Science.gov

Sample records for vivo functional analysis

  1. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    NASA Astrophysics Data System (ADS)

    Salas, Nelson, Jr.; Manns, Fabrice; Milne, Peter J.; Denham, David B.; Minhaj, Ahmed M.; Parel, Jean-Marie; Robinson, David S.

    2004-05-01

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 °C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 × 103 mm3) coagulation volume without unwanted tissue liquefaction and carbonization.

  2. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    PubMed

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. PMID:21074529

  3. Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models

    NASA Astrophysics Data System (ADS)

    Zhao, Dong

    Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient

  4. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo.

    PubMed

    Lu, Xiong; Wang, Yingbo; Yang, Xiudong; Zhang, Qiyi; Zhao, Zhanfeng; Weng, Lu-Tao; Leng, Yang

    2008-02-01

    In the present study, surface functional groups of titanium surfaces gone through different treatments, including acid etched treatment (AE), nitric acid treatment (NT), heat treatment (HT), and alkali treatment (AT), and their behaviors in vitro and in vivo was thoroughly studied by spectroscopic analysis. In vitro and in vivo results revealed that the rank of bioactivity of various surfaces was AE < NT < HT < AT. XPS analysis indicated that AT greatly increased the OH group concentration on the titanium surface whereas HT reduced the OH group concentration. Thus, OH group difference could not be a good explanation of bioactivity difference. On the other hand, ToF-SIMS analysis demonstrated the TiOH+/Ti+ ratios of various surfaces correlated well with the bioactivity and the surface energies, which implied that Ti-OH could play an important role in the bioactivity. This detail investigation of the relationship between surface functional groups and surface bioactivity could help us to broaden the knowledge about the mechanism of bioactivity and to design next generation bioactive materials. PMID:17618503

  5. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo

    PubMed Central

    Mao, Junhao; Barrow, Jeffery; McMahon, Jill; Vaughan, Joe; McMahon, Andrew P.

    2005-01-01

    We describe a versatile genetic system for rapid analysis of mammalian gene function. In this, loss of reporter activity in a novel embryonic stem (ES) cell line enables rapid identification of targeting to the ubiquitously expressed Rosa26 locus. Subsequent regulation of gene activity is governed by a dual regulatory strategy utilizing two drugs, Tamoxifen and Doxycycline. To illustrate this approach, a dominant allele of Smoothened was introduced into this cell line, enabling regulated activation of Hedgehog signaling. By coupling Cre-loxP dependent activation with tetracycline dependent transcription in a single allele, we established a conditional method to control Smoothened activity and neural progenitor specification in differentiating ES cells in vitro and in chimeric embryos in vivo When crossed to an appropriate Cre driver strain, gene activity can also be temporally regulated within a specific cell lineage. This platform will facilitate rapid analysis of gene function in the mouse. PMID:16221970

  6. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  7. Independent component analysis for the detection of in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; Pattichis, Marios; Abramoff, Michael; T'so, Dan; Kwon, Young; Kardon, Randy; Soliz, Peter

    2007-02-01

    To overcome the difficulty in detection of loss of retinal activity, a functional-Retinal Imaging Device (f-RID) was developed. The device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by noise. In this paper, we present a new Independent Component Analysis (ICA) algorithm used to analyze the video sequences from a set of experiments with different patterned stimuli from cats and humans. The ICA algorithm with priors (ICA-P) uses information about the stimulation paradigms to increase the signal detection thresholds when compared to traditional ICA algorithms. The results of the analysis show that we can detect signal levels as low as 0.01% of the total reflected intensity. Also, improvement of up to 30dB in signal detection over traditional ICA algorithms is achieved. The study found that in more than 80% of the in-vivo experiments the patterned stimuli effects on the retina can be detected and extracted.

  8. Specific Schistosoma mansoni rat T cell clones. I. Generation and functional analysis in vitro and in vivo.

    PubMed

    Pestel, J; Dissous, C; Dessaint, J P; Louis, J; Engers, H; Capron, A

    1985-06-01

    In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell

  9. Phenotypical Analysis of Atypical PKCs In Vivo Function Display a Compensatory System at Mouse Embryonic Day 7.5

    PubMed Central

    Seidl, Sebastian; Braun, Ursula; Roos, Norbert; Li, Shaohua; Lüdtke, Timo H.-W.

    2013-01-01

    Background The atypical protein kinases C (PKC) isoforms ι/λ and ζ play crucial roles in many cellular processes including development, cell proliferation, differentiation and cell survival. Possible redundancy between the two isoforms has always been an issue since most biochemical tools do not differentiate between the two proteins. Thus, much effort has been made during the last decades to characterize the functions of aPKCs using gene targeting approaches and depletion studies. However, little is known about the specific roles of each isoform in mouse development. Methodology/Principal Findings To evaluate the importance of PKCι in mouse development we designed PKCι deletion mutants using the gene targeting approach. We show that the deletion of PKCι, results in a reduced size of the amniotic cavity at E7.5 and impaired growth of the embryo at E8.5 with subsequent absorption of the embryo. Our data also indicate an impaired localization of ZO-1 and disorganized structure of the epithelial tissue in the embryo. Importantly, using electron microscopy, embryoid body formation and immunofluorescence analysis, we found, that in the absence of PKCι, tight junctions and apico-basal polarity were still established. Finally, our study points to a non-redundant PKCι function at E9.5, since expression of PKCζ is able to rescue the E7.5 phenotype, but could not prevent embryonic lethality at a later time-point (E9.5). Conclusion Our data show that PKCι is crucial for mouse embryogenesis but is dispensable for the establishment of polarity and tight junction formation. We present a compensatory function of PKCζ at E7.5, rescuing the phenotype. Furthermore, this study indicates at least one specific, yet unknown, PKCι function that cannot be compensated by the overexpression of PKCζ at E9.5. PMID:23690951

  10. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    SciTech Connect

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  11. In Vivo Performance of a Novel Fluorinated Magnetic Resonance Imaging Agent for Functional Analysis of Bile Acid Transport

    PubMed Central

    2015-01-01

    A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306

  12. Proteomic analysis of the function of spot in Helicobacter pylori anti-oxidative stress in vitro and colonization in vivo.

    PubMed

    Sun, Yundong; Li, Xinpeng; Li, Wen; Zhao, Min; Wang, Lixiang; Liu, Shili; Zeng, Jiping; Liu, Zhifang; Jia, Jihui

    2012-11-01

    As a microaerobe, Helicobacter pylori employs the global regulator SpoT for defending against oxidative stress in vitro. However, the mechanisms how SpoT affects bacterial gene expression is still unknown. Moreover, the function of SpoT in H. pylori colonization in the host is remaining undetermined. To explore the functions of the SpoT in H. pylori pathogenesis, we constructed H. pylori 26695 spoT-deficient mutant (ΔspoT). While grown in ambient atmosphere, protein expression profile of the ΔspoT was analyzed with 2D gel electrophoresis and real-time PCR. Compared to the wild type, the spoT-deficient strain downregulated its transcription of the oxidative-induced genes, as well as the genes responsible for protein degradation and that related to energy metabolism. Meanwhile, the colonization ability of ΔspoT strains in Mongolian gerbil was tested, the results demonstrated a decayed colonization in the mouse stomach with ΔspoT than the wild type. As a matter of facts, the AGS cells infected with the ΔspoT strains excreted increased level of the gastric inflammation cytokines IL-8, and the ΔspoT strains showed poor survival ability when treated with reactive oxygen stress (sodium nitroprusside). The elevated capacity of stimulating cytokines and fragility to reactive oxygen stress may be contribute to decreased colonization of the spoT-deficient mutant in the mouse stomach. Conclusively, we speculate that spoT is a key regulator of the genes for H. pylori spreading in the air and colonization in host stomach. PMID:22678710

  13. Analysis of the Peroxidase Activity of Rice (Oryza Sativa) Recombinant Hemoglobin 1: Implications for the In Vivo Function of Hexacoordinate Non-Symbiotic Hemoglobins in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about the peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH ...

  14. New models for analyzing mast cell functions in vivo.

    PubMed

    Reber, Laurent L; Marichal, Thomas; Galli, Stephen J

    2012-12-01

    In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells (MCs) have been implicated in a wide variety of processes that contribute to disease or help to maintain health. Although some of these roles were first suggested by analyses of MC products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by MCs in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of MC deficiency. PMID:23127755

  15. Functional analysis in vivo of engineered valved venous conduit with decellularized matrix and two bone marrow-derived progenitors in sheep.

    PubMed

    Yuan, Jian-Ming; Xiong, Shao-Hu; Liu, Zhen; Wen, Yu; Dang, Rui-Shan; Shen, Man-Ru; Zhang, Yong-Zhen; Zhang, Xi; Yang, Xiang-Qun; Zhang, Chuan-Sen

    2016-07-01

    Tissue engineering has been considered a promising approach for creating grafts to replace autologous venous valves. Here, ovine bone marrow-derived endothelial progenitor cells (EPCs) and multipotent adult progenitor cells (MAPCs) were harvested and then loaded into decellularized venous matrix to create tissue-engineered (TE) valved vein. Subsequently, the ovine femoral veins containing the valve were removed and replaced by TE grafts or acellular matrix only. The morphology and function were analysed for up to 1 year by ultrasonography, angiography, H&E staining and scanning electron microscopy (SEM). The differentiation of seeded cells was traced immunofluorochemically. The results showed that decellularized venous matrix could initially and feebly attract endogenous cells, but failed afterwards and were insufficient to restore valve function. On the contrary, the seeded cells differentiated into endothelial cells (ECs) in vivo and formed a monolayer endothelium, and smooth muscle cells within the scaffold therefore produced TE grafts comparable to the native vein valve. This TE graft remained patent and sufficient after implantation into the venous circuit of the ovine lower extremity for at least 6 months. Unfortunately, cells seeded on the luminal surface and both sides of the leaflets lost their biological functions at 12 months, resulting in thrombosis formation and leading to complete occlusion of the TE grafts and impotent venous valves. These findings suggest that this TE valved venous conduit can function physiologically in vivo in the medium term. Before translating this TE venous valve into clinical practice, the durability should be improved and thrombogenicity should be suppressed. Copyright © 2016 John Wiley & Sons, Ltd. PMID:23904287

  16. GAGA Factor Isoforms Have Distinct but Overlapping Functions In Vivo

    PubMed Central

    Greenberg, Anthony J.; Schedl, Paul

    2001-01-01

    The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo. PMID:11713290

  17. Simultaneous ex vivo Functional Testing of Two Retinas by in vivo Electroretinogram System

    PubMed Central

    Vinberg, Frans; Kefalov, Vladimir

    2015-01-01

    An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types. PMID:25992809

  18. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis

    PubMed Central

    Guy, Michael P.; Young, David L.; Payea, Matthew J.; Zhang, Xiaoju; Kon, Yoshiko; Dean, Kimberly M.; Grayhack, Elizabeth J.; Mathews, David H.; Fields, Stanley

    2014-01-01

    Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5′ ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology. PMID:25085423

  19. Assessment of Glial Function in the In Vivo Retina

    PubMed Central

    Srienc, Anja I.; Kornfield, Tess E.; Mishra, Anusha; Burian, Michael A.; Newman, Eric A.

    2013-01-01

    Glial cells, traditionally viewed as passive elements in the CNS, are now known to have many essential functions. Many of these functions have been revealed by work on retinal glial cells. This work has been conducted almost exclusively on ex vivo preparations and it is essential that retinal glial cell functions be characterized in vivo as well. To this end, we describe an in vivo rat preparation to assess the functions of retinal glial cells. The retina of anesthetized, paralyzed rats is viewed with confocal microscopy and laser speckle flowmetry to monitor glial cell responses and retinal blood flow. Retinal glial cells are labeled with the Ca2+ indicator dye Oregon Green 488 BAPTA-1 and the caged Ca2+ compound NP-EGTA by injection of the compounds into the vitreous humor. Glial cells are stimulated by photolysis of caged Ca2+ and the activation state of the cells assessed by monitoring Ca2+ indicator dye fluorescence. We find that, as in the ex vivo retina, retinal glial cells in vivo generate both spontaneous and evoked intercellular Ca2+ waves. We also find that stimulation of glial cells leads to the dilation of neighboring retinal arterioles, supporting the hypothesis that glial cells regulate blood flow in the retina. This in vivo preparation holds great promise for assessing glial cell function in the healthy and pathological retina. PMID:22144328

  20. Construction of an in vivo system for functional analysis of the genes involved in sex pheromone production in the silkmoth, Bombyx mori.

    PubMed

    Moto, Ken-Ichi; Matsumoto, Shogo

    2012-01-01

    Moths produce species-specific sex pheromones to attract conspecific mates. The biochemical processes that comprise sex pheromone biosynthesis are precisely regulated and a number of gene products are involved in this biosynthesis and regulation. In recent years, at least 300 EST clones have been isolated from Bombyx mori pheromone gland (PG) specific cDNA libraries with some of those clones [i.e., B. mori PG-specific desaturase 1 (Bmpgdesat1), PG-specific fatty acyl reductase, PG-specific acyl-CoA-binding protein, B. mori fatty acid transport protein, B. mori lipid storage droplet protein-1] characterized and demonstrated to play a role in sex pheromone production. However, most of the EST clones have yet to be fully characterized and identified. To develop an efficient system for analyzing sex pheromone production-related genes, we investigated the feasibility of a novel gene analysis system using the upstream region of Bmpgdesat1 that should contain a PG-specific gene promoter in conjunction with piggyBac vector-mediated germ line transformation. As a result, we have been able to obtain expression of our reporter gene (enhanced green fluorescent protein) in the PG but not in other tissues of transgenic B. mori. Current results indicate that we have successfully constructed a novel in vivo gene analysis system for sex pheromone production in B. mori. PMID:22649415

  1. Spectroscopy analysis of tissues in vivo

    NASA Astrophysics Data System (ADS)

    Loschenov, Victor B.; Poleshkin, P. V.; Stratonnikov, Alexander A.; Torshina, Nadezgda L.

    1995-01-01

    The spectral analysis of biological tissues in vivo is widely used in various fields particularly in medical diagnostics and therapy control. Great possibilities of spectral tissue analysis exist to be realized in the future. Among them are the complete non-invasive clinical blood analysis with evaluation of, for example, sugar concentration in blood; the evaluation of chemical state and localization on subcell level of various drugs binded with biological structures. These facts were shown to affect drastically the drug therapeutic activity. The main advantage of spectral analysis of tissues in vivo is its noninvasivity. This allows one to get information about tissue condition without affecting the dynamic of various biological processes. Another advantage of optical tissue analysis is the possibility to process data in real time and to control parameters of therapy process according to information acquired. For example the in situ analysis of photosensitizer concentration and its chemical state during photodynamic therapy makes it possible to correct the laser irradiation intensity (the photobleaching of photosensitizer requires the decrease in laser intensity).

  2. In vivo activation and functions of the protease factor XII.

    PubMed

    Björkqvist, Jenny; Nickel, Katrin F; Stavrou, Evi; Renné, Thomas

    2014-11-01

    Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. Factor XII (FXII, Hageman factor) is a plasma protease that initiates the contact system. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. The current review concentrates on activators and functions of the FXII-driven contact system in vivo. Elucidating its physiologic activities offers the exciting opportunity to develop strategies for the safe interference with both thrombotic and inflammatory diseases. PMID:25187064

  3. In Vivo Analysis of Saccharomyces Cerevisiae Cox2 mRNA 5'-Untranslated Leader Functions in Mitochondrial Translation Initiation and Translational Activation

    PubMed Central

    Dunstan, H. M.; Green-Willms, N. S.; Fox, T. D.

    1997-01-01

    We have used mutational and revertant analysis to study the elements of the 54-nucleotide COX2 5'-untranslated leader involved in translation initiation in yeast mitochondria and in activation by the COX2 translational activator, Pet111p. We generated a collection of mutants with substitutions spanning the entire COX2 5'-UTL by in vitro mutagenesis followed by mitochondrial transformation and gene replacement. The phenotypes of these mutants delimit a 31-nucleotide segment, from -16 to -46, that contains several short sequence elements necessary for COX2 5'-UTL function in translation. The sequences from -16 to -47 were shown to be partially sufficient to promote translation in a foreign context. Analysis of revertants of both the series of linker-scanning alleles and two short deletion/insertion alleles has refined the positions of several possible functional elements of the COX2 5'-untranslated leader, including a putative RNA stem-loop structure that functionally interacts with Pet111p and an octanucleotide sequence present in all S. cerevisiae mitochondrial mRNA 5'-UTLs that is a potential rRNA binding site. PMID:9286670

  4. Resurrection of DNA function in vivo from an extinct genome.

    PubMed

    Pask, Andrew J; Behringer, Richard R; Renfree, Marilyn B

    2008-01-01

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600

  5. Resurrection of DNA Function In Vivo from an Extinct Genome

    PubMed Central

    Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.

    2008-01-01

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600

  6. Analysis of TFIIA Function In Vivo: Evidence for a Role in TATA-Binding Protein Recruitment and Gene-Specific Activation

    PubMed Central

    Liu, Qing; Gabriel, Scott E.; Roinick, Kelli L.; Ward, Robert D.; Arndt, Karen M.

    1999-01-01

    Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation. PMID:10567590

  7. Detection of Tight Junction Barrier Function In Vivo by Biotin

    PubMed Central

    Ding, Lei; Zhang, Yuguo; Tatum, Rodney; Chen, Yan-Hua

    2011-01-01

    Tight junctions (TJs) are the most apical component of the junctional complexes in mammalian epithelial cells and form selective paracellular barriers restricting the passage of solutes and ions across the epithelial sheets. Claudins, a TJ integral membrane protein family, play a critical role in regulating paracellular barrier permeability. In the in vitro cell culture system, transepithelial electrical resistance (TER) measurement and the flux of radioisotope or fluorescent labeled molecules with different sizes have been widely used to determine the TJ barrier function. In the in vivo system, the tracer molecule Sulfo-NHS-Biotin was initially used in Xenopus embryos system and subsequently was successfully applied to a number of animal tissues in situ and in different organisms under the experimental conditions to examine the functional integrity of TJs by several laboratories. In this chapter, we will describe the detailed procedures of applying biotin as a paracellular tracer molecule to different in vivo systems to assay TJ barrier function. PMID:21717351

  8. In vivo and in vitro analysis of the human tissue-type plasminogen activator gene promoter in neuroblastomal cell lines: evidence for a functional upstream kappaB element.

    PubMed

    Lux, W; Klobeck, H-G; Daniel, P B; Costa, M; Medcalf, R L; Schleuning, W-D

    2005-05-01

    Besides its well-established role in wound healing and fibrinolysis, tissue-type plasminogen activator (t-PA) has been shown to contribute to cognitive processes and memory formation within the central nervous system, and to promote glutamate receptor-mediated excitotoxicity. The t-PA gene is expressed and regulated in neuronal cells but the regulatory transcriptional processes directing this expression are still poorly characterized. We have used DNase I-hypersensitivity mapping and in vivo foot printing to identify putative regulatory elements and transcription factor binding sites in two human neuroblastomal (KELLY and SK-N-SH) and one human glioblastomal (SNB-19) cell lines. Hypersensitive sites were found in the proximal promoter region of all cell lines, and within the first exon for KELLY and SNB-19 cells. Mapping of methylation-protected residues in vivo detected a cluster of protected residues corresponding to a cAMP response element (CRE) and Sp1 sites in the proximal promoter previously shown to be essential for basal expression in other cell types. Protected residues were also found at other sites, notably a kappaB element at position bp -3081 to -3072 that was partly protected in KELLY and SNB-19 cells. Analysis of transfected reporter constructs in KELLY and SNB-19 cells confirmed that this particular element is functionally significant in the transactivation of the t-PA promoter in both cell types. This study defines, by in vivo and in vitro methods, a previously undescribed kappaB site in the t-PA gene promoter that influences t-PA expression in neuronal cells. PMID:15869598

  9. Intravital FRET: Probing Cellular and Tissue Function in Vivo.

    PubMed

    Radbruch, Helena; Bremer, Daniel; Mothes, Ronja; Günther, Robert; Rinnenthal, Jan Leo; Pohlan, Julian; Ulbricht, Carolin; Hauser, Anja E; Niesner, Raluca

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice. PMID:26006244

  10. Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo.

    PubMed

    Feng, Jun; Li, Guang; Liu, Xin; Wang, Jing; Wang, Yi-Quan

    2014-10-01

    Amphioxus is a promising new animal model for developmental biology. To develop molecular tools for this model, we characterized the promoter region of a cytoplasmic β-actin gene (Bb-actin-6-2) from the Chinese amphioxus Branchiostoma belcheri. In situ hybridization and real time-quantitative PCR analyses showed that this gene is expressed in many tissues throughout embryonic development. Cloning of cDNA revealed two isoforms with distinct transcription start sites. Isoform #1 exhibits a similar exon/intron and regulatory element organization to that of vertebrate β-actin, whereas isoform #2 lacks the first exon of isoform #1 and recruits its first intron as a promoter. The activities of upstream promoter regions in the two isoforms were examined using the lacZ reporter system in amphioxus embryos. The proximal promoter of isoform #1 drove reporter gene expression broadly in 58.6 % of injected embryos. That of isoform #2 exhibited much higher activity (91.5 %) than that of isoform #1 or the human EF-1-α gene (38.2 %). We determined the minimal promoter regions of the two isoforms via functional analysis. These two regions, alone or inserted a random DNA fragment upstream, had no detectable activity, but when an upstream enhancer was inserted, the promoters directed reporter gene expression in 61.0 and 93.8 %, respectively, of injected embryos in a tissue-specific manner. Our study not only provides insight into the regulatory mechanism underlying amphioxus Bb-actin-6-2 gene expression, but also identifies two sets of efficient proximal and minimal promoters. These promoters could be used to construct gene expression vectors for transgenic studies using amphioxus as a model. PMID:25078982

  11. In vivo investigation of cilia structure and function using Xenopus

    PubMed Central

    Brooks, Eric R.; Wallingford, John B.

    2015-01-01

    Cilia are key organelles in development and homeostasis. The ever-expanding complement of cilia associated proteins necessitates rapid and tractable models for in vivo functional investigation. Xenopus laevis provides an attractive model for such studies, having multiple ciliated populations, including primary and multiciliated tissues. The rapid external development of Xenopus and the large cells make it an especially excellent platform for imaging studies. Here we present embryological and cell-biological methods for the investigation of cilia structure and function in Xenopus laevis, with a focus on quantitative live and fixed imaging. PMID:25837389

  12. In Vivo Gait Analysis During Bone Transport.

    PubMed

    Mora-Macías, J; Reina-Romo, E; Morgaz, J; Domínguez, J

    2015-09-01

    The load bearing characteristics of the intervened limb over time in vivo are important to know in distraction osteogenesis and bone healing for the characterization of the bone maturation process. Gait analyses were performed for a group of sheep in which bone transport was carried out. The ground reaction force was measured by means of a force platform, and the gait parameters (i.e., the peak, the mean vertical ground reaction force and the impulse) were calculated during the stance phase for each limb. The results showed that these gait parameters decreased in the intervened limb and interestingly increased in the other limbs due to the implantation of the fixator. Additionally, during the process, the gait parameters exponentially approached the values for healthy animals. Corresponding radiographies showed an increasing level of ossification in the callus. This study shows, as a preliminary approach to be confirmed with more experiments, that gait analysis could be used as an alternative method to control distraction osteogenesis or bone healing. For example, these analyses could determine the appropriate time to remove the fixator. Furthermore, gait analysis has advantages over other methods because it provides quantitative data and does not require instrumented fixators. PMID:25650097

  13. Free-radical probes for functional in vivo EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  14. Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.

    PubMed

    Wang, Dingding; Hu, Lili; Su, Manman; Wang, Ju; Xu, Tianmin

    2015-09-01

    Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer. PMID:26166416

  15. Recent molecular approaches to understanding astrocyte function in vivo

    PubMed Central

    Davila, David; Thibault, Karine; Fiacco, Todd A.; Agulhon, Cendra

    2013-01-01

    Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions. PMID:24399932

  16. Novel in vivo techniques to visualize kidney anatomy and function.

    PubMed

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research. PMID:25738253

  17. Algal photoreceptors: in vivo functions and potential applications.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2014-01-01

    Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems. PMID:24081482

  18. In vivo compartmental analysis of leukocytes in mouse lungs.

    PubMed

    Patel, Brijesh V; Tatham, Kate C; Wilson, Michael R; O'Dea, Kieran P; Takata, Masao

    2015-10-01

    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6C(lo) monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6C(lo) monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined "interstitial" leukocyte populations during models of inflammatory lung diseases. PMID:26254421

  19. HIV control in vivo: Dynamical analysis

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.; Moghadas, S. M.

    2004-10-01

    A deterministic model for the immunological and therapeutic control of human immunodeficiency virus (HIV) in vivo is studied qualitatively. In addition to analyzing the local stability of the equilibria, the global stability of the infection-free equilibrium is established. The optimal efficacy level of anti-retroviral therapy needed to eradicate HIV from the body of an HIV-infected individual is obtained.

  20. In vivo minimally invasive interstitial multi-functional microendoscopy

    PubMed Central

    Shahmoon, Asaf; Aharon, Shiran; Kruchik, Oded; Hohmann, Martin; Slovin, Hamutal; Douplik, Alexandre; Zalevsky, Zeev

    2013-01-01

    Developing minimally invasive methodologies for imaging of internal organs is an emerging field in the biomedical examination research. This paper introduces a new multi-functional microendoscope device capable of imaging of internal organs with a minimal invasive intervention. In addition, the developed microendoscope can also be employed as a monitoring device for measuring local hemoglobin concentration in blood stream when administrated into a blood artery. The microendoscope device has a total external diameter of only 200 μm and can provide high imaging resolution capability of more than 5,000 pixels. The device can detect features with a spatial resolution of less than 1 μm. The microendoscope has been tested both in-vitro as well as in-vivo in rats presenting a promising and powerful tool as a high resolution and minimally invasive imaging facility suitable for previously unreachable clinical modalities. PMID:23712369

  1. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  2. Intracranial nonthermal irreversible electroporation: in vivo analysis.

    PubMed

    Garcia, Paulo A; Rossmeisl, John H; Neal, Robert E; Ellis, Thomas L; Olson, John D; Henao-Guerrero, Natalia; Robertson, John; Davalos, Rafael V

    2010-07-01

    Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495-510 V/cm) in canine brain tissue using 90 50-mus pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12-0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue. PMID:20668843

  3. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs

    PubMed Central

    Attridge, Kesley; Walker, Lucy S K

    2014-01-01

    The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important. PMID:24712457

  4. In-vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function

    SciTech Connect

    Choi, S; Doble, N; Hardy, J; Jones, S; Keltner, J; Olivier, S; Werner, J S

    2005-10-26

    To relate in-vivo microscopic retinal changes to visual function assessed with clinical tests in patients with various forms of retinal dystrophies. The UC Davis Adaptive Optics (AO) Fundus Camera was used to acquire in-vivo retinal images at the cellular level. Visual function tests, consisting of visual field analysis, multifocal electroretinography (mfERG), contrast sensitivity and color vision measures, were performed on all subjects. Five patients with different forms of retinal dystrophies and three control subjects were recruited. Cone densities were quantified for all retinal images. In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were characteristic features in fundi with retinal dystrophies. There was a correlation between functional vision loss and the extent to which the irregularities occurred in retinal images. Cone densities were found to decrease with an associated decrease in retinal function. AO fundus photography is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests give borderline or ambiguous results, as it allows visualization of individual photoreceptors.

  5. Fetal in vivo continuous cardiovascular function during chronic hypoxia.

    PubMed

    Allison, B J; Brain, K L; Niu, Y; Kane, A D; Herrera, E A; Thakor, A S; Botting, K J; Cross, C M; Itani, N; Skeffington, K L; Beck, C; Giussani, D A

    2016-03-01

    Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species. PMID:26926316

  6. Characteristics and Functional Roles of Opioids Originally Present in Vivo.

    PubMed

    Ozaki, Masanobu

    2016-01-01

    The characteristics and functional roles of opioids originally present in vivo (endogenous opioids) in guinea-pig ileum were investigated. The release of endogenous opioids was determined by the inhibitory twitch response evoked by 0.1 Hz stimulation after 10 Hz stimulation (post-tetanic twitch inhibition). The effects of peptidase inhibitors increased the post-tetanic twitch inhibition, prevented by β-funaltrexamine and nor-binaltorphimine, which are selective μ- and κ-opioid receptor subtype antagonists, respectively. Dopamine receptor antagonists (haloperidol, sultopride and domperidone) increased the post-tetanic twitch inhibition. These results suggest that dopamine receptors are involved in modulation of the ileal opioid system, so as to diminish endogenous opioid release by tetanic stimulation, and dopamine antagonists increase the opioid action, that might depend more on the increased release of endogenous opioids. The post-tetanic twitch inhibition was inhibited by adrenalectomy, and showed the supersensitivity of the opioid receptors, resulting from a decrease of endogenous opioids by adrenalectomy. These findings suggest that the increase in morphine-analgesia by adrenalectomy was due to this process. In the presence of naloxone, an opioid antagonist, an increase in basal tension after tetanic stimulation (10 Hz stimulation) (post-tetanic contraction) was observed, and was blocked by spantide, a substance P antagonist, and indomethacin, a prostaglandins-biosynthesis inhibitor. This contraction increased with morphine or peptidase inhibitor exposure, depending on the length of time the ileum was exposed to the morphine or peptidase inhibitor. Post-tetanic contraction might be a useful indicator of the formation of physical dependence to morphine or endogenous opioids in the ileum. PMID:27040344

  7. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain.

    PubMed

    Wang, Xueding; Pang, Yongjiang; Ku, Geng; Xie, Xueyi; Stoica, George; Wang, Lihong V

    2003-07-01

    Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy. PMID:12808463

  8. Analysis of the structure of human telomerase RNA in vivo

    PubMed Central

    Antal, Mária; Boros, Éva; Solymosy, Ferenc; Kiss, Tamás

    2002-01-01

    Telomerase is a ribonucleoprotein reverse transcriptase that synthesises telomeric DNA. The RNA component of telomerase acts as a template for telomere synthesis and binds the reverse transcriptase. In this study, we have performed in vivo and in vitro structural analyses of human telomerase RNA (hTR). In vivo mapping experiments showed that the 5′-terminal template domain of hTR folds into a long hairpin structure, in which the template sequence occupies a readily accessible position. Intriguingly, neither in vivo nor in vitro mapping of hTR confirmed formation of a stable ‘pseudoknot’ helix, suggesting that this functionally essential long range interaction is formed only temporarily. In vitro control mappings demonstrated that the 5′-terminal template domain of hTR cannot fold correctly in the absence of cellular protein factors. The 3′-terminal domain of hTR, both in vivo and in vitro, folds into the previously predicted box H/ACA snoRNA-like ‘hairpin–hinge–hairpin–tail’ structure. Finally, comparison of the in vivo and in vitro modification patterns of hTR revealed several regions that might be directly involved in binding of telomerase reverse transcriptase or other telomerase proteins. PMID:11842102

  9. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo

    PubMed Central

    Jiang, Xue; Chen, Yuxi; Zhang, Zhen; Zhang, Xiya; Liang, Puping; Zhan, Shaoquan; Cao, Shanbo; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2) is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated) family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo. PMID:26599493

  10. In vivo analysis of recycling endosomes in Caenorhabditis elegans.

    PubMed

    Shi, Anbing; Grant, Barth D

    2015-01-01

    The microscopic nematode Caenorhabditis elegans (C. elegans) serves as an excellent animal model for studying membrane traffic. This is due in part to its highly advanced genetics and genomics, and a transparent body that allows the visualization of fluorescently tagged molecules in the physiologically relevant context of the intact organism. Notably, C. elegans oocytes, coelomocytes, and intestinal epithelia have been established as facile cellular models to explore nonpolarized and polarized cell membrane trafficking mechanisms. In this chapter, we describe in vivo C. elegans assays, utilizing fluorescent dyes or proteins, to examine the molecular mechanisms that control endocytosis and endocytic recycling. Tissue-specific, steady-state imaging and associated quantitative analysis allow the identification and interpretation of subcellular events in the intact animal. To better understand the kinetic characteristics of recycling tubules that mediate membrane protein recycling, we describe recently developed dynamic-imaging assays in intestinal epithelial cells. Such methods bring new clarity to the system, helping to elucidate the functional roles of recycling mediators. PMID:26360035

  11. Quantitative analysis of in vivo cell proliferation.

    PubMed

    Cameron, Heather A

    2006-11-01

    Injection and immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) has become the standard method for studying the birth and survival of neurons, glia, and other cell types in the nervous system. BrdU, a thymidine analog, becomes stably incorporated into DNA during the S-phase of mitosis. Because DNA containing BrdU can be specifically recognized by antibodies, this method allows dividing cells to be marked at any given time and then identified at time points from a few minutes to several years later. BrdU immunohistochemistry is suitable for cell counting to examine the regulation of cell proliferation and cell fate. It can be combined with labeling by other antibodies, allowing confocal analysis of cell phenotype or expression of other proteins. The potential for nonspecific labeling and toxicity are discussed. Although BrdU immunohistochemistry has almost completely replaced tritiated thymidine autoradiography for labeling dividing cells, this method and situations in which it is still useful are also described. PMID:18428635

  12. A Primer on Functional Analysis

    ERIC Educational Resources Information Center

    Yoman, Jerome

    2008-01-01

    This article presents principles and basic steps for practitioners to complete a functional analysis of client behavior. The emphasis is on application of functional analysis to adult mental health clients. The article includes a detailed flow chart containing all major functional diagnoses and behavioral interventions, with functional assessment…

  13. In vivo TRPC functions in the cardiopulmonary vasculature.

    PubMed

    Dietrich, Alexander; Kalwa, Hermann; Fuchs, Beate; Grimminger, Friedrich; Weissmann, Norbert; Gudermann, Thomas

    2007-08-01

    Cardiovascular diseases are the leading cause of death in the industrialized countries. The cardiovascular system includes the systemic blood circulation, the heart and the pulmonary circulation providing sufficient blood flow and oxygen to peripheral tissues and organs according to their metabolic demand. This review focuses on three major cell types of the cardiovascular system: myocytes of the heart as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. Ion channels initiate and regulate contraction in all three cell types, and the identification of their genes has significantly improved our knowledge of signal transduction pathways in these cells. Among the ion channels expressed in smooth muscle cells, cation channels of the TRPC family allow for the entry of Na(+) and Ca(2+). Physiological functions of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. Possible functional roles and physiological regulation of TRPCs as homomeric or heteromeric channels in these cell types are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes of the cardiovascular system like hypertension as well as cardiac hypertrophy and increased endothelial permeability. PMID:17433435

  14. Function Point Analysis Depot

    NASA Technical Reports Server (NTRS)

    Muniz, R.; Martinez, El; Szafran, J.; Dalton, A.

    2011-01-01

    The Function Point Analysis (FPA) Depot is a web application originally designed by one of the NE-C3 branch's engineers, Jamie Szafran, and created specifically for the Software Development team of the Launch Control Systems (LCS) project. The application consists of evaluating the work of each developer to be able to get a real estimate of the hours that is going to be assigned to a specific task of development. The Architect Team had made design change requests for the depot to change the schema of the application's information; that information, changed in the database, needed to be changed in the graphical user interface (GUI) (written in Ruby on Rails (RoR and the web service/server side in Java to match the database changes. These changes were made by two interns from NE-C, Ricardo Muniz from NE-C3, who made all the schema changes for the GUI in RoR and Edwin Martinez, from NE-C2, who made all the changes in the Java side.

  15. Blood-Induced Interference of Glucose Sensor Function in Vitro: Implications for in Vivo Sensor Function

    PubMed Central

    Klueh, Ulrike; Liu, Zenghe; Ouyang, Tianmei; Cho, Brian; Feldman, Ben; Henning, Timothy P.; Kreutzer, Don

    2007-01-01

    Background Although tissue hemorrhages, with resulting blood clots, are associated with glucose sensor implantation, virtually nothing known is about the impact of red blood cells and red blood cell clots on sensor function in vitro or in vivo. In these studies, we tested the hypothesis that blood can directly interfere with glucose sensor function in vitro. Methods To test this hypothesis, heparinized human whole blood (HWB) and nonheparinized human whole blood (WB) were obtained from normal individuals. Aliquots of HWB and WB samples were also fractionated into plasma, serum, and total leukocyte (TL) components. Resulting HWB, WB, and WB components were incubated in vitro with an amperometric glucose sensor for 24 hours at 37°C. During incubation, blood glucose levels were determined periodically using a glucose monitor, and glucose sensor function (GSF) was monitored continuously as nanoampere output. Results Heparinized human whole blood had no significant effect on GSF in vitro, nor did TL, serum, or plasmaderived clots from WB. Sensors incubated with WB displayed a rapid signal loss associated with clot formation at 37°C. The half-life was 0.8 ± 0.2 hours (n = 16) for sensors incubated with WB compared to 3.2 ± 0.5 (n = 12) for sensors incubated with HWB with a blood glucose level of approximately 100 mg/dl. Conclusions These studies demonstrated that human whole blood interfered with GSF in vitro. These studies further demonstrated that this interference was related to blood clot formation, as HWB, serum, plasma-derived clots, or TL did not interfere with GSF in vitro in the same way that WB did. These in vitro studies supported the concept that the formation of blood clots at sites of glucose sensor implantation could have a negative impact on GSF in vivo. PMID:19885155

  16. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion.

    PubMed

    Cross, Donna J; Flexman, Jennifer A; Anzai, Yoshimi; Morrow, Thomas J; Maravilla, Kenneth R; Minoshima, Satoshi

    2006-09-01

    Compensatory changes following disruption of neuronal circuitry have been indicated by previous imaging studies of stroke and other brain injury, but evidence of the pathways involved in such dynamic changes has not been shown in vivo. We imaged rats before and after lesion-induced disruption of the lateral olfactory tract to investigate the subsequent recovery and/or reorganization of functional neuronal circuitry. Serial magnetic resonance imaging was performed following intranasal administration of a paramagnetic track tracer Mn(2+). Images were analyzed using statistical mapping techniques in the stereotactic coordinate system. At 1 week post-lesion, Mn(2+) transport caudal to lesion was reduced as expected, and more importantly, increased transport through the anterior commissure was seen. At 4 weeks post-lesion, there was recovery of transport caudal to lesion, and increased transport through the anterior commissure extended to the contralateral olfactory cortex. Correlation analysis of regional Mn(2+) transport indicated that contralateral enhancement was not simply due to septal window spillover. This study demonstrates for the first time in vivo evidence of compensatory changes in functional neuronal activity to a contralateral pathway through the commissure following brain injury. PMID:16859928

  17. Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo

    PubMed Central

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M. Rita; Brändli, André W.; Sims-Lucas, Sunder; Skovorodkin, Ilya

    2015-01-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor–treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting. PMID:25201883

  18. In vivo characterization of regenerative peripheral nerve interface function

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  19. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle.

    PubMed

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-01-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment. PMID:27301303

  20. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    NASA Astrophysics Data System (ADS)

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-06-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment.

  1. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    PubMed Central

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-01-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment. PMID:27301303

  2. In vitro gene regulatory networks predict in vivo function of liver

    PubMed Central

    2010-01-01

    Background Evolution of toxicity testing is predicated upon using in vitro cell based systems to rapidly screen and predict how a chemical might cause toxicity to an organ in vivo. However, the degree to which we can extend in vitro results to in vivo activity and possible mechanisms of action remains to be fully addressed. Results Here we use the nitroaromatic 2,4,6-trinitrotoluene (TNT) as a model chemical to compare and determine how we might extrapolate from in vitro data to in vivo effects. We found 341 transcripts differentially expressed in common among in vitro and in vivo assays in response to TNT. The major functional term corresponding to these transcripts was cell cycle. Similarly modulated common pathways were identified between in vitro and in vivo. Furthermore, we uncovered the conserved common transcriptional gene regulatory networks between in vitro and in vivo cellular liver systems that responded to TNT exposure, which mainly contain 2 subnetwork modules: PTTG1 and PIR centered networks. Interestingly, all 7 genes in the PTTG1 module were involved in cell cycle and downregulated by TNT both in vitro and in vivo. Conclusions The results of our investigation of TNT effects on gene expression in liver suggest that gene regulatory networks obtained from an in vitro system can predict in vivo function and mechanisms. Inhibiting PTTG1 and its targeted cell cyle related genes could be key machanism for TNT induced liver toxicity. PMID:21073692

  3. Statistical mapping of functional olfactory connections of the rat brain in vivo.

    PubMed

    Cross, Donna J; Minoshima, Satoshi; Anzai, Yoshimi; Flexman, Jennifer A; Keogh, Bartholomew P; Kim, Yongmin; Maravilla, Kenneth R

    2004-12-01

    The olfactory pathway is a unique route into the brain. To better characterize this system in vivo, rat olfactory functional connections were mapped using magnetic resonance (MR) imaging and manganese ion (Mn2+) as a transport-mediated tracer combined with newly developed statistical brain image analysis. Six rats underwent imaging on a 1.5-T MR scanner at pre-administration, and 6, 12, 24, 36, 48, and 72 h and 5.5, 7.5, 10.5, and 13.5 days post-administration of manganese chloride (MnCl2) into the right nasal cavity. Images were coregistered, pixel-intensity normalized, and stereotactically transformed to the Paxinos and Watson rat brain atlas, then averaged across subjects using automated image analysis software (NEUROSTAT). Images at each time point were compared to pre-administration using a one-sample t statistic on a pixel-by-pixel basis in 3-D and converted to Z statistic maps. Statistical mapping and group averaging improved signal to noise ratios and signal detection sensitivity. Significant transport of Mn2+ was observed in olfactory structures ipsilateral to site of Mn2+ administration including the bulb, lateral olfactory tract (lo) by 12 h and in the tubercle, piriform cortex, ventral pallidum, amygdala, and in smaller structures such as the anterior commissure after 24 h post-administration. MR imaging with group-wise statistical analysis clearly demonstrated bilateral transsynaptic Mn2+ transport to secondary and tertiary neurons of the olfactory system. The method permits in vivo investigations of functional neuronal connections within the brain. PMID:15589097

  4. HLA-B27/microbial mimicry: an in vivo analysis.

    PubMed Central

    Kapasi, K; Chui, B; Inman, R D

    1992-01-01

    The association between three major spondyloarthritic diseases, ankylosing spondylitis, Reiter's syndrome, and reactive arthritis, and the major histocompatibility complex (MHC) class 1 antigen HLA-B27 is well documented. The hypothesis of cross-reactivity between HLA-B27 and the antecedent infection-causing Gram-negative pathogens such as Salmonella, Shigella and Yersinia has been suggested by in vitro studies employing monoclonal antibodies. We have examined the possibility of such cross-reactivity in vivo using various rabbit immune sera and patient sera as the source of cross-reacting antibody. Mouse L cells were transfected with HLA-A3 or HLA-B27 and used as a source of antigen. Western blot analysis employing denatured antigen, FACS analysis employing native antigen and immunoprecipitation studies were undertaken to detect cross-reacting antibodies generated in vivo to HLA-B27 antigen. Antibodies generated in vivo by infection in patients or immunization in animals against arthritogenic bacteria did not demonstrate any cross-reactivity with HLA-B27 by any of the methods used. As defined by the humoral immune response, molecular mimicry appears unlikely to explain the role of B27 in the pathogenesis of reactive arthritis. Images Figure 2 Figure 3 Figure 6 PMID:1478690

  5. Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo

    PubMed Central

    Milkovich, Stephanie; Goldman, Daniel; Ellis, Christopher G.

    2012-01-01

    We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models. PMID:22140042

  6. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  7. Function Analysis and Decomposistion using Function Analysis Systems Technique

    SciTech Connect

    J. R. Wixson

    1999-06-01

    The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Techniques (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.

  8. Function Analysis and Decomposistion using Function Analysis Systems Technique

    SciTech Connect

    Wixson, James Robert

    1999-06-01

    The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Technique (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.

  9. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  10. Rat parotid cell function in vitro following x irradiation in vivo

    SciTech Connect

    Bodner, L.; Kuyatt, B.L.; Hand, A.R.; Baum, B.J.

    1984-02-01

    The effect of X irradiation on rat parotid acinar cell function was evaluated in vitro 1, 3, and 7 days following in vivo exposure to 2000 R. Several cellular functions were followed: protein secretion (amylase release), ion movement (K/sup +/ efflux and reuptake), amino acid transport (..cap alpha..-amino(/sup 14/C)isobutyric acid), and an intermediary metabolic response ((/sup 14/C)glucose oxidation). In addition both the morphologic appearance and in vivo saliva secretory ability of parotid cells were assessed. Our results demonstrate that surviving rat parotid acinar cells, isolated and studied in vitro 1-7 days following 2000 R, remain functionally intact despite in vivo diminution of secretory function.

  11. In vivo analysis of wound healing by optical methods

    PubMed Central

    Alborova, Alena; Lademann, Jürgen; Kramer, Axel; Richter, Heike; Patzelt, Alexa; Sterry, Wolfram; Koch, Stefan

    2008-01-01

    The analysis of wound healing is important for the therapy control and for the development of drugs stimulating the healing process. Wounds cause damage to the skin barrier. A damaged stratum corneum leads to an increased water loss through the skin barrier. The standard measuring procedure for characterization of wound healing is the measurement of transepidermal water loss (TEWL). The disadvantage of this method is that it can be easily disturbed by the perspiration of the volunteers and by topically applied substances, for instance wound healing creams. In the study presented, in vivo laser scanning microscopy and optical coherent tomography were compared concerning the application for their analysis of wound healing processes. The laser scanning microscopy allows the analysis of the healing process on a cellular level. The course of wound healing determined by laser scanning microscopy was correlated with numerical values, allowing the numerical characterization of the wound healing process. PMID:20204112

  12. GABAA receptor modulating steroid antagonists (GAMSA) are functional in vivo.

    PubMed

    Johansson, Maja; Strömberg, Jessica; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn

    2016-06-01

    GABAA receptor modulating steroid antagonists (GAMSA) selectively inhibit neurosteroid-mediated enhancement of GABA-evoked currents at the GABAA receptor. 3α-hydroxy-neurosteroids, notably allopregnanolone and tetrahydrodeoxycorticosterone (THDOC), potentiate GABAA receptor-mediated currents. On the contrary, various 3β-hydroxy-steroids antagonize this positive neurosteroid-mediated modulation. Importantly, GAMSAs are specific antagonists of the positive neurosteroid-modulation of the receptor and do not inhibit GABA-evoked currents. Allopregnanolone and THDOC have both negative and positive actions. Allopregnanolone can impair encoding/consolidation and retrieval of memories. Chronic administration of a physiological allopregnanolone concentration reduces cognition in mice models of Alzheimer's disease. In humans an allopregnanolone challenge impairs episodic memory and in hepatic encephalopathy cognitive deficits are accompanied by increased brain ammonia and allopregnanolone. Hippocampal slices react in vitro to ammonia by allopregnanolone synthesis in CA1 neurons, which blocks long-term potentiation (LTP). Thus, allopregnanolone may impair learning and memory by interfering with hippocampal LTP. Contrary, pharmacological treatment with allopregnanolone can promote neurogenesis and positively influence learning and memory of trace eye-blink conditioning in mice. In rat the GAMSA UC1011 inhibits an allopregnanolone-induced learning impairment and the GAMSA GR3027 restores learning and motor coordination in rats with hepatic encephalopathy. In addition, the GAMSA isoallopregnanolone antagonizes allopregnanolone-induced anesthesia in rats, and in humans it antagonizes allopregnanolone-induced sedation and reductions in saccadic eye velocity. 17PA is also an effective GAMSA in vivo, as it antagonizes allopregnanolone-induced anesthesia and spinal analgesia in rats. In vitro the allopregnanolone/THDOC-increased GABA-mediated GABAA receptor activity is antagonized

  13. Inflammation modulates human HDL composition and function in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Our study was designed to investigate this relationship. We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-rel...

  14. Specific in vivo knockdown of protein function by intrabodies

    PubMed Central

    Marschall, Andrea LJ; Dübel, Stefan; Böldicke, Thomas

    2015-01-01

    Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed. PMID:26252565

  15. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  16. In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography.

    PubMed

    Maher, Jason R; Jaedicke, Volker; Medina, Manuel; Levinson, Howard; Selim, Maria Angelica; Brown, William J; Wax, Adam

    2014-10-01

    Spectroscopic analysis of biological tissues can provide insight into changes in structure and function due to disease or injury. Depth-resolved spectroscopic measurements can be implemented for tissue imaging using optical coherence tomography (OCT). Here, spectroscopic OCT is applied to in vivo measurement of burn injury in a mouse model. Data processing and analysis methods are compared for their accuracy. Overall accuracy in classifying burned tissue was found to be as high as 91%, producing an area under the curve of a receiver operating characteristic curve of 0.97. The origins of the spectral changes are identified by correlation with histopathology. PMID:25360936

  17. A guide to human in vivo microcirculatory flow image analysis.

    PubMed

    Massey, Michael J; Shapiro, Nathan I

    2016-01-01

    Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development. PMID:26861691

  18. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Radisic, Milica (Inventor); Park, Hyoungshin (Inventor); Langer, Robert (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  19. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans.

    PubMed

    Dupuy, Denis; Bertin, Nicolas; Hidalgo, César A; Venkatesan, Kavitha; Tu, Domena; Lee, David; Rosenberg, Jennifer; Svrzikapa, Nenad; Blanc, Aurélie; Carnec, Alain; Carvunis, Anne-Ruxandra; Pulak, Rock; Shingles, Jane; Reece-Hoyes, John; Hunt-Newbury, Rebecca; Viveiros, Ryan; Mohler, William A; Tasan, Murat; Roth, Frederick P; Le Peuch, Christian; Hope, Ian A; Johnsen, Robert; Moerman, Donald G; Barabási, Albert-László; Baillie, David; Vidal, Marc

    2007-06-01

    Differential regulation of gene expression is essential for cell fate specification in metazoans. Characterizing the transcriptional activity of gene promoters, in time and in space, is therefore a critical step toward understanding complex biological systems. Here we present an in vivo spatiotemporal analysis for approximately 900 predicted C. elegans promoters (approximately 5% of the predicted protein-coding genes), each driving the expression of green fluorescent protein (GFP). Using a flow-cytometer adapted for nematode profiling, we generated 'chronograms', two-dimensional representations of fluorescence intensity along the body axis and throughout development from early larvae to adults. Automated comparison and clustering of the obtained in vivo expression patterns show that genes coexpressed in space and time tend to belong to common functional categories. Moreover, integration of this data set with C. elegans protein-protein interactome data sets enables prediction of anatomical and temporal interaction territories between protein partners. PMID:17486083

  20. Circumferentially aligned fibers guided functional neoartery regeneration in vivo.

    PubMed

    Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong

    2015-08-01

    An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. PMID:26001073

  1. EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE F344 RAT DURING PREGNANCY

    EPA Science Inventory

    Effects of Bromodichloromethane (BDCM) on Ex Vivo Luteal Function In the Pregnant F344 Rat

    Susan R. Bielmeier1, Ashley S. Murr2, Deborah S. Best2, Jerome M. Goldman2, and Michael G. Narotsky2

    1Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC 27599,...

  2. EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT

    EPA Science Inventory

    EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT.

    S. R. Bielmeier1, A. S. Murr2, D. S. Best2, J. M. Goldman2, and M. G. Narotsky2

    1 Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC, USA
    2 Reproductive T...

  3. EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE F344 RAT

    EPA Science Inventory

    EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT.

    S. R. Bielmeier1, A. S. Murr2, D. S. Best2, J. M. Goldman2, and M. G. Narotsky2

    1 Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC, USA
    2 Reproductive T...

  4. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia.

    PubMed

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Gortan Cappellari, Gianluca; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  5. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia

    PubMed Central

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Cappellari, Gianluca Gortan; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  6. Effects of ACL Reconstruction on In-Vivo, Dynamic Knee Function

    PubMed Central

    Tashman, Scott; Araki, Daisuke

    2012-01-01

    Synopsis The purposes of this article are to discuss key factors for assessing joint function, to present some recent findings and to address the future directions for evaluating the function of the ACL-injured/reconstructed knees. Well-designed studies, using state-of-the art tools to assess knee kinematics under in vivo, dynamic, high-loading conditions, are necessary to evaluate the relative performance of different procedures for restoring normal joint motion. PMID:23177461

  7. Comparative lipoplasty analysis of in vivo-treated adipose tissue.

    PubMed

    Rohrich, R J; Morales, D E; Krueger, J E; Ansari, M; Ochoa, O; Robinson, J; Beran, S J

    2000-05-01

    A comparative histologic and chemical analysis was undertaken of adipose tissue treated in vivo with traditional, ultrasound-assisted, and external ultrasound-assisted lipoplasty. A series of six healthy women undergoing elective liposuction according to the superwet technique using a 1:1 infiltration ratio with the estimated quantity of fat to be removed was included in the study. Four separate regions on each patient were treated independently in vivo with traditional liposuction, internal ultrasound-assisted liposuction, or external ultrasound-assisted liposuction for 7 minutes. External massage was used as a control. Four separate specimens of adipose tissue from each patient were assessed for cellular disruption using blinded histologic evaluation. The remainder of tissue was centrifuged to separate the aqueous phase from the cellular components and then spectrophotometrically analyzed for creatinine kinase and glycerol 3-phosphate dehydrogenase activity as markers of cellular disruption. Histologic analysis confirmed 70 to 90 percent cellular disruption with internal ultrasound-assisted liposuction. Suction-assisted and external ultrasound-assisted liposuction showed 5 to 25 percent disruption, whereas massage controls showed only 5 percent. Only internal ultrasound-assisted liposuction showed 5 to 20 percent thermal liquefaction. Absorbance analysis showed creatine kinase activity (sigma units) greatest in ultrasound-exposed tissue. Both external and internal ultrasound-assisted liposuction gave creatine kinase levels 28 to 33 percent greater than suction-assisted liposuction, which varied only 10 percent from controls. Glycerol 3-phosphate dehydrogenase activity was 44 percent greater for internal ultrasound-assisted liposuction than that detected with suction-assisted liposuction. Glycerol 3-phosphate dehydrogenase activity with external ultrasound-assisted liposuction and massage did not vary much from each other, at only 14 percent and 11 percent

  8. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

    PubMed Central

    Alba, Nicolas A.; Du, Zhanhong J.; Catt, Kasey A.; Kozai, Takashi D. Y.; Cui, X. Tracy

    2015-01-01

    Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period. PMID:26473938

  9. In-vivo visualization and functional characterization of primary somatic neurons

    PubMed Central

    Ma, Chao; Donnelly, David F.; LaMotte, Robert H.

    2010-01-01

    In-vivo electrophysiological recordings from cell bodies of primary sensory neurons are used to determine sensory function but are commonly performed blindly and without access to voltage-(patch-clamp) electrophysiology or optical imaging. We present a procedure to visualize and patch-clamp the neuronal cell body in the dorsal root ganglion, in vivo, manipulate its chemical environment, determine its receptive field properties, and remove it either to obtain subsequent molecular analyses or to gain access to deeper lying cells. This method allows the association of the peripheral transduction capacities of a sensory neuron with the biophysical and chemical characteristics of its cell body. PMID:20558205

  10. Structured Functional Principal Component Analysis

    PubMed Central

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  11. Structured functional principal component analysis.

    PubMed

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M; Greven, Sonja

    2015-03-01

    Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  12. Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion

    PubMed Central

    Emaminia, Abbas; LaPar, Damien J.; Zhao, Yunge; Steidle, John F.; Harris, David A.; Linden, Joel; Kron, Irving L.; Lau, Christine L.

    2012-01-01

    Background Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage. Methods Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups. Results Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009). Conclusions EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation. PMID:22051279

  13. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.

    PubMed

    Prasad, Abhishek; Sanchez, Justin C

    2012-04-01

    Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 KΩ impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future. PMID:22442134

  14. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Sanchez, Justin C.

    2012-04-01

    Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 KΩ impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future.

  15. In vivo veritas: using yeast to probe the biological functions of G-quadruplexes

    PubMed Central

    Johnson, Jay E.; Smith, Jasmine S.; Kozak, Marina L.; Johnson, F. Brad

    2008-01-01

    Certain guanine-rich sequences are capable of forming higher order structures known as G-quadruplexes. Moreover, particular genomic regions in a number of highly divergent organisms are enriched for such sequences, raising the possibility that G-quadruplexes form in vivo and affect cellular processes. While G-quadruplexes have been rigorously studied in vitro, whether these structures actually form in vivo and what their roles might be in the context of the cell have remained largely unanswered questions. Recent studies suggest that G-quadruplexes participate in the regulation of such varied processes as telomere maintenance, transcriptional regulation and ribosome biogenesis. Here we review studies aimed at elucidating the in vivo functions of quadruplex structures, with a particular focus on findings in yeast. In addition, we discuss the utility of yeast model systems in the study of the cellular roles of G-quadruplexes. PMID:18331848

  16. A genome scale resource for in vivo tag-based protein function exploration in C. elegans

    PubMed Central

    Sarov, Mihail; Murray, John; Schanze, Kristin; Pozniakovski, Andrei; Niu, Wei; Angermann, Karolin; Hasse, Susanne; Rupprecht, Michaela; Vinis, Elisabeth; Tinney, Matthew; Preston, Elicia; Zinke, Andrea; Enst, Susanne; Teichgraber, Tina; Janette, Judith; Reis, Kadri; Janosch, Stephan; Schloissnig, Siegfried; Ejsmont, Radoslaw K.; Slightam, Cindie; Xu, Xiao; Kim, Stuart K.; Reinke, Valerie; Stewart, A. Francis; Snyder, Michael; Waterston, Robert; Hyman, Anthony A.

    2012-01-01

    Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in Biology. To enable systematic protein function interrogation in a multicelluar context, we built a genome-scale transgenic platform for in vivo expression of fluorescent and affinity tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering and next generation sequencing to generate a resource of 14637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins PMID:22901814

  17. Applications of phosphorescent materials for in-vivo imaging of brain structure and function

    NASA Astrophysics Data System (ADS)

    Boverman, Gregory; Shi, Xiaolei; Cotero, Victoria E.; Filkins, Robert J.; Srivastava, Alok M.; Lorraine, Peter W.; Neculaes, Vasile B.; Ishaque, A. N.

    2016-03-01

    A number of approaches have been developed for in-vivo imaging of neural function at the time scale of action potentials and at the spatial resolution of individual neurons. Remarkable results have been obtained with optogenetics, although the need for genetic modification is an important limitation of these approaches. Similarly, voltage and ion-sensitive dyes allow for optical imaging of action potentials but toxicity remains a problem. Additionally, optical techniques are often only able to be used up to a limited depth. Our preliminary work has shown that nanoparticles of common phosphorescent materials, believed to be generally non-toxic, specifically lutetium oxide and strontium aluminate, can be utilized for cellular imaging, for tomographic imaging, and that the particles can be designed to adhere to neurons. Additionally, lutetium oxide has been shown to be highly X-ray luminescent, potentially allowing for imaging deep within the brain, if the particles can be targeted properly. In ex vivo experiments, we have shown that the phosphorescence of strontium aluminate particles is significantly affected by electric fields similar in strength to those found in the vicinity of the cellular membrane of a neuron. This phenomenon is consistent with early published reports in the electroluminescence literature, namely the Gudden-Pohl effect. We will show results of the ex vivo imaging and dynamic electrical stimulation experiments. We will also show some preliminary ex vivo cell culture results, and will describe plans for future research, focusing on potential in both cell cultures and in vivo for animal models.

  18. A protein targeting signal that functions in polarized epithelial cells in vivo.

    PubMed Central

    Ali, S; Hall, J; Hazlewood, G P; Hirst, B H; Gilbert, H J

    1996-01-01

    Eukaryotic membrane-associated polypeptides often contain a glycosylphosphatidylinositol (GPI) anchor that signals the attachment of GPI lipids to these proteins. The GPI anchor can function as a basolateral or apical targeting signal in mammalian cells cultured in vitro, although the function of the GPI anchor in vivo remains to be elucidated. In this study we have evaluated the effect of fusing a GPI anchor sequence to a prokaryotic reporter protein on the cellular location of the polypeptide in polarized epithelial cells of transgenic mice. The bacterial enzyme, when fused to a eukaryotic signal peptide, was secreted through the basolateral membrane of small-intestinal enterocytes; however, when the enzyme was lined to the GPI anchor sequence the polypeptide was redirected to the apical surface of the epithelial cells. These data provide the first direct evidence that the GPI anchor functions as an apical membrane protein sorting signal in polarized epithelial cells in vivo. PMID:8645168

  19. Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LT's C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver

    PubMed Central

    Comerford, S A; Schultz, N; Hinnant, E A; Klapproth, S; Hammer, R E

    2012-01-01

    Transformation by Simian Virus 40 (SV40) large T antigen (LT) is mediated in large part by its interaction with a variety of cellular proteins at distinct binding domains within LT. While the interaction of LT's N-terminus with the tumor suppressor Rb is absolutely required for LT-dependent transformation, the requirement for the interaction of LT's C-terminus with p53 is less clear and cell- and context-dependent. Here, we report a line of transgenic mice expressing a doxycycline-inducible liver-specific viral transcript that produces abundant 17kT, a naturally occurring SV40 early product that is co-linear with LT for the first 131 amino acids and that binds to Rb, but not p53. Comparative analysis of livers of transgenic mice expressing either 17kT or full length LT demonstrates that 17kT stimulates cell proliferation and induces hepatic hyperplasia but is incapable of inducing hepatic dysplasia or promoting hepatocarcinogenesis. Gene expression profiling demonstrates that 17kT and LT invoke a set of shared molecular signatures consistent with the action of LT's N-terminus on Rb-E2F-mediated control of hepatocyte transcription. However, 17kT also induces a unique set of genes, many of which are known transcriptional targets of p53, while LT actively suppresses them. LT also uniquely deregulates the expression of a subset of genes within the imprinted network and rapidly re-programs hepatocyte gene expression to a more fetal-like state. Finally, we provide evidence that the LT/p53 complex provides a gain-of-function for LT-dependent transformation in the liver, and confirm the absolute requirement for LT's C-terminus for liver tumor development by demonstrating that phosphatase and tensin homolog (PTEN)-deficiency readily cooperates with LT, but not 17kT, for tumorigenesis. These results confirm independent and inter-dependent functions for LT's N- and C-terminus and emphasize differences in the requirements for LT's C-terminus in cell-type dependent

  20. Dissecting the Function and Assembly of Acentriolar Microtubule Organizing Centers in Drosophila Cells In Vivo

    PubMed Central

    Baumbach, Janina; Novak, Zsofia Anna; Raff, Jordan W.; Wainman, Alan

    2015-01-01

    Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2—the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs. PMID:26020779

  1. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo.

    PubMed

    Baumbach, Janina; Novak, Zsofia Anna; Raff, Jordan W; Wainman, Alan

    2015-05-01

    Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs. PMID:26020779

  2. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  3. Functional data analysis in hydrology

    NASA Astrophysics Data System (ADS)

    Chebana, F.; Dabo-Niang, S.; Ouarda, T.

    2013-12-01

    River flow records are essential for the prevention of flood risks and the effective planning and management of water resources among other engineering activities. The graphical representation of the temporal variation of flow over a period of time constitutes a hydrograph. The latter is usually characterized by its peak, volume and duration. These features are considered jointly in order to take into account their dependence structure within multivariate hydrological frequency analysis (HFA). However, all these multivariate HFA approaches are based on the analysis of a limited number of characteristics and do not make use of the full information provided by the hydrograph. This talk is to propose to introduce a new framework for HFA using the hydrographs as curves to be functional data. In the context, called functional data analysis (FDA), the whole hydrograph is considered as one infinite-dimensional observation. The FDA context in HFA has a number of advantages. A number of functional tools are introduced and adapted to flood HFA with a focus on exploratory analysis. A real-world flood analysis case-study is considered.

  4. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study

    NASA Astrophysics Data System (ADS)

    Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke

    2010-12-01

    In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j

  5. Development of Chemical Probes for Investigation of Salt-Inducible Kinase Function in Vivo.

    PubMed

    Sundberg, Thomas B; Liang, Yanke; Wu, Huixian; Choi, Hwan Geun; Kim, Nam Doo; Sim, Taebo; Johannessen, Liv; Petrone, Adam; Khor, Bernard; Graham, Daniel B; Latorre, Isabel J; Phillips, Andrew J; Schreiber, Stuart L; Perez, Jose; Shamji, Alykhan F; Gray, Nathanael S; Xavier, Ramnik J

    2016-08-19

    Salt-inducible kinases (SIKs) are promising therapeutic targets for modulating cytokine responses during innate immune activation. The study of SIK inhibition in animal models of disease has been limited by the lack of selective small-molecule probes suitable for modulating SIK function in vivo. We used the pan-SIK inhibitor HG-9-91-01 as a starting point to develop improved analogs, yielding a novel probe 5 (YKL-05-099) that displays increased selectivity for SIKs versus other kinases and enhanced pharmacokinetic properties. Well-tolerated doses of YKL-05-099 achieve free serum concentrations above its IC50 for SIK2 inhibition for >16 h and reduce phosphorylation of a known SIK substrate in vivo. While in vivo active doses of YKL-05-099 recapitulate the effects of SIK inhibition on inflammatory cytokine responses, they did not induce metabolic abnormalities observed in Sik2 knockout mice. These results identify YKL-05-099 as a useful probe to investigate SIK function in vivo and further support the development of SIK inhibitors for treatment of inflammatory disorders. PMID:27224444

  6. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function.

    PubMed

    Niemeier, Andreas; Niedzielska, Dagmara; Secer, Rukiye; Schilling, Arndt; Merkel, Martin; Enrich, Carlos; Rensen, Patrick C N; Heeren, Joerg

    2008-08-01

    Dietary lipids and lipophilic vitamins are transported by postprandial lipoproteins and are required for bone metabolism. Despite that, it remains unknown whether bone cells are involved in the uptake of circulating postprandial lipoproteins in vivo. The current study was performed to investigate a putative participation of bone in the systemic postprandial lipoprotein metabolism in mice, to identify potentially involved cell type populations and to analyze whether lipoprotein uptake affects bone function in vivo. As a model for the postprandial state, chylomicron remnants (CR) were injected intravenously into mice. Next to the liver and compared to other organs, bone appeared to be the second most important organ for the clearance of radiolabeled CR particles from the circulation in vivo. In addition, uptake of radiolabeled CR by primary murine osteoblasts and hepatocytes was quantified to be in a similar range in vitro. A complementary approach with fluorescently labeled CR and immunohistochemical staining for apoE proved that intact CR particles were taken up into bone and liver. Electron microscopy localization studies of bone sections revealed CR uptake into sinusoidal endothelial cells, macrophages and osteoblasts. The relative amount of radiolabeled CR uptake into femoral cortical bone, representing predominantly osteoblasts, and bone marrow, representing predominantly non-osteoblast cells, was within the same range. Most importantly, the injection of vitamin K1-enriched CR resulted in an increase of the degree of osteocalcin carboxylation in vivo while total osteocalcin concentrations remained unaffected, giving functional proof that osteoblasts process CR in vivo. In conclusion, here we demonstrate that bone is involved in the postprandial lipoprotein metabolism in mice. Osteoblasts participate in CR clearance from the circulation, which has a direct impact on the secretory function of osteoblasts. PMID:18538644

  7. In Vivo Enhancer Analysis Chromosome 16 Conserved NoncodingSequences

    SciTech Connect

    Pennacchio, Len A.; Ahituv, Nadav; Moses, Alan M.; Nobrega,Marcelo; Prabhakar, Shyam; Shoukry, Malak; Minovitsky, Simon; Visel,Axel; Dubchak, Inna; Holt, Amy; Lewis, Keith D.; Plajzer-Frick, Ingrid; Akiyama, Jennifer; De Val, Sarah; Afzal, Veena; Black, Brian L.; Couronne, Olivier; Eisen, Michael B.; Rubin, Edward M.

    2006-02-01

    The identification of enhancers with predicted specificitiesin vertebrate genomes remains a significant challenge that is hampered bya lack of experimentally validated training sets. In this study, weleveraged extreme evolutionary sequence conservation as a filter toidentify putative gene regulatory elements and characterized the in vivoenhancer activity of human-fish conserved and ultraconserved1 noncodingelements on human chromosome 16 as well as such elements from elsewherein the genome. We initially tested 165 of these extremely conservedsequences in a transgenic mouse enhancer assay and observed that 48percent (79/165) functioned reproducibly as tissue-specific enhancers ofgene expression at embryonic day 11.5. While driving expression in abroad range of anatomical structures in the embryo, the majority of the79 enhancers drove expression in various regions of the developingnervous system. Studying a set of DNA elements that specifically droveforebrain expression, we identified DNA signatures specifically enrichedin these elements and used these parameters to rank all ~;3,400human-fugu conserved noncoding elements in the human genome. The testingof the top predictions in transgenic mice resulted in a three-foldenrichment for sequences with forebrain enhancer activity. These datadramatically expand the catalogue of in vivo-characterized human geneenhancers and illustrate the future utility of such training sets for avariety of iological applications including decoding the regulatoryvocabulary of the human genome.

  8. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    PubMed Central

    Li, Tiantian; He, Housheng; Wang, Yunfei; Zheng, Haixia; Skogerbø, Geir; Chen, Runsheng

    2008-01-01

    Background Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves. PMID:18680611

  9. In Vivo Function of Tryptophans in the Arabidopsis UV-B Photoreceptor UVR8[W

    PubMed Central

    O’Hara, Andrew; Jenkins, Gareth I.

    2012-01-01

    Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the β-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function. PMID:23012433

  10. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGESBeta

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; Braff, Jonathan L.; Church, George M.; Bry, Lynn; Wang, Harris H.; Gerber, Georg K.

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  11. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    PubMed Central

    Yaung, Stephanie J; Deng, Luxue; Li, Ning; Braff, Jonathan L; Church, George M; Bry, Lynn; Wang, Harris H; Gerber, Georg K

    2015-01-01

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo. PMID:25762151

  12. EVENT PLANNING USING FUNCTION ANALYSIS

    SciTech Connect

    Lori Braase; Jodi Grgich

    2011-06-01

    Event planning is expensive and resource intensive. Function analysis provides a solid foundation for comprehensive event planning (e.g., workshops, conferences, symposiums, or meetings). It has been used at Idaho National Laboratory (INL) to successfully plan events and capture lessons learned, and played a significant role in the development and implementation of the “INL Guide for Hosting an Event.” Using a guide and a functional approach to planning utilizes resources more efficiently and reduces errors that could be distracting or detrimental to an event. This integrated approach to logistics and program planning – with the primary focus on the participant – gives us the edge.

  13. In vivo generation of a mature and functional artificial skeletal muscle

    PubMed Central

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M; Seliktar, Dror; Cossu, Giulio; Gargioli, Cesare

    2015-01-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. PMID:25715804

  14. Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    PubMed Central

    Hao, Hong; Kim, Douglas S.; Klocke, Bernward; Johnson, Kory R.; Cui, Kairong; Gotoh, Norimoto; Zang, Chongzhi; Gregorski, Janina; Gieser, Linn; Peng, Weiqun; Fann, Yang; Seifert, Martin; Zhao, Keji; Swaroop, Anand

    2012-01-01

    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis. PMID:22511886

  15. Generalized functional extended redundancy analysis.

    PubMed

    Hwang, Heungsun; Suk, Hye Won; Takane, Yoshio; Lee, Jang-Han; Lim, Jooseop

    2015-03-01

    Functional extended redundancy analysis (FERA) was recently developed to integrate data reduction into functional linear models. This technique extracts a component from each of multiple sets of predictor data in such a way that the component accounts for the maximum variance of response data. Moreover, it permits predictor and/or response data to be functional. FERA can be of use in describing overall characteristics of each set of predictor data and in summarizing the relationships between predictor and response data. In this paper, we extend FERA into the framework of generalized linear models (GLM), so that it can deal with response data generated from a variety of distributions. Specifically, the proposed method reduces each set of predictor functions to a component and uses the component for explaining exponential-family responses. As in GLM, we specify the random, systematic, and link function parts of the proposed method. We develop an iterative algorithm to maximize a penalized log-likelihood criterion that is derived in combination with a basis function expansion approach. We conduct two simulation studies to investigate the performance of the proposed method based on synthetic data. In addition, we apply the proposed method to two examples to demonstrate its empirical usefulness. PMID:24271507

  16. In vitro and in vivo analysis and characterization of engineered spinal neural implants (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shor, Erez; Shoham, Shy; Levenberg, Shulamit

    2016-03-01

    Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.

  17. Functional Studies of the Carboxy-Terminal Repeat Domain of Drosophila RNA Polymerase II in Vivo

    PubMed Central

    Brickey, W. J.; Greenleaf, A. L.

    1995-01-01

    To understand the in vivo function of the unique and conserved carboxy-terminal repeat domain (CTD) of RNA polymerase II largest subunit (RpII215), we have studied RNA polymerase II biosynthesis, activity and genetic function in Drosophila RpII215 mutants that possessed all (C4), half (W81) or none (IIt) of the CTD repeats. We have discovered that steady-state mRNA levels from transgenes encoding a fully truncated, CTD-less subunit (IIt) are essentially equal to wild-type levels, whereas the levels of the CTD-less subunit itself and the amount of polymerase harboring it (Pol IIT) are significantly lower than wild type. In contrast, for the half-CTD mutant (W81), steady-state mRNA levels are somewhat lower than for wild type or IIt, while W81 subunit and polymerase amounts are much less than wild type. Finally, we have tested genetically the ability of CTD mutants to complement (rescue) partially functional RpII215 alleles and have found that IIt fails to complement whereas W81 complements partially to completely. These results suggest that removal of the entire CTD renders polymerase completely defective in vivo, whereas eliminating half of the CTD results in a polymerase with significant in vivo activity. PMID:7498740

  18. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  19. A Dynamic Real Time In Vivo and Static Ex Vivo Analysis of Granulomonocytic Cell Migration in the Collagen-Induced Arthritis Model

    PubMed Central

    Byrne, Ruth; Rath, Eva; Hladik, Anastasiya; Niederreiter, Birgit; Bonelli, Michael; Frantal, Sophie; Smolen, Josef S.; Scheinecker, Clemens

    2012-01-01

    Neutrophilic granulocytes and monocytes (granulomonocytic cells; GMC) drive the inflammatory process at the earliest stages of rheumatoid arthritis (RA). The migratory behavior and functional properties of GMC within the synovial tissue are, however, only incompletely characterized. Here we have analyzed GMC in the murine collagen-induced arthritis (CIA) model of RA using multi-photon real time in vivo microscopy together with ex vivo analysis of GMC in tissue sections. GMC were abundant as soon as clinical arthritis was apparent. GMC were motile and migrated randomly through the synovial tissue. In addition, we observed the frequent formation of cell clusters consisting of both neutrophilic granulocytes and monocytes that actively contributed to the inflammatory process of arthritis. Treatment of animals with a single dose of prednisolone reduced the mean velocity of cell migration and diminished the overall immigration of GMC. In summary, our study shows that the combined application of real time in vivo microscopy together with elaborate static post-mortem analysis of GMC enables the description of dynamic migratory characteristics of GMC together with their precise location in a complex anatomical environment. Moreover, this approach is sensitive enough to detect subtle therapeutic effects within a very short period of time. PMID:22529989

  20. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  1. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Law, Wing-Cheung; Cai, Hongxing; Zhang, Xihe; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-04-01

    In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe1 - xSex/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the αvβ3 integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

  2. Structural Determinants of Arabidopsis thaliana Hyponastic Leaves 1 Function In Vivo

    PubMed Central

    Burdisso, Paula; Milia, Fernando; Schapire, Arnaldo L.; Bologna, Nicolás G.; Palatnik, Javier F.; Rasia, Rodolfo M.

    2014-01-01

    MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity. PMID:25409478

  3. Alteration of canine left ventricular diastolic function by intravenous anesthetics in vivo. Ketamine and propofol.

    PubMed

    Pagel, P S; Schmeling, W T; Kampine, J P; Warltier, D C

    1992-03-01

    Diastolic function has been shown to influence overall cardiac performance significantly, but the effect of intravenous anesthetics on diastolic function has not been previously characterized in vivo. The effects of ketamine and propofol on two indices of left ventricular diastolic function were examined in chronically instrumented dogs. Because autonomic nervous system function may significantly influence the systemic hemodynamic actions produced by intravenous anesthetics in vivo, experiments were performed in the presence of pharmacologic blockade of the autonomic nervous system. Two groups comprising a total of 14 experiments were performed using 7 dogs instrumented for measurement of aortic and left ventricular pressure, the maximum rate of increase of left ventricular pressure (dP/dt), subendocardial segment length, and cardiac output. Systemic hemodynamics and diastolic function were recorded and evaluated in the conscious state and after a 20-min equilibration at 25-, 50-, and 100-mg.kg-1.h-1 infusion doses of ketamine or propofol. Ventricular relaxation was described using the time constant of isovolumetric relaxation (tau) assuming a nonzero asymptote of ventricular pressure decay. Regional chamber stiffness, an index of passive ventricular filling, was described using an exponential equation relating segment length to ventricular pressure between minimum ventricular pressure and the onset of atrial systole.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1539854

  4. Transcription factor YY1 functions as a PcG protein in vivo.

    PubMed

    Atchison, Lakshmi; Ghias, Ayesha; Wilkinson, Frank; Bonini, Nancy; Atchison, Michael L

    2003-03-17

    Polycomb group (PcG) proteins function as high molecular weight complexes that maintain transcriptional repression patterns during embryogenesis. The vertebrate DNA binding protein and transcriptional repressor, YY1, shows sequence homology with the Drosophila PcG protein, pleiohomeotic (PHO). YY1 might therefore be a vertebrate PcG protein. We used Drosophila embryo and larval/imaginal disc transcriptional repression systems to determine whether YY1 repressed transcription in a manner consistent with PcG function in vivo. YY1 repressed transcription in Drosophila, and this repression was stable on a PcG-responsive promoter, but not on a PcG-non-responsive promoter. PcG mutants ablated YY1 repression, and YY1 could substitute for PHO in repressing transcription in wing imaginal discs. YY1 functionally compensated for loss of PHO in pho mutant flies and partially corrected mutant phenotypes. Taken together, these results indicate that YY1 functions as a PcG protein. Finally, we found that YY1, as well as Polycomb, required the co-repressor protein CtBP for repression in vivo. These results provide a mechanism for recruitment of vertebrate PcG complexes to DNA and demonstrate new functions for YY1. PMID:12628927

  5. In vivo functional microangiography by visible-light optical coherence tomography

    PubMed Central

    Yi, Ji; Chen, Siyu; Backman, Vadim; Zhang, Hao F.

    2014-01-01

    Although hemoglobin oxygen saturation (sO2) in the microvasculature is an essential physiological parameter of local tissue functions, non-invasive measurement of microvascular sO2 is still challenging. Here, we demonstrated that visible-light optical coherence tomography (vis-OCT) can simultaneously provide three-dimensional anatomical tissue morphology, visualize microvasculature at the capillary level, and measure sO2 from the microvasculature in vivo. We utilized speckle contrast caused by the moving blood cells to enhance microvascular imaging. We applied a series of short-time inverse Fourier transforms to obtain the spectroscopic profile of blood optical attenuation, from which we quantified sO2. We validated the sO2 measurement in mouse ears in vivo through hypoxia and hyperoxia challenges. We further demonstrated that vis-OCT can continuously monitor dynamic changes of microvascular sO2. PMID:25360376

  6. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.

    PubMed

    Goler, Jonathan A; Carothers, James M; Keasling, Jay D

    2014-01-01

    Both synthetic biology and metabolic engineering are aided by the development of genetic control parts. One class of riboswitch parts that has great potential for sensing and regulation of protein levels is aptamer-coupled ribozymes (aptazymes). These devices are comprised of an aptamer domain selected to bind a particular ligand, a ribozyme domain, and a communication module that regulates the ribozyme activity based on the state of the aptamer. We describe a broadly applicable method for coupling a novel, newly selected aptamer to a ribozyme to generate functional aptazymes via in vitro and in vivo selection. To illustrate this approach, we describe experimental procedures for selecting aptazymes assembled from aptamers that bind p-amino-phenylalanine and a hammerhead ribozyme. Because this method uses selection, it does not rely on sequence-specific design and thus should be generalizable for the generation of in vivo operational aptazymes that respond to any targeted molecules. PMID:24549623

  7. B Plant function analysis report

    SciTech Connect

    Lund, D.P.; B Plant Working Group

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate B Plant.

  8. In vivo Function and Membrane Binding Properties are Correlated for Escherichia coli LamB Signal Peptides

    NASA Astrophysics Data System (ADS)

    Briggs, Martha S.; Gierasch, Lila M.; Zlotnick, Adam; Lear, James D.; Degrado, William F.

    1985-05-01

    Wild-type and pseudorevertant signal peptides of the lamB gene product of Escherichia coli interact with lipid systems whereas a nonfunctional deletion mutant signal peptide does not. This conclusion is based on (i) interaction of synthetic signal peptides with a lipid monolayer-water surface, (ii) conformational changes induced by presence of lipid vesicles in an aqueous solution of signal peptide, and (iii) capacities of the peptides to promote vesicle aggregation. Analysis of the signal sequences and previous conformational studies suggest that these lipid interaction properties may be attributable to the tendency of the functional signal peptides to adopt α -helical conformations. Although the possibility of direct interaction between the signal peptide and membrane lipids during protein secretion is controversial, the results suggest that conformationally related amphiphilicity and consequent membrane affinity of signal sequences are important for function in vivo.

  9. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.

    PubMed

    Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L

    2010-06-01

    Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. PMID:20226521

  10. In Vivo Imaging of the Photoreceptor Mosaic in Retinal Dystrophies and Correlations with Visual Function

    PubMed Central

    Choi, Stacey S.; Doble, Nathan; Hardy, Joseph L.; Jones, Steven M.; Keltner, John L.; Olivier, Scot S.; Werner, John S.

    2008-01-01

    Purpose To relate in vivo microscopic retinal changes to visual function in patients who have various forms of retinal dystrophy. Methods The UC Davis Adaptive Optics (AO) fundus camera was used to acquire in vivo retinal images at the cellular level. Visual function tests consisting of visual fields, multifocal electroretinography (mfERG), and contrast sensitivity were measured in all subjects by using stimuli that were coincident with areas imaged. Five patients with different forms of retinal dystrophy and three control subjects were recruited. Cone densities were quantified for all retinal images. Results In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were apparent in patients with retinal dystrophy. There were significant correlations between functional vision losses and the extent to which these irregularities, quantified by cone density, occurred in retinal images. Conclusions AO fundus imaging is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests provide borderline or ambiguous results, as it allows visualization of individual photoreceptors. PMID:16639019

  11. Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing

    PubMed Central

    Voutetakis, Konstantinos; Gonos, Efstathios S.; Trougakos, Ioannis P.

    2015-01-01

    Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies. PMID:25977747

  12. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  13. Occupational Functionality: A Concept Analysis.

    PubMed

    Combs, Bryan; Heaton, Karen

    2016-08-01

    Occupational health nursing has evolved since the late 19th century and, with the inclusion of advanced practice nursing, has become essential to the health and safety of workers. A key component of the knowledge required of advanced practice occupational health nurses is an understanding of what it means for workers to be fit for duty The definition or concept of being fit for duty varies depending on the point-of-view of the health care provider. Health care providers across all professions must have a consistent understanding of what it means to be fit for duty Literature shows that professions and specialties that often collaborate have varying ideas about what it means to be fit for duty These differences highlight the need for a consistent concept that can be used across professions, is holistic, and incorporates other concepts critical to all points of view. To better understand fit for duty, a concept analysis, using the Walker and Avant framework, focused on the concept of occupational functionality (OF). Occupational functionality is best defined as the qualities of being suited to serve an occupational purpose efficiently and effectively within the physical, occupational, environmental, and psychological demands of a unique work setting. This concept analysis offers an initial step in understanding fit for duty and gives health care providers a concept that can be used across disciplines. PMID:27462030

  14. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  15. Dopamine impairs functional integrity of rat hepatocytes through nuclear factor kappa B activity modulation: An in vivo, ex vivo, and in vitro study.

    PubMed

    Sun, Cheuk-Kwan; Kao, Ying-Hsien; Lee, Po-Huang; Wu, Ming-Chang; Chen, Kun-Cho; Lin, Yu-Chun; Tsai, Ming-Shian; Chen, Po-Han

    2015-12-01

    Dopamine (DA) is commonly used to maintain the hemodynamic stability of brain-dead donors despite its controversial effects on organ functions. This study aimed at examining the hemodynamic effect of DA in a rat brain-dead model in vivo, alteration of hepatocyte integrity in liver grafts after ex vivo preservation, and changes in cultured clone-9 hepatocytes including cellular viability, cell cycle, apoptotic regulators, and lipopolysaccharide (LPS)-stimulated nuclear factor kappa B (NF-κB) signaling machinery. Although in vivo findings demonstrated enhanced portal venous blood flow and hepatic microcirculatory perfusion after DA infusion, no apparent advantage was noted in preserving hepatocyte integrity ex vivo. In vitro, prolonged exposure to high-dose DA reduced proliferation and induced G1 growth arrest of clone-9 hepatocytes with concomitant decreases in B cell lymphoma 2 (BCL2)/B cell lymphoma 2-associated X protein (BAX) and heat shock protein 70/BAX protein ratios and intracellular NF-κB p65. Moreover, DA pretreatment suppressed LPS-elicited inhibitor of κBα phosphorylation and subsequent NF-κB nuclear translocation, suggesting that DA may down-regulate NF-κB signaling, thereby reducing expression of antiapoptotic regulators, such as BCL2. In conclusion, despite augmentation of hepatic perfusion, DA infusion failed to preserve hepatocyte integrity both in vivo and ex vivo. In vitro findings demonstrated that high-dose DA may hamper the function of NF-κB signaling machinery and eventually undermine functional integrity of hepatocytes in liver grafts. PMID:26421799

  16. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  17. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo.

    PubMed

    Sun, Conroy; Du, Kim; Fang, Chen; Bhattarai, Narayan; Veiseh, Omid; Kievit, Forrest; Stephen, Zachary; Lee, Donghoon; Ellenbogen, Richard G; Ratner, Buddy; Zhang, Miqin

    2010-04-27

    Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, nontoxicity, and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic, or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles. PMID:20232826

  18. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    PubMed

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  19. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    PubMed Central

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  20. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease.

    PubMed

    Shettigar, Vikram; Zhang, Bo; Little, Sean C; Salhi, Hussam E; Hansen, Brian J; Li, Ning; Zhang, Jianchao; Roof, Steve R; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K; Weisleder, Noah; Fedorov, Vadim V; Accornero, Federica; Rafael-Fortney, Jill A; Gyorke, Sandor; Janssen, Paul M L; Biesiadecki, Brandon J; Ziolo, Mark T; Davis, Jonathan P

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  1. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  2. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

    PubMed Central

    Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  3. Fatigue alters in vivo function within and between limb muscles during locomotion

    PubMed Central

    Higham, Timothy E.; Biewener, Andrew A.

    2008-01-01

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral (LG) and medial (MG) gastrocnemius of helmeted guineafowl (Numida meleagris) are significantly altered following fatiguing exercise at 2 m s−1 on an inclined treadmill. The two most significant findings were that the variation in muscle force generation, measured directly from the muscles' tendons, increased significantly with fatigue, and fascicle shortening in the proximal MG, but not the distal MG, decreased significantly with fatigue. We suggest that the former is a potential mechanism for decreased stability associated with fatigue. The region-specific alteration of fascicle behaviour within the MG as a result of fatigue suggests a complex response to fatigue that probably depends on muscle–aponeurosis and tendon architecture not previously explored. These findings highlight the importance of studying the integrative in vivo dynamics of muscle function in response to fatigue. PMID:19129096

  4. Fatigue alters in vivo function within and between limb muscles during locomotion.

    PubMed

    Higham, Timothy E; Biewener, Andrew A

    2009-03-22

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral (LG) and medial (MG) gastrocnemius of helmeted guineafowl (Numida meleagris) are significantly altered following fatiguing exercise at 2ms-1 on an inclined treadmill. The two most significant findings were that the variation in muscle force generation, measured directly from the muscles' tendons, increased significantly with fatigue, and fascicle shortening in the proximal MG, but not the distal MG, decreased significantly with fatigue. We suggest that the former is a potential mechanism for decreased stability associated with fatigue. The region-specific alteration of fascicle behaviour within the MG as a result of fatigue suggests a complex response to fatigue that probably depends on muscle-aponeurosis and tendon architecture not previously explored. These findings highlight the importance of studying the integrative in vivo dynamics of muscle function in response to fatigue. PMID:19129096

  5. In vivo left ventricular function and collagen expression in aldosterone/salt-induced hypertension.

    PubMed

    Ramirez-Gil, J F; Delcayre, C; Robert, V; Wassef, M; Trouve, P; Mougenot, N; Charlemagne, D; Lechat, P

    1998-12-01

    Cardiac fibrosis is linked to aldosterone-induced hypertension, but the effects on in vivo left ventricular (LV) function are not established. We studied the relations between in vivo LV function and aldosterone/salt cardiac fibrosis. Adult guinea pigs (GPs) were treated for 3 months with an aldosterone infusion and high-salt diet. This treatment induced arterial hypertension (+35%) and moderate LV hypertrophy (LVH; +60%) without right ventricular (RV) hypertrophy. Echo-Doppler LV assessment demonstrated unaltered cardiac output, stroke volume, or LV relaxation. Type I collagen messenger RNA (mRNA) was significantly increased in both ventricles (LV, +48%; RV, +77%) and accompanied by a significant increase in total collagen deposition (LV, from 0.52% in controls to 4.4% in treated GPs; RV, from 0.82 to 5.5% in treated GPs). Plasma norepinephrine levels increased 2.6-fold (p < 0.01) and correlated with the increase in collagen deposition in both ventricles. Collagen content was not correlated with hypertension or LVH. We conclude that aldosterone administration induces cardiac collagen accumulation and a sympathetic stimulation, which might preserve systolic and diastolic function. PMID:9869498

  6. Copper-induced changes in reproductive functions: in vivo and in vitro effects.

    PubMed

    Roychoudhury, S; Nath, S; Massanyi, P; Stawarz, R; Kacaniova, M; Kolesarova, A

    2016-03-14

    The goal of this study is to summarize the current knowledge on the effects of one of the essential metals, copper (Cu) on the reproductive system. The development of past four decades addressing effects of Cu on reproductive organs is reviewed. The most relevant data obtained from in vivo and in vitro experiments performed on humans and other mammals, including effects of copper nanoparticles (CuNPs) on the reproductive functions are presented. Short term Cu administration has been found to exert deleterious effect on intracellular organelles of rat ovarian cells in vivo. In vitro administration in porcine ovarian granulosa cells releases insulin-like growth factor (IGF-I), steroid hormone progesterone (P(4)), and induces expression of peptides related to proliferation and apoptosis. Adverse effect of Cu on male reproductive functions has been indicated by the decrease in spermatozoa parameters such as concentration, viability and motility. Copper nanoparticles are capable of generating oxidative stress in vitro thereby leading to reproductive toxicity. Toxic effect of CuNPs has been evident more in male mice than in females. Even though further investigations are necessary to arrive at a definitive conclusion, Cu notably influences the reproductive functions by interfering with both male and female reproductive systems and also hampers embryo development in dose-dependent manner. PMID:26596322

  7. TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo

    PubMed Central

    Prchal-Murphy, Michaela; Semper, Christian; Lassnig, Caroline; Wallner, Barbara; Gausterer, Christian; Teppner-Klymiuk, Ingeborg; Kobolak, Julianna; Müller, Simone; Kolbe, Thomas; Karaghiosoff, Marina; Dinnyés, Andras; Rülicke, Thomas; Leitner, Nicole R.; Strobl, Birgit; Müller, Mathias

    2012-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2K923E) mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN) induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein’s stability. An inhibitory function was only observed upon over-expression of TYK2K923E in vitro. Tyk2K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors. PMID:22723949

  8. Photoacoustics and fluorescence based nanoprobes towards functional and structural imaging in vivo

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha

    Imaging of chemical analytes and structural properties related to physiological activities within biological systems is of great bio-medical interest; it can contribute to the fundamental understanding of biological systems and can be applied to the diagnosis and prognosis of diseases, especially tumors. The work presented in this thesis focuses on the development and application of polymeric nanoprobe aided optical imaging of chemical analytes (Oxygen, pH) and structural properties in live cells and animal models. To this end, specific nanoprobes, based on the polyacrylamide nanoplatform, bearing both appropriate targeting functionalities, and high concentrations of sensing and contrast agents, have been developed. The nanoprobes presented here are biodegradable, biocompatible and non-toxic, rendering them safe for in vivo use. Furthermore the nanoprobes are designed to have variable optical properties that are dependent on the local concentration of the specific analyte of interest. Optical imaging techniques that are particularly suited for deep tissue applications, such as two-photon fluorescence and photoacoustics, were applied for non-invasive real-time imaging and sensing in cancer cells, tumor spheroids and animal models. Our results demonstrate that this technique enables high sensitive detection of chemical analytes with a sensitivity of <5 Torr for oxygen and <0.1 pH units in vivo, which is better than the currently available in vivo functional imaging techniques. This non-invasive and non-ionizing, yet low cost, method will enable morphological and functional evaluation across any tissue, with both high spatial and temporal resolution but without eliciting short- or long-term tissue damage. Currently no gold standard exists for such xii functional imaging. The approach presented here can be used for early detection and diagnosis of tumors, as well as for monitoring the progression of disease and therapy. This technique will also enable observing

  9. Using CRISPR/Cas to study gene function and model disease in vivo.

    PubMed

    Tschaharganeh, Darjus F; Lowe, Scott W; Garippa, Ralph J; Livshits, Geulah

    2016-09-01

    The recent discovery of the CRISPR/Cas system and repurposing of this technology to edit a variety of different genomes have revolutionized an array of scientific fields, from genetics and translational research, to agriculture and bioproduction. In particular, the prospect of rapid and precise genome editing in laboratory animals by CRISPR/Cas has generated an immense interest in the scientific community. Here we review current in vivo applications of CRISPR/Cas and how this technology can improve our knowledge of gene function and our understanding of biological processes in animal models. PMID:27149548

  10. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain

    PubMed Central

    Bocarsly, Miriam E.; Jiang, Wan-chen; Wang, Chen; Dudman, Joshua T.; Ji, Na; Aponte, Yeka

    2015-01-01

    The ability to image neurons anywhere in the mammalian brain is a major goal of optical microscopy. Here we describe a minimally invasive microendoscopy system for studying the morphology and function of neurons at depth. Utilizing a guide cannula with an ultrathin wall, we demonstrated in vivo two-photon fluorescence imaging of deeply buried nuclei such as the striatum (2.5 mm depth), substantia nigra (4.4 mm depth) and lateral hypothalamus (5.0 mm depth) in mouse brain. We reported, for the first time, the observation of neuronal activity with subcellular resolution in the lateral hypothalamus and substantia nigra of head-fixed awake mice. PMID:26601017

  11. On the origin and functions of the term functional analysis.

    PubMed

    Schlinger, Henry D; Normand, Matthew P

    2013-01-01

    In this essay, we note that although Iwata, Dorsey, Slifer, Bauman, and Richman (1982) established the standard framework for conducting functional analyses of problem behavior, the term functional analysis was probably first used in behavior analysis by B. F. Skinner in 1948. We also remind readers that a functional analysis is really an experimental analysis, words that were contained in the title of Skinner's first book, The Behavior of Organisms: An Experimental Analysis (1938). We further describe how Skinner initially applied the concept of functional analysis to an understanding of verbal behavior, and we suggest that the same tactic be applied to the verbal behavior of behavior analysts, in the present case, to the term functional analysis. PMID:24114100

  12. Isolation of Cardiomyocytes and Cardiofibroblasts for Ex Vivo Analysis.

    PubMed

    Mbogo, George Williams; Nedeva, Christina; Puthalakath, Hamsa

    2016-01-01

    Heart failure (HF) is a common clinical endpoint to several underlying causes including aging, hypertension, stress, and cardiomyopathy. It is characterized by a significant decline in the cardiac output. Cardiomyocytes are terminally differentiated cells and therefore, apoptotic death due to beta adrenergic (β-AR) signaling contributes to high attrition rate of these cells. Past treatments of HF offer some survival benefit to patients (e.g., the beta blockers), but at the expense of blocking the compensatory beta-adrenergic signaling in surviving cells. One prerequisite for developing new therapeutics is to be able to grow cardiomyocytes ex vivo, and test their apoptotic response to drugs. Here we describe methods for isolation and culturing of neonatal and adult calcium tolerant cardiomyocytes. Similarly, cardiofibroblasts can also be isolated using the same protocol and subsequently, immortalized with SV40 T-Antigen for ex vivo studies. PMID:27108436

  13. Applications of nuclear technologies for in-vivo elemental analysis

    SciTech Connect

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Wielopolski, L.

    1982-01-01

    Measurement facilities developed, to date, include a unique whole-body-counter, (WBC); a total-body neutron-activation facility (TBNAA); and a partial-body activation facility (PBNAA). A variation of the prompt-gamma neutron-activation technique for measuring total-body nitrogen was developed to study body composition of cancer patients and the effect of nutritional regimens on the composition. These new techniques provide data in numerous clinical studies not previously amenable to investigation. The development and perfection of these techniques provide unique applications of radiation and radioisotopes to the early diagnosis of certain diseases and the evaluation of therapeutic programs. The PBNAA technique has been developed and calibrated for in-vivo measurement of metals. Development has gone forward on prompt-gamma neutron activation for the measurement of cadmium, x-ray fluorescence (XRF) for measurement of iron. Other techniques are being investigated for in-vivo measurement of metals such as silicon and beryllium.

  14. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.

    PubMed

    Kwon, Oh Kwang; Sim, JuHee; Kim, Sun Ju; Sung, Eunji; Kim, Jin Young; Jeong, Tae Cheon; Lee, Sangkyu

    2015-12-01

    Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation. PMID:26487105

  15. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  16. Non invasive in vivo investigation of hepatobiliary structure and function in STII medaka (Oryzias latipes): methodology and applications

    PubMed Central

    Hardman, Ron C; Kullman, Seth W; Hinton, David E

    2008-01-01

    Background A novel transparent stock of medaka (Oryzias latipes; STII), recessive for all pigments found in chromatophores, permits transcutaneous imaging of internal organs and tissues in living individuals. Findings presented describe the development of methodologies for non invasive in vivo investigation in STII medaka, and the successful application of these methodologies to in vivo study of hepatobiliary structure, function, and xenobiotic response, in both 2 and 3 dimensions. Results Using brightfield, and widefield and confocal fluorescence microscopy, coupled with the in vivo application of fluorescent probes, structural and functional features of the hepatobiliary system, and xenobiotic induced toxicity, were imaged at the cellular level, with high resolution (< 1 μm), in living individuals. The findings presented demonstrate; (1) phenotypic response to xenobiotic exposure can be investigated/imaged in vivo with high resolution (< 1 μm), (2) hepatobiliary transport of solutes from blood to bile can be qualitatively and quantitatively studied/imaged in vivo, (3) hepatobiliary architecture in this lower vertebrate liver can be studied in 3 dimensions, and (4) non invasive in vivo imaging/description of hepatobiliary development in this model can be investigated. Conclusion The non-invasive in vivo methodologies described are a unique means by which to investigate biological structure, function and xenobiotic response with high resolution in STII medaka. In vivo methodologies also provide the future opportunity to integrate molecular mechanisms (e.g., genomic, proteomic) of disease and toxicity with phenotypic changes at the cellular and system levels of biological organization. While our focus has been the hepatobiliary system, other organ systems are equally amenable to in vivo study, and we consider the potential for discovery, within the context of in vivo investigation in STII medaka, as significant. PMID:18838008

  17. Alterations at the Cross-Bridge Level Are Associated with a Paradoxical Gain of Muscle Function In Vivo in a Mouse Model of Nemaline Myopathy

    PubMed Central

    Gineste, Charlotte; Ottenheijm, Coen; Le Fur, Yann; Banzet, Sébastien; Pecchi, Emilie; Vilmen, Christophe; Cozzone, Patrick J.; Koulmann, Nathalie; Hardeman, Edna C.; Bendahan, David; Gondin, Julien

    2014-01-01

    Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and in vivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While in vitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, in vivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced in vitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness in vitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function in vivo. These results clearly point out that in vitro alterations are muscle-dependent and do not necessarily translate into similar changes in vivo. PMID:25268244

  18. Translation initiation factors are not required for Dicistroviridae IRES function in vivo

    PubMed Central

    Deniz, Nilsa; Lenarcic, Erik M.; Landry, Dori M.; Thompson, Sunnie R.

    2009-01-01

    The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo. PMID:19299549

  19. Dynamic in vivo analysis of drug induced actin cytoskeleton degradation by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Schnekenburger, Juergen; Bredebusch, Ilona; Langehanenberg, Patrik; Domschke, Wolfram; von Bally, Gert; Kemper, Björn

    2007-07-01

    The actin cytoskeleton mediates a variety of crucial cellular functions as migration, intracellular transport, exocytosis, endocytosis and force generation. The highly dynamic actin fibers are therefore targets for several drugs and toxins. However the study of actin interfering processes by standard microscopy techniques fails in the detailed resolution of dynamic spatial alterations required for a deeper understanding of toxic effects. Here we applied digital holographic microscopy in the online functional analysis of the actin cytoskeleton disrupting marine toxin Latrunculin B. SEM and fluorescence microscopy showed rapid Latrunculin B induced alterations in cell morphology and actin fiber degradation in pancreas tumor cells. The dynamic digital holographic in vivo analysis of the drug dependent cellular processes demonstrated differences in the actin cytoskeleton stability of highly differentiated and dedifferentiated pancreas tumor cell lines. The spatial resolution of the morphological alterations revealed unequal changes in cell morphology. While cells with a low metastatic potential showed Latrunculin B induced cell collapse within 4 h the metastatic tumor cells were increased in cell volume indicating Latrunculin B effects also on cell water content. These data demonstrate that marker free, non-destructive online analysis of cellular morphology and dynamic spatial processes in living cells by digital holography offers new insights in actin dependent cellular mechanisms. Digital holographic microscopy was shown to be a versatile tool in the screening of toxic drug effects and cancer cell biology.

  20. Functional Analysis and Treatment of Nail Biting

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Watson, T. Steuart; Kazmerski, Jennifer S.

    2008-01-01

    This study applied functional analysis methodology to nail biting exhibited by a 24-year-old female graduate student. Results from the brief functional analysis indicated variability in nail biting across assessment conditions. Functional analysis data were then used to guide treatment development and implementation. Treatment included a…

  1. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  2. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function.

    PubMed

    Margalit, Ofer; Simon, Amos J; Yakubov, Eduard; Puca, Rosa; Yosepovich, Ady; Avivi, Camila; Jacob-Hirsch, Jasmine; Gelernter, Ilana; Harmelin, Alon; Barshack, Iris; Rechavi, Gideon; D'Orazi, Gabriella; Givol, David; Amariglio, Ninette

    2012-08-15

    Activated p53 is necessary for tumor suppression. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of functional p53. HIPK2 modulates wild-type p53 activity toward proapoptotic transcription and tumor suppression by the phosphorylation of serine 46. Knock-down of HIPK2 interferes with tumor suppression and sensitivity to chemotherapy. Combined administration of adriamycin and zinc restores activity of misfolded p53 and enables the induction of its proapoptotic and tumor suppressor functions in vitro and in vivo. We therefore looked for a cancer model where HIPK2 expression is low. MMTV-neu transgenic mice overexpressing HER2/neu, develop mammary tumors at puberty with a long latency, showing very low expression of HIPK2. Here we show that whereas these tumors are resistant to adriamycin treatment, a combination of adriamycin and zinc suppresses tumor growth in vivo in these mice, an effect evidenced by the histological features of the mammary tumors. The combined treatment of adriamycin and zinc also restores wild-type p53 conformation and induces proapoptotic transcription activity. These findings may open up new possibilities for the treatment of human cancers via the combination of zinc with chemotherapeutic agents, for a selected group of patients expressing low levels of HIPK2, with an intact p53. In addition, HIPK2 may serve as a new biomarker for tumor aggressiveness. PMID:21932419

  3. Ubiquitination regulates the neuroprotective function of the deubiquitinase ataxin-3 in vivo.

    PubMed

    Tsou, Wei-Ling; Burr, Aaron A; Ouyang, Michelle; Blount, Jessica R; Scaglione, K Matthew; Todi, Sokol V

    2013-11-29

    Deubiquitinases (DUBs) are proteases that regulate various cellular processes by controlling protein ubiquitination. Cell-based studies indicate that the regulation of the activity of DUBs is important for homeostasis and is achieved by multiple mechanisms, including through their own ubiquitination. However, the physiological significance of the ubiquitination of DUBs to their functions in vivo is unclear. Here, we report that ubiquitination of the DUB ataxin-3 at lysine residue 117, which markedly enhances its protease activity in vitro, is critical for its ability to suppress toxic protein-dependent degeneration in Drosophila melanogaster. Compared with ataxin-3 with only Lys-117 present, ataxin-3 that does not become ubiquitinated performs significantly less efficiently in suppressing or delaying the onset of toxic protein-dependent degeneration in flies. According to further studies, the C terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase that ubiquitinates ataxin-3 in vitro, is dispensable for its ubiquitination in vivo and is not required for the neuroprotective function of this DUB in Drosophila. Our work also suggests that ataxin-3 suppresses degeneration by regulating toxic protein aggregation rather than stability. PMID:24106274

  4. The synthesis and in vivo assembly of functional antibodies in yeast

    NASA Astrophysics Data System (ADS)

    Wood, Clive R.; Boss, Michael A.; Kenten, John H.; Calvert, Jane E.; Roberts, Nicola A.; Emtage, J. Spencer

    1985-04-01

    The yeast Saccharomyces cerevisiae can synthesize, process and secrete higher eukaryotic proteins1-5. We have investigated the expression of immunoglobulin chains in yeast and demonstrate here (1) the synthesis, processing and secretion of light and heavy chains, (2) the glycosylation of heavy chain, (3) the intracellular localization of these foreign proteins by immunofluorescence, and (4) the detection of functional antibodies in cells co-expressing both chains. This may provide the basis of a microbial fermentation process for the production of monoclonal antibodies. The co-expression of light and heavy chains in Escherichia coli has been reported but functional antibodies were not assembled in vivo6,7. Furthermore, only low-level assembly of these chains was found in vitro.

  5. In vivo imaging of the integration and function of nigral grafts in clinical trials.

    PubMed

    Politis, Marios; Piccini, Paola

    2012-01-01

    In vivo functional imaging has provided objective evidence for the integration and function of nigral grafts in the brains of patients with Parkinson's disease. Clinical trials with the use of positron emission tomography have shown that transplants of human dopamine-rich fetal ventral mesencephalic tissue can survive, grow, and release dopamine providing motor symptom relief, and also that they can restore brain activation related to movement. Positron emission tomography has aided in the elucidation of the pathophysiology of serious adverse effects, so-called graft-induced dyskinesias. With the use of newly established radioligands, positron emission tomography and single-photon emission computed tomography could help to improve Parkinson's patient selection in future clinical trials by selecting those with better predicted outcomes. Moreover, positron emission tomography could help monitoring postoperational inflammatory processes around the grafted tissue and the effect of immunosuppression. Recent evidence from positron emission tomography has provided insight of how ongoing extrastriatal serotonergic denervation may have relevance to nonmotor symptoms in transplanted Parkinson's disease patients indicating new cell therapy targets for a more complete relief of symptoms. Functional and structural magnetic resonance imaging techniques could help to better assess the integration of nigral graft with the host brain by assessing the restoration of brain activation during movement and of functional and structural connectivity. This knowledge should lead to the development of new, optimized in vivo imaging protocols that could help to better schedule, monitor, and modify the clinical outcomes of future human trials assessing the efficacy of fetal or stem cell therapy in Parkinson's disease. PMID:23195420

  6. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.

    PubMed

    Gong, Qian; Hazen, Meredith; Marshall, Brett; Crowell, Susan R; Ou, Qinglin; Wong, Athena W; Phung, Wilson; Vernes, Jean-Michel; Meng, Y Gloria; Tejada, Max; Andersen, Dana; Kelley, Robert F

    2016-01-01

    For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal ("afucosylation"). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody. PMID:27216702

  7. Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies

    PubMed Central

    Campbell, Graeme M; Sophocleous, Antonia

    2014-01-01

    Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037

  8. Differential Item Functioning Analysis Using Rasch Item Information Functions

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Mapuranga, Raymond

    2009-01-01

    Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…

  9. Protective effects of Zhuyeqing liquor on the immune function of normal and immunosuppressed mice in vivo

    PubMed Central

    2013-01-01

    Background Zhuyeqing Liquor (ZYQL), a well-known Chinese traditional health liquor, has various biological properties, including anti-oxidant, anti-inflammatory, immunoenhancement and cardiovascular protective effects. Methods The protective effects of Zhuyeqing Liquor (ZYQL) on the immune function was investigated in vivo in normal healthy mice and immunosuppressed mice treated with Cyclophosphamide (Cy, 100 mg/kg) by intraperitoneal injection on days 4, 8 and 12. ZYQL (100, 200 and 400 mg/kg) was administered via gavage daily for 14 days. The phagocytotic function of mononuclear phagocytic system was detected with carbon clearance methods, the levels of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) in serum were detected with Enzyme linked immunosorbent assay (ELISA). Immune organs were weighed and organ indexes (organ weight/body weight) of thymus and spleen were calculated. Meanwhile, the activity of lysozyme (LSZ) in serum and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in spleen tissue were measured. Results ZYQL significantly upgrades the K value for clearance of carbon particles in normal mice treated with ZYQL (400 mg/kg) and immunosuppressed mice treated with ZYQL (100, 200 and 400 mg/kg) together with Cy (100 mg/kg) in vivo. The treatment of ZYQL (100, 200 and 400 mg/kg) effectively increased the activity of serum lysozyme as well as promoted the serum levels of IL-6 and IFN-γ in normal mice and immunosuppressed mice. Furthermore, ZYQL (100, 200 and 400 mg/kg) had an antioxidant effects in immune system by enhancing the antioxidant enzyme activity of SOD, CAT and GSH-Px in vivo. In addition, ZYQL (100, 200 and 400 mg/kg) effectively elevated the Cy-induced decreased organ index (thymus and spleen). Conclusions The present work shows that the dose-dependent administration of ZYQL is capable of influencing immune responses, which implying that its valuable functional health may be attributed

  10. In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: anatomical and functional implications.

    PubMed

    Cruz-Montecinos, Carlos; González Blanche, Alberto; López Sánchez, David; Cerda, Mauricio; Sanzana-Cuche, Rodolfo; Cuesta-Vargas, Antonio

    2015-11-01

    Different authors have modelled myofascial tissue connectivity over a distance using cadaveric models, but in vivo models are scarce. The aim of this study was to evaluate the relationship between pelvic motion and deep fascia displacement in the medial gastrocnemius (MG). Deep fascia displacement of the MG was evaluated through automatic tracking with an ultrasound. Angular variation of the pelvis was determined by 2D kinematic analysis. The average maximum fascia displacement and pelvic motion were 1.501 ± 0.78 mm and 6.55 ± 2.47 °, respectively. The result of a simple linear regression between fascia displacement and pelvic motion for three task executions by 17 individuals was r = 0.791 (P < 0.001). Moreover, hamstring flexibility was related to a lower anterior tilt of the pelvis (r = 0.544, P < 0.024) and a lower deep fascia displacement of the MG (r = 0.449, P < 0.042). These results support the concept of myofascial tissue connectivity over a distance in an in vivo model, reinforce the functional concept of force transmission through synergistic muscle groups, and grant new perspectives for the role of fasciae in restricting movement in remote zones. PMID:26467242

  11. Metabolic Flux and Compartmentation Analysis in the Brain In vivo

    PubMed Central

    Lanz, Bernard; Gruetter, Rolf; Duarte, João M. N.

    2013-01-01

    Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons. PMID:24194729

  12. Demonstration of an in vivo functional beta 3-adrenoceptor in man.

    PubMed

    Enocksson, S; Shimizu, M; Lönnqvist, F; Nordenström, J; Arner, P

    1995-05-01

    Although it is well established in several mammalian species that beta 3-adrenoceptors play a major role in regulating lipolysis and thermogenesis in adipose tissue, the functional existence and role of this receptor subtype in man has been controversial. We investigated whether the beta 3-adrenoceptor functionally co-exists with beta 1- and beta 2-adrenoceptors in vivo in human adipose tissue. Subcutaneous abdominal adipose tissue of healthy non-obese subjects was microdialyzed with equimolar concentrations of dobutamine (selective beta 1-adrenoceptor agonist), terbutaline (selective beta 2-adrenoceptor agonist), or CGP 12177 (selective beta 3-adrenoceptor agonist). All three agents caused a rapid, sustained, concentration-dependent and significant elevation of the glycerol level in the microdialysate (lipolysis index). However, only terbutaline stimulated the nutritive blood flow in adipose tissue, as measured by an ethanol escape technique. Dobutamine and CGP 12177 was equally effective in elevating the glycerol level (maximum effect 150% above baseline). Terbutaline was significantly more effective than the other two beta-agonists (maximum effect 200% above baseline). When adipose tissue was pretreated with the beta 1/beta 2-selective adrenoceptor blocker propranolol the glycerol increasing effect of dobutamine or terbutaline was inhibited by 80-85% but the glycerol response to CGP 12177 was not influenced. It is concluded that a functional beta 3-adrenoceptor is present in vivo in man. It co-exists with beta 1- and beta 2-adrenoceptors in adipose tissue and may therefore play a role in lipolysis regulation. It appears, however, that the beta 2-adrenoceptor is the most important beta-adrenoceptor subtype for the mobilization of lipids from abdominal subcutaneous adipose tissue because of its concomitant stimulatory effect on lipolysis and blood flow. PMID:7738189

  13. Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model

    PubMed Central

    Lindström, Riitta; Lindholm, Päivi; Kallijärvi, Jukka; Yu, Li-ying; Piepponen, T. Petteri; Arumäe, Urmas; Saarma, Mart; Heino, Tapio I.

    2013-01-01

    Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo. PMID:24019940

  14. Functional Analysis of Transcription Factors in Arabidopsis

    PubMed Central

    Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-01-01

    Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using ‘omics-based’ methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks. PMID:19478073

  15. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration

    PubMed Central

    Kaiser, Nicholas J; Coulombe, Kareen L K

    2015-01-01

    Tissue engineering is well suited for the treatment of cardiac disease due to the limited regenerative capacity of native cardiac tissue and the loss of function associated with endemic cardiac pathologies, such as myocardial infarction and congenital heart defects. However, the physiological complexity of the myocardium imposes extensive requirements on tissue therapies intended for these applications. In recent years, the field of cardiac tissue engineering has been characterized by great innovation and diversity in the fabrication of engineered tissue scaffolds for cardiac repair and regeneration to address these problems. From early approaches that attempted only to deliver cardiac cells in a hydrogel vessel, significant progress has been made in understanding the role of each major component of cardiac living tissue constructs (namely cells, scaffolds, and signaling mechanisms) as they relate to mechanical, biological, and electrical in vivo performance. This improved insight, accompanied by modern material science techniques, allows for the informed development of complex scaffold materials that are optimally designed for cardiac applications. This review provides a background on cardiac physiology as it relates to critical cardiac scaffold characteristics, the degree to which common cardiac scaffold materials fulfill these criteria, and finally an overview of recent in vivo studies that have employed this type of approach. PMID:25970645

  16. In Vivo Evaluation of Vena Caval Filters: Can Function Be Linked to Design Characteristics?

    SciTech Connect

    Proctor, Mary C.; Cho, Kyung J.; Greenfield, Lazar J.

    2000-11-15

    Purpose: To compare the five vena caval filters marketed in the United States and one investigational vena caval filter and to determine whether there is an association between their design and their in vivo function.Methods: Four of each type of filter-Simon Nitinol (SN), Bird's Nest (BN), Vena Tech (VT), Greenfield stainless steel (PSGF), Greenfield titanium (TGF), and the investigational stent cone filter (NGF)-were studied for 60 days in 12 sheep. Radiographic and pathologic outcomes to be assessed included clot capture and resolution, vena caval penetration, position of the filter, thrombogenicity, and vessel wall reaction.Results: Filters differed with respect to the number of clot-trapping levels and the interdependence of the legs. All devices were successfully placed. Intentionally embolized clot was captured. One VT and two SN filters migrated in response to clot capture. Resolution of thrombus was variable, and related to the design of the device. Fibrin webbing was widely present with the VT, BN, and SN filters but limited in the others. The VT and NGF filters demonstrated the most stable filter base diameter.Conclusions: The performance of vena caval filters differs with respect to clot resolution and mechanical stability. Interdependent filter limbs and single-stage conical capture sites appear to result in more favorable performance in in vivo studies.

  17. Head-to-tail regulation is critical for the in vivo function of myosin V

    PubMed Central

    Donovan, Kirk W.

    2015-01-01

    Cell organization requires regulated cargo transport along cytoskeletal elements. Myosin V motors are among the most conserved organelle motors and have been well characterized in both yeast and mammalian systems. Biochemical data for mammalian myosin V suggest that a head-to-tail autoinhibitory interaction is a primary means of regulation, but the in vivo significance of this interaction has not been studied. Here we generated and characterized mutations in the yeast myosin V Myo2p to reveal that it is regulated by a head-to-tail interaction and that loss of regulation renders the myosin V constitutively active. We show that an unregulated motor is very deleterious for growth, resulting in severe defects in Myo2-mediated transport processes, including secretory vesicle transport, mitochondrial inheritance, and nuclear orientation. All of the defects associated with motor misregulation could be rescued by artificially restoring regulation. Thus, spatial and temporal regulation of myosin V in vivo by a head-to-tail interaction is critical for the normal delivery functions of the motor. PMID:25940346

  18. In vivo ultrasound imaging of the popliteus muscle: investigation of functional characteristics

    PubMed Central

    Soda, Naoki; Fujihashi, Yuichiro; Aoki, Takaaki

    2016-01-01

    [Purpose] The aim of this study was to use ultrasound imaging equipment for in vivo observation of the popliteus muscle thickness during rest and exercise to examine its functional characteristics and to establish a training method for this muscle. [Subjects and Methods] The subjects included 30 healthy adults (15 men and 15 women). The measurement tasks, consisting of isometric knee flexion and extension and internal rotation of the lower leg were performed in an arbitrary order. The popliteus muscle thickness was measured using an ultrasound. [Results] The popliteus muscle thickness significantly increased in the internal rotation in 27 subjects (90%), whereas, it remained unchanged in the remaining three subjects (10%). [Conclusion] This study differed from most of the previous studies because it involved in vivo observation of the popliteus muscle. We found that ultrasound was an effective method for the measurement of popliteus muscle thickness. The results suggest that internal rotation of the lower leg is the most effective exercise for working the popliteus muscle. PMID:27134397

  19. Single Amino Acid Mutations in Drosophila Fascin Disrupt Actin Bundling Function in Vivo

    PubMed Central

    Cant, K.; Cooley, L.

    1996-01-01

    Fascins bundle actin filaments into large, tightly packed hexagonal arrays that support diverse cellular processes including microvillar projections and filopodial extensions. In Drosophila, fascin is encoded by the singed locus. Severe singed mutants have gnarled bristles and are female sterile due to a defect in rapid cytoplasm transport during oogenesis. In this paper, we report the results of a large EMS mutagenesis screen to generate new singed alleles. A mutation that changes glycine 409 to glutamic acid results in partial inactivation of fascin in vivo, singed(G409E) mutants have kinked bristles and are fertile with a mild nurse cell cytoplasm transport defect. This mutation is in a small conserved domain near the C-terminus of fascin. A mutation that changes serine 289 to asparagine almost completely inactivates fascin in vivo, singed(S289N) mutants have gnarled bristles and are sterile due to a severe defect in nurse cell cytoplasm transport caused by the absence of nurse cell cytoplasmic actin bundles. A subsequent EMS mutagenesis screen for dominant suppressors of singed(S289N) sterility revealed an intragenic suppressor mutation that changes serine 251 to phenylalanine and restores much of fascin's function. These two mutations, S289N and S251F, draw attention to a central domain in fascin. PMID:8722779

  20. In Vitro Hematological and In Vivo Vasoactivity Assessment of Dextran Functionalized Graphene

    PubMed Central

    Chowdhury, Sayan Mullick; Kanakia, Shruti; Toussaint, Jimmy D.; Frame, Mary D.; Dewar, Anthony M.; Shroyer, Kenneth R.; Moore, William; Sitharaman, Balaji

    2013-01-01

    The intravenous, intramuscular or intraperitoneal administration of water solubilized graphene nanoparticles for biomedical applications will result in their interaction with the hematological components and vasculature. Herein, we have investigated the effects of dextran functionalized graphene nanoplatelets (GNP-Dex) on histamine release, platelet activation, immune activation, blood cell hemolysis in vitro, and vasoactivity in vivo. The results indicate that GNP-Dex formulations prevented histamine release from activated RBL-2H3 rat mast cells, and at concentrations ≥ 7 mg/ml, showed a 12–20% increase in levels of complement proteins. Cytokine (TNF-Alpha and IL-10) levels remained within normal range. GNP-Dex formulations did not cause platelet activation or blood cell hemolysis. Using the hamster cheek pouch in vivo model, the initial vasoactivity of GNP-Dex at concentrations (1–50 mg/ml) equivalent to the first pass of a bolus injection was a brief concentration-dependent dilation in arcade and terminal arterioles. However, they did not induce a pro-inflammatory endothelial dysfunction effect. PMID:24002570

  1. The effects of A. pyogenes on endometrial function in vitro, and on uterine and ovarian function in vivo

    PubMed Central

    Miller, A.N.A.; Williams, E.J.; Sibley, K.; Herath, S.; Lane, E.A.; Fishwick, J.; Nash, D.M.; Rycroft, A.N.; Dobson, H.; Bryant, C.E.; Sheldon, I.M.

    2009-01-01

    Uterine bacterial infection after parturition causes endometritis, perturbs ovarian function and leads to infertility in cattle. Although endometritis is caused by mixed infections, endometrial pathology is associated with the presence of Arcanobacterium pyogenes. The aims of the present study were to determine the effects of A. pyogenes on endometrial function in vitro, and on uterine and ovarian function in vivo. Heat-killed A. pyogenes did not affect the production of prostaglandin F2α (PGF) or prostaglandin E2 (PGE) from endometrial explants, or purified populations of endometrial epithelial or stromal cells. However, the explants produced more PGF and PGE than controls when treated with a bacteria-free filtrate (BFF) cultured from A. pyogenes. Similarly, BFF stimulated PGF and PGE production by epithelial and stromal cells, respectively. So, BFF or control PBS was infused into the uterus of heifers (n = 7 per group) for 8 days, starting the day after estrus. Emergence of the follicle wave, dominant follicle or corpus luteum diameter, and peripheral plasma FSH, LH, estradiol, progesterone, PGFM, or acute phase protein concentrations were unaffected by the BFF infusion. In the live animal it is likely that the intact uterine mucosa limits the exposure of the endometrial cells to the exotoxin of A. pyogenes, whereas the cells are readily exposed to the toxin in vitro. PMID:17825901

  2. Analysis of the kinesin superfamily: insights into structure and function.

    PubMed

    Miki, Harukata; Okada, Yasushi; Hirokawa, Nobutaka

    2005-09-01

    Kinesin superfamily proteins (KIFs) are key players or 'hub' proteins in the intracellular transport system, which is essential for cellular function and morphology. The KIF superfamily is also the first large protein family in mammals whose constituents have been completely identified and confirmed both in silico and in vivo. Numerous studies have revealed the structures and functions of individual family members; however, the relationships between members or a perspective of the whole superfamily structure until recently remained elusive. Here, we present a comprehensive summary based on a large, systematic phylogenetic analysis of the kinesin superfamily. All available sequences in public databases, including genomic information from all model organisms, were analyzed to yield the most complete phylogenetic kinesin tree thus far, comprising 14 families. This comprehensive classification builds on the recently proposed standardized nomenclature for kinesins and allows systematic analysis of the structural and functional relationships within the kinesin superfamily. PMID:16084724

  3. A non-linear mathematical model for the in vivo evaluation of the RES phagocytic function.

    PubMed

    Bondareva, I B; Parfenov, A S

    1995-01-01

    A new non-linear mathematical model was constructed in order to perform in vivo quantification of the RES phagocytic function. This method is based on the same technical facilities as used for the routine liver-spleen scintigraphy with radiocolloids [1, 2]. But kinetic modeling of dynamic Tc-99m-sulfur colloid data produced estimations of the functional RE-parameters: the clearance rate of the colloidal particles, the rate of phagocytosis, and the RES functional volume, which can not be obtained by classical approaches. This non-linear model was designed on the basis of the principal characteristics of particulate material interaction with macrophages (attachment, phagocytosis, digestion) [3, 4, 5]. The theoretically examined behavior of this in vivo mathematical model corresponds with the experimental behavior of the RES. The mathematical expression of the dynamics is the system of non-linear differential equations with constant coefficients that have no analytical solution. Fitting of the normalized heart blood time-activity curve was obtained to identify the unknown model parameters via non-linear regression. For this purpose general interactive PASCAL procedure IDPAR for a PDP-11/34 computer was used (an IBM PC version is also available). Two to three iterations were needed to estimate the set of unknown parameters for any patient study (1-1.5 min). A very good fitting was obtained between experimental and model curves in every case of different pathologies (error of the approximation is about 2-3%). Studies were performed using an in vivo bolus injection of 3.6 mg/80 kg commercially available colloid KOREN labeled with 3m-Ci 99m-Tc (analog of TCK-1). Our method was used to determine the RES functional parameters for patient groups with different levels of the RES dysfunction. Obtained results illustrate the possibilities of our technique to quantitatively estimate not only great pathology (portal cirrhosis), but also small changes of the RE-function (case of

  4. Rapid Biocompatibility Analysis of Materials via In Vivo Fluorescence Imaging of Mouse Models

    PubMed Central

    Bratlie, Kaitlin M.; Dang, Tram T.; Lyle, Stephen; Nahrendorf, Matthias; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.

    2010-01-01

    Background Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. Methodology/Principal Findings Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. Conclusions/Significance Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo. PMID:20386609

  5. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  6. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  7. In vivo Analysis of White Adipose Tissue in Zebrafish

    PubMed Central

    Minchin, James E.N.; Rawls, John F.

    2016-01-01

    White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT. PMID:21951526

  8. Hippocampal shape analysis in Alzheimer's disease using functional data analysis.

    PubMed

    Epifanio, Irene; Ventura-Campos, Noelia

    2014-02-28

    The hippocampus is one of the first affected regions in Alzheimer's disease. The left hippocampi of control subjects, patients with mild cognitive impairment and patients with Alzheimer's disease are represented by spherical harmonics. Functional data analysis is used in the hippocampal shape analysis. Functional principal component analysis and functional independent component analysis are defined for multivariate functions with two arguments. A functional linear discriminant function is also defined. Comparisons with other approaches are carried out. Our functional approach gives promising results, especially in shape classification. PMID:24105806

  9. Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Gu, Frank; Langer, Robert; Farokhzad, Omid C.

    Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly( d, l-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

  10. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo.

    PubMed

    Hildebrand, Janosch; Rütze, Martin; Walz, Nicole; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Grundhoff, Adam; Knott, Anja

    2011-01-01

    Here, we report a comprehensive investigation of changes in microRNA (miRNA) expression profiles on human keratinocyte (HK) differentiation in vitro and in vivo. We have monitored expression patterns of 377 miRNAs during calcium-induced differentiation of primary HKs, and have compared these patterns with miRNA expression profiles of epidermal stem cells, transient amplifying cells, and terminally differentiated HKs from human skin. Apart from the previously described miR-203, we found an additional nine miRNAs (miR-23b, miR-95, miR-210, miR-224, miR-26a, miR-200a, miR-27b, miR-328, and miR-376a) that are associated with HK differentiation in vitro and in vivo. In situ hybridization experiments confirmed miR-23b as a marker of HK differentiation in vivo. Additionally, gene ontology analysis and functional validation of predicted miRNA targets using 3'-untranslated region-luciferase assays suggest that multiple miRNAs that are upregulated on HK differentiation cooperate to regulate gene expression during skin development. Our results thus provide the basis for further analysis of miRNA functions during epidermal differentiation. PMID:20827281

  11. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors

    PubMed Central

    Newell, Peter D.; Chaston, John M.; Wang, Yiping; Winans, Nathan J.; Sannino, David R.; Wong, Adam C. N.; Dobson, Adam J.; Kagle, Jeanne; Douglas, Angela E.

    2014-01-01

    Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut. PMID:25408687

  12. In Vitro and In Vivo Evaluation of a Novel Ferrocyanide Functionalized Nanopourous Silica Decorporation Agent for Cesium in Rats

    SciTech Connect

    Timchalk, Charles; Creim, Jeffrey A.; Sukwarotwat, Vichaya; Wiacek, Robert J.; Addleman, Raymond S.; Fryxell, Glen E.; Yantasee, Wassana

    2010-09-01

    Novel decorporation agents are being developed to protect against radiological terrorist attacks. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMS™), are hybrid materials where differing organic moieties are grafted onto mesoporous silica (SiO2). In vitro experiments focused on the evaluation, and optimization of SAMMS for capturing radiocesium (137Cs); based on these studies, a ferrocyanide copper (FC-Cu-EDA)-SAMMS was advanced for in vivo evaluation. In vivo experiments were conducted comparing the performance of the SAMMS vs. insoluble Prussian blue. Groups of jugular cannulated rats (4/treatment) were evaluated. Group I was administered 137Cs (~40 μgeq/kg) by intravenous (iv) injection and oral gavage; Group II was administered pre-bound 137Cs-SAMMS and sequential 137Cs + SAMMS (~61 ngeq/kg) by oral gavage; and Group III evaluated orally administered 137Cs (~0.06 μgeq/kg) followed by 0.1 g of either SAMMS or Prussian blue. Following dosing the rats were maintained in metabolism cages for 72 hour and blood, urine and fecal samples were collected for 137Cs analysis (gamma counting). Rats were then humanely euthanized, and selected tissues analyzed. Orally administered 137Cs was rapidly and well absorbed (~100% relative to iv dose), and the pharmacokinetics (blood, urine, feces & tissues) were very comparable to the iv dose group. For both exposures the urine and feces accounted for 20 and 3% of the dose, respectively. The prebound 137Cs-SAMMS was retained primarily within the feces (72% of the dose), with ~1.4% detected in the urine, suggesting that the 137Cs remained tightly bound to SAMMS. SAMMS & Prussian blue both effectively captured available 137Cs in the gut with feces accounting for 80-88% of the administered dose, while less than 2% was detected in the urine. This study suggests that the functionalized SAMMS out performs Prussian blue in vitro at low pH, but demonstrates comparable in vivo sequestration efficacy at

  13. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis....

  14. Rapid Immunomagnetic Negative Enrichment of Neutrophil Granulocytes from Murine Bone Marrow for Functional Studies In Vitro and In Vivo

    PubMed Central

    Hasenberg, Mike; Köhler, Anja; Bonifatius, Susanne; Borucki, Katrin; Riek-Burchardt, Monika; Achilles, Julia; Männ, Linda; Baumgart, Kathleen; Schraven, Burkhart; Gunzer, Matthias

    2011-01-01

    Polymorphonuclear neutrophils (PMN) mediate early immunity to infection but can also cause host damage if their effector functions are not controlled. Their lack or dysfunction is associated with severe health problems and thus the analysis of PMN physiology is a central issue. One prerequisite for PMN analysis is the availability of purified cells from primary organs. While human PMN are easily isolated from peripheral blood, this approach is less suitable for mice due to limited availability of blood. Instead, bone marrow (BM) is an easily available reservoir of murine PMN, but methods to obtain pure cells from BM are limited. We have developed a novel protocol allowing the isolation of highly pure untouched PMN from murine BM by negative immunomagnetic isolation using a complex antibody cocktail. The protocol is simple and fast (∼1 h), has a high yield (5–10*106 PMN per animal) and provides a purity of cells equivalent to positive selection (>80%). Most importantly, cells obtained by this method are non-activated and remain fully functional in vitro or after adoptive transfer into recipient animals. This method should thus greatly facilitate the study of primary murine PMN in vitro and in vivo. PMID:21383835

  15. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial

  16. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo.

    PubMed

    Read, Simon; Greenwald, Rebecca; Izcue, Ana; Robinson, Nicholas; Mandelbrot, Didier; Francisco, Loise; Sharpe, Arlene H; Powrie, Fiona

    2006-10-01

    Naturally occurring CD4+ regulatory T cells (T(R)) that express CD25 and the transcription factor FoxP3 play a key role in immune homeostasis, preventing immune pathological responses to self and foreign Ags. CTLA-4 is expressed by a high percentage of these cells, and is often considered as a marker for T(R) in experimental and clinical analysis. However, it has not yet been proven that CTLA-4 has a direct role in T(R) function. In this study, using a T cell-mediated colitis model, we demonstrate that anti-CTLA-4 mAb treatment inhibits T(R) function in vivo via direct effects on CTLA-4-expressing T(R), and not via hyperactivation of colitogenic effector T cells. Although anti-CTLA-4 mAb treatment completely inhibits T(R) function, it does not reduce T(R) numbers or their homing to the GALT, suggesting the Ab mediates its function by blockade of a signal required for T(R) activity. In contrast to the striking effect of the Ab, CTLA-4-deficient mice can produce functional T(R), suggesting that under some circumstances other immune regulatory mechanisms, including the production of IL-10, are able to compensate for the loss of the CTLA-4-mediated pathway. This study provides direct evidence that CTLA-4 has a specific, nonredundant role in the function of normal T(R). This role has to be taken into account when targeting CTLA-4 for therapeutic purposes, as such a strategy will not only boost effector T cell responses, but might also break T(R)-mediated self-tolerance. PMID:16982872

  17. HIV Type 1 Infection Up-Regulates TLR2 and TLR4 Expression and Function in Vivo and in Vitro

    PubMed Central

    Hernández, Juan C.; Stevenson, Mario; Latz, Eicke

    2012-01-01

    Abstract Toll-like receptors (TLRs) play a critical role in innate immunity against pathogens. Their stimulation induces the activation of NF-κB, an important inducer of HIV-1 replication. In recent years, an increasing number of studies using several cells types from HIV-infected patients indicate that TLRs play a key role in regulating the expression of proinflammatory cytokines and viral pathogenesis. In the present study, the effect of HIV-1 stimulation of monocyte-derived macrophage (MDM) and peripheral blood mononuclear cell (PBMC) subpopulations from healthy donors on the expression and functions of TLR2 and TLR4 was examined. In addition, and to complete the in vitro study, the expression pattern of TLR2 and TLR4 in 49 HIV-1-infected patients, classified according to viral load and the use of HAART, was determined and compared with 25 healthy subjects. An increase of TLR expression and production of proinflammatory cytokines were observed in MDMs and PBMCs infected with HIV-1 in vitro and in response to TLR stimulation, compared to the mock. In addition, an association between TLR expression and up-regulation of CD80 in plasmacytoid dendritic cells (pDCs) was observed. The ex vivo analysis indicated increased expression of TLR2 and TLR4 in myeloid dendritic cells (mDCs), but only of TLR2 in monocytes obtained from HIV-1-infected patients, compared to healthy subjects. Remarkably, the expression was higher in cells from patients who do not use HAART. In monocytes, there was a positive correlation between both TLRs and viral load, but not CD4+ T cell numbers. Together, our in vitro and ex vivo results suggest that TLR expression and function can be up-regulated in response to HIV-1 infection and could affect the inflammatory response. We propose that modulation of TLRs represents a mechanism to promote HIV-1 replication or AIDS progression in HIV-1-infected patients. PMID:22280204

  18. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  19. In vivo imaging of mitochondrial function in methamphetamine-treated rats.

    PubMed

    Shiba, Takeshi; Yamato, Mayumi; Kudo, Wataru; Watanabe, Toshiaki; Utsumi, Hideo; Yamada, Ken-ichi

    2011-08-01

    Abuse of the powerfully addictive psychostimulant, methamphetamine, occurs worldwide. Recent studies have suggested that methamphetamine-induced dopaminergic neurotoxicity is related to oxidative stress. In response to nerve activation, the mitochondrial respiratory chain is rapidly activated. The enhancement of mitochondrial respiratory chain activation may induce oxidative stress in the brain. However, there is little experimental evidence regarding the mitochondrial function after methamphetamine administration in vivo. Here, we evaluated whether a single administration of methamphetamine induces ATP consumption and overactivation of mitochondria. We measured mitochondrial function in two different ways: by monitoring oxygen partial pressure using an oxygen-selective electrode, and by imaging of redox reactions using a nitroxyl radical (i.e., nitroxide) coupled with Overhauser-enhanced magnetic resonance imaging (OMRI). A single administration of methamphetamine to Wistar rats induced dopaminergic nerve activation, ATP consumption and an increase in mitochondrial respiratory chain function in both the striatum and cortex. Furthermore, antioxidant TEMPOL prevented the increase in mitochondrial oxidative damage and methamphetamine-induced sensitization. These findings suggest that energy-supplying reactions after dopaminergic nerve activation are associated with oxidative stress in both the striatum and cortex, leading to abnormal behavior. PMID:21624473

  20. In vivo functional human imaging using photoacoustic microscopy: response to ischemic and thermal stimuli

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Maslov, Konstantin; Cornelius, Lynn; Wang, Lihong V.

    2010-02-01

    We report results of two in vivo functional human imaging experiments using photoacoustic microscopy. In Experiment 1, the hemodynamic response to an ischemic event was measured. The palm of a volunteer was imaged and a single cross-section was monitored while periodic arterial occlusions were administered using a blood pressure cuff wrapped around the upper arm and inflated to ~280 mmHg. Significant relative decreases in oxygen saturation (sO2) and total hemoglobin (HbT) were observed during periods of ischemia. Upon release of the occlusion, significant relative increases in sO2 and HbT due to post-occlusive reactive hyperemia were recorded. Experiment 2 explored the vascular response to a local, external thermal stimulus. Thermal hyperemia is a common physiological phenomenon and thermoregulation function in which blood flow to the skin is increased to more efficiently exchange heat with the ambient environment. The forearm of a volunteer was imaged and a single cross-section was monitored while the imaged surface was exposed to an elevated temperature of ~46°C. Due to thermal hyperemia, relative increases in sO2 and HbT were measured as the temperature of the surface was raised. These results may contribute as clinically relevant measures of vascular functioning for detection and assessment of vascular related diseases.

  1. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Tsytsarev, Vassiliy; Liang, Chia-Pin; Akkentli, Fatih; Erzurumlu, Reha S.; Chen, Yu

    2015-11-01

    The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.

  2. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function

    PubMed Central

    Tang, Qinggong; Tsytsarev, Vassiliy; Liang, Chia-Pin; Akkentli, Fatih; Erzurumlu, Reha S.; Chen, Yu

    2015-01-01

    The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures. PMID:26612326

  3. Structure predicts function: Combining non-invasive electrophysiology with in-vivo histology

    PubMed Central

    Helbling, Saskia; Teki, Sundeep; Callaghan, Martina F.; Sedley, William; Mohammadi, Siawoosh; Griffiths, Timothy D.; Weiskopf, Nikolaus; Barnes, Gareth R.

    2015-01-01

    We present an approach for combining high resolution MRI-based myelin mapping with functional information from electroencephalography (EEG) or magnetoencephalography (MEG). The main contribution to the primary currents detectable with EEG and MEG comes from ionic currents in the apical dendrites of cortical pyramidal cells, aligned perpendicularly to the local cortical surface. We provide evidence from an in-vivo experiment that the variation in MRI-based myeloarchitecture measures across the cortex predicts the variation of the current density over individuals and thus is of functional relevance. Equivalent current dipole locations and moments due to pitch onset evoked response fields (ERFs) were estimated by means of a variational Bayesian algorithm. The myeloarchitecture was estimated indirectly from individual high resolution quantitative multi-parameter maps (MPMs) acquired at 800 μm isotropic resolution. Myelin estimates across cortical areas correlated positively with dipole magnitude. This correlation was spatially specific: regions of interest in the auditory cortex provided significantly better models than those covering whole hemispheres. Based on the MPM data we identified the auditory cortical area TE1.2 as the most likely origin of the pitch ERFs measured by MEG. We can now proceed to exploit the higher spatial resolution of quantitative MPMs to identify the cortical origin of M/EEG signals, inform M/EEG source reconstruction and explore structure–function relationships at a fine structural level in the living human brain. PMID:25529007

  4. Structure predicts function: combining non-invasive electrophysiology with in-vivo histology.

    PubMed

    Helbling, Saskia; Teki, Sundeep; Callaghan, Martina F; Sedley, William; Mohammadi, Siawoosh; Griffiths, Timothy D; Weiskopf, Nikolaus; Barnes, Gareth R

    2015-03-01

    We present an approach for combining high resolution MRI-based myelin mapping with functional information from electroencephalography (EEG) or magnetoencephalography (MEG). The main contribution to the primary currents detectable with EEG and MEG comes from ionic currents in the apical dendrites of cortical pyramidal cells, aligned perpendicularly to the local cortical surface. We provide evidence from an in-vivo experiment that the variation in MRI-based myeloarchitecture measures across the cortex predicts the variation of the current density over individuals and thus is of functional relevance. Equivalent current dipole locations and moments due to pitch onset evoked response fields (ERFs) were estimated by means of a variational Bayesian algorithm. The myeloarchitecture was estimated indirectly from individual high resolution quantitative multi-parameter maps (MPMs) acquired at 800μm isotropic resolution. Myelin estimates across cortical areas correlated positively with dipole magnitude. This correlation was spatially specific: regions of interest in the auditory cortex provided significantly better models than those covering whole hemispheres. Based on the MPM data we identified the auditory cortical area TE1.2 as the most likely origin of the pitch ERFs measured by MEG. We can now proceed to exploit the higher spatial resolution of quantitative MPMs to identify the cortical origin of M/EEG signals, inform M/EEG source reconstruction and explore structure-function relationships at a fine structural level in the living human brain. PMID:25529007

  5. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  6. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening

    PubMed Central

    Guo, Yongyuan; Hu, Beibei; Tang, Chu; Wu, Yunpeng; Sun, Pengfei; Zhang, Xianlong; Jia, Yuhua

    2015-01-01

    Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application. PMID:26229463

  7. Analysis of elastography methods using mathematical and ex vivo data

    NASA Astrophysics Data System (ADS)

    Byram, Brett C.; Wahl, Michael R.; Holmes, David R., III; Lerman, Amir; Robb, Richard A.

    2003-05-01

    Intravascular ultrasound (IVUS) currently has a limited ability to characterize endovascular anatomic properties. IVUS elastography enhances the ability to characterize the biomechanical properties of arterial walls. A mathematical phantom generator was developed based on the characteristics of 30MHz, 64 element IVUS catheter images from excised canine femoral arteries. The difference between high and low-pressure intra-arterial images was modeled using phase shifts. The increase in phase shift occurred randomly, generally at every three pixels in our images. Using mathematical phantoms, different methods for calculating elastograms were quantitatively analyzed. Specifically, the effect of standard cross correlation versus cross correlation of the integral of the inflection characteristics for a given set of data, and the effect of an algorithm utilizing a non-constant kernel, were assessed. The specific methods found to be most accurate on the mathematical phantom data were then applied to ex vivo canine data of a scarred and a healthy artery. The algorithm detected significant differences between these two sets of arterial data. It will be necessary to obtain and analyze several more sets of canine arterial data in order to determine the accuracy and reproducibility of the algorithm.

  8. In vivo analysis of trapeziometacarpal joint kinematics during pinch tasks.

    PubMed

    Kuo, Li-Chieh; Lin, Chien-Ju; Chen, Guan-Po; Jou, I-Ming; Wang, Chien-Kuo; Goryacheva, Irina G; Dosaev, Marat Z; Su, Fong-Chin

    2014-01-01

    This study investigated how the posture of the thumb while performing common pinch movements and the levels of pinch force applied by the thumb affect the arthrokinematics of the trapeziometacarpal joint in vivo. Fifteen subjects performed the pinch tasks at the distal phalange (DP), proximal interphalangeal (PIP) joint, and metacarpophalangeal (MP) joint of the index finger with 0%, 50%, and 80% of maximal pinch forces by a single-axis load cell. 3D images of the thumb were obtained using the computed tomography. The results show that the reference points moved from the central region to the dorsal-radial region when changing from pinching the DP to the MP joint without pinching force being applied. Pinching with 80% of the maximum pinching force resulted in reference points being the closest to the volar-ulnar direction. Significant differences were seen between 0% and 50% of maximum pinch force, as well as between 0% and 80%, when pinching the MP joint in the distal-proximal direction. The effects of posture of the thumb and applied pinch force on the arthrokinematics of the joint were investigated with a 3D model of the trapeziometacarpal joint. Pinching with more than 50% of maximum pinch force might subject this joint to extreme displacement. PMID:24683540

  9. In Vivo Analysis of Trapeziometacarpal Joint Kinematics during Pinch Tasks

    PubMed Central

    Chen, Guan-Po; Jou, I-Ming; Goryacheva, Irina G.; Dosaev, Marat Z.; Su, Fong-Chin

    2014-01-01

    This study investigated how the posture of the thumb while performing common pinch movements and the levels of pinch force applied by the thumb affect the arthrokinematics of the trapeziometacarpal joint in vivo. Fifteen subjects performed the pinch tasks at the distal phalange (DP), proximal interphalangeal (PIP) joint, and metacarpophalangeal (MP) joint of the index finger with 0%, 50%, and 80% of maximal pinch forces by a single-axis load cell. 3D images of the thumb were obtained using the computed tomography. The results show that the reference points moved from the central region to the dorsal-radial region when changing from pinching the DP to the MP joint without pinching force being applied. Pinching with 80% of the maximum pinching force resulted in reference points being the closest to the volar-ulnar direction. Significant differences were seen between 0% and 50% of maximum pinch force, as well as between 0% and 80%, when pinching the MP joint in the distal-proximal direction. The effects of posture of the thumb and applied pinch force on the arthrokinematics of the joint were investigated with a 3D model of the trapeziometacarpal joint. Pinching with more than 50% of maximum pinch force might subject this joint to extreme displacement. PMID:24683540

  10. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    NASA Astrophysics Data System (ADS)

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-08-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

  11. Improving the signal analysis for in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin

    2015-03-01

    At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.

  12. Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

    PubMed

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  13. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    PubMed Central

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  14. Structure and function analysis of protein–nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein–nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  15. Functional Techniques for Data Analysis

    NASA Technical Reports Server (NTRS)

    Tomlinson, John R.

    1997-01-01

    This dissertation develops a new general method of solving Prony's problem. Two special cases of this new method have been developed previously. They are the Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they are instances of a more general solution type which allows a wide ranging class of linear functional to be used in the solution of the problem. This class provides a continuum of functionals which provide new methods that can be used to solve Prony's problem.

  16. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.

    PubMed

    Cheung, Karen C; Renaud, Philippe; Tanila, Heikki; Djupsund, Kaj

    2007-03-15

    This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source - sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures. PMID:17027251

  17. Relationship between in vitro sperm functional tests and in vivo fertility of rams following cervical artificial insemination of ewes with frozen-thawed semen.

    PubMed

    O' Meara, C M; Hanrahan, J P; Prathalingam, N S; Owen, J S; Donovan, A; Fair, S; Ward, F; Wade, M; Evans, A C O; Lonergan, P

    2008-03-01

    Several procedures have been proposed to assess structural and functional characteristics of cryopreserved ram semen but none so far have yielded consistent relationships with in vivo fertility. The objectives of this study were to evaluate several sperm function tests as potential markers of in vivo ram fertility (determined by pregnancy rate in ewes) using frozen-thawed semen. In experiment 1, frozen-thawed straws (n=3 per ram) of semen from three high and three low fertility rams were assessed using fluorescent microscopy for (1) progressive motility, (2) viability and, (3) acrosomal status. In experiment 2, frozen-thawed straws (n=3 per ram) of semen from 18 rams of known fertility were analysed using either computer-assisted sperm analysis (CASA) for eight motion characteristics or flow cytometric staining for: (1) viability and acrosomal status, (2) plasma membrane status and capacitation-like changes, and (3) live cells following an osmotic resistance test (ORT). In experiment 3, platelet-activating factor (PAF) was isolated from straws (n=2 per ram) of semen using high-pressure liquid chromatography (HPLC) and quantified using HPLC-tandem mass spectrometry for 18 rams. In experiment 1, no association was found between motility, viability (% live) or acrosomal status (% damaged, % intact and % reacted) and in vivo fertility. In experiment 2, no correlation was found between motility (CASA), viability (% live), acrosomal status (% live, % live intact and % reacted), capacitation status (% capacitated, % non-capacitated), plasma membrane stability (% dead) and % live cells following ORT and ram in vivo fertility. In experiment 3, there was no relationship between PAF content in spermatozoa and ram fertility. In conclusion, we were unable to relate the in vivo fertility of rams with in vitro functional tests of their frozen-thawed semen and suggest that the fertility of a given semen sample cannot easily be quantified using available in vitro tests. PMID

  18. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics.

    PubMed

    Liu, Yongjian; Ibricevic, Aida; Cohen, Joel A; Cohen, Jessica L; Gunsten, Sean P; Fréchet, Jean M J; Walter, Michael J; Welch, Michael J; Brody, Steven L

    2009-01-01

    Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well-defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg(9)), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1-5 microm diameter) and nanoparticles (20-40 nm diameter) without and with Arg(9) showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but, unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg(9) and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg(9). Whereas microparticles may be advantageous for short-term applications, nanosized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg(9). Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling. PMID:19852512

  19. Molecular organization and in vivo function of the cytoskeleton of amphibian erythrocytes.

    PubMed

    Lee, Kyeng Gea; Kerr, Louis M; Cohen, William D

    2007-08-01

    One prominent cytoskeletal feature of non-mammalian vertebrate erythrocytes is the marginal band (MB), composed of microtubules. However, there have been several reports of MB-associated F-actin. We have further investigated the function of MB-associated F-actin, using newt erythrocytes having large, thick MBs. Confocal microscopy revealed a distinctive band of F-actin colocalizing point- by-point with MB microtubules. Furthermore, the F-actin band was present in isolated elliptical MBs, but absent in membrane skeletons lacking MBs. F-actin depolymerizing agents did not affect F-actin band integrity in isolated MBs, indicating its non-dynamic state. However, exposure to elastase resulted in F-actin removal and MB circularization. These results provide evidence of a strong association of F-actin with MB microtubules in mature ellipsoidal erythrocytes. To assess the true extent of mechanical stress on the cytoskeleton, erythrocytes were observed by video microscopy during flow in vivo. Moving with long axis parallel to flow direction, cells underwent reversible shape distortion as they collided vigorously with other erythrocytes and vessel walls. In addition, cells twisted into figure-8 shapes, a cytoskeletal property that may provide physiological advantages during flow. Our results, together with those of others, yield a consistent picture in which developing erythrocytes undergo transition from spheroids to immature discoids to mature ellipsoids. The causal step in discoid formation is biogenesis of circular MBs with sufficient flexural rigidity to determine cell shape. F-actin binding to MB microtubules then creates a composite system, enhancing flexural rigidity to produce and maintain ellipsoidal shape during the physical challenges of blood flow in vivo. PMID:17508361

  20. Function and viability of human islets encapsulated in alginate sheets: in vitro and in vivo culture.

    PubMed

    Lamb, M; Storrs, R; Li, S; Liang, O; Laugenour, K; Dorian, R; Chapman, D; Ichii, H; Imagawa, D; Foster, C; King, S; Lakey, J R T

    2011-11-01

    Islet encapsulation offers an immune system barrier for islet transplantation, and encapsulation within an alginate sheetlike structure offers the ability to be retrievable after transplanted. This study aims to show that human islets encapsulated into islet sheets remain functional and viable after 8 weeks in culture or when transplanted into the subcutaneous space of rats. Human islets were isolated from cadaveric organs. Dissociation and purification were done using enzymatic digestion and a continuous Ficoll-UWD gradient. Purified human islets were encapsulated in alginate sheets. Human Islet sheets were either kept in culture, at 37°C and 5% CO(2), or transplanted subcutaneously into Lewis rats. After 1, 2, 4, and 8 weeks, the human islet sheets were retrieved from the rats and assessed. The viability of the sheets was measured using fluorescein diacetate (FDA)/propidium iodide (PI), and function was measured through glucose-stimulated insulin release, in which the sheets were incubated for an hour in low-glucose concentration (2.8 mmol/L) and then high (28 mmol/L), then high (28 mmol/L) plus 3-isobutyl-1-methylxanthine (50 μm). Human islet sheets remained both viable, above 70%, and functional, with a stimulation index (insulin secretion in high glucose divided by insulin secretion in low glucose) above 1.5, over 8 weeks of culture or subcutaneous transplantation. Islet transplantation continues to make advances in the treatment of type 1 diabetes. These preliminary results suggest that encapsulated islets sheets can survive and maintain islet viability and function in vivo, within the subcutaneous region. PMID:22099772

  1. In vivo mapping of the functional regions of the DEAD-box helicase Vasa

    PubMed Central

    Dehghani, Mehrnoush; Lasko, Paul

    2015-01-01

    The maternally expressed Drosophila melanogaster DEAD-box helicase Vasa (Vas) is necessary for many cellular and developmental processes, including specification of primordial germ cells (pole cells), posterior patterning of the embryo, piRNA-mediated repression of transposon-encoded mRNAs, translational activation of gurken (grk) mRNA, and completion of oogenesis itself. Vas protein accumulates in the perinuclear nuage in nurse cells soon after their specification, and then at stage 10 Vas translocates to the posterior pole plasm of the oocyte. We produced a series of transgenic constructs encoding eGFP-Vas proteins carrying mutations affecting different regions of the protein, and analyzed in vivo which Vas functions each could support. We identified novel domains in the N- and C-terminal regions of the protein that are essential for localization, transposon repression, posterior patterning, and pole cell specification. One such functional region, the most C-terminal seven amino acids, is specific to Vas orthologues and is thus critical to distinguishing Vas from other closely related DEAD-box helicases. Surprisingly, we also found that many eGFP-Vas proteins carrying mutations that would be expected to abrogate DEAD-box helicase function localized to the nuage and posterior pole, and retained the capacity to support oogenesis, although they did not function in embryonic patterning, pole cell specification, grk activation, or transposon repression. We conclude from these experiments that Vas, a multifunctional protein, uses different domains and different molecular associations to carry out its various cellular and developmental roles. PMID:25795910

  2. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae.

    PubMed

    Martin, Brit L; Gallagher, Thomas L; Rastogi, Neha; Davis, Jonathan P; Beattie, Christine E; Amacher, Sharon L; Janssen, Paul M L

    2015-10-01

    The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input. PMID:26251513

  3. In vivo mapping of the functional regions of the DEAD-box helicase Vasa.

    PubMed

    Dehghani, Mehrnoush; Lasko, Paul

    2015-01-01

    The maternally expressed Drosophila melanogaster DEAD-box helicase Vasa (Vas) is necessary for many cellular and developmental processes, including specification of primordial germ cells (pole cells), posterior patterning of the embryo, piRNA-mediated repression of transposon-encoded mRNAs, translational activation of gurken (grk) mRNA, and completion of oogenesis itself. Vas protein accumulates in the perinuclear nuage in nurse cells soon after their specification, and then at stage 10 Vas translocates to the posterior pole plasm of the oocyte. We produced a series of transgenic constructs encoding eGFP-Vas proteins carrying mutations affecting different regions of the protein, and analyzed in vivo which Vas functions each could support. We identified novel domains in the N- and C-terminal regions of the protein that are essential for localization, transposon repression, posterior patterning, and pole cell specification. One such functional region, the most C-terminal seven amino acids, is specific to Vas orthologues and is thus critical to distinguishing Vas from other closely related DEAD-box helicases. Surprisingly, we also found that many eGFP-Vas proteins carrying mutations that would be expected to abrogate DEAD-box helicase function localized to the nuage and posterior pole, and retained the capacity to support oogenesis, although they did not function in embryonic patterning, pole cell specification, grk activation, or transposon repression. We conclude from these experiments that Vas, a multifunctional protein, uses different domains and different molecular associations to carry out its various cellular and developmental roles. PMID:25795910

  4. Bridging the gap: functional healing of embryonic small intestine ex vivo.

    PubMed

    Coletta, Riccardo; Roberts, Neil A; Oltrabella, Francesca; Khalil, Basem A; Morabito, Antonino; Woolf, Adrian S

    2016-02-01

    The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ. Embryonic mouse jejunum was isolated and cut into 2-3 mm tubes, which were placed in pairs, separated by a small gap, on semi-permeable supports. Each pair was linked by a nylon suture threaded through their lumens. After 3 days in organ culture fed by defined serum-free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths. In these healed intestines, peripherin(+) neurons formed a nexus in the zone of fusion, linking the rudiment pairs. In future, this system could be used to test whether growth factors enhance fusion. Such results should in turn inform the design of novel treatments for short bowel syndrome, a potentially fatal condition with a currently limited and imperfect range of therapies. PMID:26234729

  5. Truncated HP1 lacking a functional chromodomain induces heterochromatinization upon in vivo targeting.

    PubMed

    Brink, Maartje C; van der Velden, Yme; de Leeuw, Wim; Mateos-Langerak, Julio; Belmont, Andrew S; van Driel, Roel; Verschure, Pernette J

    2006-01-01

    Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1alpha and HP1beta to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1alpha or HP1beta we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1alpha and HP1beta to the chromosome region. We show that CD-less HP1alpha can induce chromatin condensation, whereas the effect of truncated HP1beta is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1alpha and HP1beta without a functional CD are able to induce heterochromatinization. PMID:16283356

  6. Polyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Rheumatoid Arthritis

    PubMed Central

    Vonnemann, Jonathan; Beziere, Nicolas; Böttcher, Christoph; Riese, Sebastian B.; Kuehne, Christian; Dernedde, Jens; Licha, Kai; von Schacky, Claudio; Kosanke, Yvonne; Kimm, Melanie; Meier, Reinhard; Ntziachristos, Vasilis; Haag, Rainer

    2014-01-01

    We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied. PMID:24723984

  7. Effects of altered ventilatory patterns of rabbit pulmonary endothelial angiotensin converting enzyme function, in vivo

    SciTech Connect

    Toivonen, H.J.; Catravas, J.D.

    1986-03-01

    Because alveolar pressure can influence pulmonary blood flow, volume and surface area, the authors have studied the effects of airway pressure on endothelial angiotensin converting enzyme (ACE) function in rabbit lungs in vivo, utilizing indicator dilution techniques with /sup 3/H-Benzoyl-Phe-Ala-Pro (BPAP) as substate. Static inclation of the lungs to a pressure of 0 or 5 mmHg did not change percent transpulmonary metabolism and Amax/Km ratio in comparison to control measurements during conventional mechanical ventilation. When the inflation pressure was increased to 10 mmHg, percent metabolism of /sup 3/H-BPAP remained unaltered but Amax/Km decreased over 40% from control. This decrease was in close relation to the reduction in pulmonary blood flow. Addition of 5 cm H/sub 2/O positive end-expiratory pressure (PEEP) to the mechanical ventilation also decreased Amax/Km values and pulmonary blood flow but did not influence percent metabolism of /sup 3/H-BPAP. These results suggest that the detected alterations in ACE kinetics were more likely due to hemodynamic changes than enzyme dysfunction. The authors propose that high static alveolar pressures as well as PEEP did not affect angiotensin converting enzyme function, but reduced the fraction of perfused microvessels reflected in changes in Amax/Km ratios.

  8. Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo.

    PubMed

    Lease, Richard A; Arluison, Véronique; Lavelle, Christophe

    2012-03-01

    The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA-RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self-self) or heteromeric (self-nonself) RNA-RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA-RNA self-assembly. PMID:23914307

  9. In vivo effects of eltrombopag on platelet function in immune thrombocytopenia: no evidence of platelet activation

    PubMed Central

    Psaila, Bethan; Bussel, James B.; Linden, Matthew D.; Babula, Bracken; Li, Youfu; Barnard, Marc R.; Tate, Chinara; Mathur, Kanika; Frelinger, Andrew L.

    2012-01-01

    The effects of eltrombopag, a thrombopoietin-receptor agonist, on platelet function in immune thrombocytopenia (ITP) are not fully characterized. This study used whole blood flow cytometry to examine platelet function in 20 patients receiving eltrombopag treatment at days 0, 7, and 28. Platelet surface expression of activated GPIIb/IIIa, P-selectin, and GPIb was measured with and without low and high adenosine diphosphate (ADP) and thrombin receptor activating peptide (TRAP) concentrations. Before eltrombopag treatment with no ex vivo agonist, platelet activation was higher in ITP patients than controls. Platelet GPIb and activated GPIIb/IIIa expression without added agonist was unchanged following eltrombopag treatment, whereas a slight increase in P-selectin was observed. Expression of P-selectin and activated GPIIb/IIIa in response to high-dose ADP was lower during eltrombopag treatment than at baseline. Eltrombopag led to a slight increase in platelet reactivity to TRAP only in responders to eltrombopag but not to levels above those in controls; whole blood experiments demonstrated that this increase was probably because of higher platelet counts rather than higher platelet reactivity. In conclusion, although thrombocytopenic ITP patients have higher baseline platelet activation than controls, eltrombopag did not cause platelet activation or hyper-reactivity, irrespective of whether the platelet count increased. PMID:22294727

  10. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development. PMID:26700795

  11. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.

    PubMed

    Risal, Sanjiv; Adhikari, Deepak; Liu, Kui

    2016-01-01

    Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable. PMID:26231715

  12. In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin.

    PubMed

    Lark, Arianna R; Kitamoto, Toshihiro; Martin, Jean-René

    2016-01-01

    Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca(2+)-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and - with the addition of its cofactor coelenterazine - emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca(2+)-transients and Ca(2+)-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca(2+)-activity within the mushroom bodies, a structure central to learning and memory in the fly brain. PMID:26779599

  13. Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo

    PubMed Central

    Lease, Richard A.; Arluison, Véronique; Lavelle, Christophe

    2013-01-01

    The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly. PMID:23914307

  14. In Vivo Function of PTEX88 in Malaria Parasite Sequestration and Virulence.

    PubMed

    Matz, Joachim M; Ingmundson, Alyssa; Costa Nunes, Jean; Stenzel, Werner; Matuschewski, Kai; Kooij, Taco W A

    2015-06-01

    Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies. PMID:25820521

  15. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  16. In vivo analysis of intestinal permeability following hemorrhagic shock

    PubMed Central

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  17. Predicting In Vivo Responses to Biomaterials via Combined In Vitro and In Silico Analysis

    PubMed Central

    Wolf, Matthew T.; Vodovotz, Yoram; Tottey, Stephen; Brown, Bryan N.

    2015-01-01

    The host response to both synthetic and biologically derived biomaterials is a temporally regulated, complex process that involves multiple interacting cell types. This complexity has classically limited the efficacy of in vitro assays for predicting the in vivo outcome, necessitating the use of costly animal models for biomaterial development. The present study addressed these challenges by developing an in vitro assay that characterized the dynamic inflammatory response of human monocyte-derived-macrophages to biomaterials, coupled with quasi-mechanistic analysis in silico analysis: principal component analysis (PCA) and dynamic network analysis (DyNA). Synthetic and extracellular matrix (ECM)–derived materials were evaluated using this method, and were then associated with the in vivo remodeling and macrophage polarization response in a rodent skeletal muscle injury model. PCA and DyNA revealed a distinct in vitro macrophage response to ECM materials that corresponded to constructive remodeling and an increased M2 macrophage presence in vivo. In contrast, PCA and DyNA suggested a response to crosslinked ECM and synthetic materials characteristic of a foreign body reaction and dominant M1 macrophage response. These results suggest that in silico analysis of an in vitro macrophage assay may be useful as a predictor for determining the in vivo host response to implanted biomaterials. PMID:24980950

  18. Separate and combined effects of a 10-d exposure to hypoxia and inactivity on oxidative function in vivo and mitochondrial respiration ex vivo in humans.

    PubMed

    Salvadego, Desy; Keramidas, Michail E; Brocca, Lorenza; Domenis, Rossana; Mavelli, Irene; Rittweger, Jörn; Eiken, Ola; Mekjavic, Igor B; Grassi, Bruno

    2016-07-01

    An integrative evaluation of oxidative metabolism was carried out in 9 healthy young men (age, 24.1 ± 1.7 yr mean ± SD) before (CTRL) and after a 10-day horizontal bed rest carried out in normoxia (N-BR) or hypoxia (H-BR, FiO2 = 0.147). H-BR was designed to simulate planetary habitats. Pulmonary O2 uptake (V̇o2) and vastus lateralis fractional O2 extraction (changes in deoxygenated hemoglobin+myoglobin concentration, Δ[deoxy(Hb+Mb)] evaluated using near-infrared spectroscopy) were evaluated in normoxia and during an incremental cycle ergometer (CE) and one-leg knee extension (KE) exercise (aimed at reducing cardiovascular constraints to oxidative function). Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers. During CE V̇o2peak and Δ[deoxy(Hb+Mb)]peak were lower (P < 0.05) after both N-BR and H-BR than during CTRL; during KE the variables were lower after N-BR but not after H-BR. During CE the overshoot of Δ[deoxy(Hb+Mb)] during constant work rate exercise was greater in N-BR and H-BR than CTRL, whereas during KE a significant difference vs. CTRL was observed only after N-BR. Maximal mitochondrial respiration determined ex vivo was not affected by either intervention. In N-BR, a significant impairment of oxidative metabolism occurred downstream of central cardiovascular O2 delivery and upstream of mitochondrial function, possibly at the level of the intramuscular matching between O2 supply and utilization and peripheral O2 diffusion. Superposition of hypoxia on bed rest did not aggravate, and partially reversed, the impairment of muscle oxidative function in vivo induced by bed rest. The effects of longer exposures will have to be determined. PMID:27197861

  19. The past, present, and future of x-ray technology for in vivo imaging of function and form

    SciTech Connect

    Fouras, A.; Dubsky, S.; Hourigan, K.; Kitchen, M. J.; Lewis, R. A.; Hooper, S. B.

    2009-05-15

    Scientists and clinicians have a keen interest in studying not just the structure of physiological systems, but their motion also, or more generally their form and function. This paper focuses on the technologies that underpin in vivo measurements of form and function of the human body for both research and medical treatment. A concise literature review of x-ray imaging, ultrasonography, magnetic resonance imaging, radionuclide imaging, laser Doppler velocimetry, and particle image velocimetry is presented. Additionally, a more detailed review of in vivo x-ray imaging is presented. Finally, two techniques, which the authors believe are representative of the present and future of in vivo x-ray imaging techniques, are presented.

  20. Stomatin-Like Protein 2 Is Required for In Vivo Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function

    PubMed Central

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D.; Langer, Thomas

    2015-01-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. PMID:25776552

  1. A proposed multidimensional analysis function

    NASA Astrophysics Data System (ADS)

    Knight, Byron F.; Hamilton, Mark K.

    2003-08-01

    Previous work has suggested a potential value in the combination of physical property data types (e.g. magnetic and terrain slope) when searching for oil and mineral deposits. This work studies a notional multi-dimensional function to determine the likelihood of finding such deposits. Additionally, this hypothesis assumes some basic requirements must be meet in order to validate this function. The standard for determining the value of commercially gathered electro optical imagery is the same as with any optical system -- the ability to determine object in the field of view. Further, this function is defined as the ability to determine the presence of two parallel lines, vice only one. The National Imagery and Mapping Agency (NIMA) uses a function called Digital Terrain Elevation Data (DTED) to determine the elevation within a field of view. The DTED values for each pixel within a digital, commercial image can be considered similar to a gradient, whereby higher values are merely higher elevations. For the commercial electro optical system IKONOS (owned by Space Imaging, Inc.), the "resolution" is commonly referred to as 1 meter, which is the least discernable, parallel-line, separation distance. This hypothesis uses gravity and magnetic data to augment the DTED "gradient". As with the terrain values on the earth, gravity and magnetic values are continuously changing. Further, they can change for various reasons. Both are greatly affected by the changes in the subsurface materials, or the density of the soil and metallic content (e.g. iron). It is precisely these variations, through the combination of such differing forms of data, which can help determine the presence of oil and mineral deposits. The core of this work is a notional function development. Previous peer review has rightly pointed out that data fusion principles state that data must be commensurable before it can be fused. This work does not attempt to redefine data fusion concepts, but merely establish

  2. Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation

    PubMed Central

    Schick, Martin Alexander; Baar, Wolfgang; Bruno, Raphael Romano; Wollborn, Jakob; Held, Christopher; Schneider, Reinhard; Flemming, Sven; Schlegel, Nicolas; Roewer, Norbert; Neuhaus, Winfried; Wunder, Christian

    2015-01-01

    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion. PMID:26340751

  3. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo

    PubMed Central

    Najm, Fadi J.; Madhavan, Mayur; Zaremba, Anita; Shick, Elizabeth; Karl, Robert T.; Factor, Daniel C.; Miller, Tyler E.; Nevin, Zachary S.; Kantor, Christopher; Sargent, Alex; Quick, Kevin L.; Schlatzer, Daniela M.; Tang, Hong; Papoian, Ruben; Brimacombe, Kyle R.; Shen, Min; Boxer, Matthew B.; Jadhav, Ajit; Robinson, Andrew P.; Podojil, Joseph R.; Miller, Stephen D.; Miller, Robert H.; Tesar, Paul J.

    2015-01-01

    Multiple sclerosis (MS) involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system (CNS). Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells (OPCs) are stem cells in the CNS and the principal source of myelinating oligodendrocytes1. OPCs are abundant in demyelinated regions of MS patients, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention2. To discover therapeutic compounds for enhancing myelination from endogenous OPCs, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem cell (EpiSC)-derived OPCs3–5. We identified seven drugs that functioned at nanomolar doses to selectively enhance the generation of mature oligodendrocytes from OPCs in vitro. Two drugs, miconazole and clobetasol, were effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increased the number of new oligodendrocytes and enhanced remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in the experimental autoimmune encephalomyelitis (EAE) mouse model of chronic progressive MS resulted in striking reversal of disease severity. Immune response assays showed that miconazole functioned directly as a remyelinating drug with no effect on the immune system, whereas clobetasol was a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies showed that miconazole and clobetasol functioned in OPCs through mitogen-activated protein kinase (MAPK) and glucocorticoid receptor (GR) signaling, respectively. Furthermore, both drugs enhanced the generation of human

  4. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.

    PubMed

    Najm, Fadi J; Madhavan, Mayur; Zaremba, Anita; Shick, Elizabeth; Karl, Robert T; Factor, Daniel C; Miller, Tyler E; Nevin, Zachary S; Kantor, Christopher; Sargent, Alex; Quick, Kevin L; Schlatzer, Daniela M; Tang, Hong; Papoian, Ruben; Brimacombe, Kyle R; Shen, Min; Boxer, Matthew B; Jadhav, Ajit; Robinson, Andrew P; Podojil, Joseph R; Miller, Stephen D; Miller, Robert H; Tesar, Paul J

    2015-06-11

    Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor

  5. Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation.

    PubMed

    Schick, Martin Alexander; Baar, Wolfgang; Bruno, Raphael Romano; Wollborn, Jakob; Held, Christopher; Schneider, Reinhard; Flemming, Sven; Schlegel, Nicolas; Roewer, Norbert; Neuhaus, Winfried; Wunder, Christian

    2015-01-01

    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6 h. After 24 h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1-4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion. PMID:26340751

  6. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    PubMed

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  7. Transdifferentiation of Fast Skeletal Muscle Into Functional Endothelium in Vivo by Transcription Factor Etv2

    PubMed Central

    Gomez, Gustavo A.; Lindgren, Anne G.; Huang, Haigen; Yang, Hanshuo; Yao, Shaohua; Martin, Benjamin L.; Kimelman, David; Lin, Shuo

    2013-01-01

    Etsrp/Etv2 (Etv2) is an evolutionarily conserved master regulator of vascular development in vertebrates. Etv2 deficiency prevents the proper specification of the endothelial cell lineage, while its overexpression causes expansion of the endothelial cell lineage in the early embryo or in embryonic stem cells. We hypothesized that Etv2 alone is capable of transdifferentiating later somatic cells into endothelial cells. Using heat shock inducible Etv2 transgenic zebrafish, we demonstrate that Etv2 expression alone is sufficient to transdifferentiate fast skeletal muscle cells into functional blood vessels. Following heat treatment, fast skeletal muscle cells turn on vascular genes and repress muscle genes. Time-lapse imaging clearly shows that muscle cells turn on vascular gene expression, undergo dramatic morphological changes, and integrate into the existing vascular network. Lineage tracing and immunostaining confirm that fast skeletal muscle cells are the source of these newly generated vessels. Microangiography and observed blood flow demonstrated that this new vasculature is capable of supporting circulation. Using pharmacological, transgenic, and morpholino approaches, we further establish that the canonical Wnt pathway is important for induction of the transdifferentiation process, whereas the VEGF pathway provides a maturation signal for the endothelial fate. Additionally, overexpression of Etv2 in mammalian myoblast cells, but not in other cell types examined, induced expression of vascular genes. We have demonstrated in zebrafish that expression of Etv2 alone is sufficient to transdifferentiate fast skeletal muscle into functional endothelial cells in vivo. Given the evolutionarily conserved function of this transcription factor and the responsiveness of mammalian myoblasts to Etv2, it is likely that mammalian muscle cells will respond similarly. PMID:23853546

  8. Human whole-blood culture system for ex vivo characterization of designer-cell function.

    PubMed

    Schukur, Lina; Geering, Barbara; Fussenegger, Martin

    2016-03-01

    Encapsulated designer cells implanted into mice are currently used to validate the efficacy of therapeutic gene networks for the diagnosis and treatment of various human diseases in preclinical research. Because many human conditions cannot be adequately replicated by animal models, complementary and alternative procedures to test future treatment strategies are required. Here we describe a novel approach utilizing an ex vivo human whole-blood culture system to validate synthetic biology-inspired designer cell-based treatment strategies. The viability and functionality of transgenic mammalian designer cells co-cultured with primary human immune cells were characterized. We demonstrated that transgenic mammalian designer cells required adequate insulation from the human blood microenvironment to maintain viability and functionality. The biomaterial alginate-(poly-l-lysine)-alginate used to encapsulate the transgenic designer cells did neither affect the viability of primary granulocytes and lymphocytes nor the functionality of lymphocytes. Additionally, alginate-encapsulated transgenic designer cells remained responsive to the release of the pro-inflammatory cytokine tumor necrosis factor (TNF) from the whole-blood culture upon exposure to bacterial lipopolysaccharide (LPS). TNF diffused into the alginate capsules, bound to the specific TNF receptors on the transgenic designer cells' surface and triggered the expression of the reporter gene SEAP (human placental secreted alkaline phosphatase) that was rewired to the TNF-specific signaling cascade. Human whole-blood culture systems can therefore be considered as valuable complementary assays to animal models for the validation of synthetic circuits in genetically modified mammalian cells and may speed up preclinical research in a world of personalized medicine. PMID:26348251

  9. Recovery of macular pigment spectrum in vivo using hyperspectral image analysis

    PubMed Central

    Fawzi, Amani A.; Lee, Noah; Acton, Jennifer H.; Laine, Andrew F.; Smith, R. Theodore

    2011-01-01

    We investigated the feasibility of a novel method for hyperspectral mapping of macular pigment (MP) in vivo. Six healthy subjects were recruited for noninvasive imaging using a snapshot hyperspectral system. The three-dimensional full spatial-spectral data cube was analyzed using non-negative matrix factorization (NMF), wherein the data was decomposed to give spectral signatures and spatial distribution, in search for the MP absorbance spectrum. The NMF was initialized with the in vitro MP spectrum and rank 4 spectral signature decomposition was used to recover the MP spectrum and optical density in vivo. The recovered MP spectra showed two peaks in the blue spectrum, characteristic of MP, giving a detailed in vivo demonstration of these absorbance peaks. The peak MP optical densities ranged from 0.08 to 0.22 (mean 0.15+/−0.05) and became spatially negligible at diameters 1100 to 1760 μm (4 to 6 deg) in the normal subjects. This objective method was able to exploit prior knowledge (the in vitro MP spectrum) in order to extract an accurate in vivo spectral analysis and full MP spatial profile, while separating the MP spectra from other ocular absorbers. Snapshot hyperspectral imaging in combination with advanced mathematical analysis provides a simple cost-effective approach for MP mapping in vivo. PMID:22029355

  10. Recovery of macular pigment spectrum in vivo using hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Fawzi, Amani A.; Lee, Noah; Acton, Jennifer H.; Laine, Andrew F.; Smith, R. Theodore

    2011-10-01

    We investigated the feasibility of a novel method for hyperspectral mapping of macular pigment (MP) in vivo. Six healthy subjects were recruited for noninvasive imaging using a snapshot hyperspectral system. The three-dimensional full spatial-spectral data cube was analyzed using non-negative matrix factorization (NMF), wherein the data was decomposed to give spectral signatures and spatial distribution, in search for the MP absorbance spectrum. The NMF was initialized with the in vitro MP spectrum and rank 4 spectral signature decomposition was used to recover the MP spectrum and optical density in vivo. The recovered MP spectra showed two peaks in the blue spectrum, characteristic of MP, giving a detailed in vivo demonstration of these absorbance peaks. The peak MP optical densities ranged from 0.08 to 0.22 (mean 0.15+/-0.05) and became spatially negligible at diameters 1100 to 1760 μm (4 to 6 deg) in the normal subjects. This objective method was able to exploit prior knowledge (the in vitro MP spectrum) in order to extract an accurate in vivo spectral analysis and full MP spatial profile, while separating the MP spectra from other ocular absorbers. Snapshot hyperspectral imaging in combination with advanced mathematical analysis provides a simple cost-effective approach for MP mapping in vivo.

  11. Regulation of translation in haloarchaea: 5'- and 3'-UTRs are essential and have to functionally interact in vivo.

    PubMed

    Brenneis, Mariam; Soppa, Jörg

    2009-01-01

    Recently a first genome-wide analysis of translational regulation using prokaryotic species had been performed which revealed that regulation of translational efficiency plays an important role in haloarchaea. In fact, the fractions of genes under differential growth phase-dependent translational control in the two species Halobacterium salinarum and Haloferax volcanii were as high as in eukaryotes. However, nothing is known about the mechanisms of translational regulation in archaea. Therefore, two genes exhibiting opposing directions of regulation were selected to unravel the importance of untranslated regions (UTRs) for differential translational control in vivo.Differential translational regulation in exponentially growing versus stationary phase cells was studied by comparing translational efficiencies using a reporter gene system. Translational regulation was not observed when 5'-UTRs or 3'-UTRs alone were fused to the reporter gene. However, their simultaneous presence was sufficient to transfer differential translational control from the native transcript to the reporter transcript. This was true for both directions of translational control. Translational regulation was completely abolished when stem loops in the 5'-UTR were changed by mutagenesis. An "UTR-swap" experiment demonstrated that the direction of translational regulation is encoded in the 3'-UTR, not in the 5'-UTR. While much is known about 5'-UTR-dependent translational control in bacteria, the reported findings provide the first examples that both 5'- and 3'-UTRs are essential and sufficient to drive differential translational regulation in a prokaryote and therefore have to functionally interact in vivo. The current results indicate that 3'-UTR-dependent translational control had already evolved before capping and polyadenylation of transcripts were invented, which are essential for circularization of transcripts in eukaryotes. PMID:19214227

  12. Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of Drosophila mir-279 and mir-996

    PubMed Central

    Sun, Kailiang; Jee, David; de Navas, Luis F.; Duan, Hong; Lai, Eric C.

    2015-01-01

    While most miRNA knockouts exhibit only subtle defects, a handful of miRNAs are profoundly required for development or physiology. A particularly compelling locus is Drosophila mir-279, which was reported as essential to restrict the emergence of CO2-sensing neurons, to maintain circadian rhythm, and to regulate ovarian border cells. The mir-996 locus is located near mir-279 and bears a similar seed, but they otherwise have distinct, conserved, non-seed sequences, suggesting their evolutionary maintenance for separate functions. We generated single and double deletion mutants of the mir-279 and mir-996 hairpins, and cursory analysis suggested that miR-996 was dispensable. However, discrepancies in the strength of individual mir-279 deletion alleles led us to uncover that all extant mir-279 mutants are deficient for mature miR-996, even though they retain its genomic locus. We therefore engineered a panel of genomic rescue transgenes into the double deletion background, allowing a pure assessment of miR-279 and miR-996 requirements. Surprisingly, detailed analyses of viability, olfactory neuron specification, and circadian rhythm indicate that miR-279 is completely dispensable. Instead, an endogenous supply of either mir-279 or mir-996 suffices for normal development and behavior. Sensor tests of nine key miR-279/996 targets showed their similar regulatory capacities, although transgenic gain-of-function experiments indicate partially distinct activities of these miRNAs that may underlie that co-maintenance in genomes. Altogether, we elucidate the unexpected genetics of this critical miRNA operon, and provide a foundation for their further study. More importantly, these studies demonstrate that multiple, vital, loss-of-function phenotypes can be rescued by endogenous expression of divergent seed family members, highlighting the importance of this miRNA region for in vivo function. PMID:26042831

  13. Randomized Controlled Trial of "Mind Reading" and In Vivo Rehearsal for High-Functioning Children with ASD

    ERIC Educational Resources Information Center

    Thomeer, Marcus L.; Smith, Rachael A.; Lopata, Christopher; Volker, Martin A.; Lipinski, Alanna M.; Rodgers, Jonathan D.; McDonald, Christin A.; Lee, Gloria K.

    2015-01-01

    This randomized controlled trial evaluated the efficacy of a computer software (i.e., "Mind Reading") and in vivo rehearsal treatment on the emotion decoding and encoding skills, autism symptoms, and social skills of 43 children, ages 7-12 years with high-functioning autism spectrum disorder (HFASD). Children in treatment (n = 22)…

  14. ANALYSIS OF IN VITRO AND IN VIVO DNA STRAND BREAKS INDUCED BY TRIHALOMETHANES (THMS)

    EPA Science Inventory

    Analysis of In Vitro and In Vivo DNA Strand Breaks Induced by Trihalomethanes (TRMs)

    The THMs are the most widely distributed and the most concentrated of the cWorine disinfection by-products (D BPs) found in finished drinking water. All of the THMs, cWoroform (CHCI3), br...

  15. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  16. Multivariate Analysis of Functional Metagenomes

    PubMed Central

    Dinsdale, Elizabeth A.; Edwards, Robert A.; Bailey, Barbara A.; Tuba, Imre; Akhter, Sajia; McNair, Katelyn; Schmieder, Robert; Apkarian, Naneh; Creek, Michelle; Guan, Eric; Hernandez, Mayra; Isaacs, Katherine; Peterson, Chris; Regh, Todd; Ponomarenko, Vadim

    2013-01-01

    Metagenomics is a primary tool for the description of microbial and viral communities. The sheer magnitude of the data generated in each metagenome makes identifying key differences in the function and taxonomy between communities difficult to elucidate. Here we discuss the application of seven different data mining and statistical analyses by comparing and contrasting the metabolic functions of 212 microbial metagenomes within and between 10 environments. Not all approaches are appropriate for all questions, and researchers should decide which approach addresses their questions. This work demonstrated the use of each approach: for example, random forests provided a robust and enlightening description of both the clustering of metagenomes and the metabolic processes that were important in separating microbial communities from different environments. All analyses identified that the presence of phage genes within the microbial community was a predictor of whether the microbial community was host-associated or free-living. Several analyses identified the subtle differences that occur with environments, such as those seen in different regions of the marine environment. PMID:23579547

  17. Functional integrity of the interrenal tissue of yellow perch from contaminated sites tested in vivo

    SciTech Connect

    Girard, C.; Brodeur, J.C.; Hontela, A.

    1995-12-31

    The normal activation of the hypothalamo-pituitary-interrenal axis (HPI axis) in response to capture is disrupted in fish subjected to life-long exposure to heavy metals, PCBs and PAHs. The ability to increase plasma cortisol in yellow perch (Perca flavescens) from sites contaminated by heavy metals and organic compounds, and from a reference site was assessed by the Capture stress test and by the ACTH Challenge test, a new standardized in vivo method designed for field studies. The effects of seasonal factors, such as temperature and gonadal maturity on these tests were investigated. Measures of liver and muscle glycogen and histopathology were made to further characterize the biochemical and structural changes that may occur along with hormonal changes. The Capture stress test showed that an acute source of stress induced a lower cortisol response in fish from the highly contaminated site compared to the reference site, revealing a functional impairment of the HPI axis. The ACTH Challenge test showed that the hormonal responsiveness of the cortisol-secreting interrenal tissue, stimulated by a standard dose of ACTH injected i.p., was lower in fish from the highly contaminated site than the reference site. Spring is the season during which the impairment was the most evident. The possibility of using the reduced capacity of feral fish to respond to a standardized ACTH Challenge as an early bioindicator of toxic stress is discussed.

  18. Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo.

    PubMed

    Kim, Taekeun; Oh, Won Chan; Choi, Joon Ho; Kwon, Hyung-Bae

    2016-03-01

    During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex. PMID:26903616

  19. A yeast TCP-1-like protein is required for actin function in vivo.

    PubMed Central

    Vinh, D B; Drubin, D G

    1994-01-01

    We previously identified the ANC2 gene in a screen for mutations that enhance the defects caused by yeast actin mutations. Here we report that ANC2 is an essential gene that encodes a member of the TCP-1 family. TCP-1-related proteins are subunits of cytosolic heteromeric protein complexes referred to as chaperonins. These complexes can bind to newly synthesized actin and tubulin in vitro and can convert these proteins into an assembly-competent state. We show that anc2-1 mutants contain abnormal and disorganized actin structures, are defective in cellular morphogenesis, and are hypersensitive to the microtubule inhibitor benomyl. Furthermore, overexpression of wild-type Anc2p ameliorates defects in actin organization and cell growth caused by actin overproduction. Mutations in BIN2 and BIN3, two other genes that encode TCP-1-like proteins, also enhance the phenotypes of actin mutants. Taken together, these findings demonstrate that TCP-1-like proteins are required for actin and tubulin function in vivo. Images PMID:7916461

  20. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  1. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  2. Functional Blocking of Staphylococcus aureus Adhesins following Growth in Ex Vivo Media

    PubMed Central

    Massey, Ruth C.; Dissanayeke, Shobana R.; Cameron, Brian; Ferguson, David; Foster, Timothy J.; Peacock, Sharon J.

    2002-01-01

    Defining the role of Staphylococcus aureus adhesins in disease pathogenesis may depend on the use of bacteria grown in culture media that more closely reflect the human milieu than conventional broth. This study examined the functional effect on S. aureus adhesins following growth in an ex vivo medium containing a complex mixture of human proteins (used peritoneal dialysate) relative to growth in Todd-Hewitt broth. The adherence of S. aureus, cultured in dialysate, to fibronectin and fibrinogen was markedly reduced despite the expresion of full-length ClfA, ClfB, and fibronectin-binding proteins. Growth in dialysate resulted in the acquisition of a surface coat, as visualized by transmission electron microscopy, which was shown to contain fibronectin, fibrinogen, and immunoglobulins. Adherence of S. aureus to fibrinogen following growth in dialysate was significantly reduced by expression of protein A but was restored following growth in immunoglobulin-depleted dialysate. We conclude that bacterial adherence to solid-phase protein is critically dependent on the culture medium, that S. aureus adhesins may become saturated with target protein prior to contact with solid surfaces, and that there is an interaction between fibrinogen-binding proteins and immunoglobulin bound to protein A following contact with host proteins. These findings have important implications for future studies of S. aureus adhesins. PMID:12228257

  3. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. PMID:24445121

  4. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies.

    PubMed

    Di Matteo, Vincenzo; Di Giovanni, Giuseppe; Pierucci, Massimo; Esposito, Ennio

    2008-01-01

    In this review, the functional interactions between serotonin (5-HT) and dopamine (DA) neuronal systems are discussed with the focus on microdialysis studies in the rodent brain (mainly rats). 5-HT by itself is involved both directly and indirectly via actions on complex neuronal circuitry, in the regulation of DA release through multiple 5-HT receptors, playing a critical role in the development of normal and abnormal behaviours. Recent evidence suggests that dysfunction of dopaminergic and serotoninergic neurotransmitter systems contributes to various disorders including depression, schizophrenia, Parkinson's disease and drug abuse. Here we summarize recent neurochemical works that have extensively explored the role of 5-HT receptors in the control of DA central systems in both basal and drug-induced conditions, using in vivo microdialytic techniques. Several 5-HT receptor subtypes, including the 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(3) and 5-HT(4) receptors, act to facilitate DA release, while the 5-HT(2C) receptor mediates an inhibitory effect of 5-HT on DA release. Taken together, neurochemical approaches using microdialysis can not only contribute to clarification of the physiological role of the serotonergic neuronal systems but may also be a powerful pharmacological approach for the development of therapeutic strategies to the treatment of depression, schizophrenia, Parkinson's disease and drug abuse. PMID:18772026

  5. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  6. Sensitivity analysis of near-infrared functional lymphatic imaging

    NASA Astrophysics Data System (ADS)

    Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon

    2012-06-01

    Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.

  7. Transcriptome Analysis in Chicken Cecal Epithelia upon Infection by Eimeria tenella In Vivo

    PubMed Central

    Guo, Aijiang; Cai, Jianping; Gong, Wei; Yan, Hongbin; Luo, Xuenong; Tian, Guangfu; Zhang, Shaohua; Zhang, Haili; Zhu, Guan; Cai, Xuepeng

    2013-01-01

    Coccidiosis, caused by various Eimeria species, is a major parasitic disease in chickens. However, our understanding on how chickens respond to coccidian infection is highly limited at both molecular and cellular levels. The present study employed the Affymetrix chicken genome array and performed transcriptome analysis on chicken cecal epithelia in response to infection for 4.5 days in vivo by the cecal-specific species E. tenella. By Significance Analysis of Microarrays (SAM), we have identified 7,099 probe sets with q-values at <0.05, in which 4,033 and 3,066 genes were found to be up- or down-regulated in response to parasite infection. The reliability of the microarray data were validated by real-time qRT-PCR of 20 genes with varied fold changes in expression (i.e., correlation coefficient between microarray and qRT-PCR datasets: R2 = 0.8773, p<0.0001). Gene ontology analysis, KEGG pathway mapping and manual annotations of regulated genes indicated that up-regulated genes were mainly involved in immunity/defense, responses to various stimuli, apoptosis/cell death and differentiation, signal transduction and extracellular matrix (ECM), whereas down-regulated genes were mainly encoding general metabolic enzymes, membrane components, and some transporters. Chickens mustered complex cecal eipthelia molecular and immunological responses in response to E. tenella infection, which included pathways involved in cytokine production and interactions, natural killer cell mediated cytotoxicity, and intestinal IgA production. In response to the pathogenesis and damage caused by infection, chicken cecal epithelia reduced general metabolism, DNA replication and repair, protein degradation, and mitochondrial functions. PMID:23737974

  8. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo.

    PubMed

    Koechlein, Claire S; Harris, Jeffrey R; Lee, Timothy K; Weeks, Joi; Fox, Raymond G; Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Jung, Seung-Hye; Chute, John P; Chourasia, Amit; Covert, Markus W; Reya, Tannishtha

    2016-01-01

    Although we know a great deal about the phenotype and function of haematopoietic stem/progenitor cells, a major challenge has been mapping their dynamic behaviour within living systems. Here we describe a strategy to image cells in vivo with high spatial and temporal resolution, and quantify their interactions using a high-throughput computational approach. Using these tools, and a new Msi2 reporter model, we show that haematopoietic stem/progenitor cells display preferential spatial affinity for contacting the vascular niche, and a temporal affinity for making stable associations with these cells. These preferences are markedly diminished as cells mature, suggesting that programs that control differentiation state are key determinants of spatiotemporal behaviour, and thus dictate the signals a cell receives from specific microenvironmental domains. These collectively demonstrate that high-resolution imaging coupled with computational analysis can provide new biological insight, and may in the long term enable creation of a dynamic atlas of cells within their native microenvironment. PMID:27425143

  9. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo

    PubMed Central

    Koechlein, Claire S.; Harris, Jeffrey R.; Lee, Timothy K.; Weeks, Joi; Fox, Raymond G.; Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Jung, Seung-Hye; Chute, John P.; Chourasia, Amit; Covert, Markus W.; Reya, Tannishtha

    2016-01-01

    Although we know a great deal about the phenotype and function of haematopoietic stem/progenitor cells, a major challenge has been mapping their dynamic behaviour within living systems. Here we describe a strategy to image cells in vivo with high spatial and temporal resolution, and quantify their interactions using a high-throughput computational approach. Using these tools, and a new Msi2 reporter model, we show that haematopoietic stem/progenitor cells display preferential spatial affinity for contacting the vascular niche, and a temporal affinity for making stable associations with these cells. These preferences are markedly diminished as cells mature, suggesting that programs that control differentiation state are key determinants of spatiotemporal behaviour, and thus dictate the signals a cell receives from specific microenvironmental domains. These collectively demonstrate that high-resolution imaging coupled with computational analysis can provide new biological insight, and may in the long term enable creation of a dynamic atlas of cells within their native microenvironment. PMID:27425143

  10. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    SciTech Connect

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro; Bartolome, Maria Visitacion; Fernandes, Aurelia Araujo; Cachofeiro, Victoria; Lahera, Vicente; Salaices, Mercedes; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2011-09-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small

  11. Bridging the gap: functional healing of embryonic small intestine ex vivo

    PubMed Central

    Coletta, Riccardo; Roberts, Neil A.; Oltrabella, Francesca; Khalil, Basem A.; Morabito, Antonino

    2015-01-01

    Abstract The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ. Embryonic mouse jejunum was isolated and cut into 2–3 mm tubes, which were placed in pairs, separated by a small gap, on semi‐permeable supports. Each pair was linked by a nylon suture threaded through their lumens. After 3 days in organ culture fed by defined serum‐free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths. In these healed intestines, peripherin+ neurons formed a nexus in the zone of fusion, linking the rudiment pairs. In future, this system could be used to test whether growth factors enhance fusion. Such results should in turn inform the design of novel treatments for short bowel syndrome, a potentially fatal condition with a currently limited and imperfect range of therapies. ©2015. The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd PMID:26234729

  12. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.

    PubMed

    van den Broek, N M A; Ciapaite, J; Nicolay, K; Prompers, J J

    2010-11-01

    (31)P magnetic resonance spectroscopy (MRS) has been used to assess skeletal muscle mitochondrial function in vivo by measuring 1) phosphocreatine (PCr) recovery after exercise or 2) resting ATP synthesis flux with saturation transfer (ST). In this study, we compared both parameters in a rat model of mitochondrial dysfunction with the aim of establishing the most appropriate method for the assessment of in vivo muscle mitochondrial function. Mitochondrial dysfunction was induced in adult Wistar rats by daily subcutaneous injections with the complex I inhibitor diphenyleneiodonium (DPI) for 2 wk. In vivo (31)P MRS measurements were supplemented by in vitro measurements of oxygen consumption in isolated mitochondria. Two weeks of DPI treatment induced mitochondrial dysfunction, as evidenced by a 20% lower maximal ADP-stimulated oxygen consumption rate in isolated mitochondria from DPI-treated rats oxidizing pyruvate plus malate. This was paralleled by a 46% decrease in in vivo oxidative capacity, determined from postexercise PCr recovery. Interestingly, no significant difference in resting, ST-based ATP synthesis flux was observed between DPI-treated rats and controls. These results show that PCr recovery after exercise has a more direct relationship with skeletal muscle mitochondrial function than the ATP synthesis flux measured with (31)P ST MRS in the resting state. PMID:20668212

  13. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  14. Optimized design and analysis of preclinical intervention studies in vivo

    PubMed Central

    Laajala, Teemu D.; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  15. Optimized design and analysis of preclinical intervention studies in vivo.

    PubMed

    Laajala, Teemu D; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  16. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  17. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans.

    PubMed

    Sarov, Mihail; Murray, John I; Schanze, Kristin; Pozniakovski, Andrei; Niu, Wei; Angermann, Karolin; Hasse, Susanne; Rupprecht, Michaela; Vinis, Elisabeth; Tinney, Matthew; Preston, Elicia; Zinke, Andrea; Enst, Susanne; Teichgraber, Tina; Janette, Judith; Reis, Kadri; Janosch, Stephan; Schloissnig, Siegfried; Ejsmont, Radoslaw K; Slightam, Cindie; Xu, Xiao; Kim, Stuart K; Reinke, Valerie; Stewart, A Francis; Snyder, Michael; Waterston, Robert H; Hyman, Anthony A

    2012-08-17

    Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins. PMID:22901814

  18. Detection of low-amplitude in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; T'so, Dan; Pattichis, Marios; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter

    2006-02-01

    In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with today's clinical instruments. Many of today's instruments focus on detecting changes in anatomical structures, such as the nerve fiber layer. Our device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. The functional imager uses a patterned stimulus at wavelength of 535nm. An intrinsic functional signal is collected at a near infrared wavelength. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by imaging system noise. In this paper, we analyze the video sequences from a set of 60 experiments with different patterned stimuli from cats. Using a set of statistical techniques known as Independent Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, we quantify the limits of signal strength in order to detect the physiological signal of interest. The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected. The study found that in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis of the different responses extracted from the videos can give an insight of the functional processes present during the stimulation of the retina.

  19. In-vivo corneal biomechanical analysis of unilateral keratoconus

    PubMed Central

    Ayar, Orhan; Ozmen, Mehmet Cuneyt; Muftuoglu, Orkun; Akdemir, Mehmet Orcun; Koc, Mustafa; Ozulken, Kemal

    2015-01-01

    AIM To evaluate and compare corneal biomechanical findings measured by ocular response analyzer, topographic and pachymetric findings in patients with unilateral keratoconus patients and healthy controls. METHODS This is an observational, case-control study. Patients with keratoconus in one eye and forme fruste keratoconus in the fellow eye were compared with sex and age matched with controls healthy subjects. All subjects were evaluated with rotating scheimpflug imaging system. The receiver-operating-characteristic curves were analyzed to evaluate the sensitivity and specificity of the parameters. RESULTS Twenty-seven patients with keratoconus in one eye and forme fruste keratoconus in the fellow eye were compared with 40 eyes of 40 normal subjects. Corneal hysteresis (CH) was 8.0±1.7 mm Hg in keratoconus group, 8.3±1.6 mm Hg in forme fruste keratoconus group, and 9.8±1.6 mm Hg in control groups (P=0.54 between keratoconus and forme fruste keratoconus groups, P<0.01 between control group and other groups). Corneal resistance factor (CRF) was 7.1±2.2 mm Hg in keratoconus group, 7.8±1.2 mm Hg in forme fruste keratoconus group and 9.9±1.5 mm Hg in control group (P<0.001 between control group and other groups). Using receiver-operating-characteristic analysis, the area under curve values of the parameters to distinguish forme fruste keratoconus from control subjects were: CH (0.768), CRF (0.866). Best cut-off points were 9.3 mm Hg and 8.8 mm Hg for CH and CRF respectively. CONCLUSION Ocular response analyzer parameters (CH and CRF) are found to be significantly lower in forme fruste keratoconus patients compared to normal control subjects. PMID:26682162

  20. Functional and fine structural changes in isolated rat lungs challenged with endotoxin ex vivo and in vitro.

    PubMed Central

    Uhlig, S.; Brasch, F.; Wollin, L.; Fehrenbach, H.; Richter, J.; Wendel, A.

    1995-01-01

    The aim of this study was to relate changes in rat lung functions caused by the endotoxin lipopolysaccharide (LPS) to alterations in structure. The following four experimental groups were used: 1), control in vitro, perfusion for 150 minutes; 2), LPS in vitro, perfusion for 150 minutes and infusion of 5 mg of LPS after 40 minutes; 3), control ex vivo, perfusion for 10 minutes; and 4), LPS ex vivo, lungs perfused for 10 minutes from rats treated for 110 minutes with 20 mg/kg LPS intraperitoneally. Histologically, blood-derived leukocytes were detectable only in lungs from group 4, where neutrophils were found in capillaries, interstitium, and endothelial pouches. LPS treatment increased pulmonary resistance and decreased pulmonary compliance in group 4 (ex vivo), and, to a greater extent, in group 2 (in vitro). In these two groups, formation of giant lamellar bodies in the type II pneumocytes was observed. By histological examination, the bronchoconstriction induced by LPS in vitro was localized to the terminal bronchioles. At 2 hours after LPS treatment, no edema and no change in precapillary and postcapillary resistance, capillary pressure, vascular compliance, capillary permeability, and the wet/dry ratio was observed. Thus, our major findings are that LPS induced constriction of the terminal bronchioles in vitro, formation of giant lamellar bodies in type II pneumocytes ex vivo and in vitro, and trapping of neutrophils in endothelial pouches in vivo. Images Figure 2 Figure 3 Figure 4 Figure 6 PMID:7747816

  1. FUNCTIONAL ANALYSIS AND TREATMENT OF COPROPHAGIA

    PubMed Central

    Ing, Anna D; Roane, Henry S; Veenstra, Rebecca A

    2011-01-01

    In the current investigation, functional analysis results suggested that coprophagia, the ingestion of fecal matter, was maintained by automatic reinforcement. Providing noncontingent access to alternative stimuli decreased coprophagia, and the intervention was generalized to two settings. PMID:21541128

  2. Pathway-Based Functional Analysis of Metagenomes

    NASA Astrophysics Data System (ADS)

    Bercovici, Sivan; Sharon, Itai; Pinter, Ron Y.; Shlomi, Tomer

    Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.

  3. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  4. Molecular crowding impacts the structure of apolipoprotein A-I with potential implications on in vivo metabolism and function.

    PubMed

    Petrlova, Jitka; Hilt, Silvia; Budamagunta, Madhu; Domingo-Espín, Joan; Voss, John C; Lagerstedt, Jens O

    2016-10-01

    The effect molecular crowding, defined as the volume exclusion exerted by one soluble inert molecule upon another soluble molecule, has on the structure and self-interaction of lipid-free apoA-I were explored. The influence of molecular crowding on lipid-free apoA-I oligomerization and internal dynamics has been analyzed using electron paramagnetic resonance (EPR) spectroscopy measurements of nitroxide spin label at selected positions throughout the protein sequence and at varying concentrations of the crowding agent Ficoll-70. The targeted positions include sites previously shown to be sensitive for detecting intermolecular interaction via spin-spin coupling. Circular dichroism was used to study secondary structural changes in lipid-free apoA-I imposed by increasing concentrations of the crowding agent. Crosslinking and SDS-PAGE gel analysis was employed to further characterize the role molecular crowding plays in inducing apoA-I oligomerization. It was concluded that the dynamic apoA-I structure and oligomeric state was altered in the presence of the crowding agent. It was also found that the C-terminal was slightly more sensitive to molecular crowding. Finally, the data described the region around residue 217 in the C-terminal domain of apoA-I as the most sensitive reporter of the crowding-induced self-association of apoA-I. The implications of this behavior to in vivo functionality are discussed. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 683-692, 2016. PMID:27122373

  5. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  6. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo

    NASA Astrophysics Data System (ADS)

    Yin, Di; Li, Yang; Lin, Hang; Guo, Baofeng; Du, Yanwei; Li, Xin; Jia, Huijie; Zhao, Xuejian; Tang, Jun; Zhang, Ling

    2013-03-01

    Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.

  7. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  8. Functional principal components analysis of workload capacity functions.

    PubMed

    Burns, Devin M; Houpt, Joseph W; Townsend, James T; Endres, Michael J

    2013-12-01

    Workload capacity, an important concept in many areas of psychology, describes processing efficiency across changes in workload. The capacity coefficient is a function across time that provides a useful measure of this construct. Until now, most analyses of the capacity coefficient have focused on the magnitude of this function, and often only in terms of a qualitative comparison (greater than or less than one). This work explains how a functional extension of principal components analysis can capture the time-extended information of these functional data, using a small number of scalar values chosen to emphasize the variance between participants and conditions. This approach provides many possibilities for a more fine-grained study of differences in workload capacity across tasks and individuals. PMID:23475829

  9. In vivo cGMP levels in frog photoreceptor cells as a function of light exposure.

    PubMed

    Barbehenn, E K; Klotz, K L; Noelker, D M; Nelson, R; Chader, G J; Passonneau, J V

    1986-11-01

    By employing a combination of highly sensitive radioimmunoassays and histochemical techniques, an in vivo time course of cGMP levels has been determined in the outer segment, photoreceptor cell and outer plexiform layers of frog retina. Frogs (Rana pipiens) were dark-adapted overnight and either frozen rapidly (approximately 3 sec) in liquid nitrogen or exposed to periods of light varying between 0.1 sec and 2 hr before freezing. Frozen retinal sections were cut, freeze-dried, and samples of individual layers dissected out and analysed for cGMP. In the outer plexiform layer, there was a 42% drop in cGMP concentration after 2 sec of light (250 ft candles) followed by a 34% rise after 2 min; a steep concentration gradient formed around the layer after the 2 min exposure. In both the outer-segment layer and photoreceptor-cell layer (which includes outer segments, inner segments and outer nuclear layers), cGMP levels declined from a dark value of 56 mumol kg-1 (dry) to 9 mumol kg-1 (dry) as a result of increasing exposure to several types of light source: levels appear to be primarily a function of total ft candle min. Cyclic GMP concentrations at the longest exposures (2 min with a fiber optic light source or 2 hr with fluorescent room light) reached identical minimum levels. In the outer segments, a 15% decrease in cGMP was observed after 0.1 sec of light exposure. Although the freezing time is too long to be able to say whether the 15% decrease in cGMP at the 0.1 sec exposure is involved in transduction, the low identical levels reached gradually after longer exposures appear to indicate that a light-induced biochemical adjustment in cGMP metabolism occurs over a relatively long time period separate from the msec time course of the transduction process. PMID:3026825

  10. Enzymatic Characterization and In Vivo Function of Five Terminal Oxidases in Pseudomonas aeruginosa

    PubMed Central

    Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-01-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa. PMID:25182500

  11. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study

    PubMed Central

    Yin, Li; Chen, Kaining; Guo, Lin; Cheng, Liangjun; Wang, Fuyou; Yang, Liu

    2015-01-01

    Purpose This study aimed to calculate the flexion-extension axis (FEA) of the knee through in-vivo knee kinematics data, and then compare it with two major anatomical axes of the femoral condyles: the transepicondylar axis (TEA) defined by connecting the medial sulcus and lateral prominence, and the cylinder axis (CA) defined by connecting the centers of posterior condyles. Methods The knee kinematics data of 20 healthy subjects were acquired under weight-bearing condition using bi-planar x-ray imaging and 3D-2D registration techniques. By tracking the vertical coordinate change of all points on the surface of femur during knee flexion, the FEA was determined as the line connecting the points with the least vertical shift in the medial and lateral condyles respectively. Angular deviation and distance among the TEA, CA and FEA were measured. Results The TEA-FEA angular deviation was significantly larger than that of the CA-FEA in 3D and transverse plane (3.45° vs. 1.98°, p < 0.001; 2.72° vs. 1.19°, p = 0.002), but not in the coronal plane (1.61° vs. 0.83°, p = 0.076). The TEA-FEA distance was significantly greater than that of the CA-FEA in the medial side (6.7 mm vs. 1.9 mm, p < 0.001), but not in the lateral side (3.2 mm vs. 2.0 mm, p = 0.16). Conclusion The CA is closer to the FEA compared with the TEA; it can better serve as an anatomical surrogate for the functional knee axis. PMID:26039711

  12. In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis.

    PubMed

    Devi, Seram Nganbiton; Vishnoi, Monika; Kiehler, Brittany; Haggett, Lindsey; Fujita, Masaya

    2015-05-01

    In response to starvation, Bacillus subtilis cells differentiate into different subsets, undergoing cannibalism, biofilm formation or sporulation. These processes require a multiple component phosphorelay, wherein the master regulator Spo0A is activated upon phosphorylation by one or a combination of five histidine kinases (KinA-KinE) via two intermediate phosphotransferases, Spo0F and Spo0B. In this study, we focused on KinC, which was originally identified as a sporulation kinase and was later shown to regulate cannibalism and biofilm formation. First, genetic experiments using both the domesticated and undomesticated (biofilm forming) strains revealed that KinC activity and the membrane localization are independent of both the lipid raft marker proteins FloTA and cytoplasmic potassium concentration, which were previously shown to be required for the kinase activity. Next, we demonstrated that KinC controls cannibalism and biofilm formation in a manner dependent on phosphorelay. For further detailed characterization of KinC, we established an IPTG-inducible expression system in the domesticated strain, in which biofilm formation is defective, for simplicity of study. Using this system, we found that the N-terminal transmembrane domain is dispensable but the PAS domain is needed for the kinase activity. An in vivo chemical cross-linking experiment demonstrated that the soluble and functional KinC (KinC(ΔTM1+2)) forms a tetramer. Based on these results, we propose a revised model in which KinC becomes active by forming a homotetramer via the N-terminal PAS domain, but its activity is independent of both the lipid raft and the potassium leakage, which was previously suggested to be induced by surfactin. PMID:25701730

  13. Inhibition of human platelet function in vitro and ex vivo by acetaminophen.

    PubMed

    Lages, B; Weiss, H J

    1989-03-15

    The effects of acetaminophen (APAP) in vitro, or ex vivo following APAP ingestion, on human platelet aggregation, 14C-5HT secretion, and thromboxane B2 (TxB2) formation were assessed. APAP added in vitro to citrated platelet-rich plasma (PRP) inhibited aggregation, secretion, and TxB2 formation induced by collagen, epinephrine, arachidonate, and the ionophore A23187, but had no effect on the responses induced by the endoperoxide analog U44069. Arachidonate-induced responses were inhibited by lower concentrations of APAP than were the responses to the other agonists. In PRP obtained 1 hour after ingestion of 650 mg or 1000 mg APAP, arachidonate-induced TxB2 formation was inhibited by 40-99% in five subjects tested, whereas inhibition of collagen- or epinephrine-induced TxB2 formation was less consistent. Aggregation and secretion responses were not altered by APAP ingestion in 4 of the 5 subjects, but were inhibited in the remaining subject, who had the highest plasma APAP levels. In contrast to aspirin and indomethacin, APAP-induced inhibition of collagen-stimulated TxB2 formation could be partially overcome with increasing collagen concentrations. No such partial correction occurred with epinephrine, however. In washed platelet suspensions labeled with 3H-arachidonate, both APAP and aspirin inhibited the formation of labeled PGD2 and PGE2, as well as TxB2. These results suggest that APAP acts in human platelets as a reversible inhibitor of cyclo-oxygenase, as found previously in other tissues, and that recent APAP ingestion can, on occasion, produce inhibition of platelet functional responses measured in vitro. PMID:2499947

  14. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  15. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  16. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo

    PubMed Central

    Duncan, Elizabeth M.; Chitsazan, Alex D.; Seidel, Chris W.; Alvarado, Alejandro Sánchez

    2015-01-01

    SUMMARY Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells and differentiated tissue of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the pattern each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are largely associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function, but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. PMID:26711341

  17. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    SciTech Connect

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; Braff, Jonathan L.; Church, George M.; Bry, Lynn; Wang, Harris H.; Gerber, Georg K.

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.

  18. Set1 and MLL1/2 Target Distinct Sets of Functionally Different Genomic Loci In Vivo.

    PubMed

    Duncan, Elizabeth M; Chitsazan, Alex D; Seidel, Chris W; Sánchez Alvarado, Alejandro

    2015-12-29

    Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells and differentiated tissue of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the pattern each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are largely associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. PMID:26711341

  19. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment. PMID:27086034

  20. In vivo stem cell function of interleukin-3-induced blast cells

    SciTech Connect

    Tsunoda, J.; Okada, S.; Suda, J.; Nagayoshi, K.; Nakauchi, H.; Hatake, K.; Miura, Y.; Suda, T. )

    1991-07-15

    The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, the authors obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. They examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 {times} 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 {times} 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice.

  1. Influence of IL-3 functional fragment on cord blood stem cell ex vivo expansion and differentiation

    PubMed Central

    Ren, Zhihua; Zhang, Yu; Zhang, Yanxi; Jiang, Wenhong; Dai, Wei; Ding, Xinxin

    2016-01-01

    Background Recombinant human interleukin-3 (rhIL-3) is a multiple hematopoietic growth factor, which enhances stem cell expansion and hematopoiesis regeneration in vitro and in vivo, when administrated in combination with other cytokines. However, the structure-function study of rhIL-3 remains rarely studied, so far. The purpose of this study was to recognize the short peptide with similar function as rhIL-3, and assess the hematopoietic efficacy in umbilical cord blood (UCB) stem cell culture as well. Methods Two novel monoclonal antibodies (mAb) (C1 and E1) were generated against rhIL-3 using hybridoma technique. Eleven short peptides were depicted and synthesized to overlap covering the full length sequence of rhIL-3. ELISA was employed to distinguish the antibody-binding peptide from the negative peptides. In addition, the multi-potential hematopoiesis capabilities of the positive peptides were evaluated by adding 25 ng/mL of each peptide to the culture medium of hematopoietic stem cells (HSCs) derived from UCB. Total nucleated cell number and the CD34+ cell number from each individual treatment group were calculated on day 7. Correlated antibodies at 0.5 or 2 molar fold to each peptide were also tested in the stem cell expansion experiment, to further confirm the bioactivity of the peptides. Results Two peptides were recognized by the novel generated antibodies, using ELISA. Peptide 3 and 8 exhibited comparable hematopoiesis potentials, with 25.01±0.14 fold, and 19.89±0.12 fold increase of total nucleated cell number on day 7, respectively, compared with the basal medium control (4.93±0.55 fold). These biological effects were neutralized by adding the corresponding mAb at a dose dependent manner. Conclusions Our results identified two specific regions of rhIL-3 responsible for HSC proliferation and differentiation, which were located from 28 to 49 amino acids (P3), and 107 to 127 amino acids (P8), respectively. The short peptide 3 and 8 might act

  2. Lipopolysaccharide (LPS) disrupts particle transport, cilia function and sperm motility in an ex vivo oviduct model

    PubMed Central

    O’Doherty, A. M.; Di Fenza, M.; Kölle, S.

    2016-01-01

    The oviduct functions in the transportation of gametes to the site of fertilization (the ampulla) and is the site of early embryonic development. Alterations of this early developmental environment, such as the presence of sexually transmitted pathogens, may affect oviduct function leading to reduced fertilization rates and contribute to compromised embryonic development. In this study, sperm interactions, particle transport speed (PTS) and cilia beat frequency (CBF) in the ampulla following exposure to lipopolysaccharide (LPS), a constituent of the sexually transmitted pathogens Chlamydia trachomatis and Chlamydia abortus, was investigated. Three complementary experiments were performed to analyse; (1) bound sperm motility and cilia function (2) transport velocity in the oviduct and (3) the expression of genes related to immune function and inflammatory response (CASP3, CD14, MYD88, TLR4 and TRAF6). The motility of bound sperm was significantly lower in ampullae that were exposed to LPS. CBF and PTS significantly increased after treatment with LPS for 2 hours. Finally, gene expression analysis revealed that CASP3 and CD14 were significantly upregulated and TLR4 trended towards increased expression following treatment with LPS. These findings provide an insight on the impact of LPS on the oviduct sperm interaction, and have implications for both male and female fertility. PMID:27079521

  3. Relations among Functional Systems in Behavior Analysis

    PubMed Central

    Thompson, Travis

    2007-01-01

    This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering counterproductive explanatory controversy. A good deal of what is viewed as biological (often thought to be inaccessible or hypothetical) can become publicly measurable variables using currently available and developing technologies. Moreover, such endogenous variables can serve as establishing operations, discriminative stimuli, conjoint mediating events, and maintaining consequences within a functional analysis of behavior and need not lead to reductionistic explanation. I suggest that explanatory misunderstandings often arise from conflating different levels of analysis and that behavior analysis can extend its reach by identifying variables operating within a functional analysis that also serve functions in other biological systems. PMID:17575907

  4. FRATS: Functional Regression Analysis of DTI Tract Statistics

    PubMed Central

    Zhu, Hongtu; Styner, Martin; Tang, Niansheng; Liu, Zhexing; Lin, Weili; Gilmore, John H.

    2010-01-01

    Diffusion tensor imaging (DTI) provides important information on the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. This paper presents a functional regression framework, called FRATS, for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite dimensional space and their association with a set of covariates of interest, such as age, diagnostic status and gender, in real applications. The functional regression framework consists of four integrated components: the local polynomial kernel method for smoothing multiple diffusion properties along individual fiber bundles, a functional linear model for characterizing the association between fiber bundle diffusion properties and a set of covariates, a global test statistic for testing hypotheses of interest, and a resampling method for approximating the p-value of the global test statistic. The proposed methodology is applied to characterizing the development of five diffusion properties including fractional anisotropy, mean diffusivity, and the three eigenvalues of diffusion tensor along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. Significant age and gestational age effects on the five diffusion properties were found in both tracts. The resulting analysis pipeline can be used for understanding normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. PMID:20335089

  5. Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

    PubMed Central

    Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos; Pascual, Daniel; Marcos, Susana

    2014-01-01

    Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery. PMID:25121496

  6. In vivo mutagenesis of the Hoxb8 hexapeptide domain leads to dominant homeotic transformations that mimic the loss-of-function mutations in genes of the Hoxb cluster.

    PubMed

    Medina-Martínez, Olga; Ramírez-Solis, Ramiro

    2003-12-01

    Hox proteins are transcription factors that control developmental pathways along the anteroposterior axis of vertebrates. On their own, Hox proteins bind DNA weakly, but they gain specificity and affinity by interaction with members of the PBC subfamily of homeobox proteins. In vitro studies indicate that most of these interactions are mediated by the conserved hexapeptide motif of the Hox proteins. To study the significance of these interactions in vivo, we have generated mice that carry mutations in the Hoxb8 hexapeptide motif. Analysis of skeletal features of these mice reveals the presence of a dominant phenotype consisting of homeotic transformations, similar to those observed in mice with a loss-of-function of Hox genes, such as Hoxa7, Hoxb7, and Hoxb9. Genetic tests demonstrate that the mutations in the Hoxb8 hexapeptide motif are affecting the function of other genes located in the Hoxb cluster. The expression pattern of these genes is not affected; rather it appears that the mutant Hoxb8 protein interferes with the function of other Hox genes by binding to their targets. Our findings suggest that the homeotic transformations result from altered DNA binding specificity of the mutant Hoxb8 protein, implicating the cooperative binding between Hoxb8 hexapeptide motif and cofactors as a critical element in the fine-tuning of Hoxb8 protein target specificity. This is the first time the function of the hexapeptide domain has been evaluated in vivo in mouse development. PMID:14623233

  7. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  8. Assessment of blood clot formation and platelet receptor function ex vivo in patients with primary Sjögren's syndrome

    PubMed Central

    Collins, K S; Balasubramaniam, K; Viswanathan, G; Natasari, A; Tarn, J; Lendrem, D; Mitchell, S; Zaman, A; Ng, W F

    2013-01-01

    Objectives Primary Sjögren's syndrome (pSS) shares clinical features and pathogenetic mechanisms with systemic lupus erythematosus (SLE). SLE is associated with an increased thromboembolic risk; however, it is unclear whether pSS patients are susceptible to thromboembolic diseases. In this study, we examined ex vivo blood clot formation (clot strength, rates of clot formation and lysis) in pSS using thromboelastography (TEG) and platelet aggregation to common agonists using multiple electrode aggregometry (MEA). We also investigated the relationship between TEG/MEA parameters and clinical/laboratory features of pSS. Design Case control. Setting Secondary care, single centre. Participants 34 pSS patients, 11 SLE patients and 13 healthy volunteers (all women) entered and completed the study. Primary and secondary outcome measures Primary outcomes: TEG and MEA parameters between three subject groups. Secondary outcomes: The relationships between TEG/MEA and clinical/laboratory parameters analysed using bivariate correlation analysis with corrections for multiple testing. Results All TEG and MEA parameters were similar for the three subject groups. After corrections for multiple testing, interleukin (IL)-1α and Macrophage inflammatory proteins (MIP)-1α remain correlated inversely with clot strength (r=−0.686, p=0.024 and r=−0.730, p=0.012, respectively) and overall coagulability (r=−0.640, p=0.048 and r=−0.648, p=0.048). Stepwise regression analysis revealed that several cytokines such as MIP-1α, IL-17a, IL-1α and Interferon (IFN)-γ may be key predictors of clot strength and overall coagulability in pSS. Conclusions Clot kinetics and platelet receptor function are normal in pSS. Several cytokines correlate with clot strength and overall coagulability in pSS. PMID:23793707

  9. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer.

    PubMed

    Wang, Gang; Wang, Jun-Jie; Tang, Xiang-Jun; Du, Li; Li, Fei

    2016-07-01

    This study aimed to develop a novel polymeric carrier based on chitosan-functionalized Pluronic P123/F68 micelles loaded with myricetin (MYR) to improve the therapeutic index of chemotherapy for glioblastoma cancer. Following characterization and assessment of the cellular uptake and antitumor effects of MYR-loaded micelles (MYR-MCs) in vitro, the acute toxicity, blood-brain barrier (BBB) translocation, brain uptake and biodistribution in vivo were assessed. The results demonstrated that MYR-MCs exhibited improved cellular uptake and antitumor activity compared to free MYR in vitro, with a significantly enhanced anticancer effect in vivo following efficient transport across the BBB. However, MYR-MCs did not affect the brain endothelial, barrier function, the liver, heart or kidneys. Furthermore, MYR-MCs altered the expression of apoptotic proteins, such as Bcl-2, BAD and BAX, in mice. In conclusion, MYR-MCs may be considered an effective and promising drug delivery system for glioblastoma treatment. PMID:26970027

  10. CIZ1, a p21Cip1/Waf1-interacting protein, functions as a tumor suppressor in vivo.

    PubMed

    Nishibe, Rio; Watanabe, Wataru; Ueda, Takeshi; Yamasaki, Norimasa; Koller, Richard; Wolff, Linda; Honda, Zen-ichiro; Ohtsubo, Motoaki; Honda, Hiroaki

    2013-05-21

    CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo. PMID:23583447

  11. REVIEW ARTICLE: In vivo magnetic resonance imaging: insights into structure and function of the central nervous system

    NASA Astrophysics Data System (ADS)

    Natt, Oliver; Frahm, Jens

    2005-04-01

    Spatially resolved nuclear magnetic resonance (NMR) techniques provide structural, metabolic and functional insights into the central nervous system and allow for repetitive in vivo studies of both humans and animals. Complementing its prominent role in diagnostic imaging, magnetic resonance imaging (MRI) has evolved into an indispensable research tool in system-oriented neurobiology where contributions to functional genomics and translational medicine bridge the gap from molecular biology to animal models and clinical applications. This review presents an overview on some of the most relevant advances in MRI. An introduction covering the basic principles is followed by a discussion of technological improvements in instrumentation and imaging sequences including recent developments in parallel acquisition techniques. Because MRI is noninvasive in contrast to most other imaging modalities, examples focus on in vivo studies of the central nervous system in a variety of species ranging from humans to mice and insects.

  12. The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury

    PubMed Central

    Yokota, Kazuya; Saito, Takeyuki; Kobayakawa, Kazu; Kubota, Kensuke; Hara, Masamitsu; Murata, Masaharu; Ohkawa, Yasuyuki; Iwamoto, Yukihide; Okada, Seiji

    2016-01-01

    After a spinal cord injury (SCI), a reliable prediction of the potential functional outcome is essential for determining the optimal treatment strategy. Despite recent advances in the field of neurological assessment, there is still no satisfactory methodology for predicting the functional outcome after SCI. We herein describe a novel method to predict the functional outcome at 12 hours after SCI using in vivo bioluminescence imaging. We produced three groups of SCI mice with different functional prognoses: 50 kdyn (mild), 70 kdyn (moderate) and 90 kdyn (severe). Only the locomotor function within 24 hours after SCI was unable to predict subsequent functional recovery. However, both the number of infiltrating neutrophils and the bioluminescence signal intensity from infiltrating blood cells were found to correlate with the severity of the injury at 12 hours after SCI. Furthermore, a strong linear relationship was observed among the number of infiltrating neutrophils, the bioluminescence signal intensity, and the severity of the injury. Our findings thus indicate that in vivo bioluminescence imaging is able to accurately predict the long-term functional outcome in the hyperacute phase of SCI, thereby providing evidence that this imaging modality could positively contribute to the future development of tailored therapeutic approaches for SCI. PMID:27156468

  13. The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury.

    PubMed

    Yokota, Kazuya; Saito, Takeyuki; Kobayakawa, Kazu; Kubota, Kensuke; Hara, Masamitsu; Murata, Masaharu; Ohkawa, Yasuyuki; Iwamoto, Yukihide; Okada, Seiji

    2016-01-01

    After a spinal cord injury (SCI), a reliable prediction of the potential functional outcome is essential for determining the optimal treatment strategy. Despite recent advances in the field of neurological assessment, there is still no satisfactory methodology for predicting the functional outcome after SCI. We herein describe a novel method to predict the functional outcome at 12 hours after SCI using in vivo bioluminescence imaging. We produced three groups of SCI mice with different functional prognoses: 50 kdyn (mild), 70 kdyn (moderate) and 90 kdyn (severe). Only the locomotor function within 24 hours after SCI was unable to predict subsequent functional recovery. However, both the number of infiltrating neutrophils and the bioluminescence signal intensity from infiltrating blood cells were found to correlate with the severity of the injury at 12 hours after SCI. Furthermore, a strong linear relationship was observed among the number of infiltrating neutrophils, the bioluminescence signal intensity, and the severity of the injury. Our findings thus indicate that in vivo bioluminescence imaging is able to accurately predict the long-term functional outcome in the hyperacute phase of SCI, thereby providing evidence that this imaging modality could positively contribute to the future development of tailored therapeutic approaches for SCI. PMID:27156468

  14. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  15. In vivo versus simulation training: an interactional analysis of range and type of training exemplars.

    PubMed Central

    Neef, N A; Lensbower, J; Hockersmith, I; DePalma, V; Gray, K

    1990-01-01

    We analyzed the role of the range of variation in training exemplars as a contextual variable influencing the effects of in vivo versus simulation training in producing generalized responding. Four mentally retarded adults received single case instruction, followed by general case instruction, on washing machine and dryer use; one task was taught using actual appliances (in vivo) and the other using simulation. In vivo and simulation training were counterbalanced across the two tasks for the 2 subject pairs, using a within-subjects Latin square design. With both paradigms, more errors were made after single case than after general case instruction during probe sessions with untrained washing machines and dryers. These results suggest that generalization errors were affected by the range of training exemplars and not by the use of simulated versus natural training stimuli. Although both general case simulation and general case in vivo training facilitated generalized performance of laundry skills, an analysis of training time and costs indicated that the former approach was more efficient. The study illustrates a methodology for studying complex interactions and guiding decisions on the optimal use of instructional alternatives. PMID:2074236

  16. Predicting gallstone composition with CT: in vivo and in vitro analysis.

    PubMed

    Brakel, K; Laméris, J S; Nijs, H G; Terpstra, O T; Steen, G; Blijenberg, B C

    1990-02-01

    Chemical composition of gallstones is of major importance in selecting patients for nonsurgical therapy. In a combined in vivo and in vitro study of predictive potential, 50 patients undergoing cholecystectomy were evaluated with computed tomography (CT) and either plain abdominal radiography or oral cholecystography (OCG). The largest stone surgically removed from each patient was subjected to in vitro CT and chemical analysis. The authors found an inverse relationship between CT attenuation numbers and cholesterol content and a good positive correlation between CT attenuation numbers and calcium content. In vivo CT analysis improved sensitivity, specificity, accuracy, and positive and negative predictive values compared to plain abdominal radiography and OCG in detection of cholesterol stones. Using their prediction rule (a CT number smaller than 140 HU indicates a pure cholesterol gallstone), the authors correctly classified gallstones in 17 (84%) of another 20 patients. In vivo CT analysis can enable reliable prediction of gallstone composition and should play an important role in the selection of patients for nonsurgical treatment. PMID:2296642

  17. Renal effects of nabumetone, a COX-2 antagonist: impairment of function in isolated perfused rat kidneys contrasts with preserved renal function in vivo.

    PubMed

    Reichman, J; Cohen, S; Goldfarb, M; Shina, A; Rosen, S; Brezis, M; Karmeli, F; Heyman, S N

    2001-01-01

    The constitutive cyclooxygenase (COX)-1 enzyme has been considered the physiologically important isoform for prostaglandin synthesis in the normal kidney. It has, therefore, been suggested that selective inhibitors of the 'inducible' isoform (COX-2) may be free from renal adverse effects. We studied the renal effects of the predominantly COX-2 antagonist nabumetone in isolated perfused kidneys. As compared with controls, kidneys removed after in vivo administration of oral nabumetone (15 mg/kg) disclosed altered renal function with reduced glomerular filtration rate, filtration fraction, and urine volume and enhanced hypoxic outer medullary tubular damage. By contrast, renal function and morphology were not affected in vivo by nabumetone or its active metabolite 6-methoxy-2-naphthylacetic acid. The latter agent (10-20 mg/kg i.v.) did not significantly alter renal microcirculation, as opposed to a selective substantial reduction in medullary blood flow noted with the nonselective COX inhibitor indomethacin (5 mg/kg i.v.). In a rat model of acute renal failure, induced by concomitant administration of radiocontrast, nitric oxide synthase, and COX inhibitors, the decline in kidney function and the extent of hypoxic medullary damage with oral nabumetone (80 mg/kg) were comparable to a control group, and significantly less than those induced by indomethacin. In rats subjected to daily oral nabumetone for 3 consecutive weeks, renal function and morphology were preserved as well. Both nabumetone and 6-methoxy-2-naphthylacetic acid reduced renal parenchymal prostaglandin E2 to the same extent as indomethacin. It is concluded that while nabumetone adversely affects renal function and may intensify hypoxic medullary damage ex vivo, rat kidneys are not affected by this agent in vivo, both in acute and chronic studies. COX selectivity may not explain the renal safety of nabumetone. PMID:11701998

  18. DynaMod: dynamic functional modularity analysis

    PubMed Central

    Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2010-01-01

    A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468

  19. Furin-processed antigens targeted to the secretory route elicit functional TAP1-/-CD8+ T lymphocytes in vivo.

    PubMed

    Medina, Francisco; Ramos, Manuel; Iborra, Salvador; de León, Patricia; Rodríguez-Castro, Marta; Del Val, Margarita

    2009-10-01

    Most pathogen-derived peptides recognized by CD8+ CTL are produced by proteasomes and delivered to the endoplasmic reticulum by the TAP transporters associated with Ag processing. Alternative proteases also produce antigenic peptides, but their actual relevance is unclear. There is a need to quantify the contribution of these supplementary pathways in vitro and in vivo. A well-defined TAP-independent secretory route of Ag processing involves the trans-Golgi network protease furin. Quantitation of this route by using OVA constructs encoded by vaccinia viruses indicates that it provides approximately one-third of all surface complexes of peptide and MHC class I molecules. Generation of the epitope carboxyl terminus is a dramatic rate-limiting step, since bypassing it increased efficiency by at least 1000-fold. Notably, the secretory construct activated a similar percentage of Ag-specific CD8+ T cells in wild type as in TAP1-deficient mice, which allow only secretory routes but which have a 10- to 20-fold smaller CD8 compartment. Moreover, these TAP1(-/-) OVA-specific CD8+ T lymphocytes accomplished elimination of epitope-bearing cells in vivo. The results obtained with this experimental system underscore the potential of secretory pathways of MHC class I Ag presentation to elicit functional CD8+ T lymphocytes in vivo and support the hypothesis that noncytosolic processing mechanisms may compensate in vivo for the lack of proteasome participation in Ag processing in persons genetically deficient in TAP and thus contribute to pathogen control. PMID:19752221

  20. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement.

    PubMed

    Lee, Seung-Hye; Le Pichon, Claire E; Adolfsson, Oskar; Gafner, Valérie; Pihlgren, Maria; Lin, Han; Solanoy, Hilda; Brendza, Robert; Ngu, Hai; Foreman, Oded; Chan, Ruby; Ernst, James A; DiCara, Danielle; Hotzel, Isidro; Srinivasan, Karpagam; Hansen, David V; Atwal, Jasvinder; Lu, Yanmei; Bumbaca, Daniela; Pfeifer, Andrea; Watts, Ryan J; Muhs, Andreas; Scearce-Levie, Kimberly; Ayalon, Gai

    2016-08-01

    The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau. PMID:27475227

  1. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  2. Multilevel sparse functional principal component analysis

    PubMed Central

    Di, Chongzhi; Crainiceanu, Ciprian M.; Jank, Wolfgang S.

    2014-01-01

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  3. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading

    NASA Astrophysics Data System (ADS)

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  4. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    NASA Astrophysics Data System (ADS)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT

  5. Geometric modeling, functional parameter calculation, and visualization of the in-vivo distended rectal wall

    NASA Astrophysics Data System (ADS)

    Haider, Clifton R.; Manduca, Armando; Camp, Jon J.; Fletcher, Joel G.; Robb, Richard A.; Bharucha, Adil E.

    2006-03-01

    The rectum can distend to accommodate stool, and contracts in response to distention during defecation. Rectal motor dysfunctions are implicated in the pathophysiology of functional defecation disorders and fecal incontinence. These rectal motor functions can be studied by intra-luminal measurements of pressure by manometry, or combined with volume during rectal balloon distention. Pressure-volume (p-v) relationships provide a global index of rectal mechanical properties. However, balloon distention alone does not measure luminal radius or wall thickness, which are necessary to compute wall tension and stress respectively. It has been suggested that the elastic modulus, which is the linear slope of the stress-strain relationship, is a more accurate measure of wall stiffness. Also, measurements of compliance may not reflect differences in rectal diameter between subjects prior to inflation, and imaging is necessary to determine if, as has been suggested, rectal pressure-volume relationships are affected by extra-rectal structures. We have developed a technique to measure rectal stress:strain relationships in humans, by simultaneous magnetic resonance imaging (MRI) during rectal balloon distention. After a conditioning distention, a rectal balloon was distended with water from 0 to 400 ml in 50 ml steps, and imaged at each step with MRI. The fluid filled balloon was segmented from each volume, the phase-ordered binary volumes were transformed into a geometric characterization of the inflated rectal surface. Taken together with measurements of balloon pressure and of rectal wall thickness, this model of the rectal surface was used to calculate regional values of curvature, tension, strain, and stress for the rectum. In summary, this technique has the unique ability to non-invasively measure the rectal stress:strain relationship and also determine if rectal expansion is limited by extra-rectal structures. This functional information allows the direct clinical analysis

  6. HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility.

    PubMed

    Langer, Dominik; van 't Hoff, Marcel; Keller, Andreas J; Nagaraja, Chetan; Pfäffli, Oliver A; Göldi, Maurice; Kasper, Hansjörg; Helmchen, Fritjof

    2013-04-30

    Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community. PMID:23416135

  7. In Vitro and In Vivo Studies of Single-Walled Carbon Nanohorns with Encapsulated Metallofullerenes and Exohedrally Functionalized Quantum Dots

    SciTech Connect

    Zhang, Jianfei; Ge, Jiechao; Shultz, M.D.; Chung, Eunna; Singh, Gurpreet; Shu, Chunying; Deck, Paul; Fatouros, Panos; Henderson, Scott; Corwin, Frank; Geohegan, David B; Rouleau, Christopher M; More, Karren Leslie; Rylander, Nichole M; Rylander, Christopher; Gibson, Harry W; Dorn, Harry C

    2010-07-01

    Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.

  8. Pineal function: impact of microarray analysis.

    PubMed

    Klein, David C; Bailey, Michael J; Carter, David A; Kim, Jong-so; Shi, Qiong; Ho, Anthony K; Chik, Constance L; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F; Møller, Morten; Sugden, David; Rangel, Zoila G; Munson, Peter J; Weller, Joan L; Coon, Steven L

    2010-01-27

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function. PMID:19622385

  9. New bone formation in the in vivo implantation of bioceramics. A quantitative analysis.

    PubMed

    Wu, H; Zhu, T B; Du, J Y; Hong, G X; Sun, S Z; Xu, X H

    1992-09-01

    Two kinds of synthetic biomaterial, porous tricalcium phosphate (PTCP) and magnetic porous tricalcium phosphate (MPTCP) ceramic granules were implanted in rat femur. In the period of 4 months, the assessment of serial histological sections, scanning electron microphotographs and quantitative analysis of bone formation in the sections showed that both ceramics are biocompatible and degradable in vivo. More new bone formation occurred in the MPTCP group. Endochondral ossification was seen in both groups. The quantitative analysis in this study is reliable, and may be suitable to the similar experimental models. PMID:1288979

  10. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    PubMed

    Mohseni, Hedieh K; Chettle, David R

    2016-02-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades. PMID:26890739

  11. Compound ex vivo and in silico method for hemodynamic analysis of stented arteries.

    PubMed

    Rikhtegar, Farhad; Pacheco, Fernando; Wyss, Christophe; Stok, Kathryn S; Ge, Heng; Choo, Ryan J; Ferrari, Aldo; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2013-01-01

    Hemodynamic factors such as low wall shear stress have been shown to influence endothelial healing and atherogenesis in stent-free vessels. However, in stented vessels, a reliable quantitative analysis of such relations has not been possible due to the lack of a suitable method for the accurate acquisition of blood flow. The objective of this work was to develop a method for the precise reconstruction of hemodynamics and quantification of wall shear stress in stented vessels. We have developed such a method that can be applied to vessels stented in or ex vivo and processed ex vivo. Here we stented the coronary arteries of ex vivo porcine hearts, performed vascular corrosion casting, acquired the vessel geometry using micro-computed tomography and reconstructed blood flow and shear stress using computational fluid dynamics. The method yields accurate local flow information through anatomic fidelity, capturing in detail the stent geometry, arterial tissue prolapse, radial and axial arterial deformation as well as strut malapposition. This novel compound method may serve as a unique tool for spatially resolved analysis of the relationship between hemodynamic factors and vascular biology. It can further be employed to optimize stent design and stenting strategies. PMID:23516442

  12. In vivo neutron activation analysis: body composition studies in health and disease

    SciTech Connect

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  13. Integrating EMR-Linked and In Vivo Functional Genetic Data to Identify New Genotype-Phenotype Associations

    PubMed Central

    Mosley, Jonathan D.; Van Driest, Sara L.; Weeke, Peter E.; Delaney, Jessica T.; Wells, Quinn S.; Bastarache, Lisa; Roden, Dan M.; Denny, Josh C.

    2014-01-01

    The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses shared by at least 2 minor allele homozygotes and with an association p<0.05. The diagnoses were reviewed by a clinician to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical patterns of association were observed, the frequency of these associations was identical to that observed using genotype-permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype associations in human subjects using low frequency variants. As increasing amounts of rare variant data are

  14. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210

    PubMed Central

    Sato, Keisuke; Roboti, Peristera; Mironov, Alexander A.; Lowe, Martin

    2015-01-01

    Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus. PMID:25473115

  15. An implantable remote-powered optoelectronic MEMS device for in vivo spectral analysis and biochemical tests

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Livingston, Peter; Jahshan, David; Evans, Rob

    2004-03-01

    The non-invasive or minimally invasive real-time spectral analysis of tissue and biological fluids in vivo would be of great assistance for diagnosis and monitoring of a wide range of diseases. We propose here a novel microdevice capable of determining the reflectance spectrum of a sample using a set of micrometer-sized light emitting diodes and a patch of photosensitive material. The purported device would be wireless and remote-powered via RF magnetic fields and due to its dimensions would be suitable as a long-term implant, for example for monitoring glucose levels in diabetics. We present a design for this device, discuss its limitations and suggest some applications, including its use for in vivo biochemical assays.

  16. In Vitro Matured Oocytes Are More Susceptible than In Vivo Matured Oocytes to Mock ICSI Induced Functional and Genetic Changes

    PubMed Central

    Salian, Sujit Raj; Singh, Vikram Jeet; Kalthur, Guruprasad; Adiga, Satish Kumar

    2015-01-01

    Background Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome. Objective The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes. Methods Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI. Results A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P<0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (P<0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P <0.001). Conclusion The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes. PMID:25786120

  17. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc{sub 1} function in vivo

    SciTech Connect

    Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin; Osyczka, Artur

    2014-08-22

    Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.

  18. In Vivo Image Analysis of BoHV-4-Based Vector in Mice

    PubMed Central

    Franceschi, Valentina; Stellari, Fabio Franco; Mangia, Carlo; Jacca, Sarah; Lavrentiadou, Sophia; Cavirani, Sandro; Heikenwalder, Mathias; Donofrio, Gaetano

    2014-01-01

    Due to its biological characteristics bovine herpesvirus 4 (BoHV-4) has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC), is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK) after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK) and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver. PMID:24752229

  19. In vivo image analysis of BoHV-4-based vector in mice.

    PubMed

    Franceschi, Valentina; Stellari, Fabio Franco; Mangia, Carlo; Jacca, Sarah; Lavrentiadou, Sophia; Cavirani, Sandro; Heikenwalder, Mathias; Donofrio, Gaetano

    2014-01-01

    Due to its biological characteristics bovine herpesvirus 4 (BoHV-4) has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC), is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK) after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK) and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver. PMID:24752229

  20. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  1. Quantitative analysis of gene function in the Drosophila embryo.

    PubMed Central

    Tracey, W D; Ning, X; Klingler, M; Kramer, S G; Gergen, J P

    2000-01-01

    The specific functions of gene products frequently depend on the developmental context in which they are expressed. Thus, studies on gene function will benefit from systems that allow for manipulation of gene expression within model systems where the developmental context is well defined. Here we describe a system that allows for genetically controlled overexpression of any gene of interest under normal physiological conditions in the early Drosophila embryo. This regulated expression is achieved through the use of Drosophila lines that express a maternal mRNA for the yeast transcription factor GAL4. Embryos derived from females that express GAL4 maternally activate GAL4-dependent UAS transgenes at uniform levels throughout the embryo during the blastoderm stage of embryogenesis. The expression levels can be quantitatively manipulated through the use of lines that have different levels of maternal GAL4 activity. Specific phenotypes are produced by expression of a number of different developmental regulators with this system, including genes that normally do not function during Drosophila embryogenesis. Analysis of the response to overexpression of runt provides evidence that this pair-rule segmentation gene has a direct role in repressing transcription of the segment-polarity gene engrailed. The maternal GAL4 system will have applications both for the measurement of gene activity in reverse genetic experiments as well as for the identification of genetic factors that have quantitative effects on gene function in vivo. PMID:10628987

  2. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    PubMed

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential. PMID:24575346

  3. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source

    PubMed Central

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-01-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential. PMID:24575346

  4. Phenotyping Mouse Pulmonary Function In Vivo with the Lung Diffusing Capacity

    PubMed Central

    Limjunyawong, Nathachit; Fallica, Jonathan; Ramakrishnan, Amritha; Datta, Kausik; Gabrielson, Matthew; Horton, Maureen; Mitzner, Wayne

    2015-01-01

    The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models. PMID:25590416

  5. Functional Analysis and Treatment of Severe Pica.

    ERIC Educational Resources Information Center

    Mace, F. Charles; Knight, David

    1986-01-01

    A two-phase functional analysis of a profoundly retarded 19-year-old male's pica behavior resulted in an effective staff-implemented treatment consisting of limited staff-client interaction and removal of a protective helmet which had previously been prescribed to help control pica. (Author/JW)

  6. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart. PMID:26712849

  7. The Relationship between Dyslipidemia and Acute Axonal Function in Type 2 Diabetes Mellitus In Vivo

    PubMed Central

    Kwai, Natalie C. G.; Nigole, William; Poynten, Ann M.; Brown, Christopher; Krishnan, Arun V.

    2016-01-01

    Objectives Diabetic peripheral neuropathy (DPN) is a common and debilitating complication of diabetes mellitus. Treatment largely consists of symptom alleviation and there is a need to identify therapeutic targets for prevention and treatment of DPN. The objective of this study was to utilise novel neurophysiological techniques to investigate axonal function in patients with type 2 diabetes and to prospectively determine their relationship to serum lipids in type 2 diabetic patients. Methods Seventy-one patients with type 2 diabetes were consecutively recruited and tested. All patients underwent thorough clinical neurological assessments including nerve conduction studies, and median motor axonal excitability studies. Studies were also undertaken in age matched normal control subjects(n = 42). Biochemical studies, including serum lipid levels were obtained in all patients. Patient excitability data was compared to control data and linear regression analysis was performed to determine the relationship between serum triglycerides and low density lipoproteins and excitability parameters typically abnormal in type 2 diabetic patients. Results Patient mean age was 64.2±2.3 years, mean glycosylated haemoglobin (HbA1c%) was 7.8±0.3%, mean triglyceride concentration was 1.6±0.1 mmol/L and mean cholesterol concentration was 4.1±0.2mmol/L. Compared to age matched controls, median motor axonal excitability studies indicated axonal dysfunction in type 2 diabetic patients as a whole (T2DM) and in a subgroup of the patients without DPN (T2DM-NN). These included reduced percentage threshold change during threshold electrotonus at 10–20ms depolarising currents (TEd10–20ms)(controls 68.4±0.8, T2DM63.9±0.8, T2DM-NN64.8±1.6%,P<0.05) and superexcitability during the recovery cycle (controls-22.5±0.9, T2DM-17.5±0.8, T2DM-NN-17.3±1.6%,P<0.05). Linear regression analysis revealed no associations between changes in axonal function and either serum triglyceride or low density

  8. Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging.

    PubMed

    Doan, Bich-Thuy; Seguin, Johanne; Breton, Marie; Le Beherec, Ronan; Bessodes, Michel; Rodríguez-Manzo, Julio A; Banhart, Florian; Beloeil, Jean-Claude; Scherman, Daniel; Richard, Cyrille

    2012-01-01

    Single-walled carbon nanotubes (SWCNTs) containing traces of iron oxide were functionalized by noncovalent lipid-PEG or covalent carboxylic acid function to supply new efficient MRI contrast agents for in vitro and in vivo applications. Longitudinal (r(1)) and transversal (r(2)) water proton relaxivities were measured at 300 MHz, showing a stronger T(2) feature as an MRI contrast agent (r(2)/r(1)  = 190 for CO(2) H functionalisation). The r(2) relaxivity was demonstrated to be correlated to the presence of iron oxide in the SWNT-carboxylic function COOH, in comparison to iron-free ones. Biodistribution studies on mice after a systemic injection showed a negative MRI contrast in liver, suggesting the presence of the nanotubes in this organ until 48 h after i.v. injection. The presence of carbon nanotubes in liver was confirmed after ex vivo carbon extraction. Finally, cytotoxicity studies showed no apparent effect owing to the presence of the carbon nanotubes. The functionalized carbon nanotubes were well tolerated by the animals at the dose of 10 µg g(-1) body weight. PMID:22434627

  9. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  10. Functional analysis and treatment of elopement.

    PubMed

    Piazza, C C; Hanley, G P; Bowman, L G; Ruyter, J M; Lindauer, S E; Saiontz, D M

    1997-01-01

    Elopement is a dangerous behavior because children who run away may encounter life-threatening situations (e.g., traffic). We conducted functional analyses of the elopement of 3 children who had been diagnosed with developmental disabilities. The results identified a maintaining reinforcer for the elopement of 1 child, but the data were difficult to interpret for 2 of the children. Subsequent reinforcer assessments were used to help to clarify the reinforcers for elopement for these 2 children. Results of the functional analyses and reinforcer assessments then were used to develop successful treatments to reduce elopement. The findings are discussed in terms of (a) the application of functional analysis methodology to elopement, (b) the use of reinforcer assessments to identify potential reinforcers when standard functional analyses are undifferentiated, and (c) the utility of assessment-based treatments for elopement. PMID:9433790

  11. Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy

    PubMed Central

    Liao, Yi-Hua; Kuo, Wei-Cheng; Chou, Sin-Yo; Tsai, Cheng-Shiun; Lin, Guan-Liang; Tsai, Ming-Rung; Shih, Yuan-Ta; Lee, Gwo-Giun; Sun, Chi-Kuang

    2014-01-01

    Chronological skin aging is associated with flattening of the dermal-epidermal junction (DEJ), but to date no quantitative analysis focusing on the aging changes in the dermal papillae (DP) has been performed. The aim of the study is to determine the architectural changes and the collagen density related to chronological aging in the dermal papilla zone (DPZ) by in vivo harmonic generation microscopy (HGM) with a sub-femtoliter spatial resolution. We recruited 48 Asian subjects and obtained in vivo images on the sun-protected volar forearm. Six parameters were defined to quantify 3D morphological changes of the DPZ, which we analyzed both manually and computationally to study their correlation with age. The depth of DPZ, the average height of isolated DP, and the 3D interdigitation index decreased with age, while DP number density, DP volume, and the collagen density in DP remained constant over time. In vivo high-resolution HGM technology has uncovered chronological aging-related variations in DP, and sheds light on real-time quantitative skin fragility assessment and disease diagnostics based on collagen density and morphology. PMID:25401037

  12. In Vivo Risk Analysis of Pancreatic Cancer Through Optical Characterization of Duodenal Mucosa

    PubMed Central

    Mutyal, Nikhil N.; Radosevich, Andrew J.; Bajaj, Shailesh; Konda, Vani; Siddiqui, Uzma D.; Waxman, Irving; Goldberg, Michael J.; Rogers, Jeremy D.; Gould, Bradley; Eshein, Adam; Upadhye, Sudeep; Koons, Ann; Gonzalez-Haba Ruiz, Mariano; Roy, Hemant K.; Backman, Vadim

    2015-01-01

    Objectives To reduce pancreatic cancer mortality, a paradigm shift in cancer screening is needed. Our group pioneered the use of low-coherence enhanced backscattering (LEBS) spectroscopy to predict the presence of pancreatic cancer by interrogating the duodenal mucosa. A previous ex vivo study (n = 203) demonstrated excellent diagnostic potential: sensitivity, 95%; specificity, 71%; and accuracy, 85%. The objective of the current case-control study was to evaluate this approach in vivo. Methods We developed a novel endoscope-compatible fiber-optic probe to measure LEBS in the periampullary duodenum of 41 patients undergoing upper endoscopy. This approach enables minimally invasive detection of the ultrastructural consequences of pancreatic field carcinogenesis. Results The LEBS parameters and optical properties were significantly altered in patients harboring adenocarcinomas (including early-stage) throughout the pancreas relative to healthy controls. Test performance characteristics were excellent with sensitivity = 78%, specificity = 85%, and accuracy = 81%. Moreover, the LEBS prediction rule was not confounded by patients’ demographics. Conclusion We demonstrate the feasibility of in vivo measurement of histologically normal duodenal mucosa to predict the presence of adenocarcinoma throughout the pancreas. This represents the next step in establishing duodenal LEBS analysis as a prescreening technique that identifies clinically asymptomatic patients who are at elevated risk of PC. PMID:25906443

  13. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses

    PubMed Central

    Pastrav, Leonard C; Jaecques, Siegfried VN; Jonkers, Ilse; Perre, Georges Van der; Mulier, Michiel

    2009-01-01

    Background The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objective of the present study was to evaluate in vivo a vibration analysis-based endpoint criterion for the insertion of the stem by successive surgeon-controlled hammer blows. Methods A protocol using a vibration analysis technique for the characterisation of the primary bone-prosthesis stability was tested in 83 patients receiving a custom-made, intra-operatively manufactured stem prosthesis. Two groups were studied: one (n = 30) with non cemented and one (n = 53) with partially cemented stem fixation. Frequency response functions of the stem-femur system corresponding to successive insertion stages were compared. Results The correlation coefficient between the last two frequency response function curves was above 0.99 in 86.7% of the non cemented cases. Lower values of the final correlation coefficient and deviations in the frequency response pattern were associated with instability or impending bone fracture. In the cases with a partially cemented stem an important difference in frequency response function between the final stage of non cemented trial insertion and the final cemented stage was found in 84.9% of the cases. Furthermore, the frequency response function varied with the degree of cement curing. Conclusion The frequency response function change provides reliable information regarding the stability evolution of the stem-femur system during the insertion. The protocol described in this paper can be used to accurately detect the insertion end point and to reduce the risk for intra-operative fracture. PMID:19358703

  14. Sensitivity analysis of volume scattering phase functions.

    PubMed

    Tuchow, Noah; Broughton, Jennifer; Kudela, Raphael

    2016-08-01

    To solve the radiative transfer equation and relate inherent optical properties (IOPs) to apparent optical properties (AOPs), knowledge of the volume scattering phase function is required. Due to the difficulty of measuring the phase function, it is frequently approximated. We explore the sensitivity of derived AOPs to the phase function parameterization, and compare measured and modeled values of both the AOPs and estimated phase functions using data from Monterey Bay, California during an extreme "red tide" bloom event. Using in situ measurements of absorption and attenuation coefficients, as well as two sets of measurements of the volume scattering function (VSF), we compared output from the Hydrolight radiative transfer model to direct measurements. We found that several common assumptions used in parameterizing the radiative transfer model consistently introduced overestimates of modeled versus measured remote-sensing reflectance values. Phase functions from VSF data derived from measurements at multiple wavelengths and a single scattering single angle significantly overestimated reflectances when using the manufacturer-supplied corrections, but were substantially improved using newly published corrections; phase functions calculated from VSF measurements using three angles and three wavelengths and processed using manufacture-supplied corrections were comparable, demonstrating that reasonable predictions can be made using two commercially available instruments. While other studies have reached similar conclusions, our work extends the analysis to coastal waters dominated by an extreme algal bloom with surface chlorophyll concentrations in excess of 100 mg m-3. PMID:27505819

  15. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  16. RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans

    PubMed Central

    Amorim-Vaz, Sara; Tran, Van Du T.; Pradervand, Sylvain; Pagni, Marco; Coste, Alix T.

    2015-01-01

    ABSTRACT In vivo transcriptional analyses of microbial pathogens are often hampered by low proportions of pathogen biomass in host organs, hindering the coverage of full pathogen transcriptome. We aimed to address the transcriptome profiles of Candida albicans, the most prevalent fungal pathogen in systemically infected immunocompromised patients, during systemic infection in different hosts. We developed a strategy for high-resolution quantitative analysis of the C. albicans transcriptome directly from early and late stages of systemic infection in two different host models, mouse and the insect Galleria mellonella. Our results show that transcriptome sequencing (RNA-seq) libraries were enriched for fungal transcripts up to 1,600-fold using biotinylated bait probes to capture C. albicans sequences. This enrichment biased the read counts of only ~3% of the genes, which can be identified and removed based on a priori criteria. This allowed an unprecedented resolution of C. albicans transcriptome in vivo, with detection of over 86% of its genes. The transcriptional response of the fungus was surprisingly similar during infection of the two hosts and at the two time points, although some host- and time point-specific genes could be identified. Genes that were highly induced during infection were involved, for instance, in stress response, adhesion, iron acquisition, and biofilm formation. Of the in vivo-regulated genes, 10% are still of unknown function, and their future study will be of great interest. The fungal RNA enrichment procedure used here will help a better characterization of the C. albicans response in infected hosts and may be applied to other microbial pathogens. PMID:26396240

  17. A novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo

    PubMed Central

    Reebye, V.; Sætrom, P.; Mintz, P.J.; Huang, K.W.; Swiderski, P.; Peng, L.; Liu, C.; Liu, X.X.; Jensen, S.; Zacharoulis, D.; Kostomitsopoulos, N.; Kasahara, N.; Nicholls, J.P.; Jiao, L.R.; Pai, M.; Mizandari, M.; Chikovani, T.; Emara, M.M.; Haoudi, A.; Tomalia, D.A.; Rossi, J.J.; Habib, N.A.; Spalding, D.R.

    2015-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with liver cirrhosis. Here, we show an innovative RNA-based targeted approach to enhance endogenous albumin production whilst reducing liver tumour burden. We designed short-activating RNAs (saRNA) to enhance expression of C/EBPα (CCAAT/enhancer-binding protein-α), a transcriptional regulator and activator of albumin gene expression. Increased levels of both C/EBPα and albumin mRNA in addition to a 3-fold increase in albumin secretion and 50% decrease in cell proliferation was observed in C/EBPα-saRNA transfected HepG2 cells. Intravenous injection of C/EBPα-saRNA in a cirrhotic rat model with multifocal liver tumours increased circulating serum albumin by over 30% showing evidence of improved liver function. Tumour burden decreased by 80% (p = 0.003) with a 40% reduction in a marker of pre-neoplastic transformation. Since C/EBPα has known anti-proliferative activities via retinoblastoma, p21 and cyclins; we used mRNA expression liver cancer specific microarray in C/EBPα-saRNA transfected HepG2 cells to confirm down-regulation of genes strongly enriched for negative regulation of apoptosis, angiogenesis and metastasis. Up-regulated genes were enriched for tumour suppressors and positive regulators of cell differentiation. A quantitative PCR and Western-blot analysis of C/EBPα-saRNA transfected cells suggested that in addition to the known anti-proliferative targets of C/EBPα, we also observed suppression of IL6R, c-Myc and reduced STAT3 phosphorylation. Conclusion We demonstrate for the first time that a novel injectable saRNA-oligonucleotide that enhances C/EBPα expression successfully reduces tumour burden and simultaneously improves liver function in a clinically relevant liver cirrhosis/HCC model. PMID:23929703

  18. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria.

    PubMed

    Peters, Jason M; Colavin, Alexandre; Shi, Handuo; Czarny, Tomasz L; Larson, Matthew H; Wong, Spencer; Hawkins, John S; Lu, Candy H S; Koo, Byoung-Mo; Marta, Elizabeth; Shiver, Anthony L; Whitehead, Evan H; Weissman, Jonathan S; Brown, Eric D; Qi, Lei S; Huang, Kerwyn Casey; Gross, Carol A

    2016-06-01

    Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis. PMID:27238023

  19. Dose-response analysis of heavy metal toxicants in man. Direct in vivo assessment of body burden

    SciTech Connect

    Ellis, K.J.

    1985-06-01

    Differences in uptake, metabolism, and excretion of heavy metals makes selection of a suitable biological media as a monitor of body burden very difficult. Exposure assessments based on body fluid levels can provide, at best, only general population estimates. The most frequently monitored media are blood, urine, nail or hair clippings, sweat, and saliva. Unfortunately each of these tissues can be influenced by recent exposure conditions and are not accurate indices of the total dose or body burden. However, direct in vivo measurements of body burden in humans, have recently been performed. This nuclear technique has focused on the measurements of kidney and liver cadmium (Cd) by neutron activation analysis and bone lead (Pb) determinations using x-ray fluorescence. The dose-response relationship for renal dysfunction based on the direct in vivo body burden for Cd is presented. The most probable Cd value for the kidney associated with renal impairment is approximately 35 mg. Approximately 10% of the subjects with 20 mg Cd in the kidney will have moderately elevated ..beta../sub 2/-microglobulin, an early indicator of potential renal functional changes. 11 refs., 5 figs., 2 tabs.

  20. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  1. Dispersion analysis with inverse dielectric function modelling.

    PubMed

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals. PMID:27294550

  2. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo.

    PubMed

    Okegawa, Yuki; Motohashi, Ken

    2015-12-01

    Thioredoxins (Trxs) regulate the activity of various chloroplastic proteins in a light-dependent manner. Five types of Trxs function in different physiological processes in the chloroplast of Arabidopsis thaliana. Previous in vitro experiments have suggested that the f-type Trx (Trx f) is the main redox regulator of chloroplast enzymes, including Calvin cycle enzymes. To investigate the in vivo contribution of each Trx isoform to the redox regulatory system, we first quantified the protein concentration of each Trx isoform in the chloroplast stroma. The m-type Trx (Trx m), which consists of four isoforms, was the most abundant type. Next, we analyzed several Arabidopsis Trx-m-deficient mutants to elucidate the physiological role of Trx m in vivo. Deficiency of Trx m impaired plant growth and decreased the CO2 assimilation rate. We also determined the redox state of Trx target enzymes to examine their photo-reduction, which is essential for enzyme activation. In the Trx-m-deficient mutants, the reduction level of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase was lower than that in the wild type. Inconsistently with the historical view, our in vivo study suggested that Trx m plays a more important role than Trx f in the activation of Calvin cycle enzymes. PMID:26468055

  3. Role of Vascular Networks in Extending Glucose Sensor Function: Impact of Angiogenesis and Lymphangiogenesis on Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.

    2014-01-01

    The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850

  4. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  5. 3-D in vivo brain tumor geometry study by scaling analysis

    NASA Astrophysics Data System (ADS)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  6. Spectral analysis of photo-induced delayed luminescence from human skin in vivo

    NASA Astrophysics Data System (ADS)

    Musumeci, Francesco; Lanzanò, Luca; Privitera, Simona; Tudisco, Salvatore; Scordino, Agata

    2007-07-01

    The UVA induced Delayed Luminescence (DL), has been measured in vivo in the forearm skin of some healthy volunteers of different sex and age during several periods of the year. An innovative instrument able to detect, in single photon counting mode, the spectrum and the time trend of the DL emission has been used. The measured differences in the time trends of the spectral components may be related to the sex and the age. The potential development of a new analysis technique based on this phenomenon is discussed.

  7. 20-HETE Regulates the Angiogenic Functions of Human Endothelial Progenitor Cells and Contributes to Angiogenesis In Vivo

    PubMed Central

    Chen, Li; Ackerman, Rachel; Saleh, Mohamed; Gotlinger, Katherine H.; Kessler, Michael; Mendelowitz, Lawrence G.; Falck, John R.; Arbab, Ali S.; Scicli, A. Guillermo; Schwartzman, Michal L.

    2014-01-01

    Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F–20-hydroxyeicosatetraenoic acid (CYP4A/F–20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ∼1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A–20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo. PMID:24403517

  8. 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo.

    PubMed

    Chen, Li; Ackerman, Rachel; Saleh, Mohamed; Gotlinger, Katherine H; Kessler, Michael; Mendelowitz, Lawrence G; Falck, John R; Arbab, Ali S; Scicli, A Guillermo; Schwartzman, Michal L; Yang, Jing; Guo, Austin M

    2014-03-01

    Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid (CYP4A/F-20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ~1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A-20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo. PMID:24403517

  9. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis

    PubMed Central

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-01-01

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics. DOI: http://dx.doi.org/10.7554/eLife.06541.001 PMID:26459831

  10. Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.

    PubMed

    Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian

    2016-05-01

    Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27028721

  11. Arginyltransferase is an ATP-Independent Self-Regulating Enzyme that Forms Distinct Functional Complexes In Vivo

    PubMed Central

    Wang, Junling; Han, Xuemei; Saha, Sougata; Xu, Tao; Rai, Reena; Zhang, Fangliang; Wolf, Yuri. I.; Wolfson, Alexey; Yates, John R.; Kashina, Anna

    2010-01-01

    Summary Posttranslational arginylation mediated by arginyltransferase (ATE1) plays an important role in cardiovascular development, cell motility and regulation of cytoskeleton and metabolic enzymes. This protein modification was discovered decades ago, however, the arginylation reaction and the functioning of ATE1 remained poorly understood due to the lack of good biochemical models. Here we report the development of an in vitro arginylation system, in which ATE1 function and molecular requirements can be tested using purified recombinant ATE1 isoforms supplemented with a controlled number of components. Our results show that arginylation reaction is a self-sufficient, ATP-independent process that can affect different sites in a polypeptide, and that arginyltransferases form different molecular complexes in vivo, associate with components of the translation machinery, and have distinct, partially overlapping subsets of substrates, suggesting that these enzymes play different physiological functions. PMID:21276945

  12. Measuring stem cell frequency in epidermis: A quantitative in vivo functional assay for long-term repopulating cells

    NASA Astrophysics Data System (ADS)

    Schneider, T. E.; Barland, C.; Alex, A. M.; Mancianti, M. L.; Lu, Y.; Cleaver, J. E.; Lawrence, H. J.; Ghadially, R.

    2003-09-01

    Epidermal stem cells play a central role in tissue homeostasis, wound repair, tumor initiation, and gene therapy. A major impediment to the purification and molecular characterization of epidermal stem cells is the lack of a quantitative assay for cells capable of long-term repopulation in vivo, such as exists for hematopoietic cells. The tremendous strides made in the characterization and purification of hematopoietic stem cells have been critically dependent on the availability of competitive transplantation assays, because these assays permit the accurate quantitation of long-term repopulating cells in vivo. We have developed an analogous functional assay for epidermal stem cells, and have measured the frequency of functional epidermal stem cells in interfollicular epidermis. These studies indicate that cells capable of long-term reconstitution of a squamous epithelium reside in the interfollicular epidermis. We find that the frequency of these long-term repopulating cells is 1 in 35,000 total epidermal cells, or in the order of 1 in 104 basal epidermal cells, similar to that of hematopoietic stem cells in the bone marrow, and much lower than previously estimated in epidermis. Furthermore, these studies establish a novel functional assay that can be used to validate immunophenotypic markers and enrichment strategies for epidermal stem cells, and to quantify epidermal stem cells in various keratinocyte populations. Thus further studies using this type of assay for epidermis should aid in the progress of cutaneous stem cell-targeted gene therapy, and in more basic studies of epidermal stem cell regulation and differentiation.

  13. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils

    PubMed Central

    Zhang, Mai; Angata, Takashi; Cho, Jae Youn; Miller, Marina; Broide, David H.

    2007-01-01

    CD33-related Siglecs (CD33rSiglecs) are a family of sialic acid–recognizing lectins on immune cells whose biologic functions are unknown. We studied in vivo functions of Siglec-F, the CD33rSiglec expressed on mouse eosinophils, which are prominent in allergic processes. Induction of allergic lung inflammation in mice caused up-regulation of Siglec-F on blood and bone marrow eosinophils, accompanied by newly induced expression on some CD4+ cells, as well as quantitative up-regulation of endogenous Siglec-F ligands in the lung tissue and airways. Taken together with the tyrosine-based inhibitory motif in the cytosolic tail of Siglec-F, the data suggested a negative feedback loop, controlling allergic responses of eosinophils and helper T cells, via Siglec-F and Siglec-F ligands. To pursue this hypothesis, we created Siglec-F–null mice. Allergen-challenged null mice showed increased lung eosinophil infiltration, enhanced bone marrow and blood eosinophilia, delayed resolution of lung eosinophilia, and reduced peribronchial-cell apoptosis. Anti–Siglec-F antibody cross-linking also enhanced eosinophil apoptosis in vitro. These data support the proposed negative feedback role for Siglec-F, represent the first in vivo demonstration of biologic functions for any CD33rSiglec, and predict a role for human Siglec-8 (the isofunctional paralog of mouse Siglec-F) in regulating the pathogenesis of human eosinophil-mediated disorders. PMID:17272508

  14. Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using 31P magnetic resonance spectroscopy

    PubMed Central

    Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B.; Savage, David B.; Carpenter, T. Adrian; Kemp, Graham J.

    2016-01-01

    The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using 31P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest. PMID:26751849

  15. In vivo evolution of metabolic pathways: Assembling old parts to build novel and functional structures

    PubMed Central

    Luque, Alejandro; Sebai, Sarra C; Sauveplane, Vincent; Ramaen, Odile; Pandjaitan, Rudy

    2014-01-01

    In our recent article “In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells” we proposed a useful alternative to directed evolution methods that permits the generation of yeast cell libraries containing recombinant metabolic pathways from counterpart genes. The methodology was applied to generate single mosaic genes and intragenic mosaic pathways. We used flavonoid metabolism genes as a working model to assembly and express evolved pathways in DNA repair deficient cells. The present commentary revises the principles of gene and pathway mosaicism and explores the scope and perspectives of our results as an additional tool for synthetic biology. PMID:25482082

  16. Phenotype and functional evaluation of ex vivo generated antigen-specific immune effector cells with potential for therapeutic applications

    PubMed Central

    Han, Shuhong; Huang, Yuju; Liang, Yin; Ho, Yuchin; Wang, Yichen; Chang, Lung-Ji

    2009-01-01

    Ex vivo activation and expansion of lymphocytes for adoptive cell therapy has demonstrated great success. To improve safety and therapeutic efficacy, increased antigen specificity and reduced non-specific response of the ex vivo generated immune cells are necessary. Here, using a complete protein-spanning pool of pentadecapeptides of the latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV), a weak viral antigen which is associated with EBV lymphoproliferative diseases, we investigated the phenotype and function of immune effector cells generated based on IFN-γ or CD137 activation marker selection and dendritic cell (DC) activation. These ex vivo prepared immune cells exhibited a donor- and antigen-dependent T cell response; the IFN-γ-selected immune cells displayed a donor-related CD4- or CD8-dominant T cell phenotype; however, the CD137-enriched cells showed an increased ratio of CD4 T cells. Importantly, the pentadecapeptide antigens accessed both class II and class I MHC antigen processing machineries and effectively activated EBV-specific CD4 and CD8 T cells. Phenotype and kinetic analyses revealed that the IFN-γ and the CD137 selections enriched more central memory T (Tcm) cells than did the DC-activation approach, and after expansion, the IFN-γ-selected effector cells showed the highest level of antigen-specificity and effector activities. While all three approaches generated immune cells with comparable antigen-specific activities, the IFN-γ selection followed by ex vivo expansion produced high quality and quantity of antigen-specific effector cells. Our studies presented the optimal approach for generating therapeutic immune cells with potential for emergency and routine clinical applications. PMID:19660111

  17. Biosensors for functional food safety and analysis.

    PubMed

    Lavecchia, Teresa; Tibuzzi, Arianna; Giardi, Maria Teresa

    2010-01-01

    The importance of safety and functionality analysis of foodstuffs and raw materials is supported by national legislations and European Union (EU) directives concerning not only the amount of residues of pollutants and pathogens but also the activity and content of food additives and the health claims stated on their labels. In addition, consumers' awareness of the impact of functional foods' on their well-being and their desire for daily healthcare without the intake pharmaceuticals has immensely in recent years. Within this picture, the availability of fast, reliable, low cost control systems to measure the content and the quality of food additives and nutrients with health claims becomes mandatory, to be used by producers, consumers and the governmental bodies in charge of the legal supervision of such matters. This review aims at describing the most important methods and tools used for food analysis, starting with the classical methods (e.g., gas-chromatography GC, high performance liquid chromatography HPLC) and moving to the use of biosensors-novel biological material-based equipments. Four types of bio-sensors, among others, the novel photosynthetic proteins-based devices which are more promising and common in food analysis applications, are reviewed. A particular highlight on biosensors for the emerging market of functional foods is given and the most widely applied functional components are reviewed with a comprehensive analysis of papers published in the last three years; this report discusses recent trends for sensitive, fast, repeatable and cheap measurements, focused on the detection of vitamins, folate (folic acid), zinc (Zn), iron (Fe), calcium (Ca), fatty acids (in particular Omega 3), phytosterols and phytochemicals. A final market overview emphasizes some practical aspects ofbiosensor applications. PMID:21520718

  18. Medial Cochlear Efferent Function: A Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Mountain, David C.

    2011-11-01

    Since the discovery of the cochlear efferent system, many hypotheses have been put forth for its function. These hypotheses for its function range from protecting the cochlea from over stimulation to improving the detection of sounds in noise. It is known that the medial efferent system innervates the outer hair cells and that stimulation of this system reduces basilar membrane and auditory nerve sensitivity which suggests that this system acts to decrease the gain of the cochlear amplifier. Here I present modeling results as well as analysis of published experimental data that suggest that the function of the medial efferent reflex is to decrease the cochlear amplifier gain by just the right amount so that the nonlinearity in the basilar membrane response lines up perfectly with the inner hair cell nonlinear transduction process to produce a hair cell receptor potential that is proportional to the logarithm of the sound pressure level.

  19. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles.

    PubMed

    Kim, Sung Han; Lee, Jung Eun; Sharker, Shazid Md; Jeong, Ji Hoon; In, Insik; Park, Sung Young

    2015-11-01

    Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer. PMID:26451914

  20. A Functional CT Contrast Agent for In Vivo Imaging of Tumor Hypoxia.

    PubMed

    Shi, Hongyuan; Wang, Zhiming; Huang, Chusen; Gu, Xiaoli; Jia, Ti; Zhang, Amin; Wu, Zhiyuan; Zhu, Lan; Luo, Xianfu; Zhao, Xuesong; Jia, Nengqin; Miao, Fei

    2016-08-01

    Hypoxia, which has been well established as a key feature of the tumor microenvironment, significantly influences tumor behavior and treatment response. Therefore, imaging for tumor hypoxia in vivo is warranted. Although some imaging modalities for detecting tumor hypoxia have been developed, such as magnetic resonance imaging, positron emission tomography, and optical imaging, these technologies still have their own specific limitations. As computed tomography (CT) is one of the most useful imaging tools in terms of availability, efficiency, and convenience, the feasibility of using a hypoxia-sensitive nanoprobe (Au@BSA-NHA) for CT imaging of tumor hypoxia is investigated, with emphasis on identifying different levels of hypoxia in two xenografts. The nanoprobe is composed of Au nanoparticles and nitroimidazole moiety which can be electively reduced by nitroreductase under hypoxic condition. In vitro, Au@BSA-NHA attain the higher cellular uptake under hypoxic condition. Attractively, after in vivo administration, Au@BSA-NHA can not only monitor the tumor hypoxic environment with CT enhancement but also detect the hypoxic status by the degree of enhancement in two xenograft tumors with different hypoxic levels. The results demonstrate that Au@BSA-NHA may potentially be used as a sensitive CT imaging agent for detecting tumor hypoxia. PMID:27345304

  1. Probing cell type–specific functions of Gi in vivo identifies GPCR regulators of insulin secretion

    PubMed Central

    Regard, Jean B.; Kataoka, Hiroshi; Cano, David A.; Camerer, Eric; Yin, Liya; Zheng, Yao-Wu; Scanlan, Thomas S.; Hebrok, Matthias; Coughlin, Shaun R.

    2007-01-01

    The in vivo roles of the hundreds of mammalian G protein–coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of Gi/o signaling, under the control of the ROSA26 locus in a Cre recombinase–dependent manner (ROSA26PTX). Crossing ROSA26PTX mice to mice expressing Cre in pancreatic β cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of Gi/o and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the Gi-coupled α2A-adrenergic receptor and the Gs-coupled receptor Taar1, respectively, and protease-activated receptor–2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26PTX system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of Gi/o-coupled GPCRs in multiple cell types and processes. PMID:17992256

  2. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy.

    PubMed

    Sharker, Shazid Md; Kim, Sung Min; Lee, Jung Eun; Choi, Kyung Ho; Shin, Gyojic; Lee, Sangkug; Lee, Kang Dae; Jeong, Ji Hoon; Lee, Haeshin; Park, Sung Young

    2015-11-10

    We report on dopamine-conjugated hyaluronic acid (HA-D), a mussel-inspired facile capping material that can modify tungsten oxide (WO3) nanoparticles to be both biocompatible and targetable, allowing precise delivery (WO3-HA) to a tumor site. Near-infrared (NIR) irradiated WO3-HA showed a rapid and substantial rise in photothermal heat to complete in vitro thermolysis of malignant MDAMB and A549 cancer cellsbut was found to be relatively less sensitive to normal MDCK cells. A long-term in vivo investigation of ~10 nm HA thickness on WO3 (WO3-HA) nanoparticles demonstrated efficient photo-thermal conversion with time-dependent tumor target accumulation. This long-termin vivo survival study ofWO3-HA showed promising biocompatibility, with a complete recovery from malignant tumor. Due to the importance of keeping simplicity in the design of therapeutic nanoparticles, we therefore expect that this facile scheme (HA-D) would contribute to the biocompatible development of versatile metallic nanoparticles for photothermal applications. PMID:26381897

  3. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    PubMed

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833

  4. A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments.

    PubMed

    Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T

    2012-08-01

    InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package. PMID:22071578

  5. In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling.

    PubMed

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B; Horn, Heiko; Kelstrup, Christian D; Francavilla, Chiara; Jensen, Lars J; Schmitt, Nicole; Thomsen, Morten B; Olsen, Jesper V

    2013-06-01

    β-Blockers are widely used to prevent cardiac arrhythmias and to treat hypertension by inhibiting β-adrenergic receptors (βARs) and thus decreasing contractility and heart rate. βARs initiate phosphorylation-dependent signaling cascades, but only a small number of the target proteins are known. We used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific βAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R-X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5'-monophosphate-activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate βAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine monophosphate-dependent protein kinase) and CaMKII (calcium/calmodulin-dependent protein kinase type II). We found specific regulation of phosphorylation sites on six ion channels and transporters that mediate increased ion fluxes at higher heart rates, and we showed that phosphorylation of one of these, Ser(92) of the potassium channel KV7.1, increased current amplitude. Our data set represents a quantitative analysis of phosphorylated proteins regulated in vivo upon stimulation of seven-transmembrane receptors, and our findings reveal previously unknown phosphorylation sites that regulate myocardial contractility, suggesting new potential targets for the treatment of heart disease and hypertension. PMID:23737553

  6. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    PubMed

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-01

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903

  7. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants

    PubMed Central

    Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.

    2014-01-01

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903

  8. trpm7 Regulation of in Vivo Cation Homeostasis and Kidney Function Involves Stanniocalcin 1 and fgf23

    PubMed Central

    Elizondo, Michael R.; Budi, Erine H.; Parichy, David M.

    2010-01-01

    The transient receptor potential melastatin 7 (trpm7) channel kinase is a primary regulator of magnesium homeostasis in vitro. Here we show that trpm7 is an important regulator of cation homeostasis as well as kidney function in vivo. Using zebrafish trpm7 mutants, we show that early larvae exhibit reduced levels of both total magnesium and total calcium. Accompanying these deficits, we show that trpm7 mutants express higher levels of stanniocalcin 1 (stc1), a potent regulator of calcium homeostasis. Using transgenic overexpression and morpholino oligonucleotide knockdown, we demonstrate that stc1 modulates both calcium and magnesium levels in trpm7 mutants and in the wild type and that levels of these cations are restored to normal in trpm7 mutants when stc1 activity is blocked. Consistent with defects in both calcium and phosphate homeostasis, we further show that trpm7 mutants develop kidney stones by early larval stages and exhibit increased levels of the anti-hyperphosphatemic factor, fibroblast growth factor 23 (fgf23). Finally, we demonstrate that elevated fgf23 expression contributes to kidney stone formation by morpholino knockdown of fgf23 in trpm7 mutants. Together, these analyses reveal roles for trpm7 in regulating cation homeostasis and kidney function in vivo and implicate both stc1 and fgf23 in these processes. PMID:20881241

  9. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients.

    PubMed

    Cowin, S C; Hart, R T; Balser, J R; Kohn, D H

    1985-01-01

    In this paper we describe a computational means, based on beam theory, for application of the theory of adaptive elasticity to examples of real bone geometries. The results of the animal experiments were taken from the literature, and each documented the temporal evolution of a change in bone shape after a significant change in the mechanical loading environment of the bone. For each of these studies, we establish preliminary estimates of the in vivo values of the surface remodeling rate coefficients--the key parameters in the theory of surface remodeling. Our preliminary parameter estimates are established by comparison of published animal experimental results with surface remodeling theory predictions generated by the computational method. PMID:4077864

  10. In vivo functional photoacoustic tomography of traumatic brain injury in rats

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Taek; Song, Kwang-Hyung; Li, Meng-Lin; Stoica, George; Wang, Lihong V.

    2006-02-01

    In this study, we demonstrate the potential of photoacoustic tomography for the study of traumatic brain injury (TBI) in rats in vivo. Based on spectroscopic photoacoustic tomography that can detect the absorption rates of oxy- and deoxy-hemoglobins, the blood oxygen saturation and total blood volume in TBI rat brains were visualized. Reproducible cerebral trauma was induced using a fluid percussion TBI device. The time courses of the hemodynamic response following the trauma initiation were imaged with multi-wavelength photoacoustic tomography with bandwidth-limited spatial resolution through the intact skin and skull. In the pilot set of experiments, trauma induced hematomas and blood oxygen saturation level changes were detected, a finding consistent with the known physiological responses to TBI. This new imaging method will be useful for future studies on TBI-related metabolic activities and the effects of therapeutic agents.

  11. Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes

    PubMed Central

    Alcala, Marco A.; Shade, Chad M.; Uh, Hyounsoo; Kwan, Shu Ying; Bischof, Matthias; Thompson, Zachary P.; Gogick, Kristy A.; Meier, Adam R.; Strein, Timothy G.; Bartlett, David L.; Modzelewski, Ruth A.; Lee, Yong J.; Petoud, Stéphane; Brown, Charles Komen

    2011-01-01

    We have created a dendrimer complex suitable for preferential accumulation within liver tumors and luminescence imaging by substituting thirty-two naphthalimide fluorophores on the surface of the dendrimer and incorporating eight europium cations within the branches. We demonstrate the utility and performance of this luminescent dendrimer complex to detect hepatic tumors generated via direct subcapsular implantation or via splenic injections of colorectal cancer cells (CC531) into WAG/RijHsd rats. Luminescence imaging of the tumors after injection of the dendrimer complex via hepatic arterial infusion revealed that the dendrimer complex can preferentially accumulate within liver tumors. Further investigation indicated that dendrimer luminescence in hepatic tumors persisted in vivo. Due to the incorporation of lanthanide cations, this luminescence agent presents a strong resistance against photobleaching. These studies show the dendrimer complex has great potential to serve as an innovative accumulation and imaging agent for the detection of metastatic tumors in our rat hepatic model. PMID:21925728

  12. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking.

    PubMed

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie

    2016-01-01

    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics. PMID:27007952

  13. Stochastic precision analysis of two-dimensional cardiac strain estimation in vivo

    PubMed Central

    Bunting, EA; Provost, J; Konofagou, EE

    2014-01-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2-D) strain estimation may be useful when studying the heart due to the complex, three-dimensional deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2-D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2-D incremental strains were estimated in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2-D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. PMID:25330746

  14. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking

    PubMed Central

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie

    2016-01-01

    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term “in vivo behavioral tracking,” we track individuals’ movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants’ tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants’ gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants’ proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics. PMID:27007952

  15. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    PubMed

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  16. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin

  17. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Xing, Jianmin; Wang, Yingze; Lu, Juan; Zhao, Yuliang; Gao, Xueyun; Wang, Paul C.; Jia, Lee; Liang, Xingjie

    2011-11-01

    Multi-hydroxylated endohedral metallofullerenol [Gd@C82(OH)22]n nanoparticles possess the general physico-chemical characteristics of most nanoparticles. They also exhibit uniquely low toxicity and antineoplastic efficacy. In the current study, the molecular mechanisms and epigenetic characteristics of the antineoplastic action of these nanoparticles are explored. Human breast cancer MCF-7 and human umbilical vein endothelial ECV304 cell lines were used. Cell viability assay, cell hierarchical cluster analysis by cDNA microarray, semi-quantitative reverse transcription-polymerase chain reaction and Western blot analysis were conducted to investigate the changes in molecular and cellular signaling pathways caused by [Gd@C82(OH)22]n. The results demonstrated the high antitumor activity and low cytotoxicity of [Gd@C82(OH)22]n nanoparticles both in vivo and in vitro. Their possible anti-tumor mechanisms were also discussed. The present study may provide new insight into the mechanism of action of these nanoparticles.

  18. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    PubMed Central

    Xu, Guan; Meng, Zhuo-xian; Lin, Jian-die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-01-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver. PMID:26842459

  19. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  20. Functional photoacoustic tomography for non-invasive imaging of cerebral blood oxygenation and blood volume in rat brain in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xie, Xueyi; Ku, Geng; Stoica, George; Wang, Lihong V.

    2005-04-01

    Based on the multi-wavelength laser-based photoacoustic tomography, non-invasive in vivo imaging of functional parameters, including the hemoglobin oxygen saturation and the total concentration of hemoglobin, in small-animal brains was realized. The high sensitivity of this technique is based on the spectroscopic differences between oxy- and deoxy-hemoglobin while its spatial resolution is bandwidth-limited by the photoacoustic signals rather than by the optical diffusion as in optical imaging. The point-by-point distributions of blood oxygenation and blood volume in the cerebral cortical venous vessels, altered by systemic physiological modulations including hyperoxia, normoxia and hypoxia, were visualized successfully through the intact skin and skull. This technique, with its prominent intrinsic advantages, can potentially accelerate the progress in neuroscience and provide important new insights into cerebrovascular physiology and brain function that are of great significance to the neuroscience community.

  1. Functional analysis of inappropriate mealtime behaviors.

    PubMed Central

    Piazza, Cathleen C; Fisher, Wayne W; Brown, Kimberly A; Shore, Bridget A; Patel, Meeta R; Katz, Richard M; Sevin, Bart M; Gulotta, Charles S; Blakely-Smith, Audrey

    2003-01-01

    The purpose of the current investigation was to apply the functional analysis described by Iwata, Dorsey, Slifer, Bauman, and Richman (1982/1994) to the inappropriate mealtime behaviors of 15 children who had been referred to an intensive program for the assessment and treatment of severe feeding disorders. During Study 1, we conducted descriptive assessments of children and parents during meals. The results of Study 1 showed that parents used the following consequences for inappropriate mealtime behaviors: coaxing and reprimanding, allowing the child to periodically take a break from or avoid eating, and giving the child preferred food or toys following inappropriate behavior. The effects of these consequences were tested systematically in Study 2 when we conducted analogue functional analyses with the children. During alternating meals, one of the consequences typically used by parents consistently followed inappropriate child behavior. Results indicated that these consequences actually worsened behavior for 10 of the 15 children (67%). These results suggested that the analogue functional analysis described by Iwata et al. may be useful in identifying the environmental events that play a role in feeding disorders. PMID:12858984

  2. Lipopolysaccharide enhances FcγR-dependent functions in vivo through CD11b/CD18 up-regulation

    PubMed Central

    Rubel, C; Miliani De Marval, P; Vermeulen, M; Isturiz, M A; Palermo, M S

    1999-01-01

    Fc receptors for immunoglobulin G (IgG) (FcγR) mediate several defence mechanisms in the course of inflammatory and infectious diseases. In Gram-negative infections, cellular wall lipopolysaccharides (LPS) modulate different immune responses. We have recently demonstrated that murine LPS in vivo treatment significantly increases FcγR-dependent clearance of immune complexes (IC). In addition, we and others have reported the induction of adhesion molecules on macrophages and neutrophils by LPS in vivo and by tumour necrosis factor-α (TNF-α) in vitro. The aim of this paper was to investigate CD11b/CD18 participation in LPS enhancing effects on Fcγ-dependent functionality of tissue macrophages. Our results have demonstrated that LPS can enhance antibody-dependent cellular cytotoxicity (ADCC) and IC-triggered cytotoxicity (IC-Ctx), two reactions which involve the Fcγ-receptor but different lytic mechanisms. In vitro incubation of splenocytes from LPS-treated mice with anti-CD11b/CD18 abrogated ADCC and IC-Ctx enhancement, without affecting FcγR expression. Similar results were obtained with physiological concentrations of fibrinogen. In this way cytotoxic values of LPS-splenocytes decreased to the basal levels of control mice. Time and temperature requirements for such inhibition strongly suggested that anti-CD11b/CD18 could modulate intracellular signals leading to downregulation of FcγR functionality. Data presented herein support the hypothesis that functional and/or physical associations between integrins and FcγR could be critical for the modulation of effector functions during an inflammatory response. PMID:10447764

  3. Functional Analysis of Arabidopsis Sucrose Transporters

    SciTech Connect

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  4. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.

    PubMed

    Ho, Derek; Drake, Tyler K; Bentley, Rex C; Valea, Fidel A; Wax, Adam

    2015-08-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  5. Receiver Functions Analysis across the Northen Apennines

    NASA Astrophysics Data System (ADS)

    Di Bona, M.; Lucente, F. P.; Piana Agostinetti, N.; Selvaggi, G.; Levin, V.; Park, J.

    2001-12-01

    The syn-collisional extension of the Northern Apennines is well established mainly from tomographic images, active faulting and geological data. A step forward in understanding how this process began, and how is going on, is the modelling of dynamic processes causing syn-collision extension. This requires the knowledge of several, still lacking, geometric characteristics of the deep structure. Among these, crustal structure, depth and geometry of main discontinuities is priority for dynamic modelling. For this reason, we deployed 10 continuosly recording broad-band seismic stations from Corsica to the Adriatic coast for five months during the past millennium, with the aim to apply receiver function analysis, to gain refined tomographic images, and to explore anisotropic characteristics of the upper mantle. We recorded several tens of teleseismic events with magnitude larger than 5.0 (up to Mw=8.3) with a good azimuthal coverage. Receiver functions are performed for teleseisms in the epicentral distance interval between 30° and 100° through classical frequency-domain deconvolution. Following the approach developed by Di Bona (1998), we could provide a variance estimate for single receiver function, assessing the statistical accuracy of amplitudes. This procedure allows us to use small magnitude events (Mb=5.0) generally excluded from receiver function analyses. Results show that individual converted arrivals have a large consistency for each station. The best receiver functions will be inverted for fine crustal structure following the inversion scheme proposed by Sambridge (1998). Finally, the dataset has been provided to the Dept. Of Geology and Geophysics (Yale University) with the aim to compare independent estimate of receiver functions (see Levin et al., this session).

  6. Confounding Factors in the Transcriptome Analysis of an In-Vivo Exposure Experiment

    PubMed Central

    Wackers, Paul F. K.; van Oostrom, Conny; Jonker, Martijs J.; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.

    2016-01-01

    Confounding factors In transcriptomics experimentation, confounding factors frequently exist alongside the intended experimental factors and can severely influence the outcome of a transcriptome analysis. Confounding factors are regularly discussed in methodological literature, but their actual, practical impact on the outcome and interpretation of transcriptomics experiments is, to our knowledge, not documented. For instance, in-vivo experimental factors; like Individual, Sample-Composition and Time-of-Day are potentially formidable confounding factors. To study these confounding factors, we designed an extensive in-vivo transcriptome experiment (n = 264) with UVR exposure of murine skin containing six consecutive samples from each individual mouse (n = 64). Analysis Approach Evaluation of the confounding factors: Sample-Composition, Time-of-Day, Handling-Stress, and Individual-Mouse resulted in the identification of many genes that were affected by them. These genes sometimes showed over 30-fold expression differences. The most prominent confounding factor was Sample-Composition caused by mouse-dependent skin composition differences, sampling variation and/or influx/efflux of mobile cells. Although we can only evaluate these effects for known cell type specifically expressed genes in our complex heterogeneous samples, it is clear that the observed variations also affect the cumulative expression levels of many other non-cell-type-specific genes. ANOVA ANOVA analysis can only attempt to neutralize the effects of the well-defined confounding factors, such as Individual-Mouse, on the experimental factors UV-Dose and Recovery-Time. Also, by definition, ANOVA only yields reproducible gene-expression differences, but we found that these differences were very small compared to the fold changes induced by the confounding factors, questioning the biological relevance of these ANOVA-detected differences. Furthermore, it turned out that many of the differentially expressed

  7. Functional analysis of tight junction organization.

    PubMed

    DiBona, D R

    1985-01-01

    The functional basis of tight junction design has been examined from the point of view that this rate-limiting barrier to paracellular transport is a multicompartment system. Review of the osmotic sensitivity of these structures points to the need for this sort of analysis for meaningful correlation of structure and function under a range of conditions. A similar conclusion is drawn with respect to results from voltage-clamping protocols where reversal of spontaneous transmural potential difference elicits parallel changes in both structure and function in much the same way as does reversal of naturally occurring osmotic gradients. In each case, it becomes necessary to regard the junction as a functionally polarized structure to account for observations of its rectifying properties. Lastly, the details of experimentally-induced junction deformation are examined in light of current theories of its organization; arguments are presented in favor of the view that the primary components of intramembranous organization (as viewed with freeze-fracture techniques) are lipidic rather than proteinaceous. PMID:4088839

  8. Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults.

    PubMed

    Heptinstall, Stan; May, Jane; Fox, Sue; Kwik-Uribe, Catherine; Zhao, Lian

    2006-01-01

    There is growing interest in possible beneficial effects of specific dietary components on cardiovascular health. Platelets and leukocytes contribute to arterial thrombosis and to inflammatory processes. Previous studies performed in vitro have demonstrated inhibition of platelet function by (-)-epicatechin and (+)-catechin, flavan-3-ols (flavanols) that are present in several foods including some cocoas. Also, some modest inhibition of platelet function has been observed ex vivo after the consumption of flavanol-containing cocoa products by healthy adults. So far there are no reports of effects of cocoa flavanols on leukocytes. This paper summarizes 2 recent investigations. The first was a study of the effects of cocoa flavanols on platelet and leukocyte function in vitro. The second was a study of the effects of consumption of a flavanol-rich cocoa beverage by healthy adults on platelet and leukocyte function ex vivo. Measurements were made of platelet aggregation, platelet-monocyte conjugate formation (P/M), platelet-neutrophil conjugate formation (P/N), platelet activation (CD62P on monocytes and neutrophils), and leukocyte activation (CD11b on monocytes and neutrophils) in response to collagen and/or arachidonic acid. In the in vitro study several cocoa flavanols and their metabolites were shown to inhibit platelet aggregation, P/M, P/N, and platelet activation. Their effects were similar to those of aspirin and the effects of a cocoa flavanol and aspirin did not seem to be additive. There was also inhibition of monocyte and neutrophil activation by flavanols, but this was not replicated by aspirin. 4'-O-methyl-epicatechin, 1 of the known metabolites of the cocoa flavanol (-)-epicatechin, was consistently effective as an inhibitor of platelet and leukocyte activation. The consumption of a flavanol-rich cocoa beverage also resulted in significant inhibition of platelet aggregation, P/M and P/N, and platelet activation induced by collagen. The inhibitory effects

  9. FFTF Plant transition function analysis report

    SciTech Connect

    Lund, D.P.; FFTF Working Group

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and function hierarchy charts that describe what needs to be performed to deactivate FFTF.

  10. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  11. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  12. Automated volumetric stent analysis of in-vivo intracoronary optical coherence tomography three-dimensional datasets

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Onsea, Kevin; Dubois, Christophe; Coosemans, Mark; Sinnaeve, Peter; Desmet, Walter; D'hooge, Jan

    2011-06-01

    Intra-vascular Optical Coherence Tomography (IV-OCT) is an appropriate imaging modality for the evaluation of stent struts apposition and coverage in the coronary arteries. Most often, image analysis is performed by a time-consuming manual contour tracing process. Recently, we proposed an algorithm for fully automated lumen morphology and individual stent struts apposition/coverage quantification. In this manuscript further developments allowing for automatic segmentation of the stent contour are presented. As such, quantification of in-stent area, malapposition cross-sectional area (i.e. the area representing the space from the stent surface to the vessel wall) and coverage cross-sectional area (i.e. the area of the tissue covering the stent surface) are automatically obtained. Volumetric measurements of malapposition and coverage are then achieved through the analysis of equally-spaced consecutive IV-OCT cross-sectional images. In addition, uncovered and malapposed struts are automatically clustered through consecutive slices according to their three-dimensional spatial position. Finally, properties of each cluster (e.g. malapposition/coverage volumes and struts spatial location and distribution) are quantified allowing for a volumetric analysis of the implanted device. Validation of the algorithm was obtained taking as a reference manual measurements performed by an expert cardiologist. 102 in-vivo images, taken at random from 8 different patients, were both automatically and manually analyzed quantifying lumen and stent area. High Pearson's correlation coefficients (Rarea = 0.99) and Bland-Altman statistics, showing no significant bias and good limits of agreement, proved that the presented algorithm provides a robust and fast tool to automatically estimate apposition and coverage of stent through an entire in-vivo IV-OCT pullback. Such a tool will be important for the integration of this technology in clinical routine and large clinical trials.

  13. A critical analysis of current in vitro and in vivo angiogenesis assays

    PubMed Central

    Staton, Carolyn A; Reed, Malcolm W R; Brown, Nicola J

    2009-01-01

    The study of angiogenesis has grown exponentially over the past 40 years with the recognition that angiogenesis is essential for numerous pathologies and, more recently, with the advent of successful drugs to inhibit angiogenesis in tumours. The main problem with angiogenesis research remains the choice of appropriate assays to evaluate the efficacy of potential new drugs and to identify potential targets within the angiogenic process. This selection is made more complex by the recognition that heterogeneity occurs, not only within the endothelial cells themselves, but also within the specific microenvironment to be studied. Thus, it is essential to choose the assay conditions and cell types that most closely resemble the angiogenic disease being studied. This is especially important when aiming to translate data from in vitro to in vivo and from preclinical to the clinic. Here we critically review and highlight recent advances in the principle assays in common use including those for endothelial cell proliferation, migration, differentiation and co-culture with fibroblasts and mural cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as chick chorioallantoic membrane (CAM), zebrafish, sponge implantation, corneal, dorsal air sac, chamber and tumour angiogenesis models. Finally, we briefly discuss the direction likely to be taken in future studies, which include the use of increasingly sophisticated imaging analysis systems for data acquisition. PMID:19563606

  14. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    NASA Astrophysics Data System (ADS)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  15. Analysis of the in vivo confocal Raman spectral variability in human skin

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  16. In vivo liver tissue mechanical properties by Transient Elastography: comparison with Dynamic Mechanical Analysis.

    PubMed

    Chatelin, Simon; Oudry, Jennifer; Périchon, Nicolas; Sandrin, Laurent; Allemann, Pierre; Soler, Luc; Willinger, Rémy

    2011-01-01

    Understanding the mechanical properties of human liver is one of the most critical aspects of its numerical modeling for medical applications or impact biomechanics. Generally, model constitutive laws come from in vitro data. However, the elastic properties of liver may change significantly after death and with time. Furthermore, in vitro liver elastic properties reported in the literature have often not been compared quantitatively with in vivo liver mechanical properties on the same organ. In this study, both steps are investigated on porcine liver. The elastic property of the porcine liver, given by the shear modulus G, was measured by both Transient Elastography (TE) and Dynamic Mechanical Analysis (DMA). Shear modulus measurements were realized on in vivo and in vitro liver to compare the TE and DMA methods and to study the influence of testing conditions on the liver viscoelastic properties. In vitro results show that elastic properties obtained by TE and DMA are in agreement. Liver tissue in the frequency range from 0.1 to 4 Hz can be modeled by a two-mode relaxation model. Furthermore, results show that the liver is homogeneous, isotropic and more elastic than viscous. Finally, it is shown in this study that viscoelastic properties obtained by TE and DMA change significantly with post mortem time and with the boundary conditions. PMID:21811013

  17. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  18. Dosimetric characterization of the irradiation cavity for accelerator-based in vivo neutron activation analysis.

    PubMed

    Byun, S H; Pejović-Milić, A; McMaster, S; Matysiak, W; Aslam; Liu, Z; Watters, L M; Prestwich, W V; McNeill, F E; Chettle, D R

    2007-03-21

    A neutron irradiation cavity for in vivo activation analysis has been characterized to estimate its dosimetric specifications. The cavity is defined to confine irradiation to the hand and modifies the neutron spectrum produced by a low energy accelerator neutron source to optimize activation per dose. Neutron and gamma-ray dose rates were measured with the microdosimetric technique using a tissue-equivalent proportional counter at the hand irradiation site and inside the hand access hole. For the outside of the cavity, a spherical neutron dose equivalent meter and a Farmer dosemeter were employed instead due to the low intensity of the radiation field. The maximum dose equivalent rate at the outside of the cavity was 2.94 microSv/100 microA min, which is lower by a factor of 1/2260 than the dose rate at the hand irradiation position. The local dose contributions from a hand, an arm and the rest of a body to the effective dose rate were estimated to be 1.73, 0.782 and 2.94 microSv/100 microA min, respectively. For the standard irradiation protocol of the in vivo hand activation, 300 microA min, an effective dose of 16.3 microSv would be delivered. PMID:17455391

  19. In vivo analysis of human skin anisotropy by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo; Yamanari, Masahiro; Lim, Yiheng; Makita, Shuichi; Nakagawa, Noriaki; Yasuno, Yoshiaki

    2011-03-01

    Skin anisotropy is an important issue for plastic surgeons and cosmetics science. Cleavage lines, such as Langer's lines and relaxed skin tension lines (RSTLs), have been proposed as keys to understanding skin anisotropy. Collagen, a dominant dermal structural protein, forms a fibrous structure believed to play an important role in skin anisotropy. There have been few reports, however, on the relationship between the orientation of collagen fiber and the direction of the cleavage line. Collagen fiber has birefringence, a property analyzable in skin in three dimensions by high-speed polarization-sensitive optical coherence tomography (PS-OCT). Here we used PS-OCT for an in vivo analysis of anisotropic changes in the dermal birefringence of mechanically deformed human skin. The dermal birefringence of the forehead increased significantly when the skin was shrunk perpendicular to the RSTL and increased significantly when the skin was shrunk parallel to the RSTL. En-face images of dermal birefringence revealed that both shrinking perpendicular to and stretching in parallel to the RSTL promoted the formation of a macro rope-like collagen structure. Moreover, the birefringent change under shrinking conditions perpendicular to the RSTL showed negative correlation to Ra, a skin roughness parameter. These results suggest that PS-OCT enables the in vivo evaluation of skin anisotropy.

  20. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  1. Detection and Analysis of SUMOylation Substrates In Vitro and In Vivo.

    PubMed

    Cedeño, Cesyen; La Monaca, Esther; Esposito, Mara; Gutierrez, Gustavo J

    2016-01-01

    SUMOylation is a widely used protein posttranslational mechanism capable of regulating substrates localization, stability, and/or activity. Identification and characterization of bona fide SUMO substrates is a laborious task but its discovery can shed light to exquisite and crucial regulatory signaling events occurring within the cell. Experiments performed in the SUMOylation field often demand a good understanding of the putative substrate's function and necessitate a solid knowledge regarding both in vitro and in vivo approaches. This contribution offers a simplified view into some of the most common experiments performed in biochemical and cell biological research of the SUMO pathway in mammalian systems. It also summarizes and updates well established protocols and tricks in order to improve the likelihood to obtain reliable and reproducible results. PMID:27613042

  2. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo.

    PubMed

    Marin, M C; Hsu, B; Stephens, L C; Brisbay, S; McDonnell, T J

    1995-04-01

    Oncogenes are known to be deregulated by chromosomal translocations occurring at high frequency in specific malignancies. Among the most well characterized of these are c-myc, associated with the t(8;14) in Burkitt's lymphomas, and bcl-2, associated with the t(14;18) in follicular lymphomas. In addition to their role in regulating rates of proliferation, it is known that oncogenes and tumor suppressor genes can also regulate rates of apoptotic cell death. The contribution of c-myc and bcl-2 to the regulation of cell death during lymphomagenesis in vivo is assessed using bcl-2-Ig and emu-myc trangenic mice and bcl-2/myc hybrid transgenic mice. Translocations between the endogenous c-myc gene and immunoglobulin loci, e.g., t(12;15), are common in lymphomas arising in the bcl-2-Ig mice. Furthermore, bcl-2/c-myc double transgenic mice exhibit accelerated lymphomagenesis, indicating cooperation between these two oncogenes. Genetic complementation of c-myc and bcl-2 during lymphomagenesis resulted from the suppression of c-myc-associated apoptosis. Other genes are likely involved in regulating cell death during multistep lymphomagenesis. PMID:7698223

  3. A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function.

    PubMed

    Roy, Jagoree; Li, Huiming; Hogan, Patrick G; Cyert, Martha S

    2007-03-23

    Calcineurin, the conserved Ca(2+)/calmodulin-regulated protein phosphatase, mediates diverse aspects of Ca(2+)-dependent signaling. We show that substrates bind calcineurin with varying strengths and examine the impact of this affinity on signaling. We altered the calcineurin-docking site, or PxIxIT motif, in Crz1, the calcineurin-regulated transcription factor in S. cerevisiae, to decrease (Crz1(PVIAVN)) or increase (Crz1(PVIVIT)) its affinity for calcineurin. As a result, the Ca(2+)-dependent dephosphorylation and activation of Crz1(PVIAVN) are decreased, whereas Crz1(PVIVIT) is constitutively dephosphorylated and hyperactive. Surprisingly, the physiological consequences of altering calcineurin-Crz1 affinity depend on the growth conditions. Crz1(PVIVIT) improves yeast growth under several environmental stress conditions but causes a growth defect during alkaline stress, most likely by titrating calcineurin away from other substrates or regulators. Thus, calcineurin-substrate affinity determines the Ca(2+) concentration dependence and output of signaling in vivo as well as the balance between different branches of calcineurin signaling in an overall biological response. PMID:17386265

  4. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2015-01-01

    Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8(+) T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation. PMID:25634271

  5. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-09-01

    Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption μa and reduced scattering coefficient μs' of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of μa and μs' were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that μa ranged from 0.02 to 1.25 mm-1 and μs' was in the range of 1 to 2.8 mm-1 (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

  6. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position.

    PubMed

    Zhang, L Q; Nuber, G; Butler, J; Bowen, M; Rymer, W Z

    1998-01-01

    Information on the dynamic properties (joint stiffness, viscosity and limb inertia) of the human knee joint is scarce in the literature, especially for actively contracting knee musculature. A joint driving device was developed to apply small-amplitude random perturbations to the human knee at several flexion angles with the subject maintaining various levels of muscle contraction. It was found that joint stiffness and viscosity increased with muscle contraction substantially, while limb inertia was constant. Stiffness produced by the quadriceps was highest at 30 degrees flexion and decreased with increasing or decreasing flexion angle, while knee flexors produced highest stiffness at 90 degree flexion. When knee flexion was < 60 degrees, stiffness produced by the quadriceps was higher than that of the hamstrings and gastrocnemius at the same level of background muscle torque, while knee flexor muscles produced higher stiffnesses than the quadriceps at 90 degree flexion. Similar but less obvious trends were observed for joint viscosity. Passive joint stiffness at full knee extension was significantly higher than in more flexed positions. Surprisingly, as the knee joint musculature changed from relaxed to contracting at 50% MVC, system damping ratio remained at about 0.2. This outcome potentially simplifies neuromuscular control of the knee joint. In contrast, the natural undamped frequency increased more than twofold, potentially making the knee joint respond more quickly to the central nervous system commands. The approach described here provides us with a potentially valuable tool to quantify in vivo dynamic properties of normal and pathological human knee joints. PMID:9596540

  7. Functional Analysis of the Aspergillus nidulans Kinome

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.

    2013-01-01

    The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene

  8. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  9. Biosignals analysis for kidney function effect analysis of fennel aromatherapy.

    PubMed

    Kim, Bong-Hyun; Cho, Dong-Uk; Seo, Ssang-Hee

    2015-01-01

    Human effort in order to enjoy a healthy life is diverse. IT technology to these analyzes, the results of development efforts, it has been applied. Therefore, I use the care and maintenance diagnostic health management and prevention than treatment. In particular, the aromatherapy treatment easy to use without the side effects there is no irritation, are widely used in modern society. In this paper, we measured the aroma effect by applying a biosignal analysis techniques; an experiment was performed to analyze. In particular, we design methods and processes of research based on the theory aroma that affect renal function. Therefore, in this paper, measuring the biosignals and after fennel aromatherapy treatment prior to the enforcement of the mutual comparison, through the analysis, studies were carried out to analyze the effect of fennel aromatherapy therapy on kidney function. PMID:25977696

  10. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    SciTech Connect

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-09-27

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins.

  11. Cathelicidins Have Direct Antiviral Activity against Respiratory Syncytial Virus In Vitro and Protective Function In Vivo in Mice and Humans

    PubMed Central

    Currie, Silke M.; Gwyer Findlay, Emily; McFarlane, Amanda J.; Fitch, Paul M.; Böttcher, Bettina; Colegrave, Nick; Paras, Allan; Jozwik, Agnieszka; Chiu, Christopher; Schwarze, Jürgen

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants, causing significant morbidity and mortality. No vaccine or specific, effective treatment is currently available. A more complete understanding of the key components of effective host response to RSV and novel preventative and therapeutic interventions are urgently required. Cathelicidins are host defense peptides, expressed in the inflamed lung, with key microbicidal and modulatory roles in innate host defense against infection. In this article, we demonstrate that the human cathelicidin LL-37 mediates an antiviral effect on RSV by inducing direct damage to the viral envelope, disrupting viral particles and decreasing virus binding to, and infection of, human epithelial cells in vitro. In addition, exogenously applied LL-37 is protective against RSV-mediated disease in vivo, in a murine model of pulmonary RSV infection, demonstrating maximal efficacy when applied concomitantly with virus. Furthermore, endogenous murine cathelicidin, induced by infection, has a fundamental role in protection against disease in vivo postinfection with RSV. Finally, higher nasal levels of LL-37 are associated with protection in a healthy human adult RSV infection model. These data lead us to propose that cathelicidins are a key, nonredundant component of host defense against pulmonary infection with RSV, functioning as a first point of contact antiviral shield and having additional later-phase roles in minimizing the severity of disease outcome. Consequently, cathelicidins represent an inducible target for preventative strategies against RSV infection and may inform the design of novel therapeutic analogs for use in established infection. PMID:26873992

  12. pH-responsive drug release from functionalized electrospun poly(caprolactone) scaffolds under simulated in vivo environment.

    PubMed

    Jassal, Manisha; Boominathan, Vijay P; Ferreira, Tracie; Sengupta, Sukalyan; Bhowmick, Sankha

    2016-09-01

    The difference in the tumor environment from the normal healthy tissue can be therapeutically exploited to develop new strategies for controlled and site-specific drug delivery. In the present study, a continuous flow system is designed to represent the in vivo environment of a tumor tissue and drug release is studied at different pH that represents normal tissue pH, tumor tissue pH, and stomach pH. The results obtained from these experiments were translated to a human embryonic kidney cell culture system and the effect of drug released from these functionalized PCL scaffolds on cell viability was studied. A significant decrease in cell viability was observed with the doxorubicin hydrochloride concentration that would be released at acidic pH, either present as a result of tumor extracellular environment or could be achieved via fabrication of a composite scaffold with a polyvinyl alcohol hydrogel containing acid. In the end, a study using zebrafish as an animal model is also undertaken in order to study the drug release from the scaffolds in vivo. PMID:27316576

  13. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo.

    PubMed

    Zhong, Min; Kundu, Bijoy K

    2013-10-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization - maximum a posteriori (OSEM-MAP) cardiac and respiratory gated (18)F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min(-1)), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  14. Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function

    PubMed Central

    Chen, Lizhen; Zhao, Peng; Wells, Lance; Amemiya, Chris T.; Condie, Brian G.; Manley, Nancy R.

    2010-01-01

    Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable. PMID:20498049

  15. In Vitro and In Vivo Models for Analysis of Resistance to Anticancer Molecular Therapies

    PubMed Central

    Rosa, Roberta; Monteleone, Francesca; Zambrano, Nicola; Bianco, Roberto

    2014-01-01

    The efficacy of classical and molecular therapies in cancer is hampered by the occurrence of primary (intrinsic) and secondary (acquired) refractoriness of tumours to selected therapeutic regimens. Nevertheless, the increased knowledge of the genetic, molecular and metabolic mechanisms underlying cancer results in the generation of a correspondingly increasing number of druggable targets and molecular drugs. Thus, a current challenge in molecular oncology and medicinal chemistry is to cope with the increased need for modelling, both in cellular and animal systems, the genetic assets associated to cancer resistance to drugs. In this review, we summarize the current strategies for generation and analysis of in vitro and in vivo models, which may reveal useful to extract information on the molecular basis of intrinsic and acquired resistance to anticancer molecular agents. PMID:23992330

  16. In vivo deuteration strategies for neutron scattering analysis of bacterial polyhydroxyoctanoate.

    PubMed

    Russell, Robert A; Holden, Peter J; Wilde, Karyn L; Garvey, Christopher J; Hammerton, Kerie M; Foster, L John R

    2008-06-01

    The cultivation of microorganisms on deuterated substrates has allowed us to control deuterium incorporation into biopolymer systems which is important for characterisation using neutron scattering techniques. Bacterial polyhydroxyoctanoate (PHO) is a polyester formed within inclusions inside bacterial cells and was deuterated in vivo under various conditions to characterise the formation of these inclusions by neutron scattering. Manipulation of deuterated media during microbial growth and PHO production phases resulted in polymer with partial or complete substitution of hydrogen by deuterium, as shown by gas chromatography. Sequential feeding of hydrogenated and deuterated forms of the same precursor was used to demonstrate that neutron scattering analysis could be used to differentiate between chemically similar phases in these polymer inclusions. PMID:18481053

  17. Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters.

    PubMed

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-10-01

    The laccase family of Pleurotus ostreatus has been widely characterized, and studies of the genes coding for laccase isoenzymes in P. ostreatus have so far led to the identification of four different genes and the corresponding cDNAs, poxc, pox1, poxa1b and poxa3. Analyses of P. ostreatus laccase promoters poxc, pox1, poxa1b and poxa3 have allowed identification of several putative response elements, and sequences of metal-responsive elements involved in the formation of complexes with fungal proteins have been identified in poxc and poxa1b promoters. In this work, development of a system for in vivo analysis of P. ostreatus laccase promoter poxc by enhanced green fluorescent protein expression is performed, based on a poly ethylene glycol-mediated procedure for fungal transformation. A quantitative measurement of fluorescence expressed in P. ostreatus transformants is hereby reported for the first time for this fungus. PMID:22893518

  18. Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo.

    PubMed

    Boussadia, Baddreddine; Gangarossa, Giuseppe; Mselli-Lakhal, Laila; Rousset, Marie-Claude; de Bock, Frederic; Lassere, Frederic; Ghosh, Chaitali; Pascussi, Jean-Marc; Janigro, Damir; Marchi, Nicola

    2016-09-01

    Nuclear receptors (NRs) are a group of transcription factors emerging as players in normal and pathological CNS development. Clinically, an association between the constitutive androstane NR (CAR) and cognitive impairment was proposed, however never experimentally investigated. We wished to test the hypothesis that the impact of CAR on neurophysiology and behavior is underlined by cerebrovascular-neuronal modifications. We have used CAR(-/-) C57BL/6 and wild type mice and performed a battery of behavioral tests (recognition, memory, motor coordination, learning and anxiety) as well as longitudinal video-electroencephalographic recordings (EEG). Brain cell morphology was assessed using 2-photon or electron microscopy and fluorescent immunohistochemistry. We observed recognition memory impairment and increased anxiety-like behavior in CAR(-/-) mice, while locomotor activity was not affected. Concomitantly to memory deficits, EEG monitoring revealed a decrease in 3.5-7Hz waves during the awake/exploration and sleep periods. Behavioral and EEG abnormalities in CAR(-/-) mice mirrored structural changes, including tortuous fronto-parietal penetrating vessels. At the cellular level we found reduced ZO-1, but not CLDN5, tight junction protein expression in cortical and hippocampal isolated microvessel preparations. Interestingly, the neurotoxin kainic acid, when injected peripherally, provoked a rapid onset of generalized convulsions in CAR(-/-) as compared to WT mice, supporting the hypothesis of vascular permeability. The morphological phenotype of CAR(-/-) mice also included some modifications of GFAP/IBA1 glial cells in the parenchymal or adjacent to collagen-IV(+) or FITC(+) microvessels. Neuronal defects were also observed including increased cortical NEUN(+) cell density, hippocampal granule cell dispersion and increased NPY immunoreactivity in the CA1 region in CAR(-/-) mice. The latter may contribute to the in vivo phenotype. Our results indicate that behavioral

  19. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo.

    PubMed

    Véliz, Loreto P; González, Francisco G; Duling, Brian R; Sáez, Juan C; Boric, Mauricio P

    2008-09-01

    To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e(-/-)). In the cheek pouch, topical tumor necrosis factor-alpha (TNF-alpha; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-alpha-glycyrrhetinic acid (AGA; 75 microM) or 18-beta-glycyrrhetinic acid (50 microM) abolished the TNF-alpha-induced increase in LAV and LPV; carbenoxolone (75 microM) or oleamide (100 microM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 microM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-alpha stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-alpha reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-alpha (0.5 microg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-alpha stimulation did not increase LAV or LPV in Cx43e(-/-) mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes. PMID:18599597

  20. Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming

    PubMed Central

    Islam, Mohammed M.; Smith, Derek K.; Niu, Wenze; Fang, Sanhua; Iqbal, Nida; Sun, Guoqiang; Shi, Yanhong; Zhang, Chun-Li

    2015-01-01

    Summary The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. PMID:26607952

  1. The biological functions of miRNAs: lessons from in vivo studies

    PubMed Central

    Vidigal, Joana A.; Ventura, Andrea

    2014-01-01

    Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness. PMID:25484347

  2. Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein

    NASA Astrophysics Data System (ADS)

    Sage, Cyrille; Huang, Mingqian; Karimi, Kambiz; Gutierrez, Gabriel; Vollrath, Melissa A.; Zhang, Duan-Sun; García-Añoveros, Jaime; Hinds, Philip W.; Corwin, Jeffrey T.; Corey, David P.; Chen, Zheng-Yi

    2005-02-01

    In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.

  3. The biological functions of miRNAs: lessons from in vivo studies.

    PubMed

    Vidigal, Joana A; Ventura, Andrea

    2015-03-01

    Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review, we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness. PMID:25484347

  4. Registration and analysis of in-vivo multispectral images for correction of motion and comparison in time

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Staring, Marius; Verdaasdonk, Rudolf

    2006-02-01

    In-vivo image-based multi-spectral images have typical problems in image acquisition, registration, visualization and analysis. As its spatial and spectral axes do not have the same unit, standard image algorithms often do not apply. The image size is often so large that it is hard to analyze them interactively. In a clinical setting, image motion will always occur during the acquisition times up to 30 seconds, since most (elderly) patients often have difficulty to retain their poses. In this paper, we discuss how the acquisition, registration, display and analysis can be optimized for in-vivo multi-spectral images.

  5. IN VITRO/IN VIVO COMPARISON OF YOLK SAC FUNCTION AND EMBRYO DEVELOPMENT

    EPA Science Inventory

    Yolk sac function and development of rat embryos grown in vitro for 24 hrs starting on day 10.5 were compared to those of embryos grown in utero. he embryos grown in vitro had significantly fewer somites, shorter crown-rump length and smaller yolk sac diameter when compared to th...

  6. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo.

    PubMed Central

    Sobel, M; McNeill, P M; Carlson, P L; Kermode, J C; Adelman, B; Conroy, R; Marques, D

    1991-01-01

    The intravenous administration of heparin to patients before open heart surgery reduced ristocetin cofactor activity by 58% (P less than 0.01, t test), and this impairment of von Willebrand factor-dependent platelet function was closely related to plasma heparin levels (r2 = 0.9), but not to plasma von Willebrand factor (vWF) levels. We hypothesized that heparin may inhibit vWF-dependent platelet hemostatic functions by directly binding vWF in solution and interfering with vWF-GpIb binding. Using the in vitro techniques of ristocetin-induced platelet agglutination, fluorescent flow cytometric measurement of vWF-platelet binding, and conventional radioligand binding assays we observed that heparin inhibited both vWF-dependent platelet function and vWF-platelet binding in a parallel and dose-dependent manner. Heparin also inhibited platelet agglutination induced by bovine vWF and inhibited the binding of human asialo-vWF to platelets in ristocetin-free systems. The inhibitory potency of heparin was not dependent upon its affinity for antithrombin III, but was molecular weight dependent: homogeneous preparations of lower molecular weight were less inhibitory. Heparin impairment of vWF function may explain why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin. PMID:2022745

  7. Synthesis, in vitro, and in vivo evaluation of novel functionalized quaternary ammonium curcuminoids as potential anti-cancer agents.

    PubMed

    Solano, Lucas N; Nelson, Grady L; Ronayne, Conor T; Lueth, Erica A; Foxley, Melissa A; Jonnalagadda, Sravan K; Gurrapu, Shirisha; Mereddy, Venkatram R

    2015-12-15

    Novel functionalized quaternary ammonium curcuminoids have been synthesized from piperazinyl curcuminoids and Baylis-Hillman reaction derived allyl bromides. These molecules are found to be highly water soluble with increased cytotoxicity compared to native curcumin against three cancer cell lines MIAPaCa-2, MDA-MB-231, and 4T1. Preliminary in vivo toxicity evaluation of a representative curcuminoid 5a in healthy mice indicates that this molecule is well tolerated based on normal body weight gains compared to control group. Furthermore, the efficacy of 5a has been tested in a pancreatic cancer xenograft model of MIAPaCa-2 and has been found to exhibit good tumor growth inhibition as a single agent and also in combination with clinical pancreatic cancer drug gemcitabine. PMID:26561365

  8. Randomized Controlled Trial of Mind Reading and In Vivo Rehearsal for High-Functioning Children with ASD.

    PubMed

    Thomeer, Marcus L; Smith, Rachael A; Lopata, Christopher; Volker, Martin A; Lipinski, Alanna M; Rodgers, Jonathan D; McDonald, Christin A; Lee, Gloria K

    2015-07-01

    This randomized controlled trial evaluated the efficacy of a computer software (i.e., Mind Reading) and in vivo rehearsal treatment on the emotion decoding and encoding skills, autism symptoms, and social skills of 43 children, ages 7-12 years with high-functioning autism spectrum disorder (HFASD). Children in treatment (n = 22) received the manualized protocol over 12 weeks. Primary analyses indicated significantly better posttest performance for the treatment group (compared to controls) on 3 of the 4 measures of emotion decoding and encoding and these were maintained at 5-week follow-up. Analyses of secondary measures favored the treatment group for 1 of the 2 measures; specifically, ASD symptoms were significantly lower at posttest and follow-up. PMID:25643864

  9. Functional Identification of Tumor Suppressor Genes Through an in vivo RNA Interference Screen in a Mouse Lymphoma Model

    PubMed Central

    Bric, Anka; Miething, Cornelius; Bialucha, Carl Uli; Scuoppo, Claudio; Zender, Lars; Krasnitz, Alexander; Xuan, Zhenyu; Zuber, Johannes; Wigler, Michael; Hicks, James; McCombie, Richard W.; Hemann, Michael T.; Hannon, Gregory J.; Powers, Scott; Lowe, Scott W.

    2009-01-01

    SUMMARY Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor suppressor gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications. PMID:19800577

  10. DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma

    PubMed Central

    Wu, Ming-Ru; Zhang, Tong; Alcon, Andre

    2015-01-01

    Chimeric antigen receptor (CAR) T cell therapies hold great potential for treating cancers, and new CARs that can target multiple tumor types and have the potential to target non-hematological malignancies are needed. In this study, the tumor recognition ability of a natural killer cell-activating receptor, DNAM-1 was harnessed to design CARs that target multiple tumor types. DNAM-1 ligands, PVR and nectin-2, are expressed on primary human leukemia, myeloma, ovarian cancer, melanoma, neuroblastoma, and Ewing sarcoma. DNAM-1 CARs exhibit high tumor cell cytotoxicity but low IFN-γ secretion in vitro. In contrast to other CAR designs, co-stimulatory domains did not improve the expression and function of DNAM-1 CARs. A DNAM-1/CD3zeta CAR reduced tumor burden in a murine melanoma model in vivo. In conclusion, DNAM-1-based CARs may have the potential to treat PVR and nectin-2 expressing hematological and solid tumors. PMID:25549845

  11. Facile Peptides Functionalization of Lanthanide-Based Nanocrystals through Phosphorylation Tethering for Efficient in Vivo NIR-to-NIR Bioimaging.

    PubMed

    Yao, Chi; Wang, Peiyuan; Wang, Rui; Zhou, Lei; El-Toni, Ahmed Mohamed; Lu, Yiqing; Li, Xiaomin; Zhang, Fan

    2016-02-01

    Peptide modification of nanoparticles is a challenging task for bioapplications. Here, we show that noncovalent surface engineering based on ligand exchange of peptides for lanthanide based upconversion and downconversion near-infrared (NIR) luminescent nanoparticles can be efficiently realized by modifying the hydroxyl functional group of a side grafted serine of peptides into a phosphate group (phosphorylation). By using the phosphorylated peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the modification allows improving the selectivity, sensitivity, and signal-to-noise ratio for the cancer targeting and bioimaging and reducing the toxicity derived from nonspecific interactions of nanoparticles with cells. The in vivo NIR bioimaging signal could even be detected at low injection amounts down to 20 μg per animal. PMID:26750555

  12. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel.

    PubMed

    Henry, Pierre-Gilles; Oz, Gülin; Provencher, Stephen; Gruetter, Rolf

    2003-01-01

    The LCModel method was adapted to analyze localized in vivo (13)C NMR spectra obtained from the rat brain in vivo at 9.4 T. Prior knowledge of chemical-shifts, J-coupling constants and J-evolution was included in the analysis. Up to 50 different isotopomer signals corresponding to 10 metabolites were quantified simultaneously in 400 microl volumes in the rat brain in vivo during infusion of [1,6-(13)C(2)]glucose. The analysis remained accurate even at low signal-to-noise ratio of the order of 3:1. The relative distribution of isotopomers in glutamate, glutamine and aspartate determined in vivo in 22 min was in excellent agreement with that measured in brain extracts. Quantitation of time series of (13)C spectra yielded time courses of total (13)C label incorporation into up to 16 carbon positions, as well as time courses of individual isotopomer signals, with a temporal resolution as low as 5 min (dynamic isotopomer analysis). The possibility of measuring in vivo a wealth of information that was hitherto accessible only in extracts is likely to expand the scope of metabolic studies in the intact brain. PMID:14679502

  13. Assessing structural and functional responses of murine hearts to acute and sustained β-adrenergic stimulation in vivo

    PubMed Central

    Puhl, Sarah-Lena; Weeks, Kate L.; Ranieri, Antonella; Avkiran, Metin

    2016-01-01

    Introduction Given the importance of β-adrenoceptor signalling in regulating cardiac structure and function, robust protocols are required to assess potential alterations in such regulation in murine models in vivo. Methods Echocardiography was performed in naïve and stressed (isoprenaline; 30 μg/g/day s.c. for up to 14 days) mice, in the absence or presence of acute β-adrenergic stimulation (dobutamine 0.75 μg/g, i.p.). Controls received saline infusion and/or injection. Hearts were additionally analysed gravimetrically, histologically and biochemically. Results In naïve mice, acute β-adrenoceptor stimulation with dobutamine increased heart rate, left ventricular (LV) fractional shortening (LVFS), ejection fraction (LVEF) and wall thickness and decreased LV diameter (p < 0.05). In stressed mice, dobutamine failed to induce further inotropic and chronotropic responses. Furthermore, following dobutamine injection, these mice exhibited lower LVEF and LVFS at identical heart rates, relative to corresponding controls. Sustained isoprenaline infusion induced LV hypertrophy (increased heart weight, heart weight/body weight ratio, heart weight/tibia length ratio and LV wall thickness (p < 0.05)) by 3 days, with little further change at 14 days. In contrast, increases in LVEF and LVFS were seen only at 14 days (p < 0.05). Discussion We describe protocols for and illustrative data from the assessment of murine cardiac responses to acute and sustained β-adrenergic stimulation in vivo, which would be of value in determining the impact of genetic or pharmacological interventions on such responses. Additionally, our data indicate that acute dobutamine stimulation unmasks early signs of LV dysfunction in the remodelled heart, even at a stage when basal function is enhanced. PMID:26836145

  14. Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2

    PubMed Central

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong

    2013-01-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to

  15. Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2.

    PubMed

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong; Wong, Hee-Kit

    2013-02-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral

  16. In-vivo motion analysis of bi-ventricular hearts from tagged MR images

    NASA Astrophysics Data System (ADS)

    Park, Kyoungju; Axel, Leon; Metaxas, Dimitris N.

    2005-04-01

    We conduct experiments to look at the in-vivo cardiac motion during systole, to visualize heart contraction, and to examine the clinical usefulness. Our model-based technique incorporates subject-specific modeling, motion analysis and the extraction of clinically relevant parameters within one framework. Previous bi-ventricular model based method could only handle up to the mid-ventricles and have a few test-subjects. Our parameterized model includes the LV, RV and up to the basal area for full ventricular motion study. Finite element methods capture cardiac motion by tracking the material points from tagged Magnetic Resonance (MR) images. A number of experiments from ten subjects are evaluated and analyzed. We tested subject several times and compared the resulting parameters to ensure the reproducibility and deviations. The resulting parameters can be used to describe the cardiac motion of normal subjects. The patterns of normal subjects were derived from experiments. While significant shape and motion variations were apparent in normal subjects, the quantitative analysis show typical patterns. Generally, the basal area moves downwards and the apical area contracts towards the cavity. The principal strain analysis describes the directions and magnitudes of maximum shortening, and maximum thickening.

  17. Effects of TAK-637, a novel neurokinin-1 receptor antagonist, on colonic function in vivo.

    PubMed

    Okano, S; Nagaya, H; Ikeura, Y; Natsugari, H; Inatomi, N

    2001-08-01

    Substance P (SP) is an important neurotransmitter that mediates various gut functions; however, its precise pathophysiological role remains unclear. In this study, we investigated the effect of SP on colonic function and the effect of TAK-637 [(aR,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]naphthyridine-6,13-dione] a new neurokinin-1 (NK1) receptor antagonist, on colonic responses to SP or stress in Mongolian gerbils. SP and the selective NK1 agonist [pGlu6]SP6-11 significantly increased fecal pellet output. TAK-637 reduced [pGlu6]SP6-11-induced defecation, but did not significantly affect neurokinin A-, 5-hydroxytryptamine- or carbachol-stimulated defecation. Oral TAK-637 decreased restraint stress-stimulated fecal pellet output with an ID50 value of 0.33 mg/kg. Ondansetron and atropine, but not the peripheral kappa-receptor agonist trimebutine, also reduced restraint stress-stimulated defecation. TAK-637 inhibited the increase in fecal pellet output stimulated by intracerebroventricular injection of corticotropin-releasing factor, but did not affect the stress-induced increase in plasma adrenocorticotropic hormone levels. Denervation of the sensory neurons with capsaicin did not affect stress-stimulated defecation. These results suggest that NK1 receptors in the enteric plexus play an important role in stress-induced changes in colonic function, and that TAK-637 may be useful in the treatment of functional bowel diseases such as irritable bowel syndrome. PMID:11454917

  18. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Kreyling, Wolfgang G.; Kohlhäufl, Martin; Häussinger, Karl; Heyder, Joachim

    2001-01-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 μm geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs.

  19. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  20. In vitro and in vivo studies of macrophage functions in amebiasis.

    PubMed Central

    Denis, M; Chadee, K

    1988-01-01

    Experimental intrahepatic inoculation of the gerbil with Entamoeba histolytica trophozoites was used as a model of liver amebiasis to study the cellular immune response elicited by the parasite. It was shown that abscess-derived macrophages (5 to 20 days old) were deficient in their capacity to develop a respiratory burst, to secrete and express membrane-bound interleukin-1-like activity, and to kill E. histolytica trophozoites as well as to respond to lymphokines in vitro. However, macrophages isolated from the spleen and peritoneal cavities from the same infected animals were not significantly down regulated in these functions. Splenocytes from infected gerbils were shown to develop a strong responsiveness to amebic antigen, whereas their response to concanavalin A was suppressed. Crude E. histolytica extracts or conditioned medium down regulated murine BALB/c macrophage accessory and effector cell functions in vitro in a manner similar to abscess-derived macrophages, whereas crude extracts of the nonvirulent E. histolytica-like Laredo strain did not. Our results indicate that intrinsic or secreted products or both from E. histolytica are actively regulating macrophage functions at the abscess site and can possibly mediate other immunoregulatory mechanisms at distant targets. PMID:2903124

  1. Computational based functional analysis of Bacillus phytases.

    PubMed

    Verma, Anukriti; Singh, Vinay Kumar; Gaur, Smriti

    2016-02-01

    Phytase is an enzyme which catalyzes the total hydrolysis of phytate to less phosphorylated myo-inositol derivatives and inorganic phosphate and digests the undigestable phytate part present in seeds and grains and therefore provides digestible phosphorus, calcium and other mineral nutrients. Phytases are frequently added to the feed of monogastric animals so that bioavailability of phytic acid-bound phosphate increases, ultimately enhancing the nutritional value of diets. The Bacillus phytase is very suitable to be used in animal feed because of its optimum pH with excellent thermal stability. Present study is aimed to perform an in silico comparative characterization and functional analysis of phytases from Bacillus amyloliquefaciens to explore physico-chemical properties using various bio-computational tools. All proteins are acidic and thermostable and can be used as suitable candidates in the feed industry. PMID:26672917

  2. Functional analysis and treatment of cigarette pica.

    PubMed Central

    Piazza, C C; Hanley, G P; Fisher, W W

    1996-01-01

    A series of analyses was conducted to assess and treat the pica of cigarette butts by a young man with mental retardation and autism. First, we demonstrated that pica was maintained in a condition with no social consequences when the available cigarettes contained nicotine but not when the cigarettes contained herbs without nicotine. Second, a choice assessment (Fisher et al., 1992) confirmed that tobacco was preferred over the other components of the cigarette (e.g., paper, filter, etc.). Third, an analogue functional analysis (Iwata, Dorsey, Slifer, Bauman & Richman, 1982/1994) demonstrated that cigarette pica was maintained independent of social consequences. Fourth, a treatment designed to interrupt the hypothesized response-reinforcer relationship reduced consumption of cigarettes to zero. Finally, because cigarette pica occurred primarily when the individual was alone or under minimal supervision, a procedure based on stimulus control was developed to improve the effectiveness of the intervention in these situations. PMID:8995829

  3. Reconstitution and functional analysis of kinetochore subcomplexes

    PubMed Central

    Gestaut, Daniel R.; Cooper, Jeremy; Asbury, Charles L.; Davis, Trisha N.; Wordeman, Linda

    2010-01-01

    Kinetochores are multifunctional supercomplexes that link chromosomes to dynamic microtubule tips. Groups of proteins from the kinetochore are arranged into distinct subcomplexes that co-purify under stringent conditions and cause similar phenotypes when mutated. By co-expressing all the components of a given subcomplex from a polycistronic plasmid in bacteria, many labs have had great success in purifying active subcomplexes. This has enabled the study of how the microtubule binding subcomplexes of the kinetochore interact with both the microtubule lattice and dynamic microtubule tips. Here we outline methods for rapid cloning of polycistronic vectors for expression of kinetochore subcomplexes, their purification, and techniques for functional analysis using Total Internal Reflection Fluorescence Microscopy (TIRFM). PMID:20466157

  4. Functional Analysis of the Primate Shoulder

    PubMed Central

    Hohn, Bianca; Scherf, Heike; Schmidt, Manuela; Krause, Cornelia; Witzel, Ulrich

    2010-01-01

    Studies of the shoulder girdle are in most cases restricted to morphological comparisons and rarely aim at elucidating function in a strictly biomechanical sense. To fill this gap, we investigated the basic functional conditions that occur in the shoulder joint and shoulder girdle of primates by means of mechanics. Because most of nonhuman primate locomotion is essentially quadrupedal walking—although on very variable substrates—our analysis started with quadrupedal postures. We identified the mechanical situation at the beginning, middle, and end of the load-bearing stance phase by constructing force parallelograms in the shoulder joint and the scapulo-thoracal connection. The resulting postulates concerning muscle activities are in agreement with electromyographical data in the literature. We determined the magnitude and directions of the internal forces and explored mechanically optimal shapes of proximal humerus, scapula, and clavicula using the Finite Element Method. Next we considered mechanical functions other than quadrupedal walking, such as suspension and brachiation. Quadrupedal walking entails muscle activities and joint forces that require a long scapula, the cranial margin of which has about the same length as the axillary margin. Loading of the hand in positions above the head and suspensory behaviors lead to force flows along the axillary margin and so necessitate a scapula with an extended axillary and a shorter cranial margin. In all cases, the facies glenoidalis is nearly normal to the calculated joint forces. In anterior view, terrestrial monkeys chose a direction of the ground reaction force requiring (moderate) activity of the abductors of the shoulder joint, whereas more arboreal monkeys prefer postures that necessitate activity of the adductors of the forelimb even when walking along branches. The same adducting and retracting muscles are recruited in various forms of suspension. As a mechanical consequence, the scapula is in a more

  5. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model

    PubMed Central

    Das, Nanditha Mohan; Hatsell, Sarah; Nannuru, Kalyan; Huang, Lily; Wen, Xialing; Wang, Lili; Wang, Li-Hsien; Idone, Vincent; Meganck, Jeffrey A.; Murphy, Andrew; Economides, Aris; Xie, LiQin

    2016-01-01

    Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models. PMID:26910759

  6. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model.

    PubMed

    Das, Nanditha Mohan; Hatsell, Sarah; Nannuru, Kalyan; Huang, Lily; Wen, Xialing; Wang, Lili; Wang, Li-Hsien; Idone, Vincent; Meganck, Jeffrey A; Murphy, Andrew; Economides, Aris; Xie, LiQin

    2016-01-01

    Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1-2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models. PMID:26910759

  7. In-vivo assessment of total body protein in rats by prompt-γ neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Stamatelatos, Ion E.; Boozer, Carol N.; Ma, Ruimei; Yasumura, Seiichi

    1997-02-01

    A prompt-(gamma) neutron activation analysis facility for in vivo determination of total body protein (TBP) in rats has been designed. TBP is determined in vivo by assessment of total body nitrogen. The facility is based on a 252Cf radionuclide neutron source within a heavy water moderator assembly and two NaI(Tl) scintillation detectors. The in vivo precision of the technique, as estimated by three repeated measurements of 15 rats is 6 percent, for a radiation dose equivalent of 60 mSv. The radiation dose per measurement is sufficiently low to enable serial measurements on the same animal. MCNP-4A Monte Carlo transport code was utilized to calculate thermal neutron flux correction factors to account for differences in size and shape of the rats and calibration phantoms. Good agrement was observed in comparing body nitrogen assessment by prompt-(gamma) neutron activation and chemical carcass analysis.

  8. Functional analysis of problem behavior: a review.

    PubMed Central

    Hanley, Gregory P; Iwata, Brian A; McCord, Brandon E

    2003-01-01

    Functional analysis methodology focuses on the identification of variables that influence the occurrence of problem behavior and has become a hallmark of contemporary approaches to behavioral assessment. In light of the widespread use of pretreatment functional analyses in articles published in this and other journals, we reviewed the literature in an attempt to identify best practices and directions for future research. Studies included in the present review were those in which (a) a pretreatment assessment based on (b) direct observation and measurement of (c) problem behavior was conducted under (d) at least two conditions involving manipulation of an environmental variable in an attempt (e) to demonstrate a relation between the environmental event and behavior. Studies that met the criteria for inclusion were quantified and critically evaluated along a number of dimensions related to subject and setting characteristics, parametric and qualitative characteristics of the methodology, types of assessment conditions, experimental designs, topographies of problem behaviors, and the manner in which data were displayed and analyzed. PMID:12858983

  9. Functional analysis of an arthritogenic synovial fibroblast

    PubMed Central

    Aidinis, Vassilis; Plows, David; Haralambous, Sylva; Armaka, Maria; Papadopoulos, Petros; Kanaki, Maria Zambia; Koczan, Dirk; Thiesen, Hans Juergen; Kollias, George

    2003-01-01

    Increasing attention has been directed towards identifying non-T-cell mechanisms as potential therapeutic targets in rheumatoid arthritis. Synovial fibroblast (SF) activation, a hallmark of rheumatoid arthritis, results in inappropriate production of chemokines and matrix components, which in turn lead to bone and cartilage destruction. We have demonstrated that SFs have an autonomous pathogenic role in the development of the disease, by showing that they have the capacity to migrate throughout the body and cause pathology specifically to the joints. In order to decipher the pathogenic mechanisms that govern SF activation and pathogenic potential, we used the two most prominent methods of differential gene expression analysis, differential display and DNA microarrays, in a search for deregulated cellular pathways in the arthritogenic SF. Functional clustering of differentially expressed genes, validated by dedicated in vitro functional assays, implicated a number of cellular pathways in SF activation. Among them, diminished adhesion to the extracellullar matrix was shown to correlate with increased proliferation and migration to this matrix. Our findings support an aggressive role for the SF in the development of the disease and reinforce the perspective of a transformed-like character of the SF. PMID:12723986

  10. Human milk metagenome: a functional capacity analysis

    PubMed Central

    2013-01-01

    Background Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. Results The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P < 0.05). The human milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes. Conclusions Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the

  11. Correspondence between Traditional Models of Functional Analysis and a Functional Analysis of Manding Behavior

    ERIC Educational Resources Information Center

    LaRue, Robert H.; Sloman, Kimberly N.; Weiss, Mary Jane; Delmolino, Lara; Hansford, Amy; Szalony, Jill; Madigan, Ryan; Lambright, Nathan M.

    2011-01-01

    Functional analysis procedures have been effectively used to determine the maintaining variables for challenging behavior and subsequently develop effective interventions. However, fear of evoking dangerous topographies of maladaptive behavior and concerns for reinforcing infrequent maladaptive behavior present challenges for people working in…

  12. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    PubMed Central

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  13. Parametric Cost Analysis: A Design Function