viscous fluid displaces a more viscous fluid, the displacement front is unstable and leads to the formation of a pattern known as viscous fingering. We show that viscous fingering leads to two competing effects. On one hand, it enhances mixing by inducing disorder in the velocity field, and increasing the interfacial area between the fluids. On the other, it causes channeling of the low viscosity fluid, which bypasses large areas of the flow domain - these regions remain unswept thereby reducing the overall mixing efficiency. This competition between creation of fluid-fluid interfacial area and channeling results in nontrivial mixing behavior. We develop a two-equation dynamic model for concentration variance and mean dissipation rate to quantify the degree of mixing in a viscously unstable displacement. The model reproduces accurately the evolution of these two quantities as observed in high-resolution numerical simulations. It also provides a measure of effective diffusivity due to convective and diffusive mixing processes. We then use our analysis to predict the range of viscosity contrast that maximizes mixing by maximizing the interfacial area. Interesting fingering patterns such as channeling and tip-splitting play an important role in this balancing act which makes degree of mixing a non-monotonic function of the viscosity contrast and the Peclet number. Snapshot from viscous fingering simulation for mobility ratio M = 33 and Peclet number Pe = 8000. Fingering creates additional interfacial area that accelerates the diffusive mixing process. Snapshots from viscous fingering simulation in a blobs setup (blobs of less viscous fluid inside a more viscous medium). Mobility ratio = 20 and Peclet number = 10000. Notice the development of channels at late times slows down mixing across the domain.

  15. Soft-iron impellers in the Madison Sodium Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, Mark; Clark, M. M.; Forest, C. B.; Plihon, N.

    2014-10-01

    In an attempt to increase the magnetic flux amplification of the two-vortex flow in the Madison Sodium Dynamo Experiment, the stainless steel impellers were replaced with soft-iron disks similar in design to the VKS dynamo experiment. Past attempts at creating a homogeneous dynamo in the Madison Sodium Dynamo Experiment relied on stainless steel impellers to drive a two-vortex flow predicted to be unstable to dynamo excitation. The resulting induction process was much weaker than laminar predictions due to the turbulent enhancement of the resistivity. The measured amplification and pulse-decay times with the soft-iron disks show an improvement in the flux amplification, but not sufficient for self-excitation. Despite the similarities in the impeller design with the VKS experiment, the differences in geometry still play a significant role in determining the threshold conditions for dynamo action. This work is supported by the DOE, NSF, the Center for Magnetic Self-Organization, and a CNRS travel grant.

  16. Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools

    NASA Astrophysics Data System (ADS)

    Asuaje, Miguel; Bakir, Farid; Kouidri, Smane; Rey, Robert

    2004-02-01

    A process that enables us to improve the design of 2D centrifugal and helico-centrifugal pumps is presented. First of all, the definition of the impeller geometry as well as the analysis of its global performances are carried out starting from the mean streamline method (1D), based at the same time on ideal models and experimental correlations. A second stage of optimisation is achieved from a quasi three-dimensional (Q3D) method, by studying the meridional flow and blade-to-blade flow. Finally, 3D flow solution is performed by CFD tools. Nowadays, we have a group of tools which help the designers improve the performance of new machines. These digital tools are built around two computer programs, HELIOX developed for design and performance analysis in any centrifugal and mixed flow pumps equipped with volute or deswirl vanes, and also the module REMIX that gathers the meridional flow analysis and the simplified blade-to-blade one. To validate this procedure, a centrifugal machine with a volute (NS32) was modified and studied with it, and the results were simultaneously compared with the previous trial runs and with the software CFX-BladeGEN+ and CFX-TASCflow. The results for a machine equipped with a deswirl (VM51) are also presented.

  17. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (ESTSC)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore »which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  18. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (ESTSC)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmorewhich heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.less

  19. Transmission vibration viscous damper

    SciTech Connect

    Filkins, T.J.

    1987-07-07

    A manual transmission is described comprising an input shaft adapted to be clutched to the crankshaft of an internal combustion engine, the input shaft having an input gear integral; the input gear forms with peripheral teeth and has a concentric axial bore formed as an integral part of the input shaft; a transmission output shaft supported at its forward end by journal means located in the axial bore; the output shaft having a speed gear formed with peripheral teeth journalled thereon, a countershaft having an axis of rotation parallel with the axis of rotation of the output shaft. The improvement wherein the countershaft has a viscous fluid damper coupling supported thereon. The coupling comprises a first driven gear journalled on the countershaft, and the first drive gear has peripheral teeth in constant meshed engagement with the input gear peripheral teeth. A second driven gear is fixed on the countershaft for rotation. The second driven gear has peripheral teeth in constant meshed engagement with the speed gear peripheral teeth, a diametrical through bore extending through the countershaft intermediate the first and second driven gears. Each first and second driven gears formed with a set of longitudinally extending mirror image axial teeth are arranged concentrically about axis of rotation. The sets of axial teeth are sized to mesh in a loose fitting manner defining predetermined interconnected clearance spaces between the sets of axial teeth.

  20. Viscous dark fluid universe

    SciTech Connect

    Hipolito-Ricaldi, W. S.; Velten, H. E. S.; Zimdahl, W.

    2010-09-15

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  1. Inlet and outlet devices for rotary blood pumps.

    PubMed

    Song, Xinwei; Wood, Houston G; Allaire, Paul E; Antaki, James F; Olsen, Don B

    2004-10-01

    The purposes of inlet and outlet devices for rotary blood pumps, including inducers and diffusers for axial pumps, inlet and exit volutes for centrifugal pumps, and inlet and outlet cannulas, are to guide the blood into the impeller, where the blood is accelerated, and to convert the high kinetic energy into pressure after the impeller discharge, respectively. The designs of the inlet and outlet devices have an important bearing on the pump performance. Their designs are highly dependent on computational fluid dynamics (CFD) analysis, guided by intuition and experience. For inlet devices, the design objectives are to eliminate separated flow, to minimize recirculation, and to equalize the radial components of velocity. For outlet devices, the design goals are to reduce speed, to minimize energy loss, and to avoid flow separation and whirl. CFD analyses indicate the velocity field and pressure distribution. Geometrical optimization of these components has been implemented in order to improve the flow pattern. PMID:15384997

  2. Parametric performance evaluation of a hydraulic centrifugal pump

    NASA Astrophysics Data System (ADS)

    Heo, M. W.; Y Kim, K.; Ma, S. B.; Yoo, I. S.; Choi, W. C.; Kim, J. H.; Choi, Y. S.

    2014-03-01

    Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump.

  3. Viscous coordination in systems of rotating flagella

    NASA Astrophysics Data System (ADS)

    Bian, Qian; Powers, Thomas; Breuer, Kenneth

    2006-11-01

    Bacterial flagella are helical filaments, 5-10 microns long and 20 nm in diameter that rotate at approximately 100 Hz and are responsible for cell motility and, in engineered systems, enhanced mixing and pumping. It has been previously hypothesized that adjacent flagella can coordinate, presumably due to viscous interactions between nearby filaments. To explore the physics of this phenomenon, we present results from a model experiment performed in a low-Re tank in which asymmetric paddles (representing the asymmetry of helical flagella) are rotated using servo motors. The first series of experiments explore the dynamics of a single ``flagella'' close to a planar wall, and the torque-speed behavior is characterized as a function of the flagella-wall separation and other geometric and dynamic parameters. The second series of experiments explores the dynamics of two flagella rotating in close proximity. Scaling arguments for the observed behavior are presented based on related theoretical results.

  4. Seal cooling for plastic pumps

    SciTech Connect

    Raab, A.

    1988-05-24

    In a centrifugal pump having a thermally non-conductive plastic pump body, a rotatable impeller mounted on a rotatable drive shaft, and a mechanical seal between the pump body and the drive shaft separating a dry zone from a wet zone and comprising a rotatable seal member and a non-rotatable seal member, a cooling arrangement for the mechanical seal is described comprising: a thin metal thermally conductive stamping, cup shaped in configuration, and a retaining member positioned between the stamping and the non-rotatable seal member sufficiently thin so as to transfer heat from the non-rotatable seal member to the stamping. The stamping is thermally connected to the mechanical seal and operates as a heat sink and radiator to dissipate the heat buildup of the seal into the dry zone by radiation cooling.

  5. Backswept impeller and vane island diffuser and shroud for NASA advanced-concepts compressor test rig

    NASA Technical Reports Server (NTRS)

    Perrone, G. L.; Holbrook, M. R.; Mcvaugh, J. M.

    1973-01-01

    A centrifugal impeller based on an existing backswept design was defined. In addition, a vaned diffuser was designed to match this impeller and also to be compatible with an existing 6:1 compressor test rig. The mechanical integrity of this design was verified by analysis. Hardware was procured and inspected to insure conformity with design tolerances. An overspeed test was successfully conducted on one of the impellers fabricated under this program.

  6. Numerical simulations of solid-liquid stirred tank with an improved Intermig impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhang, Ting'an; Liu, Yan; Zhang, Zimu; Zhang, Chao

    2013-06-01

    Numerical simulations of solid-liquid mixing in a stirred tank with an improved Intermig impeller were performed by adopting standard ?-? turbulence model coupled with Eulerian granular multiphase model. An unsteady sliding mesh approach was used to simulate the impeller rotation. The flow field, solids hold-up and power consumptions were investigated in the solid-liquid mixing system. Compared to the standard Intermig impeller, the improved Intermig impeller coupled with the special sloped baffle could promote the fluid circulation, creating better solid suspension and consuming lesser power.

  7. Study on the performance deterioration of mixed flow impeller due to change in tip clearance

    NASA Astrophysics Data System (ADS)

    Ramesh Rajakumar, D.; Ramamurthy, S.; Govardhan, M.

    2013-12-01

    Performance of mixed flow compressor with un-shrouded impeller strongly depends upon unsteady, asymmetrical flow fields in the axial directions. The flow through the mixed flow impeller is complex due to three-dimensional nature of geometry. In mixed flow impeller, there are clearances between the rotating impeller blades and the casing as the high pressure ratio compressors are usually open shrouded impellers. As a result, certain amount of reduction in the performance is unavoidable due to clearance flows. In the present investigations, numerical analysis is performed using a commercial code to investigate tip clearance effects on through flow. The performance of mixed flow impeller with four different clearances between impeller and stationary shroud are evaluated and compared with experimental results. The impeller performance map was obtained for different operating speeds and mass flow rates with different tip clearances. The result shows that the tip leakage flow strongly interacts with mainstream and contributes to total pressure loss and performance reduction. The pressure and performance decrement are approximately linearly proportional to the gap between impeller and stationary shroud. The analysis showed scope for improvement in design of the compressor for better performance in terms of efficiency and operating range.

  8. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    NASA Astrophysics Data System (ADS)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  9. An experimental study of a small high speed LH2 rocket pump: Fundamental mechanical design

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masataka; Suzuki, Mineo; Shimura, Takashi; Watanabe, Mitsuo; Kamijo, Kenjiro; Nosaka, Masataka; Warashina, Shougo

    1991-09-01

    A small high speed Liquid Hydrogen (LH2) pump was designed, fabricated, and tested in order to obtain technical data necessary for the development of upper stage rocket engines, e.g., the LE-5 and Orbiter Transfer Vehicle (OTV) engines. The pump's basic mechanical design is described, as well as its mechanical performance during tests using LH2 (both at nominal operating and rapid start and stop conditions). It was confirmed that the same materials employed for liquid oxygen pump components can be used, except for the impeller. An impeller made of titanium alloy (Ti-5Al-2.5Sn) was machined and then diffusion bonded, and subsequently withstood a high speed operating condition (50,000 rpm) for 350 sec. A balance piston configuration was selected for axial thrust control, where the impeller acts as a balance disk. The piston's performance was satisfactory, although the impeller's balance position during the tests was different from design calculations. Post-test examinations revealed light rubbing traces on the impeller and casing at the balance piston orifice. This positional discrepancy was caused by an inaccurate estimate of the orifice flow coefficients and leakage flow rate. Stress analysis on other components and machine specifications for critical mating parts were also verified as satisfactory. Self lubricated ball bearings and rotating shaft seals showed adequate performance. Results indicate that smooth operation was achieved, thus confirming the soundness of the pump's mechanical design.

  10. Numerical Research on Flow Characteristics of Vortex Stage in Dry High Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Gu, Xiao-guang; Ba, De-chun; Li, Pei-yin; Du, Guang-yu; Yue, Xiang-ji; Yang, Naiheng

    With the development of dry high vacuum pump, researches of pumping mechanism of vortex-stage are greatly concerned. This paper presents a horizontal dry high vacuum pump and establishes a numerical model of vortex stage. And then numerical simulation of flow is carried out with FLUENT software. Moreover, it studies how flow regions work on the internal flow and work performance of the vortex stage under various conditions, such as different number of blades and impeller with different blade rake. As a result, numerical simulation shows that there is a large impact on the pumping for different numbers of blades distributed on the impeller, the number of blades of single impeller should be obtained by combining with practical design sizes. In fact, this paper selects the best number of blades as forty-three by calculating and optimizing. In the mean time, there are three cases for the blade rake: pitched vanes, radial vanes and retroverted vanes. For each case, there are both longitudinal vortex and radial vortex existing in the impeller. Considering comprehensively, impeller with radial vanes is selected in the design after simulation and comparisons.

  11. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear. PMID:17343698

  12. Influence of low-specific speed pump modifications on stability of Y-Q curve

    NASA Astrophysics Data System (ADS)

    Klas, Roman; Pochyl, Frantiek; Rudolf, Pavel

    2015-05-01

    Contribution is focused on modification of low-specific speed pump impellers with respect to stability of their Y-Q curves (i.e. head curves). The design modifications are driven by analysis of the dissipated power. First, dissipated power is evaluated by CFD software in individual working parts of the pump and then its dependence on flow rate is investigated. Pressure fields within the pump are also carefully examined. Special attention is paid to impellers and configuration of the blade channels and recirculating channels. Results point to significant influence of the proper inflow to recirculating channels and also to role of the volute, which is more pronounced than in conventional impellers. All integral characteristics from CFD simulations are verified experimentally.

  13. The optimization of a low specific speed pipeline pump

    NASA Astrophysics Data System (ADS)

    Zhao, A.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    A low specific speed pipeline pump is researched to improve work performance through several certain modifications. The target is to raise the pump's head up to 80m and increase its total efficiency to 26.5% when the volume flow rate is 6.3m3/h with a rotatory speed of 2960rpm. CFD Numerical simulation is employed to predict the hydraulic performance of the pump. The volute is redesigned and splitters are imported to change the structure of the impeller. A lot of factors are taken into account, for instance number of vanes, forms of vanes, width of the volute, shape of volute's cross section, etc. These transformations ameliorate the distribution of pressure and velocity in the impeller and volute that finally increase the pump's hydraulic efficiency. The impeller trim has also been made according to the affinity law to fatherly decrease the disc friction which causes pump's mechanical loss and then achieves the optimization goal finally. It is a practical case in low specific speed pump's optimization and conclusions given at the end may be experience in the design of this sort of device.

  14. Numerical simulation of 3D turbulent flow through an entire stage in a multistage centrifugal pump

    NASA Astrophysics Data System (ADS)

    Huang, Si; Islam, Mohammed F.; Liu, Pengfei

    2006-06-01

    A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k ? turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in asymmetric and unsteady flow field. There is a considerable interference on the velocity field at the impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3D computational flow field. The current computation is verified by comparing predicted and measured head.

  15. Interaction effects on the unstable discharge-energy characteristic of pump-turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Tao, R.; Xiao, R. F.; Yang, W.; Liu, W. C.

    2013-12-01

    For a pump-turbine, unstable discharge-energy characteristic is an important factor for operating stability. In this study, the rotor-stator interaction effects on the pump-turbine which has the unstable discharge-energy characteristic has been studied. A series of transient CFD simulations under different discharge conditions have been conducted. Through the contrast between the simulations and experiments, it is found out that the energy decline is strongly affected by the flow loss in the adjustable vane. More importantly, the magnitude and direction of fluid flowing into the adjustable vane are varying with the impeller rotating. Disordered flow structure occurs in the adjustable vane and causes the energy losses due to the interaction effects. Based on this study, improvements on the flow uniformity at impeller outlet will help us to solve the unstable discharge-energy problem.

  16. Split driveshaft pump for hazardous fluids

    DOEpatents

    Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  17. Concrete volute pumps: technology review and improvement

    NASA Astrophysics Data System (ADS)

    Prunires, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  18. Arbitrary surface flank milling of fan, compressor, and impeller blades

    SciTech Connect

    Wu, C.Y.

    1995-07-01

    It is generally conceived that a blade surface is flank millable if it can be closely approximated by a ruled surface; otherwise the slow machining process of point milling has to be employed. However, the authors have now demonstrated that the ruled surface criterion for flank milling is neither necessary nor sufficient. Furthermore, many complex arbitrary surfaces typical of the blades in fans, axial compressors, and centrifugal impellers in aviation gas turbines are actually closely flank millable and can be rendered exactly flank millable with one or more passes per surface often without sacrificing, indeed usually with gain, in performance.

  19. Turbulence properties of the impeller stream of a Rushton turbine

    SciTech Connect

    Lee, K.C.; Yianneskis, M.

    1998-01-01

    The structure of the flow in a vessel stirred by a Rushton turbine was investigated using laser Doppler anemometry measurement techniques. The time and length scales of turbulence were determined and used to estimate the dissipation rate of turbulence energy. The levels of turbulence energy and dissipation are high near the turbine and decrease rapidly with increasing distance from the turbine blades. The turbulence in the impeller stream is mostly anisotropic close to the blades. The results are compared with the findings of earlier investigations, and their implications for computational fluid dynamics (CFD) predictions of the flows are discussed.

  20. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    NASA Astrophysics Data System (ADS)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  1. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  2. Method for producing viscous hydrocarbons

    DOEpatents

    Poston, Robert S.

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  3. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  4. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  5. Trailing edge noise reduction in a backward-curved impeller

    NASA Astrophysics Data System (ADS)

    Lauchle, Gerald C.

    2002-05-01

    Motorized impellers are used in many air-moving applications including room circulation, duct flow, roof and wall exhaust, and cooling of electronic components in cabinets. These fans are backward-curved centrifugal blowers that operate with no volute casing. These fans radiate broadband noise due to turbulence ingestion and trailing edge (TE) noise generating mechanisms. Considered here are trailing edge noise generation and its reduction in a typical motorized impeller. The sound power of the subject fans is measured in an acoustically transparent test plenum according to ANSI Standard S12.11-1987. Two different serrated TE treatments are designed. The designs assume that a turbulent boundary layer exists at the blade TE, but the actual fan Reynolds number based on chord length is transitional. Therefore, to assure that a turbulent boundary layer exists at the TE, two different inlet turbulators are implemented. These trip the blade boundary layer to a turbulent state. Reported are the effects of the TE serrations and turbulators acting individually on the fan noise, along with the synergistic effects of using them in combinations. Up to 6 dBA of noise reduction is observed when the two are used together. [Work supported by Nortel Networks.

  6. Numerical study of cavitation flows inside a tubular pumping station

    NASA Astrophysics Data System (ADS)

    Tang, X. L.; Huang, W.; Wang, F. J.; Yang, W.; Wu, Y. L.

    2012-11-01

    Based on RNG k-epsilon turbulence model and the full cavitation model, the cavitation flows inside a low-head tubular-pump model were predicted by using the FLUENT software. For a operating case of given flow rate, cavitation happens near the inlet on the suction surfaces of the impeller blades at the initial cavitating stage, and the cavitating area spreads to the impeller passage and hub as NPSH (net positive suction head) decreases, which will affect energy transformation. For various operating cases of cavitation flows at the given flow rates, the predicted velocity and pressure distributions as well as the vapor volumetric fraction are systematically analyzed. Finally, the cavitation performance curve of the tubular-pump model is obtained by means of the further post-processing. All the comparisons and analysis can be further employed to optimize the hydraulic and structural design of the tubular pump and to guide its safe operation.

  7. Design of a Gas-Liquid Unbaffled Stirred Tank with a Concave Blade Impeller

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, Bimlesh

    2015-01-01

    Experimental investigation of unbaffled multiphase (gas-liquid) stirred tanks is conducted with the use of a concave blade impeller to analyze mass transfer, gassed power, and gas holdup. The experiments are carried out with various impeller diameter to tank diameter ratios and impeller clearances. The design criterion for the mass transfer rate is proposed, and its prediction capability is found to be satisfactory. The results show that the gassed power is dependent on the impeller diameter to tank diameter ratio and impeller clearance. The design criteria for gassed power to ungassed power ratio and gas holdup are also introduced. Multiphase modeling is done by employing the computational fluid dynamics (CFD) techniques to observe the characteristic flow pattern transition and to carry out a qualitative analysis of the mass transfer rate.

  8. Hydrodynamic characteristics of the helical flow pump.

    PubMed

    Ishii, Kohei; Hosoda, Kyohei; Nishida, Masahiro; Isoyama, Takashi; Saito, Itsuro; Ariyoshi, Koki; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Sato, Masami; Hara, Sintaro; Lee, Xinyang; Wu, Sheng-Yuan; Imachi, Kou; Abe, Yusuke

    2015-09-01

    The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape. PMID:25784463

  9. Global design optimization for an axial-flow tandem pump based on surrogate method

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  10. Effect of Impeller Design and Spacing on Gas Exchange in a Percutaneous Respiratory Assist Catheter

    PubMed Central

    Jeffries, R. Garrett; Frankowski, Brian J.; Burgreen, Greg W.; Federspiel, William J.

    2014-01-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (25). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 8 mL/min/m2 (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (510%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 213% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. PMID:24749994

  11. Effect of impeller design and spacing on gas exchange in a percutaneous respiratory assist catheter.

    PubMed

    Jeffries, R Garrett; Frankowski, Brian J; Burgreen, Greg W; Federspiel, William J

    2014-12-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2 ) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2-5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 8 mL/min/m(2) (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5-10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2-13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. PMID:24749994

  12. Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.; Clark, D. A.; Wood, J. R.

    1986-01-01

    A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

  13. An experimental study on pump clogging

    NASA Astrophysics Data System (ADS)

    Isono, M.; Nohmi, M.; Uchida, H.; Kawai, M.; Kudo, H.; Kawahara, T.; Miyagawa, K.; Saito, S.

    2014-03-01

    For sewage pump that various foreign substance is flowed into, anti-clogging performance is a factor as important as pump efficiency in order to avoid clogging trouble by foreign substance. Many investigations about pump inner flow and pump efficiency estimation have been carried out conventionally in order to realize coexistence with anti-clogging performance and pump performance. And these results have been reflected in construction of the running water section design method. As a index of anti-clogging performance, "impeller passage diameter" which is diameter of spherical solid that can pass through the pump is used widely. And there are various type of the sewage pump which have large impeller passage diameter. However real cause of clog is not a solid, and it is fibrous material such as towel and clothes, vinyl and paper diaper. In most case these material accumulate in the pump, so that clog is occurred. In this study, for the purpose of quantification of anti-clogging performance against fibrous materials, the factor that affect to clogging of pump was investigated by pump model test using a string. The test is done based on Taguchi method. In this test, type of the pump model, diameter of the string, material of the string, length of the string and flow rate are selected for the factor, and the effect that they have on the clogging of the pump was investigated. As a result of this test, it was made clear that length of the string has a strong influence on the clogging of the pump. And from the result of this test, evaluation method of anti-clogging performance of the pump against fibrous material by using string was considered. According to the result of above test based on Taguchi method, it was assumed that quantification of anti-clogging performance against fibrous materials is possible by flowing plural strings into the pump and calculating the probability of passing. Plurality sewage pumps of different types were evaluated based on this assumption. And It was confirmed that it is possible to compare anti clogging performance of the pump against fibrous materials quantitatively. And the specification of the string was selected according to the result of the test based on Taguchi method. By this method, one of the evaluation method on anti-clogging performance against fibrous materials was established.

  14. [A new approach for improving antithrombogenicity in centrifugal pump].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2003-09-01

    For long-term application of the rotary pumps, it is necessary to solve the problems of bearing wear and thrombosis along the bearing. Currently, many investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. We tried and found that it is difficult to apply a magnetic bearing to rotary pump without disturbing its simplicity, reliability and implantable; therefore, we have developed a much simpler and much more creative approach to achieving the same results. Instead of the sliding bearing, a rolling bearing has been devised for the pump; its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted in making the rollers, their anti-wear property in 8 times better than that of metal. Thereby, the service life of the bearing has extended to several years. For preventing the thrombus formation along the bearing, the impeller reciprocation axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is a result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to piston pump, the oscillating impeller can make the blood in and out of the bearing, resulting in wash-out once a circle. This is obviously beneficial to preventing thrombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated a durability of the device. It promises to be able to assist the circulation of the patients permanently and to be able to replace the heart transplantation in the future. PMID:14565033

  15. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-08-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level. PMID:26736996

  16. Aspects of causal viscous hydrodynamics

    SciTech Connect

    Bhalerao, R. S.; Gupta, Sourendu

    2008-01-15

    We investigate the phenomenology of freely expanding fluids, with different material properties, evolving through the Israel-Stewart (IS) causal viscous hydrodynamics, and compare our results with those obtained in the relativistic Eckart-Landau-Navier-Stokes (ELNS) acausal viscous hydrodynamics. Through the analysis of scaling invariants we give a definition of thermalization time that can be self-consistently determined in viscous hydrodynamics. Next we construct the solutions for one-dimensional boost-invariant flows. Expansion of viscous fluids is slower than that of one-dimensional ideal fluids, resulting in entropy production. At late times, these flows are reasonably well approximated by solutions obtained in ELNS hydrodynamics. Estimates of initial energy densities from observed final values are strongly dependent on the dynamics one chooses. For the same material, and the same final state, IS hydrodynamics gives the smallest initial energy density. We also study fluctuations about these one-dimensional boost-invariant backgrounds; they are damped in ELNS hydrodynamics but can become sound waves in IS hydrodynamics. The difference is obvious in power spectra due to clear signals of wave-interference in IS hydrodynamics, which is completely absent in ELNS dynamics.

  17. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  18. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  19. A straight path centrifugal blood pump concept in the Capiox centrifugal pump.

    PubMed

    Kijima, T; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Amano, N; Nojiri, C; Fukasawa, H; Akutsu, T

    1993-07-01

    This article describes comparative studies of a newly developed "straight path" centrifugal pump (Capiox centrifugal pump) targeted for open-heart surgery and circulatory support. A unique straight path design of the rotor was very effective in reducing the pump's rotational speed and prime volume. This pump was evaluated for hydraulics, hemolysis, depriming characteristics, cavitation, and heat generation. Two commercially available centrifugal pumps, the Biomedicus cone-type pump and the Sarns 3M impeller-type pump, were used as controls. The new pump required the lowest pump speed to produce the same flow rates under the same pressure loads and demonstrated the lowest hemolysis and the lowest temperature rise with the outlet clamped. The air volume required to deprime the new pump was one-third to one-half that for the other pumps, and no sign of cavitation was observed even if a small amount of air was introduced to the pump inlet under a negative pressure of 200 mm Hg. PMID:8338432

  20. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  1. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  2. Characterization of a centrifugal pump in He II

    NASA Technical Reports Server (NTRS)

    Weisend, J. G., II; Van Sciver, S. W.

    1988-01-01

    As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.

  3. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  4. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  5. Converging spout outlet nozzle on an offset pump casing

    SciTech Connect

    Morris, A.L.

    1992-01-28

    This patent describes a nuclear reactor coolant pump for pumping reactor coolant fluid in a reactor coolant system. It comprises a casing defining an inlet nozzle for receiving a reactor coolant fluid, a converging spout outlet nozzle for discharging the reactor coolant fluid, and a passage interconnecting the inlet nozzle and the outlet nozzle through which the reactor coolant fluid can flow from the inlet nozzle to the outlet nozzle; a rotor extending axially through the casing and having an end disposed adjacent the passage defined by the casing; and an impeller mounted to the end of the rotor and disposed in communication with the passage, the impeller being rotatable with the rotor about an axis, the impeller being axially offset from the outlet nozzle for drawing fluid into the casing through the inlet nozzle and discharging fluid from the casing tangentially through the converging spout outlet nozzle after flow through the passage; the converging spout outlet nozzle being composed of first and second wall portions defined above and below an imaginary plane extending generally parallel to the rotation axis of the impeller, the first wall portion extending substantially tangentially to the casing and having a substantially semi-cylindrical shape, the second wall portion having a combined substantially semi-elliptical and semi-conical shape.

  6. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  7. Predicting the Inception Cavitation of a Reversible Pump- Turbine in Pump Mode

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Xiao, Ruofu; Zhu, Di; Liu, Weichao

    2015-12-01

    Inception cavitation is a crucial indicator for reversible pump-turbines especially in pump mode. In actual applications, it is difficult to use CFD for the inception cavitation character. In this study, CFD simulation is conducted to find a proper way to evaluate the inception cavitation, different levels of vapor volume fraction in the impeller is predicted based on the tested results. Results show that the prediction of the location and scale of cavitation is accurate. The predicted cavitation number also matches the experimental data well. The vapor volume fraction levels from 0.0001% to 0.001% are recommended as the criterion of inception cavitation.

  8. An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow

    SciTech Connect

    Ubaldi, M.; Zunino, P.; Barigozzi, G.; Cattanei, A.

    1996-01-01

    Detailed flow measurements were taken in a centrifugal turbomachine model to investigate the aerodynamic influence of the vaned diffuser on the impeller flow. The model consists of an unshrouded centrifugal impeller with backswept blades and a rotatable vaned diffuser, which enables a continuous variation of the vaned diffuser location with respect to the measuring points. Phase-locked ensemble-averaged velocity components have been measured with hot-wire probes at the impeller outlet for 30 different relative positions of the probe with respect to the diffuser vanes. The data also include the distribution of the ensemble-averaged static pressure at the impeller front end, taken by means of miniature fast response pressure transducers flush-mounted at the impeller stationary casing. By circumferentially averaging the results obtained for the different circumferential probe locations, the periodically perturbed impeller flow has been split into a relative steady flow and a stator-generated unsteadiness. The results for the different probe positions have also been correlated in time to obtain instantaneous flow field images in the relative frame, which provide information on the various aspects of the diffuser vane upstream influence on the relative flow leaving the impeller.

  9. Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-? turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination. PMID:25170524

  10. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    PubMed Central

    Othman, N.; Kamarudin, S. K.; Takriff, M. S.; Rosli, M. I.; Engku Chik, E. M. F.; Meor Adnan, M. A. K.

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-? turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination. PMID:25170524

  11. Numerical calculation and optimal design of a hot water circulation pump

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Y Kong, F.; Xia, B.; Tan, L. W.

    2013-12-01

    The problem of hot water circulation pump head shortage is common. In this paper, numerical simulation technology, combined with orthogonal experimental design, was used to research optimal designs to improve the hot water circulation pump's head. CFX software was used to calculate the flow field in the pump, and the head-flow rate curve could be achieved. The accuracy of CFD was validated through comparison between numerical and experimental data. According to the experience, the number of impeller blades, thickness and width of impeller outlet were changed to improve the hot water circulation pump's head. A three factors and level values of model pump orthogonal experiment was designed, and numerical simulation of whole flow field based on CFX was adopted to implement the orthogonal experiment. Finally, the best designed scheme for model pump was obtained. The analysis of results indicates that the head of hot water circulation pump has increased by 7.77% at rated conditions. The distribution in impellers' internal flow field is symmetrical, and accords with the law of fluids flow in the common centrifugal pump.

  12. Performance analysis of mini centrifugal pump with splitter blades

    NASA Astrophysics Data System (ADS)

    Shigemitsu, T.; Fukutomi, J.; Wada, T.; Shinohara, H.

    2013-12-01

    Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades. Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.

  13. Low NPSH process pumps solve instability problems in fuel-grade ethanol plant

    SciTech Connect

    Andersen, R.B.; Gaines, A.

    1984-12-01

    South Point Ethanol, one of the nation's largest producers of denatured ethyl alcohol for blending with motor fuels, encountered severe instability problems with certain pumps when the plant in South Point, Ohio went on-stream in September 1982. The ethanol is produced by fermenting the starch in cooked corn and other grains. Two 4 x 3'' centrifugal pumps with 13'' casing and 11'' impellers were originally installed to transfer the 185/sup 0/F slurry of cooked grain, or mash, through a series of coolers and into the fermenters. The single stage pumps were driven by 3600 rpm motors to provide flow rates to 600 gpm and up to 480' tdh, but developed instability problems due to the high tip speed of the 11'' impellers. The pumps transferring the degassed beer were replaced with pumps which feature a semi-open reverse vane impeller that is specifically designed to minimize stuffing box pressure and provide superior performance when operating at very low net positive suction head (NPSH) with volatile and near-boiling fluids. Two 6 x 4 x 10'' pumps with the reverse vane, low NPSH impeller were purchased to replace the 4 x 3 x 13'' mash transfer pumps that had to be overhauled about once a week. The new pumps were installed on the same bases and are driven by the original 3600 rpm electric motors. The four pumps have provided smooth, trouble-free transfer of the hot mash and degassed beer for over a year without any replacement parts or other than routine maintenance. The plant currently operates about 40 of the pumps in sizes from 1 1/2 x 1 x 6'' to 10 x 8 x 16'' to provide flow rates to 825 gpm and up to 490' tdh in various applications.

  14. Flow visualization studies to improve the spiral pump design.

    PubMed

    Andrade, A; Biscegli, J; Sousa, J E; Ohashi, Y; Nos, Y

    1997-07-01

    The spiral pump (SP) uses centrifugal and axial pumping principles simultaneously, through a conical shaped impeller with threads in its surface. Flow visualization studies were performed in critical areas of the SP. A closed circuit loop was filled with glycerin-water solution (40%). Amberlite particles (80 mesh) were illuminated by a planar helium-neon laser light (7 mW). The particle velocities were recorded with Kodak (TMAX-400) black and white film, and the flow behavior was studied with a micro video camera and color video printer. The flow visualization studies showed no turbulence or stagnant areas in the inlet and outlet ports of the SP. When using the impeller with one lead, at the top of the threads some recirculation appeared when the total pressure head increased. Two new impellers were made. One of them had the same conical shape with a thread having 2 leads. The second had a thread with 2 leads, but it also had a bigger cone angle. These modifications improved the pump hydrodynamic performance, decreasing the recirculation in pumping conditions that require pressures over 200 mm Hg. PMID:9212938

  15. Nonlinear dynamics of viscous droplets

    NASA Astrophysics Data System (ADS)

    Becker, E.; Hiller, W. J.; Kowalewski, T. A.

    1994-01-01

    Nonlinear viscous droplet oscillations are analysed by solving the Navier-Stokes equation for an incompressible fluid. The method is based on mode expansions with modified solutions of the corresponding linear problem. A system of ordinary differential equations, including all nonlinear and viscous terms, is obtained by an extended application of the variational principle of Gauss to the underlying hydrodynamic equations. Results presented are in a very good agreement with experimental data up to oscillation amplitudes of 80% of the unperturbed droplet radius. Large-amplitude oscillations are also in a good agreement with the predictions of Lundgren & Mansour (boundary integral method) and Basaran (Galerkin-finite element method). The results show that viscosity has a large effect on mode coupling phenomena and that, in contradiction to the linear approach, the resonant mode interactions remain for asymptotically diminishing amplitudes of the fundamental mode.

  16. Rotordynamic forces acting on a centrifugal open impeller in whirling motion by using active magnetic bearing

    NASA Astrophysics Data System (ADS)

    Nagao, N.; Eguchi, M.; Uchiumi, M.; Yoshida, Y.

    2013-03-01

    Rotordynamic forces acting on a centrifugal open impeller of a rocket engine turbopump were measured using a rotordynamic test stand controlled by active magnetic bearings. The tangential rotordynamic force ft had a small constantly negative value in the measured range. The direct stiffness K had a positive value under various test conditions. In general, direct stiffness K of a closed impeller had a negative value because of the Bernoulli effect. In the case of open impellers, the Bernoulli effect is speculated to be smaller because the absence of a front shroud makes K positive.

  17. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  18. Numerical simulation and performance prediction in multi-stage submersible centrifugal pump

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Li, G. D.; Wang, Y.; Cui, Y. R.; Yin, G.; Peng, S.

    2013-12-01

    In order to study the inner flow field of multi-stage submersible centrifugal pump, the model named QD3-60/4-1.1 was selected. Steady turbulence characteristics of impellers, diffusers and return channel were calculated by Fluent software, the SIMPLEC algorithm and RNG κ-ε turbulence model with sliding mesh technology. Then, the distributions of pressure, velocity and Turbulence kinetic energy was obtained and the distributions of velocity field of a channel were analysed. The results show that the static pressure in impeller is increasing with the increasing of radius. The circumferential component of relative velocity is in the opposite direction of impeller rotating. At the same radius, the component value of pressure surface is larger than suction surface. With the increasing of flow rate, absolute velocity and relative velocity flow angle are becoming small, in opposite of the relative velocity and absolute velocity flow angle. The high turbulent zone of impeller is located in the gap of impellers and diffusers. Flow similarity and structure similarity of the multi-stage submersible pump are confirmed.

  19. Analysis of flow along smooth side of disc impeller in a pump

    NASA Astrophysics Data System (ADS)

    Kraeva, E. M.

    2015-10-01

    We consider fluid flow in an axial gap around the smooth disc rotating in a closed cavity. According to the results of experiments on different working fluids in a wide range of operating modes for smooth discs, the formula is presented to determine the coefficient of fluid flow spin subject to a rate fluid flow from the periphery to the center. On the basis of the experimental data the empirical formula is obtained for the friction torque with respect to a rate fluid flow.

  20. Investigation of component failures in downhole geothermal pumping systems. Final report

    SciTech Connect

    Werner, D.K.

    1985-03-15

    This study investigated component failures in electric, downhole submersible pumps which prevented the attainment of one year continuous downhole running times in geothermal wells at temperatures up to 375/sup 0/F. The feasibility of a pressurized motor to prevent brine intrusion was investigated, as well as improved pothead and packoff designs, and brine scale buildup on impeller sleeve bearings and thrust washers. (ACR)

  1. Counter-rotating type pump-turbine unit cooperating with wind power unit

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  2. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  3. Effects of curvature and rotation on turbulence in the NASA low-speed centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Moore, Joan G.; Moore, John

    1992-01-01

    The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.

  4. Process Optimization of Seed Precipitation Tank with Multiple Impellers Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Lv, Chao; Liu, Yan; Zhang, Ting-An

    2015-07-01

    The complex fluid flow in a large-scale tank stirred with multiple Ekato Intermig impellers used in the seed precipitation process was numerically analyzed by the computational fluid dynamics method. The flow field, liquid-solid mixing, and power consumption were simulated by adopting the Eulerian granular multiphase model and standard k- ? turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. The simulated results showed that the five-stage multiple Intermig impeller coupled with sloped baffles could generate circulation loops in axial, which is good for solid uniform mixing. The fluid is overmixed under the current industrial condition. Compared with the current process conditions, a three-stage impeller with L/ D of 1.25 not only could meet the industrial requirements, but also more than 20% power could be saved. The results have important implications for reliable design and optimal performance for industry.

  5. Three-Dimensional Flow Analysis Inside Consortium Impeller at Design and Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    Hah, C.; Loellbach, J.; Tsung, F.-L.; Greenwald, D. A.; Garcia, Roberto

    1993-01-01

    Three-dimensional flow fields inside the Consortium impeller were analyzed with a Navier-Stokes code. The numerical results at the design and off-design conditions are compared with the experimental data.

  6. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation

    PubMed

    Spicer; Keller; Pratsinis

    1996-12-01

    The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45 pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty. PMID:8954644

  7. Development of a portable bridge-to-decision blood pump.

    PubMed

    Yamane, T; Kitamura, K

    2013-01-01

    We are developing an axial-flow pump with a cylindrical-impeller without airfoils. In the mock experiments of HA02 model a pressure of 13.3 kPa was obtained at a rotational speed of 12500 rpm and flow of 5L/min. The obtained pressure with HA02 was almost double than an airfoil-type impeller. The 2D analysis of hydrodynamic bearings for the pump revealed that a section with 3 or more arcs is stable with respect to angular position, and a minimum bearing gap of 100 µm can be attained at a design bearing gap of 150 µm and at a groove depth of 100 µm. PMID:24110291

  8. Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing

    NASA Astrophysics Data System (ADS)

    Pai, Chi Nan; Shinshi, Tadahiko; Asama, Junichi; Takatani, Setsuo; Shimokohbe, Akira

    A compact centrifugal blood pump consisting of a controlled two-degrees-of-freedom radial magnetic bearing and a brushless DC motor enclosed in a titanium housing has been developed for use as an implantable ventricular assist device. The magnetic bearing also supports axial and angular motions of the impeller via a magnetic coupling. The top housing is made of pure titanium, while the impeller and the stator are coated with pure titanium and Ti-6Al-7Nb, respectively, to improve the biocompatibility of the pump. The combination of pure titanium and titanium alloy was chosen because of the sensitivity of eddy current type displacement sensors through the intervening conducting wall. The dimensions of the pump are 69.0 mm in diameter and 28.5 mm in height. During a pump performance test, axial shifting of the impeller due to hydraulic forces led to variations in the rotational positioning signal, causing loss of control of the rotational speed. This problem was solved by conditioning the rotational positioning signal. With a flow rate of 5 l/min against a head pressure of 100 mmHg, the power consumption and efficiency of the pump were 5.5 W and 20%, respectively. Furthermore, the hemolysis of the blood pump was 43.6% lower when compared to that of a commercially available pump.

  9. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, Z. W.; Y Luo, Y.; Liu, M.

    2013-12-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-? turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased.

  10. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  11. Reduced-order modeling for mistuned centrifugal impellers with crack damages

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia

    2014-12-01

    An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.

  12. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    NASA Astrophysics Data System (ADS)

    Ye, D. X.; Li, H.; Wang, Y.

    2013-12-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore.

  13. Application of two turbulence models for computation of cavitating flows in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    He, M.; Guo, Q.; Zhou, L. J.; Wang, Z. W.; Wang, X.

    2013-12-01

    To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ? and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ? model in calculating the unsteady cavitating flow in a centrifugal pump.

  14. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  15. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  16. Relativistic Shock Waves in Viscous Gluon Matter

    SciTech Connect

    Bouras, I.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Molnar, E.; Niemi, H.; Rischke, D. H.

    2009-07-17

    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio eta/s from zero to infinity. We show that an eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.

  17. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  18. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.

    PubMed

    Masuzawa, T; Tsukiya, T; Endo, S; Tatsumi, E; Taenaka, Y; Takano, H; Yamane, T; Nishida, M; Asztalos, B; Miyazoe, Y; Ito, K; Sawairi, T; Konishi, Y

    1999-08-01

    The purpose of this study was to examine the relationship between local flow conditions and the hemolysis level by integrating hemolysis tests, flow visualization, and computational fluid dynamics to establish practical design criteria for centrifugal blood pumps with lower levels of hemolysis. The Nikkiso centrifugal blood pump was used as a standard model, and pumps with different values of 3 geometrical parameters were tested. The studied parameters were the radial gap between the outer edge of the impeller vane and the casing wall, the position of the outlet port, and the discharge angle of the impeller vane. The effect of a narrow radial gap on hemolysis was consistent with no evidence that the outlet port position or the vane discharge angle affected blood trauma in so far as the Nikkiso centrifugal blood pump was concerned. The radial gap should be considered as a design parameter of a centrifugal blood pump to reduce blood trauma. PMID:10463503

  19. Measurement of SRS reactor recirculation pump performance using pump motor power

    SciTech Connect

    Whitehouse, J.C.

    1994-03-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location the measured pump motor power, along with other techniques (pressure corrected gamma densitometer void fraction), were used to calculate the average mixture density at the pump impeller. These techniques provided good estimates of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps.

  20. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  1. Investigation of centrifugal pump performance under two-phase flow conditions

    SciTech Connect

    Noghrehkar, G.R.; Kawaji, M.; Chan, A.M.C.; Nakamura, H.; Kukita, Y.

    1995-03-01

    A one-dimensional two-fluid model has been used to study the centrifugal pump head degradation phenomena and to analyze the gas-liquid interaction within the pump impeller under high pressure, steam-water two-phase flow conditions. The analytical model was used to predict the two-phase pump head data for the small-scale and full-scale nuclear reactor pumps and the predictions of the head degradation compared favorably with the test data for different suction void fractions. The physical mechanisms responsible for head degradation were also investigated.

  2. Viscous-pendulum damper suppresses structural vibrations

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1964-01-01

    The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.

  3. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  4. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump.

    PubMed

    Bhavsar, Sonya S; Moskowitz, William B; Throckmorton, Amy L

    2010-10-01

    This study evaluated the performance of an intravascular, percutaneously-inserted, axial flow blood pump in an idealized total cavopulmonary connection (TCPC) model of a Fontan physiology. This blood pump, intended for placement in the inferior vena cava (IVC), is designed to augment pressure and blood flow from the IVC to the pulmonary circulation. Three different computational models were examined: (i) an idealized TCPC without a pump; (ii) an idealized TCPC with an impeller pump; and (iii) an idealized TCPC with an impeller and diffuser pump. Computational fluid dynamics analyses of these models were performed to assess the hydraulic performance of each model under varying physiologic conditions. Pressure-flow characteristics, fluid streamlines, energy augmentation calculations, and blood damage analyses were evaluated. Numerical predictions indicate that the pump with an impeller and diffuser blade set produces pressure generations of 1 to 16 mm Hg for rotational speeds of 2000 to 6000 rpm and flow rates of 1 to 4 L/min. In contrast, for the same flow range, the model with the impeller only in the IVC demonstrated pressure generations of 1 to 9 mm Hg at rotational speeds of 10,000 to 12,000 rpm. Influence of blood viscosity was found to be insignificant at low rotational speeds with minimal performance deviation at higher rotational speeds. Results from the blood damage index analyses indicate a low probability for damage with maximum damage index levels less than 1% and maximum fluid residence times below 0.6 s. The numerical predictions further indicated successful energy augmentation of the TCPC with a pump in the IVC. These results support the continued design and development of this cavopulmonary assist device. PMID:20964699

  5. Viscous Disks in Be Stars

    NASA Astrophysics Data System (ADS)

    Carciofi, Alex C.; Rocha Rimulo, Leandro

    2013-06-01

    The fast-spinning Be stars offer a testbed for developing and testing astrophysical theories in their limit. For the star proper, rapid rotation allows for studying the effects of rotation on the stellar evolution and structure. Recent interferometric studies of the photosphere, for instance, allowed for measuring the gravity darkening coefficient and the results present a challenge for current models. Be star phenomenology is strongly associated with their circumstellar disks. On one hand, the disk acts as a sink of angular momentum, and this fact couples the disk with the evolution of the central object. On the other hand, the disk reprocesses starlight, thereby modifying the emerging spectrum. In the past decade our understanding of these disks saw a major leap forward; with the very high angular resolution that can be achieved with modern interferometers we can now resolve the disk up to the immediate vicinity of the star, as well as determining the disk kinematical properties. Coupled with advancements in the physical modeling of these systems, these observations allowed for establishing the viscous decretion disk model as the most viable scenario for disk formation and evolution. In this model, material that is ejected with Keplerian or super-Keplerian speeds at the base of the star and diffuses outwards by means of viscous forces. More recently, models became available for the temporal evolution of these disks when subject to variable feeding rates. In this contribution we will discuss how these dynamical disk models can be used for constraining fundamental disk parameters, such as the ? viscosity parameter, and we will report on an ongoing effort to model light curves of a large number of stars.

  6. Numerical Assessment of Hydraulic Performances of Main Coolant Pump for Integral Reactor Smart

    SciTech Connect

    Min-Hwan Kim; Jong-In Kim; Jin-Seok Park

    2002-07-01

    The performance prediction of SMART MCP was performed using a computational fluid dynamics code. A general capacity-head performance curve of MCP was obtained and it showed the typical type axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART is designed to operate with reduced power. A procedure for predicting the performance of this SMART operation mode was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of stopped MCP is assumed to be fixed or free to rotate in the reverse direction. According to the results, 73% flow rate of normal operation enters the reactor core in the case of a fixed impeller. In the case of a free impeller, the flow rate entering the reactor core is 63.3%. (authors)

  7. Effects of multiple cracks on the forced response of centrifugal impellers

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Wan, Zhiguo; Li, Bing; He, Zhengjia

    2015-08-01

    The effects of multiple cracks on the forced response of centrifugal impellers are investigated using a finite-element based component mode synthesis method (CMS) in this paper. The main objective is to gain some insights into the response characteristics of multiple cracked impellers and to explore efficient methods for identifying the cracks. First, in order to generate an efficient model for the nonlinear vibration analysis, a novel hybrid interface CMS method is proposed and used to conduct reduced-order modeling for the cracked impeller. Then, a method for multiple cracks modeling is developed to account for the crack breathing effects. Finally, numerical results are presented using a representative impeller with double cracks. The shifts of natural frequencies and the nonlinear forced response due to multiple cracks are of interest. Lengths and relative positions of the cracks are also considered. The results show that the natural frequencies and forced response become complexly depending on the lengths and relative positions of cracks, and the response amplitudes of blades periodically fluctuate versus blade number when an impeller suffers from cracks or mistuning. A potential method for identifying the lengths and relative positions of multiple cracks are also discussed in this paper.

  8. The experimental study of matching between centrifugal compressor impeller and diffuser

    SciTech Connect

    Tamaki, H.; Nakao, H.; Saito, M.

    1999-01-01

    the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by the critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.

  9. Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller.

    PubMed

    Treat, W J; Engler, C R; Soltes, E J

    1989-11-01

    Photomixotrophic suspensions of Glycine max (soybean) and Pinus elliottii (slash pine) have been successfully cultured in a hybrid stirred tank photobioreactor using a novel cell-lift impeller. A cell-lift impeller exhibited cell viabilities over 90% and an average cell aggregate size of 1.0 mm or less. Flat-bladed turbines produced equivalent biomass to the cell-lift impeller, but cell viability was reduced (85%) and cell aggregate size increased (3-5 mm diameter). Maximum fresh weights of 82 g L(-1) (soybean) and 52 g L(-1) (slash pine) were achieved in 15 days using continuous lighting (90-100 microE m(-2) s(-1)) and supplemental 2% CO(2) inlet gas. Maximum biomass was achieved using an impeller speed of 60 rpm with air-flow rate of 0.2 vvm for the cell-lift impeller and the pair of flat bladed turbines. The lag and early exponential phases were characterized by (1) rapid hydrolysis of sucrose followed by preferential use of glucose and (2) a reduction in chlorophyll levels. Carbon dioxide (2%-5%) was an essential nutrient for photomixotrophic cell culture in the bioreactors. PMID:18588217

  10. Numerical investigation of unsteady turbulent flow in a centrifugal pump at partial load

    NASA Astrophysics Data System (ADS)

    Lei, T.; Baoshan, Z.; ShuLiang, C.; Yuchuan, W.; Xuhe, W.

    2014-03-01

    The unsteady non-cavitation and cavitation turbulent flows in a centrifugal pump at partial load condition are numerically investigated by CFX 13.0. The numerical framework employs the combination of RNG k-? turbulence model and transport equation cavitation model, in which the effects of compressibility of fluid on cavitation region and pressure fluctuation on saturation pressure are both taken into consideration. The good agreement between the numerical and experimental values validates that the numerical framework can accurately predict the turbulent flows in the centrifugal pump. The complex flow characteristics in impeller at non-cavitation and cavitation conditions are revealed. For the noncavitation flow, the dominant frequencies of pressure fluctuation of monitoring points in impeller are all the Impeller Rotation Frequency 24.17Hz. The maximum value of pressure fluctuation on the blade pressure side appears at the 0.8 chord length from the blade leading edge due to a clockwise rotating vortex, which incepts, develops and disappears when the corresponding blade passes through the volute tongue. The dominant frequencies of pressure fluctuation of monitoring points in volute are the Blade Pass Frequency 145 Hz or twice of it. The maximum value of pressure fluctuation in the volute appears near the tongue region, where the flow fields are uneven with strong second flow in the cross section. For the cavitation flow, as the cavitation develops at the blade leading edge, the turbulent flows in the impeller are greatly influenced by the bubble shedding and collapse. The maximum values of pressure fluctuation in impeller increase with the development of cavitation, and reach the largest magnification of about 2.0 in comparison to the non-cavitation flow when the pressure at the pump inlet is very low. The complicated phenomenon of unsteady turbulent flow in a centrifugal pump indicates that the vortex has great influence on the flow pattern.

  11. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  12. Effect of NACA Injection Impeller on Mixture Distribution of Double-Row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E; Ritter, William K; Miller, Mahlon A

    1945-01-01

    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller and thus to promote a thorough mixing of fuel and charge air. Experiments with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 1500, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values.

  13. Numerical investigation of the effects of splitter blades on the cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Yuan, S. Q.; Zhang, J. F.; Feng, Y. N.; Lu, J. X.

    2014-03-01

    For the centrifugal pump, additional splitter blades are sometimes necessary in order to improve the head and efficiency. On the other hand, the additional splitter blades will have effect on the cavitation performance due to the changes at the impeller inlet channel. In order to investigate this influence, three impeller schemes were proposed based on a model pump IS50-32-160, one without splitter blades and another two with splitter blades of different inlet diameters. Numerical simulations were carried out to investigate the characteristics of internal flow and the pump cavitation performances at different NPSHA with the CFD technique. The results show that the additional splitter blades will have some positive effect on the pump cavitation performance if the inlet diameter of the splitter blade is properly selected. The reason behind such improvement is that it helps to avoid the flow blocking at the impeller inlet and the vortex cavitation inside the blade passages effectively. For the pump model under our investigation, the cavitation performance reaches its best when the inlet diameter of the splitter blade is 0.725D2.

  14. Influence of blade outlet angle on performance of low-specific-speed centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Wang, Canfei; Zhu, Zuchao; Jin, Yingzi

    2013-04-01

    In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5 and 39 was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-? turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.

  15. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    NASA Astrophysics Data System (ADS)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  16. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  17. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    NASA Astrophysics Data System (ADS)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  18. Mechanical axial flow blood pump to support cavopulmonary circulation.

    PubMed

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  19. A theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki

    1989-01-01

    The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.

  20. Evaluation of main coolant pump shaft cracking

    SciTech Connect

    Brose, W.R.; Chen, K.L.; Kuo, A.Y.; Riccardella, P.C. )

    1992-02-01

    This report presents a review of reactor main coolant pump shaft failures which have occurred in various types of plants and pump designs. The objective of the review was to identify common metallurgical, design and operational considerations which may have contributed to the failures, and which might provide insight into potential repairs and monitoring practices. The review considered Westinghouse PWR main coolant pumps, Byron-Jackson pumps for both BWR and PWR applications, KSB pumps in a US PWR, and Sulzer-Bingham pumps in a US BWR application. All of the above have experienced at least one shaft cracking event, and some have experienced multiple shaft cracking events or total shaft failures. Common factors involved in essentially all of the failures include thermal effects due to purge flow and/or seal cooling, and asymmetric (radial) impeller thrust loads. These have been aggravated in some instances by extended periods of off-design operation; holes, keyways and other stress concentration factors; and less-than-optimal manufacturing processes such as chrome plating and poor surface machining conditions. As a result of this review, several recommendations have been identified for potential industry programs to help resolve the shaft cracking problem and/or to qualify potential remedies. These include programs aimed at reducing the susceptibility of the shafts to the basic failure mechanisms identified as well as programs aimed at improving the industry's basic understanding of the primary loading conditions responsible for the failures.

  1. An experimental and analytical investigation into the performance of centrifugal pumps operating with air-water mixtures

    NASA Astrophysics Data System (ADS)

    Sterrett, John Douglas

    1994-01-01

    An investigation was made into the performance of centrifugal pumps when two-phase non-condensable mixtures of gas and liquid are flowing. This problem is encountered during loss-of-coolant accidents in nuclear reactor systems and in the pumping of oil where natural gas may be present in the mixture. Analytical and experimental techniques were used to address the issues of scaling between a model and a prototype pump and the validity of the single-phase pump affinity laws when two-phase flows are present. The results from this effort have also provided insight into the physical phenomena which cause the degradation in pump performance. An analytical model for the motion of a single bubble through a pump impeller is provided. The results from this fundamental problem show that the Coriolis and buoyancy forces are important in describing the kinematics of a gas phase. These results show that dynamic similitude is not preserved between a model and prototype impeller when the standard single-phase pump scaling relationships are used. The motion of a single bubble is also shown to be influenced by the magnitude of the pump suction pressure. The results from an extensive series of air-water two phase pump tests are provided. A 1/4 scale pump, modeled after the Savannah River Site K-reactor pumps, was tested over a wide range of pump speeds, flow rates, and suction pressures. These results indicate that the single-phase pump affinity laws are not applicable to two-phase pump flows and that the magnitude of the pump suction pressure is an important quantity in determining the pump performance. A second analytical model is developed for two-phase flow through a pump impeller. The results from this one-dimensional, two-fluid, non-homogeneous streamline model show good agreement with the experimental data. The model results support the experimental data in showing that the single-phase pump affinity relationships are not valid for two-phase pump flows and that dynamic similitude is not maintained between scaled test pumps and prototype pumps under normal pump testing procedures. The results from this model also show that the degradation in prototype pump performance will occur at higher air content than in the smaller scaled test pumps.

  2. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  3. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  4. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  5. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  6. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  7. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8268533

  8. Saddle-node bifurcation of viscous profiles

    NASA Astrophysics Data System (ADS)

    Achleitner, Franz; Szmolyan, Peter

    2012-10-01

    Traveling wave solutions of viscous conservation laws, that are associated to Lax shocks of the inviscid equation, have generically a transversal viscous profile. In the case of a non-transversal viscous profile we show by using Melnikov theory that a parametrized perturbation of the profile equation leads generically to a saddle-node bifurcation of these solutions. An example of this bifurcation in the context of magnetohydrodynamics is given. The spectral stability of the traveling waves generated in the saddle-node bifurcation is studied via an Evans function approach. It is shown that generically one real eigenvalue of the linearization of the viscous conservation law around the parametrized family of traveling waves changes its sign at the bifurcation point. Hence this bifurcation describes the basic mechanism of a stable traveling wave which becomes unstable in a saddle-node bifurcation.

  9. Saddle–node bifurcation of viscous profiles

    PubMed Central

    Achleitner, Franz; Szmolyan, Peter

    2012-01-01

    Traveling wave solutions of viscous conservation laws, that are associated to Lax shocks of the inviscid equation, have generically a transversal viscous profile. In the case of a non-transversal viscous profile we show by using Melnikov theory that a parametrized perturbation of the profile equation leads generically to a saddle–node bifurcation of these solutions. An example of this bifurcation in the context of magnetohydrodynamics is given. The spectral stability of the traveling waves generated in the saddle–node bifurcation is studied via an Evans function approach. It is shown that generically one real eigenvalue of the linearization of the viscous conservation law around the parametrized family of traveling waves changes its sign at the bifurcation point. Hence this bifurcation describes the basic mechanism of a stable traveling wave which becomes unstable in a saddle–node bifurcation. PMID:23576830

  10. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Cao, Shu-Liang; Wang, Yu-Ming; Zhu, Bao-Shan

    2012-01-01

    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-in turbulence model by the density function, a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are verified. Based on the result of numerical simulation, the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed. Cavities first appear on the suction side of the blade head near the front shroud. A large number of cavities block the impeller channels, which leads to the sudden drop of head at the cavitation critical point. With the reduction of NPSHa, the distribution of pressure at the impeller inlet is more uniform.

  11. Development of an explicit multigrid algorithm for quasi-three-dimensional viscous flows in turbo-machinery

    NASA Technical Reports Server (NTRS)

    Chima, R. V.

    1985-01-01

    A rapid quasi three-dimensional analysis was developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations which are solved by a two-stage Runge-Kutta scheme made efficient by use of vectorization, a variable time-step, and a flux-based multigrid scheme, are described. A stability analysis is presented for the two-stage scheme. Results for a flat-plate model problem show the applicability of the method to axial, radial, and rotating geometries. Results for a centrifugal impeller and a radial diffuser show that the quasi three-dimensional viscous analysis can be a practical design tool.

  12. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  13. Developments in Impeller/Seal Secondary Flow Path Modeling for Dynamic Force Coefficients and Leakage

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Bhattacharya, Avijit; Athavale, Mahesh; Venkataraman, Balaji; Ryan, Steve; Funston, Kerry

    1997-01-01

    This paper highlights bulk flow and CFD-based models prepared to calculate force and leakage properties for seals and shrouded impeller leakage paths. The bulk flow approach uses a Hir's based friction model and the CFD approach solves the Navier Stoke's (NS) equation with a finite whirl orbit or via analytical perturbation. The results show good agreement in most instances with available benchmarks.

  14. Effect of blade shape on the performance of six-bladed disk turbine impellers

    SciTech Connect

    Vasconcelos, J.M.T.; Orvalho, S.C.P.; Rodrigues, A.M.A.F.; Alves, S.S.

    2000-01-01

    Different modifications of the Rushton turbine were studied in a dual-impeller agitated tank (T = 0.4 m), to find the effect of blade form on power draw, turbulent dispersion, gas handling capacity, mixing, gas holdup, and mass-transfer rate performance under turbulent agitation in an air-water system. Blade streamlining was found to lead to a lower ungassed power number, a higher gas flow number before flooding, and increased insensitivity of impeller power dissipation to the gassing rate. This is consistent with the formation of smaller trailing vortices and ventilated cavities behind the blade. At the same power input and superficial gas velocity, however, the different impellers provided the same mixing time t{sub 0.05}, gas holdup {epsilon}{sub G}, and specific mass-transfer coefficient K{sub L}{alpha}. Each of these variables correlates with the specific power input P{sub G}/V{sub L}, clearly suggesting that a better performance may be expected after retrofitting of Rushton turbines with streamlined impellers.

  15. Aerodynamic stiffness of an unbound eccentric whirling centrifugal impeller with an infinite number of blades

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Branagan, L. A.; Kocur, J. A.

    1982-01-01

    An unbounded eccentric centrifugal impeller with an infinite number of log spiral blades undergoing synchronous whirling in an incompressible fluid is considered. The forces acting on it due to coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotating and changes in pressure due to changes in linear momentum are evaluated.

  16. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.

    PubMed

    Meng, Chen; Huang, Jianke; Ye, Chunyu; Cheng, Wenchao; Chen, Jianpei; Li, Yuanguang

    2015-07-01

    In this study, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of circular ponds with three different impellers (hydrofoil, four-pitched-blade turbine, and grid plate). The reliability of the CFD model was validated by particle image velocimetry (PIV). Hydrodynamic analyses were conducted to evaluate the average velocity magnitude along the light direction (Uz), turbulence properties, average shear stress, pressure loss and the volume percentage of dead zone inside circular ponds. The simulation results showed that Uz value of hydrofoil was 58.9, 40.3, and 28.8% higher than those of grid plate with single arm, grid plate with double arms and four-pitched blade turbines in small-scale circular ponds, respectively. In addition, hydrofoil impeller with down-flow operation had outstanding mixing characteristics. Lastly, the results of Chlorella pyrenoidosa cultivation experiments indicated that the biomass concentration of hydrofoil impeller with down-flow operation was 65.2 and 88.8% higher than those of grid plate with double arms and four-pitched-blade turbine, respectively. Therefore, the optimal circular pond mixing system for microalgae cultivation involved a hydrofoil impeller with down-flow operation. PMID:25680396

  17. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    PubMed

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan. PMID:20051837

  18. Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.

  19. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG ?-? turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  20. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.

    PubMed

    Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, Jos F; Andrade, Aron

    2013-11-01

    A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests. PMID:24219168

  1. Study of a centrifugal blood pump in a mock loop system.

    PubMed

    Uebelhart, Beatriz; da Silva, Bruno Utiyama; Fonseca, Jeison; Bock, Eduardo; Leme, Juliana; da Silva, Cibele; Leo, Tarcsio; Andrade, Aron

    2013-11-01

    An implantable centrifugal blood pump (ICBP) is being developed to be used as a ventricular assist device (VAD) in patients with severe cardiovascular diseases. The ICBP system is composed of a centrifugal pump, a motor, a controller, and a power supply. The electricity source provides power to the controller and to a motor that moves the pump's rotor through magnetic coupling. The centrifugal pump is composed of four parts: external conical house, external base, impeller, and impeller base. The rotor is supported by a pivot bearing system, and its impeller base is responsible for sheltering four permanent magnets. A hybrid cardiovascular simulator (HCS) was used to evaluate the ICBP's performance. A heart failure (HF) (when the heart increases beat frequency to compensate for decrease in blood flow) was simulated in the HCS. The main objective of this work is to analyze changes in physiological parameters such as cardiac output, blood pressure, and heart rate in three situations: healthy heart, HF, and HF with left circulatory assistance by ICBP. The results showed that parameters such as aortic pressure and cardiac output affected by the HF situation returned to normal values when the ICBP was connected to the HCS. In conclusion, the test results showed satisfactory performance for the ICBP as a VAD. PMID:24237361

  2. Use minimum flow data to prolong centrifugal pump life

    SciTech Connect

    Reynolds, J.A.

    1996-03-01

    Environmental and safety concerns and, in the US, the consequences of failing of meet EPA regulations are intensifying efforts to improve the reliability of pumping equipment. A critical step toward achieving this goal is eliminating cavitation, and the resulting impeller and shaft vibrations, which, ultimately, cause seal and bearing failure. In centrifugal pumps, cavitation results when they run at very low flow rates, as can happen during unplanned upsets or interruptions. This particularly true since many centrifugal pumps are now controlled by automatic valves in their discharge lines. The problem can be prevented by providing a small bypass line to the pump`s suction source, to control temperature rise in the pump. Usually, the minimum flow is so low that the bypass loop can be kept open without detracting from the pump`s efficiency. It needn`t require a flow control valve or any special instrumentation, but will let the pump run at a comfortable flow, even with the control valve closed. This paper describes a method to determine minimum thermal flow to prevent cavitation.

  3. 241-SY-101 mixer pump lifetime expectancy. Final report

    SciTech Connect

    Shaw, C.P.

    1995-12-08

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ``safety envelope``. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ``how long will this test pump last and how will the essential features fail?`` During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually.

  4. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump. PMID:17380386

  5. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    PubMed

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, Jos F; Andrade, Aron; Zavaglia, Ceclia

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational speed to obtain average blood flow and pressure, compared with the reference pump. PMID:24251773

  6. Three-dimensional unsteady flow and forces in centrifugal impellers with circumferential distortion of the outlet static pressure

    SciTech Connect

    Fatsis, A.; Pierret, S.; Braembussche, R. van den

    1997-01-01

    This paper describes the numerical investigation of the centrifugal impeller response to downstream static pressure distortions imposed by volutes at off-design operations. An unsteady three-dimensional Euler solver with nonreflecting upstream and downstream boundary conditions and phase-lagged periodicity conditions is used for this purpose. The mechanisms governing the unsteady flow field are analyzed. A parametric study shows the influence of the acoustic Strouhal number on the amplitude of the flow perturbations. Radial forces calculated on backward leaned and radial ending centrifugal impellers show nonnegligible influence of the impeller geometry.

  7. Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.

    1946-01-01

    For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.

  8. Turbomolecular Pump

    NASA Astrophysics Data System (ADS)

    Odaka, Kenji

    Turbomolecular pumps (TMPs) are fully grown products. There are four points to say so. First, hydrodynamic designing method is well established because there is no change in the pumping speed in the last ten years. Second, ultimate pressures of the order of 10-10 Pa are achieved. This corresponds to the lowest outgassing rate developed for metals. Third, they have extended operating range to pressures as high as 100 Pa with combination of turbo-drag pumps. Fourth, TMPs with electro-magnetic bearings produce perfectly clean vacuum with clean roughing pumps. For further development TMPs might focus on special usages.

  9. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.

  10. Numerical analysis of head degrade law under cavitation condition of contra-rotating axial flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Huang, D.; Pan, Z. Y.

    2015-01-01

    In order to study the flow-head characteristic curve, the SST turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in contra-rotating axial flow waterjet pump under different conditions based on ANSYS CFX software. The distribution of cavity, pressure coefficient of the blade at the design point under different cavitation conditions were obtained. The analysis results of flow field show that the vapour volume distribution on the impeller indicates that the vapour first appears at the leading edge of blade and then extends to the outlet of impeller with the reduction of Net Positive Suction Head Allowance (NPSHA). The present study illustrates that the main reason for the decline of the pump performance is the development of cavitation, and the simulation can truly reflect the cavitation performance of the contra-rotating axial flow waterjet pump.

  11. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    PubMed

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  12. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  13. Flow visualization evaluation of secondary flow in a centrifugal blood pump.

    PubMed

    Sakuma, I; Fukui, Y; Ohara, Y; Makinouchi, K; Takatani, S; Nos, Y

    1993-01-01

    To design a less hemolytic and more antithrombogenic centrifugal blood pump, secondary flow, i.e., vortex and turbulent flow, must be properly controlled. An irregular stream pattern is a cause of hemolysis, and good wash-out around the shaft minimizes thrombus formation. In this study, flow visualization methods were applied to evaluate secondary flow in a centrifugal blood pump. Correlation with results of in vitro hemolysis tests was investigated. Separation of the stream lines from the vanes and patterns implying the existence of vortices were observed in the impeller that showed high hemolysis. By adjustment of vane angles, these irregular patterns could be minimized, and hemolysis decreased as well. Using a similar technique, the flow pattern at the back of the impeller could be visualized, which enabled further investigation of the effects of secondary flow on thrombus formation. This flow visualization was effective in examining secondary flow patterns. PMID:8268573

  14. Computational fluid dynamics analysis of hydrodynamic bearings of the VentrAssist rotary blood pump.

    PubMed

    Qian, Y; Bertram, C D

    2000-06-01

    The computational fluid dynamics (CFD) package CFX-TASCflow was applied to simulate the flows through the blood pump hydrodynamic bearings. The three-dimensional flow patterns through the bearings were predicted and the hydraulic performance analyzed. The computations were carried out at 3 axial positions of the pump impeller. Net lift force away from the nearer part of the housing increased when the impeller moved closer to this part. Radial force and drag force were also found. Separated flows were observed at the leading and trailing edge of the bearing gap. To test the CFD package, a series of two-dimensional computations were also carried out for various bearing geometries. The results were compared with published experimental data. PMID:10886071

  15. Suppression of secondary flows in a double suction centrifugal pump with different loading distributions

    NASA Astrophysics Data System (ADS)

    Leng, H. F.; Wang, F. J.; Zhang, Z. C.; Yao, Z. F.; Zhou, P. J.

    2013-12-01

    Secondary flow is one of the main reasons for low efficiency in double suction centrifugal pump. In a 3-D inverse design method, the pump blade could be designed by a specified loading distribution to control the flow field in pump. In order to study the influence of loading distribution on secondary flow of a double suction centrifugal pump, the external characteristics and the internal flow field of the pump with three kinds of loading distributions are analysed by using CFD approach. According to the simulation results, it is found that the form of fore-loading distribution at shroud and aft-loading distribution at hub could improve the optimal efficiency and broaden the high efficiency area of the pump. Furthermore, the secondary flow in impeller exit region and volute could be significantly suppressed if the slope of loading distribution curve of shroud is set to be -0.7.

  16. Cavitation performance improvement of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Chen, T.; Sun, Y. B.; Wu, D. Z.; Wang, L. Q.

    2012-11-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  17. A computational method for viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.

    1984-01-01

    An implicit, finite-difference procedure for numerically solving viscous incompressible flows is presented. The pressure-field solution is based on the pseudocompressibility method in which a time-derivative pressure term is introduced into the mass-conservation equation to form a set of hyperbolic equations. The pressure-wave propagation and the spreading of the viscous effect is investigated using simple test problems. Computed results for external and internal flows are presented to verify the present method which has proved to be very robust in simulating incompressible flows.

  18. Inverse transonic airfoil design including viscous interaction

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.

  19. Simultaneous viscous-inviscid coupling via transpiration

    SciTech Connect

    Yiu, K.F.C.; Giles, M.B.

    1995-09-01

    In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs.

  20. Convex curvature concept of viscous drag reduction

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.

    1990-01-01

    Experiments have indicated that for certain convex aerodynamic surface curvature ratios, wall-shear stresses remain low over considerable streamwide distances even after curvature is removed. The research whose progress is presently evaluated was first suggested by Bushnell (1983), who proposed that the convex-surface curvature be used in axisymmetric bodies to ascertain whether the viscous component of total drag is reduced. Attention is given to the evolution of the concept's implementation in an axisymmetric nose-body combination for passive viscous drag reduction.

  1. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  2. Optimization of centrifugal pump cavitation performance based on CFD

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG ?-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  3. Two-phase flow centrifugal pump performance

    NASA Astrophysics Data System (ADS)

    Chisely, Eugene Andras

    The performance of centrifugal pumps subjected to a liquid-gas-mixture flow is a significant concern to manufacturers and to some users such as Chemical, Nuclear Power Plants, and Gas-Oil Industries. Particularly in the nuclear power industry, the prediction of performance degradation under the two-phase flow conditions occurring in a Loss of Coolant Accident (LOCA) is a significant part of the overall analysis of that accident. In this experimental work, the pressure distribution was measured in a rotating, partially shrouded, open, radial impeller and volute under a wide range of air-water two-phase flow conditions. To obtain these pressure measurements, small-diameter pressure-tap holes were drilled through the casing of the radial pump. High speed photography was used to determine the flow regime of the air-water mixture through the vane and in the volute. An analytical model was developed to predict the radial pump single- and two-phase flow pressure distribution. This distribution was compared with the test data for different suction void fractions. The physical mechanism responsible for pump performance degradation was also investigated.

  4. Design and performance of family of diffusing scrolls with mixed-flow impeller and vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Bradshaw, Guy R

    1949-01-01

    A family of diffusing scrolls was designed for use with a mixed-flow impeller and a small-diameter vaneless diffuser. The design theory, intended to maintain a uniform pressure around the scroll inlet, permits determination of the position of scroll cross sections of preassigned area by considering the radial variation in fluid density and the effects of friction along the scroll. Inasmuch as the design method leaves the cross-sectional shape undetermined, the effect of certain variations in scroll shape was investigated by studying scrolls having angles of divergence (of the scroll walls downstream of the entrance section) of 24 degrees, 40 degrees, and 80 degrees. A second 80 degree scroll was of asymmetrical construction and a third was plaster-cast instead of sand-cast. Each scroll was tested as a compressor component at actual impeller tip speeds of 700 to 1300 feet per second from full throttle to surge.

  5. Study of Impeller Design for Pipe Flow Generator with CFD and RP

    NASA Astrophysics Data System (ADS)

    Wang, Song-Hao; Porres, Carlos Fernando Hernandez; Zuo, Mong-Yee; Xiao, Wen-Jia

    2010-06-01

    Design optimization is performed in this study for Pipe Flow Generator. Emphasize are on the impeller parameters including the geometry and the number of the blades. Modern engineering tools such as Computational-Fluid-Dynamics software and Rapid-Prototyping technology are utilized, to facilitate both numerical and experimental studies. In CFD numerical simulation, two dimensional transient analyses are conducted to investigate the relationship between the flow rate and the blade geometry, as well as the number of the blades. During experimentation, Rapid Prototyping technology is used to fabricate more than 30 different blades for comparison. RPM and corresponding Voltages are measured for different impeller designs. The study leads to several important findings and the results are very informative for better design of the pipe flow generator.

  6. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    PubMed

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. PMID:20471599

  7. Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions.

    PubMed

    Dronawat, S N; Svihla, C K; Hanley, T R

    1997-01-01

    Volumetric gas-liquid mass transfer coefficients were measured in suspensions of cellulose fibers with concentrations ranging from 0 to 20 g/L. The mass transfer coefficients were measured using the dynamic method. Results are presented for three different combinations of impellers at a variety of gassing rates and agitation speeds. Rheological properties of the cellulose fibers were also measured using the impeller viscometer method. Tests were conducted in a 20 L stirred-tank fermentor and in 65 L tank with a height to diameter ratio of 3:1. Power consumption was measured in both vessels. At low agitation rates, two Rushton turbines gave 20% better performance than the Rushton and hydrofoil combination and 40% better performance than the Rushton and propeller combination for oxygen transfer. At higher agitation rates, the Rushton and hydrofoil combination gave 14 and 25% better performance for oxygen transfer than two Rushton turbines and the Rushton and hydrofoil combination, respectively. PMID:18576095

  8. Leakage flow simulation in a specific pump model

    NASA Astrophysics Data System (ADS)

    Dupont, P.; Bayeul-Lain, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.

    2014-03-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

  9. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  10. VHD: Viscous pseudo-Newtonian accretion

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Gammie, Charles F.

    2013-06-01

    VHD is a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. VHD is based on ZEUS-2D (Stone & Norman 1992) with the addition of an explicit scheme for the viscosity.

  11. Viscous Driven-Cavity Solver: User's Manual

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The viscous driven-cavity problem is solved using a stream-function and vorticity formulation for the incompressible Navier-Stokes equations. This report provides the user's manual and FORTRAN code for the set of governing equations presented in NASA TM-110262.

  12. A rotating laser-Doppler anemometry system for unsteady relative flow measurements in model centrifugal impellers

    SciTech Connect

    Abramian, M. ); Howard, J.H.G. . Dept. of Mechanical Engineering)

    1994-04-01

    The behavior of the relative flow in centrifugal turbomachines is extremely complex due to the existence of various fluid dynamic phenomena and their interaction. At design and off-design operating conditions, the relative flow is subject to stationary unsteadiness, which includes the flow separation and wakes associated with passage pressure gradients, secondary flows, and boundary layer stability. It is also subject to periodic unsteadiness from the rotating stall and the cyclic flow phenomena induced by the casing. This paper describes the mechanical and optical design of a rotating laser-Doppler anemometry system, which allows direct measurement of the relative flow by means of an optical derotator. By isolating the impeller rotational frequency form the sampling frequency, it allows direct time-average measurements of the stationary behavior of the relative flow along with the ensemble (phase)-averaged measurements of its periodic behavior. Its success is demonstrated with measurements conducted in a low specific speed centrifugal impeller fitted with a single volute. Sample results of the time-averaged blade-to-blade variation of total relative velocities along with their associated turbulence intensities are reported. The (periodic) cyclic variations of the impeller exit flow, induced by the volute at low flow rates, are also presented for the suction and pressure sides.

  13. Velocity measurements downstream of the impellers in a multistage centrifugal blower

    SciTech Connect

    Arnulfi, G.L.; Pinamonti, P.; Micheli, D.

    1995-10-01

    The paper presents the results of an experimental investigation on a four-stage centrifugal blower, having the aim of obtaining an accurate description of the flow field behind the impellers in several operative conditions and for different geometric configurations. Actually, the test plant allows one to change the turbomachinery characteristics assembling one, two, three, or four stages and three different types of diffuser. In this first research step, the blower has been tested in the four-stage vaneless diffuser configuration. The unsteady flow field behind the impellers and in the diffusers has been measured by means of a hot-wire anemometer. A phase-locked ensemble-averaging technique has been utilized to obtain the relative flow field from the instantaneous signals for the stationary hot-wire probes. Several detailed measurement sets have been performed using both single and crossed hot-wire probes, to obtain the velocity vectors and turbulence trends, just behind the blower impellers and in several radial positions of the vaneless diffusers. These measurements have been done at different flow rate conditions, covering unsteady flow rate phenomena (rotating stall) also. The results obtained allowed the authors to get a detailed flow field analysis in the multistage centrifugal blower, in relation to the geometric configuration and to the differing operating conditions.

  14. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.

    PubMed

    Pereira, Leonardo Tupi Caldas; Pereira, Lucas Tupi Caldas; Teixeira, Ricardo Sposina Sobral; Bon, Elba Pinto da Silva; Freitas, Suely Pereira

    2011-08-01

    The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, ?-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion. PMID:20844924

  15. Experimental Impeller Fragmentation of Iliocaval Thrombosis Under Tulip Filter Protection: Preliminary Results

    SciTech Connect

    Schmitz-Rode, Thomas; Vorwerk, Dierk; Schuermann, Karl; Guenther, Rolf W.

    1996-04-15

    Purpose: To assess the efficacy of catheter fragmentation of massive caval thrombosis and of filter protection against procedure-related pulmonary embolism. Methods: In 10 sheep, a self-expanding tulip-shaped filter made from Wallstent mesh (diameter 25 mm) was introduced from the right jugular approach into the proximal inferior vena cava. Experimentally induced massive iliocaval thrombosis was fragmented by an impeller catheter (expanded diameter 14 mm), which was advanced coaxially through the sheath of the expanded filter. Post-procedural cavography and pulmonary angiography were performed to document the extent of caval recanalization and pulmonary embolism. Results: In all cases, impeller fragmentation cleared the inferior vena cava and the iliac veins of thrombi completely. Fragments washed downstream were trapped in the filter. In two of the first cases, parts of the clots caused pulmonary embolism before the filter was in place. Further events were avoided by a modification of the experimental setup. Except for some small peripheral perfusion defects in two cases, pulmonary angiograms did not show any incidence of pulmonary embolism. Conclusion: Our preliminary results suggest that impeller fragmentation of iliocaval thrombi under tulip filter protection is effective and does not cause significant pulmonary embolism.

  16. Modeling gas-liquid head performance of electrical submersible pumps

    NASA Astrophysics Data System (ADS)

    Sun, Datong

    The objectives of this study are to develop a simple and accurate theoretical model and to implement the model into a computational tool to predict Electrical Submersible Pumps (ESP) head performance under two-phase flow conditions. A new two-phase model including a set of one-dimensional mass and momentum balance equations was developed. The derived gas-liquid momentum equations along pump channels has improved Sachdeva (1992, 1994)'s model in petroleum industry and generalized Minemura (1998)'s model in nuclear industry. The resulting pressure ODE for frictionless incompressible single-phase flow is consistent with the pump Euler equation. In the two-phase momentum equations, new models for wall frictional losses for each phase, through using gas-liquid stratified assumption and existing correlations for impeller rotating effect, channel curvature effect, and channel cross section effect, have been proposed. New equations for radius of curvature along ESP channels, used in the curvature effect calculation, have been derived. A new shock loss model incorporating rotational speeds has been developed. A new correlation for drag coefficient and interfacial characteristic length effects has been obtained through fitting the model results with experimental data. An algorithm to solve the model equations has been developed and implemented. The model predicts pressure and void fraction distributions along impellers and diffusers and can also be used to predict the pump head performance curve under different fluid properties, pump intake conditions, and rotational speeds. The new two-phase model is validated with air-water experimental data. Results show the model provides a very good prediction for pump head performance under different gas flow rates, liquid flow rates, and different intake pressures. The new model is capable of predicting surging and gas lock conditions.

  17. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    PubMed

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. PMID:22040356

  18. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D. (Dublin, CA)

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  19. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  20. Numerical study of impeller-driven von Krmn flows via a volume penalization method

    NASA Astrophysics Data System (ADS)

    Kreuzahler, S.; Schulz, D.; Homann, H.; Ponty, Y.; Grauer, R.

    2014-10-01

    Studying strongly turbulent flows is still a major challenge in fluid dynamics. It is highly desirable to have comparable experiments to obtain a better understanding of the mechanisms generating turbulence. The von Krmn flow apparatus is one of those experiments that has been used in various turbulence studies by different experimental groups over the last two decades. The von Krmn flow apparatus produces a highly turbulent flow inside a cylinder vessel driven by two counter-rotating impellers. The studies cover a broad range of physical systems including incompressible flows, especially water and air, magnetohydrodynamic systems using liquid metal for understanding the important topic of the dynamo instability, particle tracking to study Lagrangian type turbulence and recently quantum turbulence in super-fluid helium. Therefore, accompanying numerical studies of the von Krmn flow that compare quantitatively data with those from experiments are of high importance for understanding the mechanism producing the characteristic flow patterns. We present a direct numerical simulation (DNS) version the von Krmn flow, forced by two rotating impellers. The cylinder geometry and the rotating objects are modelled via a penalization method and implemented in a massive parallel pseudo-spectral Navier-Stokes solver. From the wide range of different impellers used in von Krmn water and sodium experiments we choose a special configuration (TM28), in order to compare our simulations with the according set of well documented water experiments. Though this configuration is different from the one in the final VKS experiment (TM73), using our method it is quite easy to change the impeller shape to the one actually used in VKS. The decomposition into poloidal and toroidal components and the mean velocity field from our simulations are in good agreement with experimental results. In addition, we analysed the flow structure close to the impeller blades, a region hardly accessible to experiments. Depending on the blade geometry different vortex topologies are found. The very promising results imply that our numerical modelling could also be applied to other physical systems and configurations driven by the von Krmn flow.