Note: This page contains sample records for the topic vivo luteal function from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE F344 RAT DURING PREGNANCY  

EPA Science Inventory

Effects of Bromodichloromethane (BDCM) on Ex Vivo Luteal Function In the Pregnant F344 Rat Susan R. Bielmeier1, Ashley S. Murr2, Deborah S. Best2, Jerome M. Goldman2, and Michael G. Narotsky2 1Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC 27599,...

2

EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT  

EPA Science Inventory

EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT. S. R. Bielmeier1, A. S. Murr2, D. S. Best2, J. M. Goldman2, and M. G. Narotsky2 1 Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC, USA 2 Reproductive T...

3

EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE F344 RAT  

EPA Science Inventory

EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE PREGNANT F344 RAT. S. R. Bielmeier1, A. S. Murr2, D. S. Best2, J. M. Goldman2, and M. G. Narotsky2 1 Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC, USA 2 Reproductive T...

4

Luteal blood flow and luteal function  

PubMed Central

Background Blood flow in the corpus luteum (CL) is associated with luteal function. The present study was undertaken to investigate whether luteal function can be improved by increasing CL blood flow in women with luteal phase defect (LFD). Methods Blood flow impedance in the CL was measured by transvaginal color-pulsed-Doppler-ultrasonography and was expressed as a resistance index (RI). The patients with both LFD [serum progesterone (P) concentrations < 10 ng/ml during mid-luteal phase] and high CL-RI (? 0.51) were given vitamin-E (600 mg/day, n = 18), L-arginine (6 g/day, n = 14) as a potential nitric oxide donor, melatonin (3 mg/day, n = 13) as an antioxidant, or HCG (2,000 IU/day, n = 10) during the subsequent menstrual cycle. Results In the control group (n = 11), who received no medication to increase CL blood flow, only one patient (9%) improved in CL-RI and 2 patients (18%) improved in serum P. Vitamin-E improved CL-RI in 15 patients (83%) and improved serum P in 12 patients (67%). L-arginine improved CL-RI in all the patients (100%) and improved serum P in 10 patients (71%). HCG improved CL-RI in all the patients (100%) and improved serum P in 9 patients (90%). Melatonin had no significant effect. Conclusion Vitamin-E or L-arginine treatment improved luteal function by decreasing CL blood flow impedance. CL blood flow is a critical factor for luteal function.

Takasaki, Akihisa; Tamura, Hiroshi; Taniguchi, Ken; Asada, Hiromi; Taketani, Toshiaki; Matsuoka, Aki; Yamagata, Yoshiaki; Shimamura, Katsunori; Morioka, Hitoshi; Sugino, Norihiro

2009-01-01

5

Serotonergic function and late luteal phase dysphoric disorder  

Microsoft Academic Search

Thirty-eight subjects who met criteria for the DSM-III-R diagnosis late luteal phase dysphoric disorder (LLPDD) were compared with 18 controls in 5-HT uptake kinetics of the platelets in the premenstrual (day 26) as well as in the postmenstrual phase (day 4) of the cycle. Furthermore, 5-hydroxytryptophan (5-HTP) was administered to LLPDD patients and controls in both phases of the cycle,

Arend T. Veeninga; Herman G. M. Westenberg

1992-01-01

6

Endometritis impairs luteal development, function, and nitric oxide and ascorbic acid concentrations in buffalo (Bubalus bubalis).  

PubMed

A vast majority of the world buffalo resource is concentrated in tropical and subtropical countries. Apart from heat stress and poor nutritional availability, endometritis is one of the most commonly encountered reproductive problems limiting fertility and consequently productive potential of the species. As demonstrated recently, endometritis impairs growth and follicular fluid composition of the largest follicle in buffalo. In the present study, the effect of endometritis on luteal development, function, nitric oxide (NO), and ascorbic acid was investigated. Reproductive tracts were collected from 90 cyclic buffaloes at an abattoir and grouped into endometritic (n?=?36) or non-endometritic (n?=?54) buffaloes based on physical examination of uterine mucus, white side test, and uterine cytology. Samples with pus-containing mucus, positive reaction on white side test, and/or >5 % neutrophils were considered to be positive for endometritis. Corpora lutea were enucleated, weighed, classified into stages I to IV, and assayed for progesterone (P(4)), NO, and ascorbic acid concentrations. Endometritic buffaloes had lesser (P?luteal weight and P(4), NO, and ascorbic acid concentrations than non-endometritic buffaloes. The findings indicated that endometritis impairs corpus luteum development and function in buffalo. Reduced luteal NO and ascorbic acid concentrations during endometritis are novel findings. PMID:23070685

Pande, Megha; Das, Goutam Kumar; Khan, Firdous Ahmad; Sarkar, Mihir; Pathak, Mohan Chandra; Prasad, Jai Kishan; Kumar, Harendra

2013-03-01

7

In vivo intra-luteal implants of prostaglandin (PG) E(1) or E(2) (PGE(1), PGE(2)) prevent luteolysis in cows. I. Luteal weight, circulating progesterone, mRNA for luteal luteinizing hormone (LH) receptor, and occupied and unoccupied luteal receptors for LH.  

PubMed

Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every four hours inhibited luteolysis in ewes. However, estradiol-17? or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in heifers, but infusion of estradiol+PGE(2) inhibited luteolysis in heifers. The objective of this experiment was to determine whether and how intra-luteal implants containing PGE(1) or PGE(2) prevent luteolysis in Angus or Brahman cows. On day-13 post-estrus, Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Coccygeal blood was collected daily for analysis for progesterone. Breed did not influence the effect of PGE(1) or PGE(2) on luteal mRNA for LH receptors or unoccupied or occupied luteal LH receptors did not differ (P>0.05) so the data were pooled. Luteal weights of Vehicle-treated Angus or Brahman cows from days-13-19 were lower (P<0.05) than those treated with intra-luteal implants containing PGE(1) or PGE(2). Day-13 Angus luteal weights were heavier (P<0.05) than Vehicle-treated Angus cows on day-19 and luteal weights of day-13 corpora lutea were similar (P>0.05) to Angus cows on day-19 treated with intra-luteal implants containing PGE(1) or PGE(2). Profiles of circulating progesterone in Angus or Brahman cows treated with intra-luteal implants containing PGE(1) or PGE(2) differed (P<0.05) from controls, but profiles of progesterone did not differ (P>0.05) between breeds or between cows treated with intra-luteal implants containing PGE(1) or PGE(2). Intra-luteal implants containing PGE(1) or PGE(2) prevented (P<0.05) loss of luteal mRNA for LH receptors and unoccupied or occupied receptors for LH compared to controls. It is concluded that PGE(1) or PGE(2) alone delays luteolysis regardless of breed. We also conclude that either PGE(1) or PGE(2) prevented luteolysis in cows by up-regulating expression of mRNA for LH receptors and by preventing loss of unoccupied and occupied LH receptors in luteal tissue. PMID:21601649

Weems, Yoshie S; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; Vann, Rhonda C; Ford, Stephen P; Bridges, Phillip J; Welsh, Thomas H; Lewis, Andrew W; Neuendorff, Don A; Randel, Ronald D; Weems, Charles W

2011-08-01

8

Effects of beta-carotene and vitamin A on bovine luteal function  

SciTech Connect

Initially, the direct effects of B-carotene and vitamin A on progesterone (P4) production were studied by exposing dispersed luteal cells to these compounds in vitro. There were no positive relationships between P4 and B-carotene or vitamin A. However, a negative, and perhaps toxic, effect of a large dose of B-carotene on P4 reproduction was noted. A positive relationship between plasma B-carotene and percent change of P4 in the medium of dispersed luteal cells was demonstrated when these plasma metabolites were measured in slaughterhouse cows from which CL were obtained for incubation. This relationship was only present during the winter when plasma levels of B-carotene and vitamin A were considerably lower. Preliminary investigations into the mechanism of action of B-carotene and/or vitamin A were initiated. Luteal tissue ribonucleic acid (RNA), deoxyribonucleic acid (DNA), the RNA to DNA ratio and total protein concentration were measured to study the influence of plasma levels of B-carotene and vitamin A on the protein synthetic capacity of luteal tissue. There were no relationships detected, however, RNA concentration and the RNA to DNA ratio of luteal tissue were greater during the summer. The percent binding of radiolabeled vitamin A was greater in the nuclear than in the cytoplasmic component of the luteal cell.

Graves-Hoagland, R.L.

1987-01-01

9

Is luteal function maintained by factors other than chorionic gonadotrophin in early pregnancy?  

PubMed

Women with ectopic pregnancy (n = 14) and early embryonic arrest ('blighted ovum') (n = 9) were studied 16 days after conception, at a time when they were asymptomatic and serum concentrations of beta-human chorionic gonadotrophin (HCG) were in the normal range and increasing at an apparently normal rate. Serum progesterone and oestradiol concentrations were compared with those from normal women matched for gestational age and serum beta-HCG concentration whose singleton intra-uterine pregnancies proceeded normally beyond 20 weeks. Mean serum progesterone concentrations were significantly lower in the women with ectopic pregnancies than in matched controls (P < 0.002); however, there was no difference in the serum progesterone concentrations between women with blighted ova and matched controls. Statistically significant differences were not seen in serum oestradiol concentrations between either group and matched controls. Similarly there was no difference in serum progesterone or oestradiol concentrations in 20 women who conceived ectopic pregnancies and 20 women conceiving blighted ovum pregnancies and their matched intra-uterine controls when conception followed ovarian stimulation. The low serum progesterone concentrations seen in ectopic pregnancy suggest that there is a specific and selective deficiency in progesterone synthesis, which implies that factors other than HCG may influence luteal function. PMID:8501201

Lower, A M; Yovich, J L; Hancock, C; Grudzinskas, J G

1993-04-01

10

Luteal function induced by transvaginal ultrasonic-guided follicular aspiration in mares.  

PubMed

Ultrasonic-guided transvaginal follicle aspiration was performed in 58 crossbreed mares in order to determine whether aspiration of various dominant follicle diameters resulted in luteal tissue capable of producing progesterone (P(4)). The mares were randomly assigned to three groups according to follicular diameter (25-29 mm; 30-35 mm and >35 mm). Mares that had ovulations naturally served as controls. The serum progesterone (P(4)) concentrations in the aspirated mares were greater (P < 0.0001; r(2) = 0.6687; CV = 21.52) in mares with natural ovulation compared to mares with aspirated follicles regardless of groups. Serum P(4) concentration in aspired mares with follicular diameter of 25-29 mm declined 0.365 ng/ml/day (P = 0.0065) from the day of aspiration (D0) up to D8. In mares with follicle diameter of 30-35 mm, serum P(4) concentration increased (0.258 ng/ml/day; P = 0.001), as well as in the mares with follicles >35 mm diameter (0.481 ng/ml/day; P < 0.0001), and in mares with natural ovulation (1.236 ng/ml/day; P < 0.0001). Out of the 25 mares with follicular aspirations that formed Corpora hemorragica (P(4) >1 ng/ml), 23 (92%) had greater (>2 ng/ml) serum P(4) concentrations on Day 8 after aspiration. Of these 23 mares, 75% were in the 25-29 mm group, 9/10 (90%) in the 30-35 mm group, and 11/11 (100%) of the mares in the >35 mm follicular diameter group had luteinization (P(4) >2 ng/ml). These results suggest that a functional Corpus luteum can be induced in mares using follicular aspiration and that a minimum 35 mm follicular diameter is needed to reach a progesterone serum concentration compatible with that of a Corpus luteum produced by natural ovulation. PMID:20079584

Mozzaquatro, F D; Verstegen, J P; Douglas, R H; Troedsson, M H T; DeLaCorte, F D; Silva, C A M; Rubin, M I B

2010-05-01

11

Oral progestin priming increases ovarian sensitivity to gonadotropin stimulation and improves luteal function in the cat.  

PubMed

As the only domesticated species known to exhibit both induced and spontaneous ovulation, the cat is a model for understanding the nuances of ovarian control. To explore ovarian sensitivity to exogenous gonadotropins and the influence of progestin priming, we conducted a study of queens that were down-regulated with oral progestin or allowed to cycle normally, followed by low or high doses of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). Our metrics included 1) fecal steroid metabolite profiles before and after ovulation induction, 2) laparoscopic examination of ovarian follicles and corpora lutea (CL) on Days 2 and 17 (Day 0 = hCG administration), and 3) ovariohysterectomy (Day 17) to assess CL progesterone concentrations, morphometrics, and histology. Reproductive tracts from time-matched, naturally mated queens (n = 6) served as controls. Every progestin-primed cat (n = 12) produced the desired response of morphologically similar, fresh CL (regardless of eCG/hCG dose) by Day 2, whereas 41.7% of unprimed counterparts (n = 12) failed to ovulate or had variable-aged CL suggestive of prior spontaneous ovulation (P < 0.05). The ovarian response to low, but not high, eCG/hCG was improved (P < 0.05) in primed compared to unprimed cats, indicating increased sensitivity to gonadotropin in the progestin-primed ovary. Progestin priming prevented hyperelevated fecal steroid metabolites and normalized CL progesterone capacity, but only when combined with low eCG/hCG. However, priming failed to prevent ancillary CL formation, smaller CL mass, or abnormal luteal cell density, which were common to all eCG/hCG-treated cats. Thus, the domestic cat exposed to eCG/hCG produces CL with structural and functional aberrations. These anomalies can be partially mitigated by progestin priming, possibly due to a protective effect of progestin associated with enhanced ovarian sensitivity to gonadotropins. PMID:23100619

Stewart, Rosemary A; Pelican, Katharine M; Crosier, Adrienne E; Pukazhenthi, Budhan S; Wildt, David E; Ottinger, Mary Ann; Howard, JoGayle

2012-06-01

12

Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep.  

PubMed

The aim of the present study was to determine the toxicokinetics of short-term exposures to di(2-ethylhexyl) phthalate (DEHP) and its effects on ovarian cyclicity and luteal function using a sheep experimental model. For establishing the model, we examined the clearance of DEHP after intravenous (i.v.) and intramuscular (i.m.) administration of a single dose of 25mg/kg body weight (b.w.) and after i.m. administration of two different doses (25 and 50mg/kg b.w.; DEHP25 and DEHP50, respectively) three times a week for two months. Results showed a significant, dose-dependent effect of DEHP administration, when compared to the control group (CTL; untreated ewes; n=6), on the duration of the ewes' estrous cycles (17.1±0.5 days, CTL; 15.1±0.9 days, DEHP25; 12.0±0.8 days, DEHP50; p<0.05); 94.9% of the cycles were of regular duration (15-19 days) in CTL, but only 51.1% and 25.4% in DEHP25 and DEHP50, respectively. Corpora lutea (CL) were smaller in DEHP50 than in DEHP25 (p<0.05) and were smaller in both groups than in CTL (p<0.005), but the maximum plasma concentrations of progesterone were greater (p<0.05) in DEHP25 and DEHP50 than in CTL. In conclusion, the exposure of cycling ewes to DEHP causes shortening of the ovulatory cycles due mainly to a reduction in the size and lifespan of CL. However, the exposure to the phthalate is also associated with an increase in circulating concentrations of progesterone, suggesting the influence of DEHP on steroid metabolism. PMID:23522073

Herreros, Maria A; Gonzalez-Bulnes, Antonio; Iñigo-Nuñez, Silvia; Contreras-Solis, Ignacio; Ros, Jose M; Encinas, Teresa

2013-03-01

13

Luteal function induced by transvaginal ultrasonic-guided follicular aspiration in mares  

Microsoft Academic Search

Ultrasonic-guided transvaginal follicle aspiration was performed in 58 crossbreed mares in order to determine whether aspiration of various dominant follicle diameters resulted in luteal tissue capable of producing progesterone (P4). The mares were randomly assigned to three groups according to follicular diameter (25–29mm; 30–35mm and >35mm). Mares that had ovulations naturally served as controls. The serum progesterone (P4) concentrations in

F. D. Mozzaquatro; J. P. Verstegen; R. H. Douglas; M. H. T. Troedsson; F. D. DeLaCorte; C. A. M. Silva; M. I. B. Rubin

2010-01-01

14

Effects of body condition and protein supplementation on LH secretion and luteal function in sheep.  

PubMed

In ruminants, nutrition is one of the exogenous inputs affecting reproductive function at different levels of the hypothalamic-hypophyseal-gonadal axis. However, the exact mechanisms or even the identification of the signalling metabolic compounds by which nutrition affects reproductive function still need further clarification. The role of static body condition (BC) and its interaction with a short-term protein supplementation (PL), on secretion of metabolic hormones [growth hormone (GH), insulin and insulin-like growth factor-1 (IGF-1)], as well as on secretion of LH and progesterone (P4) was evaluated in sheep. Twenty-four Rambouillet ewes divided into two groups, with lower (LBC) and higher body condition (HBC), were randomly assigned within BC to one of two PL levels: low (LPL, 24% of crude protein; 14 g/animal/day), and high (HPL, 44% of crude protein; 30 g/animal/day). The secretion of GH, insulin, IGF-1 and LH was evaluated on day 10 of the oestrous cycle; appearance and timing of oestrous behaviour were previously detected using rams. Progesterone secretion was evaluated on day 13 of the same cycle. No differences were found (p > 0.05) between PL groups on serum GH concentrations during the sampling period (overall mean of 4.0 +/- 0.3 ng/ml), but a trend for lower values in HBC sheep was found (3.6 +/- 0.4 vs 4.4 +/- 0.4 ng/ml, p = 0.06). A BC effect was observed (p < 0.05) on serum IGF-1 level, with higher values in HBC sheep (p < 0.05). Neither BC nor PL affected (p > 0.05) secretion of LH and the number of corpora lutea, nor serum P4 and insulin concentrations. Results indicate a predominance of the static component of nutrition on sheep metabolic hormone responses, GH and IGF-1, with no effect of short-term PL on secretion of pituitary and ovarian hormones as well as luteal number and activity. PMID:17845600

Meza-Herrera, C A; Ross, T; Hallford, D; Hawkins, D; Gonzalez-Bulnes, A

2007-10-01

15

Luteal function and follicular growth following follicular aspiration during the peri-luteolysis period in Bos indicus and crossbred cattle.  

PubMed

Follicular estradiol triggers luteolysis in cattle. Therefore, the control of follicle growth and steroidogenesis is expected to modulate luteal function and might be used as an anti-luteolytic strategy to improve embryo survival. Objectives were to evaluate follicular dynamics, plasma concentrations of estradiol and luteal lifespan in Bos indicus and crossbred cows subjected to sequential follicular aspirations. From D13 to D25 of a synchronized cycle (ovulation = D1), Nelore or crossbred, non-pregnant and non-lactating cows were submitted to daily ultrasound-guided aspiration of follicles >6 mm (n = 10) or to sham aspirations (n = 8). Diameter of the largest follicle on the day of luteolysis (7.4 ± 1.0 vs 9.7 ± 1.0 mm; mean ± SEM), number of days in which follicles >6?mm were present (2.3?±?0.4 vs 4.6?±?0.5 days) and daily mean diameter of the largest follicle between D15 and D19 (6.4 ±?0.2 vs 8.5?±?0.3?mm) were smaller (p?luteal lifespan was similar (p?>?0.10) between the groups (19.6 ± 0.4 days), whereas the oestrous cycle was longer (p?

Bisinotto, R S; Ibiapina, B T; Pontes, E O; Bertan, C M; Satrapa, R; Barros, C M; Binelli, M

2012-04-01

16

Establishment and evaluation of a stable steroidogenic caprine luteal cell line.  

PubMed

Many physiological, biological, pharmacologic, and toxicologic events and compounds affect the function of Saanen dairy goat luteal cells, resulting in implantation failure or early embryonic loss. Although primary luteal cell cultures have been used, their finite lifespan precludes assessment of long-term effects. In the present study, primary caprine luteal cells (CLCs) were immortalized through transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expression of hTERT and telomerase activity were evaluated in transduced CLCs (hTERT-CLCs). In this study, these cells steadily expressed hTERT gene and exhibited higher telomerase activity at Passages 30 and 50. The hTERT-CLCs at Passages 30 and 50 expressed genes encoding key proteins, enzymes and receptors inherent to normal luteal cells, e.g., steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3?-hydroxysteroid dehydrogenase (3?-HSD), and LH-receptor (LH-R). In addition, immortalized caprine luteal cells produced detectable quantities of progesterone in response to 8-bromo-cAMP (8-Br-cAMP) or 22(R)-hydroxycholesterol (22R-HC) stimulation. Furthermore, this cell line appeared to proliferate more quickly than control cells, although no neoplastic transformation occurred either in vivo or in vitro. We concluded the immortalized CLCs by hTERT retained their original characteristics and may provide a useful model to study luteal cell functions. PMID:22578611

Li, Wei; Xu, Xingang; Huang, Yong; Li, Zhaocai; Yu, Gaoshui; Wang, Zhisheng; Ding, Li; Tong, Dewen

2012-07-15

17

Assessment of luteal function in the vervet monkey as a means to develop a model for obesity-related reproductive phenotype.  

PubMed

The objective of the current study was to characterize luteal function in vervet monkeys. Urine from 12 adult female vervets housed at an academic research center was collected for 10 weeks from single-caged monkeys in order to assess evidence of luteal activity (ELA) as determined by urinary excretion of pregnanediol glucuronide (Pdg) and estrone conjugates (E1c). Dual energy X-ray absorptiometry (DXA) was performed on the monkeys to assess body composition, bone density, and fat mass. Menstrual cyclicity was determined using records of vaginal bleeding. ELA was observed in 9 monkeys and was characterized by a late follicular rise in E1c followed by a progressive increase in Pdg excretion. Mean menstrual cycle length was 26.7?±?3.8 days and the average day of luteal transition was 14?±?1.8. Three monkeys without ELA had a clearly defined E1c rise (mean 12-fold from nadir) followed by an E1c drop that was not accompanied by Pdg rise and coincided with vaginal bleeding. Among the 9 ELA monkeys, excretion of E1c tended to negatively associate with fat mass, although this finding did not reach statistical significance (r?=?-0.61, p?=?0.08). Similar to women, vervet monkeys experience an increase in E1c late in the follicular phase of the menstrual cycle which is followed by a subsequent luteal Pdg peak. Assessment of urinary reproductive hormones allows for identification of cardinal menstrual cycle events; thus, the similarity of vervet cycles to human menstrual cycles makes them a useful model for obesity-related human reproductive impairment. PMID:23278149

Kundu, Mila C; May, Margaret C; Chosich, Justin; Bradford, Andrew P; Lasley, Bill; Gee, Nancy; Santoro, Nanette; Appt, Susan E; Polotsky, Alex J

2013-04-01

18

Metabolic and luteal function in winter-calving Spanish beef cows as affected by calf management and breed.  

PubMed

This experiment aimed at evaluating the effect of calf management and breed on the metabolic and luteal function of post-partum beef cows fed at maintenance. Fifty multiparous cows, 22 Parda de Montaña (PA) and 28 Pirenaica (PI), were assigned to either suckling once-daily for 30 min (RESTR) or ad libitum (ADLIB) from the day after calving. Blood samples were collected to analyse metabolites [non-esterified fatty acids (NEFA), beta-hydroxybutyrate, total protein and urea)], insulin-like growth factor-I (IGF-I) and progesterone (P4) at different intervals. Cows from RESTR maintained their live-weight (LW) over the first 3 months post-partum, whereas ADLIB cows lost nearly 4% LW. Both genotypes showed similar LW gains during this period (p > 0.10). Calf daily gains were lower in RESTR than in ADLIB treatment (p < 0.05), but similar across breeds (p > 0.10). Milk and lactose production were lower in RESTR cows than in ADLIB (p < 0.05). Milk and protein yield were greater in PA than in PI breed (p < 0.05). Serum NEFA, total protein and urea were higher in PI cows suckling ADLIB than in the rest (p < 0.05). Cows from PI breed had greater NEFA values than PA ones on the first week post-partum (p < 0.001). Circulating IGF-I was not affected by suckling frequency, breed nor their interaction (p > 0.10). Suckling frequency, but not breed, affected the interval from calving to first ovulation (p < 0.001), being shorter in RESTR than in ADLIB cows. In conclusion, the ad libitum suckling practice improved cow milk yield and offspring gain compared to once-daily suckling for 30 min from the day after calving, at the expense of impairing the onset of cyclicity. The effect of calf management was confounded with breed on the studied blood biochemical constituents, but any of these metabolites influenced the role of endocrine IGF-I in these genotypes. PMID:19663981

Alvarez-Rodríguez, J; Palacio, J; Sanz, A

2010-06-01

19

Expression of Aldo-keto Reductase 1C23 in the Equine Corpus Luteum in Different Luteal Phases  

PubMed Central

Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P4) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20?-hydroxysteroid dehydrogenase (20?-HSD) catabolizes P4 into its biologically inactive form, 20?-hydroxyprogesterone (20?-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20?-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P4 concentration and levels of 3?-hydroxysteroid dehydrogenase (3?-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3?-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20?-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P4 by AKR1C23 is one of the processes contributing to functional luteolysis in mares.

KOZAI, Keisuke; HOJO, Takuo; TOKUYAMA, Shota; SZOSTEK, Anna Z; TAKAHASHI, Masashi; SAKATANI, Miki; NAMBO, Yasuo; SKARZYNSKI, Dariusz J; OKUDA, Kiyoshi

2014-01-01

20

Expression and localization of ghrelin and its functional receptor in corpus luteum during different stages of estrous cycle and the modulatory role of ghrelin on progesterone production in cultured luteal cells in buffalo.  

PubMed

Evidence obtained during recent years provided has insight into the regulation of corpus luteum (CL) development, function, and regression by locally produced ghrelin. The present study was carried out to evaluate the expression and localization of ghrelin and its receptor (GHS-R1a) in bubaline CL during different stages of the estrous cycle and investigate the role of ghrelin on progesterone (P4) production along with messenger RNA (mRNA) expression of P4 synthesis intermediates. The mRNA and protein expression of ghrelin and GHS-R1a was significantly greater in mid- and late luteal phases. Both factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of ghrelin and GHS-R1a was greater during mid- and late luteal phases. Luteal cells were cultured in vitro and treated with ghrelin each at 1, 10, and 100 ng/mL concentrations for 48 h after obtaining 75% to 80% confluence. At a dose of 1 ng/mL, there was no significant difference in P4 secretion between control and treatment group. At 10 and 100 ng/mL, there was a decrease (P < 0.05) in P4 concentration, cytochrome P45011A1 (CYP11A1), and 3-beta-hydroxysteroid dehydrogenase mRNA expression and localization. There was no difference in mRNA expression of steroidogenic acute regulatory protein between control and treatment group. In summary, the present study provided evidence that ghrelin and its receptor are expressed in bubaline CL and are localized exclusively in the cell cytoplasm and ghrelin has an inhibitory effect on P4 production in buffalo. PMID:24906925

Gupta, M; Dangi, S S; Chouhan, V S; Hyder, I; Babitha, V; Yadav, V P; Khan, F A; Sonwane, A; Singh, G; Das, G K; Mitra, A; Bag, S; Sarkar, M

2014-07-01

21

Interrelationships among progesterone, LH, and luteal blood flow during a pulse of a PGF2? metabolite and functional role of LH in the progesterone rebound in heifers.  

PubMed

On Day 16 (Day 0 = ovulation) or before the expected transition into the luteolytic period, heifers were not treated (control group, N = 7) or were treated with a single 0.1-mg dose of estradiol (E2) (E2 group, N = 6) or E2 combined with the GnRH antagonist acyline (E2/Ac group, N = 5). Hourly blood samples were collected from hour of treatment (Hour 0) to Hour 20. Estradiol induced a pulse of PGFM, but the peak of the pulse occurred 2 hours later (P < 0.05) and mean PGFM concentrations during the descending portion of the pulse were lower (P < 0.05) in the E2/Ac group than in the E2 group. In the E2 group, concentration of progesterone (P4) decreased (P < 0.05) during the ascending portion of the PGFM pulse, and increased (rebounded; P < 0.05) along with an LH increase during the descending portion. In the E2/Ac group, a rebound in P4 and an increase in LH were not detected during the descending portion of the PGFM pulse. The percentage of CL with color Doppler signals of blood flow increased (P < 0.04) concurrently with the PGFM increase during Hours 0 to 5 and during the ascending portion of the PGFM pulse. Blood flow and PGFM decreased concurrently. The following hypotheses were supported: (1) LH has a positive effect on PGFM pulses; (2) the rebound in P4 and the increase in LH during the descending portion of a PGFM pulse are functionally related; and (3) the increase in luteal blood flow in association with a PGFM pulse represents a direct effect of PGF2? rather than an effect of P4 or LH. PMID:23561925

Ginther, O J; Bashir, S T; Mir, R A; Santos, V G; Beg, M A

2013-04-15

22

In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2?, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue.  

PubMed

Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17? or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid receptors, which is correlated with changes in luteal mRNA for LH receptors reported previously in these same cows to prevent luteolysis. PMID:22120546

Weems, Yoshie S; Bridges, Phillip J; Jeoung, Myoungkun; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; Vann, Rhonda C; Ford, Stephen P; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

2012-01-01

23

Proliferation of Luteal Steroidogenic Cells in Cattle  

PubMed Central

The rapid growth of the corpus luteum (CL) after ovulation is believed to be mainly due to an increase in the size of luteal cells (hypertrophy) rather than an increase in their number. However, the relationship between luteal growth and the proliferation of luteal steroidogenic cells (LSCs) is not fully understood. One goal of the present study was to determine whether LSCs proliferate during CL growth. A second goal was to determine whether luteinizing hormone (LH), which is known have roles in the proliferation and differentiation of follicular cells, also affects the proliferation of LSCs. Ki-67 (a cell proliferation marker) was expressed during the early, developing and mid luteal stages and some Ki-67-positive cells co-expressed HSD3B (a steroidogenic marker). DNA content in LSCs isolated from the developing CL increased much more rapidly (indicating rapid growth) than did DNA content in LSCs isolated from the mid CL. The cell cycle-progressive genes CCND2 (cyclin D2) and CCNE1 (cyclin E1) mRNA were expressed more strongly in the small luteal cells than in the large luteal cells. LH decreased the rate of increase of DNA in LSCs isolated from the mid luteal stage but not in LSCs from the developing stage. LH suppressed CCND2 expression in LSCs from the mid luteal stage but not from the developing luteal stage. Furthermore, LH receptor (LHCGR) mRNA expression was higher at the mid luteal stage than at the developing luteal stage. The overall results suggest that the growth of the bovine CL is due to not only hypertrophy of LSCs but also an increase in their number, and that the proliferative ability of luteal steroidogenic cells decreases between the developing and mid luteal stages.

Yoshioka, Shin; Abe, Hironori; Sakumoto, Ryosuke; Okuda, Kiyoshi

2013-01-01

24

Effects of repeated transvaginal ultrasound-guided aspirations performed in anestrous and cyclic mares on P4 and E2 plasma levels and luteal function.  

PubMed

The aim of the present study was to verify how repeated ovum pick-up (OPU), performed in anestrous and cyclic mares, affect ovarian activity, measured by progesterone (P4) and 17ß-estradiol (E2) plasma levels. Ovum pick-up of all visible follicles was performed every 9 to 12 days, and four sessions were carried out during anestrous (A) and breeding season (BS). The number of aspirated follicles per mare at each session was not significantly different between the two periods (BS: 6.1 ± 2.4; A: 7.5 ± 4.4; P > 0.05), but the mean follicular diameter was significantly higher during BS (16.0 ± 7.1 vs. 10.2 ± 5.1 mm; P < 0.05); during A the number of aspirated follicles less than 15 mm in diameter resulted significantly higher than that registered in BS (5.1 ± 2.7 vs. 3.0 ± 1.8; P < 0.05). The total mean value of P4 was higher in BS than in A (6.3 ± 4.4 vs. 0.3 ± 1.8 ng/mL; P < 0.05), whereas the total mean level of E2 was not different between the two periods (3.8 ± 3.4 vs. 2.5 ± 2.7 pg/mL; P > 0.05). Estradiol plasma values resulted positively correlated, in A and BS, with diameter of follicles detected on the ovaries (R = 0.345 and R = 0.331, respectively), whereas a negative correlation was observed between P4 and follicular diameter in BS (R = -0.162). Both E2 and P4 presented a high individual variability during BS; in particular, in three of seven mares, P4 trend was compatible with a normal estrous cycle, and the interval between two consecutive peaks was 21 days. In two of seven mares, with CL at first OPU, P4 concentrations remained more than 3 ng/mL throughout the entire treatment period. Finally, in two of seven animals, P4 levels initially showed a similar pattern to that of a normal estrous cycle, then, after the second aspiration, they remained consistently higher than 3 ng/mL. When the procedure was carried out in cyclic animals, the influence of this technique on ovarian activity seemed to be related to individual variability although, according to progesterone values, structures observed on the ovaries after aspirations presented luteal function. Furthermore, the resumption of normal ovarian activity, after repeated OPU sessions, occurred in a period not much longer than the duration of a normal estrous cycle (25.4 ± 5.2 days). Data recorded during nonbreeding period showed that repeated OPU in anestrous mares do not affect ovarian activity and do not anticipate the resumption of ovarian cyclicity. However, based on the number of aspirated follicles in anestrous and cyclic mares, both types of subjects could be considered as oocyte donors. PMID:24780115

Iacono, E; Merlo, B; Rizzato, G; Mislei, B; Govoni, N; Tamanini, C; Mari, G

2014-07-15

25

Bovine luteal blood flow: basic mechanism and clinical relevance.  

PubMed

The introduction of transrectal colour Doppler sonography (CDS) has allowed the evaluation of luteal blood flow (LBF) in cows. Because appropriate angiogenesis plays a decisive role in the functioning of the corpus luteum (CL), studies on LBF may provide valuable information about the physiology and pathophysiology of the CL. Studies on cyclic cows have shown that progesterone concentrations in blood plasma can be more reliably predicted by LBF than by luteal size (LS), especially during the regression phase of the CL. In contrast with non-pregnant cows, a significant increase in LBF is seen in pregnant cows during the third week after insemination. However, because there are high interindividual variations in LBF between animals, LBF is not useful for the early diagnosis of pregnancy. Determination of LBF is more sensitive than LS for detecting the effects of acute systemic inflammation and exogenous hormones on the CL. Cows with low progesterone levels have smaller CL during the mid-luteal phase, but LBF related to LS did not differ between cows with low and high progesterone levels. In conclusion, LBF determined by CDS provides additional information about luteal function compared with LS and plasma progesterone concentrations, but its role concerning fertility in the cow is yet to be clarified. PMID:23244830

Bollwein, Heinrich; Lüttgenau, Johannes; Herzog, Kathrin

2012-01-01

26

Luteal phase support for assisted reproduction cycles  

Microsoft Academic Search

BACKGROUND: Progesterone prepares the endometrium for pregnancy by stimulating proliferation in response to human chorionic gonadotropin (hCG), which is produced by the corpus luteum. This occurs in the luteal phase of the menstrual cycle. In assisted reproduction techniques (ART) the progesterone or hCG levels, or both, are low and the natural process is insufficient, so the luteal phase is supported

M. Van der Linden; K. Buckingham; C. Farquhar; J. A. M. Kremer; M. Metwally

2011-01-01

27

Changing frequency of pulsatile luteinizing hormone and progesterone secretion during the luteal phase of the menstrual cycle of rhesus monkeys.  

PubMed

Experiments were conducted to examine the pulsatile nature of biologically active luteinizing hormone (LH) and progesterone secretion during the luteal phase of the menstrual cycle in rhesus monkeys. As the luteal phase progressed, the pulse frequency of LH release decreased dramatically from a high of one pulse every 90 min during the early luteal phase to a low of one pulse every 7-8 h during the late luteal phase. As the pulse frequency decreased, there was a corresponding increase in pulse amplitude. During the early luteal phase, progesterone secretion was not episodic and there were increments in LH that were not associated with elevations in progesterone. However, during the mid-late luteal phase, progesterone was secreted in a pulsatile fashion. During the midluteal phase (Days 6-7 post-LH surge), 67% of the LH pulses were associated with progesterone pulses, and by the late luteal phase (Days 10-11 post-LH surge), every LH pulse was accompanied by a dramatic and sustained release of progesterone. During the late luteal phase, when the LH profile was characterized by low-frequency, high-amplitude pulses, progesterone levels often rose from less than 1 ng/ml to greater than 9 ng/ml and returned to baseline within a 3-h period. Thus, a single daily progesterone determination is unlikely to be an accurate indicator of luteal function. These results suggest that the changing pattern of mean LH concentrations during the luteal phase occurs as a result of changes in frequency and amplitude of LH release. These changes in the pulsatile pattern of LH secretion appear to have profound effects on secretion of progesterone by the corpus luteum, especially during the mid-late luteal phase when the patterns of LH concentrations are correlated with those of progesterone. PMID:6509139

Ellinwood, W E; Norman, R L; Spies, H G

1984-11-01

28

Support for a physiological role of endogenous catecholamines in the stimulation of bovine luteal progesterone production.  

PubMed

To determine if catecholamines were present in bovine luteal tissue, corpora lutea (CL) were obtained during the mid-luteal phase (Days 10-12) and the concentration of dopamine (DA) and norepinephrine (NE) was determined by high-performance liquid chromatography. Both DA and NE were detected in luteal tissue at mean concentrations of 41.9 +/- 5.73 and 10.2 +/- 2.51 ng/g for DA and NE, respectively. These concentrations represented a luteal content of 306.6 +/- 66.88 ng/CL for DA and 70.5 +/- 16.88 ng/CL for NE. In vitro, DA at concentrations of 1.0 mM to 0.01 mM stimulated the production of progesterone (P4, p less than 0.05). The response to DA was inhibited by propranolol (a beta-adrenergic receptor antagonist, p less than 0.05) but not by phentolamine, phenoxybenzamine (alpha-adrenergic receptor antagonists), or haloperidol (a DA receptor antagonist, p greater than 0.05). Neither L-tyrosine nor L-dopa altered P4 production (p greater than 0.05). Inhibition of DA beta-hydroxylase, the enzyme that catalyzes the conversion of DA to NE by FLA-63 blocked the DA-induced increases in luteal P4 production (p less than 0.05). These results demonstrate the existence of DA and NE in bovine luteal tissue and indicate that exogenous DA can be converted to NE in luteal tissue. The results support a physiological role for catecholamines in the stimulation of bovine luteal function. PMID:2624849

Battista, P J; Rexroad, C E; Poff, J P; Condon, W A

1989-11-01

29

Luteal function, largest follicle, and fertility in postpartum dairy cows treated with 14dCIDR-PGF2? versus 2xPGF2?-Ovsynch for timed AI.  

PubMed

A method for timed artificial insemination (AI) that is used for beef cows, beef heifers, and dairy heifers employs progesterone-releasing inserts, such as the controlled internal drug release (CIDR; Zoetis, New York, NY, USA) that are left in place for 14 days. The 14-day CIDR treatment is a method of presynchronization that ensures that cattle are in the late luteal phase of the estrous cycle when PGF2? is administered before timed AI. The objective of this study was to test the effectiveness of the 14dCIDR-PGF2? program in postpartum dairy cows by comparing it with the traditional "Presynch-Ovsynch" (2xPGF2?-Ovsynch) program. The 14dCIDR-PGF2? cows (n = 132) were treated with a CIDR insert on Day 0 for 14 days. At 19 days after CIDR removal (Day 33), the cows were treated with a luteolytic dose of PGF2?, 56 hours later were treated with an ovulatory dose of GnRH (Day 35), and 16 hours later were inseminated. The 2xPGF2?-Ovsynch cows were treated with a luteolytic dose of PGF2? on Day 0 and again on Day 14. At 12 days after the second PGF2? treatment (Day 26), the cows were treated with GnRH. At 7 days after GnRH, the cows were treated with PGF2? (Day 33), then 56 hours later treated with GnRH (Day 35), and then 16 hours later were inseminated. There was no effect of treatment or treatment by parity interaction on pregnancies per AI (P/AI) when pregnancy diagnosis was performed on Day 32 (115/263; 43.7%) or Days 60 to 90 (99/263; 37.6%) after insemination. There was an effect of parity (P < 0.05) on P/AI because primiparous cows had lesser P/AI (35/98; 35.7%) than multiparous cows (80/165; 48.5%) on Day 32. Cows observed in estrus after the presynchronization step (within 5 days after CIDR removal or within 5 days after the second PGF2? treatment) had greater P/AI than those not observed in estrus (55/103; 53.4% vs. 60/160; 37.5%; observed vs. not observed; P < 0.01; d 32 pregnancy diagnosis). When progesterone data were examined in a subset of cows (n = 208), 55.3% of cows had a "prototypical" response to treatment (i.e., the cow had an estrous cycle that was synchronized by the presynchronization treatment and then the cow responded appropriately to the subsequent PGF2? and GnRH treatments before timed AI). Collectively, cows with a prototypical response to either treatment had 52.2% P/AI that was greater (P < 0.001) than the P/AI for cows that had a nonprototypical response (19%) (P/AI determined at 60-90 days of pregnancy). In conclusion, we did not detect a difference in P/AI when postpartum dairy cows were treated with 14dCIDR-PGF2? or 2xPGF2?-Ovsynch before timed AI. The primary limitation to the success of either program was the failure of the cow to respond appropriately to the sequence of treatments. PMID:23998742

Escalante, Rebecca C; Poock, Scott E; Lucy, Matthew C

2013-11-01

30

Prostaglandin- and thromboxane-producing activity of isolated luteal cells from pseudopregnant rabbits.  

PubMed

The pseudopregnant rabbit is proposed as a suitable model for studies on physiology and endocrinology of the luteal phase. Pseudopregnancy is defined by corpus luteum function from day 1 to day 12 post hCG, as demonstrated by peripheral progesterone concentrations. The corpus luteum is highly vascularized which is extremely important to ensure progesterone secretion. Prostaglandins are potent vasoactive compounds and may be involved in controlling the ovarian/luteal blood flow. The present studies were designed to investigate the capacity of luteal cells for their intracellular production rates of prostaglandins in the early luteal phase. Pseudopregnancy was induced with a subcutaneous injection of FSH/LH, followed two days later by an intravenous injection of hCG, on days 0, 1 to 4 of pseudopregnancy luteal cells were isolated and incubated for 4 days. Media were collected every 24 h and analyzed for prostaglandins. The luteal cells were characterized by immunocytochemistry and progesterone measurements. Cultured luteal cells were able to convert exogenously applied arachidonic acid into PGI2, PGE2, PGF2alpha, and TXA2. The major compound that could be detected in the culture medium and in the cells was PGI2. The absolute values of the production pattern varied in all experiments in the ranges PGI2 > PGE2 > PGF2alpha > TXA2 with the greatest difference on day 3. In view of this fact the corpus luteum may contribute locally synthesized prostaglandins to regulate its own function. The physiological meaning of these findings should now be studied in a more optimal environment such as organ culture. PMID:9228209

Schlegel, W; Ammermann, D; John, H

1997-05-01

31

Clinostat rotation induces apoptosis in luteal cells of the pregnant rat  

NASA Technical Reports Server (NTRS)

Recent studies have shown that microgravity induces changes at the cellular level, including apoptosis. However, it is unknown whether microgravity affects luteal cell function. This study was performed to assess whether microgravity conditions generated by clinostat rotation induce apoptosis and affect steroidogenesis by luteal cells. Luteal cells isolated from the corpora lutea of Day 8 pregnant rats were placed in equal numbers in slide flasks (chamber slides). One slide flask was placed in the clinostat and the other served as a stationary control. At 48 h in the clinostat, whereas the levels of progesterone and total cellular protein decreased, the number of shrunken cells increased. To determine whether apoptosis occurred in shrunken cells, Comet and TUNEL assays were performed. At 48 h, the percentage of apoptotic cells in the clinostat increased compared with that in the control. To investigate how the microgravity conditions induce apoptosis, the active mitochondria in luteal cells were detected with JC-1 dye. Cells in the control consisted of many active mitochondria, which were evenly distributed throughout the cell. In contrast, cells in the clinostat displayed fewer active mitochondria, which were distributed either to the outer edge of the cell or around the nucleus. These results suggest that mitochondrial dysfunction induced by clinostat rotation could lead to apoptosis in luteal cells and suppression of progesterone production.

Yang, Hyunwon; Bhat, Ganapathy K.; Sridaran, Rajagopala

2002-01-01

32

Liver x receptor modulation of gene expression leading to proluteolytic effects in primate luteal cells.  

PubMed

The expressions of genes involved in cholesterol efflux increase, whereas those involved in extracellular cholesterol uptake decrease, during spontaneous functional regression of the primate corpus luteum (CL). This may result from liver x receptor (LXR) alpha (official symbol NR1H3) and/or beta (official symbol NR1H2) control of luteal gene transcription, because these nuclear receptor superfamily members are key regulators of cellular cholesterol homeostasis. Therefore, studies were conducted to assess endogenous LXR ligands in the primate CL through the luteal phase, and to determine the effect of synthetic or natural LXR ligands on cholesterol efflux and uptake in functional primate luteal cells. Using high-performance liquid chromatography tandem mass spectrometry, three LXR ligands were identified and quantified in the rhesus macaque CL, including 22R-hydroxycholesterol (22ROH), 27-hydroxycholesterol (27OH), and desmosterol. Levels of 22ROH paralleled serum progesterone concentrations, whereas mean levels of 27OH tended to be higher following the loss of progesterone synthesis. Desmosterol was present throughout the luteal phase. Functional macaque luteal cells treated with the synthetic LXR agonist T0901317 or physiologically relevant concentrations of the endogenous luteal ligands 22ROH, 27OH, and desmosterol had increased expression of various known LXR target genes and greater cholesterol efflux. Additionally, T0901317 reduced low-density lipoprotein receptor protein and extracellular low-density lipoprotein uptake, whereas 27OH decreased low-density lipoprotein receptor protein, most likely via a posttranslational mechanism. Collectively, these data support the hypothesis that LXR activation causes increased cholesterol efflux and decreased extracellular cholesterol uptake. In theory, these effects could deplete the primate CL of cholesterol needed for steroidogenesis, ultimately contributing to functional regression. PMID:22156476

Bogan, Randy L; Debarber, Andrea E; Hennebold, Jon D

2012-03-01

33

Luteal function and estrus in peripubertal beef heifers treated with an intravaginal progesterone releasing device with or without a subsequent injection of estradiol  

Microsoft Academic Search

The objectives of this experiment were to determine if treatment of beef heifers with progesterone (P4) using an intravaginal device alone or in combination with estradiol benzoate (EB) would induce estrus and cause development of corpora lutea (CL) with a typical life span. Peripubertal heifers (n=311) were used when about 40% of the heifers had a functional CL. The heifers

R. J Rasby; M. L Day; S. K Johnson; J. E Kinder; J. M Lynch; R. E Short; R. P Wettemann; H. D Hafs

1998-01-01

34

LUTEAL FUNCTION AND ESTRUS IN PERIPUBERTAL BEEF HEIFERS TREATED WITH AN INTRAVAGINAL PROGESTERONE ItFJ.~ASING DEVICE WITH OR WITHOUT A SUBSEQUENT INJECTION OF ESTRADIOL  

Microsoft Academic Search

The objectives of this experiment were to determine if treatment ofbeefheifers with progesterone (P4) using an intravaginal device alone or in combination with estradiol benzoate (EB) would induce estrus and cause development of corpora lutes (CL) with a typical life span. Peripubertal heifers (n=311) were used when about 40% of the heifers had a functional CL. The heifers were assigned

R. J. Rasby; S. K. Johnson; J. E. Kinder; J. M. Lynch; H. D. Hafs; USDA ARS

35

Programmable nanoparticle functionalization for in vivo targeting  

PubMed Central

The emerging demand for programmable functionalization of existing base nanocarriers necessitates development of an efficient approach for cargo loading that avoids nanoparticle redesign for each individual application. Herein, we demonstrate in vivo a postformulation strategy for lipidic nanocarrier functionalization with the use of a linker peptide, which rapidly and stably integrates cargos into lipidic membranes of nanocarriers after simple mixing through a self-assembling process. We exemplified this strategy by generating a VCAM-1-targeted perfluorocarbon nanoparticle for in vivo targeting in atherosclerosis (ApoE-deficient) and breast cancer (STAT-1-deficient) models. In the atherosclerotic model, a 4.1-fold augmentation in binding to affected aortas was observed for targeted vs. nontargeted nanoparticles (P<0.0298). Likewise, in the breast cancer model, a 4.9-fold increase in the nanoparticle signal from tumor vasculature was observed for targeted vs. nontargeted nanoparticles (P<0.0216). In each case, the nanoparticle was registered with fluorine (19F) magnetic resonance spectroscopy of the nanoparticle perfluorocarbon core, yielding a quantitative estimate of the number of tissue-bound nanoparticles. Because other common nanocarriers with lipid coatings (e.g., liposomes, micelles, etc.) can employ this strategy, this peptide linker postformulation approach is applicable to more than half of the available nanosystems currently in clinical trials or clinical uses.—Pan, H., Myerson, J. W., Hu, L., Marsh, J. N., Hou K., Scott, M. J., Allen, J. S., Hu, G., San Roman, S., Lanza, G. M., Schreiber, R. D., Schlesinger, P. H., Wickline, S. A. Programmable nanoparticle functionalization for in vivo targeting.

Pan, Hua; Myerson, Jacob W.; Hu, Lingzhi; Marsh, Jon N.; Hou, Kirk; Scott, Michael J.; Allen, John S.; Hu, Grace; San Roman, Susana; Lanza, Gregory M.; Schreiber, Robert D.; Schlesinger, Paul H.; Wickline, Samuel A.

2013-01-01

36

Changes in uterine protein secretion during luteal and follicular phases and detection of phosphatases during luteal phase of estrous cycle in buffaloes (Bubalus bubalis).  

PubMed

Changes in uterine proteins during different reproductive states and their functional significance though known in other species have not been established in buffaloes. An attempt has been made to unravel the changes in composition of buffalo uterine secretion with growth and regression of corpora-lutea during early, mid and late luteal and follicular phase of estrous cycle using gel filtration and electrophoresis techniques. Also the phosphatases activities in luteal phase uterine secretions have been studied. Gel filtration chromatography analysis revealed a protein peak in void volume of the column, the intensity of which was more in all the luteal phase samples than follicular phase samples. Alkaline phosphatase was also found eluted in the void volume. The other three uterus-specific peaks (Peaks V-VII) were detected below 13.7 kd molecular weight. There were at least five peaks of acid phosphatases activity in chromatogram. Silver staining of SDS-PAGE gel detected as many as 40 protein bands in the uterine fluid of which nine proteins were glycoproteins. Molecular weight (MW) comparison revealed the major protein band at 66 kd which could be serum albumin. Comparison of uterine proteins with serum protein bands revealed a 93.5 kd glycoprotein in buffalo serum that did not appear in uterine fluid and at least 11 uterus-specific protein bands (506, 470, 241, 114, 49, 38, 33, 26, 19.2, 16, and 14.3 kd). The 38 and 19.2 kd bands were luteal-stage specific. Intense periodic acid Schiff's (PAS) stained bands in uterine proteins compared to serum indicated glycosylation process in endometrial epithelial cells. The study suggested that buffalo uterine secretion contained mainly serum and several uterus-specific proteins of which few were luteal phase specific. Further study on characterizing the unique or most abundant proteins and defining their role in uterine functions would help to address the cause of low reproduction rate in buffaloes. PMID:16213013

Chandra Roy, Sudhir; Uma Suganthi, R; Ghosh, Jyotirmoy

2006-04-15

37

FSH up-regulates angiogenic factors in luteal cells of buffaloes.  

PubMed

Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins. PMID:24209507

Fátima, L A; Evangelista, M C; Silva, R S; Cardoso, A P M; Baruselli, P S; Papa, P C

2013-11-01

38

Gestating for 22 months: luteal development and pregnancy maintenance in elephants  

PubMed Central

The corpus luteum, a temporally established endocrine gland, formed on the ovary from remaining cells of the ovulated follicle, plays a key role in maintaining the early mammalian pregnancy by secreting progesterone. Despite being a monovular species, 2–12 corpora lutea (CLs) were found on the elephant ovaries during their long pregnancy lasting on average 640 days. However, the function and the formation of the additional CLs and their meaning remain unexplained. Here, we show from the example of the elephant, the close relationship between the maternally determined luteal phase length, the formation of multiple luteal structures and their progestagen secretion, the timespan of early embryonic development until implantation and maternal recognition. Through three-dimensional and Colour Flow ultrasonography of the ovaries and the uterus, we conclude that pregnant elephants maintain active CL throughout gestation that appear as main source of progestagens. Two LH peaks during the follicular phase ensure the development of a set of 5.4 ± 2.7 CLs. Accessory CLs (acCLs) form prior to ovulation after the first luteinizing hormone (LH) peak, while the ovulatory CL (ovCL) forms after the second LH peak. After five to six weeks (the normal luteal phase lifespan), all existing CLs begin to regress. However, they resume growing as soon as an embryo becomes ultrasonographically apparent on day 49 ± 2. After this time, all pregnancy CLs grow significantly larger than in a non-conceptive luteal phase and are maintained until after parturition. The long luteal phase is congruent with a slow early embryonic development and luteal rescue only starts ‘last minute’, with presumed implantation of the embryo. Our findings demonstrate a highly successful reproductive solution, different from currently described mammalian models.

Lueders, Imke; Niemuller, Cheryl; Rich, Peter; Gray, Charlie; Hermes, Robert; Goeritz, Frank; Hildebrandt, Thomas B.

2012-01-01

39

Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells.  

PubMed

The objectives of the present study were to investigate the effects of vascular endothelial growth factor (VEGF) on progesterone (P4) synthesis in cultured luteal cells from different stages of the estrous cycle and on expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side chain cleavage (CYP11A1) and 3?-hydroxysteroid dehydrogenase (HSD3B), antiapoptotic gene PCNA, and proapoptotic gene BAX in luteal cells obtained from mid-luteal phase (MLP) of estrous cycle in buffalo. Corpus luteum samples from the early luteal phase (ELP; day 1st-4th; n=4), MLP (day 5th-10th; n=4), and the late luteal phase (LLP; day 11th-16th; n=4) of oestrous cycle were obtained from a slaughterhouse. Luteal cell cultures were treated with VEGF (0, 1, 10 and 100ng/ml) for 24, 48 and 72h. Progesterone was assessed by RIA, while mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Results indicated a dose- and time-dependent stimulatory effect of VEGF on P4 synthesis and expression of steroidogenic enzymes. Moreover, VEGF treatment led to an increase in PCNA expression and decrease in BAX expression. In summary, these findings suggest that VEGF acts locally in the bubaline CL to modulate steroid hormone synthesis and cell survivability, which indicates that this factor has an important role as a regulator of CL development and function in buffalo. PMID:24998155

Chouhan, V S; Dangi, S S; Gupta, M; Babitha, V; Khan, F A; Panda, R P; Yadav, V P; Singh, G; Sarkar, M

2014-08-01

40

Luteal maintenance of pregnancy in the African elephant (Loxodonta africana).  

PubMed

The ovaries of eight African elephant foetuses and their mothers between 2 and 22 months of gestation, and those of two cycling and two lactating elephants, were examined grossly, histologically and immunocytochemically, with emphasis on the development and regression of accessory corpora lutea (CL) of pregnancy and the steroidogenic capacities of the accessory CL and the foetal ovaries. The results supported recent findings that the accessory CL form as a result of luteinisation, with and without ovulation, of medium-sized follicles during the 3-week inter-luteal period of the oestrous cycle. They enlarge significantly and become steroidogenically active around 5 weeks of gestation, probably in response to the placental lactogen which is secreted by the implanting trophoblast of the conceptus. The large luteal cells stained strongly for 3? hydroxysteroid dehydrogenase (3?HSD) activity throughout the 22-month gestation period although they showed vacuolation and other degenerative changes in the final months of gestation coincident with hypertrophy and hyperplasia of 3?HSD-positive interstitial cells in the foetal gonads. It is proposed that the progestagens secreted by the enlarged gonads of the elephant foetus may function both to assist the maternal ovaries in supporting the pregnancy state and to induce torpor and intrauterine immobility of the rapidly growing foetus. PMID:22457432

Stansfield, F J; Allen, W R

2012-06-01

41

Improving the luteal phase after ovarian stimulation: reviewing new options.  

PubMed

The human chorionic gonadotrophin (HCG) trigger used for final follicular maturation in connection with assisted reproduction treatment combines ovulation induction and early luteal-phase stimulation of the corpora lutea. The use of a gonadotrophin-releasing hormone agonist (GnRHa) for final follicular maturation has, however, for the first time allowed a separation of the ovulatory signal from the early luteal-phase support. This has generated new information that may improve the currently employed luteal-phase support. Thus, combined results from a number of randomized controlled trials using the GnRHa trigger suggest an association between the reproductive outcome after IVF treatment and the mid-luteal-phase serum progesterone concentration. It appears that a minimum mid-luteal progesterone threshold of approximately 80-100 nmol/l exists, which, when surpassed, results in reduced early pregnancy loss and an increased live birth rate. Further, the trade off between the HCG bolus and the subsequent risk of ovarian hyperstimulation syndrome has resulted in a trend to reduce the HCG bolus from 10,000 IU to 6500-5000 IU, which augments the HCG/LH deficiency during the early/mid-luteal phase. The mid-luteal HCG/LH shortage results in an altered progesterone profile, showing the highest concentration during the early luteal phase, contrasting with the mid-luteal peak seen in the natural menstrual cycle. PMID:24656557

Yding Andersen, C; Vilbour Andersen, K

2014-05-01

42

Bovine luteal cells elicit major histocompatibility complex class II-dependent T-cell proliferation.  

PubMed

Major histocompatibility complex (MHC) class II molecules are expressed in the bovine corpus luteum (CL) in a manner correlating with luteolysis. Whether bovine luteal cells can stimulate T-cell proliferation in a class II-restricted manner was investigated. Staphylococcal enterotoxin B (SEB) enhances T-cell proliferation by a mechanism requiring MHC class II molecules and was used to examine stimulation of T-cell proliferation by luteal cells. Luteal cells from midcycle or regressing CL (induced by prostaglandin F2 alpha) were cocultured with autologous T cells in the presence of no treatment, SEB (1 microgram/ml), or SEB + anti-MHC class II antibody (3 micrograms/ml); and proliferation was assessed by incorporation of tritiated thymidine. T cells proliferated in the presence of cells from regressing CL more than when in the presence of midcycle cells (118,309 +/- 20,567 vs. 75,261 +/- 12,494 cpm; p < 0.05). Anti-MHC attenuated this response of cells from regressing CL (81,108 cpm +/- 13,249; p < 0.05). Without SEB, T cells proliferated when cultured with cells from regressing, but not midcycle, CL (4637 +/- 816 vs. 2117 +/- 589 cpm; p < 0.03). These results suggest that luteal cells can function as antigen-presenting cells in vitro and that prostaglandin F2 alpha may enhance their ability to present antigen. PMID:9314594

Petroff, M; Coggeshall, K M; Jones, L S; Pate, J L

1997-10-01

43

Mechanisms behind intrauterine device-induced luteal persistence in mares.  

PubMed

Intrauterine glass balls are used to prevent oestrous signs in sports mares, but the mechanism of action is unknown. It has been suggested that the glass ball can mimic an embryo or act via an induced chronic uterine inflammation and absent or continuous low-grade prostaglandin (PG) release. The purpose of this study was to induce prolonged luteal function in mares using a small intrauterine device (IUD) and to study the mechanisms behind prolonged IUD-induced luteal function. A uterine swab and a biopsy specimen were obtained in early oestrus. A water-filled plastic ball, diameter 20mm and weight 3.6g, was inserted into the uterus 2-4 days after ovulation; the control mares underwent similar cervical manipulation without ball insertion. The mares were examined three times per week until day 23 and twice weekly thereafter until they returned to oestrus (transrectal palpation, ultrasonography and progesterone determination). The location of the IUD was recorded and ultrasound scans were video-recorded to assess the frequency of uterine contractions. When the mare returned to oestrus, a uterine swab and biopsy specimen were obtained and the bacteriological, cytological and histological (inflammation and glandular dilation) results compared with the samples obtained before the IUD insertion. The PG F(2alpha) metabolite levels were measured in the plasma of four control mares and eight IUD mares on days 11-16. The IUD induced a prolonged luteal phase in 75% of the mares (9/12; IUD-P); the mean dioestrous length was 57.0 days. The three mares that did not respond to the IUD (IUD-N) showed a mean dioestrous length of 15.7 days and the 12 control mares 16.1 days. The inflammation and glandular dilation scores were not significantly different in pre- and post-manipulation biopsy specimens. Although locational changes of the IUD were observed, they occurred over very small distances and were mostly limited within the body-bifurcation area. The IUD-N and control mares showed increased uterine contractility 11-16 days post-ovulation, whereas the IUD-P mares did not. The control mares (n=4) and IUD-N mares (n=2) showed increased PG levels from day 14 post-ovulation, while the IUD-P mares (n=6) showed basal levels only. We concluded that the IUD did not cause continuous PG release and suggest that close contact of the IUD with the endometrium may prevent the endometrial cells from releasing PGF(2alpha). PMID:17643876

Rivera Del Alamo, M M; Reilas, T; Kindahl, H; Katila, T

2008-08-01

44

EPR Spectroscopy of Function In Vivo  

Microsoft Academic Search

EPR can be used to study free radicals in vivo, environmental and biophysical parameters in cells and tissues, and to report metabolism, physiology, and biochemistry. The authors have attempted to judge which of these types of measurements will be productive for studies in animals and in humans. It is envisioned that a large number of in vivo applications of EPR

Harold M. Swartz; Nadeem Khan

45

In Vivo Imaging of Tissue Physiological Function  

Cancer.gov

The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize methods for in vivo imaging.

46

EFFECTS OF BROMODICHLOROMETHANE ON EX VIVO AND IN VITRO LUTEAL FUNCTION AND BROMODICHLOROMETHANE TISSUE DOSIMETRY IN THE PREGNANT F344 RAT  

EPA Science Inventory

Bromodichloromethane (BDCM), a drinking water disinfection by-product, causes pregnancy loss, i.e. full-litter resorption, in F344 rats when treated during the luteinizing hormone (LH)-dependent period. This effect is associated with reduced maternal serum progesterone (P) and LH...

47

Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue  

PubMed Central

Background The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed. Results Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were observed in swine CL during different luteal phases and at pregnancy. Immediately after ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. Conclusion Our findings, obtained from a precisely controlled in vivo model of CL development and regression, allow us to determine relationships among VEGF, MMPs and endonucleases during angiogenesis and angioregression. Thus, CL provides a very interesting model for studying factors involved in vascular remodelling.

Ribeiro, Luciana Andrea; Turba, Maria Elena; Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

2006-01-01

48

ATF3 expression in the corpus luteum: possible role in luteal regression{dagger}.  

PubMed

The present study investigated the induction and possible role of activating transcription factor 3 (ATF3) in the corpus luteum. Postpubertal cattle were treated at midcycle with prostaglandin F2?(PGF) for 0-4 hours. Luteal tissue was processed for immunohistochemistry, in situ hybridization, and isolation of protein and RNA. Ovaries were also collected from midluteal phase and first-trimester pregnant cows. Luteal cells were prepared and sorted by centrifugal elutriation to obtain purified small (SLCs) and large luteal cells (LLCs). Real-time PCR and in situ hybridization showed that ATF3 mRNA increased within 1 hour of PGF treatment in vivo. Western blot and immunohistochemistry demonstrated that ATF3 protein was expressed in the nuclei of LLC within 1 hour and was maintained for at least 4 hours. PGF treatment in vitro increased ATF3 expression only in LLC, whereas TNF induced ATF3 in both SLCs and LLCs. PGF stimulated concentration- and time-dependent increases in ATF3 and phosphorylation of MAPKs in LLCs. Combinations of MAPK inhibitors suppressed ATF3 expression in LLCs. Adenoviral-mediated expression of ATF3 inhibited LH-stimulated cAMP response element reporter luciferase activity and progesterone production in LLCs and SLCs but did not alter cell viability or change the expression or activity of key regulators of progesterone synthesis. In conclusion, the action of PGF in LLCs is associated with the rapid activation of stress-activated protein kinases and the induction of ATF3, which may contribute to the reduction in steroid synthesis during luteal regression. ATF3 appears to affect gonadotropin-stimulated progesterone secretion at a step or steps downstream of PKA signaling and before cholesterol conversion to progesterone. PMID:24196350

Mao, Dagan; Hou, Xiaoying; Talbott, Heather; Cushman, Robert; Cupp, Andrea; Davis, John S

2013-12-01

49

In Vivo Calcium Imaging of Neural Network Function  

NSDL National Science Digital Library

Spatiotemporal activity patterns in local neural networks are fundamental to brain function. Network activity can now be measured in vivo using two-photon imaging of cell populations that are labeled with fluorescent calcium indicators. In this review, we discuss basic aspects of in vivo calcium imaging and highlight recent developments that will help to uncover operating principles of neural circuits.

2007-12-01

50

Assessment of Glial Function in the In Vivo Retina  

PubMed Central

Glial cells, traditionally viewed as passive elements in the CNS, are now known to have many essential functions. Many of these functions have been revealed by work on retinal glial cells. This work has been conducted almost exclusively on ex vivo preparations and it is essential that retinal glial cell functions be characterized in vivo as well. To this end, we describe an in vivo rat preparation to assess the functions of retinal glial cells. The retina of anesthetized, paralyzed rats is viewed with confocal microscopy and laser speckle flowmetry to monitor glial cell responses and retinal blood flow. Retinal glial cells are labeled with the Ca2+ indicator dye Oregon Green 488 BAPTA-1 and the caged Ca2+ compound NP-EGTA by injection of the compounds into the vitreous humor. Glial cells are stimulated by photolysis of caged Ca2+ and the activation state of the cells assessed by monitoring Ca2+ indicator dye fluorescence. We find that, as in the ex vivo retina, retinal glial cells in vivo generate both spontaneous and evoked intercellular Ca2+ waves. We also find that stimulation of glial cells leads to the dilation of neighboring retinal arterioles, supporting the hypothesis that glial cells regulate blood flow in the retina. This in vivo preparation holds great promise for assessing glial cell function in the healthy and pathological retina.

Srienc, Anja I.; Kornfield, Tess E.; Mishra, Anusha; Burian, Michael A.; Newman, Eric A.

2013-01-01

51

Resurrection of DNA Function In Vivo from an Extinct Genome  

PubMed Central

There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.

2008-01-01

52

Effects of Aspirin and Hypothermia on Platelet Function in Vivo.  

National Technical Information Service (NTIS)

Hypothermia, aspirin, and cardiopulmonary bypass can each induce a platelet function defect, but it is not known if the effects of aspirin and hypothermia are additive in this regard. To address this question in humans in vivo, the forearm skin temperatur...

A. D. Michelson M. R. Barnard S. F. Khuri M. J. Rohrer H. MacGregor

1997-01-01

53

Urethral function after cystectomy: a canine in vivo experiment  

Microsoft Academic Search

To study the function of the pelvic floor and the isolated urethra after removal of the bladder, 5 male and 5 female mongrel dogs were used in an acute in vivo experiment. Urethral pressure changes secondary to unilateral stimulation of the pelvic and pudendal nerves were recorded. After baseline data of the intact system were documented, the following procedures were

Wilhelm A. Hiibner; Flavio Trigo-Rocha; Eugen G. Plas; Emil A. Tanagho

1993-01-01

54

Corpora lutea induced by gonadotrophin-releasing hormone treatment of anoestrous Welsh Mountain ewes: reduced sensitivity to luteinizing hormone in vivo and to chorionic gonadotrophin in vitro.  

PubMed

Seasonally anoestrous Welsh Mountain ewes received 250 ng gonadotrophin-releasing hormone (GnRH) every 2 h, with (Group 1; n=13) or without (Group 2; n=14) progesterone priming for 48 h. Fourteen control ewes (Group 3) were studied during the luteal phase in the breeding season. Animals in Group 4 (n=12) received progesterone priming followed by 250 ng GnRH at increasing frequency for 72 h, while ewes in Group 5 (n=13) were given three bolus injections of 30 microg GnRH at 90-min intervals. All treatment regimens induced ovulation. However, only corpora lutea (CL) from ewes in Group 3 (breeding season) or Group 4 exhibited normal luteal function. Luteal luteinizing hormone (LH) receptor levels were significantly higher on day 12 than day 4, and CL from groups with adequate CL (3 and 4) had significantly higher (125)I-human chorionic gonadotrophin (hCG)-binding levels than the three groups with inadequate CL on day 12. LH-binding affinity was unchanged. Exogenous ovine LH (10 microg) in vivo on days 3 or 11 after ovulation induced a pulse of progesterone in ewes with adequate CL: however, ewes in Groups 1, 2 and 5 showed no significant response. Basal progesterone secretion in vitro was significantly greater on day 4 than on day 12. Maximal steroidogenic responses of adequate and inadequate CL to hCG and to dibutyryl cyclic-3',5'-AMP were similar at both stages of the luteal phase. However, the EC50 for hCG on days 4 and 12 was 10-fold lower for groups with an adequate CL (0.1 IU hCG/ml) than for inadequate-CL groups (1 IU hCG/ml; P <0.05). Thus, in addition to the well-characterized premature sensitivity of GnRH-induced inadequate CL to endometrial luteolysin, we have shown (1) a marked decrease in total number of cells in the CL, a profound reduction in vascular surface area, and a decrease in mean large luteal cell volume (with no change in large luteal cell numbers), (2) decreased luteal LH receptor and progesterone content compared with adequate CL and (3) that CL that were becoming, or were destined to become, inadequate failed to respond to ovine LH in vivo and were 10-fold less sensitive to hCG in terms of luteal progesterone secretion in vitro. PMID:15615899

Bramley, T A; Stirling, D; Menzies, G S; Baird, D T

2005-01-01

55

Serum gonadotrophin and sex steroid hormone levels during mid-follicular and mid-luteal phases in hyperprolactinaemic women with regular menstrual cycles.  

PubMed

Hyperprolactinaemia was found in 15 of 135 infertile patients with regular menstrual cycles, biphasic basal body temperature record and no galactorrhoea. In those 15 women, mean serum prolactin levels during the mid-follicular and mid-luteal phases of the menstrual cycle were 29.8 (SEM 1.8) ng/ml and 29.5 (SEM 1.3) ng/ml, respectively. Although serum FSH and LH levels were similar in normal and hyperprolactinaemic women, serum oestradiol level during the mid-follicular phase was subnormal in hyperprolactinaemic women (P less than 0.05). In contrast, serum oestradiol and progesterone levels during the mid-luteal phase and luteal phase length were similar in normoprolactinaemic and hyperprolactinaemic groups. The results suggest that hyperprolactinaemia is associated with defects of follicle development as measured by oestradiol production during the mid-follicular phase, but not with corpus luteum function as measured by progesterone production during the mid-luteal phase, and luteal phase length. PMID:3103671

Nakano, R

1987-02-01

56

Dendritic spines: from structure to in vivo function  

PubMed Central

Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines.

Rochefort, Nathalie L; Konnerth, Arthur

2012-01-01

57

In vivo quantitation of metabolites with an incomplete model function  

NASA Astrophysics Data System (ADS)

Metabolites can serve as biomarkers. Estimation of metabolite concentrations from an in vivo magnetic resonance spectroscopy (MRS) signal often uses a reference signal to estimate a model function of the spectral lineshape. When no reference signal is available, the a priori unknown in vivo lineshape must be inferred from the data at hand. This makes quantitation of metabolites from in vivo MRS signals a semi-parametric estimation problem which, in turn, implies setting of hyper-parameters by users of the software involved. Estimation of metabolite concentrations is usually done by nonlinear least-squares (NLLS) fitting of a physical model function based on minimizing the residue. In this work, the semi-parametric task is handled by complementing the usual criterion of minimal residue with a second criterion acting in tandem with it. This second criterion is derived from the general physical knowledge that the width of the line is limited. The limit on the width is a hyper-parameter; its setting appeared not critical so far. The only other hyper-parameter is the relative weight of the two criteria. But its setting too is not critical. Attendant estimation errors, obtained from a Monte Carlo calculation, show that the two-criterion NLLS approach successfully handles the semi-parametric aspect of metabolite quantitation.

Popa, E.; Capobianco, E.; de Beer, R.; van Ormondt, D.; Graveron-Demilly, D.

2009-10-01

58

Cyclin D1 Determines Mitochondrial Function In Vivo  

PubMed Central

The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function.

Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

2006-01-01

59

New models for analyzing mast cell functions in vivo  

PubMed Central

In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells have been implicated in a wide variety of process that contribute to disease or help to maintain health. While some of these roles were first suggested by analyses of mast cell products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by mast cells in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of mast cells and mast cell-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of mast cell deficiency.

Reber, Laurent L.; Marichal, Thomas; Galli, Stephen J.

2013-01-01

60

Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress  

PubMed Central

Background At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. Methods The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. Results The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Conclusions Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude.

2013-01-01

61

Imaging visual cortical structure and function in vivo.  

PubMed

The recent advent of in vivo two-photon microscopy has allowed the repeat imaging of cortical structures at microscopic resolution within intact brains. Recent data obtained using this imaging technique shows that dendritic spines, the postsynaptic sites of the majority of excitatory synapses in the central nervous system (CNS), rapidly remodel in response to changes in the visual environment. We combined two-photon microscopy of dendritic segments with intrinsic signal imaging of visual cortical responses in the developing ferret visual cortex, and showed that when one eye was deprived during the developmental critical period for ocular dominance plasticity, both dendritic spines and visual responses to the deprived eye were rapidly altered. A brief period of recovery where the eye was re-opened resulted in a return to pre-deprivation levels for both responses and dendritic spine density, showing that structural and functional changes are linked even at very rapid timescales. Additionally, two-photon microscopy can assay other functional and structural aspects of visual cortical function which I will review. Lastly, I will compare this technique to other imaging modalities available for assessment of the visual cortex in vivo. PMID:23733120

Majewska, Ania K

2013-01-01

62

Neurovascular coupling: in vivo optical techniques for functional brain imaging  

PubMed Central

Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

2013-01-01

63

Ever-changing cell interactions during the life span of the corpus luteum: relevance to luteal regression.  

PubMed

The corpus luteum (CL) undergoes dramatic morphological and functional changes throughout its lifespan. It initially develops from cells that remain in the follicle following ovulation. Eventually the mature CL is composed of multiple, distinctive cell types including steroidogenic cells (small and large luteal cells) and other cell types (endothelial cells, pericytes, fibroblasts, and immune cells). Robust angiogenesis accompanies CL formation, establishing an elaborate blood vessel network at mid cycle. In the absence of embryonic signals, the CL will regress in a process triggered by prostaglandin F2? (PG). Luteal demise in the responsive gland is characterized by cessation of steroid production, angio-regression, and apoptotic cell death, brought about by leukocyte infiltration, inflammatory responses, and diminished angiogenic support. However, the young immature CL is resistant or refractory to the luteolytic actions of PG. Evidence based on functional genomics and other studies highlight the roles played by endothelial, immune, and steroidogenic luteal cells and their interactions in the PG-responsive vs. PG-refractory CL. PMID:24856465

Smith, George W; Meidan, Rina

2014-04-01

64

Biphasic regulation of activin A secretion by gonadotropins in cultured human ovarian granulosa-luteal cells leads to decreasing activin:inhibin ratios during continuing gonadotropin stimulation  

Microsoft Academic Search

Pituitary gonadotropins mediate part of their effects on ovarian function via local hormones and growth factors produced by granulosa cells. Activins and inhibins are among these factors, and they have often opposite effects on various components of the reproductive system. The purpose of this study was to investigate the regulation of ovarian activin A secretion using cultured human ovarian granulosa-luteal

T Vanttinen; J Liu; C Hydén-Granskog; R Voutilainen

2002-01-01

65

In vivo imaging of subcutaneous structures using functional photoacoustic microscopy.  

PubMed

Functional photoacoustic microscopy (fPAM) is a hybrid technology that permits noninvasive imaging of the optical absorption contrast in subcutaneous biological tissues. fPAM uses a focused ultrasonic transducer to detect high-frequency photoacoustic (PA) signals. Volumetric images of biological tissues can be formed by two-dimensional raster scanning, and functional parameters can be further extracted from spectral measurements. fPAM is safe and applicable to animals as well as humans. This protocol provides guidelines for parameter selection, system alignment, imaging operation, laser safety and data processing for in vivo fPAM. It currently takes approximately 100 min to carry out this protocol, including approximately 50 min for data acquisition using a 10-Hz pulse-repetition-rate laser system. The data acquisition time, however, can be significantly reduced by using a laser system with a higher pulse repetition rate. PMID:17446879

Zhang, Hao F; Maslov, Konstantin; Wang, Lihong V

2007-01-01

66

Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on progestin biosynthesis in cultured luteal cells from rat ovary.  

PubMed

We examined the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on progestin biosynthesis in cultured luteal cells from rat ovary. Luteal cells from immature rats treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) were cultured in the absence or presence of ovine luteinizing hormone (LH) (100 ng/ml) and PACAP-38 (10, 100 and 1000 ng/ml). Following 48 hours of incubation, the levels of progesterone, 20 alpha-hydroxy-4-pregnene-3-one (20 alpha-OH-P) and adenosine 3',5'-monophosphate (cAMP) were measured in the culture media. PACAP alone significantly stimulated the production of progesterone and 20 alpha-OH-P in a dose-dependent manner (p < 0.01 and 0.05, respectively, ANOVA). LH-induced production of progesterone and accumulation of cAMP were significantly decreased by increasing concentrations of PACAP (p < 0.05 for each, ANOVA). Conversely, LH-stimulated 20 alpha-OH-P production was enhanced by PACAP in a dose-dependent manner (p < 0.05). Since PACAP decreased the ratio of progesterone to 20 alpha-OH-P production in LH-stimulated cells, PACAP-mediated inhibition of the stimulatory action of LH on progesterone production may be involved in the initiation of luteolysis. PACAP-38 also suppressed increases in LH receptor content in cultured luteal cells. These results suggest that PACAP regulates the effects of LH on luteal cell function and that PACAP might be closely linked to reproduction. PMID:11447729

Usuki, S; Kotani, E

2001-06-01

67

Involvement of ganglionic cholinergic receptors on the steroidogenesis in the luteal phase in rat.  

PubMed

The ovarian nervous plexus (ONP) is one of the principal extrinsic innervation pathways reaching the ovary from the superior mesenteric ganglion (SMG). The aims of this work were: (a) to determine if acetylcholine (Ach) in the SMG modifies the release of steroids and ovarian nitrites in an ex vivo SMG-ONP-ovary system on dioestrus (D) I and II, and (b) to demonstrate if the activities and gene expression of the steroidogenic enzymes 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) are modified by cholinergic stimulus. The system was incubated in Krebs-Ringer buffer bicarbonate at 37 degrees C in metabolic bath. Ach (10(-6)M) was used as cholinergic agonist. Ach in SMG increased progesterone release at all the incubation times on DI and DII (*p<0.001). Androstenedione increased at 15 and 30min on DI, and at 30min on DII whereas nitric oxide (NO) increased at 30min on DI, and at 15 and 30min on DII. The activity of 3beta-HSD increased whereas the activity of 20alpha-HSD decreased (*p<0.001) on DI and DII. The gene expression of 3beta-HSD showed a significant increase at 120min on DI and DII ((o)p<0.01) and 20alpha-HSD diminished only on DII. The results show the importance of the SMG via the ovarian nervous plexus on the regulation of the steroid secretory activity and on the ovarian release of NO in the luteal phase. The complex synaptic connections in the prevertebral ganglia and the sympathetic ganglionic chain participate in the neuroendocrinological mechanisms that take place during the luteal steroidogenesis. PMID:20304063

Orozco, Adriana Vega; Sosa, Zulema; Delgado, Silvia; Casais, Marilina; Rastrilla, Ana M

2010-05-01

68

In vivo hepatocyte MR imaging using lactose functionalized magnetoliposomes.  

PubMed

The aim of this study was to assess a novel lactose functionalized magnetoliposomes (MLs) as an MR contrast agent to target hepatocytes as well as to evaluate the targeting ability of MLs for in vivo applications. In the present work, 17 nm sized iron oxide cores functionalized with anionic MLs bearing lactose moieties were used for targeting the asialoglycoprotein receptor (ASGP-r), which is highly expressed in hepatocytes. Non-functionalized anionic MLs were tested as negative controls. The size distribution of lactose and anionic MLs was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). After intravenous administration of both MLs, contrast enhancement in the liver was observed by magnetic resonance imaging (MRI). Label retention was monitored non-invasively by MRI and validated with Prussian blue staining and TEM for up to eight days post MLs administration. Although the MRI signal intensity did not show significant differences between functionalized and non-functionalized particles, iron-specific Prussian blue staining and TEM analysis confirmed the uptake of lactose MLs mainly in hepatocytes. In contrast, non-functionalized anionic MLs were mainly taken up by Kupffer and sinusoidal cells. Target specificity was further confirmed by high-resolution MR imaging of phantoms containing isolated hepatocytes, Kupffer cell (KCs) and hepatic stellate cells (HSCs) fractions. Hypointense signal was observed for hepatocytes isolated from animals which received lactose MLs but not from animals which received anionic MLs. These data demonstrate that galactose-functionalized MLs can be used as a hepatocyte targeting MR contrast agent to potentially aid in the diagnosis of hepatic diseases if the non-specific uptake by KCs is taken into account. PMID:24210051

Ketkar-Atre, Ashwini; Struys, Tom; Dresselaers, Tom; Hodenius, Michael; Mannaerts, Inge; Ni, Yicheng; Lambrichts, Ivo; Van Grunsven, Leo A; De Cuyper, Marcel; Himmelreich, Uwe

2014-01-01

69

In vivo minimally invasive interstitial multi-functional microendoscopy  

PubMed Central

Developing minimally invasive methodologies for imaging of internal organs is an emerging field in the biomedical examination research. This paper introduces a new multi-functional microendoscope device capable of imaging of internal organs with a minimal invasive intervention. In addition, the developed microendoscope can also be employed as a monitoring device for measuring local hemoglobin concentration in blood stream when administrated into a blood artery. The microendoscope device has a total external diameter of only 200??m and can provide high imaging resolution capability of more than 5,000 pixels. The device can detect features with a spatial resolution of less than 1??m. The microendoscope has been tested both in-vitro as well as in-vivo in rats presenting a promising and powerful tool as a high resolution and minimally invasive imaging facility suitable for previously unreachable clinical modalities.

Shahmoon, Asaf; Aharon, Shiran; Kruchik, Oded; Hohmann, Martin; Slovin, Hamutal; Douplik, Alexandre; Zalevsky, Zeev

2013-01-01

70

In vivo function of surfactants containing phosphatidylcholine analogs.  

PubMed

Increased phospholipase A2 activity demonstrated in some forms of lung injury may contribute to surfactant dysfunction. Phospholipase A2-resistant analogs of dipalmitoylphosphatidylcholine (DPPC) with surfactant properties might therefore be useful lipid components of treatment surfactants for certain lung injuries. The in vivo function of surfactants containing DPPC or the phospholipase-resistant analogs dihexadecylphosphatidylcholine (DEPC) or dihexadecylphosphonotidylcholine (DEPnC), with or without surfactant proteins B and C (SP-B+C), was thus evaluated in preterm rabbits (27 days' gestation). Rabbits randomly received one of seven surfactants (DPPC, DEPC, DEPnC, DPPC+SP-B+C, DEPC+SP-B+C, DEPnC+SP-B+C, or lipid extract surfactant [LES]) or 0.45% NaCl (control) and were ventilated for 30 min. Lipid-only surfactants decreased ventilatory pressures (peak inspiratory pressures minus positive end-expiratory pressure) relative to control (p < 0.05). Addition of SP-B+C further decreased ventilatory pressures to levels similar to LES (p < 0.01 versus control, lipid-only surfactants). Lung dynamic compliances and postventilation pressure-volume curves improved in the following order: LES, SP-B+C lipid surfactants > lipid-only surfactants > control (p < 0.05). All surfactant preparations decreased intravascular 125I-albumin recoveries in the lungs relative to control (p < 0.01 for all surfactants versus control). These results indicate that DEPC and DEPnC were as effective as DPPC as lipid components of synthetic surfactants. And like DPPC, the analogs interacted with isolated SP-B+C and improved in vivo function to levels comparable to LES. PMID:7921463

Dizon-Co, L; Ikegami, M; Ueda, T; Jobe, A H; Lin, W H; Turcotte, J G; Notter, R H; Rider, E D

1994-10-01

71

Functional importance of BAK1 tyrosine phosphorylation in vivo  

PubMed Central

The plant receptor kinase BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) is known as a partner of several ligand-binding leucine-rich repeat receptor kinases, including BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLS2. Autophosphorylation of receptor kinases is recognized to be an important process in receptor kinase signaling, and at least with the recombinant protein, BAK1 was shown to autophosphorylate on Tyr residues1 in addition to numerous Ser/Thr residues documented previously in reference 2. We recently identified Tyr-610 in the carboxy-terminal domain of BAK1 as a major site of autophosphorylation and showed that phosphorylation of this residue is essential for at least some functions of BAK1 in vivo.3 In particular, the function of BAK1 as co-receptor with BRI1 in brassinosteroid (BR) signaling is impaired in transgenic plants expressing the BAK1(Y610F)-Flag directed mutant. Recombinant cytoplasmic domains of BRI1 and BAK1 interact and transphosphorylate each other in vitro in a manner that mimics their interaction in vivo; while BAK1(Y610F) binds normally to BRI1 its ability to transphosphorylate and activate the kinase domain of BRI1 is severely compromised. To further elaborate on this earlier model, we present additional results showing that the interaction between BAK1 and BRI1 in vitro is Mg2+ dependent, suggesting that cytosolic [Mg2+] may play some role in receptor kinase signaling in vivo. We also compare the primary structures of BRI1 and BAK1 in terms of the occurrence of Tyr residues in the cytoplasmic domain, and identify differences in which residues are essential for kinase activity. Finally, transgenic plants expressing the BAK1(Y610F) directed mutant have alterations in the transcriptome that extend beyond the genes that are BR regulated in nontransgenic plants. In particular, the basal expression of many defense genes is significantly reduced in Y610F plants, which is consistent with the earlier report in reference 4, that BAK1 controls the expression of a number of genes associated with microbial infection. The present results establish a site-specific role for Tyr phosphorylation of BAK1 in BR signaling and regulation of plant defense mechanisms, which may have implications for enhancing agricultural productivity.

Oh, Man-Ho; Wu, Xia; Clouse, Steven D

2011-01-01

72

In vivo functions of small GTPases in neocortical development.  

PubMed

Abstract The complex mammalian cortex develops from a simple neuroepithelium through the proliferation of neuronal progenitors, their asymmetric division and cell migration. Newly generated neurons transiently assume a multipolar morphology before they polarize to form a trailing axon and a leading process that is required for their radial migration. The polarization and migration events during cortical development are under the control of multiple signaling cascades that coordinate the different cellular processes involved in neuronal differentiation. GTPases perform essential functions at different stages of neuronal development as central components of these pathways. They have been widely studied using cell lines and primary neuronal cultures but their physiological function in vivo still remains to be explored in many cases. Here we review the function of GTPases that have been studied genetically by the analysis of the embryonic nervous system in knockout mice. The phenotype of these mutants has highlighted the importance of GTPases for different steps of development by orchestrating cytoskeletal rearrangements and neuronal polarization. PMID:24391191

Shah, Bhavin; Püschel, Andreas W

2014-05-01

73

Functional imaging: monitoring heme oxygenase-1 gene expression in vivo  

NASA Astrophysics Data System (ADS)

The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

1999-07-01

74

DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function  

PubMed Central

DHA is a n-3 LCPUFA in fish oil that generally suppresses T lymphocyte function. However, the effect of fish oil on B cell function remains relatively understudied. Given the important role of B cells in gut immunity and increasing human fish oil supplementation, we sought to determine whether DFO leads to enhanced B cell activation in the SMAD?/? colitis-prone mouse model, similar to that observed with C57BL/6 mice. This study tested the hypothesis that DHA from fish oil is incorporated into the B cell membrane to alter lipid microdomain clustering and enhance B cell function. Purified, splenic B cells from DFO-fed mice displayed increased DHA levels and diminished GM1 microdomain clustering. DFO enhanced LPS-induced B cell secretion of IL-6 and TNF-? and increased CD40 expression ex vivo compared with CON. Despite increased MHCII expression in the unstimulated ex vivo B cells from DFO-fed mice, we observed no difference in ex vivo OVA-FITC uptake in B cells from DFO or CON mice. In vivo, DFO increased lymphoid tissue B cell populations and surface markers of activation compared with CON. Finally, we investigated whether these ex vivo and in vivo observations were consistent with systemic changes. Indeed, DFO-fed mice had significantly higher plasma IL-5, IL-13, and IL-9 (Th2-biasing cytokines) and cecal IgA compared with CON. These results support the hypothesis and an emerging concept that fish oil enhances B cell function in vivo.

Gurzell, Eric A.; Teague, Heather; Harris, Mitchel; Clinthorne, Jonathan; Shaikh, Saame Raza; Fenton, Jenifer I.

2013-01-01

75

DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function.  

PubMed

DHA is a n-3 LCPUFA in fish oil that generally suppresses T lymphocyte function. However, the effect of fish oil on B cell function remains relatively understudied. Given the important role of B cells in gut immunity and increasing human fish oil supplementation, we sought to determine whether DFO leads to enhanced B cell activation in the SMAD-/- colitis-prone mouse model, similar to that observed with C57BL/6 mice. This study tested the hypothesis that DHA from fish oil is incorporated into the B cell membrane to alter lipid microdomain clustering and enhance B cell function. Purified, splenic B cells from DFO-fed mice displayed increased DHA levels and diminished GM1 microdomain clustering. DFO enhanced LPS-induced B cell secretion of IL-6 and TNF-? and increased CD40 expression ex vivo compared with CON. Despite increased MHCII expression in the unstimulated ex vivo B cells from DFO-fed mice, we observed no difference in ex vivo OVA-FITC uptake in B cells from DFO or CON mice. In vivo, DFO increased lymphoid tissue B cell populations and surface markers of activation compared with CON. Finally, we investigated whether these ex vivo and in vivo observations were consistent with systemic changes. Indeed, DFO-fed mice had significantly higher plasma IL-5, IL-13, and IL-9 (Th2-biasing cytokines) and cecal IgA compared with CON. These results support the hypothesis and an emerging concept that fish oil enhances B cell function in vivo. PMID:23180828

Gurzell, Eric A; Teague, Heather; Harris, Mitchel; Clinthorne, Jonathan; Shaikh, Saame Raza; Fenton, Jenifer I

2013-04-01

76

Luteal blood flow during the estrous cycle in mares.  

PubMed

Transrectal color Doppler ultrasound was used for the noninvasive investigation of luteal blood flow during the estrous cycle in six mares. Color was displayed in Power-Mode, in which the number of color pixels on the ultrasound image is related to the number of moving blood cells. Three pictures with a maximum number of color pixels of the corpus luteum (CL) during an examination period of about 20 min were selected and digitized on a laptop equipped with an external frame grabber card. The intra-class correlation coefficient for the number of color pixels was 0.90. In all estrous cycles similar patterns of changes in (C), in the cross-sectional area of sectional planes of the CL (A), and in plasma progesterone levels (P) occurred. Variance component estimates for the effect of the mare on (C), (A) and (P) were 14, 23 and 4%, for the influence of day of estrous cycle they were 41, 5 and 58% and for the effect of estrous cycle they were 7, 5 and 5%, respectively. There were high positive correlations between cyclic changes in (C) and (P) (r = 0.58; P < 0.0001). The increase in (C) between Days 0 and 5 (Day 0: ovulation) remained at high levels until Day 7 and then decreased until Day 15. There were relationships between (C) and (A) (r = 0.37; P < 0.0001) and between (A) and (P) (r = 0.24; P < 0.05), but correlation coefficients were not as high as between (C) and (P). Differences in (C), (A) and (P) between estrous cycles within mares and between mares were not related to each other (P > 0.05). The results show that transrectal color Doppler sonography is a useful, noninvasive method for examining luteal blood flow in mares, and that there are cyclic changes and individual differences in the vascularization of the CL. The possible influence of luteal perfusion on fertility in mares needs to be investigated in further studies. PMID:12066864

Bollwein, H; Mayer, R; Weber, F; Stolla, R

2002-05-01

77

Vivo-Morpholino knockdown of ?IIb: A novel approach to inhibit thrombocyte function in adult zebrafish  

PubMed Central

SUMMARY Knockdown of protein function by antisense oligonucleotides has been used to understand the protein function not only in development but also in human diseases. Recently, Vivo-Morpholinos, chemically modified morpholinos which penetrate the cells, have been used in adult experimental animal models to alter the splicing and thereby change the protein expression. Until now, there have been no such studies using Vivo-Morpholinos, to evaluate hemostatic function in adult animals. We injected ?IIb Vivo-Morpholinos intravenously into adult zebrafish. Thrombocyte function was assayed by time to aggregation assay of the citrated blood, annexin V binding to thrombocytes, and gill bleeding. The thrombocyte functional inhibition occurred in 24 hrs after ?IIb Vivo-Morpholinos injection and reached a maximum in 48 hrs. However, in 72 hrs, the inhibition was no longer observed. Reduction of annexin V binding to thrombocytes and increased gill bleeding were observed 48 hrs after ?IIb Vivo-Morpholino injections. The action of the ?IIb Vivo-Morpholino was demonstrated by the presence of an alternatively spliced ?IIb mRNA and the reduction of ?IIb in thrombocytes of fish treated with ?IIb Vivo-Morpholino. These results provide the first proof of principle that thrombocyte function can be inhibited by thrombocyte-specific Vivo-Morpholinos in adult zebrafish and presents an approach to knockdown thrombocyte-specific genes to conduct biochemical studies in thrombocytes. This study also provides the first antisense antithrombotic approach to inhibit thrombocyte function in adult zebrafish.

Kim, Seongcheol; Radhakrishnan, Uvaraj P; Rajpurohit, Surendra Kumar; Kulkarni, Vrinda; Jagadeeswaran, Pudur

2010-01-01

78

The luteal heat cycle of the breast in health.  

PubMed

Wearing a special thermometric brassiere, twenty-five normal women self-measured their breast surface temperature. The subjects averaged 39 years of age and all were parous. Observations were made for one hour each evening for one menstrual cycle under semi-standardized domestic conditions. They also collected daily samples of saliva for radioimmunoassay of progesterone concentration. The surface temperature of the breast is relatively cold around mid-cycle; thereafter, and without interruption in averaged data, the temperature increases steadily by about 1 degree C over the 12 days of the luteal phase; around the time of the menses, it falls rapidly. This heat rhythm does not occur in peri-menopausal low progesterone menstrual cycles or in patients where the breast tissue has been irradiated for cancer treatment. PMID:8312581

Simpson, H W; Griffiths, K; McArdle, C; Pauson, A W; Hume, P; Turkes, A

1993-09-01

79

Luteal activity of pregnant rats with hypo-and hyperthyroidism  

PubMed Central

Background Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Methods Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2? receptor using real time RT-PCR. The data were analyzed by SNK test. Results Hypothyroidism reduced COX-2 expression on day 10 and 19 (P?luteal cell proliferation on day 10 and 14 (p?

2014-01-01

80

Regulation of immunoreactive inhibin A and B secretion in cultured human granulosa-luteal cells by gonadotropins, activin A and insulin-like growth factor type-1 receptor  

Microsoft Academic Search

Inhibins are gonadal glycoproteins with endocrine effects on pituitary FSH secretion and para\\/autocrine effects on ovarian and testicular function. The purpose of this study was to investigate the endocrine and para\\/autocrine regulation of inhibin A and inhibin B secretion in human ovarian granulosa-luteal cells. The cells were obtained from women undergoing in vitro fertilization, and the primary cultures were treated

T Vanttinen; J Liu; C Hydén-Granskog; M Parviainen; I Penttilä; R Voutilainen

2000-01-01

81

In vivo function of the craniofacial haft: the interorbital "pillar".  

PubMed

The craniofacial haft resists forces generated in the face during feeding, but the importance of these forces for the form of the craniofacial haft remains to be determined. In vivo bone strain data were recorded from the medial orbital wall in an owl monkey (Aotus), rhesus macaques (Macaca mulatta), and a galago (Otolemur) during feeding. These data were used to determine whether: the interorbital region can be modeled as a simple beam under bending or shear; the face is twisting on the brain case during unilateral biting or mastication; the interorbital "pillar" is being axially compressed during incisor loading and both axially compressed and laterally bent during mastication; and the interorbital "pillar" transmits axial compressive forces from the toothrow to the braincase. The strain data reveal that the interorbital region cannot be modeled as a anteroposteriorly oriented beam bent superiorly in the sagittal plane during incision or mastication. The strain orientations recorded in the majority of experiments are concordant with those predicted for a short beam under shear, although the anthropoids displayed evidence of multiple loading regimes in the medial orbital wall. Strain orientation data corroborate the hypothesis that the strepsirrhine face is twisted during mastication. The hypothesis that the interorbital region is a member in a rigid frame subjected to axial compression during mastication receives some support. The hypothesis that the interorbital region is a member in a rigid frame subjected to lateral bending during mastication is supported by the epsilon1/absolute value epsilon2 ratio data but not by the strain orientation data. The timing of peak shear strains in the medial orbital wall of anthropoids does not bear a consistent relationship to the timing of peak shear strain in the mandibular corpus, suggesting that bite force is not the only external force influencing the medial orbital wall. Strain orientation data suggest the existence of two distinct loading regimes, possibly associated with masseter or medial pterygoid contraction. Regardless of the loading regime, all taxa showed low strain magnitudes in the medial orbital wall relative to the anterior root of the zygoma and the mandibular corpus. The strain gradients documented here and elsewhere suggest that, in anthropoids at least, local effects of external forces are more important than a single global loading regime. The low strain magnitudes in the medial orbital wall and in other thin bony plates around the orbit suggest that these structures are not optimally designed for resisting feeding forces. It is hypothesized that their function is to provide rigid support and protection for soft-tissue structures such as the nasal epithelium, the brain, meninges, and the eye and its adnexa. In contrast with the face of Otolemur, which appears to be subjected to a single predominant loading regime, anthropoids may experience different loading regimes in different parts of the face. This implies that the anthropoid and strepsirrhine facial skulls might be optimized for different functions. PMID:11590585

Ross, C F

2001-10-01

82

Structure and in vivo function of Hsp90  

Microsoft Academic Search

Until recently, Hsp90 was one of the least well understood of the molecular chaperones, but considerable progress is now being made in unravelling its biochemistry. Hsp90 has now been shown to possess an inherent ATPase that is essential for the activation of authentic ‘client’ proteins in vivo and in vitro. The molecular detail of Hsp90’s interactions with co-chaperones is also

Laurence H Pearl; Chrisostomos Prodromou

2000-01-01

83

Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo  

PubMed Central

Background Inhalation of diesel exhaust impairs vascular function in man, by a mechanism that has yet to be fully established. We hypothesised that pulmonary exposure to diesel exhaust particles (DEP) would cause endothelial dysfunction in rats as a consequence of pulmonary and systemic inflammation. Methods Wistar rats were exposed to DEP (0.5 mg) or saline vehicle by intratracheal instillation and hind-limb blood flow, blood pressure and heart rate were monitored in situ 6 or 24 h after exposure. Vascular function was tested by administration of the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) in vivo and ex vivo in isolated rings of thoracic aorta, femoral and mesenteric artery from DEP exposed rats. Bronchoalveolar lavage fluid (BALF) and blood plasma were collected to assess pulmonary (cell differentials, protein levels & interleukin-6 (IL-6)) and systemic (IL-6), tumour necrosis factor alpha (TNF?) and C-reactive protein (CRP)) inflammation, respectively. Results DEP instillation increased cell counts, total protein and IL-6 in BALF 6 h after exposure, while levels of IL-6 and TNF? were only raised in blood 24 h after DEP exposure. DEP had no effect on the increased hind-limb blood flow induced by ACh in vivo at 6 or 24 h. However, responses to SNP were impaired at both time points. In contrast, ex vivo responses to ACh and SNP were unaltered in arteries isolated from rats exposed to DEP. Conclusions Exposure of rats to DEP induces both pulmonary and systemic inflammation, but does not modify endothelium-dependent vasodilatation. Other mechanisms in vivo limit dilator responses to SNP and these require further investigation.

2012-01-01

84

Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression  

Microsoft Academic Search

The use of transgenic animals in biomedical research is increasing rapidly and may be the best means of determining gene function. Generating transgenic animals typically requires time-consuming screening processes, and gene function is assessed by an array of difficult phenotypic and biochemical assays performed ex vivo. To address the unmet need in transgenic research for functional assays performed with ease

Weisheng Zhang; Jian Q. Feng; Stephen E. Harris; Pamela R. Contag; David K. Stevenson; Christopher H. Contag

2001-01-01

85

In vitro gene regulatory networks predict in vivo function of liver  

PubMed Central

Background Evolution of toxicity testing is predicated upon using in vitro cell based systems to rapidly screen and predict how a chemical might cause toxicity to an organ in vivo. However, the degree to which we can extend in vitro results to in vivo activity and possible mechanisms of action remains to be fully addressed. Results Here we use the nitroaromatic 2,4,6-trinitrotoluene (TNT) as a model chemical to compare and determine how we might extrapolate from in vitro data to in vivo effects. We found 341 transcripts differentially expressed in common among in vitro and in vivo assays in response to TNT. The major functional term corresponding to these transcripts was cell cycle. Similarly modulated common pathways were identified between in vitro and in vivo. Furthermore, we uncovered the conserved common transcriptional gene regulatory networks between in vitro and in vivo cellular liver systems that responded to TNT exposure, which mainly contain 2 subnetwork modules: PTTG1 and PIR centered networks. Interestingly, all 7 genes in the PTTG1 module were involved in cell cycle and downregulated by TNT both in vitro and in vivo. Conclusions The results of our investigation of TNT effects on gene expression in liver suggest that gene regulatory networks obtained from an in vitro system can predict in vivo function and mechanisms. Inhibiting PTTG1 and its targeted cell cyle related genes could be key machanism for TNT induced liver toxicity.

2010-01-01

86

Effect of luteal-phase support on endometrial microRNA expression following controlled ovarian stimulation  

PubMed Central

Background Studies suggested that microRNAs influence cellular activities in the uterus including cell differentiation and embryo implantation. In assisted reproduction cycles, luteal phase support, given to improve endometrial characteristics and to facilitate the implantation process, has been a standard practice. The effect of different types of luteal phase support using steroid hormones in relation to endometrial miRNA profiles during the peri-implantation period has not seen described. This study was designed to evaluate the expression of miRNAs during the luteal phase following controlled ovarian stimulation for IVF and the influence of different luteal phase support protocols on miRNA profiles. Methods The study was approved by the Johns Hopkins Hospital Institutional Review Board. Endometrial biopsies were obtained on the day of oocyte retrieval from 9 oocyte donors (group I). An additional endometrial biopsy was obtained 3–5?days later (Group II) after the donors were randomized into three groups. Group IIa had no luteal-phase support, group IIb had luteal support with micronized progesterone (P), and Group IIc had luteal support with progesterone plus 17-beta-estradiol (P?+?E). Total RNA was isolated and microarray analysis was performed using an Illumina miRNA expression panel. Results A total of 526 miRNAs were identified. Out of those, 216 miRNAs were differentially regulated (p?Luteal support following COS has a profound influence on miRNA profiles. Up or down regulation of miRNAs after P or P?+?E support suggest a role(s) of luteal support in the peri-implantation uterus in IVF cycles through the regulation of associated target genes.

2012-01-01

87

In vivo imaging of subcutaneous structures using functional photoacoustic microscopy  

Microsoft Academic Search

Functional photoacoustic microscopy (fPAM) is a hybrid technology that permits noninvasive imaging of the optical absorption contrast in subcutaneous biological tissues. fPAM uses a focused ultrasonic transducer to detect high-frequency photoacoustic (PA) signals. Volumetric images of biological tissues can be formed by two-dimensional raster scanning, and functional parameters can be further extracted from spectral measurements. fPAM is safe and applicable

Hao F Zhang; Konstantin Maslov; Lihong V Wang

2007-01-01

88

In vivo functional imaging of human cone photoreceptors  

PubMed Central

We evaluate a novel non-invasive optical technique for observing fast physiological processes, in particular phototransduction, in single photoreceptor cells in the living human eye. The method takes advantage of the interference of multiple reflections within the outer segments (OS) of cones. This self-interference phenomenon is highly sensitive to phase changes such as those caused by variations in refractive index and scatter within the photoreceptor cell. A high-speed (192 Hz) flood-illumination retina camera equipped with adaptive optics (AO) is used to observe individual photoreceptors, and to monitor changes in their reflectance in response to visible stimuli (“scintillation”). AO and high frame rates are necessary for resolving individual cones and their fast temporal dynamics, respectively. Scintillation initiates within 5 to 10 ms after the onset of the stimulus flash, lasts 300 to 400 ms, is observed at visible and near-infrared (NIR) wavelengths, and is highly sensitive to the coherence length of the imaging light source. To our knowledge this is the first demonstration of in vivo optical imaging of the fast physiological processes that accompany phototransduction in individual photoreceptors.

Jonnal, Ravi S.; Rha, Jungtae; Zhang, Yan; Cense, Barry; Gao, Weihua; Miller, Donald T.

2008-01-01

89

In vivo functional imaging of human cone photoreceptors  

PubMed Central

We evaluate a novel non-invasive optical technique for observing fast physiological processes, in particular phototransduction, in single photoreceptor cells in the living human eye. The method takes advantage of the interference of multiple reflections within the outer segments (OS) of cones. This self-interference phenomenon is highly sensitive to phase changes such as those caused by variations in refractive index and scatter within the photoreceptor cell. A high-speed (192 Hz) flood-illumination retina camera equipped with adaptive optics (AO) is used to observe individual photoreceptors, and to monitor changes in their reflectance in response to visible stimuli (“scintillation”). AO and high frame rates are necessary for resolving individual cones and their fast temporal dynamics, respectively. Scintillation initiates within 5 to 10 ms after the onset of the stimulus flash, lasts 300 to 400 ms, is observed at visible and near-infrared (NIR) wavelengths, and is highly sensitive to the coherence length of the imaging light source. To our knowledge this is the first demonstration of in vivo optical imaging of the fast physiological processes that accompany phototransduction in individual photoreceptors.

Jonnal, Ravi S.; Rha, Jungtae; Zhang, Yan; Cense, Barry; Gao, Weihua; Miller, Donald T.

2009-01-01

90

The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function  

Microsoft Academic Search

Background: Flavanols modulate platelet function in vitro, but less is known of their in vivo effects and how they compare to pharmacological platelet inhibitors. We investigated the effect of a flavanol-rich cocoa beverage (897 mg\\/ml) in combination with and in comparison to aspirin on platelet function and activation in healthy subjects. Methods and results: On separate test days in a

Debra A Pearson; Teresa G Paglieroni; Dietrich Rein; Ted Wun; Derek D Schramm; Janice F Wang; Roberta R Holt; Robert Gosselin; Harold H Schmitz; Carl L Keen

2002-01-01

91

Semiparametric estimation without searching in function space: Application to in vivo metabolite quantitation  

Microsoft Academic Search

Magnetic resonance spectroscopy (MRS) is the method of choice for noninvasive in vivo measurement of metabolites in patients. When the model function describing the acquired MRS signal is incomplete, semi-parametric techniques are required for estimation of the wanted metabolite concentrations. In this work, incompleteness means that the model function of the MRS signal decay is unknown. We devised the simplest

E. a Popa; D.A.b Karras; B. G. c Mertzios; D. M. d Sima; R. e De Beer; D. e Van Ormondt; D. a Graveron-Demilly

2011-01-01

92

Inhibition of Dopamine Release Via Presynaptic D2 Receptors: Time Course and Functional Characteristics In Vivo  

Microsoft Academic Search

Most neurotransmitters inhibit their own release through auto- receptors. However, the physiological functions of these pre- synaptic inhibitions are still poorly understood, in part because their time course and functional characteristics have not been described in vivo. Dopamine inhibits its own release through D2 autoreceptors. Here, the part played by autoinhibition in the relationship between impulse flow and dopamine release

Marianne Benoit-Marand; Emiliana Borrelli; Francois Gonon

2001-01-01

93

Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain  

Microsoft Academic Search

Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means

Xueding Wang; Yongjiang Pang; Geng Ku; Xueyi Xie; George Stoica; Lihong V Wang

2003-01-01

94

In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings  

PubMed Central

Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo.

Lien, Anthony D.; Scanziani, Massimo

2011-01-01

95

Multiple functions of Drosophila heat shock transcription factor in vivo.  

PubMed Central

Heat shock transcription factor (HSF) is a transcriptional activator of heat shock protein (hsp) genes in eukaryotes. In order to elucidate the physiological functions of HSF in Drosophila, we have isolated lethal mutations in the hsf gene. Using a conditional allele, we show that HSF has an essential role in the ability of the organism to survive extreme heat stress. In contrast to previous results obtained with yeast HSF, the Drosophila protein is dispensable for general cell growth or viability. However, it is required under normal growth conditions for oogenesis and early larval development. These two developmental functions of Drosophila HSF are genetically separable and appear not to be mediated through the induction of HSPs, implicating a novel action of HSF that may be unrelated to its characteristic function as a stress-responsive transcriptional activator.

Jedlicka, P; Mortin, M A; Wu, C

1997-01-01

96

Function and regulation of the Pem homeobox gene in vivo  

Microsoft Academic Search

Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells

Chad Michael Wayne

2002-01-01

97

The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation  

Microsoft Academic Search

OBJECTIVE: Our purpose was to evaluate the early luteal phase of assisted reproductive cycles utilizing controlled ovarian hyperstimulation and to compare these results with those obtained in unstimulated cycles.STUDY DESIGN: We undertook a descriptive study analyzing luteal phase serum progesterone levels, endometrial histologic features, and endometrial surface ultrastructure by scanning electron microscopy of cycles utilizing controlled ovarian hyperstimulation. Study samples

Bradford A. Kolb; Richard J. Paulson

1997-01-01

98

Gonadotropic Control of Secretion of Dimeric Inhibins and Activin A by Human Granulosa–Luteal Cells In Vitro  

Microsoft Academic Search

Purpose: It is well established that human granulosa cells and luteal cells express inhibin\\/activin subunit protein and secrete immunoreactive inhibin. The gonadotropic control of secretion of different molecular forms of inhibin and activin A by granulose–luteal cells (G-LCs) was investigated using recently developed specific enzyme immunoassays (EIAs).

Shanthi Muttukrishna; Nigel Groome; William Ledger

1997-01-01

99

Comparison of Intramuscular and Intravaginal Progesterone for Luteal Phase Support in IVF Cycles: a randomized clinical trial  

Microsoft Academic Search

Objective: This research was designed to compare the effectiveness of intramuscular progesterone and vaginal progesterone to support luteal phase in IVF cycles. Materials and Methods: In this randomized clinical trial 182 infertile patients between 20-40 years old were selected for rapid ZIFT cycles. In order to support luteal phase Cyclogest suppository (400 mg BID) was used for 77 cases and

Katayon Berjis; Abotaleb Sarem; Mansoureh Moaya; Nahid Mohamad

2008-01-01

100

Ex Vivo Lung Function Measurements in Precision-Cut Lung Slices (PCLS) from Chemical Allergen-Sensitized Mice Represent a Suitable Alternative to In Vivo Studies  

Microsoft Academic Search

A wide range of industrial chemicals can induce respiratory allergic reactions. Hence, there is an urgent need for methods identifying and characterizing the biological action of chemicals in the lung. Here, we present an easy, reliable alternative method to measure lung function changes ex vivo after exposure to chemical allergens and compare this to invasive in vivo measure- ments after

M. Henjakovic; C. Martin; H. G. Hoymann; K. Sewald; A. R. Ressmeyer; C. Dassow; G. Pohlmann; N. Krug; S. Uhlig; A. Braun

2008-01-01

101

Mid-luteal progesterone concentrations are associated with live birth rates during ovulation induction  

Microsoft Academic Search

This retrospective study investigated whether mid-luteal serum progesterone concentrations are associated with live birth rates in women with WHO group II anovulatory infertility undergoing ovulation induction. Data were from women (n=335) stimulated with gonadotrophins using a low-dose step-up protocol, of which women with presumptive ovulation (n=279), defined as a mid-luteal progesterone concentration ?7.9ng\\/ml (?25nmol\\/l; range 7.9–194ng\\/ml) were included. Of the

J.-C. Arce; A. Balen; P. Platteau; G. Pettersson; A. Nyboe Andersen

2011-01-01

102

Nucleotide-sugar transporters: structure, function and roles in vivo.  

PubMed

The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation. PMID:16981043

Handford, M; Rodriguez-Furlán, C; Orellana, A

2006-09-01

103

MITOCHONDRIA: Investigation of in vivo muscle mitochondrial function by (31)P magnetic resonance spectroscopy.  

PubMed

The most important function of mitochondria is the production of energy in the form of ATP. The socio-economic impact of human diseases that affect skeletal muscle mitochondrial function is growing, and improving their clinical management critically depends on the development of non-invasive assays to assess mitochondrial function and monitor the effects of interventions. (31)P magnetic resonance spectroscopy provides two approaches that have been used to assess in vivo ATP synthesis in skeletal muscle: measuring Pi?ATP exchange flux using saturation transfer in resting muscle, and measuring phosphocreatine recovery kinetics after exercise. However, Pi?ATP exchange does not represent net mitochondrial ATP synthesis flux and has no simple relationship with mitochondrial function. Post-exercise phosphocreatine recovery kinetics, on the other hand, yield reliable measures of muscle mitochondrial capacity in vivo, whose ability to define the site of functional defects is enhanced by combination with other non-invasive techniques. PMID:24569118

Prompers, Jeanine J; Wessels, Bart; Kemp, Graham J; Nicolay, Klaas

2014-05-01

104

Application of electrical stimulation for functional tissue engineering in vitro and in vivo  

NASA Technical Reports Server (NTRS)

The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

Radisic, Milica (Inventor); Park, Hyoungshin (Inventor); Langer, Robert (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor)

2013-01-01

105

Stonustoxin: effects on neuromuscular function in vitro and in vivo.  

PubMed

Stonustoxin (8-50 micrograms/ml) produced a rapid and concentration-dependent rise in tension (contracture) of the electrically stimulated mouse hemidiaphragm followed by a gradual waning of tension from the peak to the baseline; the nerve-evoked and the directly (muscle)-evoked twitches of the hemidiaphragm were also progressively and irreversibly blocked in a time- and concentration-dependent manner. Stonustoxin (22 and 44 micrograms/ml) produced a similar rapid rise in tension of the chick biventer cervicis muscle as well as irreversible and concentration-dependent blockade of nerve-evoked twitches and contractures produced by acetylcholine (200 microM), carbachol (8 microM) and KCl (40 mM). The muscle contracture produced by stonustoxin was blocked by dantrolene sodium (6 microM) but not by tubocurarine (15 microM). Moreover, stonustoxin (40 micrograms/ml) did not inhibit nerve conduction in the toad sciatic nerve and stonustoxin (60 micrograms/ml) did not exhibit any anticholinesterase activity. The inhibition of neuromuscular function by stonustoxin in the mouse hemidiaphragm and chick biventer cervicis muscle can therefore be attributed to some irreversible myotoxic action(s) of the toxin, whereas the stonustoxin-induced muscle contractures could have been mediated via depolarization of muscle fibres. PMID:8079369

Low, K S; Gwee, M C; Yuen, R; Gopalakrishnakone, P; Khoo, H E

1994-05-01

106

Development and in vivo evaluation of papain-functionalized nanoparticles.  

PubMed

The aim of the present study was to develop a novel nanoparticulate delivery system being capable of penetrating the intestinal mucus layer by cleaving mucoglycoprotein substructures. Nanoparticles based on papain grafted polyacrylic acid (papain-g-PAA) were prepared via ionic gelation and labeled with fluorescein diacetate. In vitro, the proteolytic potential of papain modified nanoparticles was investigated by rheological measurements and diffusion studies across fresh porcine intestinal mucus. The presence of papain on the surface and inside the particles strongly decreases viscosity of the mucus leading to facilitated particle transition across the mucus layer. Results of the permeation studies revealed that enzyme grafted particles diffuse through mucus layer to a 3.0-fold higher extent than the same particles without enzyme. Furthermore, the penetration behavior of the nanocarriers along the gastrointestinal tract of Sprague Dawley rats was investigated after oral administration of nanoparticles formulated as enteric coated capsules. The majority of the papain functionalized particles was able to traverse across the mucus layer and remained in the duodenum and jejunum of the small intestine where drug absorption primarily occurs. Polymeric nanoparticles combined with mucolytic enzymes that are capable of overcoming intestinal mucus barriers offer an encouraging new attempt for mucosal drug delivery. PMID:24373995

Müller, Christiane; Perera, Glen; König, Verena; Bernkop-Schnürch, Andreas

2014-05-01

107

In Vivo Evaluation of Vena Caval Filters: Can Function Be Linked to Design Characteristics?  

Microsoft Academic Search

Purpose: To compare the five vena caval filters marketed in the United States and one investigational vena caval filter and to determine whether there is an association between their design and their in vivo function.Methods: Four of each type of filter-Simon Nitinol (SN), Bird's Nest (BN), Vena Tech (VT), Greenfield stainless steel (PSGF), Greenfield titanium (TGF), and the investigational stent

Mary C. Proctor; Kyung J. Cho; Lazar J. Greenfield

2000-01-01

108

Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models  

Microsoft Academic Search

In order to elucidate the functional role of TRPC genes, in vivo, the targeted inactivation of these genes in mice is an invaluable technique. In this review, we summarize the currently available results on the phenotype of TRPC-deficient mouse lines. The analysis of mice with targeted deletion in three TRPC genes demonstrates that these proteins represent essential constituents of agonist-activated

M. Freichel; R. Vennekens; J. Olausson; M. Hoffmann; C. Müller; S. Stolz; J. Scheunemann; P. Weißgerber; V. Flockerzi

2004-01-01

109

Anti-CEA-functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo.  

PubMed

Although the biomarker carcinoembryonic antigen (CEA) is expressed in colorectal tumors, the utility of an anti-CEA-functionalized image medium is powerful for in vivo positioning of colorectal tumors. With a risk of superparamagnetic iron oxide nanoparticles (SPIONPs) that is lower for animals than other material carriers, anti-CEA-functionalized SPIONPs were synthesized in this study for labeling colorectal tumors by conducting different preoperatively and intraoperatively in vivo examinations. In magnetic resonance imaging (MRI), the image variation of colorectal tumors reached the maximum at approximately 24 h. However, because MRI requires a nonmetal environment, it was limited to preoperative imaging. With the potentiality of in vivo screening and intraoperative positioning during surgery, the scanning superconducting-quantum-interference-device biosusceptometry (SSB) was adopted, showing the favorable agreement of time-varied intensity with MRI. Furthermore, biological methodologies of different tissue staining methods and inductively coupled plasma (ICP) yielded consistent results, proving that the obtained in vivo results occurred because of targeted anti-CEA SPIONPs. This indicates that developed anti-CEA SPIONPs owe the utilities as an image medium of these in vivo methodologies. PMID:24103079

Huang, Kai-Wen; Chieh, Jen-Jie; Lin, In-Tsang; Horng, Herng-Er; Yang, Hong-Chang; Hong, Chin-Yih

2013-01-01

110

OCT-4 expression in follicular and luteal phase endometrium: a pilot study  

Microsoft Academic Search

BACKGROUND: The stem cell marker Octamer-4 (OCT-4) is expressed in human endometrium. Menstrual cycle-dependency of OCT-4 expression has not been investigated to date. METHODS: In a prospective, single center cohort study of 98 women undergoing hysteroscopy during the follicular (n = 49) and the luteal (n = 40) phases of the menstrual cycle, we obtained endometrial samples. Specimens were investigated

Eva-Katrin Bentz; Marina Kenning; Christian Schneeberger; Andrea Kolbus; Johannes C Huber; Lukas A Hefler; Clemens B Tempfer

2010-01-01

111

Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome  

Microsoft Academic Search

BackgroundPremenstrual syndrome (PMS) involves an aberrant behavioral response to normal hormone secretion. Pathogenetic theories posit abnormal modulation of ?-aminobutyric acid (GABA) transmission in the brain by neuroactive metabolites of progesterone (neurosteroids). In earlier transcranial magnetic stimulation (TMS) studies of the motor cortex, we showed that inhibition increases in the luteal phase, consistent with neurosteroid action at the GABAA receptor. Here,

Mark J. Smith; Linda F. Adams; Peter J. Schmidt; David R. Rubinow; Eric M. Wassermann

2003-01-01

112

Luteal estradiol supplementation in gonadotropin-releasing hormone antagonist cycles for infertile patients in vitro fertilization  

PubMed Central

Objective To evaluate the effect of the addition of estradiol to luteal progesterone supplementation in GnRH antagonist cycles for infertile patients undergoing IVF/ICSI. Methods One hundred and ten infertile patients, aged 28 to 39 years, were recruited for this prospective randomized study. They were randomly assigned to receive vaginal progesterone gel (Crinone) along with 4 mg estradiol valerate (group 1, n=55) or only Crinone (group 2, n=55) for luteal support. A GnRH antagonist multiple dose protocol using recombinant human FSH was used for controlled ovarian stimulation (COS) in all of the subjects. The COS results and pregnancy outcomes of the two groups were compared. Results Group 1 and 2 were comparable with respect to the patient characteristics. The COS and IVF results were also comparable between the two groups. There were no differences in the clinical pregnancy rate (PR) and multiple PR between the two groups. However, the embryo implantation rate were significantly higher in group 1 than that in group 2 (22.2% vs. 13.3%, p=0.035). The incidence of luteal vaginal bleeding (LVB) was significantly lower in group 1 (7.4% vs. 27.8%, p=0.010). Conclusion The addition of estradiol to luteal progesterone supplementation in GnRH antagonist cycles reduces the incidence of LVB and increases the embryo implantation rate in infertile patients undergoing IVF/ICSI.

Kwon, Su-Kyoung; Lee, Kyung-Hee; Jeon, Il Kyung; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

2013-01-01

113

Effects of ACL Reconstruction on In-Vivo, Dynamic Knee Function  

PubMed Central

Synopsis The purposes of this article are to discuss key factors for assessing joint function, to present some recent findings and to address the future directions for evaluating the function of the ACL-injured/reconstructed knees. Well-designed studies, using state-of-the art tools to assess knee kinematics under in vivo, dynamic, high-loading conditions, are necessary to evaluate the relative performance of different procedures for restoring normal joint motion.

Tashman, Scott; Araki, Daisuke

2012-01-01

114

Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function.  

PubMed

The purposes of this article are to discuss key factors for assessing joint function, to present some recent findings, and to address the future directions for evaluating the function of the anterior cruciate ligament-injured/reconstructed knees. Well-designed studies, using state-of-the art tools to assess knee kinematics under in vivo, dynamic, high-loading conditions, are necessary to evaluate the relative performance of different procedures for restoring normal joint motion. PMID:23177461

Tashman, Scott; Araki, Daisuke

2013-01-01

115

Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.  

PubMed

Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. PMID:23063685

Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

2013-09-01

116

Serum progesterone in pregnant bitches supplemented with progestin because of expected or suspected luteal insufficiency.  

PubMed

Progesterone profiles of individual bitches may vary considerably both between and within individuals during pregnancy and non-pregnancy. Suspected luteal deficiency is commonly purported but is difficult to evaluate in clinical cases when progesterone is supplemented because this masks the underlying hormone changes. Therefore, in this study, suspected cases of luteal deficiency (six pregnancies from five bitches) were supplemented with oral medroxyprogesterone acetate (MPA), allowing measurement of endogenous progesterone using conventional assay. MPA (0.1 mg/kg) treatment commenced between days 30 and 36 after estimated ovulation and was continued for 18-28 days. Endogenous progesterone was measured throughout treatment, and blood was additionally analysed for prolactin (PRL) and relaxin (RLN) as well as MPA. The latter revealed delayed MPA clearance in two bitches, in which Caesarean operation had to be performed because of a low foetal heart rate. In two cases with confirmed basal concentrations of both P(4) and MPA at term, spontaneous parturition occurred. Low endogenous progesterone during pregnancy was not apparent in three bitches that had previously had a short inter-oestrous interval of which two had previously had confirmed short luteal phase. However, in the remaining two cases, there had been previous pregnancy failure, but in only one of these, a premature decrease in endogenous progesterone to <2 ng/ml was detected. The latter had also low concentrations of PRL and RLN. The results of this preliminary clinical study suggest that abnormal progesterone profiles in pregnancy may be uncommon in bitches even when there has been previously documented short inter-oestrous interval. However, luteal deficiency may be suspected in bitches with a history of repeated pregnancy failure or abortion. MPA supplementation appears to be efficacious for management of suspected luteal deficiency and verification of the ovarian dysfunction, but care should be taken regarding the timing of MPA withdrawal and prolongation of pregnancy because of delayed elimination of MPA from blood circulation. PMID:23279466

Günzel-Apel, A; Urhausen, C; Wolf, K; Einspanier, A; Oei, C; Piechotta, M

2012-12-01

117

In Vivo Function of Tryptophans in the Arabidopsis UV-B Photoreceptor UVR8[W  

PubMed Central

Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the ?-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function.

O'Hara, Andrew; Jenkins, Gareth I.

2012-01-01

118

Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study  

NASA Astrophysics Data System (ADS)

In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j

Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke

2010-12-01

119

Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function.  

PubMed

Dietary lipids and lipophilic vitamins are transported by postprandial lipoproteins and are required for bone metabolism. Despite that, it remains unknown whether bone cells are involved in the uptake of circulating postprandial lipoproteins in vivo. The current study was performed to investigate a putative participation of bone in the systemic postprandial lipoprotein metabolism in mice, to identify potentially involved cell type populations and to analyze whether lipoprotein uptake affects bone function in vivo. As a model for the postprandial state, chylomicron remnants (CR) were injected intravenously into mice. Next to the liver and compared to other organs, bone appeared to be the second most important organ for the clearance of radiolabeled CR particles from the circulation in vivo. In addition, uptake of radiolabeled CR by primary murine osteoblasts and hepatocytes was quantified to be in a similar range in vitro. A complementary approach with fluorescently labeled CR and immunohistochemical staining for apoE proved that intact CR particles were taken up into bone and liver. Electron microscopy localization studies of bone sections revealed CR uptake into sinusoidal endothelial cells, macrophages and osteoblasts. The relative amount of radiolabeled CR uptake into femoral cortical bone, representing predominantly osteoblasts, and bone marrow, representing predominantly non-osteoblast cells, was within the same range. Most importantly, the injection of vitamin K1-enriched CR resulted in an increase of the degree of osteocalcin carboxylation in vivo while total osteocalcin concentrations remained unaffected, giving functional proof that osteoblasts process CR in vivo. In conclusion, here we demonstrate that bone is involved in the postprandial lipoprotein metabolism in mice. Osteoblasts participate in CR clearance from the circulation, which has a direct impact on the secretory function of osteoblasts. PMID:18538644

Niemeier, Andreas; Niedzielska, Dagmara; Secer, Rukiye; Schilling, Arndt; Merkel, Martin; Enrich, Carlos; Rensen, Patrick C N; Heeren, Joerg

2008-08-01

120

Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function*  

PubMed Central

The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195–8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of “deviant” Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.

Boyd, Jeffrey M.; Sondelski, Jamie L.; Downs, Diana M.

2009-01-01

121

Ex vivo lung function measurements in precision-cut lung slices (PCLS) from chemical allergen-sensitized mice represent a suitable alternative to in vivo studies.  

PubMed

A wide range of industrial chemicals can induce respiratory allergic reactions. Hence, there is an urgent need for methods identifying and characterizing the biological action of chemicals in the lung. Here, we present an easy, reliable alternative method to measure lung function changes ex vivo after exposure to chemical allergens and compare this to invasive in vivo measurements after sensitization with the industrial chemicals trimellitic anhydride (TMA) and 2,4-dinitrochlorobenzene (DNCB). Female BALB/c mice were sensitized epicutaneously with the respiratory allergen TMA and the contact sensitizer DNCB. The early allergic response to TMA and DNCB was registered in vivo and ex vivo on day 21 after inhalational challenge with dry standardized aerosols or after exposure of precision-cut lung slices (PCLS) to dissolved allergen. Airway hyperresponsiveness (AHR) to increasing doses of methacholine (MCh) was measured on the next day in vivo and ex vivo. Bronchoalveolar lavage (BAL) was performed for immunological characterization of local inflammation. TMA-sensitized mice showed AHR to MCh in vivo (ED(50): 0.06 microg MCh vs. 0.21 microg MCh in controls) and in PCLS (EC(50): 0.24 microM MCh vs. 0.4 microM MCh). TMA-treated animals showed increased numbers of eosinophils (12.8 x 10(4) vs. 0.7 x 10(4)) and elevated eotaxin-2 concentrations (994 pg/ml vs. 167 pg/ml) in BAL fluid 24 h after allergen challenge. In contrast, none of these parameters differed after sensitization with DNCB. The present study suggests that the effects of low molecular weight allergens, like TMA and DNCB, on ex vivo lung functions tested in PCLS reflect the in vivo situation. PMID:18775882

Henjakovic, M; Martin, C; Hoymann, H G; Sewald, K; Ressmeyer, A R; Dassow, C; Pohlmann, G; Krug, N; Uhlig, S; Braun, A

2008-12-01

122

Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo  

Microsoft Academic Search

Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in

Richard Benton; Silke Sachse; Stephen W. Michnick; Leslie B. Vosshall

2006-01-01

123

On-Chip In vivo Functional Imaging of the Mouse Brain Using a CMOS Image Sensor  

Microsoft Academic Search

We have developed a new method for in vivo functional imaging of the mouse brain using a dedicated CMOS image sensor chip. The image sensor has 176times144-pixels with pixel size of 7.5times7.5 mum 2. A novel packaging process is developed to enable on-chip fluorescence imaging. The sensor chip is attached to a flexible polyimide substrate and sealed in epoxy. A

D. C. Ng; T. Tokuda; K. Kagawa; H. Tamura; S. Shiosaka; J. Ohta

2006-01-01

124

GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo  

PubMed Central

Summary Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although originally implicated in the control of cytoskeletal events, it is currently known that these GTPases coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this field regarding the mechanism of regulation and signaling, and the roles in vivo of this important GTPase family.

Bustelo, Xose R.; Sauzeau, Vincent; Berenjeno, Inmaculada M.

2007-01-01

125

Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training.  

PubMed

Oxidative function during exercise was evaluated in 11 young athletes with marked skeletal muscle hypertrophy induced by long-term resistance training (RTA; body mass 102.6 ± 7.3 kg, mean ± SD) and 11 controls (CTRL; body mass 77.8 ± 6.0 kg). Pulmonary O2 uptake (Vo2) and vastus lateralis muscle fractional O2 extraction (by near-infrared spectroscopy) were determined during an incremental cycle ergometer (CE) and one-leg knee-extension (KE) exercise. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers obtained by biopsy. Quadriceps femoris muscle cross-sectional area, volume (determined by magnetic resonance imaging), and strength were greater in RTA vs. CTRL (by ?40%, ?33%, and ?20%, respectively). Vo2peak during CE was higher in RTA vs. CTRL (4.05 ± 0.64 vs. 3.56 ± 0.30 l/min); no difference between groups was observed during KE. The O2 cost of CE exercise was not different between groups. When divided per muscle mass (for CE) or quadriceps muscle mass (for KE), Vo2 peak was lower (by 15-20%) in RTA vs. CTRL. Vastus lateralis fractional O2 extraction was lower in RTA vs. CTRL at all work rates, during both CE and KE. RTA had higher ADP-stimulated mitochondrial respiration (56.7 ± 23.7 pmol O2·s(-1)·mg(-1) ww) vs. CTRL (35.7 ± 10.2 pmol O2·s(-1)·mg(-1) ww) and a tighter coupling of oxidative phosphorylation. In RTA, the greater muscle mass and maximal force and the enhanced mitochondrial respiration seem to compensate for the hypertrophy-induced impaired peripheral O2 diffusion. The net results are an enhanced whole body oxidative function at peak exercise and unchanged efficiency and O2 cost at submaximal exercise, despite a much greater body mass. PMID:23519233

Salvadego, Desy; Domenis, Rossana; Lazzer, Stefano; Porcelli, Simone; Rittweger, Jörn; Rizzo, Giovanna; Mavelli, Irene; Simunic, Bostjan; Pisot, Rado; Grassi, Bruno

2013-06-01

126

Direct link between RACK1 function and localization at the ribosome in vivo.  

PubMed

The receptor for activated C-kinase (RACK1), a conserved protein implicated in numerous signaling pathways, is a stoichiometric component of eukaryotic ribosomes located on the head of the 40S ribosomal subunit. To test the hypothesis that ribosome association is central to the function of RACK1 in vivo, we determined the 2.1-A crystal structure of RACK1 from Saccharomyces cerevisiae (Asc1p) and used it to design eight mutant versions of RACK1 to assess roles in ribosome binding and in vivo function. Conserved charged amino acids on one side of the beta-propeller structure were found to confer most of the 40S subunit binding affinity, whereas an adjacent conserved and structured loop had little effect on RACK1-ribosome association. Yeast mutations that confer moderate to strong defects in ribosome binding mimic some phenotypes of a RACK1 deletion strain, including increased sensitivity to drugs affecting cell wall biosynthesis and translation elongation. Furthermore, disruption of RACK1's position at the 40S ribosomal subunit results in the failure of the mRNA binding protein Scp160 to associate with actively translating ribosomes. These results provide the first direct evidence that RACK1 functions from the ribosome, implying a physical link between the eukaryotic ribosome and cell signaling pathways in vivo. PMID:19114558

Coyle, Scott M; Gilbert, Wendy V; Doudna, Jennifer A

2009-03-01

127

Luteinizing hormone receptors on granulosa cells from preovulatory follicles and luteal cells throughout the oestrous cycle of pigs.  

PubMed

We used granulosa cells isolated from porcine preovulatory follicles and luteal cells isolated without enzyme dissociation to study the dynamic of changes in human chorionic gonadotropin (hCG) binding parameters (maximum binding capacity B and binding affinity expressed by the equilibrium dissociation constant KD) through the entire luteal phase, paying particular attention to the period between the end of the follicular phase and the beginning of the luteal phase. The oestrous cycle phase was determined by morphological criteria. Five stages of the oestrous cycle were distinguished: (1) preovulatory phase, (2) 1-3 days after ovulation, (3) 5-8 days after ovulation, (4) 8-10 days after ovulation and (5) 12-14 days after ovulation. Highly purified hCG was iodinated and used in radioreceptor assays and autoradiographic studies. Thirty-one autoradiograms from the five distinguished stages of the oestrous cycle were analysed and their optical densities were compared. To establish binding parameters in the five types of cells, 15 Scatchard plots were analysed. There were no statistically significant differences between KD values among all luteal cells (approximately 1.59 +/- 0.39 x 10(-10) mol 1(-1)); however, mean KD in luteal cells was significantly (p < 0.001) lower than KD in granulosa cells (3.38 +/- 0.53 x 10(-10) mol 1(-1). The number of available LH/CG receptors per cell varied with the stage of the luteal phase. There were about 7300 available LH/CG receptors on a single luteal cell isolated from a CL not later than 3 days after ovulation. When the corpora lutea matured, the number of LH/CG receptors per cell increased, reaching approximately 28,400 receptors maximum per cell between the 8th and the 10th day of the luteal phase. Later, when the corpora lutea regressed, the number of receptors fell to 17,400. There were much more LH/CG receptors on granulosa cells than on luteal cells, i.e. 76,600 receptors per granulosa cell. The large number of LH/CG receptors on granulosa cells isolated from preovulatory follicles confirms the key role of LH in transformation of follicles into corpora lutea. The distinctly lower number of these receptors on all types of luteal cells might reflect decreased sensitivity of porcine luteal cells to LH. PMID:9505112

Gebarowska, D; Ziecik, A J; Gregoraszczuk, E L

1997-12-01

128

Growth factor regulation of insulin-like growth factor binding protein secretion by cultured human granulosa-luteal cells  

Microsoft Academic Search

Objective: To examine the effects of epidermal growth factor (EGF), transforming growth factor-? (TGF-?), and fibroblast growth factor (FGF) on insulin-like growth factor binding protein (IGFBP) secretion by cultured human granulosa-luteal cells.Design: Granulosa-luteal cells obtained at the time of oocyte harvest for IVF were cultured in serum-free medium in the presence or absence of EGF, TGF-?, or FGF. Conditioned medium

O. W. Stephanie Yap; Yasmin A. Chandrasekher; Linda C. Giudice

1998-01-01

129

Detection of estrous behavior in buffalo heifers by radiotelemetry following PGF2? administration during the early or late luteal phase.  

PubMed

This study examined the usefulness of radiotelemetry for estrous detection in buffalo heifers and the impact of prostaglandin F2? (PGF2?) administration during the early or late luteal phase on estrous behavior and ovulatory follicle variables. Induction of estrus with PGF2? at a random stage of the estrous cycle was followed by the arbitrary division of heifers into groups receiving a second dose of PGF2? during either the early (n=33) or late (n=17) luteal phase (6-9 or 11-14 days after estrus, respectively) for the induction of synchronized estrus. The electronic detection of synchronized estrus by radiotelemetry was confirmed using ultrasonography every 6h until ovulation. Radiotelemetry was 90% efficient and 100% accurate for estrous detection. Intervals between the PGF2? dose and the beginning of synchronized estrus (40.7 ± 10.9 vs. 56.7 ± 12.8h) or ovulation (70.0 ± 11.3 vs. 85.6 ± 12.5h) were shorter (P<0.05) for heifers receiving PGF2? during the early luteal phase. PGF2? administration during the early or late luteal phase produced similar (P>0.05) results for the duration of estrus, the intervals from the beginning or end of estrus to ovulation, the number and duration of mounts per estrus, the duration of mounts, the diameter of the ovulatory follicle and the luteal profile on day 5 after estrus. In conclusion, radiotelemetry was a suitable tool for the efficient and accurate detection of estrus in buffalo heifers. Treatment with PGF2? during the early luteal phase had a shorter interval to synchronized estrus and ovulation; however, estrous behavior, ovulatory follicle dynamics and subsequent luteal activity were similar following PGF2? administration during the early or late luteal phase. PMID:24439023

Porto-Filho, R M; Gimenes, L U; Monteiro, B M; Carvalho, N A T; Ghuman, S P S; Madureira, E H; Baruselli, P S

2014-01-30

130

Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.  

PubMed

Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11?h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. PMID:20874715

Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

2010-10-01

131

Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo.  

PubMed

Chloride intracellular channel (CLIC) proteins are small proteins distantly related to the omega family of glutathione S-transferases (GSTs). CLIC proteins are expressed in a wide variety of tissues in multicellular organisms and are targeted to specific cellular membranes. Members of this family are capable in vitro of changing conformation from a globular, soluble state to a membrane-inserted state in which they provide chloride conductance. The structural basis for in vivo CLIC protein function, however, is not well understood. We have mapped the functional domains of CLIC family members using an in vivo assay for membrane localization and function of CLIC proteins in the nematode Caenorhabditis elegans. A<70 amino acid N-terminal domain is a key determinant of membrane localization and function of invertebrate CLIC proteins. This domain, which we term the ''PTM'' domain, named after an amphipathic putative transmembrane helix contained within it, directs distinct C. elegans CLIC homologs to distinct subcellular membranes. We find that within the PTM region, the cysteine residues required for GST-type activity are unnecessary for invertebrate CLIC function, but that specific residues within the proposed transmembrane helix are necessary for correct targeting and protein function. We find that among all tested invertebrate CLIC proteins, function appears to be completely conserved despite striking differences in the charged residues contained within the amphipathic helix. This indicates that these residues do not contribute to anion selectivity as previously suggested. We find that outside the PTM region, the remaining three-quarters of CLIC protein sequence is functionally equivalent not only among vertebrate and invertebrate CLIC proteins, but also among the more distantly related GST-omega and GST-sigma proteins. The PTM region thus provides both targeting information and CLIC functional specificity, possibly adapting GST-type proteins to function as ion channels. PMID:16737711

Berry, Katherine L; Hobert, Oliver

2006-06-23

132

Anti-cytokine auto-vaccinations as tools for the analysis of cytokine function in vivo.  

PubMed

Braking B cell tolerance to generate antibodies against autologous cytokines or chemokines offers an alternative to gene inactivation for functional analysis of these factors in vivo. It is clearly less potent than the genetic approach but offers the advantage of extreme flexibility. The basic principle is to enable a self-reactive B cell to attract T cell help by presenting foreign peptides, a process we called "deceptive" antigen presentation. We here review the different auto-vaccine procedures that are currently used and provide several examples of functional information acquired by this procedure or by mAbs derived from auto-vaccinated mice. PMID:22236653

Uyttenhove, Catherine; Van Snick, Jacques

2012-01-01

133

In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito.  

PubMed

A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes. PMID:21437205

Peng, Rong; Maklokova, Vilena I; Chandrashekhar, Jayadevi H; Lan, Que

2011-01-01

134

Mechanism of action of TNF-alpha-stimulated prostaglandin production in cultured bovine luteal cells.  

PubMed

Tumor necrosis factor-alpha (TNF-alpha) influences hormone synthesis of many ovarian cell types and can also exert cytotoxic effects, possibly by increasing the synthesis of prostaglandins. The purpose of the present study was to characterize the mechanism of TNF-alpha-stimulated prostaglandin; F2 alpha (PGF2 alpha) production in cultured bovine luteal cells. Inhibitors of RNA and protein synthesis (actinomycin D and cycloheximide, respectively) completely blocked TNF-alpha-stimulated PGF2 alpha production. The phospholipase A2 inhibitor, aristolochic acid, prevented TNF-alpha-stimulated, but not basal, PGF2 alpha production, whereas the phospholipase C inhibitor, compound 48/80, was without effect. The addition of arachidonic acid to cultures did not overcome the inhibitory effects of cycloheximide or aristolochic acid. In conclusion, TNF-alpha-stimulated prostaglandin production by bovine luteal cells is dependent upon the stimulation of phospholipase A2 through mechanisms which require synthesis of RNA and protein. PMID:8948504

Townson, D H; Pate, J L

1996-11-01

135

In-vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function  

SciTech Connect

To relate in-vivo microscopic retinal changes to visual function assessed with clinical tests in patients with various forms of retinal dystrophies. The UC Davis Adaptive Optics (AO) Fundus Camera was used to acquire in-vivo retinal images at the cellular level. Visual function tests, consisting of visual field analysis, multifocal electroretinography (mfERG), contrast sensitivity and color vision measures, were performed on all subjects. Five patients with different forms of retinal dystrophies and three control subjects were recruited. Cone densities were quantified for all retinal images. In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were characteristic features in fundi with retinal dystrophies. There was a correlation between functional vision loss and the extent to which the irregularities occurred in retinal images. Cone densities were found to decrease with an associated decrease in retinal function. AO fundus photography is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests give borderline or ambiguous results, as it allows visualization of individual photoreceptors.

Choi, S; Doble, N; Hardy, J; Jones, S; Keltner, J; Olivier, S; Werner, J S

2005-10-26

136

Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo  

PubMed Central

Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown Norway rats were dosed (8 mg/kg, i.t.) 24 hr prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed.

Lord, Kevin; Moll, David; Lindsey, John K.; Mahne, Sarah; Raman, Girija; Dugas, Tammy; Cormier, Stephania; Troxlair, Dana; Lomnicki, Slawo; Dellinger, Barry; Varner, Kurt

2011-01-01

137

Impact of the prostaglandin-synthase 2 inhibitor celecoxib on ovulation and luteal events in women  

PubMed Central

Background Ovarian prostaglandins are critical in normal ovulation processes, thus their inhibition may provide contraceptive benefits. This study was performed to determine the effect of the cyclooxygenase-2 (COX2) inhibitor, celecoxib, on ovulation and luteal events in women. Study design Randomized double-blind crossover design. Ovulatory reproductive-aged women underwent ovarian ultrasound and serum hormone monitoring during four menstrual cycles (control cycle, treatment cycle 1, washout cycle, treatment cycle 2). Subjects received study drug (oral celecoxib 400 mg or placebo) either 1) once daily starting on cycle day 8 and continuing until follicle rupture or the onset of next menses if follicle rupture did not occur (pre-LH surge dosing) or 2) once daily beginning with the LH surge and continued for 6 days (post-LH surge dosing). Subjects were randomly assigned to one of the above treatment schemes and received the other in the subsequent treatment cycle. The main outcomes were evidence of ovulatory and luteal dysfunction as determined by inhibited/delayed follicle rupture and reduced luteal progesterone synthesis or lifespan, respectively. Results A total of 20 women enrolled and completed the study (Group 1 = 10, Group 2 = 10) with similar demographics between groups. Nineteen subjects exhibited normal ovulation in the control cycle (one had a blunted LH peak). In comparison to control cycles, treatment cycles resulted in a significant increase in ovulatory dysfunction [pre-LH treatment: 30% (6/20), p = 0.04; post-LH treatment: 25% (5/20), p = 0.04]. Peak progesterone, estradiol, and LH levels and luteal phase length did not differ significantly between control and either treatment cycles. Conclusions Although treatment with celecoxib before or after the LH surge increases the rate of ovulatory dysfunction, most women ovulate normally. Thus, this selective COX2 inhibitor appears to be of limited usefulness as a potential emergency contraceptive.

Edelman, A.B.; Jensen, J.T.; Doom, C; Hennebold, J.D.

2014-01-01

138

Hepatitis C virus-infected cells downregulate NKp30 and inhibit ex vivo NK cell functions.  

PubMed

Hepatitis C virus (HCV) successfully evades the immune system and establishes chronic infection in ?80% of cases. Immune evasion may involve modulating NK cell functions. Therefore, we developed a short-term assay to assess immediate effects of HCV-infected cells on ex vivo NK cytotoxicity and cytokine production. Natural cytotoxicity, Ab-dependent cell-mediated cytotoxicity, IFN-? production, and TNF-? production were all significantly inhibited by short-term direct exposure to HCV-infected hepatoma-derived Huh-7.5 cells. Inhibition required cell-to-cell contact and increased together with multiplicity of infection and HCV protein levels. Blocking potential interaction between HCV E2 and NK CD81 did not abrogate NK cell inhibition mediated by HCV-infected cells. We observed no change in expression levels of NKG2D, NKG2A, NKp46, or CD16 on NK cells exposed to HCV-infected Huh-7.5 cells for 5 h or of human histocompatibility-linked leukocyte Ag E on HCV-infected compared with uninfected Huh-7.5 cells. Inhibition of ex vivo NK functions did correspond with reduced surface expression of the natural cytotoxicity receptor NKp30, and downregulation of NKp30 was functionally reflected in reduced anti-NKp30 redirected lysis of P815 cells. Infection of Huh-7.5 cells with HCV JFH1(T) increased surface binding of an NKp30-IgG1 Fc? fusion protein, suggesting upregulation of an antagonistic NKp30 ligand on HCV-infected cells. Our assay demonstrates rapid inhibition of critical NK cell functions by HCV-infected cells. Similar localized effects in vivo may contribute to establishment of chronic HCV infection and associated phenotypic and functional changes in the NK population. PMID:23960237

Holder, Kayla A; Stapleton, Staci N; Gallant, Maureen E; Russell, Rodney S; Grant, Michael D

2013-09-15

139

IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER  

PubMed Central

From 1981 to 1983, 15,097 X-chromosomes were genetically extracted from a number of North American populations of D. melanogaster and were electrophoretically screened for rare mobility and activity variants of glucose-6-phosphate dehydrogenase (G6PD). Overall, 13 rare variants were recovered for a frequency of about 10-3. Eleven variants affect electrophoretic mobility and are apparently structural, and two variants exhibit low G6PD activity. One low activity variant is closely associated with a P-element insertion at 18D12-13—all of the variants were subjected to the previously described genetic scheme used to identify relative in vivo activity differences between the two common electrophoretic variants associated with the global polymorphism. Most of the rare variants exhibit apparent in vivo activities that are similar to one or the other of the common variants, and these specific rare variants appear to be geographically widespread. Several variants have significantly reduced function. All of the variants were measured for larval specific activity for G6PD as a first measure of in vitro activity. It appears that specific activity alone is not a sufficient predictor for G6PD in vivo function.

Eanes, Walter F.; Hey, Jody

1986-01-01

140

Dynamic contrast-enhanced optical imaging of in vivo organ function  

PubMed Central

Abstract. Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ’s response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

2012-01-01

141

Functional characterization of equine neutrophils in response to calcium ionophore A23187 and phorbol myristate acetate ex vivo  

Microsoft Academic Search

Equine neutrophils (PMN) play a critical role in inflammatory processes in horses. The objective of this study was to characterize equine PMN function ex vivo following stimulation with calcium ionophore A23187 (A23187) and phorbol myristate acetate (PMA). These stimulants trigger different branches of the PMN activation process that occurs in vivo. Equine PMN were isolated from the whole blood of

T. Moore; J. Wilcke; C. Chilcoat; P. Eyre; M. Crisman

1997-01-01

142

N-acetylcysteine impairs survival of luteal cells through mitochondrial dysfunction.  

PubMed

N-acetylcysteine (NAC) is known as an antioxidant and used for mucus viscosity reduction. However, this drug prevents or induces cell death depending on the cell type. The response of steroidogenic luteal cells to NAC is unknown. Our data shows that NAC can behave as an antioxidant or prooxidant in dependency on the concentration and mitochondrial energization. NAC elevated the flowcytometric-measured portion of hypodiploid (dying) cells. This rise was completely abolished by aurintricarboxylic acid, an inhibitor of topoisomerase II. NAC increased the secretion of nitric oxide and cellular nitrotyrosine. An image analysis indicated that cells pretreated with NAC and loaded with DHR showed a fluorescent structure probably elicited by the oxidative product of DHR, rhodamine 123 that sequesters mitochondrially. Pretreating luteal cells with NAC or adding NAC directly to mitochondrial fractions followed by assessing the mitochondrial transmembrane potential difference (Deltapsi) by the JC-1 technique demonstrated a marked decrease in Deltapsi. A protonophore restored Deltapsi and rotenone (an inhibitor of respiratory chain complex I) inhibited mitochondrial recovering. Thus, in steroidogenic luteal cells from healthy mature corpus luteum, NAC impairs cellular survival by interfering with mitochondrial metabolism. The protonophore-induced recovering of NAC-provoked decrease in Deltapsi indicates that an ATP synthase-favored route of H(+) re-entry to the matrix is essentially switched off by NAC while other respiratory chain complexes remain intact. These data may be important for therapeutic timing of treatments with NAC. (c) 2010 International Society for Advancement of Cytometry. PMID:20151456

Löhrke, Berthold; Xu, Jinxian; Weitzel, Joachim M; Krüger, Burkhard; Goldammer, Tom; Viergutz, Torsten

2010-04-01

143

Functional Cooperation of the Proapoptotic Bcl2 Family Proteins Bmf and Bim In Vivo ?  

PubMed Central

Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH2-terminal kinase (JNK) on Ser74, or mimic Bmf phosphorylation on Ser74. We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser74 can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.

Hubner, Anette; Cavanagh-Kyros, Julie; Rincon, Mercedes; Flavell, Richard A.; Davis, Roger J.

2010-01-01

144

Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo.  

PubMed

Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf. PMID:19841067

Hübner, Anette; Cavanagh-Kyros, Julie; Rincon, Mercedes; Flavell, Richard A; Davis, Roger J

2010-01-01

145

Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle  

PubMed Central

Background In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip. Results Conception rates for each of the four rounds of AI were within a normal range: 70–73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n?=?6) and LF (n?=?6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6. Conclusions This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.

2014-01-01

146

The Rap1 GTPase functions as a regulator of morphogenesis in vivo.  

PubMed Central

The Ras-related Rap GTPases are highly conserved across diverse species but their normal biological function is not well understood. Initial studies in mammalian cells suggested a role for Rap as a Ras antagonist. More recent experiments indicate functions in calcium- and cAMP-mediated signaling and it has been proposed that protein kinase A-mediated phosphorylation activates Rap in vivo. We show that Ras1-mediated signaling pathways in Drosophila are not influenced by Rap1 levels, suggesting that Ras1 and Rap1 function via distinct pathways. Moreover, a mutation that abolishes the putative cAMP-dependent kinase phosphorylation site of Drosophila Rap1 can still rescue the Rap1 mutant phenotype. Our experiments show that Rap1 is not needed for cell proliferation and cell-fate specification but demonstrate a critical function for Rap1 in regulating normal morphogenesis in the eye disk, the ovary and the embryo. Rap1 mutations also disrupt cell migrations and cause abnormalities in cell shape. These findings indicate a role for Rap proteins as regulators of morphogenesis in vivo.

Asha, H; de Ruiter, N D; Wang, M G; Hariharan, I K

1999-01-01

147

Critical Role of Tissue Mast Cells in Controlling Long Term Glucose Sensor Function in Vivo  

PubMed Central

Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-KitW-sh/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo.

Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L.

2010-01-01

148

Functional optical coherence tomography to reveal functional architecture of cat visual cortex in vivo  

NASA Astrophysics Data System (ADS)

Optical intrinsic signal imaging (OISI) provides the surface activation map of brain and has provided many insights. In this study, we show that the optical coherence tomography (OCT) can indeed provide depth resolved functional map of cat visual cortex. Activation profile obtained by integrating OCT signal across depth correlates well with that determined by the OISI. Functional OCT (fOCT) promises to be a valid technique for revealing unexplored organization inside the brain at a micro system level.

Homma, Ryota; Kadono, Hirofumi; Tanifuji, Manabu; Uma Maheswari, Rajagopalan

2003-10-01

149

Melatonin deprival modifies follicular and corpus luteal growth dynamics in a sheep model.  

PubMed

This study assessed the effect of melatonin deprival on ovarian status and function in sheep. Experimental procedures were carried out within two consecutive breeding seasons. Animals were divided into two groups: pinealectomised (n=6) and sham-operated (n=6). The completeness of the pineal gland removal was confirmed by the plasma concentration of melatonin. Ovarian status was monitored by ovarian ultrasonography for 1 year to study reproductive seasonality. Follicular and corpus luteal growth dynamics were assessed during an induced oestrous cycle. As the effects of melatonin on the ovary may also be mediated by its antioxidant properties, plasma Trolox equivalent antioxidant capacity (TEAC) was determined monthly for 1 year. Pinealectomy significantly extended the breeding season (310±24.7 vs 217.5±24.7 days in controls; P<0.05). Both pinealectomised and sham-operated ewes showed a well-defined wave-like pattern of follicle dynamics; however, melatonin deficiency caused fewer waves during the oestrous cycle (4.3±0.2 vs 5.2±0.2; P<0.05), because waves were 1 day longer when compared with the controls (7.2±0.3 vs 6.1±0.3; P<0.05). The mean area of the corpora lutea (105.4±5.9 vs 65.4±5.9?mm(2); P<0.05) and plasma progesterone levels (7.1±0.7 vs 4.9±0.6?ng/ml; P<0.05) were significantly higher in sham-operated ewes compared with pinealectomised ewes. In addition, TEAC values were significantly lower in pinealectomised ewes compared with control ones. These data suggest that melatonin, besides exerting its well-known role in the synchronisation of seasonal reproductive fluctuations, influences the growth pattern of the follicles and the steroidogenic capacity of the corpus luteum.FREE ITALIAN ABSTRACT: An Italian translation of this abstract is freely available at http://www.reproduction-online.org/content/147/6/885/suppl/DC1. PMID:24570480

Manca, Maria Elena; Manunta, Maria Lucia; Spezzigu, Antonio; Torres-Rovira, Laura; Gonzalez-Bulnes, Antonio; Pasciu, Valeria; Piu, Peter; Leoni, Giovanni G; Succu, Sara; Chesneau, Didier; Naitana, Salvatore; Berlinguer, Fiammetta

2014-06-01

150

Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding  

PubMed Central

Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.

Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

2014-01-01

151

Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo  

PubMed Central

Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application.

Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

2013-01-01

152

Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding.  

PubMed

Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

2014-01-01

153

Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in Olive baboons  

PubMed Central

Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (Olive baboons, Papio anubis). The results showed that at a dose of 2.5 mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5 mg and 1 mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers.

Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

2013-01-01

154

Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.  

PubMed

Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. PMID:23684840

Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

2013-06-28

155

Identification of in vivo phosphorylation sites and their functional significance in the sodium iodide symporter.  

PubMed

The Na+/I- symporter (NIS)-mediated iodide uptake activity is the basis for targeted radioiodide ablation of thyroid cancers. Although it has been shown that NIS protein is phosphorylated, neither the in vivo phosphorylation sites nor their functional significance has been reported. In this study, Ser-43, Thr-49, Ser-227, Thr-577, and Ser-581 were identified as in vivo NIS phosphorylation sites by mass spectrometry. Kinetic analysis of NIS mutants of the corresponding phosphorylated amino acid residue indicated that the velocity of iodide transport of NIS is modulated by the phosphorylation status of Ser-43 and Ser-581. We also found that the phosphorylation status of Thr-577 may be important for NIS protein stability and that the phosphorylation status of Ser-227 is functionally silent. Thr-49 appears to be critical for proper local structure/conformation of NIS because mutation of Thr-49 to alanine, aspartic acid, or serine results in reduced NIS activity without alterations in total or cell surface NIS protein levels. Taken together, we showed that NIS protein levels and functional activity could be modulated by phosphorylation through distinct mechanisms. PMID:17913707

Vadysirisack, Douangsone D; Chen, Eric S-W; Zhang, Zhaoxia; Tsai, Ming-Daw; Chang, Geen-Dong; Jhiang, Sissy M

2007-12-21

156

Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo.  

PubMed

Alzheimer's disease (AD) is pathologically characterized by the deposition of extracellular amyloid-? plaques and intracellular aggregation of tau protein in neurofibrillary tangles (NFTs) (1, 2). Progression of NFT pathology is closely correlated with both increased neurodegeneration and cognitive decline in AD (3) and other tauopathies, such as frontotemporal dementia (4, 5). The assumption that mislocalization of tau into the somatodendritic compartment (6) and accumulation of fibrillar aggregates in NFTs mediates neurodegeneration underlies most current therapeutic strategies aimed at preventing NFT formation or disrupting existing NFTs (7, 8). Although several disease-associated mutations cause both aggregation of tau and neurodegeneration, whether NFTs per se contribute to neuronal and network dysfunction in vivo is unknown (9). Here we used awake in vivo two-photon calcium imaging to monitor neuronal function in adult rTg4510 mice that overexpress a human mutant form of tau (P301L) and develop cortical NFTs by the age of 7-8 mo (10). Unexpectedly, NFT-bearing neurons in the visual cortex appeared to be completely functionally intact, to be capable of integrating dendritic inputs and effectively encoding orientation and direction selectivity, and to have a stable baseline resting calcium level. These results suggest a reevaluation of the common assumption that insoluble tau aggregates are sufficient to disrupt neuronal function. PMID:24368848

Kuchibhotla, Kishore V; Wegmann, Susanne; Kopeikina, Katherine J; Hawkes, Jonathan; Rudinskiy, Nikita; Andermann, Mark L; Spires-Jones, Tara L; Bacskai, Brian J; Hyman, Bradley T

2014-01-01

157

Luteal phase deficiency in regularly menstruating women: prevalence and overlap in identification based on clinical and biochemical diagnostic criteria.  

PubMed

Context: Although adequate luteal hormone production is essential for establishing pregnancy, luteal phase deficiency (LPD) is poorly characterized among eumenorrheic women. Objective: We assessed the prevalence and overlap of two established LPD diagnostic criteria: short luteal phase duration less than10 days (clinical LPD) and suboptimal luteal progesterone of 5 ng/mL or less (biochemical LPD) and their relationship with reproductive hormone concentrations. Design, Setting, and Participants: We conducted a prospective study in western New York (2005-2007) following 259 women, aged 18-44 years, for up to two menstrual cycles. Results: Among ovulatory cycles with recorded cycle lengths (n = 463), there were 41 cycles (8.9%) with clinical LPD, 39 cycles (8.4%) with biochemical LPD, and 20 cycles (4.3%) meeting both criteria. Recurrent clinical and biochemical LPD was observed in eight (3.4%) and five (2.1%) women, respectively. Clinical and biochemical LPD were each associated with lower follicular estradiol (both P ? .001) and luteal estradiol (P = .03 and P = .02, respectively) after adjusting for age, race, and percentage body fat. Clinical, but not biochemical, LPD was associated with lower LH and FSH across all phases of the cycle (P ? .001). Conclusions: Clinical and biochemical LPD were evident among regularly menstruating women. Estradiol was lower in LPD cycles under either criterion, but LH and FSH were lower only in association with shortened luteal phase (ie, clinical LPD), indicating that clinical and biochemical LPD may reflect different underlying mechanisms. Identifying ovulation in combination with a well-timed luteal progesterone measurement may serve as a cost-effective and specific tool for LPD assessment by clinicians and researchers. PMID:24606080

Schliep, Karen C; Mumford, Sunni L; Hammoud, Ahmad O; Stanford, Joseph B; Kissell, Kerri A; Sjaarda, Lindsey A; Perkins, Neil J; Ahrens, Katherine A; Wactawski-Wende, Jean; Mendola, Pauline; Schisterman, Enrique F

2014-06-01

158

In Vivo Evaluation of Vena Caval Filters: Can Function Be Linked to Design Characteristics?  

Microsoft Academic Search

Purpose: To compare the five vena caval filters marketed in the United States and one investigational vena caval filter and to determine\\u000a whether there is an association between their design and their in vivo function.\\u000a \\u000a \\u000a \\u000a \\u000a Methods: Four of each type of filter—Simon Nitinol (SN), Bird's Nest (BN), Vena Tech (VT), Greenfield stainless steel (PSGF), Greenfield\\u000a titanium (TGF), and the investigational

Mary C. Proctor; Kyung J. Cho; Lazar J. Greenfield

2000-01-01

159

Photoacoustics and fluorescence based nanoprobes towards functional and structural imaging in vivo  

NASA Astrophysics Data System (ADS)

Imaging of chemical analytes and structural properties related to physiological activities within biological systems is of great bio-medical interest; it can contribute to the fundamental understanding of biological systems and can be applied to the diagnosis and prognosis of diseases, especially tumors. The work presented in this thesis focuses on the development and application of polymeric nanoprobe aided optical imaging of chemical analytes (Oxygen, pH) and structural properties in live cells and animal models. To this end, specific nanoprobes, based on the polyacrylamide nanoplatform, bearing both appropriate targeting functionalities, and high concentrations of sensing and contrast agents, have been developed. The nanoprobes presented here are biodegradable, biocompatible and non-toxic, rendering them safe for in vivo use. Furthermore the nanoprobes are designed to have variable optical properties that are dependent on the local concentration of the specific analyte of interest. Optical imaging techniques that are particularly suited for deep tissue applications, such as two-photon fluorescence and photoacoustics, were applied for non-invasive real-time imaging and sensing in cancer cells, tumor spheroids and animal models. Our results demonstrate that this technique enables high sensitive detection of chemical analytes with a sensitivity of <5 Torr for oxygen and <0.1 pH units in vivo, which is better than the currently available in vivo functional imaging techniques. This non-invasive and non-ionizing, yet low cost, method will enable morphological and functional evaluation across any tissue, with both high spatial and temporal resolution but without eliciting short- or long-term tissue damage. Currently no gold standard exists for such xii functional imaging. The approach presented here can be used for early detection and diagnosis of tumors, as well as for monitoring the progression of disease and therapy. This technique will also enable observing phenomena at the cellular level in vivo that would lead to a better understanding of the pathophysiology of diseases as well as the disease onset, progression, and response to therapy.

Ray, Aniruddha

160

Vivo-Morpholino knockdown of alphaIIb: A novel approach to inhibit thrombocyte function in adult zebrafish.  

PubMed

Knockdown of protein function by antisense oligonucleotides has been used to understand the protein function not only in development but also in human diseases. Recently, Vivo-Morpholinos, chemically modified morpholinos which penetrate the cells, have been used in adult experimental animal models to alter the splicing and thereby change the protein expression. Until now, there have been no such studies using Vivo-Morpholinos to evaluate hemostatic function in adult animals. We injected alphaIIb Vivo-Morpholinos intravenously into adult zebrafish. Thrombocyte function was assayed by time to aggregation assay of the citrated blood, annexin V binding to thrombocytes, and gill bleeding. The thrombocyte functional inhibition occurred in 24 h after alphaIIb Vivo-Morpholinos injection and reached a maximum in 48 h. However, in 72 h, the inhibition was no longer observed. Reduction of annexin V binding to thrombocytes and increased gill bleeding were observed 48 h after alphaIIb Vivo-Morpholino injections. The action of the alphaIIb Vivo-Morpholino was demonstrated by the presence of an alternatively spliced alphaIIb mRNA and the reduction of alphaIIb in thrombocytes of fish treated with alphaIIb Vivo-Morpholino. These results provide the first proof of principle that thrombocyte function can be inhibited by thrombocyte-specific Vivo-Morpholinos in adult zebrafish and presents an approach to knockdown thrombocyte-specific genes to conduct biochemical studies in thrombocytes. This study also provides the first antisense antithrombotic approach to inhibit thrombocyte function in adult zebrafish. PMID:20045356

Kim, Seongcheol; Radhakrishnan, Uvaraj P; Rajpurohit, Surendra Kumar; Kulkarni, Vrinda; Jagadeeswaran, Pudur

2010-03-15

161

Non invasive in vivo investigation of hepatobiliary structure and function in STII medaka (Oryzias latipes): methodology and applications  

PubMed Central

Background A novel transparent stock of medaka (Oryzias latipes; STII), recessive for all pigments found in chromatophores, permits transcutaneous imaging of internal organs and tissues in living individuals. Findings presented describe the development of methodologies for non invasive in vivo investigation in STII medaka, and the successful application of these methodologies to in vivo study of hepatobiliary structure, function, and xenobiotic response, in both 2 and 3 dimensions. Results Using brightfield, and widefield and confocal fluorescence microscopy, coupled with the in vivo application of fluorescent probes, structural and functional features of the hepatobiliary system, and xenobiotic induced toxicity, were imaged at the cellular level, with high resolution (< 1 ?m), in living individuals. The findings presented demonstrate; (1) phenotypic response to xenobiotic exposure can be investigated/imaged in vivo with high resolution (< 1 ?m), (2) hepatobiliary transport of solutes from blood to bile can be qualitatively and quantitatively studied/imaged in vivo, (3) hepatobiliary architecture in this lower vertebrate liver can be studied in 3 dimensions, and (4) non invasive in vivo imaging/description of hepatobiliary development in this model can be investigated. Conclusion The non-invasive in vivo methodologies described are a unique means by which to investigate biological structure, function and xenobiotic response with high resolution in STII medaka. In vivo methodologies also provide the future opportunity to integrate molecular mechanisms (e.g., genomic, proteomic) of disease and toxicity with phenotypic changes at the cellular and system levels of biological organization. While our focus has been the hepatobiliary system, other organ systems are equally amenable to in vivo study, and we consider the potential for discovery, within the context of in vivo investigation in STII medaka, as significant.

Hardman, Ron C; Kullman, Seth W; Hinton, David E

2008-01-01

162

Translation initiation factors are not required for Dicistroviridae IRES function in vivo.  

PubMed

The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2*GTP*initiator tRNA(met)) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo. PMID:19299549

Deniz, Nilsa; Lenarcic, Erik M; Landry, Dori M; Thompson, Sunnie R

2009-05-01

163

Translation initiation factors are not required for Dicistroviridae IRES function in vivo  

PubMed Central

The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo.

Deniz, Nilsa; Lenarcic, Erik M.; Landry, Dori M.; Thompson, Sunnie R.

2009-01-01

164

Allele Compensation in Tip60+/? Mice Rescues White Adipose Tissue Function In Vivo  

PubMed Central

Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/? mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/? mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/? displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/? mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.

Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric

2014-01-01

165

E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions  

PubMed Central

Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell–cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.

Tunggal, Judith A; Helfrich, Iris; Schmitz, Annika; Schwarz, Heinz; Gunzel, Dorothee; Fromm, Michael; Kemler, Rolf; Krieg, Thomas; Niessen, Carien M

2005-01-01

166

Functional antagonism between histone H3K4 demethylases in vivo  

PubMed Central

Dynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosophila, two enzymes, dLsd1 (Drosophila ortholog of lysine-specific demethylase 1) and Lid (little imaginal discs), demethylate histone H3 at Lys 4 (H3K4), a residue whose methylation is associated with actively transcribed genes. Our studies show that compound mutation of Lid and dLsd1 results in increased H3K4 methylation levels. However, unexpectedly, Lid mutations strongly suppress dLsd1 mutant phenotypes. Investigation of the basis for this antagonism revealed that Lid opposes the functions of dLsd1 and the histone methyltransferase Su(var)3–9 in promoting heterochromatin spreading at heterochromatin–euchromatin boundaries. Moreover, our data reveal a novel role for dLsd1 in Notch signaling in Drosophila, and a complex network of interactions between dLsd1, Lid, and Notch signaling at euchromatic genes. These findings illustrate the complexity of functional interplay between histone demethylases in vivo, providing insights into the epigenetic regulation of heterochromatin/euchromatin boundaries by Lid and dLsd1 and showing their involvement in Notch pathway-specific control of gene expression in euchromatin.

Di Stefano, Luisa; Walker, James A.; Burgio, Giosalba; Corona, Davide F.V.; Mulligan, Peter; Naar, Anders M.; Dyson, Nicholas J.

2011-01-01

167

Tyrosine Phosphatase Epsilon Is a Positive Regulator of Osteoclast Function in Vitro and In Vivo  

PubMed Central

Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTP?) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTP?-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTP? adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTP?-deficient osteoclasts, indicating that loss of PTP? does not cause widespread disruption of these signaling pathways. These results establish PTP? as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.

Chiusaroli, Riccardo; Knobler, Hilla; Luxenburg, Chen; Sanjay, Archana; Granot-Attas, Shira; Tiran, Zohar; Miyazaki, Tsuyoshi; Harmelin, Alon; Baron, Roland; Elson, Ari

2004-01-01

168

Numerical and In Vivo Validation of Fast Cine DENSE MRI for Quantification of Regional Cardiac Function  

PubMed Central

Quantitative assessment of regional cardiac function can improve the accuracy of detecting wall motion abnormalities due to heart disease. While recently developed fast cine displacement-encoded with stimulated echoes (DENSE) MRI is a promising modality for the quantification of regional myocardial function, it has not been validated for clinical applications. The purpose of this study, therefore, was to validate the accuracy of fast cine DENSE MRI with numerical simulation and in vivo experiments. A numerical phantom was generated to model physiologically relevant deformation of the heart, and the accuracy of fast cine DENSE was evaluated against the numerical reference. For in vivo validation, 12 controls and 13 heart disease patients were imaged using both fast cine DENSE and myocardial tagged MRI. Numerical simulation demonstrated that the echo-combination DENSE reconstruction method is relatively insensitive to clinically relevant resonance frequency offsets. The strain measurements by fast cine DENSE and the numerical reference were strongly correlated and in excellent agreement (mean difference=0.00; 95% limits of agreement were 0.01 and ?0.02). The strain measurements by fast cine DENSE and myocardial tagged MRI were strongly correlated (correlation coefficient = 0.92) and in good agreement (mean difference=0.01; 95% limits of agreement were 0.07 and ?0.04).

Feng, Li; Donnino, Robert; Babb, James; Axel, Leon; Kim, Daniel

2009-01-01

169

Tartary buckwheat improves cognition and memory function in an in vivo amyloid-?-induced Alzheimer model.  

PubMed

Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (A?)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with A?(25-35), a fragment of the full-length A? protein. Damage of mice recognition ability through following A?(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following A?(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of A?(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against A?(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with A?(25-35)-induced AD. PMID:23219778

Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun

2013-03-01

170

An In Vivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response  

PubMed Central

Summary Hematopoietic stem and progenitor cells are often undesired targets of chemotherapies, leading to hematopoietic suppression requiring careful clinical management. Whether microRNAs control hematopoietic-injury response is largely unknown. We report a novel in vivo gain-of-function screen and identification of miR-150 as an inhibitor of hematopoietic recovery upon 5-fluorouracil-induced injury. Utilizing a bone marrow transplant model with a barcoded microRNA-library, we screened for barcode abundance in peripheral blood of recipient mice before and after 5-fluorouracil treatment. Overexpression of screen-candidate miR-150 resulted in significantly slowed recovery rates across major blood lineages, with associated impairment of bone marrow clonogenic potential. Conversely, platelets and myeloid cells from miR-150-null marrow recovered faster after 5-fluorouracil treatment. Heterozygous knockout of c-myb, a conserved target of miR-150, partially phenocopied miR-150 forced expression. Our data highlight the role of microRNAs in controlling hematopoietic-injury response, and demonstrate the power of in vivo functional screens for studying microRNAs in normal tissue physiology.

Adams, Brian D.; Guo, Shangqin; Bai, Haitao; Guo, Yanwen; Megyola, Cynthia; Cheng, Jijun; Heydari, Kartoosh; Xiao, Changchun; Reddy, E. Premkumar; Lu, Jun

2012-01-01

171

Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.  

PubMed

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology. PMID:24390440

Thestrup, Thomas; Litzlbauer, Julia; Bartholomäus, Ingo; Mues, Marsilius; Russo, Luigi; Dana, Hod; Kovalchuk, Yuri; Liang, Yajie; Kalamakis, Georgios; Laukat, Yvonne; Becker, Stefan; Witte, Gregor; Geiger, Anselm; Allen, Taylor; Rome, Lawrence C; Chen, Tsai-Wen; Kim, Douglas S; Garaschuk, Olga; Griesinger, Christian; Griesbeck, Oliver

2014-02-01

172

Selective Small Molecule Targeting ?-Catenin Function Discovered by In Vivo Chemical Genetic Screen  

PubMed Central

SUMMARY Canonical Wnt signaling pathway, mediated by the transcription factor ?-catenin, plays critical roles in embryonic development, and represents an important therapeutic target. In a zebrafish-based in vivo screen for small molecules that specifically perturb embryonic dorsoventral patterning, we discovered a novel compound, named windorphen, which selectively blocks the Wnt signal required for ventral development. Windorphen exhibits remarkable specificity toward ?-catenin-1 function, indicating that the two ?-catenin isoforms found in zebrafish are not functionally redundant. We show that windorphen is a selective inhibitor of p300 histone acetyl transferase, a co-activator that associates with ?-catenin. Lastly, windorphen robustly and selectively kills cancer cells that harbor Wnt-activating mutations, supporting the therapeutic potential of this novel Wnt inhibitor class.

Hao, Jijun; Ao, Ada; Zhou, Li; Murphy, Clare K.; Frist, Audrey Y.; Keel, Jessica J.; Thorne, Curtis A.; Kim, Kwangho; Lee, Ethan; Hong, Charles C.

2013-01-01

173

Luteal serum BDNF and HSP70 levels in women with premenstrual dysphoric disorder.  

PubMed

Premenstrual dysphoric disorder (PMDD) is a severe form of premenstrual syndrome characterized by psychological and somatic symptoms commencing in the luteal phase of the menstrual cycle and concludes with menstrual bleeding. PMDD affects 3-8 % of premenopausal women and represents a significant public health problem especially in young women. Decreased brain-derived neurotrophic factor (BDNF) levels are associated with several mental disorders. Heat-shock protein-70 (HSP70) is an important member of the molecular chaperone system, which provides a molecular defense against proteotoxic stress. We hypothesized that there would be changed levels of BDNF and HSP70 in women with PMDD compared with non-symptomatic women, reflecting impaired and/or activated stress-related responses involved in the underlying pathogenesis of PMDD. Female medical students were screened, and 24 women without premenstrual symptoms and 25 women with PMDD were enrolled in the study. Psychiatric evaluation and the Daily Record of Severity of Problems-Short Form were used for two consecutive menstrual cycles to diagnose PMDD. Serum BDNF and HSP70 levels were assessed in the third luteal phase. Participants with PMDD had significantly higher serum BDNF and HSP70 levels compared with controls, and there was a significant positive correlation between serum BDNF and HSP70 levels. Increased HSP70 levels may reflect cellular distress in PMDD. Increased serum BDNF levels in the luteal phase in subjects with PMDD may reflect a compensation process, which results in subsequent improvement of PMDD-associated depressive symptoms in the follicular phase. Thus, increased serum BDNF levels may be indicative of a compensating capacity in PMDD. PMID:23455589

Oral, E; Ozcan, H; Kirkan, T S; Askin, S; Gulec, M; Aydin, N

2013-12-01

174

Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat  

NASA Technical Reports Server (NTRS)

The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.

Bhat, G. K.; Yang, H.; Sridaran, R.

2001-01-01

175

[Luteal and extraluteal receptors for hCG and LH].  

PubMed

The hCG/LH receptor belongs to the G-protein coupled receptor family. The gene for the receptor has been localised to chromosome 2p21. In addition to corpus luteum and testis as the classical target tissues for hCG and LH, hCG/LH receptors have been described in a variety of non-gonadal human tissues (e.g. endometrium, myometrium, fallopian tube, placenta, amnion, chorion, prostate, CNS, adrenal gland). Besides its modulation of endocrine functions, the hCG/LH receptor does probably transmit growth-factor like activities of hCG and LH in many of these tissues. Moreover, activating as well as inactivating mutations of the hCG/LH receptor gene have been described. These mutations are localised mainly within the transmembrane region of the receptor gene (exon 11) and are responsible for characteristic diseases such as familiar, male-limited precocious puberty as well as hypogonadism of both sexes. This review deals with the molecular biology of the hCG/LH receptor, its distribution within the human body, its functions as well as with the relevance of mutations. Finally, the therapeutic use of hCG in the treatment of AIDS-related Kaposis' sarcoma is discussed. PMID:9556899

Licht, P; Wildt, L

1998-01-01

176

Antitumor effector functions of T cells are dependent on in vivo priming and restricted T-cell receptor expression.  

PubMed

Tumor-specific T cells are crucial for immunologic control of malignant disease. T cells can be induced in vivo by vaccination or adoptively transferred after activation ex vivo. We investigated the requirements for generating T cells with optimal antitumor effector functions in a murine lymphoma model. Using adoptive transfer, we show that in vivo efficacy of T cells cannot be predicted by tumor reactivity in vitro. A restricted T-cell receptor beta chain repertoire of T-cell populations stimulated ex vivo against tumor cells was necessary but not sufficient for tumor protectivity. Tumor elimination furthermore required vaccination of donor mice, hence in vivo priming. The in vivo priming step may allow tumor-specific T cells to accumulate in vitro more rapidly and to survive for longer periods after withdrawal of the antigenic stimulus and adoptive transfer. A possible survival benefit of in vivo induced T cells may be ascribed to the responsiveness to homeostatic cytokines and to unique cytokine milieus encountered in vivo. Most importantly, monoclonal T cells cannot inhibit tumor growth. A prerequisite of tumor rejection was the expression of at least 2 T-cell receptor beta chains by transferred T-cell populations. This finding has implications for designing adoptive transfer strategies for the clinic. PMID:18224683

Lüking, Carolin; Kronenberger, Konrad; Frankenberger, Bernhard; Nössner, Elfriede; Röcken, Martin; Mocikat, Ralph

2008-05-15

177

Luteal expression of thyroid hormone receptors during gestation and postpartum in the rat.  

PubMed

Background: Progesterone (P4) is the main steroid secreted by the corpora lutea (CL) and is required for successful implantation and maintenance of pregnancy. Although adequate circulating levels of thyroid hormone (TH) are needed to support formation and maintenance of CL during pregnancy, TH signaling had not been described in this gland. We determined luteal thyroid hormone receptor isoforms (TR) expression and regulation throughout pregnancy and under the influence of thyroid status, and in vitro effects of triiodothyronine (T3) exposure on luteal P4 synthesis. Methods: Euthyroid female Wistar rats were sacrificed by decapitation on gestational day (G) 5, G10, G15, G19, or G21 of pregnancy or on day 2 postpartum (L2). Hyperthyroidism and hypothyroidism were induced in female Wistar rats by daily administration of thyroxine (T4; 0.25?mg/kg subcutaneously) or 6-propyl-2-thiouracil (PTU; 0.1?g/L in drinking water), respectively. Luteal TR expression of mRNA was determined using real-time reverse-transcription quantitative polymerase chain reaction, and of protein using Western blot and immunohistochemistry. Primary cultures of luteal cells and of luteinized granulosa cells were used to study in vitro effects of T3 on P4 synthesis. In addition, the effect of T3 on P4 synthesis under basal conditions and under stimulation with luteinizing hormone (LH), prolactin (PRL), and prostaglandin E2 (PGE2) was evaluated. Results: TR?1, TR?2, and TR?1 mRNA were present in CL, increasing during the first half and decreasing during the second half of pregnancy. At the protein level, TR?1 was abundantly expressed during gestation reaching a peak at G19 and decreasing afterwards. TR?1 was barely expressed during early gestation, peaked at G19, and diminished thereafter. Expression of TR?1 and TR?1 at the protein and mRNA level were not influenced by thyroid status. T3 neither modified P4 secretion from CL of pregnancy nor its synthesis in luteinized granulosa cells in culture. Conclusions: This study confirms for the first time the presence of TR isoforms in the CL during pregnancy and postpartum, identifying this gland as a TH target during gestation. TR expression is modulated in this tissue in accordance with the regulation of P4 metabolism, and the abrupt peripartum changes suggest a role of TH during luteolysis. However, TH actions on the CL do not seem to be related to a direct regulation of P4 synthesis. PMID:24684177

Navas, Paola B; Redondo, Analía L; Cuello-Carrión, F Darío; Roig, Laura M Vargas; Valdez, Susana R; Jahn, Graciela A; Hapon, María B

2014-06-01

178

Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo  

PubMed Central

We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models.

Milkovich, Stephanie; Goldman, Daniel; Ellis, Christopher G.

2012-01-01

179

Body adiposity dictates different mechanisms of increased coronary reactivity related to improved in vivo cardiac function  

PubMed Central

Background Saturated fatty acid-rich high fat (HF) diets trigger abdominal adiposity, insulin resistance, type 2 diabetes and cardiac dysfunction. This study was aimed at evaluating the effects of nascent obesity on the cardiac function of animals fed a high-fat diet and at analyzing the mechanisms by which these alterations occurred at the level of coronary reserve. Materials and methods Rats were fed a control (C) or a HF diet containing high proportions of saturated fatty acids for 3 months. Thereafter, their cardiac function was evaluated in vivo using a pressure probe inserted into the cavity of the left ventricle. Their heart was isolated, perfused iso-volumetrically according to the Langendorff mode and the coronary reserve was evaluated by determining the endothelial-dependent (EDV) and endothelial-independent (EIV) vasodilatations in the absence and presence of endothelial nitric oxide synthase and cyclooxygenase inhibitors (L-NAME and indomethacin). The fatty acid composition of cardiac phospholipids was then evaluated. Results Although all the HF-fed rats increased their abdominal adiposity, some of them did not gain body weight (HF- group) compared to the C group whereas other ones had a higher body weight (HF+). All HF rats displayed a higher in vivo cardiac activity associated with an increased EDV. In the HF- group, the improved EDV was due to an increase in the endothelial cell vasodilatation activity whereas in the HF+?group, the enhanced EDV resulted from an improved sensitivity of coronary smooth muscle cells to nitric oxide. Furthermore, in the HF- group the main pathway implicated in the EDV was the NOS pathway while in the HF+?group the COX pathway. Conclusions Nascent obesity-induced improvement of cardiac function may be supported by an enhanced coronary reserve occurring via different mechanisms. These mechanisms implicate either the endothelial cells activity or the smooth muscle cells sensitivity depending on the body adiposity of the animals.

2014-01-01

180

Characterization of the structural and functional determinants of MANF/CDNF in Drosophila in vivo model.  

PubMed

Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo. PMID:24019940

Lindström, Riitta; Lindholm, Päivi; Kallijärvi, Jukka; Yu, Li-Ying; Piepponen, T Petteri; Arumäe, Urmas; Saarma, Mart; Heino, Tapio I

2013-01-01

181

Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model  

PubMed Central

Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo.

Lindstrom, Riitta; Lindholm, Paivi; Kallijarvi, Jukka; Yu, Li-ying; Piepponen, T. Petteri; Arumae, Urmas; Saarma, Mart; Heino, Tapio I.

2013-01-01

182

Congenital Heart Disease-Causing Gata4 Mutation Displays Functional Deficits In Vivo  

PubMed Central

Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans.

Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu

2012-01-01

183

Imaging the Function of P-Glycoprotein With Radiotracers: Pharmacokinetics and In Vivo Applications  

PubMed Central

P-glycoprotein (P-gp), an efflux transporter, controls the pharmacokinetics of various compounds under physiological conditions. P-gp-mediated drug efflux has been suggested as playing a role in various disorders, including multidrug-resistant cancer and medication-refractory epilepsy. However, P-gp inhibition has had, to date, little or no clinically significant effect in multidrug-resistant cancer. To enhance our understanding of its in vivo function under pathophysiological conditions, substrates of P-gp have been radiolabeled and imaged using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). To accurately quantify P-gp function, a radiolabeled P-gp substrate should be selective for P-gp, produce a large signal after P-gp blockade, and generate few radiometabolites that enter the target tissue. Furthermore, quantification of P-gp function via imaging requires pharmacological inhibition of P-gp, which requires knowledge of P-gp density at the target site. By meeting these criteria, imaging can elucidate the function of P-gp in various disorders and improve the efficacy of treatments.

Kannan, P; John, C; Zoghbi, SS; Halldin, C; Gottesman, MM; Innis, RB; Hall, MD

2009-01-01

184

Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes  

PubMed Central

The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called “nanophotothermolysis”. We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion.

Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel

2011-01-01

185

The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo.  

PubMed

The Janus kinase (JAK)-inhibitor ruxolitinib decreases constitutional symptoms and spleen size of myelofibrosis (MF) patients by mechanisms distinct from its anticlonal activity. Here we investigated whether ruxolitinib affects dendritic cell (DC) biology. The in vitro development of monocyte-derived DCs was almost completely blocked when the compound was added throughout the differentiation period. Furthermore, when applied solely during the final lipopolysaccharide-induced maturation step, ruxolitinib reduced DC activation as demonstrated by decreased interleukin-12 production and attenuated expression of activation markers. Ruxolitinib also impaired both in vitro and in vivo DC migration. Dysfunction of ruxolitinib-exposed DCs was further underlined by their impaired induction of allogeneic and antigen-specific T-cell responses. Ruxolitinib-treated mice immunized with ovalbumin (OVA)/CpG induced markedly reduced in vivo activation and proliferation of OVA-specific CD8? T cells compared with vehicle-treated controls. Finally, using an adenoviral infection model, we show that ruxolitinib-exposed mice exhibit delayed adenoviral clearance. Our results demonstrate that ruxolitinib significantly affects DC differentiation and function leading to impaired T-cell activation. DC dysfunction may result in increased infection rates in ruxolitinib-treated patients. However, our findings may also explain the outstanding anti-inflammatory and immunomodulating activity of JAK inhibitors currently used in the treatment of MF and autoimmune diseases. PMID:23770777

Heine, Annkristin; Held, Stefanie Andrea Erika; Daecke, Solveig Nora; Wallner, Stephanie; Yajnanarayana, Sowmya Parampalli; Kurts, Christian; Wolf, Dominik; Brossart, Peter

2013-08-15

186

Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Functionalized Nanoparticle12  

PubMed Central

Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an “M2” macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.

Leimgruber, Antoine; Berger, Cedric; Cortez-Retamozo, Virna; Etzrodt, Martin; Newton, Andita P; Waterman, Peter; Figueiredo, Jose Luiz; Kohler, Rainer H; Elpek, Natalie; Mempel, Thorsten R; Swirski, Filip K; Nahrendorf, Matthias; Weissleder, Ralph; Pittet, Mikael J

2009-01-01

187

In Vitro Hematological and In Vivo Vasoactivity Assessment of Dextran Functionalized Graphene  

PubMed Central

The intravenous, intramuscular or intraperitoneal administration of water solubilized graphene nanoparticles for biomedical applications will result in their interaction with the hematological components and vasculature. Herein, we have investigated the effects of dextran functionalized graphene nanoplatelets (GNP-Dex) on histamine release, platelet activation, immune activation, blood cell hemolysis in vitro, and vasoactivity in vivo. The results indicate that GNP-Dex formulations prevented histamine release from activated RBL-2H3 rat mast cells, and at concentrations ? 7?mg/ml, showed a 12–20% increase in levels of complement proteins. Cytokine (TNF-Alpha and IL-10) levels remained within normal range. GNP-Dex formulations did not cause platelet activation or blood cell hemolysis. Using the hamster cheek pouch in vivo model, the initial vasoactivity of GNP-Dex at concentrations (1–50?mg/ml) equivalent to the first pass of a bolus injection was a brief concentration-dependent dilation in arcade and terminal arterioles. However, they did not induce a pro-inflammatory endothelial dysfunction effect.

Chowdhury, Sayan Mullick; Kanakia, Shruti; Toussaint, Jimmy D.; Frame, Mary D.; Dewar, Anthony M.; Shroyer, Kenneth R.; Moore, William; Sitharaman, Balaji

2013-01-01

188

Stimulation of specific binding of [3H]-progesterone to bovine luteal cell-surface membranes: specificity of digitonin.  

PubMed

Non-genomic actions of progesterone have been described in the ovary, and luteal membranes of several species have been shown to possess specific binding sites for [3H]-progesterone. However, binding of radiolabelled progesterone to luteal membranes was demonstrable only in the presence of digitonin. Digitonin is a non-ionic detergent which is thought to act by forming one-to-one complexes with certain sterols. It is also a cardiotonic agent, inhibiting (Na+-K+) ATPase activity by interaction with the extracellular (ouabain/K+) binding site. We therefore investigated which properties of digitonin were responsible for its stimulatory actions on progesterone binding to bovine luteal membranes. A range of compounds with detergent, cardiotonic and or cholesterol-complexing activities were tested for their effects on [3H]-progesterone binding to bovine luteal membrane fractions, and on haemolysis of rat erythrocytes. Stimulation of progesterone binding to luteal membranes was highly specific for digitonin, and a number of ionic and non-ionic detergents, cardenolides, saponins and cholesterol-complexing reagents tested failed either to stimulate [3H]-progesterone binding to bovine luteal membranes in the absence of digitonin, or to inhibit binding specifically in the presence of digitonin. When digitonin was first reacted with excess cholesterol or pregnenolone to form the respective digitonides, stimulatory activity was greatly reduced, suggesting that the ability of digitonin to interact with (an) endogenous steroid(s) may be important in its action. High performance liquid chromatography (HPLC)-mass spectrometry of commercially available digitonin preparations indicated the presence of numerous minor impurities in most commercial digitonin preparations. Three major UV-absorbing peaks were isolated and characterised by mass spectrometry: all stimulated progesterone binding to bovine luteal membrane receptors in a dose-dependent manner, though to differing extents. Our data suggest that the unique action of digitonin on luteal membrane progesterone receptors is not related to its detergent or cardiotonic properties, but appears to be related to its ability to complex with membrane sterols. PMID:10459854

Menzies, G S; Howland, K; Rae, M T; Bramley, T A

1999-07-20

189

Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo  

PubMed Central

Biosystem–surface interactions play an important role in various biological events and determine the ultimate functionality of implanted devices. Endothelialization or mimicking of endothelium on the surface of cardiovascular materials is a promising way to solve the problems of material-induced thrombosis and restenosis. Meanwhile, a multifunctional surface design is needed as antithrombotic properties should be considered in the period when the implants are not yet completely endothelialized. In this article, we summarize some successful approaches used in our laboratory for constructing multifunctional endothelium-like surfaces on metallic cardiovascular biomaterials through chemical modification of the surface or by the introduction of specific biological molecules to induce self-endothelialization in vivo. Some directions on future research in these areas are also presented.

Weng, Yajun; Chen, Junying; Tu, Qiufen; Li, Quanli; Maitz, Manfred F.; Huang, Nan

2012-01-01

190

In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb  

PubMed Central

Juxtaglomerular neurons represent one of the largest cellular populations in the mammalian olfactory bulb yet their role for signal processing remains unclear. We used two-photon imaging and electrophysiological recordings to clarify the in vivo properties of these cells and their functional organization in the juxtaglomerular space. Juxtaglomerular neurons coded for many perceptual characteristics of the olfactory stimulus such as (1) identity of the odorant, (2) odorant concentration, (3) odorant onset, and (4) offset. The odor-responsive neurons clustered within a narrow area surrounding the glomerulus with the same odorant specificity, with ~80% of responding cells located ?20 ?m from the glomerular border. This stereotypic spatial pattern of activated cells persisted at different odorant concentrations and was found for neurons both activated and inhibited by the odorant. Our data identify a principal glomerulus with a narrow shell of juxtaglomerular neurons as a basic odor coding unit in the glomerular layer and underline the important role of intraglomerular circuitry.

Homma, R.; Kovalchuk, Y.; Konnerth, A.; Cohen, L. B.; Garaschuk, O.

2013-01-01

191

Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly( d, l-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

Gu, Frank; Langer, Robert; Farokhzad, Omid C.

192

Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery  

PubMed Central

Summary Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

Gu, Frank; Langer, Robert; Farokhzad, Omid C.

2014-01-01

193

Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila  

PubMed Central

Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.

Reis, Gerald F.; Yang, Ge; Szpankowski, Lukasz; Weaver, Carole; Shah, Sameer B.; Robinson, John T.; Hays, Thomas S.; Danuser, Gaudenz; Goldstein, Lawrence S. B.

2012-01-01

194

In Vivo Function of the ER-Golgi Transport Protein LMAN1 in Photoreceptor Homeostasis.  

PubMed

LMAN1 is a type I transmembrane protein that selectively transports its cargo proteins from ER to ER-Golgi intermediate compartment (ERGIC) and Golgi. Lman1 is a direct target of the transcription factor NRL in mouse retina. Therefore, we examined the in vivo function of LMAN1 in retina. Although Lman1 (- / -) mouse eyes did not show abnormality in histology and electroretinogram analysis at 3 months, Lman1 (- / -) retina at 6 months showed a decrease in cis-Golgi markers GM130 and GRASP65. We also observed abnormal level and location of Rhodopsin in these mice. Taken together, LMAN1 may play a role in photoreceptor gene transport and homeostasis. PMID:24664723

Hao, Hong; Gregorski, Janina; Qian, Haohua; Li, Yichao; Gao, Chun Y; Idrees, Sana; Zhang, Bin

2014-01-01

195

In vivo effects of monoclonal antibodies that functionally inhibit complement regulatory proteins in rats  

PubMed Central

The present work was designed to evaluate the effects of functional suppression of complement regulatory proteins in vivo. Male Wistar rats were anesthetized with Nembutal and were intravenously injected with 1 mg/kg of F(ab')2 or Fab fraction of either monoclonal antibody 5I2, which inhibits the function of rat counterpart of mouse Crry/p65, or monoclonal antibody 6D1, which inhibits the rat counterpart of CD59. Mean arterial pressure was continuously measured for 30 min. When 5I2 was injected, there was a biphasic change of mean arterial pressure, namely, the rapid increase immediately after the injection (approximately 2 min, phase 1) and the subsequent fall and slow recovery (approximately 4-30 min, phase 2). These effects were completely abrogated by pretreatment of rats with cobra venom factor. Pretreatment with carboxypeptidase inhibitor, which inhibits inactivation of anaphylatoxins C3a and C5a, induced enhanced reduction of blood pressure. Circulating leukocytes and platelets were rapidly decreased 5 min after antibody injection and became normal by 2 h. Hematocrit and erythrocyte count were continuously increased up to 2 h after injection, suggesting that there was hemoconcentration due to increased vascular permeability. Immunofluorescence study revealed binding of antibody fragments and rat C3 along the capillaries of lung, heart, and liver 5 min after injection. In contrast to 5I2, F(ab')2 fraction of 6D1, though localized to the same areas and in similar amounts, had no significant effect on the parameters measured. These data suggest that the rat counterpart of mouse Crry/p65 plays a vital role in vivo by preventing the activation of autologous complement on vascular endothelium.

1994-01-01

196

Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo  

PubMed Central

Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPAR? ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPAR? activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPAR? LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPAR? target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor ? on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPK? in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial effects on adipocytes in vitro and adipose tissue in vivo, highlighting its potential as a metabolically favorable botanical supplement.

Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

2014-01-01

197

In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas  

PubMed Central

Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 (ChR2) photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b (L5b), of the CFA. Further, the CFA receives strong projections from L5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.

Hira, Riichiro; Ohkubo, Fuki; Tanaka, Yasuhiro R.; Masamizu, Yoshito; Augustine, George J.; Kasai, Haruo; Matsuzaki, Masanori

2013-01-01

198

Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering.  

PubMed

Uterus is a female specific reproductive organ and plays critical roles in allowing embryo to grow. Therefore, the endometrial disorders lead to female infertility. Hence, the regeneration of endometrium allowing fertilized ovum to implant might be valuable in the field of fertility treatment. Recently, cell sheet engineering using a temperature-responsive culture dish has advanced in regenerative medicine. With this technology, endometrial cells were harvested as a contiguous cell sheet by reducing temperature. Firstly, mouse endometrial cell sheets were re-cultured for 3 days to evaluate the function. Histological analyses revealed that endometrial epithelial cell-specific cytokeratin 18 and female-specific hormone receptors, estrogen receptor ? and progesterone receptor, were expressed. Furthermore, endometrial epithelial cells constructed epithelial layer at the apical side. Then, endometrial cell sheets from green-fluorescent-protein rat cells were transplanted onto the buttock muscle of nude rat for evaluating the function in vivo. Histological analyses showed that endometrial cell sheets reconstructed endometrium-like tissue, which was found to form uterus-specific endometrial glands having hormonal receptor to estrogen. In this study, endometrial cell sheets were speculated to contribute to the regeneration of functional endometrium as a new therapy. PMID:24602616

Takagi, Soichi; Shimizu, Tatsuya; Kuramoto, Goro; Ishitani, Ken; Matsui, Hideo; Yamato, Masayuki; Okano, Teruo

2014-03-28

199

Us3, a multifunctional protein kinase encoded by herpes simplex virus 1: how does it function in vivo?  

PubMed

Phosphorylation is a common protein modification by which a cell or virus regulates protein activity, and subsequently cellular and viral functions. Herpesviruses commonly encode protein kinases that regulate their own replicative processes and modify host cellular machinery, by phosphorylating target proteins. Although numerous studies have revealed the multiple downstream effects of viral protein kinases and their potential molecular mechanisms, it remains unknown whether herpes viral protein kinases are involved in viral replication and pathogenicity in vivo. This review focuses on Us3 protein kinase encoded by herpes simplex virus 1 and provides a current overview of its functions in infected cells, with a special focus on their relevancy in vivo. PMID:24104928

Kawaguchi, Yasushi

2013-11-01

200

Dissection of Pol II Trigger Loop Function and Pol II Activity-Dependent Control of Start Site Selection In Vivo  

PubMed Central

Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process.

Kaplan, Craig D.; Jin, Huiyan; Zhang, Ivan Liang; Belyanin, Andrey

2012-01-01

201

Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo  

PubMed Central

Background ?-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABAA) and metabotropic (GABAB) receptors. GABAB receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABAB receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABAB receptors is unclear. Results In order to elucidate the functional relevance of GABAB receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABAB(1) subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABAB(1)-/- mice). Lack of the GABAB(1) subunit precludes the assembly of functional GABAB receptor. We analyzed SNS-GABAB(1)-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABAB(1)-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1)-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABAB(1) expression in nociceptors. Conclusion This study addressed contribution of GABAB receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABAB agonist was significantly changed upon a specific deletion of GABAB receptors from peripheral nociceptive neurons in vivo. This lets us conclude that GABAB receptors in the peripheral nervous system play a less important role than those in the central nervous system in the regulation of pain.

2009-01-01

202

Human Retinal Pigment Epithelium Cells as Functional Models for the RPE In Vivo  

PubMed Central

Purpose. The two most commonly used in vitro models of the retinal pigment epithelium (RPE) are fetal human RPE (fhRPE) and ARPE-19 cells; however, studies of their barrier properties have produced contradictory results. To compare their utility as RPE models, their morphologic and functional characteristics were analyzed. Methods. Monolayers of both cell types were grown on permeable membrane filters. Barrier function and cellular morphology were assessed by transepithelial resistance (TER) measurements and immunohistochemistry. Protein expression was evaluated by immunoblotting and ELISA assays, and retinoid metabolism characterized by HPLC. Results. Both cultures developed tight junctions. However, only the fhRPE cells were pigmented, uniform in size and shape, expressed high levels of RPE markers, metabolized all-trans retinal, and developed high TER (>400 ?cm2). The net secretion of pigment-epithelium-derived factor (PEDF) was directed apically in both cultures, but fhRPE cells exhibited secretion rates a thousand-fold greater than in ARPE-19 cells. The net secretion of vascular endothelial growth factor (VEGF) was significantly higher in fhRPE cultures and the direction of this secretion was basolateral; while net secretion was apical in ARPE-19 cells. In fresh media, VEGF-E reduced TER in both cultures; however, in conditioned media fhRPE cells did not respond to VEGF-E administration, but retreatment of the conditioned media with anti-PEDF antibodies allowed fhRPE cells to fully respond to VEGF-E. Conclusions. Properties of fhRPE cells align with a functionally normal RPE in vivo, while ARPE-19 cells resemble a pathologic or aged RPE. These results suggest a utility for both cell types in understanding distinct, particular aspects of RPE function.

Dahrouj, Mohammad; Tang, Peter H.; Liu, Yueying; Sambamurti, Kumar; Marmorstein, Alan D.; Crosson, Craig E.

2011-01-01

203

Functional Changes in Neocortical Activity in Huntington's Disease Model Mice: An in vivo Intracellular Study  

PubMed Central

Studies of animal models of Huntington's disease (HD) have revealed that neocortical and neostriatal neurons of these animals in vitro exhibit a number of morphological and physiological changes, including increased input resistance and changes in neocortical synaptic inputs. We measured the functional effects of polyglutamate accumulation in neocortical neurons in R6/2 mice (8–14 weeks of age) and their age-matched non-transgenic littermates using in vivo intracellular recordings. All neurons showed spontaneous membrane potential fluctuations. The current/voltage and the firing properties of the HD neocortical neurons were significantly altered, especially in the physiologically relevant current range around and below threshold. As a result, membrane potential transitions from the Down state to Up state were evoked with smaller currents in HD neocortical neurons than in controls. The excitation-to-frequency curves of the HD mice were significantly steeper than those of controls, indicating a smaller input–output dynamic range for these neurons. Increased likelihood of Down to Up state transitions could cause pathological recruitment of corticostriatal assemblies by increasing correlated neuronal activity. We measured coherence of the in vivo intracellular recordings with simultaneously recorded electrocorticograms. We found that the peak of the coherence at <5?Hz was significantly smaller in the HD animals, indicating that the amount of coherence in the state transitions of single neurons is less correlated with global activity than non-transgenic controls. We propose that decreased correlation of neocortical inputs may be a major physiological cause underlying the errors in sensorimotor pattern generation in HD.

Stern, Edward A.

2011-01-01

204

In vivo perturbation of rat hepatocyte canalicular membrane function by diclofenac.  

PubMed

Clinical use of diclofenac is associated with a small but significant incidence of hepatotoxicity. It has been reported that in vivo diclofenac treatment results in decreased activity of the extracellular canalicular membrane protein dipeptidylpeptidase IV in rats as a consequence of protein adduct formation by its electrophilic metabolite diclofenac acyl glucuronide. The present study has investigated the effects of in vivo diclofenac treatment (15 mg/kg/day for 7 days) on the activity of an another four rat extracellular canalicular membrane proteins. Animals administered diclofenac (n = 6) had 47.9, 60.4, and 51.6% lower (p < 0.05) canalicular activities of gamma-glutamyltransferase, Mg(2+)-ATPase, and leucine aminopeptidase, respectively, compared with controls (n = 6), but there was no difference in alkaline phosphatase activity. In general, protein adduct formation by acyl glucuronides has been associated with decreased protein function, and the lower canalicular enzyme activities in diclofenac-treated rats may suggest that gamma-glutamyltransferase, Mg(2+)-ATPase, and leucine aminopeptidase are also targets of adduct formation by acyl glucuronide metabolites of diclofenac. However, intracellular redistribution and/or decreased synthesis of these enzymes would also be consistent with our results. The ability of diclofenac acyl glucuronide (200 microg/ml) to form covalently bound adducts with gamma-glutamyltransferase (10 mg/ml) was demonstrated following in vitro incubations (16 h, pH 7.4, and 37 degrees C) in which 20.7 +/- 2.1 ng of diclofenac were covalently bound per milligram of protein. In these in vitro studies, the low concentration of protein adducts formed was not associated with any significant change in gamma-glutamyltransferase activity. PMID:11717171

Sallustio, B C; Holbrook, F L

2001-12-01

205

Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics  

PubMed Central

Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg9), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1–5 µm diameter) and nanoparticles (20–40 nm diameter) without and with Arg9 showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg9 and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages, and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg9. Whereas microparticles may be advantageous for short-term applications, nano-sized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg9. Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling.

Liu, Yongjian; Ibricevic-Richardson, Aida; Cohen, Joel A.; Cohen, Jessica L.; Gunsten, Sean P.; Frechet, Jean M. J.; Walter, Michael J.; Welch, Michael J.; Brody, Steven L.

2009-01-01

206

Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo  

PubMed Central

The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.

Duan, Rui; Jin, Peng; Luo, Fengbao; Zhang, Guofeng; Anderson, Nathan

2012-01-01

207

In vivo analysis of the overlapping functions of DnaK and trigger factor.  

PubMed

Trigger factor (TF) is a ribosome-bound protein that combines catalysis of peptidyl-prolyl isomerization and chaperone-like activities in Escherichia coli. TF was shown to cooperate with the DnaK (Hsp70) chaperone machinery in the folding of newly synthesized proteins, and the double deletion of the corresponding genes (tig and dnaK) exhibited synthetic lethality. We used a detailed genetic approach to characterize various aspects of this functional cooperation in vivo. Surprisingly, we showed that under specific growth conditions, one can delete both dnaK and tig, indicating that bacterial survival can be maintained in the absence of these two major cytosolic chaperones. The strain lacking both DnaK and TF exhibits a very narrow temperature range of growth and a high level of aggregated proteins when compared to either of the single mutants. We found that, in the absence of DnaK, both the N-terminal ribosome-binding domain and the C-terminal domain of unknown function are essential for TF chaperone activity. In contrast, the central PPIase domain is dispensable. Taken together, our data indicate that under certain conditions, folding of newly synthesized proteins in E. coli is not totally dependent on an interaction with either TF and/or DnaK, and suggest that additional chaperones may be involved in this essential process. PMID:14726952

Genevaux, Pierre; Keppel, France; Schwager, Françoise; Langendijk-Genevaux, Petra S; Hartl, F Ulrich; Georgopoulos, Costa

2004-02-01

208

Conserved Fate and Function of Ferumoxides-Labeled Neural Precursor Cells In Vitro and In Vivo  

PubMed Central

Recent progress in cell therapy research for brain diseases has raised the need for non-invasive monitoring of transplanted cells. For therapeutic application in multiple sclerosis, transplanted cells need to be tracked both spatially and temporally, in order to assess their migration and survival in the host tissue. Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-(SPIO)-labeled cells has been widely used for high resolution monitoring of the biodistribution of cells after transplantation into the central nervous system (CNS). Here we labeled mouse glial-committed neural precursor cells (NPCs) with the clinically approved SPIO contrast agent ferumoxides and examined their survival and differentiation in vitro, as well as their functional response to environmental signals present within the inflamed brain of experimental autoimmune encephalomyelitis (EAE) mice in vivo. We show that ferumoxides labeling does not affect NPC survival and pluripotency in vitro. Following intracerebroventricular (ICV) transplantation in EAE mice, ferumoxides-labeled NPCs responded to inflammatory cues in a similar fashion as unlabeled cells. Ferumoxides-labeled NPCs migrated over comparable distances in white matter tracts and differentiated equally into the glial lineages. Furthermore, ferumoxides-labeled NPCs inhibited lymph node cell proliferation in vitro, similarly to non-labeled cells, suggesting a preserved immunomodulatory function. These results demonstrate that ferumoxides-based MRI cell tracking is well suited for non-invasive monitoring of NPC transplantation.

Cohen, Mikhal E.; Muja, Naser; Fainstein, Nina; Bulte, Jeff W.M.; Ben-Hur, Tamir

2011-01-01

209

Polyglycerolsulfate functionalized gold nanorods as optoacoustic signal nanoamplifiers for in vivo bioimaging of rheumatoid arthritis.  

PubMed

We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied. PMID:24723984

Vonnemann, Jonathan; Beziere, Nicolas; Böttcher, Christoph; Riese, Sebastian B; Kuehne, Christian; Dernedde, Jens; Licha, Kai; von Schacky, Claudio; Kosanke, Yvonne; Kimm, Melanie; Meier, Reinhard; Ntziachristos, Vasilis; Haag, Rainer

2014-01-01

210

Tolerogenic Function of Dimeric Forms of HLA-G Recombinant Proteins: A Comparative Study In Vivo  

PubMed Central

HLA-G is a natural tolerogenic molecule involved in the best example of tolerance to foreign tissues there is: the maternal-fetal tolerance. The further involvement of HLA-G in the tolerance of allogeneic transplants has also been demonstrated and some of its mechanisms of action have been elucidated. For these reasons, therapeutic HLA-G molecules for tolerance induction in transplantation are actively investigated. In the present study, we studied the tolerogenic functions of three different HLA-G recombinant proteins: HLA-G heavy chain fused to ?2-microglobulin (B2M), HLA-G heavy chain fused to B2M and to the Fc portion of an immunoglobulin, and HLA-G alpha-1 domain either fused to the Fc part of an immunoglobulin or as a synthetic peptide. Our results demonstrate the tolerogenic function of B2M-HLA-G fusion proteins, and especially of B2M-HLA-G5, which were capable of significantly delaying allogeneic skin graft rejection in a murine in vivo transplantation model. The results from our studies suggest that HLA-G recombinant proteins are relevant candidates for tolerance induction in human transplantation.

Caumartin, Julien; Daouya, Marina; Horuzsko, Anatolij; Carosella, Edgardo D.; LeMaoult, Joel

2011-01-01

211

Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo  

PubMed Central

The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly.

Lease, Richard A.; Arluison, Veronique; Lavelle, Christophe

2013-01-01

212

Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo  

NASA Technical Reports Server (NTRS)

The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

2003-01-01

213

In VivoFunctional Imaging of Intrinsic Scattering Changes in the Human Retina with High-speed Ultrahigh Resolution OCT  

PubMed Central

Non-invasive methods of probing retinal function are of interest for the early detection of retinal disease. While retinal function is traditionally directly measured with the electroretinogram (ERG), recently functional optical imaging of the retina has been demonstrated. In this manuscript, stimulus-induced, intrinsic optical scattering changes in the human retina are measured in vivo with high-speed, ultrahigh resolution optical coherence tomography (OCT) operating at 50,000 axial scans per second and ?3.3 micron axial resolution. A stimulus and measurement protocol that enables measurement of functional OCT retinal signals is described. OCT signal changes in the photoreceptors are demonstrated. Two distinct responses having different temporal and spatial properties are reported. These results are discussed in the context of optical intrinsic signals measured previously in the retina by fundus imaging and scanning laser ophthalmoscopy. Finally, challenges associated with in vivo functional retinal imaging in human subjects are discussed.

Srinivasan, V. J.; Chen, Y.; Duker, J. S.; Fujimoto, J. G.

2009-01-01

214

Luteal phase bleeding after IVF cycles: comparison between progesterone vaginal gel and intramuscular progesterone and correlation with pregnancy outcomes  

PubMed Central

Background: To compare luteal phase bleeding and pregnancy outcomes in normogonadotropic patients receiving progesterone vaginal gel (PVG) or intramuscular progesterone (IMP) injections. Methods: In this retrospective cohort study, data from 270 patients (292 cycles) undergoing day-3 fresh embryo transfer were analyzed. PVG, 90 mg daily (170 cycles) or IMP, 50 mg daily (122 cycles) began at egg retrieval. Results: Luteal phase bleeding was significantly more common in the PVG than the IMP group. No significant differences were observed in biochemical pregnancy or spontaneous abortion rates between the two groups. Patients who bled before the pregnancy test had significantly lower total and clinical pregnancy rates than non-bleeders. Total and ongoing pregnancy/delivery rates were higher in the PVG than IMP group, but did not achieve statistical significance. Conclusion: Luteal phase bleeding was more common in the PVG group than the IMP group, but pregnancy was successful in more patients in the PVG group. Luteal phase bleeding is prevented or delayed during IMP treatment, but patients who bled before the pregnancy test, whether using the gel or injected progesterone, had significantly reduced pregnancy rates compared with non-bleeders.

Jabara, Sami; Barnhart, Kurt; Schertz, Joan C; Patrizio, Pasquale

2009-01-01

215

Presence of the intermediate filaments cytokeratins and vimentin in the rat corpus luteum during luteal life-span  

Microsoft Academic Search

The presence of the intermediate filament (IF) proteins cytokeratins and vimentin in corpus luteum (CL) and other parts of the ovary from adult pseudopregnant rats was investigated using immunohistochemistry and immunoblot analysis. To induce pseudopregnancy, female rats were mated with sterile male rats. The mating procedure induces a prolonged luteal life-span of 13±1 days. Positive staining for cytokeratin could be

I. Nilsson; M.-O. Mattsson; G. Selstam

1995-01-01

216

Pulsatile secretion of gonadotrophins, ovarian steroids and ovarian oxytocin during the luteal phase of the oestrous cycle in the cow  

Microsoft Academic Search

Summary. All hormones were determined in blood samples collected simultaneously from the caudal vena cava and jugular vein at 20-min intervals for 12 h during the early (Day 4) and mid- (~Day 11) luteal phases of the oestrous cycle in 7 cows. Mean concentrations of oestradiol, progesterone and oxytocin were greater (P < 0\\\\m=.\\\\01)in the vena cava than in the

D. L. Walters; E. Schallenberger

1984-01-01

217

Live births after management of severe OHSS by GnRH antagonist administration in the luteal phase  

Microsoft Academic Search

Ovarian hyperstimulation syndrome (OHSS) is a serious complication of ovarian stimulation protocols. Currently, no curative therapy exists and the main preventive option is cycle cancellation. Gonadotrophin-releasing hormone (GnRH) antagonist administration in the luteal phase was recently proposed as a new approach for the management of patients with established severe OHSS. Three polycystic ovarian syndrome patients undergoing IVF treatment developed severe

TG Lainas; IA Sfontouris; IZ Zorzovilis; GK Petsas; GT Lainas; E Alexopoulou; EM Kolibianakis

2009-01-01

218

The past, present, and future of x-ray technology for in vivo imaging of function and form  

SciTech Connect

Scientists and clinicians have a keen interest in studying not just the structure of physiological systems, but their motion also, or more generally their form and function. This paper focuses on the technologies that underpin in vivo measurements of form and function of the human body for both research and medical treatment. A concise literature review of x-ray imaging, ultrasonography, magnetic resonance imaging, radionuclide imaging, laser Doppler velocimetry, and particle image velocimetry is presented. Additionally, a more detailed review of in vivo x-ray imaging is presented. Finally, two techniques, which the authors believe are representative of the present and future of in vivo x-ray imaging techniques, are presented.

Fouras, A.; Dubsky, S.; Hourigan, K. [Division of Biological Engineering, Monash University, Clayton, Victoria 3800 (Australia) and Fluids Laboratory for Aeronautical and Industrial Research, Monash University, Clayton, Victoria 3800 (Australia); Kitchen, M. J. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Lewis, R. A. [Monash Center for Synchrotron Science, Monash University, Clayton, Victoria 3800 (Australia); Hooper, S. B. [Department of Physiology, Monash University, Clayton, Victoria 3800 (Australia)

2009-05-15

219

Direct actions of ACTH on ovarian function of pseudopregnant rabbits  

Microsoft Academic Search

The present study sought to assess whether the receptors for adrenocorticotropic hormone (ACTH), MC2R, and for glucocorticoid (GR) are expressed in corpora lutea (CL) of pseudopregnant rabbits and whether ACTH and cortisol exert any direct action on luteal function. By immunohistochemistry, positive reaction for MC2R and GR was detectable within luteal cells of CL. The MC2R mRNA levels were five-fold

Gabriella Guelfi; Massimo Zerani; Gabriele Brecchia; Francesco Parillo; Cecilia Dall’Aglio; Margherita Maranesi; Cristiano Boiti

2011-01-01

220

Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.  

PubMed

Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

2011-01-01

221

Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.  

PubMed

Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 K? impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future. PMID:22442134

Prasad, Abhishek; Sanchez, Justin C

2012-04-01

222

Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing  

NASA Astrophysics Data System (ADS)

Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 K? impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future.

Prasad, Abhishek; Sanchez, Justin C.

2012-04-01

223

Reduced Sox9 function promotes heart valve calcification phenotypes in vivo  

PubMed Central

Rationale Calcification of heart valve structures is the most common form of valvular disease and is characterized by the appearance of bone-like phenotypes within affected structures. Despite the clinical significance, the underlying etiology of disease onset and progression is largely unknown and valve replacement remains the most effective treatment. The SRY-related transcription factor Sox9 is expressed in developing and mature heart valves, and its function is required for expression of cartilage-associated proteins, similar to its role in chondrogenesis. In addition to cartilage-associated defects, mice with reduced sox9 function develop skeletal bone prematurely, however the ability of sox9 deficiency to promote ectopic osteogenic phenotypes in heart valves has not been examined. Objective This study aims to determine the role of Sox9 in maintaining connective tissue homeostasis in mature heart valves using in vivo and in vitro approaches. Methods and Results Using histological and molecular analyses we report that Sox9fl/+;Col2a1-cre mice develop calcific lesions in heart valve leaflets from 3 months of age associated with increased expression of bone-related genes and activation of inflammation and matrix remodeling processes. Consistently, ectopic calcification is also observed following direct knockdown of Sox9 in heart valves in vitro. Further, we show that retinoic acid treatment in mature heart valves is sufficient to promote calcific processes in vitro, which can be attenuated by Sox9 overexpression. Conclusions This study provides insights into the molecular mechanisms of heart valve calcification and identifies reduced Sox9 function as a potential genetic basis for calcific valvular disease.

Peacock, Jacqueline D; Levay, Agata K; Gillaspie, Devin B; Tao, Ge; Lincoln, Joy

2010-01-01

224

Effect of Oxidixed Dextrans on Oxidative and Metabolic Function of Mouse Peritoneal Macrophages In Vitro and In Vivo  

Microsoft Academic Search

We compared the effects of dextrans with a molecular weight of 35 kDa oxidized by chemical (ODch) and radiochemical (ODr) methods on oxidative and metabolic functions of peritoneal macrophages from BALB\\/c mice in vitro and in vivo. It was found that none type of dextrans exhibits chemiluminescent properties. In vitro study showed that ODch had a priming effect on mouse

V. A. Shkurupiy; D. D. Tsyrendorzhiev; V. V. Kurilin; A. B. Troitskii; M. A. Saperova; E. A. Efanov; E. P. Gulyaeva; T. A. Parkhomenko

2008-01-01

225

An Analytical Model for Elucidating Tendon Tissue Structure and Biomechanical Function from in vivo Cellular Confocal Microscopy Images  

Microsoft Academic Search

Fibered confocal laser scanning microscopes have given us the ability to image fluorescently labeled biological struc- tures in vivo and at exceptionally high spatial resolutions. By coupling this powerful imaging modality with classic opti- cal elastography methods, we have developed novel tech- niques that allow us to assess functional mechanical integrity of soft biological tissues by measuring the movements of

J. G. Snedeker; G. Pelled; Y. Zilberman; A. Ben Arav; E. Huber; R. Müller; D. Gazit

2008-01-01

226

An Analytical Model for Elucidating Tendon Tissue Structure and Biomechanical Function from in vivo Cellular Confocal Microscopy Images  

Microsoft Academic Search

Fibered confocal laser scanning microscopes have given us the ability to image fluorescently labeled biological structures in vivo and at exceptionally high spatial resolutions. By coupling this powerful imaging modality with classic optical elastography methods, we have developed novel techniques that allow us to assess functional mechanical integrity of soft biological tissues by measuring the movements of cells in response

J. G. Snedeker; G. Pelled; Y. Zilberman; A. Ben Arav; E. Huber; R. Müller; D. Gazit

2009-01-01

227

In vivo Evaluation of the Stratum corneum Barrier Function in Blacks, Caucasians and Asians with Two Noninvasive Methods  

Microsoft Academic Search

This study compared in man the in vivo barrier function of stratum corneum in three racial groups: black, Caucasian and Asian, by two noninvasive technics. They were transepidermal water loss (TEWL) determination measured with an evaporimeter and laser Doppler velocimetry (LDV) to measure the lag time before the vasodilatation induced by application of methyl nicotinate (10 ?l of 0.5% solution

F. Kompaore; J. P. Marty; Ch. Dupont

1993-01-01

228

Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues  

NASA Astrophysics Data System (ADS)

Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS-OMAG). Unlike conventional OMAG, UHS-OMAG applied the OMAG algorithm onto the slow direction of FDOCT scan (Y-direction). Because the time interval between adjacent B-frames is much longer than that between adjacent A-lines, UHS-OMAG can achieve much higher flow sensitivity compared to the conventional OMAG. In addition, the UHS-OMAG usually employed high frame rate (typically 300 frames per second) to achieve 3D scan, it cost much less time to finish one 3D scan compared to the traditional OMAG. However, when it was applied to visualize vasculature map of human tissue, the motion artifacts caused by the inevitable movements is still the biggest challenge. Based on the phase difference calculated from two adjacent B-frames, a new phase compensation algorithm was developed. Aim 4: Developing ultrahigh speed Spectral Domain OCT system through sequentially controlling two high speed line scan CMOS cameras. Two identical high speed line cameras were employed to build two home build high speed spectrometers. Through sequentially controlling the reading time period of two cameras, the imaging speed of the whole system could reach twice higher than the single camera system. The newly built 800 nm SDOCT system which can work at 500, 000 Hz A-lines capturing speed was then used to achieve in vivo 3D imaging in both high speed and large field of view mode. In addition, through combining with the OMAG algorithm, the newly developed system is capable of providing detailed micro-vasculature imaging of human retina and optic nerve head. (Abstract shortened by UMI.)

An, Lin

229

Function of dopamine transporter is compromised in DYT1 transgenic animal model in vivo  

PubMed Central

Early onset torsion dystonia (DYT1), the most common form of hereditary primary dystonia, is caused by a mutation in the TOR1A gene, which codes for the protein, torsinA. We previously examined the effect of the human mutant torsinA on striatal dopaminergic function in a conventional transgenic mouse model of DYT1 dystonia (hMT1), in which human mutant torsinA is expressed under the cytomegalovirus promotor. Systemic administration of amphetamine did not increase dopamine (DA) release as efficiently in these mice as compared with wild-type transgenic and non-transgenic mice. We, now, studied the contribution of the DA transporter (DAT) to amphetamine-induced DA release in hMT1 transgenic mice using in vivo no-net flux microdialysis. This method applies different concentrations of DA through the microdialysis probe and measures DA concentration at the output of the probe following an equilibrium period. The slope (extraction fraction) is the measure of the DAT activity in vivo. The slope for hMT1 transgenic mice was 0.58 ± 0.07 and for non-transgenic animals, 0.87 ± 0.06 (p < 0.05). We further investigated the efficacy of nomifensine (a specific DAT inhibitor) in inhibiting amphetamine-induced DA release. Local application of nomifensine 80 min before the systemic application of amphetamine inhibited DA release in both transgenic mice and their non-transgenic littermates. The efficiency of the inhibition appeared to be different, with mean values of 48% for hMT1 transgenic mice versus 84% for non-transgenic littermates. Moreover, we have evaluated basal and amphetamine-induced locomotion in hMT1 transgenic mice compared with their non-transgenic littermates, using an O-maze behavioral chamber. Basal levels of locomotion in the hMT1 transgenic mice showed that they moved much less than their non-transgenic littermates (0.9 ± 0.3 m for transgenic mice vs. 2.4 ± 0.7 m for non-transgenic littermates, p < 0.05). This relative reduction in locomotion was also observed following amphetamine administration (48.5 ± 6.7 m for transgenics vs. 73.7 ± 9.8 m for non-transgenics, p < 0.05). These results support the finding that there are altered dynamics of DA release and reuptake in hMT1 transgenic mice in vivo, with DAT activity is reduced in the presence of mutant torsinA, which is consistent with behavioral consequences such as reduced locomotion and (previously described) abnormal motor phenotypes such as increased hind-base width and impaired performance on the raised-beam task. These data implies that altered DAT function may contribute to impaired DA neurotransmission and clinical symptoms in human DYT1 dystonia.

Hewett, Jeff; Johansen, Peter; Sharma, Nutan; Standaert, David; Balcioglu, Aygul

2011-01-01

230

Enhanced in vivo targeting of murine nonparenchymal liver cells with monophosphoryl lipid a functionalized microcapsules.  

PubMed

A broad spectrum of infectious liver diseases emphasizes the need of microparticles for targeted delivery of immunomodulatory substances to the liver. Microcapsules (MCs) are particularly attractive for innovative drug and vaccine formulations, enabling the combination of antigen, drugs, and adjuvants. The present study aimed to develop microcapsules characterized by an enhanced liver deposition and accelerated uptake by nonparenchymal liver cells (NPCs). Initially, two formulations of biodegradable microcapsules were synthesized from either hydroxyethyl starch (HES) or mannose. Notably, HES-MCs accumulated primarily in the liver, while mannose particles displayed a lung preference. Functionalization of HES-MCs with anti-CD40, anti-DEC205, and/or monophosphoryl lipid A (MPLA) enhanced uptake of MCs by nonparenchymal liver cells in vitro. In contrast, only MPLA-coated HES-MCs promoted significantly the in vivo uptake by NPCs. Finally, HES-MCs equipped with MPLA, anti-CD40, and anti-DEC205 induced the secretion of TNF-?, IL-6 by Kupffer cells (KCs), and IFN-? and IL-12p70 by liver dendritic cells (DCs). The enhanced uptake and activation of KCs by MPLA-HES-MCs is a promising approach to prevent or treat infection, since KCs are exploited as an entry gate in various infectious diseases, such as malaria. In parallel, loading and activating liver DCs, usually prone to tolerance, bears the potential to induce antigen specific, intrahepatic immune responses necessary to prevent and treat infections affecting the liver. PMID:24901387

Pietrzak-Nguyen, Anette; Fichter, Michael; Dedters, Marvin; Pretsch, Leah; Gregory, Stephen H; Meyer, Claudius; Doganci, Aysefa; Diken, Mustafa; Landfester, Katharina; Baier, Grit; Gehring, Stephan

2014-07-14

231

Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy  

PubMed Central

Respiratory syncytial virus (RSV) can cause devastating lower respiratory tract infections in preterm infants or when other serious health problems are present. Immunoprophylaxis with palivizumab (Synagis), a humanized IgG1 mAb, is the current standard of care for preventing RSV infection in at-risk neonates. We have explored the contribution of effector function to palivizumab efficacy using a plant-based expression system to produce palivizumab N-glycan structure variants with high homogeneity on different antibody isotypes. We compared these isotype and N-glycoform variants with commercially available palivizumab with respect to both in vitro receptor and C1q binding and in vivo efficacy. Whereas the affinity for antigen and neutralization activity of each variant were indistinguishable from those of palivizumab, their Fc? receptor binding profiles were very different, which was reflected in either a reduced or enhanced ability to influence the RSV lung titer in challenged cotton rats. Enhanced Fc? receptor binding was associated with reduced viral lung titers compared with palivizumab, whereas abrogation of receptor binding led to a drastic reduction in efficacy. The results support the hypotheses that classic antibody neutralization is a minor component of efficacy by palivizumab in the cotton rat and that antibody-dependent cell-mediated cytotoxicity activity can significantly enhance the efficacy of this antiviral mAb.

Hiatt, Andrew; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do; Pauly, Michael H.; Velasco, Jesus; Whaley, Kevin J.; Piedra, Pedro A.; Gilbert, Brian E.; Zeitlin, Larry

2014-01-01

232

Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy.  

PubMed

Respiratory syncytial virus (RSV) can cause devastating lower respiratory tract infections in preterm infants or when other serious health problems are present. Immunoprophylaxis with palivizumab (Synagis), a humanized IgG1 mAb, is the current standard of care for preventing RSV infection in at-risk neonates. We have explored the contribution of effector function to palivizumab efficacy using a plant-based expression system to produce palivizumab N-glycan structure variants with high homogeneity on different antibody isotypes. We compared these isotype and N-glycoform variants with commercially available palivizumab with respect to both in vitro receptor and C1q binding and in vivo efficacy. Whereas the affinity for antigen and neutralization activity of each variant were indistinguishable from those of palivizumab, their Fc? receptor binding profiles were very different, which was reflected in either a reduced or enhanced ability to influence the RSV lung titer in challenged cotton rats. Enhanced Fc? receptor binding was associated with reduced viral lung titers compared with palivizumab, whereas abrogation of receptor binding led to a drastic reduction in efficacy. The results support the hypotheses that classic antibody neutralization is a minor component of efficacy by palivizumab in the cotton rat and that antibody-dependent cell-mediated cytotoxicity activity can significantly enhance the efficacy of this antiviral mAb. PMID:24711420

Hiatt, Andrew; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Piedra, Pedro A; Gilbert, Brian E; Zeitlin, Larry

2014-04-22

233

The proximal element of the beta globin locus control region is not functionally required in vivo.  

PubMed Central

In addition to local sequence elements the regulation of the high-level, development- and tissue-specific expression of the human beta globin gene cluster appears to require distant regulatory sequences which have been termed locus control region. In the chromatin of erythroid cells the locus control region is characterized by four DNaseI hypersensitive sites that are located 6-18 kb 5' of the epsilon globin gene. The definition of the sequences minimally required for locus control region activity is likely to further the understanding of its physiology and will be of interest for the development of somatic gene therapy strategies of the hemoglobinopathies. We present here the analysis of a family with a 3,030-bp deletion of sequences upstream of the epsilon globin gene including the most 3' locus control region element and cosegregating beta(0) thalassemia. The deletion is linked in cis to a structurally and functionally normal beta globin gene. The proximal element of the locus control region does not therefore appear to be necessary for beta globin gene activity in vivo. Images

Kulozik, A E; Bail, S; Bellan-Koch, A; Bartram, C R; Kohne, E; Kleihauer, E

1991-01-01

234

Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo.  

PubMed

Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 "anti-recombinase" restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR. PMID:19506039

Burgess, Rebecca C; Lisby, Michael; Altmannova, Veronika; Krejci, Lumir; Sung, Patrick; Rothstein, Rodney

2009-06-15

235

Phenotypic and in vivo functional characterization of immortalized human fetal liver cells  

PubMed Central

We report the establishment and characterization of immortalized human fetal liver progenitor cells by expression of the Simian virus 40 large T (SV40 LT) antigen. Well-characterized cells at various passages were transplanted into nude mice with acute liver injury and tested for functional capacity. The SV40LT antigen-immortalized fetal liver cells showed a morphology similar to primary cells. Cultured cells demonstrated stable phenotypic expression in various passages, of hepatic markers such as albumin, CK 8, CK18, transcription factors HNF-4? and HNF-1? and CYP3A/7. The cells did not stain for any of the tested cancer-associated markers. Albumin, HNF-4? and CYP3A7 expression was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Flow cytometry showed expression of some progenitor cell markers. In vivo study showed that the cells expressed both fetal and differentiated hepatocytes markers. Our study suggests new approaches to expand hepatic progenitor cells, analyze their fate in animal models aiming at cell therapy of hepatic diseases.

Patil, Pradeep B.; Begum, Setara; Joshi, Meghnad; Kleman, Marika I; Olausson, Michael

2014-01-01

236

Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior  

PubMed Central

Aims To develop and evaluate two tumor-specific nanoprobes by functionalization of a PEG-immobilized nanoparticle with arginine-glycine-aspartic acid (RGD) or chlorotoxin (CTX) ligand that targets ?v?3 integrin and MMP-2 receptors, respectively. Materials and Methods The nanoprobes were made of iron oxide cores, biocompatible polymer coating, and surface-conjugated RGD or CTX peptide. The tumor-targeting specificity of the nanoprobes was evaluated both in vitro and in vivo. Results and Discussion Both nanoprobes were highly dispersive and exhibited excellent long-term stability in cell culture media. The RGD-conjugated nanoprobe displayed a strong initial accumulation near neovasculatures in tumors followed by quick clearance. Conversely, the CTX-enabled nanoprobe exhibited sustained accumulation throughout the tumor. Conclusion These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications.

Fang, Chen; Veiseh, Omid; Kievit, Forrest; Bhattarai, Narayan; Wang, Freddy; Stephen, Zach; Li, Chun; Lee, Donghoon; Ellenbogen, Richard G.; Zhang, Miqin

2010-01-01

237

Differential regulation of human and murine P-selectin expression and function in vivo.  

PubMed

Leukocytes roll on P-selectin after its mobilization from secretory granules to the surfaces of platelets and endothelial cells. Tumor necrosis factor (TNF), IL-1?, and lipopolysaccharide increase synthesis of P-selectin in murine but not in human endothelial cells. To explore the physiological significance of this difference in gene regulation, we made transgenic mice bearing the human Selp gene and crossed them with mice lacking murine P-selectin (Selp(-/-)). The transgenic mice constitutively expressed human P-selectin in platelets, endothelial cells, and macrophages. P-selectin mediated comparable neutrophil migration into the inflamed peritoneum of transgenic and wild-type (WT) mice. Leukocytes rolled similarly on human or murine P-selectin on activated murine platelets and in venules of the cremaster muscle subjected to trauma. However, TNF increased murine P-selectin in venules, slowing rolling and increasing adhesion, whereas it decreased human P-selectin, accelerating rolling and decreasing adhesion. Both P- and E-selectin mediated basal rolling in the skin of WT mice, but E-selectin dominated rolling in transgenic mice. During contact hypersensitivity, murine P-selectin messenger (m) RNA was up-regulated and P-selectin was essential for leukocyte recruitment. However, human P-selectin mRNA was down-regulated and P-selectin contributed much less to leukocyte recruitment. These findings reveal functionally significant differences in basal and inducible expression of human and murine P-selectin in vivo. PMID:21149548

Liu, Zhenghui; Miner, Jonathan J; Yago, Tadayuki; Yao, Longbiao; Lupu, Florea; Xia, Lijun; McEver, Rodger P

2010-12-20

238

Differential regulation of human and murine P-selectin expression and function in vivo  

PubMed Central

Leukocytes roll on P-selectin after its mobilization from secretory granules to the surfaces of platelets and endothelial cells. Tumor necrosis factor (TNF), IL-1?, and lipopolysaccharide increase synthesis of P-selectin in murine but not in human endothelial cells. To explore the physiological significance of this difference in gene regulation, we made transgenic mice bearing the human Selp gene and crossed them with mice lacking murine P-selectin (Selp?/?). The transgenic mice constitutively expressed human P-selectin in platelets, endothelial cells, and macrophages. P-selectin mediated comparable neutrophil migration into the inflamed peritoneum of transgenic and wild-type (WT) mice. Leukocytes rolled similarly on human or murine P-selectin on activated murine platelets and in venules of the cremaster muscle subjected to trauma. However, TNF increased murine P-selectin in venules, slowing rolling and increasing adhesion, whereas it decreased human P-selectin, accelerating rolling and decreasing adhesion. Both P- and E-selectin mediated basal rolling in the skin of WT mice, but E-selectin dominated rolling in transgenic mice. During contact hypersensitivity, murine P-selectin messenger (m) RNA was up-regulated and P-selectin was essential for leukocyte recruitment. However, human P-selectin mRNA was down-regulated and P-selectin contributed much less to leukocyte recruitment. These findings reveal functionally significant differences in basal and inducible expression of human and murine P-selectin in vivo.

Liu, Zhenghui; Miner, Jonathan J.; Yago, Tadayuki; Yao, Longbiao; Lupu, Florea; Xia, Lijun

2010-01-01

239

[In vivo studies of the main functional systems in the heteronemertean pilidium larva].  

PubMed

There is performed in vivo morphological study of the White Sea heteronemerteans belonging to the type of pilidium pyramidale (conussoidale). Based on the layer-by-layer microshooting with subsequent computer processing, development of the pilidium digestive, nervous, and muscle systems is described from the stage following at once the gastrula to the premetamorphose larva. Peculiarities of structural organization of the main functional systems are revealed depending on the larva size and the stage of formation of imaginal discs. It is first shown that even in the not completely formed pilidium, neurons are located not only in integuments and wall of the digestive tract, but also in the depth of cupola along the central muscle retractor. Their processes are distributed between the main body parts and organs by seeming to perform connections of the apical organ and central muscle retractor with the digestive tract, blades, and the nerve plexus of the cupola wall. In the digestive tract between pharynx and stomach in the formed pilidium, the sphincter is first revealed. It has been shown that in the course of larva development, the non-orderly arranged and poorly developed muscle fibers gradually form in the blade the fan-like, whereas in the cupola wall, the net-like structure. PMID:20799611

Za?tseva, O V; Fliachinskaia, L P

2010-01-01

240

Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo  

PubMed Central

Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 “anti-recombinase” restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR.

Burgess, Rebecca C.; Lisby, Michael; Altmannova, Veronika; Krejci, Lumir; Sung, Patrick

2009-01-01

241

[Ovulation induction using pulsatile GnRH in patients with hypothalamic amenorrhea: effects of changing the frequency and dosage on the luteal phase].  

PubMed

Effects of frequency and dose variation of GnRH administration by minipumps Zyklomat, were studied in five women during luteal phase. As controls were assumed the same patients; in fact they had been previously treated with pulsatile GnRH with constant dose and frequency all over the cycle. Then the patients received the same treatment but the dose and the frequency of infusion were changed in the luteal phase. Our data show an increase of mean levels of progesterone and oestradiol during the luteal phase and a better pregnancy rate when the frequency and the dose of GnRh administration were changed. PMID:8328769

Vizziello, G; D'Amato, G; Trentadue, R; Fanizza, G

1993-01-01

242

In vitro and in vivo functional characterization of gutless recombinant SV40-derived CFTR vectors.  

PubMed

In cystic fibrosis (CF), respiratory failure caused by progressive airway obstruction and tissue damage is primarily a result of the aberrant inflammatory responses to lung infections with Pseudomonas aeruginosa. Despite considerable improvement in patient survival, conventional therapies are mainly supportive. Recent progress toward gene therapy for CF has been encouraging; however, several factors such as immune response and transduced cell turnover remain as potential limitations to CF gene therapy. As alternative gene therapy vectors for CF, we examined the feasibility of using recombinant SV40-derived vectors (rSV40s), which may circumvent some of these obstacles. To accommodate the large cystic fibrosis transmembrane conductance regulator (CFTR) cDNA, we removed not only SV40 Tag genes, but also all capsid genes. We, therefore, tested whether 'gutless' rSV40s could be packaged and were able to express a functional human CFTR cDNA. The results from our in vitro analysis determined that rSV40-CFTR was able to successfully result in the expression of CFTR protein, which localized to the plasma membrane and restored channel function to CFTR-deficient cells. Similarly, in vivo experiments delivering rSV40-CFTR to the lungs of Cftr-/- mice resulted in a reduction of the pathology associated with intra-tracheal P. aeruginosa challenge. rSV40-CFTR-treated mice had less weight loss when compared with control-treated mice as well as demonstrably reduced lung inflammation as evidence by histology and reduced inflammatory cytokines in the broncho-alveolar lavage. The reduction in inflammatory cytokine levels led to an evident decrease in neutrophil influx to the airways. These results indicate that further study of the application of rSV40-CFTR to CF gene therapy is warranted. PMID:19890354

Mueller, C; Strayer, M S; Sirninger, J; Braag, S; Branco, F; Louboutin, J-P; Flotte, T R; Strayer, D S

2010-02-01

243

In Vivo Fluorometric Assessment of Cyclosporine on Mitochondrial Function During Myocardial Ischemia and Reperfusion  

PubMed Central

Background Cyclosporine A (CsA) limits myocardial reperfusion injury and preserves mitochondrial integrity, but its influence on mitochondrial function has not been described in vivo. Auto-fluorescence of mitochondrial nicotinamide adenine dinucleotide and flavin adenine dinucleotide correlate with mitochondrial dysfunction. We hypothesized that CsA limits mitochondrial dysfunction and that fluorometry can quantify this influence. Methods Seventeen rabbits were studied: untreated (UnT, n = 7), CsA preinfarction (CsAp, n = 6), and CsA on reperfusion (CsAr, n = 4). Animals underwent 30 minutes of myocardial ischemia and 3 hours reperfusion. Infarct size was determined by staining. Nicotinamide adenine dinucleotide and flavin adenine dinucleotide fluorescence was continually measured in the risk area. The redox ratio was calculated [flavin adenine dinucleotidef/(flavin adenine dinucleotidef + nicotinamide adenine dinucleotidef)]. Electron microscopy evaluated mitochondria morphology. Results The infarct size by group was 39.1% ± 1.7% in CsAp, 39.1% ± 1.7% in CsAr, and 53.4% ± 1.9% in UnT (p < 0.001). During ischemia, the CsAp group demonstrated less hypoxic reduction, with the redox ratio decreasing to 75.6% ± 4.1% of baseline. The UnT and CsAr groups deceased to 67.1% ± 4.0% and 67.2% ± 3.6%, respectively (p < 0.005). During reperfusion the UnT group redox ratio increased to 1.59 ± 0.04 times baseline. This increase was blunted in the CsAp (1.17 ± 0.04, p = 0.026) and CsAr (1.35 ± 0.02, p = 0.056) groups. Electron microscopy revealed reduced mitochondrial disruption in CsAp (19.7% ± 7.6%) and CsAr (18.1% ± 7.1%) rabbits compared with UnT (53.3% ± 12.5%). Conclusions Fluorometric spectroscopy can be used in vivo to quantitatively assess the time course of CsA’s influence on the mitochondrial dysfunction associated with myocardial ischemia and reperfusion.

Matsubara, Muneaki; Ranji, Mahsa; Leshnower, Bradley G.; Noma, Mio; Ratcliffe, Sarah J.; Chance, Britton; Gorman, Robert C.; Gorman, Joseph H.

2011-01-01

244

In vivo coassembly of a divergent beta-tubulin subunit (c beta 6) into microtubules of different function  

PubMed Central

alpha- and beta-Tubulin are encoded in vertebrate genomes by a family of approximately 6-7 functional genes whose polypeptide products differ in amino acid sequence. In the chicken, one beta-tubulin isotype (c beta 6) has previously been found to be expressed only in thrombocytes and erythroid cells, where it is assembled into a circumferential ring of marginal band microtubules. In light of its unique in vivo utilization and its divergent assembly properties in vitro, we used DNA transfection to test whether this isotype could be assembled in vivo into microtubules of divergent functions. Using an antibody specific to c beta 6, we have found that upon transfection this polypeptide is freely coassembled into an extensive array of interphase cytoplasmic microtubules and into astral and pole-to-chromosome or pole-to-pole microtubules during mitosis. Further, examination of developing chicken erythrocytes reveals that both beta-tubulins that are expressed in these cells (c beta 6 and c beta 3) are found as co-polymers of the two isoforms. These results, in conjunction with efforts that have localized various other beta-tubulin isotypes, demonstrate that to the resolution limit afforded by light microscopy in vivo microtubules in vertebrates are random copolymers of available isotypes. Although these findings are consistent with functional interchangeability of beta- tubulin isotypes, we have also found that in vivo microtubules enriched in c beta 3 polypeptides are more sensitive to cold depolymerization than those enriched in c beta 6. This differential quantitative utilization of the two endogenous isotypes documents that some in vivo functional differences between isotypes do exist.

1987-01-01

245

In vivo exposure to bicarbonate/lactate- and bicarbonate-buffered peritoneal dialysis fluids improves ex vivo peritoneal macrophage function.  

PubMed

The impact on peritoneal macrophage (PMO) function of acidic lactate-buffered (Lac-PDF [PD4]; 40 mmol/L of lactate; pH 5.2) and neutral-pH, bicarbonate-buffered (TB; 38 mmol/L of bicarbonate; pH 7. 3) and bicarbonate/lactate-buffered (TBL; 25 mmol/L of bicarbonate/15 mmol/L of lactate; pH 7.3) peritoneal dialysis fluids (PDFs) was compared during a study of continuous therapy with PD4, TB, or TBL. During a run-in phase of 6 weeks when all patients (n = 15) were treated with their regular dialysis regimen with Lac-PDF, median PMO tumor necrosis factor alpha (TNFalpha) release values were 203.6, 89.9, and 115.5 pg TNFalpha/10(6) PMO in the patients subsequently randomized to the PD4, TB, and TBL treatment groups, respectively. Median stimulated TNFalpha values (serum-treated zymosan [STZ], 10 microgram/mL) were 1,894.6, 567.3, and 554.5 pg TNFalpha/10(6) PMO in the same groups, respectively. During the trial phase of 12 weeks, when the three groups of patients (n = 5 per group) were randomized to continuous treatment with PD4, TB, or TBL, median constitutive TNFalpha release values were 204.7, 131.4, and 155.4 pg TNFalpha/10(6) PMO, respectively. Stimulated TNFalpha values (STZ, 10 microgram/mL) were 1,911, 1,832, and 1,378 pg TNFalpha/10(6) PMO in the same groups, respectively. Repeated-measures analysis of variance comparing the run-in phase with the trial phase showed that PMO TNFalpha release was significantly elevated in patients treated with both TB (P = 0.040) and TBL (P = 0.014) but not in patients treated with Lac-PDF (P = 0. 795). These data suggest that patients continuously exposed to bicarbonate- and bicarbonate/lactate-buffered PDFs might have better preserved PMO function and thus improved host defense status. PMID:10620552

Mackenzie, R K; Jones, S; Moseley, A; Holmes, C J; Argyle, R; Williams, J D; Coles, G A; Pu, K; Faict, D; Topley, N

2000-01-01

246

Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy  

NASA Technical Reports Server (NTRS)

BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

2000-01-01

247

In vivo function of airway epithelial TLR2 in host defense against bacterial infection  

PubMed Central

Decreased Toll-like receptor 2 (TLR2) expression has been reported in patients with chronic obstructive pulmonary disease and in a murine asthma model, which may predispose the hosts to bacterial infections, leading to disease exacerbations. Since airway epithelial cells serve as the first line of respiratory mucosal defense, the present study aimed to reveal the role of airway epithelial TLR2 signaling to lung bacterial [i.e., Mycoplasma pneumoniae (Mp)] clearance. In vivo TLR2 gene transfer via intranasal inoculation of adenoviral vector was performed to reconstitute TLR2 expression in airway epithelium of TLR2?/? BALB/c mice, with or without ensuing Mp infection. TLR2 and lactotransferrin (LTF) expression in airway epithelial cells and lung Mp load were assessed. Adenovirus-mediated TLR2 gene transfer to airway epithelial cells of TLR2?/? mice reconstituted 30–40% TLR2 expression compared with TLR2+/+ cells. Such airway epithelial TLR2 reconstitution in TLR2?/? mice significantly reduced lung Mp load (an appropriate 45% reduction), coupled with elevated LTF expression. LTF expression in mice was shown to be mainly dependent on TLR2 signaling in response to Mp infection. Exogenous human LTF protein dose-dependently decreased lung bacterial load in Mp-infected TLR2?/? mice. In addition, human LTF protein directly dose-dependently decreased Mp levels in vitro. These data indicate that reconstitution of airway epithelial TLR2 signaling in TLR2?/? mice significantly restores lung defense against bacteria (e.g., Mp) via increased lung antimicrobial protein LTF production. Our findings may offer a deliverable approach to attenuate bacterial infections in airways of asthma or chronic obstructive pulmonary disease patients with impaired TLR2 function.

Wu, Qun; Jiang, Di; Minor, Maisha N.; Martin, Richard J.

2011-01-01

248

Inhibition of human platelet function in vitro and ex vivo by acetaminophen.  

PubMed

The effects of acetaminophen (APAP) in vitro, or ex vivo following APAP ingestion, on human platelet aggregation, 14C-5HT secretion, and thromboxane B2 (TxB2) formation were assessed. APAP added in vitro to citrated platelet-rich plasma (PRP) inhibited aggregation, secretion, and TxB2 formation induced by collagen, epinephrine, arachidonate, and the ionophore A23187, but had no effect on the responses induced by the endoperoxide analog U44069. Arachidonate-induced responses were inhibited by lower concentrations of APAP than were the responses to the other agonists. In PRP obtained 1 hour after ingestion of 650 mg or 1000 mg APAP, arachidonate-induced TxB2 formation was inhibited by 40-99% in five subjects tested, whereas inhibition of collagen- or epinephrine-induced TxB2 formation was less consistent. Aggregation and secretion responses were not altered by APAP ingestion in 4 of the 5 subjects, but were inhibited in the remaining subject, who had the highest plasma APAP levels. In contrast to aspirin and indomethacin, APAP-induced inhibition of collagen-stimulated TxB2 formation could be partially overcome with increasing collagen concentrations. No such partial correction occurred with epinephrine, however. In washed platelet suspensions labeled with 3H-arachidonate, both APAP and aspirin inhibited the formation of labeled PGD2 and PGE2, as well as TxB2. These results suggest that APAP acts in human platelets as a reversible inhibitor of cyclo-oxygenase, as found previously in other tissues, and that recent APAP ingestion can, on occasion, produce inhibition of platelet functional responses measured in vitro. PMID:2499947

Lages, B; Weiss, H J

1989-03-15

249

In vivo presynaptic and postsynaptic striatal dopamine functions in idiopathic normal pressure hydrocephalus.  

PubMed

Differentiation of impaired gait seen in idiopathic normal pressure hydrocephalus (iNPH) from parkinsonian gait is sometimes a great challenge and important for future medication in the clinical setting. To investigate dopaminergic contribution to its pathophysiology, two aspects of the trans-synaptic dopamine functions in the striatal region in eight iNPH patients naïve to dopaminergic drugs were examined using positron emission tomography with a presynaptic marker [11C]CFT ([11C]2-beta-carbomethoxy-3beta-(4-fluorophenyl) tropane) that binds to dopamine transporter and a postsynaptic marker [11C]raclopride that binds to D2 receptor. Quantitative values of binding potentials (BPs) for [11C]CFT and [11C]raclopride were compared between patients and eight age-matched healthy subjects. The BPs and magnetic resonance imaging-based morphometric measures in iNPH were used for correlation analyses between the magnitude of binding of these in vivo markers and clinical severity of the patients. Analysis of variance showed significant reduction in [11C]raclopride binding in the putamen and nucleus accumbens (P<0.05, corrected for multiple comparison) and unchanged striatal [11C]CFT binding in iNPH. The dorsal putamen [11C]raclopride binding correlated negatively with gait severity (r=0.720, P<0.05), and the nucleus accumbens [11C]raclopride binding correlated positively with emotional recognition score (r=0.727, P<0.05) in the disease group. No significant relationship was observed between BPs and morphometric measures. The current result of the postsynaptic D2 receptor reduction along with preserved presynaptic activity in the nigrostriatal dopaminergic system reflects a pathophysiology of iNPH. Postsynaptic D2 receptor hypoactivity in the dorsal putamen may predict the severity of gait impairment in iNPH. PMID:16926840

Ouchi, Yasuomi; Nakayama, Teiji; Kanno, Toshihiko; Yoshikawa, Etsuji; Shinke, Tomomi; Torizuka, Tatsuo

2007-04-01

250

Impact of RNA editing on functions of the serotonin 2C receptor in vivo.  

PubMed

Transcripts encoding 5-HT(2C) receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT(2C-VGV), exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT(2C-VGV) receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT(2C-VGV) receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT(2C-VGV) receptors. However, enhanced behavioral sensitivity to a 5-HT(2C) receptor agonist was also seen in mice expressing 5-HT(2C-VGV) receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT(2C-VGV) receptors had greater sensitivity to a 5-HT(2C) inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT(2C) receptor binding sites in the brains of mice solely expressing 5-HT(2C-VGV) receptors. We conclude that 5-HT(2C-VGV) receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT(2C) receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT(2C) receptor binding sites in brain. We further caution that the pattern of 5-HT(2C) receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor. PMID:20582266

Olaghere da Silva, Uade B; Morabito, Michael V; Canal, Clinton E; Airey, David C; Emeson, Ronald B; Sanders-Bush, Elaine

2010-01-01

251

Impact of RNA Editing on Functions of the Serotonin 2C Receptor in vivo  

PubMed Central

Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing 5-HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor.

Olaghere da Silva, Uade B.; Morabito, Michael V.; Canal, Clinton E.; Airey, David C.; Emeson, Ronald B.; Sanders-Bush, Elaine

2009-01-01

252

In vivo skin biophysical behaviour and surface topography as a function of ageing.  

PubMed

Normal skin ageing is characterised by an alteration of the underlying connective tissue with measurable consequences on global skin biophysical properties. The cutis laxa syndrome, a rare genetic disorder, is considered as an accelerated ageing process since patients appear prematurely aged due to alterations of dermal elastic fibres. In the present study, we compared the topography and the biomechanical parameters of normal aged skin with an 17 year old cutis laxa patient. Skin topography analyses were conducted on normal skin at different ages. The results indicate that the skin relief highly changes as a function of ageing. The cutaneous lines change from a relatively isotropic orientation to a highly anisotropic orientation. This reorganisation of the skin relief during the ageing process might be due to a modification of the skin mechanical properties, and particularly to a modification of the dermis mechanical properties. A specific bio-tribometer, based on the indentationtechnique under light load, has been developed to study the biophysical properties of the human skin in vivo through two main parameters: the physico-chemical properties of the skin surface, by measuring the maximum adhesion force between the skin and the bio-tribometer; and the bulk mechanical properties. Our results show that the pull-off force between the skin and the biotribometer as well as the skin Young's modulus decrease with age. In the case of the young cutis laxa patient, the results obtained were similar to those observed for aged individuals. These results are very interesting and encouraging since they would allow the monitoring of the cutis laxa skin in a standardised and non-invasive way to better characterize either the evolution of the disease or the benefit of a treatment. PMID:23664827

Pailler-Mattei, C; Debret, R; Vargiolu, R; Sommer, P; Zahouani, H

2013-12-01

253

Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo.  

PubMed

Competing enzymatic mechanisms degrade the tryptophan metabolite L-kynurenine to kynurenate, an inhibitory and neuroprotective compound, and to the neurotoxins 3-hydroxykynurenine and quinolinate. Kynurenine 3-hydroxylase inhibitors such as PNU 156561 shift metabolism towards enhanced kynurenate production, and this effect may underlie the recently discovered anticonvulsant and neuroprotective efficacy of these drugs. Using electrophysiological and neurotoxicological endpoints, we now used PNU 156561 as a tool to examine the functional interplay of kynurenate, 3-hydroxykynurenine and quinolinate in the rat hippocampus in vivo. First, population spike amplitude in area CA1 and the extent of quinolinate-induced excitotoxic neurodegeneration were studied in animals receiving acute or prolonged intravenous infusions of L-kynurenine, PNU 156561, (L-kynurenine+PNU 156561) or kynurenate. Only the latter two treatments, but not L-kynurenine or PNU 156561 alone, caused substantial inhibition of evoked responses in area CA1, and only prolonged (3h) infusion of (L-kynurenine+PNU 156561) or kynurenate was neuroprotective. Biochemical analyses in separate animals revealed that the levels of kynurenate attained in both blood and brain (hippocampus) were essentially identical in rats receiving extended infusions of L-kynurenine alone or (L-kynurenine+PNU 156561) (4 and 7microM, respectively, after an infusion of 90 or 180min). However, addition of the kynurenine 3-hydroxylase inhibitor resulted in a significant decrement in the formation of 3-hydroxykynurenine and quinolinate in both blood and brain. These data suggest that the ratio between kynurenate and 3-hydroxykynurenine and/or quinolinate in the brain is a critical determinant of neuronal excitability and viability. The anticonvulsant and neuroprotective potency of kynurenine 3-hydroxylase inhibitors may therefore be due to the drugs' dual action on both branches of the kynurenine pathway of tryptophan degradation. PMID:10799756

Wu, H Q; Guidetti, P; Goodman, J H; Varasi, M; Ceresoli-Borroni, G; Speciale, C; Scharfman, H E; Schwarcz, R

2000-01-01

254

Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function.  

PubMed

Clotrimazole is an azole fungicide used as a human pharmaceutical that is known to inhibit cytochrome P450 (CYP) enzymatic activities, including several steroidogenic CYP. In a previous report, we showed that a 7-day exposure to clotrimazole induced the expression of genes related to steroidogenesis in the testes as a compensatory response, involving the activation of the Fsh/Fshr pathway. In this context, the aim of the present study was to assess the effect of an in vivo 21-day chronic exposure to clotrimazole (30-197 ?g/L) on zebrafish testis function, i.e., spermatogenesis and androgen release. The experimental design combined (1) gene transcript levels measurements along the brain-pituitary-gonad axis, (2) 11-ketotestosterone (11-KT) quantification in the blood, and (3) histology of the testes, including morphometric analysis. The chronic exposure led to an induction of steroidogenesis-related genes and fshr in the testes as well as fsh? in the pituitary. Moreover, increases of the gonadosomatic index and of the volume proportion of interstitial Leydig cells were observed in clotrimazole-exposed fish. In accordance with these histological observations, the circulating concentration of 11-KT had increased. Morphometric analysis of the testes did not show an effect of clotrimazole on meiotic (spermatocytes) or postmeiotic (spermatids and spermatozoa) stages, but we observed an increase in the number of type A spermatogonia, in agreement with an increase in mRNA levels of piwil1, a specific molecular marker of type A spermatogonia. Our study demonstrated that clotrimazole is able to affect testicular physiology and raised further concern about the impact of clotrimazole on reproduction. PMID:23340899

Baudiffier, Damien; Hinfray, Nathalie; Ravaud, Catherine; Creusot, Nicolas; Chadili, Edith; Porcher, Jean-Marc; Schulz, Rüdiger W; Brion, François

2013-05-01

255

SAHA Enhances Synaptic Function and Plasticity In Vitro but Has Limited Brain Availability In Vivo and Does Not Impact Cognition  

PubMed Central

Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer’s disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.

Hanson, Jesse E.; La, Hank; Plise, Emile; Chen, Yung-Hsiang; Ding, Xiao; Hanania, Taleen; Sabath, Emily V.; Alexandrov, Vadim; Brunner, Dani; Leahy, Emer; Steiner, Pascal; Liu, Lichuan; Scearce-Levie, Kimberly; Zhou, Qiang

2013-01-01

256

Fucoidan Can Function as an Adjuvant In Vivo to Enhance Dendritic Cell Maturation and Function and Promote Antigen-Specific T Cell Immune Responses  

PubMed Central

Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, including promoting antigen uptake and enhancing anti-viral and anti-tumor effects. However, the effect of fucoidan in vivo, especially its adjuvant effect on in vivo anti-tumor immune responses, was not fully investigated. In this study, we investigated the effect of fucoidan on the function of spleen dendritic cells (DCs) and its adjuvant effect in vivo. Systemic administration of fucoidan induced up-regulation of CD40, CD80 and CD86 expression and production of IL-6, IL-12 and TNF-? in spleen cDCs. Fucoidan also promoted the generation of IFN-?-producing Th1 and Tc1 cells in an IL-12-dependent manner. When used as an adjuvant in vivo with ovalbumin (OVA) antigen, fucoidan promoted OVA-specific antibody production and primed IFN-? production in OVA-specific T cells. Moreover, fucoidan enhanced OVA-induced up-regulation of MHC class I and II on spleen cDCs and strongly prompted the proliferation of OVA-specific CD4 and CD8 T cells. Finally, OVA immunization with fucoidan as adjuvant protected mice from the challenge with B16-OVA tumor cells. Taken together, these results suggest that fucoidan can function as an adjuvant to induce Th1 immune response and CTL activation, which may be useful in tumor vaccine development.

Jin, Jun-O; Zhang, Wei; Du, Jiang-Yuan; Wong, Ka-Wing; Oda, Tatsuya; Yu, Qing

2014-01-01

257

Calcium-transport function of the chick embryonic chorioallantoic membrane. I. In vivo and in vitro characterization.  

PubMed

During chick embryonic development, the chorioallantoic membrane (CAM) is responsible for the mobilization of shell calcium into the embryonic circulation. The calcium-transport function of the CAM was studied here by measuring CAM calcium uptake in vivo and in vitro. The in vivo technique involved the use of an uptake chamber constructed on top of the CAM in situ. The in vitro methods included two systems: CAM tissue disks and cell-free microsomal membranes isolated from the CAM. Analyses using these three assays show that calcium uptake by the CAM exhibited characteristics indicative of active transport, such as temperature dependence, saturability, energetic requirement and ion specificity. The data also show that calcium-uptake activities of the CAM increase as a function of embryonic age in a manner coincident with the increased accumulation of calcium by the developing embryo in ovo. PMID:3793786

Tuan, R S; Carson, M J; Jozefiak, J A; Knowles, K A; Shotwell, B A

1986-06-01

258

Impact of GnRH agonist triggering and intensive luteal steroid support on live-birth rates and ovarian hyperstimulation syndrome: a retrospective cohort study  

PubMed Central

Background Conventional luteal support packages are inadequate to facilitate a fresh transfer after GnRH agonist (GnRHa) trigger in patients at high risk of developing ovarian hyperstimulation syndrome (OHSS). By providing intensive luteal-phase support with oestradiol and progesterone satisfactory implantation rates can be sustained. The objective of this study was to assess the live-birth rate and incidence of OHSS after GnRHa trigger and intensive luteal steroid support compared to traditional hCG trigger and conventional luteal support in OHSS high risk Asian patients. Methods We conducted a retrospective cohort study of 363 women exposed to GnRHa triggering with intensive luteal support compared with 257 women exposed to conventional hCG triggering. Women at risk of OHSS were defined by ovarian response ?15 follicles ?12 mm on the day of the trigger. Results Live-birth rates were similar in both groups GnRHa vs hCG; 29.8% vs 29.2% (p?=?0.69). One late onset severe OHSS case was observed in the GnRHa trigger group (0.3%) compared to 18 cases (7%) after hCG trigger. Conclusions GnRHa trigger combined with intensive luteal steroid support in this group of OHSS high risk Asian patients can facilitate fresh embryo transfer, however, in contrast to previous reports the occurrence of late onset OHSS was not completely eliminated.

2013-01-01

259

Protective effect of trimetazidine on myocardial mitochondrial function in an ex-vivo model of global myocardial ischemia  

Microsoft Academic Search

Trimetazidine is an anti-ischemic drug whose cytoprotective mechanisms are not yet fully understood (but until now mainly related to the trimetazidine-induced “metabolic shift” from lipid ?-oxidation to glucose aerobic oxidation). We studied the effect of trimetazidine on the mitochondrial function of ischemic Wistar rat hearts perfused with glucose, using a model of ex-vivo perfusion (Langendorff system). We measured the electrical

Pedro Monteiro; Ana I. Duarte; Lino M. Gonçalves; António Moreno; Luís A. Providência

2004-01-01

260

In vivo assembly of functional U7 snRNP requires RNA backbone flexibility within the Sm-binding site  

Microsoft Academic Search

Most histone precursor mRNAs (pre-mRNAs) in metazoans are matured by 3?-end cleavage directed by the U7 small nuclear ribonucleoprotein (snRNP). RNA functional groups necessary for in vivo assembly and activity of the U7 snRNP were examined by nucleotide-analog interference mapping and mutagenesis using a chimeric mouse histone H4 pre-mRNA–U7 snRNA construct that is cleaved in cis in Xenopus laevis oocytes.

Nikolay G Kolev; Joan A Steitz

2006-01-01

261

Increased in vivo stability and functional lifetime of an implantable glucose sensor through platinum catalysis.  

PubMed

Understanding and improving in vivo materials related to signal stability and preservation for active chemical sensor and biosensor transduction systems is critical in achieving implantable medical sensors for long-term in vivo applications. During human in vivo clinical testing of an implantable glucose sensor based on a glucose sensitive hydrogel, post-explant analysis showed that the boronate recognition element had been oxidized from the fluorescent indicator, causing a rapid loss of signal within hours after implant. Additional wet-bench analytical evidence and reproduction in vitro suggests reactive oxygen species, particularly hydrogen peroxide (H2O2), stemming from natural inflammatory response to the material, to be the cause of the observed oxidative de-boronation. A 3-nm thick deposition of metallic platinum (Pt) placed by plasma sputtering onto the porous surface of the hydrogel, showed immediate protection from sensor signal loss due to oxidation both in vitro and in vivo, greatly extending the useful lifetime of the implantable glucose sensor from 1 day to an expected ?6 months. This finding may represent a new strategy to protect an implanted material and/or device from in vivo oxidative damage, leading to much improved overall stability and reliability for long-term applications. PMID:23071075

Colvin, Arthur E; Jiang, Hui

2013-05-01

262

Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function.  

PubMed

Immunoglobulin-like transcript 2 (ILT2/LILRB1/LIR1/CD85j) is an inhibitory receptor broadly expressed on leukocytes and antigen-presenting cells that recognizes HLA-class I and human cytomegalovirus UL18 proteins. The function of this receptor is to generate negative signals or to inhibit positive signals. Here, we demonstrate the model to study the function of ILT2 in vivo using a newly generated transgenic mouse expressing the human inhibitory receptor on T, B, NK, and NKT cells. ILT2 expression affects thymocyte development and targets the proximal TCR signaling pathway, resulting in long-term survival or acceptance of skin allografts. The phenotype and constitutive tyrosine phosphorylation of ILT2 in transgenic mice illustrate the possible existence of a murine ligand. We report here that H-2Db, a murine MHC class I molecule, associates with human ILT2 in vivo. This engagement with ILT2 directs effects on thymocyte development, negative regulation of TCR signaling, T cell activation, and alloimmune responses. Our finding provides support for an important inhibitory function of ILT2 in T cells in vivo and opens up strategies for targeting proximal TCR signaling for prevention of allograft rejection. PMID:16897816

Liang, Siyuan; Zhang, Wei; Horuzsko, Anatolij

2006-09-01

263

Factors affecting the occurrence of postpartum prolonged luteal activity in clinically healthy high-producing dairy cows  

Microsoft Academic Search

The objective was to characterize risk factors affecting the occurrence of prolonged luteal phase (PLP) in postpartum, clinically healthy, high-producing dairy cows. Transrectal ultrasound examinations of the reproductive tract were performed twice weekly, from the 1st to 8th wk after calving in 151 multiparous clinically healthy lactating Holstein cows (mean ± SD of peak milk yield = 56.7 ± 7.4

Mojtaba Kafi; Abdolah Mirzaei; Amin Tamadon; Mehdi Saeb

264

The effects of platelet-activating factor and platelet-derived compounds on bovine luteal cell progesterone production.  

PubMed

This study was conducted to characterize bovine platelets with respect to serotonin (5-HT) concentration and platelet-activating factor (PAF)-activation and to examine the in vitro effects of PAF and platelet-derived compounds on bovine luteal progesterone (P4) production. The concentration of 5-HT in platelets, as determined by high-performance liquid chromatography, was 538.8 +/- 40.83 ng/1 x 10(8) platelets. Based on a circulating platelet concentration range of 2.3 x 10(8) 5.8 x 10(8) platelets/ml, the circulating concentration of 5-HT would be approximately 1239-3125 ng/ml of blood. Bovine platelets were found to aggregate in response to PAF (1-40 ng/0.5 ml), with maximal aggregation occurring at 20-40 ng/0.5 ml. Coincubation of luteal cells with platelets (1 x 10(7)-4 x 10(8] enhanced luteal P4 production (p less than 0.05). Addition of the 5-HT receptor antagonist mianserin blocked the platelet-induced increases in P4 (p less than 0.05). Preincubation of platelets with indomethacin did not alter the production of P4 (p greater than 0.05), nor did the addition of propranolol (p greater than 0.05). Platelet-derived growth factor at 8 and 16 ng/ml enhanced basal P4 production (p less than 0.05) but had no effect on the responsiveness of luteal cells to luteinizing hormone (LH) (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2787672

Battista, P J; Alila, H W; Rexroad, C E; Hansel, W

1989-04-01

265

Effect of oviductal proteins on sperm functions and lipid peroxidation levels during cryopreservation in buffaloes  

Microsoft Academic Search

A study was undertaken to find out the effect of addition of oviductal proteins on sperm functions and lipid peroxidation (LPO) levels in buffaloes. Oviductal flushings were collected from apparently healthy buffalo genital tracts (nonluteal and luteal stage of estrous cycle), centrifuged (3000rpm; 30min), filtered (0.2?m) and frozen at ?20°C. The proteins in pooled nonluteal and luteal oviductal fluid were

A. Kumaresan; M. R. Ansari; Abhishek Garg; Meena Kataria

2006-01-01

266

Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging  

NASA Astrophysics Data System (ADS)

In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe1 - xSex/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the ?v?3 integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

Hu, Rui; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Law, Wing-Cheung; Cai, Hongxing; Zhang, Xihe; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

2010-04-01

267

Measurement and Utilization of In Vivo Blood-Pressure Transfer Functions of Dog and Chicken Aortas  

Microsoft Academic Search

A method for determining the essential parameters of the aorta, namely the geometric taper, area, hoop elasticity, and effective loss factor, from in vivo pressure measurements is presented. A nonuniform hybrid model, having both geometric and elastic taper and terminated in a reflectionless impedance at the femoral bifurcation, is utilized.

Joseph J. Strano; Walter Welkowitz; Sylvan Fich

1972-01-01

268

In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development  

PubMed Central

Rod and cone photoreceptors in mammalian retina are generated from common pool(s) of neuroepithelial progenitors. NRL, CRX and NR2E3 are key transcriptional regulators that control photoreceptor differentiation. Mutations in NR2E3, a rod-specific orphan nuclear receptor, lead to loss of rods, increased density of S-cones and supernormal S-cone-mediated vision in humans. To better understand its in vivo function, NR2E3 was expressed ectopically in the Nrl?/? retina, where post-mitotic precursors fated to be rods develop into functional S-cones similar to the human NR2E3 disease. Expression of NR2E3 in the Nrl?/? retina completely suppressed cone differentiation and resulted in morphologically rod-like photoreceptors, which were however not functional. Gene profiling of FACS-purified photoreceptors confirmed the role of NR2E3 as a strong suppressor of cone genes but an activator of only a subset of rod genes (including rhodopsin) in vivo. Ectopic expression of NR2E3 in cone precursors and differentiating S-cones of wild-type retina also generated rod-like cells. The dual regulatory function of NR2E3 was not dependent upon the presence of NRL and/or CRX, but on the timing and level of its expression. Our studies reveal a critical role of NR2E3 in establishing functional specificity of NRL-expressing photoreceptor precursors during retinal neurogenesis.

Cheng, Hong; Aleman, Tomas S.; Cideciyan, Artur V.; Khanna, Ritu; Jacobson, Samuel G.; Swaroop, Anand

2006-01-01

269

Isolation and ex vivo characterization of the immunophenotype and function of microglia/macrophage populations in normal dog retina.  

PubMed

Microglia are the primary resident immune cells of the retina and are involved in the pathogenesis of various retinal diseases. In this study, we optimized experimental conditions to isolate microglia from canine retinas and characterized ex vivo their immunophenotype and function using flow cytometry (FACS). The most suitable protocol included a mechanical dissociation of the retina and an enzymatic digestion using DNAse and collagenase. Extraction was carried out by density gradient centrifugation, and retinal microglia accumulated on distinct interfaces of 1.072 and 1.088 g/mL of a Percoll gradient. Immunophenotypical characterization was performed with monoclonal antibodies CD11b, CD11c, CD18, CD45, CD44, B7-1 (CD80), B7-2 (CD86), CD1c, ICAM-1 (CD54), CD14, MHCI, MHCII, CD68, CD3, CD4, CD8?, and CD21. The most prevalent microglia population in the normal canine retina is CD11b(high)CD45(low). Functionally, retinal microglia exhibited phagocytosis and reactive oxygen species (ROS) generation activities. To conclude, ex vivo examinations of retinal microglia are feasible and possibly reflect the in vivo conditions, avoiding artifacts observed in tissue culture. The established method will be relevant to examine microglia from diseased canine retinas in order to elucidate their roles in degenerative processes. PMID:24664716

Genini, Sem; Beltran, William A; Stein, Veronika M; Aguirre, Gustavo D

2014-01-01

270

Effect of anabolics on bovine granulosa-luteal cell primary cultures.  

PubMed

Granulosa cell tumours are observed with increased frequency among calves slaughtered in Northern Italy. The use of illegal anabolics in breeding was taken into account as a cause of this pathology. An in vitro approach was used to detect the possible alterations of cell proliferation induced by anabolics on primary cultures of bovine granulosa-luteal cells. Cultures were treated with different concentrations of substances illegally used in cattle (17beta-estradiol, clenbuterol and boldione). Cytotoxicity was determined by means of MTT test, to exclude toxic effects induced by anabolics and to determine the highest concentration to be tested. Morphological changes were evaluated by means of routine cytology, while PCNA expression was quantified in order to estimate cell proliferation. Cytotoxic effects were revealed at the highest concentrations. The only stimulating effect on cell proliferation was detected in boldione treated cultures: after 48 h treated cells, compared to controls, showed a doubled expression of PCNA. In clenbuterol and 17beta-estradiol treated cells PCNA expression was similar to controls or even decreased. As the data suggest an alteration in cell proliferation, boldione could have a role in the early stage of pathogenesis of granulosa cell tumour in cattle. PMID:17951177

Pregel, Paola; Bollo, Enrico; Cannizzo, Francesca Tiziana; Rampazzo, Antonella; Appino, Simonetta; Biolatti, Bartolomeo

2007-01-01

271

Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo.  

PubMed

A novel strategy to construct a therapeutic system based on functionalized AuNPs which can specifically respond to tumor microenvironment was reported. In the therapeutic system, doxorubicin was conjugated to AuNPs via thiol-Au bond by using a peptide substrate, CPLGLAGG, which can be specifically cleaved by the protease. In vivo study shows that after injection of the functionalized AuNPs to the tumor-bearing mice, the over-expressed protease of MMP-2 in tumor tissue and intracellular GSH can lead to the rapid release of the anti-tumor drug (doxorubicin) from the functionalized AuNPs to inhibit tumor growth and realize fluorescently imaging simultaneously. The functionalized AuNPs with tumor-triggered drug release property can further improve the efficacy and reduce side effects significantly. PMID:23932289

Chen, Wei-Hai; Xu, Xiao-Ding; Jia, Hui-Zhen; Lei, Qi; Luo, Guo-Feng; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

2013-11-01

272

In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.  

PubMed

In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200?m dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential. PMID:24575346

Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

2014-02-01

273

Structure and Function of RNase AS, a Polyadenylate-Specific Exoribonuclease Affecting Mycobacterial Virulence In Vivo.  

PubMed

The cell-envelope of Mycobacterium tuberculosis plays a key role in bacterial virulence and antibiotic resistance. Little is known about the molecular mechanisms of regulation of cell-envelope formation. Here, we elucidate functional and structural properties of RNase AS, which modulates M. tuberculosis cell-envelope properties and strongly impacts bacterial virulence in vivo. The structure of RNase AS reveals a resemblance to RNase T from Escherichia coli, an RNase of the DEDD family involved in RNA maturation. We show that RNase AS acts as a 3'-5'-exoribonuclease that specifically hydrolyzes adenylate-containing RNA sequences. Also, crystal structures of complexes with AMP and UMP reveal the structural basis for the observed enzyme specificity. Notably, RNase AS shows a mechanism of substrate recruitment, based on the recognition of the hydrogen bond donor NH2 group of adenine. Our work opens a field for the design of drugs able to reduce bacterial virulence in vivo. PMID:24704253

Romano, Maria; van de Weerd, Robert; Brouwer, Femke C C; Roviello, Giovanni N; Lacroix, Ruben; Sparrius, Marion; van den Brink-van Stempvoort, Gunny; Maaskant, Janneke J; van der Sar, Astrid M; Appelmelk, Ben J; Geurtsen, Jeroen J; Berisio, Rita

2014-05-01

274

Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging.  

PubMed

Single-walled carbon nanotubes (SWCNTs) containing traces of iron oxide were functionalized by noncovalent lipid-PEG or covalent carboxylic acid function to supply new efficient MRI contrast agents for in vitro and in vivo applications. Longitudinal (r(1)) and transversal (r(2)) water proton relaxivities were measured at 300?MHz, showing a stronger T(2) feature as an MRI contrast agent (r(2)/r(1) ?=?190 for CO(2) H functionalisation). The r(2) relaxivity was demonstrated to be correlated to the presence of iron oxide in the SWNT-carboxylic function COOH, in comparison to iron-free ones. Biodistribution studies on mice after a systemic injection showed a negative MRI contrast in liver, suggesting the presence of the nanotubes in this organ until 48?h after i.v. injection. The presence of carbon nanotubes in liver was confirmed after ex vivo carbon extraction. Finally, cytotoxicity studies showed no apparent effect owing to the presence of the carbon nanotubes. The functionalized carbon nanotubes were well tolerated by the animals at the dose of 10?µg?g(-1) body weight. PMID:22434627

Doan, Bich-Thuy; Seguin, Johanne; Breton, Marie; Le Beherec, Ronan; Bessodes, Michel; Rodríguez-Manzo, Julio A; Banhart, Florian; Beloeil, Jean-Claude; Scherman, Daniel; Richard, Cyrille

2012-01-01

275

Regulation of granulocyte function by hyaluronic acid. In vitro and in vivo effects on phagocytosis, locomotion, and metabolism.  

PubMed Central

Hyaluronic acid (HA) stimulated the function of polymorphonucler leukocytes (PMN) both in vitro and in vivo. Stimulation in vitro was achieved by the incubation of PMN and HA in heparinized whole blood at concentrations of HA between 5 and 500 microgram/liter. The stimulation of the PMN function was demonstrated by an increase rate of phagocytosis of complement- and/or immunoglobulin (Ig)G-coated latex particles, increased adherence to nylon wool, increased random migration and chemotactic response, increased chemiluminescence during phagocytosis, and raised levels of intracellular ATP. The effect of HA in vivo was demonstrated, after subcutaneous administration of HA (5-20 mg) to healthy volunteers, by an enhanced rate of phagocytosis of the subsequently isolated neutrophils. The duration of the effect of one administration was approximately 1 wk with maximum effect on days 2-4. HA injections to patients with increased susceptibility to bacterial infections and impaired neutrophil function demonstrated an enhanced neutrophil function also in these individuals. HA may therefore be a new principle by which resistance to infections can be enhanced.

Hakansson, L; Hallgren, R; Venge, P

1980-01-01

276

In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration.  

PubMed

Graphene oxide (GO) and its functionalized derivatives have attracted great attention in biomedicine in recent years. A number of groups including ours have studied the in vivo behaviors of functionalized nano-graphene after intravenous injection or inhalation, and uncovered the surface coating & size dependent biodistribution and toxicology profiles for this type of nanomaterials. However, the fate of GO derivatives in animals after oral feeding and intraperitoneal (i.p.) injection, which are two other major drug administration routes, remain unclear. Therefore, in this work, we sought to systematically investigate in vivo biodistribution and potential toxicity of as-made GO and a number of polyethylene glycol (PEG) functionalized GO derivatives with different sizes and surface coatings, after oral and intraperitoneal administration at high doses. It is found that (125)I labeled PEGylated GO derivatives show no obvious tissue uptake via oral administration, indicating the rather limited intestinal adsorption of those nanomaterials. In contrast, high accumulation of PEGyalted GO derivatives, but not as-made GO, in the reticuloendothelial (RES) system including liver and spleen is observed after i.p. injection. Further investigations based on histological examination of organ slices and hematological analysis discover that although GO and PEGylated GO derivatives would retain in the mouse body over a long period of time after i.p. injection, their toxicity to the treated animals is insignificant. Our work is an important fundamental study that offers a deeper understanding of in vivo behaviors and toxicology of functionalized nano-graphene in animals, depending on their different administration routes. PMID:23340196

Yang, Kai; Gong, Hua; Shi, Xiaoze; Wan, Jianmei; Zhang, Youjiu; Liu, Zhuang

2013-04-01

277

A Multifunctional Turnip Crinkle Virus Replication Enhancer Revealed by in vivo Functional SELEX  

Microsoft Academic Search

The motif1-hairpin (M1H), located on (?)-strands of Turnip Crinkle Virus (TCV)-associated satellite RNA C (satC), is a replication enhancer and recombination hotspot. Results of in vivo genetic selection (SELEX: systematic evolution of ligands by exponential enrichment), where 28 bases of the M1H were randomized and then subjected to selection in plants, revealed that most winners contained one to three short

Guohua Zhang; Anne E Simon

2003-01-01

278

Simultaneous estimation of physiological parameters and the input function - in vivo PET data  

Microsoft Academic Search

Dynamic imaging with positron emission tomography (PET) is widely used for the in-vivo measurement of the regional cerebral metabolic rate for glucose (rCMRGlc) with [ 18F]fluorodeoxy-D-glucose (FDG), and is used for the clinical evaluation of neurological diseases. However, in addition to the acquisition of dynamic images, continuous arterial blood sampling is the conventional method of obtaining the tracer time-activity curve

Koon-pong Wong; David Dagan Feng; Steven R. Meikle; Michael J. Fulham

2001-01-01

279

In vivo and in vitro effects of aluminum treatment on rat liver mitochondrial function  

Microsoft Academic Search

This study examines the effect on mitochondrial respiration and permeability of in vivo and in vitro aluminium (Al) exposure.\\u000a Rats were treated intraperitoneally with AlCl3 to achieve serum and liver Al concentrations comparable to those seen in Al-related disorders. Mitochondria isolated from\\u000a Al-treated rats had higher (pp<0.05) state 3 respiration, respiratory control (RCR), and ADP\\/O ratio (succinate substrate), and greater

Maria Burnatowska-Hledin; Karl V. Ebner; Gilbert H. Mayor

1986-01-01

280

Functional characterization of equine neutrophils in response to calcium ionophore A23187 and phorbol myristate acetate ex vivo.  

PubMed

Equine neutrophils (PMN) play a critical role in inflammatory processes in horses. The objective of this study was to characterize equine PMN function ex vivo following stimulation with calcium ionophore A23187 (A23187) and phorbol myristate acetate (PMA). These stimulants trigger different branches of the PMN activation process that occurs in vivo. Equine PMN were isolated from the whole blood of six clinically normal geldings using a one-step discontinuous Percoll gradient technique. Neutrophil aggregation, degranulation, and superoxide anion production were evaluated in assay systems which had previously been established to quantitate PMN function. Dose-response curves for A23187 and PMA were derived for the three functions. Results indicate that equine PMN aggregation and superoxide anion production are more responsive to activation by PMA as the maximum change in percent transmittance and maximum nanomoles of superoxide anion produced following PMA stimulation (60.8% and 10.4 nmol per 10(6) cells, respectively) were greater than those values stimulated by A23187 (41.5% and 5.2 nmol per 10(6) cells, respectively). However, degranulation was found to be more responsive to A23187 stimulation (maximum percent degranulation: 56.1%) than to PMA stimulation (maximum percent degranulation: 30.7%). Dose-response curves following A23187 and PMA stimulation revealed that superoxide anion production had the lowest threshold concentration among the three functions. Degranulation had the highest threshold concentration among the three functions for both stimulants. Results indicate that equine PMN functions differ in their dependence on second messengers in the activation pathway. These functions also occur in a dose-dependent manner and differ in the threshold concentrations required for their stimulation. PMID:9223228

Moore, T; Wilcke, J; Chilcoat, C; Eyre, P; Crisman, M

1997-05-01

281

Effects of different patterns of feed restriction and insulin treatment during the luteal phase on reproductive, metabolic, and endocrine parameters in cyclic gilts.  

PubMed

The objectives of the present study were 1) to study potential effects of previous nutritional treatment on developmental competence of early fertilized oocytes in vitro; 2) to study responses to insulin treatment during the period of feed restriction in the late luteal phase which has deleterious effects on subsequent fertility; and 3) to establish the metabolic and endocrine status of gilts during treatment and the subsequent periestrous period. Nineteen trios of littermate gilts were subjected to feed restriction during the first (RH) or second (HR) week of the estrous cycle. A second group of HR gilts received injections of long-acting insulin during their period of feed restriction (HR+I). Intensive sampling was performed in a subgroup of 23 animals on d 15 and 16 of the cycle for analyses of endocrine (gonadotropins and steroid hormones) and metabolic (insulin, IGF-I, leptin, total triiodothyronine [T3], and free T3) variables. Gilts were checked for estrus every 6 h, and time of ovulation was monitored by transcutaneous ultrasonography. Surgeries were performed 12 to 20 h after ovulation, and the early-fertilized oocytes recovered were cultured in vitro under standardized conditions. There was no treatment effect on the developmental competence of fertilized oocytes in vitro; however, ovulation rate was increased in HR+I gilts. No effect of treatment was observed on plasma leptin and IGF-I concentrations on d 15 and 16. However, HR+I gilts had higher (P < 0.05) postprandial insulin and lower (P < 0.05) postprandial total and free T3 on d 15. Plasma concentrations of LH, FSH, and progesterone on d 15 and 16 and plasma estradiol concentrations on d 16 were not affected by previous nutritional or insulin treatment. In the periestrous period, plasma concentrations of LH, FSH, and estradiol were higher (P < 0.05) in RH and HR+I, and the rise in plasma progesterone after the LH surge was lower (P < 0.05), than in HR gilts. No effect of treatment was observed on plasma concentrations of metabolic hormones, except on plasma leptin concentrations, which were higher (P < 0.05) at the time of the LH surge in RH gilts. These results suggest that feed restriction during the late luteal phase may have deleterious effects on ovarian function in the periestrous period, which may be counteracted by insulin. PMID:11204702

Almeida, F R; Mao, J; Novak, S; Cosgrove, J R; Foxcroft, G R

2001-01-01

282

Endogenous Truncated TrkB.T1 Receptor Regulates Neuronal Complexity and TrkB Kinase Receptor Function in vivo  

PubMed Central

Pathological or in vitro over expression of the truncated TrkB.T1 receptor inhibits signaling through the full-length TrkB (TrkB.FL) tyrosine kinase receptor. However, to date, the role of endogenous TrkB.T1 is still unknown. By studying mice lacking the truncated TrkB.T1 isoform but retaining normal spatio-temporal expression of TrkB.FL we have analyzed TrkB.T1 specific physiological functions and its effect on endogenous TrkB kinase signaling in vivo. We found that TrkB.T1 deficient mice develop normally but show increased anxiety in association with morphological abnormalities in the length and complexity of neurites of neurons in the basolateral amygdala. However, no behavioral abnormalities were detected in hippocampal-dependent memory tasks, which correlated with lack of any obvious hippocampal morphological deficits or alterations in basal synaptic transmission and Long-Term Potentiation (LTP). In vivo reduction of TrkB signaling by removal of one BDNF allele could be partially rescued by TrkB.T1 deletion, which was revealed by an amelioration of the enhanced aggression and weight gain associated to BDNF haploinsufficiency. Our results suggest that at the physiological level, TrkB.T1 receptors are important regulators of TrkB.FL signaling in vivo. Moreover, TrkB.T1 selectively affects dendrite complexity of certain neuronal populations.

Carim-Todd, Laura; Bath, Kevin G.; Fulgenzi, Gianluca; Yanpallewar, Sudhirkumar; Jing, Deqiang; Barrick, Colleen A.; Becker, Jodi; Buckley, Hannah; Dorsey, Susan G.; Lee, Francis S.; Tessarollo, Lino

2009-01-01

283

In vivo assembly of functional U7 snRNP requires RNA backbone flexibility within the Sm-binding site.  

PubMed

Most histone precursor mRNAs (pre-mRNAs) in metazoans are matured by 3'-end cleavage directed by the U7 small nuclear ribonucleoprotein (snRNP). RNA functional groups necessary for in vivo assembly and activity of the U7 snRNP were examined by nucleotide-analog interference mapping and mutagenesis using a chimeric mouse histone H4 pre-mRNA-U7 snRNA construct that is cleaved in cis in Xenopus laevis oocytes. Assembly of the unique U7 Sm protein core is rate limiting for processing in vivo and requires four conserved nucleotides within the U7 Sm-binding site, as well as the correct positioning and size of the U7 terminal stem-loop structure. To our surprise, pseudouridine substitution revealed a requirement for backbone flexibility at a particular position within the U7 Sm site, providing in vivo biochemical evidence that an unusual C2'-endo sugar conformation is necessary for assembly of the Sm ring. PMID:16547514

Kolev, Nikolay G; Steitz, Joan A

2006-04-01

284

Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level  

PubMed Central

The molecular events that contribute to, and result from, the in vivo binding of transcription factors to their cognate DNA sequence motifs in mammalian genomes are poorly understood. We demonstrate that variations within the DNA sequence motifs that bind the transcriptional repressor REST (NRSF) encode in vivo DNA binding affinity hierarchies that contribute to regulatory function during lineage-specific and developmental programs in fundamental ways. First, canonical sequence motifs for REST facilitate strong REST binding and control functional classes of REST targets that are common to all cell types, whilst atypical motifs participate in weak interactions and control those targets, which are cell- or tissue-specific. Second, variations in REST binding relate directly to variations in expression and chromatin configurations of REST's target genes. Third, REST clearance from its binding sites is also associated with variations in the RE1 motif. Finally, and most surprisingly, weak REST binding sites reside in DNA sequences that show the highest levels of constraint through evolution, thus facilitating their roles in maintaining tissue-specific functions. These relationships have never been reported in mammalian systems for any transcription factor.

Bruce, Alexander W.; Lopez-Contreras, Andres J.; Flicek, Paul; Down, Thomas A.; Dhami, Pawandeep; Dillon, Shane C.; Koch, Christoph M.; Langford, Cordelia F.; Dunham, Ian; Andrews, Robert M.; Vetrie, David

2009-01-01

285

Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion.  

PubMed

The in vivo roles of the hundreds of mammalian G protein-coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of G(i/o) signaling, under the control of the ROSA26 locus in a Cre recombinase-dependent manner (ROSA26(PTX)). Crossing ROSA26(PTX) mice to mice expressing Cre in pancreatic beta cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of G(i/o) and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the G(i)-coupled alpha(2A)-adrenergic receptor and the G(s)-coupled receptor Taar1, respectively, and protease-activated receptor-2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26(PTX) system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of G(i/o)-coupled GPCRs in multiple cell types and processes. PMID:17992256

Regard, Jean B; Kataoka, Hiroshi; Cano, David A; Camerer, Eric; Yin, Liya; Zheng, Yao-Wu; Scanlan, Thomas S; Hebrok, Matthias; Coughlin, Shaun R

2007-12-01

286

Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion  

PubMed Central

The in vivo roles of the hundreds of mammalian G protein–coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of Gi/o signaling, under the control of the ROSA26 locus in a Cre recombinase–dependent manner (ROSA26PTX). Crossing ROSA26PTX mice to mice expressing Cre in pancreatic ? cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of Gi/o and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the Gi-coupled ?2A-adrenergic receptor and the Gs-coupled receptor Taar1, respectively, and protease-activated receptor–2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26PTX system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of Gi/o-coupled GPCRs in multiple cell types and processes.

Regard, Jean B.; Kataoka, Hiroshi; Cano, David A.; Camerer, Eric; Yin, Liya; Zheng, Yao-Wu; Scanlan, Thomas S.; Hebrok, Matthias; Coughlin, Shaun R.

2007-01-01

287

ABCG2 functions as a general phytoestrogen sulfate transporter in vivo.  

PubMed

ABCG2 is an ATP-dependent efflux transporter that limits the systemic exposure of its substrates. The preferred substrates of ABCG2 in vivo are largely unknown. We aimed to identify the compounds transported by ABCG2 under physiological conditions. In vitro, ABCG2 transports several sulfate conjugates at high rates. We therefore used targeted metabolomics, specifically detecting compounds conjugated to sulfate, to search in plasma, urine, and bile samples of wild-type and Abcg2-/- mice for differentially present compounds, which are likely to represent in vivo ABCG2 substrates. Levels of many sulfate conjugates were up to 15-fold higher in plasma and urine of Abcg2-/- than of wild-type mice, with the opposite effect seen in bile. These differentially present compounds were identified as the sulfate conjugates of phytoestrogens, compounds with weak pro- or antiestrogenic properties. We confirmed that these sulfate conjugates were ABCG2 substrates using transportomics, a method that uses vesicular transport assays to screen for substrates of ABC transporters in body fluids. In conclusion, our results show that ABCG2 limits the systemic exposure to many different phytoestrogens, a class of compounds to which mammals are exposed on a daily basis via food of plant origin, by directing their sulfate conjugates for excretion via the feces. PMID:22707564

van de Wetering, Koen; Sapthu, Sunny

2012-10-01

288

In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis.  

PubMed

The significance of tumor necrosis factor receptor 1 (TNFR1) for TNF function in vivo is well documented, whereas the role of TNFR2 so far remains obscure. In a model of concanavalin A (Con A)-induced, CD4+ T cell-dependent experimental hepatitis in mice, in which TNF is a central mediator of apoptotic and necrotic liver damage, we now provide evidence for an essential in vivo function of TNFR2 in this pathophysiological process. We demonstrate that a cooperation of TNFR1 and TNFR2 is required for hepatotoxicity as mice deficient of either receptor were resistant against Con A. A significant role of TNFR2 for Con A-induced hepatitis is also shown by the enhanced sensitivity of transgenic mice overexpressing the human TNFR2. The ligand for cytotoxic signaling via both TNF receptors is the precursor of soluble TNF, i.e. transmembrane TNF. Indeed, transmembrane TNF is sufficient to mediate hepatic damage, as transgenic mice deficient in wild-type soluble TNF but expressing a mutated nonsecretable form of TNF developed inflammatory liver disease. PMID:9394812

Küsters, S; Tiegs, G; Alexopoulou, L; Pasparakis, M; Douni, E; Künstle, G; Bluethmann, H; Wendel, A; Pfizenmaier, K; Kollias, G; Grell, M

1997-11-01

289

Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo  

PubMed Central

We studied T-cell clones generated from grafts of rejecting and tolerant animals and investigated the regulatory function of Th2 clones in vitro and in vivo. To prevent allograft rejection, we treated LEW strain recipient rats of WF strain kidney grafts with CTLA4Ig to block CD28-B7 costimulation. We then isolated epitope-specific T-cell clones from the engrafted tissue, using a donor-derived immunodominant class II MHC allopeptide presented by recipient antigen-presenting cells. Acutely rejected tissue from untreated animals yielded self-restricted, allopeptide-specific T-cell clones that produced IFN-?, whereas clones from tolerant animals produced IL-4 and IL-10. Adoptive transfer into naive recipients of Th1 clones, but not Th2 clones, induced alloantigen-specific delayed-type hypersensitivity (DTH) responses. In addition, Th2 clones suppressed DTH responses mediated by Th1 clones in vivo and blocked Th1 cell proliferation and IFN-? production in vitro. A pilot human study showed that HLA-DR allopeptide-specific T-cell clones generated from patients with chronic rejection secrete Th1 cytokines, whereas those from patients with stable graft function produce Th2 cytokines in response to donor-specific HLA-DR allopeptides. We suggest that self-restricted alloantigen-specific Th2 clones may regulate the alloimmune responses and promote long-term allograft survival and tolerance.

Waaga, Ana Maria; Gasser, Martin; Kist-van Holthe, Joana E.; Najafian, Nader; Muller, Angelika; Vella, John P.; Womer, Karl L.; Chandraker, Anil; Khoury, Samia J.; Sayegh, Mohamed H.

2001-01-01

290

PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo  

PubMed Central

Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, non-toxicity and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles.

Sun, Conroy; Du, Kim; Fang, Chen; Bhattarai, Narayan; Veiseh, Omid; Kivit, Forrest; Stephen, Zachary; Lee, Donghoon; Ellenbogen, Richard G.; Ratner, Buddy; Zhang, Miqin

2010-01-01

291

Regulation of memory CD4 T-cell pool size and function by natural killer T cells in vivo  

PubMed Central

To develop more effective vaccines and strategies to regulate chronic inflammatory diseases, it is important to understand the mechanisms of immunological memory. Factors regulating memory CD4+ T helper (Th)-cell pool size and function remain unclear, however. We show that activation of type I invariant natural killer T (iNKT) cells with glycolipid ligands and activation of type II natural killer T (NKT) cells with the endogenous ligand sulfatide induced dramatic proliferation and expansion of memory, but not naïve, CD4 T cells. NKT cell-induced proliferation of memory Th1 and Th2 cells was dependent largely on the production of IL-2, with Th2-cell proliferation also affected by loss of IL-4. Type II NKT cells were also required for efficient maintenance of memory CD4 T cells in vivo. Activation of iNKT cells resulted in up-regulation of IFN-? expression by memory Th2 cells. These IFN-?–producing memory Th2 cells showed a decreased capability to induce Th2 cytokines and eosinophilic airway inflammation. Thus, activated NKT cells directly regulate memory CD4 T-cell pool size and function via the production of cytokines in vivo.

Iwamura, Chiaki; Shinoda, Kenta; Endo, Yusuke; Watanabe, Yukiko; Tumes, Damon John; Motohashi, Shinichiro; Kawahara, Kazuyoshi; Kinjo, Yuki; Nakayama, Toshinori

2012-01-01

292

Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo.  

PubMed

In the present study, surface functional groups of titanium surfaces gone through different treatments, including acid etched treatment (AE), nitric acid treatment (NT), heat treatment (HT), and alkali treatment (AT), and their behaviors in vitro and in vivo was thoroughly studied by spectroscopic analysis. In vitro and in vivo results revealed that the rank of bioactivity of various surfaces was AE < NT < HT < AT. XPS analysis indicated that AT greatly increased the OH group concentration on the titanium surface whereas HT reduced the OH group concentration. Thus, OH group difference could not be a good explanation of bioactivity difference. On the other hand, ToF-SIMS analysis demonstrated the TiOH+/Ti+ ratios of various surfaces correlated well with the bioactivity and the surface energies, which implied that Ti-OH could play an important role in the bioactivity. This detail investigation of the relationship between surface functional groups and surface bioactivity could help us to broaden the knowledge about the mechanism of bioactivity and to design next generation bioactive materials. PMID:17618503

Lu, Xiong; Wang, Yingbo; Yang, Xiudong; Zhang, Qiyi; Zhao, Zhanfeng; Weng, Lu-Tao; Leng, Yang

2008-02-01

293

Goserelin can inhibit ovarian cancer proliferation and simultaneously protect ovarian function from cisplatin: an in vitro and in vivo study.  

PubMed

This study investigates whether goserelin can inhibit ovarian cancer proliferation and protect ovarian function from cisplatin (CDDP). We evaluated proliferation and AKT phosphorylation in goserelin-treated ES-2 and SKOV3-ip ovarian cancer cells. Anti-Müllerian hormone (AMH) in human granulosa cells (hGCs) cotreated with goserelin and CDDP was measured by ELISA. Tumour volumes, Ki-67 expression, estrus, follicles, ovarian volumes, and serum AMH were compared in nude mice bearing transplanted tumours treated with goserelin and/or CDDP. Our results showed that goserelin inhibited cellular proliferation and AKT phosphorylation in vitro, and inhibited tumour growth and Ki-67 expression in vivo. Goserelin and CDDP cotreatment decreased the estrus cycles of the nude mice and prolonged estrus duration. Goserelin abrogated the CDDP-induced down-regulation of primary and preantral follicle percentage and ovarian volume. Goserelin increased AMH secretion in vitro and in vivo. In conclusion, goserelin inhibited ovarian cancer proliferation and simultaneously protected ovarian function from CDDP. PMID:23684357

Zhang, Ying; Ding, Jing Xin; Tao, Xiang; Lu, Zhi Ying; Wang, Jia Jia; Feng, Wei Wei; Hua, Ke Qin

2013-04-01

294

Oral progestogen versus intramuscular progesterone for luteal support after assisted reproductive technology treatment: a prospective randomized study  

Microsoft Academic Search

Objectives  To evaluate the efficacy of oral progestogen, chlormadinone acetate, and intramuscular (IM) progesterone for luteal support\\u000a in patients, undergoing assisted reproductive technology (ART) treatment, who were treated with a gonadotropin-releasing hormone\\u000a agonist (GnRHa).\\u000a \\u000a \\u000a \\u000a Methods  This was a prospective randomized study of 40 patients with normal and high response (serum estradiol > 2,000 pg\\/ml) in GnRHa\\u000a down-regulation. Patients were randomized to receive either oral chlormadinone

Akira Iwase; Hisao Ando; Shigeru Toda; Shino Ishimatsu; Toko Harata; Shozo Kurotsuchi; Yuji Shimomura; Maki Goto; Fumitaka Kikkawa

2008-01-01

295

In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers  

NASA Technical Reports Server (NTRS)

Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

1999-01-01

296

In vivo biological responses to silk proteins functionalized with bone sialoprotein.  

PubMed

Recombinant 6mer?+?BSP protein, combining six repeats of the consensus sequence for Nephila clavipes dragline (6mer) and bone sialoprotein sequence (BSP), shows good support for cell viability and induces the nucleation of hydroxyapatite and tricalcium phosphate during osteoblast in vitro culture. The present study is conducted to characterize this bioengineered protein-based biomaterial further for in vivo behavior related to biocompatibility. 6mer?+?BSP protein films are implanted in subcutaneous pouches in the back of mice and responses are evaluated by flow cytometry and histology. The results show no major differences between the inflammatory responses induced by 6mer?+?BSP films and the responses observed for the controls. Thus, this new chimeric protein could represent an alternative for bone regeneration applications. PMID:23359587

Gomes, Sílvia; Gallego-Llamas, Jabier; Leonor, Isabel B; Mano, João F; Reis, Rui L; Kaplan, David L

2013-04-01

297

Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes  

PubMed Central

We have created a dendrimer complex suitable for preferential accumulation within liver tumors and luminescence imaging by substituting thirty-two naphthalimide fluorophores on the surface of the dendrimer and incorporating eight europium cations within the branches. We demonstrate the utility and performance of this luminescent dendrimer complex to detect hepatic tumors generated via direct subcapsular implantation or via splenic injections of colorectal cancer cells (CC531) into WAG/RijHsd rats. Luminescence imaging of the tumors after injection of the dendrimer complex via hepatic arterial infusion revealed that the dendrimer complex can preferentially accumulate within liver tumors. Further investigation indicated that dendrimer luminescence in hepatic tumors persisted in vivo. Due to the incorporation of lanthanide cations, this luminescence agent presents a strong resistance against photobleaching. These studies show the dendrimer complex has great potential to serve as an innovative accumulation and imaging agent for the detection of metastatic tumors in our rat hepatic model.

Alcala, Marco A.; Shade, Chad M.; Uh, Hyounsoo; Kwan, Shu Ying; Bischof, Matthias; Thompson, Zachary P.; Gogick, Kristy A.; Meier, Adam R.; Strein, Timothy G.; Bartlett, David L.; Modzelewski, Ruth A.; Lee, Yong J.; Petoud, Stephane; Brown, Charles Komen

2011-01-01

298

Mammalian mitochondrial DNA sequences can function as in vivo bacterial transcription terminators.  

PubMed

We have used a prokaryotic terminator identification vector, pDR721, to isolate regions from rat mitochondrial DNA (mtDNA) that can act as transcription terminators in vivo. Three independent fragments having terminator capability have been mapped to three general regions of the mitochondrial genome. Two terminators, pRMT1 and pRMT3, are found within and around the D-loop and cytochrome b gene, respectively, while the third, pRMT5, is located at the 3'-end of the 16S ribosomal RNA gene. After subcloning into host cells which carried temperature sensitive mutations in the termination factor, rho protein, galactokinase assays at the permissive and non-permissive temperatures suggested that pRMT3 acted as a rho-independent termination element while the other two, pRMT1 and pRMT5, were dependent on rho protein (or a rho-like protein) for efficient transcription termination. PMID:8484772

Staub, J M; Castora, F J

1993-04-30

299

Genome-Wide Screens for In Vivo Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures  

PubMed Central

The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP) from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ?50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.

Jin, Hong; Stojnic, Robert; Adryan, Boris; Ozdemir, Anil; Stathopoulos, Angelike; Frasch, Manfred

2013-01-01

300

In vivo olfactory model of APP-induced neurodegeneration reveals a reversible cell-autonomous function.  

PubMed

Amyloid precursor protein (APP) has long been linked to the neurodegeneration of Alzheimer's disease (AD), but the associated cell death has been difficult to capture in vivo, and the role of APP in effecting neuron loss is still unclear. Olfactory dysfunction is an early symptom of AD with amyloid pathology in the olfactory epithelium correlating well to the brain pathology of AD patients. As olfactory sensory neurons (OSNs) regenerate continuously with immature and mature OSNs coexisting in the same olfactory epithelium, we sought to use this unique system to study APP-induced neurodegeneration. Here we have developed an olfactory-based transgenic mouse model that overexpresses humanized APP containing familial AD mutations (hAPP) in either mature or immature OSNs, and found that despite the absence of extracellular plaques a striking number of apoptotic neurons were detected by 3 weeks of age. Importantly, apoptosis was restricted to the specific population overexpressing hAPP, either mature or immature OSNs, sparing those without hAPP. Interestingly, we observed that this widespread neurodegeneration could be rapidly rescued by reducing hAPP expression levels in immature neurons. Together, these data argue that overexpressing hAPP alone could induce cell-autonomous apoptosis in both mature and immature neurons, challenging the notion that amyloid plaques are necessary for neurodegeneration. Furthermore, we show that hAPP-induced neurodegeneration is reversible, suggesting that AD-related neural loss could potentially be rescued. Thus, we propose that this unique in vivo model will not only help determine the mechanisms underlying AD-related neurodegeneration but also serve as a platform to test possible treatments. PMID:21957232

Cheng, Ning; Cai, Huaibin; Belluscio, Leonardo

2011-09-28

301

Ageing alters perivascular nerve function of mouse mesenteric arteries in vivo.  

PubMed

Abstract? Mesenteric arteries (MAs) are studied widely in vitro but little is known of their reactivity in vivo. Transgenic animals have enabled Ca(2+) signalling to be studied in isolated MAs but the reactivity of these vessels in vivo is undefined. We tested the hypothesis that ageing alters MA reactivity to perivascular nerve stimulation (PNS) and adrenoreceptor (AR) activation during blood flow control. First- (1A), second- (2A) and third-order (3A) MAs of pentobarbital-anaesthetized Young (3-6 months) and Old (24-26 months) male and female Cx40(BAC)-GCaMP2 transgenic mice (C57BL/6 background; positive or negative for the GCaMP2 transgene) were studied with intravital microscopy. A segment of jejunum was exteriorized and an MA network was superfused with physiological salt solution (pH 7.4, 37°C). Resting tone was 10% in MAs of Young and Old mice; diameters were ?5% (1A), 20% (2A) and 40% (3A) smaller (P 0.05) in Old mice. Throughout MA networks, vasoconstriction increased with PNS frequency (1-16 Hz) but was ?20% less in Young vs. Old mice (P 0.05) and was inhibited by tetrodotoxin (1 ?m). Capsaicin (10 ?m; to inhibit sensory nerves) enhanced MA constriction to PNS (P 0.05) by ?20% in Young but not Old mice. Phenylephrine (an ?1AR agonist) potency was greater in Young mice (P 0.05) with similar efficacy (?60% constriction) across ages and MA branches. Constrictions to UK14304 (an ?2AR agonist) were less (?20%; P 0.05) and were unaffected by ageing. Irrespective of sex or transgene expression, ageing consistently reduced the sensitivity of MAs to ?1AR vasoconstriction while blunting the attenuation of sympathetic vasoconstriction by sensory nerves. These findings imply substantive alterations in splanchnic blood flow control with ageing. PMID:23247111

Westcott, Erika B; Segal, Steven S

2013-03-01

302

Ageing alters perivascular nerve function of mouse mesenteric arteries in vivo  

PubMed Central

Mesenteric arteries (MAs) are studied widely in vitro but little is known of their reactivity in vivo. Transgenic animals have enabled Ca2+ signalling to be studied in isolated MAs but the reactivity of these vessels in vivo is undefined. We tested the hypothesis that ageing alters MA reactivity to perivascular nerve stimulation (PNS) and adrenoreceptor (AR) activation during blood flow control. First- (1A), second- (2A) and third-order (3A) MAs of pentobarbital-anaesthetized Young (3–6 months) and Old (24–26 months) male and female Cx40BAC-GCaMP2 transgenic mice (C57BL/6 background; positive or negative for the GCaMP2 transgene) were studied with intravital microscopy. A segment of jejunum was exteriorized and an MA network was superfused with physiological salt solution (pH 7.4, 37°C). Resting tone was ? 10% in MAs of Young and Old mice; diameters were ?5% (1A), 20% (2A) and 40% (3A) smaller (P? 0.05) in Old mice. Throughout MA networks, vasoconstriction increased with PNS frequency (1–16 Hz) but was ?20% less in Young vs. Old mice (P? 0.05) and was inhibited by tetrodotoxin (1 ?m). Capsaicin (10 ?m; to inhibit sensory nerves) enhanced MA constriction to PNS (P? 0.05) by ?20% in Young but not Old mice. Phenylephrine (an ?1AR agonist) potency was greater in Young mice (P? 0.05) with similar efficacy (?60% constriction) across ages and MA branches. Constrictions to UK14304 (an ?2AR agonist) were less (?20%; P? 0.05) and were unaffected by ageing. Irrespective of sex or transgene expression, ageing consistently reduced the sensitivity of MAs to ?1AR vasoconstriction while blunting the attenuation of sympathetic vasoconstriction by sensory nerves. These findings imply substantive alterations in splanchnic blood flow control with ageing.

Westcott, Erika B; Segal, Steven S

2013-01-01

303

Transplantation of lungs from non–heart-beating donors after functional assessment ex vivo  

Microsoft Academic Search

BackgroundIf lungs from patients dying of heart attacks are to serve as donor organs in a safe way, their function should be properly assessed before transplantation. The aim of this study was to investigate donor lung function evaluation in a realistic large animal model.

Stig Steen; Qiuming Liao; Per N Wierup; Ramunas Bolys; Leif Pierre; Trygve Sjöberg

2003-01-01

304

Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups  

PubMed Central

Summary We have developed a generalized profile that identifies members of the root?nodulation?cell?division (RND) family of efflux pumps and classifies them into four functional subfamilies. According to Z?score values, efflux pumps can be grouped by their metabolic function, thus making it possible to distinguish pumps involved in antibiotic resistance (group 1) from those involved in metal resistance (group 3). In silico data regarding efflux pumps in group 1 were validated after identification of RND efflux pumps in a number of environmental microbes that were isolated as resistant to ethidium bromide. Analysis of the Pseudomonas putida KT2440 genome identified efflux pumps in all groups. A collection of mutants in efflux pumps and a screening platform consisting of 50 drugs were created to assign a function to the efflux pumps. We validated in silico data regarding efflux pumps in groups 1 and 3 using 9 different mutants. Four mutants belonging to group 2 were found to be more sensitive than the wild?type to oxidative stress?inducing agents such as bipyridyl and methyl viologen. The two remaining mutants belonging to group 4 were found to be more sensitive than the parental to tetracycline and one of them was particularly sensitive to rubidium and chromate. By effectively combining in vivo data with generalized profiles and gene annotation data, this approach allowed the assignment, according to metabolic function, of both known and uncharacterized RND efflux pumps into subgroups, thereby providing important new insight into the functions of proteins within this family.

Godoy, Patricia; Molina-Henares, Antonio J.; De La Torre, Jesus; Duque, Estrella; Ramos, Juan L.

2010-01-01

305

Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults.  

PubMed

There is growing interest in possible beneficial effects of specific dietary components on cardiovascular health. Platelets and leukocytes contribute to arterial thrombosis and to inflammatory processes. Previous studies performed in vitro have demonstrated inhibition of platelet function by (-)-epicatechin and (+)-catechin, flavan-3-ols (flavanols) that are present in several foods including some cocoas. Also, some modest inhibition of platelet function has been observed ex vivo after the consumption of flavanol-containing cocoa products by healthy adults. So far there are no reports of effects of cocoa flavanols on leukocytes. This paper summarizes 2 recent investigations. The first was a study of the effects of cocoa flavanols on platelet and leukocyte function in vitro. The second was a study of the effects of consumption of a flavanol-rich cocoa beverage by healthy adults on platelet and leukocyte function ex vivo. Measurements were made of platelet aggregation, platelet-monocyte conjugate formation (P/M), platelet-neutrophil conjugate formation (P/N), platelet activation (CD62P on monocytes and neutrophils), and leukocyte activation (CD11b on monocytes and neutrophils) in response to collagen and/or arachidonic acid. In the in vitro study several cocoa flavanols and their metabolites were shown to inhibit platelet aggregation, P/M, P/N, and platelet activation. Their effects were similar to those of aspirin and the effects of a cocoa flavanol and aspirin did not seem to be additive. There was also inhibition of monocyte and neutrophil activation by flavanols, but this was not replicated by aspirin. 4'-O-methyl-epicatechin, 1 of the known metabolites of the cocoa flavanol (-)-epicatechin, was consistently effective as an inhibitor of platelet and leukocyte activation. The consumption of a flavanol-rich cocoa beverage also resulted in significant inhibition of platelet aggregation, P/M and P/N, and platelet activation induced by collagen. The inhibitory effects were related to their flavanol content. There was also inhibition of monocyte and neutrophil activation, but here it was concluded that cocoa constituents other than flavanols may contribute to the inhibition that was observed. It can be concluded that cocoa flavanols, their metabolites and possibly other cocoa constituents can modulate the activity of platelets and leukocytes in vitro and ex vivo. The research suggests that the consumption of certain cocoa products may provide a dietary approach to maintaining or improving cardiovascular health. PMID:16794458

Heptinstall, Stan; May, Jane; Fox, Sue; Kwik-Uribe, Catherine; Zhao, Lian

2006-01-01

306

Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis  

PubMed Central

Gene function during mouse development is often studied through the production and analysis of transgenic and knock-out models. However, these techniques are time- and resource-consuming, and require specialized equipment and expertise. We have established a new protocol for functional studies that combines organ culture of explanted fetal tissues with micro-injection and magnetically-induced transfection (“magnetofection”) of gene expression constructs. As proof-of-principle, we magnetofected cDNA constructs into genital ridge tissue as a means of gain-of-function analysis, and shRNA constructs for loss-of-function analysis. Ectopic expression of Sry induced female-to-male sex-reversal, whereas knockdown of Sox9 expression caused male-to-female sex-reversal, consistent with the known functions of these genes. Further, ectopic expression of Tmem184a, a gene of unknown function, in female genital ridges, resulted in failure of gonocytes to enter meiosis. This technique will likely be applicable to the study of gene function in a broader range of developing organs and tissues.

Svingen, Terje; Wilhelm, Dagmar; Combes, Alexander N.; Hosking, Brett; Harley, Vincent R.; Sinclair, Andrew H.; Koopman, Peter

2010-01-01

307

Identification of the in Vivo Function of the High-Efficiency d-Mannonate Dehydratase in Caulobacter crescentus NA1000 from the Enolase Superfamily.  

PubMed

The d-mannonate dehydratase (ManD) subgroup of the enolase superfamily contains members with varying catalytic activities (high-efficiency, low-efficiency, or no activity) that dehydrate d-mannonate and/or d-gluconate to 2-keto-3-deoxy-d-gluconate [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. Despite extensive in vitro characterization, the in vivo physiological role of a ManD has yet to be established. In this study, we report the in vivo functional characterization of a high-efficiency ManD from Caulobacter crescentus NA1000 (UniProt entry B8GZZ7) by in vivo discovery of its essential role in d-glucuronate metabolism. This in vivo functional annotation may be extended to ?50 additional proteins. PMID:24947666

Wichelecki, Daniel J; Graff, Dylan C; Al-Obaidi, Nawar; Almo, Steven C; Gerlt, John A

2014-07-01

308

Downregulation of the Antigen Presenting Cell Function(s) of Pulmonary Dendritic Cells In Vivo by Resident Alveolar Macrophages  

Microsoft Academic Search

Sllnllnal~ Class II major histocompatibility complex (Ia)-bearing dendritic cells (DC) from airway epithelium and lung parenchyma express low-moderate antigen presenting cell (APC) activity when freshly isolated. However, this function is markedly upregulated during overnight culture in a manner analogous to epidermal Langerhans cells. The in vitro \\

Patrick G. Holt; Jane Oliver; Natalie Bilyk; Christine McMenamin; Paul G. McMenamin; Georg Kraal

1993-01-01

309

Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection.  

PubMed

Acute lung injury (ALI) is a complex syndrome with many aetiologies, resulting in the upregulation of inflammatory mediators in the host, followed by dyspnoea, hypoxemia and pulmonary oedema. A central mediator is inducible nitric oxide synthase (iNOS) that drives the production of NO and continued inflammation. Thus, it is useful to have diagnostic and therapeutic agents for targeting iNOS expression. One general approach is to target the precursor iNOS mRNA with antisense nucleic acids. Peptide nucleic acids (PNAs) have many advantages that make them an ideal platform for development of antisense theranostic agents. Their membrane impermeability, however, limits biological applications. Here, we report the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabelled antisense PNA-YR9 · oligodeoxynucleotide (ODN) hybrid and a cationic shell-cross-linked knedel-like nanoparticle (cSCK). The Y (tyrosine) residue was used for (123)I radiolabelling, whereas the R9 (arginine9) peptide was included to facilitate cell exit of untargeted PNA. Complete binding of the antisense PNA-YR9 · ODN hybrid to the cSCK was achieved at an 8 : 1 cSCK amine to ODN phosphate (N/P) ratio by a gel retardation assay. The antisense PNA-YR9 · ODN · cSCK nanocomplexes efficiently entered RAW264.7 cells, whereas the PNA-YR9 · ODN alone was not taken up. Low concentrations of (123)I-labelled antisense PNA-YR9 · ODN complexed with cSCK showed significantly higher retention of radioactivity when iNOS was induced in lipopolysaccharide+interferon-?-activated RAW264.7 cells when compared with a mismatched PNA. Moreover, statistically, greater retention of radioactivity from the antisense complex was also observed in vivo in an iNOS-induced mouse lung after intratracheal administration of the nanocomplexes. This study demonstrates the specificity and sensitivity by which the radiolabelled nanocomplexes can detect iNOS mRNA in vitro and in vivo and their potential for early diagnosis of ALI. PMID:24427537

Shen, Yuefei; Shrestha, Ritu; Ibricevic, Aida; Gunsten, Sean P; Welch, Michael J; Wooley, Karen L; Brody, Steven L; Taylor, John-Stephen A; Liu, Yongjian

2013-06-01

310

Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection  

PubMed Central

Acute lung injury (ALI) is a complex syndrome with many aetiologies, resulting in the upregulation of inflammatory mediators in the host, followed by dyspnoea, hypoxemia and pulmonary oedema. A central mediator is inducible nitric oxide synthase (iNOS) that drives the production of NO and continued inflammation. Thus, it is useful to have diagnostic and therapeutic agents for targeting iNOS expression. One general approach is to target the precursor iNOS mRNA with antisense nucleic acids. Peptide nucleic acids (PNAs) have many advantages that make them an ideal platform for development of antisense theranostic agents. Their membrane impermeability, however, limits biological applications. Here, we report the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabelled antisense PNA-YR9 · oligodeoxynucleotide (ODN) hybrid and a cationic shell-cross-linked knedel-like nanoparticle (cSCK). The Y (tyrosine) residue was used for 123I radiolabelling, whereas the R9 (arginine9) peptide was included to facilitate cell exit of untargeted PNA. Complete binding of the antisense PNA-YR9 · ODN hybrid to the cSCK was achieved at an 8 : 1 cSCK amine to ODN phosphate (N/P) ratio by a gel retardation assay. The antisense PNA-YR9 · ODN · cSCK nanocomplexes efficiently entered RAW264.7 cells, whereas the PNA-YR9 · ODN alone was not taken up. Low concentrations of 123I-labelled antisense PNA-YR9 · ODN complexed with cSCK showed significantly higher retention of radioactivity when iNOS was induced in lipopolysaccharide+interferon-?-activated RAW264.7 cells when compared with a mismatched PNA. Moreover, statistically, greater retention of radioactivity from the antisense complex was also observed in vivo in an iNOS-induced mouse lung after intratracheal administration of the nanocomplexes. This study demonstrates the specificity and sensitivity by which the radiolabelled nanocomplexes can detect iNOS mRNA in vitro and in vivo and their potential for early diagnosis of ALI.

Shen, Yuefei; Shrestha, Ritu; Ibricevic, Aida; Gunsten, Sean P.; Welch, Michael J.; Wooley, Karen L.; Brody, Steven L.; Taylor, John-Stephen A.; Liu, Yongjian

2013-01-01

311

Radiofrequency time-domain EPR imaging: instrumentation development and recent results in functional physiological in vivo imaging  

NASA Astrophysics Data System (ADS)

Electron Paramagnetic Resonance is an emerging technique finding applications in functional physiological imaging. Traditionally EPR imaging developed as a CW (continuous wave) technique involving the measurement of free radical distribution in vivo using constant frequency and field-sweep modality almost identical to the early developments of MRI. As in CT and PET this involved the generation of projections in presence of gradients and the reconstruction of images via filtered back-projection. The large line-width and the concomitant short relaxation times posed a serious challenge for the development of time-domain methods akin to modern pulsed NMR & MRI. With the recent availability of narrow line stable non-toxic radicals based on triarylmethyl (TAM), ultra fast data acquisition systems (signal digitizer and summer), very fast electronic switches and low-noise amplifiers, we have developed time-domain imaging schemes in EPR operating in the radiofrequency region Using a novel pure-phase encoding scheme, we are able to generate 2 and 3 dimensional spatial images and spectral-spatial images that adds an additional functional dimension to these images. The special space-encoding scheme with fast gradient ramping allow rapid in vivo imaging of small animals with superior spatial and functional information with good temporal resolution that can provide valuable physiological and pharmacokinetic insight. Our main thrust has been in the investigation of tumor hypoxia and tumor reoxygenation for the purpose of minimizing the radiation dose for maximum tumor cell killing. These and some of the allied imaging methods, and results from tumor investigation will be presented.

Subramanian, Sankaran; Devasahayam, Nallathamby; Krishna, M. C.

2007-03-01

312

Changes in ovarian tumor cell number, tumor vasculature, and T cell function monitored in vivo using a novel xenograft model  

PubMed Central

Despite an initial response to chemotherapy, most patients with ovarian cancer eventually progress and succumb to their disease. Understanding why effector T cells that are known to infiltrate the tumor do not eradicate the disease after cytoreduction is critically important to the development of novel therapeutic strategies to augment tumor immunity and improve patient outcomes. Such studies have been hampered by the lack of a suitable in vivo model. We report here a simple and reliable model system in which ovarian tumor cell aggregates implanted intraperitoneally into severely immunodeficient NSG mice establish tumor microenvironments within the omentum. The rapid establishment of tumor xenografts within this small anatomically well-defined site enables the recovery, characterization, and quantification of tumor and tumor-associated T cells. We validate here the ability of the omental tumor xenograft (OTX) model to quantify changes in tumor cell number in response to therapy, to quantify changes in the tumor vasculature, and to demonstrate and study the immunosuppressive effects of the tumor microenvironment. Using the OTX model, we show that the tumor-associated T cells originally present within the tumor tissues are anergic and that fully functional autologous T cells injected into tumor-bearing mice localize within the tumor xenograft. The transferred T cells remain functional for up to 3 days within the tumor microenvironment but become unresponsive to activation after 7 days. The OTX model provides for the first time the opportunity to study in vivo the cellular and molecular events contributing to the arrest in T cell function in human ovarian tumors.

Yokota, Sandra J.; Facciponte, John G.; Kelleher, Raymond J.; Shultz, Leonard D.; Loyall, Jenni L.; Parsons, Robert R.; Odunsi, Kunle; Frelinger, John G.; Lord, Edith M.; Gerber, Scott A.; Balu-Iyer, Sathy V.; Bankert, Richard B.

2013-01-01

313

Exploring Functional ?-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker  

Microsoft Academic Search

Background: The mass of pancreatic b-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous b-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of b-cells and investigated their physiological relevance in increased insulin demand conditions in rats. Methods: Two rat b-cell populations were sorted by FACS according to their PSA-NCAM

Melis Karaca; Julien Castel; Cécile Tourrel-Cuzin; Manuel Brun; Anne Géant; Mathilde Dubois; Sandra Catesson; Marianne Rodriguez; Serge Luquet; Pierre Cattan; Brian Lockhart; Jochen Lang; Alain Ktorza; Christophe Magnan; Catherine Kargar

2009-01-01

314

Exploring Functional beta-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker  

Microsoft Academic Search

BackgroundThe mass of pancreatic ?-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous ?-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of ?-cells and investigated their physiological relevance in increased insulin demand conditions in rats.MethodsTwo rat ?-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e.

Melis Karaca; Julien Castel; Cécile Tourrel-Cuzin; Manuel Brun; Anne Géant; Mathilde Dubois; Sandra Catesson; Marianne Rodriguez; Serge Luquet; Pierre Cattan; Brian Lockhart; Jochen Lang; Alain Ktorza; Christophe Magnan; Catherine Kargar; Kathrin Maedler

2009-01-01

315

Follicular characteristics and luteal development after follicle-stimulating hormone induced multiple ovulations in heifers.  

PubMed

A protocol based on small doses of FSH was examined for the induction of double or triple (multiple) ovulations in cattle. Ovulation rate, follicular characteristics, and luteal responses were determined. In Exp. 1, three groups of estrous-synchronized, cyclic Holstein heifers were treated once daily, on d 3 to 6 of the cycle, with a FSH product (Folltropin-V): large FSH dose (total of 150 mg; n=18), medium FSH dose (total of 130 mg, n=12), and small FSH dose (total of 80 mg; n=7). Controls received saline (n=6). Prostaglandin F(2?) was injected on d 6, ultrasound-guided aspiration of surplus follicles (if needed) was performed on d 7, and GnRH was injected on d 8 to induce ovulation. The large FSH dose induced growth of more (2.6±0.3, P<0.05) large follicles than controls on d 8; medium and small FSH doses insufficiently stimulated growth of <2 large follicles. Ovulation rates were determined in subgroups of heifers (n=10, 13, 4, and 6, respectively). The large FSH dose induced greater rates (P<0.01) of mostly double and triple ovulations (90% multiple ovulations, 70% double ovulations), most of which (89%) were bilateral, with only 2 out of 10 heifers requiring aspiration of surplus follicles. Medium and small FSH doses induced fewer multiple ovulations (38% and 25%, respectively). Estradiol concentrations on d 8 did not differ among treatments, but the concentration per large follicle in controls was greater (P<0.05) than in FSH treatments. Mean corpus luteum (CL) volume in single-ovulation controls was greater (P<0.05) than that of multiple ovulations in the large FSH group and total CL volume and progesterone concentrations were numerically greater in multiple ovulations. In Exp. 2, the characteristics of follicles aspirated on d 7 from large FSH (n=11) and control heifers (n=10) were compared. Based on estradiol-to-progesterone ratio, 57% of the large FSH-treated follicles were classified as codominant/healthy follicles and 43% as subordinate/early atretic. Although concentrations of estradiol and androstenedione in FSH-treated codominant follicles were less (P<0.05) than in controls, estradiol-to-progesterone ratio indicated that those follicles were steroidogenically active. Finely tuned small doses of FSH administered during the first follicular wave can induce a large incidence of double/triple, mainly bilateral, ovulations in cattle, which may serve as a basis for treatment aimed at promoting twinning in beef cattle. PMID:23097398

Glick, G; Hogeg, M; Moallem, U; Lavon, Y; Wolfenson, D

2013-01-01

316

Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation  

NASA Astrophysics Data System (ADS)

Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption ?a and reduced scattering coefficient ?s' of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of ?a and ?s' were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that ?a ranged from 0.02 to 1.25 mm-1 and ?s' was in the range of 1 to 2.8 mm-1 (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

2011-09-01

317

Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo.  

PubMed

Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis. PMID:14530328

Saint-Mezard, Pierre; Chavagnac, Cyril; Bosset, Sophie; Ionescu, Marius; Peyron, Eric; Kaiserlian, Dominique; Nicolas, Jean-Francois; Bérard, Frédéric

2003-10-15

318

In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy  

PubMed Central

Optical-resolution photoacoustic microscopy (OR-PAM) has been validated as a valuable tool for label-free volumetric microvascular imaging. More importantly, the advantages of noninvasiveness and measurement consistency suggest the use of OR-PAM for chronic imaging of intact microcirculation. Here, such chronic imaging is demonstrated for the first time by monitoring the healing process of laser-induced microvascular lesions in a small animal model in vivo. The central part of a 1 mm by 1 mm region in a nude mouse ear was treated under a continuous-wave laser to create a microvascular lesion for chronic study. The region of interest was imaged before the laser treatment, immediately after the treatment, and throughout the healing process using both the authors’ OR-PAM system and a commercial transmission-mode optical microscope. Three-dimensional microvascular morphology and blood oxygenation information were imaged simultaneously at capillary-level resolution. Transmission-mode optical microscopic images were acquired for comparison. OR-PAM has potential important applications in microcirculatory physiology or pathophysiology, tumor angiogenesis, laser microsurgery, and neuroscience.

Hu, Song; Maslov, Konstantin; Wang, Lihong V.

2009-01-01

319

Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo.  

PubMed

Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation. PMID:17112319

Morris, Erick J; Michaud, William A; Ji, Jun-Yuan; Moon, Nam-Sung; Rocco, James W; Dyson, Nicholas J

2006-11-17

320

Pharmacokinetic analysis verifies P450 function during in vitro and in vivo application of a bioartificial liver.  

PubMed

Lidocaine is a sensitive substrate for evaluating liver P450 function. In this study, metabolism of lidocaine by xenogeneic hepatocytes in a hollow fiber, bioartificial liver was measured under in vitro conditions (n = 6) and in an anhepatic rabbit model. Animals in the treatment group (n = 6) received hemoperfusion by a bioartificial liver that contained 100 million rat hepatocytes. Other anhepatic rabbits received no hemoperfusion (n = 3) or a bioartificial liver with no cells (n = 3). Lidocaine clearance was 7.0 +/- 0.6 ml/min, and the half-life of lidocaine was 5.6 +/- 0.8 hr under in vitro conditions. Conversion of lidocaine to 3-hydroxy-lidocaine was confirmed in vitro and accounted for 46% of lidocaine elimination in the hepatocyte bioartificial liver. During in vivo application of the bioartificial liver, pharmacokinetic parameters of lidocaine metabolism, including drug half-life and metabolite formation, were significantly improved in anhepatic rabbits. 3-Hydroxy-lidocaine profiles verified the activity of a P450 isozyme expressed preferentially by rat hepatocytes in the bioartificial liver. We conclude that hepatic P450 activity was provided by xenogeneic hepatocytes during in vitro and in vivo applications of a bioartificial liver. PMID:8268538

Nyberg, S L; Mann, H J; Remmel, R P; Hu, W S; Cerra, F B

1993-01-01

321

In vivo regulation of NGF-mediated functions by Nedd4-2 ubiquitination of TrkA.  

PubMed

Trk neurotrophin receptor ubiquitination in response to ligand activation regulates signaling, trafficking, and degradation of the receptors. However, the in vivo consequences of Trk ubiquitination remain to be addressed. We have developed a mouse model with a mutation in the TrkA neurotrophin receptor (P782S) that results in reduced ubiquitination due to a lack of binding to the E3 ubiquitin ligase, Nedd4-2. In vivo analyses of TrkAP782S indicate that defective ubiquitination of the TrkA mutant results in an altered trafficking and degradation of the receptor that affects the survival of sensory neurons. The dorsal root ganglia from the TrkAP782S knock-in mice display an increased number of neurons expressing CGRP and substance P. Moreover, the mutant mice show enhanced sensitivity to thermal and inflammatory pain. Our results indicate that the ubiquitination of the TrkA neurotrophin receptor plays a critical role in NGF-mediated functions, such as neuronal survival and sensitivity to pain. PMID:24760869

Yu, Tao; Calvo, Laura; Anta, Begoña; López-Benito, Saray; López-Bellido, Roger; Vicente-García, Cristina; Tessarollo, Lino; Rodriguez, Raquel E; Arévalo, Juan C

2014-04-23

322

Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors.  

PubMed

There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 10(6)-10(7)-fold (in ~50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (~10(68)-fold in ~12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine. PMID:24002691

Huang, Xiaosong; Shah, Siddharth; Wang, Jing; Ye, Zhaohui; Dowey, Sarah N; Tsang, Kit Man; Mendelsohn, Laurel G; Kato, Gregory J; Kickler, Thomas S; Cheng, Linzhao

2014-02-01

323

In vitro and in vivo evaluation of a novel ferrocyanide functionalized nanopourous silica decorporation agent for cesium in rats.  

PubMed

Novel decorporation agents are being developed to protect against radiological terrorist attacks. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMS), are hybrid materials where differing organic moieties are grafted onto mesoporous silica (SiO(2)). In vitro experiments focused on the evaluation and optimization of SAMMS for capturing radiocesium ((137)Cs); therefore, based on these studies, a ferrocyanide copper (FC-Cu-EDA)-SAMMS was advanced for in vivo evaluation. In vivo experiments were conducted comparing the performance of the SAMMS vs. insoluble Prussian blue. Groups of jugular cannulated rats (4/treatment) were evaluated. Animals in Group I were administered (137)Cs chloride (approximately 40 microg kg(-1)) by intravenous (i.v.) injection or oral gavage; Group II animals were administered pre-bound (137)Cs-SAMMS or sequential Cs chloride + SAMMS (approximately 61 ng kg(-1)) by oral gavage; and Group III was orally administered (137)Cs chloride (approximately 61 ng kg(-1)) followed by either 0.1 g of SAMMS or Prussian blue. Following dosing, the rats were maintained in metabolism cages for 72 h and blood, urine, and fecal samples were collected for (137)Cs analysis (gamma counting). Rats were then humanely euthanized, and selected tissues analyzed. Orally administered (137)Cs chloride was rapidly and well absorbed (approximately 100% relative to i.v. dose), and the pharmacokinetics (blood, urine, feces, and tissues) were very comparable to the i.v. dose group. For both exposures the urine and feces accounted for 20 and 3% of the dose, respectively. The prebound (137)Cs-SAMMS was retained primarily within the feces (72% of the dose), with approximately 1.4% detected in the urine, suggesting that the (137)Cs remained tightly bound to SAMMS. SAMMS and Prussian blue both effectively captured available (137)Cs in the gut with feces accounting for 80-88% of the administered dose, while less than 2% was detected in the urine. This study suggests that the functionalized SAMMS outperforms Prussian blue in vitro at low pH, but demonstrates comparable in vivo sequestration efficacy at low exposure concentrations. The comparable response may be the result of the low (137)Cs chloride dose and high sorbent dosage that was utilized. Future studies are planned to optimize the performance of SAMMS in vivo over a broader range of doses and conditions. PMID:20699707

Timchalk, Charles; Creim, Jeffrey A; Sukwarotwat, Vichaya; Wiacek, Robert; Addleman, R Shane; Fryxell, Glen E; Yantasee, Wassana

2010-09-01

324

In Vitro and In Vivo Evaluation of a Novel Ferrocyanide Functionalized Nanopourous Silica Decorporation Agent for Cesium in Rats  

SciTech Connect

Novel decorporation agents are being developed to protect against radiological terrorist attacks. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMS™), are hybrid materials where differing organic moieties are grafted onto mesoporous silica (SiO2). In vitro experiments focused on the evaluation, and optimization of SAMMS for capturing radiocesium (137Cs); based on these studies, a ferrocyanide copper (FC-Cu-EDA)-SAMMS was advanced for in vivo evaluation. In vivo experiments were conducted comparing the performance of the SAMMS vs. insoluble Prussian blue. Groups of jugular cannulated rats (4/treatment) were evaluated. Group I was administered 137Cs (~40 ?geq/kg) by intravenous (iv) injection and oral gavage; Group II was administered pre-bound 137Cs-SAMMS and sequential 137Cs + SAMMS (~61 ngeq/kg) by oral gavage; and Group III evaluated orally administered 137Cs (~0.06 ?geq/kg) followed by 0.1 g of either SAMMS or Prussian blue. Following dosing the rats were maintained in metabolism cages for 72 hour and blood, urine and fecal samples were collected for 137Cs analysis (gamma counting). Rats were then humanely euthanized, and selected tissues analyzed. Orally administered 137Cs was rapidly and well absorbed (~100% relative to iv dose), and the pharmacokinetics (blood, urine, feces & tissues) were very comparable to the iv dose group. For both exposures the urine and feces accounted for 20 and 3% of the dose, respectively. The prebound 137Cs-SAMMS was retained primarily within the feces (72% of the dose), with ~1.4% detected in the urine, suggesting that the 137Cs remained tightly bound to SAMMS. SAMMS & Prussian blue both effectively captured available 137Cs in the gut with feces accounting for 80-88% of the administered dose, while less than 2% was detected in the urine. This study suggests that the functionalized SAMMS out performs Prussian blue in vitro at low pH, but demonstrates comparable in vivo sequestration efficacy at low exposure concentrations. The comparable response may be the result of the low 137Cs dose and high sorbent dosage that was utilized. Future studies are planned to optimize SAMMS in vivo performance over a broader range of doses and conditions.

Timchalk, Charles; Creim, Jeffrey A.; Sukwarotwat, Vichaya; Wiacek, Robert J.; Addleman, Raymond S.; Fryxell, Glen E.; Yantasee, Wassana

2010-09-01

325

Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function  

PubMed Central

Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable.

Chen, Lizhen; Zhao, Peng; Wells, Lance; Amemiya, Chris T.; Condie, Brian G.; Manley, Nancy R.

2010-01-01

326

Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function.  

PubMed

Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable. PMID:20498049

Chen, Lizhen; Zhao, Peng; Wells, Lance; Amemiya, Chris T; Condie, Brian G; Manley, Nancy R

2010-06-01

327

Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.  

PubMed

We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope's headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals. PMID:18542658

Engelbrecht, Christoph J; Johnston, Richard S; Seibel, Eric J; Helmchen, Fritjof

2008-04-14

328

Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein  

NASA Astrophysics Data System (ADS)

In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.

Sage, Cyrille; Huang, Mingqian; Karimi, Kambiz; Gutierrez, Gabriel; Vollrath, Melissa A.; Zhang, Duan-Sun; García-Añoveros, Jaime; Hinds, Philip W.; Corwin, Jeffrey T.; Corey, David P.; Chen, Zheng-Yi

2005-02-01

329

Functional magnetic resonance imaging in rodents: an unique tool to study in vivo pharmacologic neuromodulation.  

PubMed

When new compounds targeting the brain are developed, it is important to assess both the acute and chronic effects on brain functioning. This can be done non-invasively using a technique called functional magnetic resonance imaging (fMRI). This review discusses the possibilities of both stimulation-based and resting state fMRI to study pharmacological modulations of the rodent brain. Moreover, attention is given to the use of anesthetics which could importantly influence the outcome of both techniques. PMID:23856429

Jonckers, Elisabeth; Van der Linden, Annemie; Verhoye, Marleen

2013-10-01

330

Mapping brain circuit function in vivo using two-photon fluorescence microscopy.  

PubMed

Mapping the activity of neuronal circuits with high resolution in the intact brain is a fundamental step toward understanding brain function. In the last several years, nonlinear microscopy combined with fluorescent activity reporters has become a crucial tool for achieving this goal. In this review article, we will highlight the principles underlying nonlinear microscopy and discuss its application to neuroscience, focusing on recent functional studies in the rodent neocortex in combination with genetically encoded calcium indicators. Microsc. Res. Tech. 77:492-501, 2014. © 2014 Wiley Periodicals, Inc. PMID:24504776

Bovetti, Serena; Moretti, Claudio; Fellin, Tommaso

2014-07-01

331

Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.  

PubMed

Designing biodegradable scaffolds with bone-compatible mechanical properties has been a significant challenge in the field of bone tissue engineering and regenerative engineering. The objective of this work is to improve the polymeric scaffold's mechanical strength by compositing it with mechanically superior carbon nanotubes. Poly(lactide-co-glycolide) (PLGA) microsphere scaffolds exhibit mechanical properties in the range of human cancellous bone. On the other hand, carbon nanotubes have outstanding mechanical properties. The aim of this study is to improve further the mechanical strength of PLGA scaffolds such that they may be applicable for a wide range of load-bearing repair and regeneration applications. We have formed composite microspheres of PLGA containing pristine and modified (with hydroxyl (OH), carboxylic acid (COOH)) multi-walled carbon nanotubes (MWCNTs), and fabricated them into three-dimensional porous scaffolds. Results show that by adding only 3% MWCNTs, the compressive strength and modulus was significantly increased (35 MPa, 510.99 MPa) compared to pure PLGA scaffolds (19 MPa and 166.38 MPa). Scanning electron microscopy images showed excellent cell adhesion and proliferation. In vitro studies exhibited good cell viability, proliferation and mineralization. The in vivo study, however, indicated differences in inflammatory response throughout the 12 weeks of implantation, with OH-modified MWCNTs having the least response, followed by unmodified and COOH-modified exhibiting a more pronounced response. Overall, our results show that PLGA scaffolds containing water-dispersible MWCNTs are mechanically stronger and display good cellular and tissue compatibility, and hence are potential candidates for load-bearing bone tissue engineering. PMID:24687391

Mikael, Paiyz E; Amini, Ami R; Basu, Joysurya; Josefina Arellano-Jimenez, M; Laurencin, Cato T; Sanders, Mary M; Barry Carter, C; Nukavarapu, Syam P

2014-06-01

332

In vivo stem cell function of interleukin-3-induced blast cells  

SciTech Connect

The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, the authors obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. They examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 {times} 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 {times} 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice.

Tsunoda, J.; Okada, S.; Suda, J.; Nagayoshi, K.; Nakauchi, H.; Hatake, K.; Miura, Y.; Suda, T. (Department of Medicine, Jichi Medical School, Tochigi-ken (Japan))

1991-07-15

333

Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation.  

PubMed

The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress. PMID:22135307

Zoppi, Silvia; Madrigal, José L M; Pérez-Nievas, Beatriz G; Marín-Jiménez, Ignacio; Caso, Javier R; Alou, Luis; García-Bueno, Borja; Colón, Arturo; Manzanares, Jorge; Gómez-Lus, M Luisa; Menchén, Luis; Leza, Juan C

2012-03-01

334

Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model.  

PubMed

Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor-suppressor-gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications. PMID:19800577

Bric, Anka; Miething, Cornelius; Bialucha, Carl Uli; Scuoppo, Claudio; Zender, Lars; Krasnitz, Alexander; Xuan, Zhenyu; Zuber, Johannes; Wigler, Michael; Hicks, James; McCombie, Richard W; Hemann, Michael T; Hannon, Gregory J; Powers, Scott; Lowe, Scott W

2009-10-01

335

Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo.  

PubMed Central

The intravenous administration of heparin to patients before open heart surgery reduced ristocetin cofactor activity by 58% (P less than 0.01, t test), and this impairment of von Willebrand factor-dependent platelet function was closely related to plasma heparin levels (r2 = 0.9), but not to plasma von Willebrand factor (vWF) levels. We hypothesized that heparin may inhibit vWF-dependent platelet hemostatic functions by directly binding vWF in solution and interfering with vWF-GpIb binding. Using the in vitro techniques of ristocetin-induced platelet agglutination, fluorescent flow cytometric measurement of vWF-platelet binding, and conventional radioligand binding assays we observed that heparin inhibited both vWF-dependent platelet function and vWF-platelet binding in a parallel and dose-dependent manner. Heparin also inhibited platelet agglutination induced by bovine vWF and inhibited the binding of human asialo-vWF to platelets in ristocetin-free systems. The inhibitory potency of heparin was not dependent upon its affinity for antithrombin III, but was molecular weight dependent: homogeneous preparations of lower molecular weight were less inhibitory. Heparin impairment of vWF function may explain why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin.

Sobel, M; McNeill, P M; Carlson, P L; Kermode, J C; Adelman, B; Conroy, R; Marques, D

1991-01-01

336

Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging  

Microsoft Academic Search

To investigate the functional organization in the monkey inferotemporal cortex, which is the last exclusively visual area along the ventral visual cortical pathway, optical imaging based on intrinsic signals was carried out. We first conducted single-cell recordings with microelectrodes and determined the features critical for the activation of single cells. For the subsequent optical imaging, each critical feature was presented,

Gang Wang; Manabu Tanifuji; Keiji Tanaka

1998-01-01

337

In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters  

PubMed Central

Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae.

Hama, Kotaro; Provost, Elayne; Baranowski, Timothy C.; Rubinstein, Amy L.; Anderson, Jennifer L.; Leach, Steven D.; Farber, Steven A.

2009-01-01

338

Using mutants to probe the in vivo function of plastid envelope membrane metabolite transporters  

Microsoft Academic Search

During the last 15 years, much progress has been made in discovering genes encoding solute trans- porters of the inner plastid envelope membrane. For example, genes encoding transporters for phos- phorylated intermediates, dicarboxylates, adenine nucleotides, inorganic anions, and monosaccharides have been cloned. In many cases, the corresponding proteins have been expressed in recombinant host systems for further functional studies, thus

Andreas P. M. Weber; Jorg Schneidereit; Lars M. Voll

2010-01-01

339

An approach to the functional anatomy of the sacroiliac joints in vivo  

Microsoft Academic Search

Summary This first part of this paper is a review of the literature on the functional anatomy of the sacroiliac joint followed by a preliminary biomechanical study of the fresh post mortem pelvis. The latter was done in order to determine the coefficients of the screw matrix and the position of the instantaneous centers of rotation during the symmetrical movements

B. Lavignolle; J. M. Vital; J. Senegas; J. Destandau; B. Toson; P. Bouyx; P. Morlier; G. Delorme; A. Calabet

1983-01-01

340

Unraveling in vivo Functions of Amyloid Precursor Protein: Insights from Knockout and Knockdown Studies  

Microsoft Academic Search

The amyloid precursor protein (APP) is a widely expressed transmembrane protein that is cleaved to generate A? peptides in the central nervous system and is a key player in the pathogenesis of Alzheimer’s disease. The precise biological functions of APP still remain unclear although various roles have been proposed. While a commonly accepted model argues that A? peptides are the

Yann Senechal; Yves Larmet; Kumlesh K. Dev

2006-01-01

341

In vivo optical imaging and its application to the study of brain functions  

Microsoft Academic Search

Primate inferotemporal cortex (IT) is thought to be essential for object recognition. To investigate the functional organization in IT, optical imaging based on intrinsic signals was carried out. The features critical for the activation of single cells were first determined in unit recordings with electrodes. In the subsequent optical imaging, presentation of the critical features activated patchy regions covering the

Gang Wang

1999-01-01

342

In vitro/In vivo Comparison of Yolk-Sac Function and Embryo Development.  

National Technical Information Service (NTIS)

The yolk-sac function and development of rat embryos grown in vitro for 24hr, starting on day 10.5, were compared with those of embryos grown in utero. The embryos grown in vitro had significantly fewer somites, shorter crown-rump length and smaller yolk-...

J. E. Andrews M. Ebron-McCoy R. M. Zucker K. H. Elstein J. M. Rogers

1991-01-01

343

Selenium functionalized intraocular lenses inhibit posterior capsule opacification in an ex vivo canine lens capsular bag assay.  

PubMed

The purpose of this study was to determine the inhibitory effect of selenocystamine coated intraocular lenses (IOLs) on the formation of posterior capsule opacification (PCO) in an ex vivo canine lens capsular bag assay. Selenocystamine was covalently bound to the surface of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) discs. Three groups of canine lens capsules (6 coated IOLs (SeIOLs), 7 non-coated control IOLs and 8 empty capsules) were cultured for 10 days. During the culture period PCO was scored based on visual inspection of the capsules using phase contrast microscopy. On day 10 all the capsules were prepared for light microscopic examination and lens epithelial cells (LECs) were quantified. Proliferating cell nuclear antigen (PCNA), alpha-smooth muscle actin (alpha-SMA) and cleaved caspase-3 were examined by immunohistochemistry. Additionally, cell viability assays were performed on LECs cultured in tissue culture medium pre-incubated with either a SeIOL or control IOL. The viability assays demonstrated that no detectable cytotoxic leachables were associated with the functionalized IOLs. The central posterior capsule was free of cells underneath all SeIOLs, although large numbers of LECs populated the capsular periphery. Apoptotic cells were observed underneath the periphery of some SeIOLs. Both the PCO scores and LEC counts of SeIOL containing capsules were significantly lower than those of control group capsules (p < 0.01 and p = 0.0004, respectively). The use of selenium functionalized IOLs resulted in a significant reduction of PCO in this ex vivo model. Binding of selenocystamine to a foldable IOL may provide an effective method to prevent population of the central posterior capsule with LECs. PMID:19583956

Pot, Simon A; Chandler, Heather L; Colitz, Carmen M H; Bentley, Ellison; Dubielzig, Richard R; Mosley, Thomas S; Reid, Ted W; Murphy, Christopher J

2009-11-01

344

Engineering Robust and Functional Vascular Networks In Vivo With Human Adult and Cord Blood-Derived Progenitor Cells  

Microsoft Academic Search

The success of therapeutic vascularization and tissue engineering (TE) will rely on our ability to create vascular networks using human cells that can be obtained readily, expanded safely ex vivo and produce robust vasculogenic activity in vivo. We hypothesized that blood- derived endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To

J. M. Melero-Martin; M. E. De Obaldia; S.-Y. Kang; Z. A. Khan; L. Yuan; P. Oettgen; J. Bischoff

2008-01-01

345

Lack of in vitro effect of aglepristone on IFN-? and IL-4 production by resting and mitogen-activated T cells of luteal bitches  

PubMed Central

Background Aglepristone (RU534) is an antiprogestin used for pregnancy termination, parturition induction and conservative pyometra treatment in bitches. Its molecular structure is similar to mifepristone, an antiprogestin used in human medicine. Mifepristone has been shown to suppress proliferation and cytokine production by T cells, whereas the effect of aglepristone on T cell function remains elusive. The purpose of this project was to investigate the in vitro influence of RU534 on IFN-? and IL-4 synthesis by peripheral blood T cells isolated from healthy bitches (N = 16) in luteal phase. The peripheral blood mononuclear cells (PBMCs) were incubated with three different dosages of aglepristone, or dimethyl sulfoxide (DMSO), with or without mitogen. The production of cytokines by resting or mitogen-activated T cells was determined by intercellular staining and flow cytometry analysis or ELISA assay, respectively. Results Our results showed no statistically significant differences in the percentage of IFN-? and IL-4-synthesizing CD4+ or CD8+ resting T cells between untreated and aglepristone-treated cells at 24 and 48 hours post treatment. Moreover, mitogen-activated PBMCs treated with RU534 displayed similar concentration of IFN-? and IL-4 in culture supernatants to those observed in mitogen-activated DMSO-treated PBMCs. Presented results indicate that administration of aglepristone for 48 hours has no influence on IFN-? and IL-4 synthesis by resting and mitogen-activated T cells isolated from diestral bitches. Conclusions We conclude that antiprogestins may differentially affect T cell function depending on the animal species in which they are applied.

2013-01-01

346

The ex-vivo intestinal absorption rate of uranium is a two-phase function of supply.  

PubMed

The concentration-dependent absorption behaviour of uranium was investigated with surviving intestinal segments of rat jejunums, using an ex-vivo model. The results showed a monotonic slightly nonlinear increase in absorption as uranium concentrations increased. This trend was observed over the entire concentration range tested. In the lower concentration range a slower linear ascent was observed while a steeper linear ascent was found for the higher concentration range. Statistical fit was only slightly poorer for an exponential function in the range of lower values and a logarithmic function in the range of higher values. The proportion of uranium absorbed expressed as percent of uranium concentrations in the perfusion solutions followed a monotonically increasing trend from 20 to around 200?g/l uranium in the perfusion solutions, which thereafter appears to reach a plateau, as further increase towards concentrations around 400?g/l is not substantial. The uranium concentration administered had no effect on the vitality and consequently the functionality of the intestinal segments, measured in terms of active glucose transport. The results imply that uranium concentrations of more than 20?g/l in drinking water, for example, could lead to elevated absorption rates and thus to higher internal exposures to consider when setting of Guideline values in this concentration range. PMID:24793262

Konietzka, Rainer; Heinze, Rita; Seiwert, Margarete; Dieter, Hermann H

2014-07-01

347

Comparing the in Vivo Function of ?-Carboxysomes and ?-Carboxysomes in Two Model Cyanobacteria.  

PubMed

The carbon dioxide (CO2)-concentrating mechanism of cyanobacteria is characterized by the occurrence of Rubisco-containing microcompartments called carboxysomes within cells. The encapsulation of Rubisco allows for high-CO2 concentrations at the site of fixation, providing an advantage in low-CO2 environments. Cyanobacteria with Form-IA Rubisco contain ?-carboxysomes, and cyanobacteria with Form-IB Rubisco contain ?-carboxysomes. The two carboxysome types have arisen through convergent evolution, and ?-cyanobacteria and ?-cyanobacteria occupy different ecological niches. Here, we present, to our knowledge, the first direct comparison of the carboxysome function from ?-cyanobacteria (Cyanobium spp. PCC7001) and ?-cyanobacteria (Synechococcus spp. PCC7942) with similar inorganic carbon (Ci; as CO2 and HCO3(-)) transporter systems. Despite evolutionary and structural differences between ?-carboxysomes and ?-carboxysomes, we found that the two strains are remarkably similar in many physiological parameters, particularly the response of photosynthesis to light and external Ci and their modulation of internal ribulose-1,5-bisphosphate, phosphoglycerate, and Ci pools when grown under comparable conditions. In addition, the different Rubisco forms present in each carboxysome had almost identical kinetic parameters. The conclusions indicate that the possession of different carboxysome types does not significantly influence the physiological function of these species and that similar carboxysome function may be possessed by each carboxysome type. Interestingly, both carboxysome types showed a response to cytosolic Ci, which is of higher affinity than predicted by current models, being saturated by 5 to 15 mm Ci. This finding has bearing on the viability of transplanting functional carboxysomes into the C3 chloroplast. PMID:24642960

Whitehead, Lynne; Long, Benedict M; Price, G Dean; Badger, Murray R

2014-05-01

348

In vivo study of indomethacin in bronchiectasis: effect on neutrophil function and lung secretion.  

PubMed

Bronchiectasis is associated with sputum containing high levels of the proteolytic enzyme elastase, which is thought to be involved in the pathogenesis of the disease. Agents which inhibit neutrophil function and interfere with neutrophil elastase release may have a beneficial effect on the development and progression of such diseases. We have studied the effects of the nonsteroidal anti-inflammatory agent indomethacin on neutrophil function in nine patients with clinically stable bronchiectasis. All patients remained clinically stable during the study. We observed a significant reduction in peripheral neutrophil chemotaxis to 10 nmol.L-1 N-formyl-methionyl-leucyl-phenylalanine (FMLP) from a mean of 19.86 (SEM 1.35) to 8.46 (0.68) cells.field-1 after 4 weeks of therapy. There was also a significant reduction in fibronectin degradation both by resting and FMLP-stimulated neutrophils, from a mean of 1.90 (0.19) micrograms x 3 x 10(5) cells at the start of therapy to 0.87 (0.08) micrograms after 4 weeks, and from 3.17 (0.35) micrograms to 1.48 (0.05) micrograms, respectively. There was no effect on spontaneous or stimulated superoxide anion generation by neutrophils. Despite the marked changes in peripheral neutrophil function, no adverse effect was observed on viable bacterial load in the bronchial secretions. In addition, there was no difference in sputum albumin, elastase or myeloperoxidase levels, and only minor changes in the chemotactic activity of the sputum. These results suggest that nonsteroidal anti-inflammatory agents have a major effect on peripheral neutrophil function but do not appear to have an adverse effect on bacterial colonization of the airways. PMID:8575572

Llewellyn-Jones, C G; Johnson, M M; Mitchell, J L; Pye, A; Okafor, V C; Hill, S L; Stockley, R A

1995-09-01

349

In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin  

NASA Astrophysics Data System (ADS)

Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health.

Favazza, Christopher P.; Cornelius, Lynn A.; Wang, Lihong V.

2011-02-01

350

In vitro and in vivo studies of macrophage functions in amebiasis.  

PubMed Central

Experimental intrahepatic inoculation of the gerbil with Entamoeba histolytica trophozoites was used as a model of liver amebiasis to study the cellular immune response elicited by the parasite. It was shown that abscess-derived macrophages (5 to 20 days old) were deficient in their capacity to develop a respiratory burst, to secrete and express membrane-bound interleukin-1-like activity, and to kill E. histolytica trophozoites as well as to respond to lymphokines in vitro. However, macrophages isolated from the spleen and peritoneal cavities from the same infected animals were not significantly down regulated in these functions. Splenocytes from infected gerbils were shown to develop a strong responsiveness to amebic antigen, whereas their response to concanavalin A was suppressed. Crude E. histolytica extracts or conditioned medium down regulated murine BALB/c macrophage accessory and effector cell functions in vitro in a manner similar to abscess-derived macrophages, whereas crude extracts of the nonvirulent E. histolytica-like Laredo strain did not. Our results indicate that intrinsic or secreted products or both from E. histolytica are actively regulating macrophage functions at the abscess site and can possibly mediate other immunoregulatory mechanisms at distant targets.

Denis, M; Chadee, K

1988-01-01

351

Human Chorionic Gonadotropin Combined with Progesterone for Luteal Support Improves Pregnancy Rate in Patients with Low Late-Midluteal Estradiol Levels in IVF Cycles  

Microsoft Academic Search

Purpose: To investigate how late-midluteal estradiol levels relate to the pregnancy outcome in IVF cycles, and to assess whether human chorionic gonadotropin (hCG) for luteal support benefits the pregnancy outcome of patients with low late-midluteal estradiol levels.

Akihisa Fujimoto; Yutaka Osuga; Toshihiro Fujiwara; Tetsu Yano; Osamu Tsutsumi; Mikio Momoeda; Koji Kugu; Kaori Koga; Yutaka Morita; Osamu Wada; Yuji Taketani

2002-01-01

352

Low plasma progesterone concentrations are accompanied by reduced luteal blood flow and increased size of the dominant follicle in dairy cows  

Microsoft Academic Search

To investigate the influence of low plasma progesterone (P4) concentrations on luteal and ovarian follicular development as well as endometrial gene expression in the concomitant and subsequent estrous cycle, 20 lactating dairy (Holstein Friesian and Brown Swiss x Holstein Friesian) cows received either a single treatment with 25 mg prostaglandin F2? (PGF2?) on Day 4 Hour 12 (PG1; n =

J. Lüttgenau; N. Beindorff; S. E. Ulbrich; J. P. Kastelic; H. Bollwein

2011-01-01

353

In Vivo Gene Modification Elucidates Subtype-Specific Functions of a2Adrenergic Receptors 1  

Microsoft Academic Search

Mice with altered a2-adrenergic receptor genes have become important tools in elucidating the subtype-specific functions of the three a2-adrenergic receptor subtypes because of the lack of sufficiently subtype-selective pharmacological agents. Mice with a deletion (knockout) of the a2A-, a2B-, or a2C-gene as well as a point mutation of the a2A-gene (a2A-D79N) and a 3-fold overexpression of the a2C-gene have been

JOSEPH W. KABLE; L. CHARLES MURRIN; DAVID B. BYLUND

354

In vivo function of VDR in gene expression-VDR knock-out mice  

Microsoft Academic Search

Vitamin D exerts many biological actions through nuclear vitamin D receptor (VDR)-mediated gene expression. The transactivation function of VDR is activated by binding 1?,25-dihydroxyvitamin D3[1?,25(OH)2D3], an active form of vitamin D. Conversion from 25(OH)D3 is finely regulated in kidney by 25(OH)D3 1?-hydroxylase[25(OH)D 1?-hydroxylase], keeping serum levels of 1?,25(OH)2D3 constant. Deficiency of vitamin D and mutations in the genes like VDR

Shigeaki Kato; Ken-ichi Takeyama; Sachiko Kitanaka; Akiko Murayama; Keisuke Sekine; Tatsuya Yoshizawa

1999-01-01

355

In vivo functions of integrins: lessons from null mutations in mice.  

PubMed

The integrin family (Hynes, R.O., 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25) is composed of at least 24 heterodimers formed from eight beta subunits and 18 alpha subunits. Thus far, mice expressing null mutations of seven of the eight beta subunits and 13 of the 18 known alpha subunits have been generated, With only a few exceptions, the phenotypes of each of the knockout lines are quite distinct. Studies utilizing integrin knockout mice and cells derived from these mice have provided considerable and sometimes surprising insights into unique functions of individual members of this family. PMID:10936445

Sheppard, D

2000-07-01

356

The Paf1 complex physically and functionally associates with transcription elongation factors in vivo.  

PubMed

We are using biochemical and genetic approaches to study Rtf1 and the Spt4-Spt5 complex, which independently have been implicated in transcription elongation by RNA polymerase II. Here, we report a remarkable convergence of these studies. First, we purified Rtf1 and its associated yeast proteins. Combining this approach with genetic analysis, we show that Rtf1 and Leo1, a protein of unknown function, are members of the RNA polymerase II-associated Paf1 complex. Further analysis revealed allele-specific genetic interactions between Paf1 complex members, Spt4-Spt5, and Spt16-Pob3, the yeast counterpart of the human elongation factor FACT. In addition, we independently isolated paf1 and leo1 mutations in an unbiased genetic screen for suppressors of a cold-sensitive spt5 mutation. These genetic interactions are supported by physical interactions between the Paf1 complex, Spt4-Spt5 and Spt16-Pob3. Finally, we found that defects in the Paf1 complex cause sensitivity to 6-azauracil and diminished PUR5 induction, properties frequently associated with impaired transcription elongation. Taken together, these data suggest that the Paf1 complex functions during the elongation phase of transcription in conjunction with Spt4-Spt5 and Spt16-Pob3. PMID:11927560

Squazzo, Sharon L; Costa, Patrick J; Lindstrom, Derek L; Kumer, Kathryn E; Simic, Rajna; Jennings, Jennifer L; Link, Andrew J; Arndt, Karen M; Hartzog, Grant A

2002-04-01

357

Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo  

PubMed Central

Although the linkage of Chk1 and Chk2 to important cancer signalling suggests that these kinases have functions as tumour suppressors, neither Chk1+/? nor Chk2?/? mice show a predisposition to cancer under unperturbed conditions. We show here that Chk1+/?Chk2?/? and Chk1+/?Chk2+/? mice have a progressive cancer-prone phenotype. Deletion of a single Chk1 allele compromises G2/M checkpoint function that is not further affected by Chk2 depletion, whereas Chk1 and Chk2 cooperatively affect G1/S and intra-S phase checkpoints. Either or both of the kinases are required for DNA repair depending on the type of DNA damage. Mouse embryonic fibroblasts from the double-mutant mice showed a higher level of p53 with spontaneous DNA damage under unperturbed conditions, but failed to phosphorylate p53 at S23 and further induce p53 expression upon additional DNA damage. Neither Chk1 nor Chk2 is apparently essential for p53- or Rb-dependent oncogene-induced senescence. Our results suggest that the double Chk mutation leads to a high level of spontaneous DNA damage, but fails to eliminate cells with damaged DNA, which may ultimately increase cancer susceptibility independently of senescence.

Niida, Hiroyuki; Murata, Kazuhiro; Shimada, Midori; Ogawa, Kumiko; Ohta, Kumiko; Suzuki, Kyoko; Fujigaki, Hidetsugu; Khaw, Aik Kia; Banerjee, Birendranath; Hande, M Prakash; Miyamoto, Tomomi; Miyoshi, Ichiro; Shirai, Tomoyuki; Motoyama, Noboru; Delhase, Mireille; Appella, Ettore; Nakanishi, Makoto

2010-01-01

358

Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo.  

PubMed

Although the linkage of Chk1 and Chk2 to important cancer signalling suggests that these kinases have functions as tumour suppressors, neither Chk1+/- nor Chk2-/- mice show a predisposition to cancer under unperturbed conditions. We show here that Chk1+/-Chk2-/- and Chk1+/-Chk2+/- mice have a progressive cancer-prone phenotype. Deletion of a single Chk1 allele compromises G2/M checkpoint function that is not further affected by Chk2 depletion, whereas Chk1 and Chk2 cooperatively affect G1/S and intra-S phase checkpoints. Either or both of the kinases are required for DNA repair depending on the type of DNA damage. Mouse embryonic fibroblasts from the double-mutant mice showed a higher level of p53 with spontaneous DNA damage under unperturbed conditions, but failed to phosphorylate p53 at S23 and further induce p53 expression upon additional DNA damage. Neither Chk1 nor Chk2 is apparently essential for p53- or Rb-dependent oncogene-induced senescence. Our results suggest that the double Chk mutation leads to a high level of spontaneous DNA damage, but fails to eliminate cells with damaged DNA, which may ultimately increase cancer susceptibility independently of senescence. PMID:20834228

Niida, Hiroyuki; Murata, Kazuhiro; Shimada, Midori; Ogawa, Kumiko; Ohta, Kumiko; Suzuki, Kyoko; Fujigaki, Hidetsugu; Khaw, Aik Kia; Banerjee, Birendranath; Hande, M Prakash; Miyamoto, Tomomi; Miyoshi, Ichiro; Shirai, Tomoyuki; Motoyama, Noboru; Delhase, Mireille; Appella, Ettore; Nakanishi, Makoto

2010-10-20

359

A USPL functional system with articulated mirror arm for in-vivo applications in dentistry  

NASA Astrophysics Data System (ADS)

Ultra-short pulsed laser (USPL) systems for dental application have overcome many of their initial disadvantages. However, a problem that has not yet been addressed and solved is the beam delivery into the oral cavity. The functional system that is introduced in this study includes an articulated mirror arm, a scanning system as well as a handpiece, allowing for freehand preparations with ultra-short laser pulses. As laser source an Nd:YVO4 laser is employed, emitting pulses with a duration of tp < 10 ps at a repetition rate of up to 500 kHz. The centre wavelength is at 1064 nm and the average output power can be tuned up to 9 W. The delivery system consists of an articulated mirror arm, to which a scanning system and a custom made handpiece are connected, including a 75 mm focussing lens. The whole functional system is compact in size and moveable. General characteristics like optical losses and ablation rate are determined and compared to results employing a fixed setup on an optical table. Furthermore classical treatment procedures like cavity preparation are being demonstrated on mammoth ivory. This study indicates that freehand preparation employing an USPL system is possible but challenging, and accompanied by a variety of side-effects. The ablation rate with fixed handpiece is about 10 mm3/min. Factors like defocussing and blinding affect treatment efficiency. Laser sources with higher average output powers might be needed in order to reach sufficient preparation speeds.

Schelle, Florian; Meister, Jörg; Dehn, Claudia; Oehme, Bernd; Bourauel, Christoph; Frentzen, Mathias

360

Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli.  

PubMed Central

The tyrosyl-tRNA synthetase gene (tyrZ) from Thiobacillus ferrooxidans, an acidophilic, autotrophic, gram-negative bacterium that participates in bioleaching of minerals, was cloned and sequenced. The encoded polypeptide (TyrRZ) is 407 amino acids in length (molecular mass; 38 kDa). The predicted protein sequence has an extensive overall identity (44%) to the sequence of the protein encoded by the Bacillus subtilus tyrZ gene, one of the two genes encoding tyrosyl-tRNA synthetases in this microorganism. Alignment with Escherichia coli TyrRS revealed limited overall identity (24%), except in the regions of the signature sequence for class I aminoacyl-tRNA synthetases. Complementation of an E. coli strain with a thermosensitive mutation in TyrRS showed that the protein encoded by the T. ferrooxidans tyrZ gene is functional and recognizes the E. coli tRNA(Tyr) as a substrate. TyrZ is a single-copy gene as revealed by Southern blot analysis. The gene was localized upstream from the putative promoters of the rrnT2 ribosomal RNA operon. Although no rho-independent transcription terminator was found between the two genes, a 1.3-kb RNA hybridized to a DNA probe derived from the tyrZ gene. The functional relationship between these two transcription units is discussed. Images

Salazar, O.; Sagredo, B.; Jedlicki, E.; Soll, D.; Weygand-Durasevic, I.; Orellana, O.

1994-01-01

361

Functional comparison of Deinococcus radiodurans Dps proteins suggests distinct in vivo roles.  

PubMed

Deinococcus radiodurans exhibits extreme resistance to DNA damage and is one of only few bacteria that encode two Dps (DNA protection during starvation) proteins. Dps-1 was shown previously to bind DNA with high affinity and to localize to the D. radiodurans nucleoid. A unique feature of Dps-2 is its predicted signal peptide. In the present paper, we report that Dps-2 assembly into a dodecamer requires the C-terminal extension and, whereas Dps-2 binds DNA with low affinity, it protects against degradation by reactive oxygen species. Consistent with a role for Dps-2 in oxidative stress responses, the Dps-2 promoter is up-regulated by oxidative stress, whereas the Dps-1 promoter is not. Although DAPI (4',6-diamidino-2-phenylindole) staining of Escherichia coli nucleoids shows that Dps-1 can compact genomic DNA, such nucleoid condensation is absent from cells expressing Dps-2. A fusion of EGFP (enhanced green fluorescent protein) to the Dps-2 signal peptide results in green fluorescence at the perimeter of D. radiodurans cells. The differential response of the Dps-1 and Dps-2 promoters to oxidative stress, the distinct cellular localization of the proteins and the differential ability of Dps-1 and Dps-2 to attenuate hydroxyl radical production suggest distinct functional roles; whereas Dps-1 may function in DNA metabolism, Dps-2 may protect against exogenously derived reactive oxygen species. PMID:22857940

Reon, Brian J; Nguyen, Khoa H; Bhattacharyya, Gargi; Grove, Anne

2012-11-01

362

Ex vivo functional responses to HLA-G differ between blood and decidual NK cells  

PubMed Central

Restricted expression of human leucocyte antigen-G (HLA-G) to fetal extravillous trophoblast cells, which invade the decidua during implantation, suggests a role for HLA-G in placentation. In this study, we have investigated several aspects of HLA-G expression and function. Surface levels of HLA-G expression were measured in 70 normal pregnancies. We show the dimeric conformation that is unique to HLA-G forms after passage through the Golgi apparatus. Differences were found in the receptor repertoire of decidual natural killer (dNK) cells that express the leucocyte immunoglobulin-like receptor B1 (LILRB1), which binds dimeric HLA-G strongly. We then measured functional responses of dNK cells with LILRB1, when stimulated by HLA-G in both monomeric and dimeric conformations. Degranulation, interferon-? and interleukin-8 production by dNK cells freshly isolated from the first trimester implantation site were either undetected or not affected by HLA-G. These findings should be considered when inferring the activity of tissue NK cells from results obtained with cell lines, peripheral NK or cultured dNK cells.

Apps, Richard; Sharkey, Andrew; Gardner, Lucy; Male, Victoria; Kennedy, Pippa; Masters, Leanne; Farrell, Lydia; Jones, Des; Thomas, Rasmi; Moffett, Ashley

2011-01-01

363

Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.  

PubMed

Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket. PMID:24361577

Ruiz, Mario; Ganfornina, Maria D; Correnti, Colin; Strong, Roland K; Sanchez, Diego

2014-04-01

364

Endocrine control of ovarian function in dogs and other carnivores  

Microsoft Academic Search

Ovarian function in dogs is minimally but successfully evolved and adapted for fertility, and represents a basic model for examining the more complex evolution of ovarian activity in other carnivores and mammals in general. Canids are monoestrous, polytocous, spontaneous ovulators with a spontaneous luteal function producing progesterone for the duration of a normal 2-month pregnancy and unaffected by hysterectomy. They

P. W. Concannon; V. D. Castracane; M. Temple; A. Montanez

365

Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo.  

PubMed

The specific roles of mutant p53's dominant-negative (DN) or gain-of-function (GOF) properties in regulating acute response and long-term tumorigenesis is unclear. Using "knockin" mouse strains expressing varying R246S mutant levels, we show that the DN effect on transactivation is universally observed after acute p53 activation, whereas the effect on cellular outcome is cell-type specific. Reducing mutant p53 levels abrogated the DN effect. Mutant p53's DN effect protected against radiation-induced death but did not accentuate tumorigenesis. Furthermore, the R246S mutant did not promote tumorigenesis compared to p53(-/-) mice in various models, even when MDM2 is absent, unlike the R172H mutant. Together, these data demonstrate that mutant p53's DN property only affects acute responses, whereas GOF is not universal, being mutation-type specific. PMID:23238012

Lee, Ming Kei; Teoh, Wei Wei; Phang, Beng Hooi; Tong, Wei Min; Wang, Zhao Qi; Sabapathy, Kanaga

2012-12-11

366

VEGF Ameliorates Cognitive Impairment in In Vivo and In Vitro Ischemia via Improving Neuronal Viability and Function.  

PubMed

Vascular endothelial growth factor (VEGF) has recently been proved to be a potential therapeutic drug in ischemic disorders depending on the dose, route and time of administration, especially in focal cerebral ischemia. Whether VEGF could exert protection in a long-term total cerebral ischemic model is still uncertain, and the cellular mechanism has not been clarified so far. In order to answer the above issue, an experiment was performed in non-invasively giving exogenous VEGF to a total cerebral ischemic model rats and examining their spatial cognitive function by performing Morris water maze and long-term potential test. Moreover, we performed in vitro experiment to explore the cellular mechanism of VEGF protection effect. In an in vitro ischemia model oxygen-glucose deprivation (OGD), whole-cell patch-clamp recording was employed to examine neuronal function. Additionally, hematoxylin-eosin and propidium iodide staining were applied in vivo and in vitro in the neuropathological and viability study, separately. Our results showed that intranasal administration of VEGF could improve the cognitive function, synaptic plasticity and damaged hippocampal neurons in a global cerebral ischemia model. In addition, VEGF could retain the membrane potential, neuronal excitability and spontaneous excitatory postsynaptic currents in the early stage of ischemia, which further demonstrated that there was an acute effect of VEGF in OGD-induced pyramidal neurons. Simultaneously, it was also found that the death of CA1 pyramidal neuronal was significantly reduced by VEGF, but there was no similar effect in VEGF coexists with SU5416 group. These results indicated that VEGF could ameliorate cognitive impairment and synaptic plasticity via improving neuronal viability and function through acting on VEGFR-2. PMID:24338641

Yang, Jiajia; Yao, Yang; Chen, Ting; Zhang, Tao

2014-06-01

367

The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo.  

PubMed

The programmed death ligand 1 (PDL1)/programmed death 1 (PD1) costimulatory pathway plays an important role in the inhibition of alloimmune responses as well as in the induction and maintenance of peripheral tolerance. It has been demonstrated recently that PDL1 also can bind B7.1 to inhibit T cell responses in vitro. Using the bm12 into B6 heart transplant model, we investigated the functional significance of this interaction in alloimmune responses in vivo. PD1 blockade unlike PDL1 blockade failed to accelerate bm12 allograft rejection, suggesting a role for an additional binding partner for PDL1 other than PD1 in transplant rejection. PDL1 blockade was able to accelerate allograft rejection in B7.2-deficient recipients but not B7.1-deficient recipients, indicating that PDL1 interaction with B7.1 was important in inhibiting rejection. Administration of the novel 2H11 anti-PDL1 mAb, which only blocks the PDL1-B7.1 interaction, aggravated chronic injury of bm12 allografts in B6 recipients. Aggravated chronic injury was associated with an increased frequency of alloreactive IFN-?-, IL-4-, and IL-6-producing splenocytes and a decreased percentage of regulatory T cells in the recipients. Using an in vitro cell culture assay, blockade of the interaction of PDL1 on dendritic cells with B7.1 on T cells increased IFN-? production from alloreactive CD4(+) T cells, whereas blockade of dendritic cell B7.1 interaction with T cell PDL1 did not. These data indicate that PDL1 interaction with B7.1 plays an important role in the inhibition of alloimmune responses in vivo and suggests a dominant direction for PDL1 and B7.1 interaction. PMID:21697455

Yang, Jun; Riella, Leonardo V; Chock, Susanne; Liu, Tao; Zhao, Xiaozhi; Yuan, Xueli; Paterson, Alison M; Watanabe, Toshihiko; Vanguri, Vijay; Yagita, Hideo; Azuma, Miyuki; Blazar, Bruce R; Freeman, Gordon J; Rodig, Scott J; Sharpe, Arlene H; Chandraker, Anil; Sayegh, Mohamed H

2011-08-01

368

The novel costimulatory pathway PDL1: B7.1 is functional in inhibiting alloimmune responses in vivo1  

PubMed Central

The PDL1: PD1 costimulatory pathway plays an important role in the inhibition of alloimmune responses as well as in the induction and maintenance of peripheral tolerance. It has recently been demonstrated that PDL1 can also bind B7.1 to inhibit T cell responses in vitro. Using the bm12 into B6 heart transplant model, we investigated the functional significance of this interaction in alloimmune responses in vivo. PD1 blockade unlike PDL1 blockade failed to accelerate bm12 allograft rejection suggesting a role for an additional binding partner for PDL1 other than PD1 in transplant rejection. PDL1 blockade was able to accelerate allograft rejection in B7.2-deficient recipients but not B7.1-deficient recipients, indicating that PDL1 interaction with B7.1 was important in inhibiting rejection. Administration of the novel 2H11 anti-PDL1 mAb, which only blocks PDL1: B7.1 interaction, aggravated chronic injury of bm12 allografts in B6 recipients. Aggravated chronic injury was associated with an increased frequency of alloreactive IFN-?-, IL-4-, and IL-6-producing splenocytes and a decreased percentage of regulatory T cells in the recipients. Using an in vitro cell culture assay, blockade of the interaction of PDL1 on dendritic cells with B7.1 on T cells increased IFN-? production from alloreactive CD4+ T cells, whereas blockade of dendritic cell B7.1 interaction with T cell PDL1 did not. These data indicate that PDL1 interaction with B7.1 plays an important role in the inhibition of alloimmune responses in vivo and suggests a dominant direction for PDL1 and B7.1 interaction.

Yang, Jun; Riella, Leonardo V.; Chock, Susanne; Liu, Tao; Zhao, Xiaozhi; Yuan, Xueli; Paterson, Alison M.; Watanabe, Toshihiko; Vanguri, Vijay; Yagita, Hideo; Azuma, Miyuki; Blazar, Bruce R.; Freeman, Gordon J.; Rodig, Scott J.; Sharpe, Arlene H.; Chandraker, Anil; Sayegh, Mohamed H.

2011-01-01

369

Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo.  

PubMed

Active myofibroblast (MF) contraction contributes significantly to the increased intrahepatic vascular resistance that is the primary cause of portal hypertension (PHT) in cirrhosis. We sought proof of concept for direct therapeutic targeting of the dynamic component of PHT and markers of MF activation using short-term administration of the peptide hormone relaxin (RLN). We defined the portal hypotensive effect in rat models of sinusoidal PHT and the expression, activity, and function of the RLN-receptor signaling axis in human liver MFs. The effects of RLN were studied after 8 and 16 weeks carbon tetrachloride intoxication, following bile duct ligation, and in tissue culture models. Hemodynamic changes were analyzed by direct cannulation, perivascular flowprobe, indocyanine green imaging, and functional magnetic resonance imaging. Serum and hepatic nitric oxide (NO) levels were determined by immunoassay. Hepatic inflammation was assessed by histology and serum markers and fibrosis by collagen proportionate area. Gene expression was analyzed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting and hepatic stellate cell (HSC)-MF contractility by gel contraction assay. Increased expression of RLN receptor (RXFP1) was shown in HSC-MFs and fibrotic liver diseases in both rats and humans. RLN induced a selective and significant reduction in portal pressure in pathologically distinct PHT models, through augmentation of intrahepatic NO signaling and a dramatic reduction in contractile filament expression in HSC-MFs. Critical for translation, RLN did not induce systemic hypotension even in advanced cirrhosis models. Portal blood flow and hepatic oxygenation were increased by RLN in early cirrhosis. Treatment of human HSC-MFs with RLN inhibited contractility and induced an antifibrogenic phenotype in an RXFP1-dependent manner. Conclusion: We identified RXFP1 as a potential new therapeutic target for PHT and MF activation status. PMID:23873655

Fallowfield, Jonathan A; Hayden, Annette L; Snowdon, Victoria K; Aucott, Rebecca L; Stutchfield, Ben M; Mole, Damian J; Pellicoro, Antonella; Gordon-Walker, Timothy T; Henke, Alexander; Schrader, Joerg; Trivedi, Palak J; Princivalle, Marc; Forbes, Stuart J; Collins, Jane E; Iredale, John P

2014-04-01

370

In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals  

PubMed Central

The current study was undertaken to investigate potential oncogenic functions of NanogP8, a tumor-specific retrogene homolog of Nanog (expressed in pluripotent cells), in transgenic animal models. To this end, human primary prostate tumor-derived NanogP8 was targeted to the cytokeratin 14 (K14) cellular compartment, and two lines of K14-NanogP8 mice were derived. The line 1 animals, expressing high levels of NanogP8, experienced perinatal lethality and developmental abnormalities in multiple organs, including the skin, tongue, eye, and thymus in surviving animals. On postnatal day 5 transgenic skin, for example, there was increased c-Myc expression and Ki-67+ cells accompanied by profound abnormalities in skin development such as thickened interfollicular epidermis and dermis and lack of hypodermis and sebaceous glands. The line 3 mice, expressing low levels of NanogP8, were grossly normal except cataract development by 4–6 mo of age. Surprisingly, both lines of mice do not develop spontaneous tumors related to transgene expression. Even more unexpectedly, high levels of NanogP8 expression in L1 mice actually inhibited tumor development in a two-stage chemical carcinogenesis model. Mechanistic studies revealed that constitutive NanogP8 overexpression in adult L1 mice reduced CD34+?6+ and Lrig-1+ bulge stem cells, impaired keratinocyte migration, and repressed the expression of many stem cell-associated genes, including Bmp5, Fgfr2, Jmjd1a, and Jun. Our study, for the first time, indicates that transgenically expressed human NanogP8 is biologically functional, but suggests that high levels of NanogP8 may disrupt normal developmental programs and inhibit tumor development by depleting stem cells.

Badeaux, Mark A; Jeter, Collene R; Gong, Shuai; Liu, Bigang; Suraneni, Mahipal V; Rundhaug, Joyce; Fischer, Susan M; Yang, Tao; Kusewitt, Donna; Tang, Dean G

2013-01-01

371

Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion.  

PubMed

arl13b was initially cloned as the novel cystic kidney gene scorpion (sco) in zebrafish and was shown to be required for cilia formation in the kidney duct. In mouse, a null mutant of Arl13b shows abnormal ultrastructure of the cilium and defective sonic hedgehog (Shh) signaling. Importantly, a recent study linked mutations in ARL13B to a classical form of Joubert syndrome (JS), an autosomal r