Science.gov

Sample records for voc emission sources

  1. VOC SOURCE PROFILE MEASUREMENTS

    EPA Science Inventory

    The primary work under this task is to generate VOC source profiles by GC-FID/MS measurements on samples collected in HEASD-supported field studies. Such profiles are crucial data for source apportionment work in both receptor- and emissions-based modeling. OAQPS has recently c...

  2. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance fluxes were obtained using the virtual disjunct eddy covariance method and from Wavelet Analysis along flight tracks flown in the mixed layer. Preliminary analysis of mixing ratio measurements indicate that high concentrations of CH4 occur consistently while flying above the Central Valley that are correlated to large enhancements of methanol which is an important dairy and livestock emissions tracer. The elevated CH4 mixing ratios along the eastern edge of the San Joaquin Valley highlight the contribution of topography and emissions transport to local ambient levels of CH4. Large enhancements of CH4, benzene and toluene are also observed while flying over the oil production facilities in western part of Kern county (state's top oil producing county, 10% of US production) suggesting the likelihood of fugitive emissions in the region. VOC tracer analysis is used to evaluate the source of high CH4 emissions encountered along the eastern edge of the central Sacramento valley where fugitive emissions from natural gas fields and cultivation of rice are likely sources. Plumes from biomass burning, landfills and refineries encountered during different flights are also investigated. Eddy covariance based CH4 flux estimates are derived for various sources and compared with ';bottom-up' inventory estimates to verify/validate the CA methane inventory for major sources.

  3. Chemical composition of major VOC emission sources in the Seoul atmosphere.

    PubMed

    Na, Kwangsam; Kim, Yong Pyo; Moon, Il; Moon, Kil-Choo

    2004-04-01

    This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors. PMID:15006511

  4. Trends in selected ambient volatile organic compound (VOC) concentrations and a comparison to mobile source emission trends in California's South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Pang, Yanbo; Fuentes, Mark; Rieger, Paul

    2015-12-01

    Trends in ambient concentrations of Volatile Organic Compounds (VOC) in the South Coast Air Basin (SoCAB) are compared to trends in VOC emissions from Light-Duty Gasoline Vehicles (LDGV) tested on chassis dynamometers and to trends observed in tunnel studies during the same period to understand the impacts of gasoline vehicle emissions on ambient VOC concentrations from 1999 to 2009. Annual median concentrations for most ambient VOCs decreased 40% from 1999 to 2009 in the SoCAB, based on data from the Photochemical Assessment Monitoring Stations (PAMS). Annual concentration decreases of most compounds, except 2,2,4-trimethylpentane, are highly correlated with the decrease of acetylene, a marker for tailpipe emissions from LDGV. This indicates that ambient VOC concentration decreases were likely due to tailpipe emission reductions from gasoline vehicles. Air Toxics Monitoring Network data also support this conclusion. Benzene concentration-normalized ratios for most compounds except ethane, propane, isoprene, and 2,2,4-trimethylpentane were stable even as these compound concentrations decreased significantly from 1999 to 2009. Such stability suggests that the main sources of ambient VOC were still the same from 1999 to 2009. The comparison of trends in dynamometer testing and tunnel studies also shows that tailpipe emissions remained the dominant source of tunnel LDGV emissions. The pronounced changes in 2,2,4-trimethylpentane ratios due to the introduction of Phase 3 gasoline also confirm the substantial impact of LDGV emissions on ambient VOCs. Diurnal ambient VOC data also suggest that LDGV tailpipe emissions remained the dominant source of ambient VOCs in the SoCAB in 2009. Our conclusion, which is that current inventory models underestimate VOC emissions from mobile sources, is consistent with that of several recent studies of ambient trends in the SoCAB. Our study showed that tailpipe emissions remained a bigger contributor to ambient VOCs than evaporative emissions from LDGV's. This finding is also different from EMFAC estimates.

  5. VOC emissions from wet toner photocopy machines

    SciTech Connect

    Shepherd, J.L.; Howard, C.L.; Leto, B.J.

    1997-12-31

    Indoor air pollution in office buildings affects millions of American workers every day. Potential sources of office indoor air pollution are photocopiers which emit volatile organic compounds (VOCs) during operation. A photocopier`s toner and dispersant contain heavy-treated naphtha, a mixture consisting primarily of decane, which is known to be toxic to humans. An experimental study was completed to characterize VOC emissions from a photocopier located on campus at the University of Texas at Austin. Experiments were completed to estimate the air turnover rate in the room, the VOC concentration in the room during photocopier operation, and a typical daily concentration profile. Based on these experiments, two emissions models were developed: (1) a mass balance on VOC concentration in the room, and (2) a mass balance on the amount of toner and dispersant used per copy. Room ventilation rate was determined to be approximately 1.5 air exchanges per hour. Photocopier emission rates were measured to be from 2 g/min to 9 g/min based on VOC concentration in the room, and were calculated to be 5.4 g/min based on toner and dispersant consumption. These high emission rates of potentially harmful VOCs indicate a need for implementation of measures to protect the health of those utilizing wet toner photocopy machines on a regular basis.

  6. Source Apportionment of VOCs in Edmonton, Alberta

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.

    2012-12-01

    Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to VOC mass at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the mass at the East site and less than 2% of the mass at the Central site. Natural-gas-related emissions accounted for 10% to 20% of the mass at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the VOC mass at the Central site and less than 3% of the mass at the East site. Controllable emissions sources account for the bulk of the identified VOC mass. Efforts to reduce ozone or particulate matter precursors or exposure to toxic pollutants can now be directed to those sources most important to the Edmonton area.

  7. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Zheng, Junyu; Ye, Siqi; Shen, Xingling; Yuan, Zibing; Yin, Shasha

    2013-09-01

    Emission trends and variations in source contributions of SO2, NOx, PM10 and VOCs in the Pearl River Delta (PRD) region from 2000 to 2009 were characterized by using a dynamic methodology, taking into account the economic development, technology penetration, and emission control. The results indicated that SO2 emissions increased rapidly during 2000-2005 but decreased significantly afterward. NOx emissions went up consistently during 2000-2009 except for a break point in 2008. PM10 emissions increased by 76% during 2000-2007 but started to decrease slightly in the following years. VOCs emissions presented continuous increase during the study period. Power plants and industrial sources were consistently the largest SO2 and PM10 emission contributors. The on-road mobile source was the largest emission contributor for VOCs and NOx emissions with decreasing contributions. The NOx contribution from power plants and industrial sources kept increasing. Worthy of mention is that the non-road mobile source is becoming an important SO2 and NOx contributor in this region. Comparisons with satellite data, ground observations and national trends indicated that emission trends developed in this study were reasonable. Implications for future air pollution control policies were discussed.

  8. VOC EMISSION CONTROL TECHNOLOGIES FOR SHIP PAINTING FACILITIES: INDUSTRY CHARACTERIZATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency has the responsibility of reducing the levels of VOC emissions from the nation's stationary and mobile sources. The project was directed at assessing the levels of VOC emissions from ship painting operations with the intent of determining ...

  9. Characteristics and source apportionment of VOCs measured in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cai, Changjie; Geng, Fuhai; Tie, Xuexi; Yu, Qiong; An, Junlin

    2010-12-01

    Volatile organic compounds (VOCs) were measured from 2007 to 2010 at the center of Shanghai, China. Because VOCs are important precursors for ozone photochemical formation, detailed information of VOC sources needs to be investigated. The results show that the measured VOC concentrations in Shanghai are dominated by alkanes (43%) and aromatics (30%), following by halo-hydrocarbons (14%) and alkenes (6%). Based on the measured VOC concentrations, a receptor model (PMF; positive matrix factorization) coupled with the information related to VOC sources (the distribution of major industrial complex, meteorological conditions, etc.) is applied to identify the major VOC sources in Shanghai. The result shows that seven major VOC sources are identified by the PMF method, including (1) vehicle related source which contributes to 25% of the measured VOC concentrations, (2) solvent based industrial source to 17%, (3) fuel evaporation to 15%, (4) paint solvent usage to 15%, (5) steel related industrial production to 12%, (6) biomass/biofuel burning to 9%, and (7) coal burning to 7%. Furthermore, ozone formation potential related to VOC sources is calculated by the MIR (maximum incremental reactivity) technique. The most significant VOC source for ozone formation potential is solvent based industrial sources (27%), paint solvent usage (24%), vehicle related emissions (17%), steel related industrial productions (14%), fuel evaporations (9%), coal burning (6%), and biomass/biofuel burning (3%). The weekend effect on the VOC concentrations shows that VOC concentrations are generally higher in the weekdays than in the weekends at the sampling site, suggesting that traffic conditions and human activities have important impacts on the VOC emissions in Shanghai.

  10. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60...SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for...Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the...

  11. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60...SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for...Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the...

  12. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60...SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for...Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the...

  13. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60...SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for...Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the...

  14. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60...SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for...Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the...

  15. Source apportionment of ambient VOCS in Mumbai city

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali

    Air pollution kills almost half a million Asians every year. Most of this pollution is emitted from buses, trucks, motorcycles and other forms of transport. As Asia's cities continue to expand, the rising number of vehicles has resulted in even greater pollution. Amongst the measures available to control, vehicular emission was engine modification, catalytic converters and fuel modifications. Some of these have led to emissions of some hazardous air pollutants (HAP) like volatile organic compounds (VOCs). VOC emission is an area needing attention in air quality management. This paper discusses a study on VOC concentration at major sources like traffic junction, residential area, commercial areas, industrial areas and petrol pumps in Mumbai city. CMB8 Model has been used to apportion VOCs in Mumbai city. It was observed that evaporative emissions dominate in Mumbai. In order to control VOCs in air the management strategy should thus focus on cost effective vapor recovery systems at refueling stations and in vehicles. Effective inspection and maintenance programme can reduce evaporative and exhaust VOC emissions. Modifying certain fuel parameters, like reducing benzene content in petrol will as well reduce VOC content in air. The benzene content in petrol was 3% in the year 2001 in Mumbai. Adulteration also results in high levels of VOCs in air.

  16. VALIDATION OF VOC EMISSIONS INVENTORIES BY SOURCE APPORTIONMENT AND 14C DATING METHODS: PART 1

    EPA Science Inventory

    This report brings together two conference papers and a journal article (published or in press) which collectively summarize work to date under work supported by the Joint Emissions Inventory oversight Group (JEIOG) to examine the utility of receptor modeling in the validation of...

  17. Sources of Volatile Organic Compounds (VOCs) in the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  18. GAS-PHASE MASS TRANSFER MODEL FOR PREDICTING VOLATILE ORGANIC COMPOUND (VOC) EMISSION RATES FROM INDOOR POLLUTANT SOURCES

    EPA Science Inventory

    Analysis of the impact of sources on indoor pollutant concentrations and occupant exposure to indoor pollutants requires knowledge of the emission rates from the sources. Emission rates are often determined by chamber testing and the data from the chamber test are fitted to an em...

  19. Modeling the Effects of VOC and NOx Emission Sources on Ozone Formation in Houston during the TexAQS 2000 Field Campaign

    SciTech Connect

    Jiang, Guangfeng; Fast, Jerome D.

    2004-09-01

    A meteorological and chemical modeling system is used to determine the effect of ethene and propene point source emission rates on the magnitude and distribution of ozone in the vicinity of Houston. The model performance is evaluated using surface and airborne meteorological and chemical measurements made as part of the 2000 Texas Air Quality Study. A simulation that employed the reported mobile, area, biogenic, and point source emissions produced ozone mixing ratios as high as 120 ppb and distributions of nitrogen oxides that were similar to measurements at most locations, but the model underestimated ozone mixing ratios greater than 140 ppb that were located just downwind of petrochemical facilities. When the point source emission rates of ethene and propene were increased by a factor of 10, the simulated peak ozone levels were in better agreement with surface, aircraft, and lidar observations. The magnitude of the simulated ethene and olefin concentrations were in better agreement with canister samples aloft as well; however, there was still a large amount of scatter in the results. While the highest ozone mixing ratios were produced just downwind of large point source emissions of VOCs, sensitivity simulations also showed that reductions in anthropogenic emissions of NOx would be needed to reduce ozone mixing ratios over a larger area.

  20. A mass transfer model for VOC emission from silage

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan

    2012-07-01

    Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.

  1. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  2. NEW BIOGENIC VOC EMISSIONS MODEL

    EPA Science Inventory

    We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...

  3. Wind tunnels vs. flux chambers: Area source emission measurements and the necessity for VOC and odour correction factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC), odour, and ammonia (NH3) with little regard to air velocity or sweep air flow rates. As a result, flux measurements have been highly variable and scientists have been in disagreement as to the better...

  4. Emission of volatile organic compounds (VOCs) from PVC floor coverings.

    PubMed

    Wiglusz, R; Igielska, B; Sitko, E; Nikel, G; Jarnuszkiewicz, I

    1998-01-01

    In this study 29 PVC floor coverings were tested for emission of vinyl chloride (VC) and other volatile organic compounds (VOCs). A study on the effect of higher temperature on emission of VOCs from newly manufactured PVC flooring was also carried out. The study was conducted in climatic chamber, according to Polish Standard PN-89/Z-04021. GC method was used for analyzing of the compounds emitted. VC was not emitted from any of the floorings tested. Other VOCs were emitted in different concentrations. The influence of temperature on emission was conducted at temperatures of 23 degrees C and 35 degrees C from 2 hrs up to 180 days after introduction of materials in the chamber. The increase of temperature caused increase of total volatile organic compounds (TVOC) emission during 24 hrs of experiment. Then the emission was comparable for both temperatures. After 9 days emission of identified and unidentified compounds (TVOC) showed a rapid decay and stayed on very low level during a few months. The study conducted showed that PVC floorings after 10 days of installation in the room should not be source of indoor air contamination. PMID:10431652

  5. VOC (VOLATILE ORGANIC COMPOUND EMISSION FACTORS FOR THE NAPAP (NATIONAL ACID PRECIPITATION ASSESSMENT PROGRAM) EMISSION INVENTORY

    EPA Science Inventory

    The report gives results of the generation of emission factors for volatile organic compound (VOC) emissions for a number of source classification categories (SCCs), as part of the National Acid Precipitation Assessment Program (NAPAP). Each SCC represents a process or function t...

  6. VOC signatures from North American oil and gas sources (Invited)

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Marrero, J.; Blake, N. J.; Barletta, B.; Hartt, G.; Meinardi, S.; Schroeder, J.; Apel, E. C.; Hornbrook, R. S.; Blake, D. R.

    2013-12-01

    Between 2008 and 2013 UC Irvine has used its whole air sampling (WAS) technique to investigate VOC source signatures from a range of oil and gas sources in North America, including five separate field campaigns at the Alberta oil sands (1 airborne, 4 ground-based); the 2010 Deepwater Horizon oil spill (airborne and ship-based); the 2012 airborne Deep Convective Clouds and Chemistry Project (DC3) mission over oil and gas wells in Colorado, Texas and Oklahoma; and the 2013 ground-based Barnett Shale Campaign in Texas. Each campaign has characterized more than 80 individual C1-C10 VOCs including alkanes, alkenes and aromatics. For example, oil sands are an extra-heavy, unconventional crude oil that is blended with diluent in order to flow, and upgraded into synthetic crude oil. The VOC signature at the oil sands mining and upgrading facilities is alkane-rich, and the fuel gas associated with these operations has an i-butane/n-butane ratio similar to that of liquefied petroleum gas (LPG). In addition to light alkanes, enhanced levels of benzene were observed over US oil and natural gas wells during DC3, likely because of its use in hydrofracking fluid. A series of VOC emission ratios from North American petrochemical sources will be presented and compared, including oil sands, conventional oil and hydrofracking operations.

  7. Characterization and measurement of VOC emissions from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing concern in the U.S. regarding the emission of volatile organic compounds (VOCs) from farms and their contribution to smog formation near ozone non-attainment areas. The few studies that have measured VOC emissions have identified mixed feed and the exposed silage face as major farm ...

  8. Pilot and Full Scale Measurements of VOC Emissions from Lumber Drying of Inland Northwest Species

    SciTech Connect

    Fritz, Brad G.; Lamb, Brian K.; Westberg, Halvor; Folk, Richard; Knighton, B; Grimsrud, E

    2004-07-01

    Volatile organic compounds (VOCs) are precursors to ground level ozone. Ground level ozone is the major component of photochemical smog, and has been linked to a variety of adverse health effects. These health effects include cancer, heart disease, pneumonia and death. In order to reduce ground level ozone, VOC emissions are being more stringently regulated. One VOC source that may come under regulation is lumber drying. Drying lumber is known to emit VOC into the atmosphere. This research evaluates the validity of VOC emission measurements from a small-scale kiln to approximate VOC emissions from kilns at commercial mills. We also report emission factors for three lumber species commonly harvested in the northwest United States (Douglas-fir, ponderosa pine, & grand fir). This work was done with a novel tracer ratio technique at a small laboratory kiln and a large commercial lumber drying facility. The measured emission factors were 0.51 g/kgOD for Douglas-fir, 0.7 g/kgOD for ponderosa pine, and 0.15 g/kgOD for grand fir. Aldehyde emission rates from lumber drying were also measured in some experiments. Results indicate that aldehyde emissions can constitute a significant percentage of the total VOC emissions.

  9. EVALUATION OF VOC (VOLATILE CARBON) EMISSIONS FROM WASTEWATER SYSTEMS (SECONDARY EMISSIONS)

    EPA Science Inventory

    The technical objective of this project was to obtain data for evaluating volatile carbon (VOC) emissions from wastewater treatment facilities for the synthetic organic chemicals manufacturing industry (SOCMI). VOC emissions data were obtained using the Concentration-Profile tech...

  10. [Process-based Emission Characteristics of Volatile Organic Compounds (VOCs) from Paint Industry in the Yangtze River Delta, China].

    PubMed

    Mo, Zi-wei; Niu, He; Lu, Si-hua; Shao, Min; Gou, Bin

    2015-06-01

    Understanding the volatile organic compounds (VOCs) emission characteristics from solvent usage industry is essential to reduce PM2.5 and O3 in Yangtze River Delta region. In this work, VOCs source characteristics of ship container, shipbuilding, wood, and automobile painting industry were measured using canister-GC-MS/FID analysis system. The results showed that VOCs emitted from these industrial sectors were mainly aromatics, such as toluene, xylene, and ethylbenzene, accounting for 79%-99% of total VOCs. The VOCs treatment facilities of activated carbon adsorption had little impact on changing the composition patterns of VOCs, while catalytic combustion treatments produced more alkenes. The combustion treatment of VOCs changed the maximum increment reactivity (MIR) of the VOCs emissions, and was thus very likely to change the ozone formation potentials. PMID:26387293

  11. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  12. Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010-2020

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Shuxiao; Hao, Jiming; Cheng, Shuiyuan

    2011-12-01

    The future (2010-2020) anthropogenic volatile organic compounds (VOCs) emissions in China were projected in this study using 2005 as the reference year. The projections are based on the assumptions of a lower population growth rate (less than 1%), continuous economic development with high GDP growth, and increased urbanization. The results show that the national VOCs emissions would continuously increase from 19.4 Tg in 2005 to 25.9 Tg in 2020, even if China's legislative standards for VOCs emissions are implemented effectively in the future (assumed as control scenario I). The contributions of various emission sources were found to differ greatly in the period of 2010-2020. Solvent utilization would become the largest contributor rising from 22% to 37%, along with an increase for industrial processes from 17% to 24%. However, road vehicle emissions would rapidly decrease from 25% to 11% due to the strict VOCs emission limit standards in China, along with the decrease for stationary fuel combustion from 23% to 16% caused by the reduction of domestic biofuel consumption. Additionally, there would be a notable divergence among provincial emissions. The developed eastern and coastal regions would emit more VOCs than the relatively underdeveloped western and inland regions. Moreover, this divergence grows in the future. When we assumed stricter control measures for solvent utilization and industrial processes (control scenario II) for that period, the projections revealed national VOCs emissions per year would remain at about 20 Tg, if exhaust after-treatment systems are installed in newly-built factories (after 2005) for the most important industrial sources, and the market shares of "low/zero-VOCs" products in paints, adhesives and printing ink raise to the present levels of developed countries. The emission abatements of the two types of measures were estimated to be similar. While scenario II indicates that the sectoral and provincial differences of VOCs emissions would still exist, they would be smaller than in scenario I.

  13. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  14. SUBSTRATE EFFECTS ON VOC EMISSIONS FROM A LATEX PAINT

    EPA Science Inventory

    The effects of two substrates -- a stainless steel plate and a gypsum board -- on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to...

  15. Simulation Chamber Investigations of Secondary Organic Aerosol Formation From Boreal Tree Emissions: Dependence on VOC Classes

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Mentel, T. F.; Kleist, E.; Hohaus, T.; Mensah, A.; Spindler, C.; Tillmann, R.; Uerlings, R.; Dal Maso, M.; Rudich, Y.; Juergen, W.

    2008-12-01

    A considerable fraction of the organic aerosol component is of secondary origin, meaning it is formed through oxidation of volatile organic compounds (VOCs). Plant emissions, e.g. monoterpenes and sesquiterpenes, are a major source of VOCs in the troposphere. So far most laboratory and simulation chamber investigations on the potential to form secondary organic aerosols (SOA) from plant emissions focused on single VOCs such as a-pinene. In this study we investigated the formation and growth of SOA by ozonolysis and/or photo-oxidation of the VOCs emitted by several tree species such as spruce, pine and birch. The experiments were performed in the Plant chamber of the ICG-3 in Jülich under well defined conditions for the plant. VOC emissions were transferred to a reaction chamber which was operated as a continuously stirred tank reactor. SOA formation from the VOCs was initiated by an excess of ozone and OH radicals. The results are compared to a reference study with a-pinene as the only SOA precursor. Our results indicate that the general laboratory approach of studying the formation of SOA from single components can lead to a bias in both the mass yields and the mass spectral signatures observed. Plots of maximum SOA volumes versus the total amount of carbon fed into the reaction chamber led to approximately linear relationships. The intercepts of these plots were seen as threshold for SOA formation. It was observed that this threshold was lower for the mixture of VOCs emitted from spruce, pine, and birch than for a-pinene as single compound. We therefore conclude that the threshold for SOA formation from real plant mixtures may be much lower than the threshold obtained from laboratory experiments that were focussed on single VOCs. SOA formation from stress induced VOCs will be compared to non stress induced emissions. Possible feedbacks of climate change to VOC emissions and aerosol formation will be discussed based on our experimental observations.

  16. Evaluation of VOC emissions from heated roofing asphalt. Final report

    SciTech Connect

    Kariher, P.; Tufts, M.; Hamel, L.

    1991-11-01

    The report gives results of a short-term in-house project to characterize emissions from a simulated asphalt roofing kettle, performed at EPA/AEERL. Hot asphalt surfacing and resurfacing has been identified as a possible significant source of volatile organic compound (VOC) emissions that may affect human health and contribute to the ozone non-attainment problem. The purpose of the study was to collect, identify, and semi-quantitate as many compounds as possible that are discharged during the open heating of roofing asphalt and relate them to the amount volatilized into the air. Types 1, 2, and 3 mopping grade asphalts were chosen for the study. They constitute more than 90% of roofing asphalt used. Samples of each type of asphalt were placed in a simulated roofing kettle, heated to predetermined temperatures, and sampled for volatile and semi-volatile organic emissions. Compounds identified during the study were alkanes, aromatics, a ketone, and an aldehyde.

  17. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    PubMed

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence. PMID:26599318

  18. Quantifying VOC emissions for the strategic petroleum reserve.

    SciTech Connect

    Knowlton, Robert G.; Lord, David L.

    2013-06-01

    A very important aspect of the Department of Energy's (DOE's) Strategic Petroleum Reserve (SPR) program is regulatory compliance. One of the regulatory compliance issues deals with limiting the amount of volatile organic compounds (VOCs) that are emitted into the atmosphere from brine wastes when they are discharged to brine holding ponds. The US Environmental Protection Agency (USEPA) has set limits on the amount of VOCs that can be discharged to the atmosphere. Several attempts have been made to quantify the VOC emissions associated with the brine ponds going back to the late 1970's. There are potential issues associated with each of these quantification efforts. Two efforts were made to quantify VOC emissions by analyzing VOC content of brine samples obtained from wells. Efforts to measure air concentrations were mentioned in historical reports but no data have been located to confirm these assertions. A modeling effort was also performed to quantify the VOC emissions. More recently in 2011- 2013, additional brine sampling has been performed to update the VOC emissions estimate. An analysis of the statistical confidence in these results is presented here. Arguably, there are uncertainties associated with each of these efforts. The analysis herein indicates that the upper confidence limit in VOC emissions based on recent brine sampling is very close to the 0.42 ton/MMB limit used historically on the project. Refining this estimate would require considerable investment in additional sampling, analysis, and monitoring. An analysis of the VOC emissions at each site suggests that additional discharges could be made and stay within current regulatory limits.

  19. A Novel New Approach to VOC and HAP Emission Control 

    E-print Network

    McGinness, M.

    2000-01-01

    HAP (Hazardous Air Pollutant) and VOC (Volatile Organic Compound) thermal emission control devices (ECD) usually require large amounts of energy to operate. They also require large capital investments in heat recovery options and large amounts...

  20. ASSESSMENT OF VOC EMISSIONS FROM FIBERGLASS BOAT MANUFACTURING

    EPA Science Inventory

    The report presents an assessment of volatile organic compound (VOC) emissions from fiberglass boat manufacturing. Description of the industry structure is presented, including estimates of the number of facilities, their size, and geographic distribution. The fiberglass boat m...

  1. ASSESSMENT OF VOC EMISSIONS FROM FIBERGLASS BOAT MANUFACTURING

    EPA Science Inventory

    The report presents an assessment of volatile organic compound (VOC) emissions from fiberglass boat manufacturing. escription of the industry structure is presented, including estimates of the number of facilities, their size, and geographic distribution. he fiberglass boat manuf...

  2. Contribution of evaporative emissions from gasoline vehicles toward total VOC emissions in Japan.

    PubMed

    Yamada, Hiroyuki

    2013-04-01

    The features of evaporative emissions from gasoline vehicles were examined. One potential source of evaporative emissions is mainly the so-called sigh of a fuel tank, which is a function of the daily temperature change and the volume not occupied by fuel. A theoretical equation was proposed for estimating the fuel vapor generation. It reproduced observed features well but underestimated the absolute values obtained in the experimental results. The widely used semi-empirical Reddy equation overestimates the results. The performance of a carbon canister was also evaluated. More than 95% of fuel vapor generation was trapped by the carbon canister. However, the canister worked for only one day because it adsorbed more VOC than that contained in the sigh alone. To estimate the evaporative emissions in the real world, the fuel tank temperature change while a car was parked in an outside car park was monitored and was found to be almost the same as the change in ambient air temperature; no other weather conditions had any effect. According to the findings in this study and data on frequency of car use, the annual amount of evaporative emissions from gasoline vehicles in Japan was estimated to be 4.6% of the total VOC emissions in Japan, making it the 6th-highest source of VOC. PMID:23422493

  3. Source contributions to ambient VOCs and CO at a rural site in eastern China

    NASA Astrophysics Data System (ADS)

    Guo, H.; Wang, T.; Simpson, I. J.; Blake, D. R.; Yu, X. M.; Kwok, Y. H.; Li, Y. S.

    Ambient data on volatile organic compounds (VOCs) and carbon monoxide (CO) obtained at a rural site in eastern China are analyzed to investigate the nature of emission sources and their relative contributions to ambient concentrations. A principal component analysis (PCA) showed that vehicle emissions and biofuel burning, biomass burning and industrial emissions were the major sources of VOCs and CO at the rural site. The source apportionments were then evaluated using an absolute principal component scores (APCS) technique combined with multiple linear regressions. The results indicated that 71%±5% (average±standard error) of the total VOC emissions were attributed to a combination of vehicle emissions and biofuel burning, and 7%±3% to gasoline evaporation and solvent emissions. Both biomass burning and industrial emissions contributed to 11%±1% and 11%±0.03% of the total VOC emissions, respectively. In addition, vehicle emissions and biomass and biofuel burning accounted for 96%±6% of the total CO emissions at the rural site, of which the biomass burning was responsible for 18%±3%. The results based on PCA/APCS are generally consistent with those from the emission inventory, although a larger relative contribution to CO from biomass burning is indicated from our analysis.

  4. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources.

    PubMed

    Tassi, F; Capecchiacci, F; Giannini, L; Vougioukalakis, G E; Vaselli, O

    2013-09-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C6H6/?(methylated aromatics) and ?(linear)/?(branched) alkanes ratios <1 allow to distinguish an anthropogenic source related to emissions from outlet pipes of touristic and private boats and buses. PMID:23747819

  5. Detection and quantification of methane and VOC emissions from oil and gas production operations using remote measurements, Interim report

    EPA Science Inventory

    Improved understanding of air pollutant emissions from oil and gas production operations is needed. With a steadily increasing number of production sources, the impact of emitted volatile organic compounds (VOCs) on regional ozone is potentially significant. As the separation dis...

  6. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: source contribution assessment using the Chemical Mass Balance (CMB) model.

    PubMed

    Badol, Caroline; Locoge, Nadine; Galloo, Jean-Claude

    2008-01-25

    In Part I of this study (Badol C, Locoge N, Leonardis T, Gallo JC. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions, Part I: Study area description, data set acquisition and qualitative data analysis of the data set. Sci Total Environ 2007; submitted as companion manuscript.) the study area, acquisition of the one-year data set and qualitative analysis of the data set have been described. In Part II a source profile has been established for each activity present in the study area: 6 profiles (urban heating, solvent use, natural gas leakage, biogenic emissions, gasoline evaporation and vehicle exhaust) have been extracted from literature to characterise urban sources, 7 industrial profiles have been established via canister sampling around industrial plants (hydrocarbon cracking, oil refinery, hydrocarbon storage, lubricant storage, lubricant refinery, surface treatment and metallurgy). The CMB model is briefly described and its implementation is discussed through the selection of source profiles and fitting species. Main results of CMB modellings for the Dunkerque area are presented. (1) The daily evolution of source contributions for the urban wind sector shows that the vehicle exhaust source contribution varies between 40 and 55% and its relative increase at traffic rush hours is hardly perceptible. (2) The relative contribution of vehicle exhaust varies from 55% in winter down to 30% in summer. This decrease is due to the increase of the relative contribution of hydrocarbon storage source reaching up to 20% in summer. (3) The evolution of source contributions with wind directions has confirmed that in urban wind sectors the contribution of vehicle exhaust dominate with around 45-55%. For the other wind sectors that include some industrial plants, the contribution of industrial sources is around 60% and could reach 80% for the sector 280-310 degrees , which corresponds to the most dense industrial area. (4) The pollution in Dunkerque has been globally characterised taking into account the frequency of wind directions and contributions of sources in each wind direction for the whole year. It has been concluded that contribution of industrial sources is below 20% whereas vehicle exhaust contribution is superior to 40%. PMID:17936336

  7. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China.

    PubMed

    Yin, Shasha; Zheng, Junyu; Lu, Qing; Yuan, Zibing; Huang, Zhijiong; Zhong, Liuju; Lin, Hui

    2015-05-01

    Accurate and gridded VOC emission inventories are important for improving regional air quality model performance. In this study, a four-level VOC emission source categorization system was proposed. A 2010-based gridded Pearl River Delta (PRD) regional VOC emission inventory was developed with more comprehensive source coverage, latest emission factors, and updated activity data. The total anthropogenic VOC emission was estimated to be about 117.4 × 10(4)t, in which on-road mobile source shared the largest contribution, followed by industrial solvent use and industrial processes sources. Among the industrial solvent use source, furniture manufacturing and shoemaking were major VOC emission contributors. The spatial surrogates of VOC emission were updated for major VOC sources such as industrial sectors and gas stations. Subsector-based temporal characteristics were investigated and their temporal variations were characterized. The impacts of updated VOC emission estimates and spatial surrogates were evaluated by modeling O? concentration in the PRD region in the July and October of 2010, respectively. The results indicated that both updated emission estimates and spatial allocations can effectively reduce model bias on O? simulation. Further efforts should be made on the refinement of source classification, comprehensive collection of activity data, and spatial-temporal surrogates in order to reduce uncertainty in emission inventory and improve model performance. PMID:25687669

  8. Assessing and evaluating urban VOC emissions in mid-latitude megacities from intensive observations in Paris and Los Angeles

    NASA Astrophysics Data System (ADS)

    Borbon, A.; Gilman, J. B.; Kuster, W. C.; McKeen, S. A.; Holloway, J. S.; Gros, V.; Gaimoz, C.; Beekmann, M.; De Gouw, J. A.

    2011-12-01

    Volatile Organic Compounds (VOC) affect urban air quality and regional climate change by contributing to ozone formation and the build-up of Secondary Organic Aerosols (SOA). Quantification of VOC emissions is a first critical step to predict VOC environmental impacts and to design effective abatement strategies. Indeed, the quality of ozone and SOA forecasts strongly depends on an accurate knowledge of the primary VOC emissions. However, commonly used bottom-up approaches are highly uncertain due to source multiplicity (combustion processes, storage and distribution of fossil fuels, solvent use, etc.) because of numerous controlling factors (driving conditions, fuel type, temperature, radiation, etc.), and their great variability in time and space. Field observations of VOC and other trace gases can provide valuable top-down constraints to evaluate VOC emission inventories at urban scales. In addition, the implementation of emission reduction measures raises the question of the increasing importance of VOC sources other than traffic. Here, we will evaluate VOC emissions of two mid-latitude megacities in the Northern Hemisphere: the Greater Paris area (Europe) and Los Angeles (USA). In 2009 and 2010, three intensive field campaigns took place in Paris and Los Angeles in the framework of the MEGAPOLI (EU FP7) and CalNex-2010 projects, respectively. Very detailed measurements of aerosol composition and properties, and their gaseous VOC precursors were carried out at ground-based sites (urban center and suburban) and on various mobile platforms. This contribution uses a comprehensive suite of VOC measurements collected by GC-MS/FID techniques at ground-based sites in both cities by a source-receptor methodology. First, emission ratios were estimated from the observations (uncertainty of ± 20%) and compared regarding regional characteristics and European vs. Californian control policies. Then, determined emission ratios were used to assess the accuracy of up-to-date emission inventories. While emission ratios agree within the uncertainties for many VOCs, remarkable differences are observed for aromatic VOCs (C7-C9) depending on the season. Moreover, the evaluation of emission inventories shows large discrepancies for VOCs for which traffic is not the dominant source. Commonalities and/or differences are also discussed in term of implication for urban atmospheric chemistry (ozone and SOA formation potential) in both megacities.

  9. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for...

  10. Source profiles of volatile organic compounds (VOCs) measured in China: Part I

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Shao, Min; Fu, Linlin; Lu, Sihua; Zeng, Limin; Tang, Dagang

    The profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined. Source samples were taken using a dilution chamber for mobile and stationary sources, biomass burning in an actual Chinese farmer's house, and ambient air in a petrochemical industrial area. The concentrations of 92 VOC species were quantified using canister sampling and a gas chromatography-flame ionization detection/mass spectrometry system, and VOC source profiles were developed for source apportionment of VOCs in the Pearl River Delta region. Based on the measurement of source profiles, possible tracers for various emission sources were identified; e.g., 2-methylpentane and 1,3-butadiene could be used as tracers for vehicle exhaust; the characteristic compounds of architectural coating were aromatics such as toluene and m, p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane, dominated the composition of gasoline vapor; and n-nonane, n-decane, and n-undecane were found to be typical of diesel vapor and asphalt application processes. As different emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers could be used to assess the contribution of various sources. The ratios between n-butane and isobutane, 1,3-butadiene and isoprene, and the ratios of aromatics (e.g., toluene to benzene and ethylbenzene to m, p-xylene) in the measured sources were compared.

  11. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-print Network

    Enneking, J. C.

    1992-01-01

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  12. VOC (VOLATILE ORGANIC COMPOUND) FUGITIVE EMISSION PREDICTIVE MODEL - USER'S GUIDE

    EPA Science Inventory

    The report discusses a mathematical model that can be used to evaluate the effectiveness of various leak detection and repair (LDAR) programs on controlling volatile organic compound (VOC) fugitive emissions from chemical, petroleum, and other process units. The report also descr...

  13. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    NASA Astrophysics Data System (ADS)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)?106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products of vital activity of fungi which decompose leaf litter. Verification of the hypothesis was carried out in the frames of a long-term experiment on decomposition of Scots pine and common spruce litter. The experiment was conducted in natural conditions by placing litter bags on undisturbed topsoil in a forest area where pine and spruce trees prevailed. Part of the needles placed were taken out of the litter bags on the 30th, 282nd, 490th, 630th and 920th day of the experiment for subsequent isolation of fungi which colonize the litter (overall there were identified 98 species which belong to 48 genera of fungi). The experiment revealed that species composition of the fungi colonizing pine and spruce litter varies considerably. At the early stages of decomposition, dematiceous hypnomycetes, which belongs to Cladosporum, Alternaria genera as well as Hormonem genus, capable of utilizing pectin, were dominant species. At the later stages they were substituted with phycomycetes (Mucor sp.), ascomycetes (Penicillium sp.) and basidiomycetes (Trichderma sp.), the most significant group of "secondary saprophytes" able to carry out biodegradation of polysaccharides and lignin. In volatile emissions of all the 15 species of fungi there were identified 80 VOCs of different classes: terpene hydrocarbons and their oxygenated derivatives, C6-C14 aliphatic and C6-C10 aromatic hydrocarbons, C1-C8 alcohols, C2-C9 carbonyls, esters, furans, and halocarbons. VOC composition was specific for each fungi species and depended on the litter of a particular tree species from which it had been isolated. For instance, the emission rate of terpenes, alcohols and carbonyl compounds by Trichoderma polysporum isolated from pine and spruce litter was 3-5 times different. Differences in composition of VOCs emitted into the gas phase by "primary" and "secondary" fungi species which colonize pine and spruce litter are also discussed. This work was supported by Grant MNiSW N305 067 32/2411.

  14. Light dependency of VOC emissions from selected Mediterranean plant species

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 ?mol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 ?g (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 ?g (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 ?g (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  15. VOC Emissions from the Potential Biofuel Crop, Switchgrass

    NASA Astrophysics Data System (ADS)

    Graus, M.; Eller, A. S.; Fall, R.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Qian, Y.; Sekimoto, K.; Monson, R. K.; Warneke, C.

    2010-12-01

    Volatile organic compound (VOC) emission rates during the growth and simulated harvest phases were determined for three different cultivars of switchgrass (Panicum virgatum) using laboratory chamber measurements. Switchgrass is a candidate for use in second-generation (cellulosic) ethanol production and the acerage dedicated to its growth in the USA has already increased during the past decade. We estimate that the yearly emissions from switchgrass plantations, including both the growth and harvest phases, will be on the order of 3 kg C ha-1 methanol, 1 kg C ha-1 acetaldehyde, 1 kg C ha-1 acetone, 0.9 kg C ha-1 monoterpenes, 0.5 kg C ha-1 isoprene + 1-penten-3-ol, 0.2 kg C ha-1 hexenals, and 0.1 kg C ha-1 hexenols. These emission rates are lower than those expected from Eucalyptus or Poplar plantations, which are other potential biofuel crops and have significantly higher VOC emissions.

  16. [Emission Characteristics of VOCs from Typical Restaurants in Beijing].

    PubMed

    Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao

    2015-05-01

    Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority. PMID:26314095

  17. Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions

    NASA Astrophysics Data System (ADS)

    Pallavkar, Sameer M.

    The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.

  18. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign. References 1."Annual Review 2013", International Air Transport Association (IATA) 2014, Page 8, available on: http://www.iata.org/about/Documents/iata-annual-review-2013-en.pdf. 2."Summary for Policymakers: IPCC Special Report Aviation and the Global Atmosphere", 1999, pp. 5-10. 3."Hydrocarbon emissions from in-use commercial aircraft during airport operations", Herndon S.C., Rogers T., Dunlea E.J., Jayne J.T., Miake-Lye R., Knighton B., Environ Sci. Technol. 2006 Jul 15;40(14):4406-13.

  19. AN ALTERNATIVE METHOD FOR ESTIMATING BIOGENIC VOC EMISSIONS IN EPA REGION I

    EPA Science Inventory

    Regional estimates of biogenic volatile organic compound (VOC) emissions are needed for computer simulations of photochemical smog. ince forests and agricultural crops are the primary emitters of biogenic voc, it is important to develop reliable estimates of their areal coverage ...

  20. Emissions of VOCs at urban petrol retail distribution centres in India (Delhi and Mumbai).

    PubMed

    Srivastava, Anjali; Joseph, A E; More, Ajit; Patil, Sunil

    2005-10-01

    Air pollution has assumed gigantic proportion killing almost half a million Asians every year. Urban pollution mainly comprises of emissions from buses, trucks, motorcycle other forms of motorized transport and its supporting activities. As Asia's cities continue to expand the number of vehicles have risen resulting in greater pollution. Fugitive emissions from retail distribution center in urban area constitute a major source. Petrol vapours escape during refueling adding pollutants like benzene, toluene, ethylbenzene and xylene to ambient air. This paper discusses a study on fugitive emissions of Volatile Organic Compounds (VOC) at some refueling station in two metropolitan cities of India, i.e., Mumbai and Delhi. Concentration of VOCs in ambient air at petrol retail distribution center is estimated by using TO-17 method. Concentration of benzene in ambient air in Delhi clearly shows the effect of intervention in use of petroleum and diesel fuel and shift to CNG. Chemical Mass Balance (CMB) model is used to estimate source contributions. At Delhi besides diesel combustion engines, refueling emissions are also major sources. At Mumbai evaporative emissions are found to contribute maximum to Total VOC (TVOC) concentration in ambient air. PMID:16240200

  1. Estimates of ozone response to various combinations of NO(x) and VOC emission reductions in the eastern United States

    NASA Technical Reports Server (NTRS)

    Roselle, Shawn J.; Schere, Kenneth L.; Chu, Shao-Hang

    1994-01-01

    There is increasing recognition that controls on NO(x) emissions may be necessary, in addition to existing and future Volatile Organic Compounds (VOC) controls, for the abatement of ozone (O3) over portions of the United States. This study compares various combinations of anthropogenic NO(x) and VOC emission reductions through a series of model simulations. A total of 6 simulations were performed with the Regional Oxidant Model (ROM) for a 9-day period in July 1988. Each simulation reduced anthropogenic NO(x) and VOC emissions across-the-board by different amounts. Maximum O3 concentrations for the period were compared between the simulations. Comparison of the simulations suggests that: (1) NO(x) controls may be more effective than VOC controls in reducing peak O3 over most of the eastern United States; (2) VOC controls are most effective in urban areas having large sources of emissions; (3) NO(x) controls may increase O3 near large point sources; and (4) the benefit gained from increasing the amount of VOC controls may lessen as the amount of NO(x) control is increased. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  2. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    PubMed

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. PMID:26057544

  3. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-01

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. PMID:26444830

  4. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  5. Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps

    NASA Astrophysics Data System (ADS)

    Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.

    2012-12-01

    Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. ?-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of ?-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, ?-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after logging in a Scots pine stand, but provenance properties strongly affect resin flow from root to stump surface.

  6. Biogenic and Anthropogenic VOC Emissions over the Central and Southern U.S.: Results from Recent Airborne Field Campaigns (Invited)

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Hills, A. J.; Kaser, L.; Emmons, L. K.; Lamarque, J.; Blake, N. J.; Simpson, I. J.; Blake, D. R.; Karl, T.; Yuan, B.

    2013-12-01

    Over the last two years, the NCAR Trace Organic Gas Analyzer (TOGA), capable of quantifying over 50 individual gas-phase volatile organic compounds (VOCs), was deployed on two airborne field campaigns with flights over the central and southeast United States: Deep Convective Cloud and Chemistry (DC3), and Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS). These studies provided opportunities to sample air masses dominated by individual emissions sources, including biomass burning, oil and gas extraction, biogenic activity, and marine emissions, as well as the impact of convection on recently emitted trace gases. Using observations of biogenic VOCs, including speciated monoterpenes, we will compare our findings with NCAR CESM CAM-chem model simulations using the MEGAN emissions inventory. Likewise, we will contrast our observations of anthropogenic VOCs over the continental U.S. to model simulations with anthropogenic inventories (e.g., NEI, EDGAR).

  7. Spatial/Temporal Variations and Source Apportionment of VOCs Monitored at Community Scale in an Urban Area

    PubMed Central

    Yu, Chang Ho; Zhu, Xianlei; Fan, Zhi-hua

    2014-01-01

    This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs) using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile) sites in Paterson and one background site in Chester, NJ (located ?58 km southwest of Paterson). Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene) were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (p<0.01). Ethylbenzene, m,p-xylene, o-xylene, and p-dichlorobenzene measured at the commercial site were significantly higher than the industrial/mobile sites (p<0.01). Seven VOCs (acetylene, benzene, dichloromethane, methyl ethyl ketone, styrene, toluene, and p-dichlorobenzene) were significantly different by season (p<0.05), that is, higher in cold seasons than in warm seasons. In addition, dichloromethane, methyl ethyl ketone, and toluene were significantly higher on weekdays than weekend days (p<0.05). These results are consistent with literature data, indicating the impact of anthropogenic VOC sources on air pollution in Paterson. Positive Matrix Factorization (PMF) analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%), solvents uses (19%), industrial emissions (16%), mobile+stationery sources (12%), small shop emissions (11%), and others (22%). Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in Paterson. The study demonstrated the community-scale monitoring approach can capture spatial variation of VOCs in an urban community with mixed VOC sources. It also provided robust data to identify major sources of concern in the community. PMID:24755686

  8. VOC source-receptor relationships in Houston during TexAQS-II

    NASA Astrophysics Data System (ADS)

    Leuchner, Michael; Rappenglück, Bernhard

    2010-10-01

    During the TRAMP field campaign in August-September 2006, C 2-C 10 volatile organic compounds (VOCs) were measured continuously and online at the urban Moody Tower (MT) site. This dataset was compared to corresponding VOC data sets obtained at six sites located in the highly industrialized Houston Ship Channel area (HSC). Receptor modeling was performed by positive matrix factorization (PMF) at all sites. Conditional probability functions (CPF) were used to determine the origin of the polluted air masses in the Houston area. A subdivision into daytime and nighttime was carried out to discriminate photochemical influences. Eight main source categories of industrial, mobile, and biogenic emissions were identified at the urban receptor site, seven and six, respectively, at the different HSC sites. At MT natural gas/crude oil contributed most to the VOC mass (27.4%), followed by liquefied petroleum gas (16.7%), vehicular exhaust (15.3%), fuel evaporation (14.3%), and aromatics (13.4%). Also petrochemical sources from ethylene (4.7%) and propylene (3.6%) play an important role. A minor fraction of the VOC mass can be attributed to biogenic sources mainly from isoprene (4.4%). Based on PMF analyses of different wind sectors, the total VOC mass was estimated to be twofold at MT with wind directions from HSC compared to air from a typical urban sector, for petrochemical compounds more than threefold. Despite the strong impact of air masses influenced by industrial sources at HSC, still about a third of the total mass contributions at MT can be apportioned to other sources, mainly motor vehicles and aromatic solvents. The investigation of diurnal variation in combination with wind directional frequencies revealed the greatest HSC impact at the urban site during the morning, and the least during the evening.

  9. EVALUATION OF POTENTIAL VOC SCREENING INSTRUMENTS

    EPA Science Inventory

    The report describes the evaluation of potential fugitive source emission screening instruments for analysis of volatile organic compounds (VOCs). An initial review of available portable VOC detection instruments indicated that detectors operating on several principles (i.e., fla...

  10. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guenther, A.; Spirig, C.; Hansel, A.; Fall, R.

    2003-12-01

    Fluxes of biogenic volatile organic compounds (VOCs) were measured at a hardwood forest in northern Michigan (UMBS, Prophet research site) over the course of the growing and senescing season. Methanol, acetaldehyde, acetone and isoprene were found to be the most abundant biogenic VOCs with maximum fluxes (mixing ratios in ppbv) of 2.0 mg m-2 h-1 (21.0), 1.0 mg m-2 h-1 (2.7), 1.6 mg m-2 h-1 (5.6) and 7.6 mg m-2 h-1 (6), respectively. The emission patterns show distinct seasonal changes and indicate a spring peak for methanol due to rapid leaf expansion and a fall peak for acetone and acetaldehyde most likely attributed to senescing and decaying biomass; isoprene emissions peaked as expected in the summer. We estimate potential source strengths of 8.9 Tg (C) y-1 methanol, 2.7 Tg (C) y-1 acetaldehyde and 7.0 Tg (C) y-1 acetone for deciduous temperate forests, which is a substantial contribution to the global atmospheric VOC budget.

  11. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    PubMed

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product. PMID:17997159

  12. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-03-01

    VOC species from vehicle exhaust and gas evaporation were investigated by chassis dynamometer and on-road measurements of 9 gasoline vehicles, 7 diesel vehicles, 5 motorcycles, and 4 gas evaporation samples. The SOA mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were calculated based on the mixing ratio of individual VOC species. The SOA mass yields of gasoline and motorcycle exhaust were similar to the results of the published smog chamber study with the exception of that of diesel exhaust was 20% lower than experimental data (Gordon et al., 2013, 2014a, b). This suggests the requirement for further research on SVOC or LVOC emissions. A vehicular emission inventory was compiled based on a local survey of vehicle mileage traveled and real-world measurements of vehicle emission factors. The inventory-based vehicular initial emission ratio of OA to CO was 15.6 ?g m-3 ppmv-1. The OA production rate reached 22.3 and 42.7 ?g m-3 ppmv-1 under high-NOx and low-NOx conditions, respectively. To determine the vehicular contribution to OA pollution, the inventory-based OA formation ratios for vehicles were calculated with a photochemical-age-based parameterization method and compared with the observation-based OA formation ratios in the urban atmosphere of Shanghai. The results indicated that VOC emissions from vehicle exhaust and gas evaporation only explained 15 and 22% of the total organic aerosols observed in summer and winter, respectively. SOA production only accounted for 25 and 18% of the total vehicular OA formation in summer and winter. VOC emissions from gasoline vehicles contribute 21-38% of vehicular OA formation after 6-24 h of photochemical aging. The results suggest that vehicle emissions are an important contributor to OA pollution in the urban atmosphere of Shanghai. However, a large number of OA mass in the atmosphere still cannot be explained in this study. SOA formation contributions from other sources (e.g. coal burning, biomass burning, cooking, dust, etc.) as well as IVOCs and SVOCs from the combustion sources need to be considered in future studies.

  13. VOC Source - Receptor Relationships in Houston during TexAQS-II

    NASA Astrophysics Data System (ADS)

    Leuchner, M.; Rappenglück, B.

    2009-04-01

    During the TexAQS-II field campaign in August and September 2006, C2 - C10 volatile organic compounds (VOC) were measured continuously and online at the urban Moody Tower (MT) site. This data set was compared to corresponding VOC data sets obtained at six sites located in the highly industrialized Houston Ship Channel area (HSC). Receptor modeling was performed by positive matrix factorization (PMF) at all sites. Conditional probability functions were used to determine the origin of the polluted air masses in the Houston area. A subdivision into daytime and nighttime was carried out to discriminate photochemical influences. Eight main source categories of industrial, mobile, and biogenic emissions were identified at the urban receptor site, seven and six, respectively, at the different HSC sites. Amongst these categories, natural gas / crude oil, LPG, and vehicular exhaust contributed most to the total measured VOC mass, followed by fuel evaporation, aromatics, petrochemical sources from ethylene and propylene, and biogenic sources. Based on PMF analyses of different wind sectors, the total VOC mass was estimated to be twofold at MT with wind directions from HSC compared to air from a typical urban sector, for petrochemical compounds more than threefold. Despite the strong impact of air masses influenced by industrial sources at HSC, still a significant fraction of the total mass contributions at MT can be apportioned to other sources, mainly motor vehicles and aromatic solvents. The investigation of diurnal variation in combination with wind directional frequencies revealed the greatest HSC impact at the urban site during the morning, and the least during the evening.

  14. Rotary regenerative catalytic oxidizer for VOC emission control

    SciTech Connect

    Fu, J.C.; Chen, J.M.

    1998-12-31

    Thermal or catalytic oxidation has been widely accepted in industries as one of the most effective technologies for the control of VOC emissions. To reduce energy cost, this technology normally incorporates heat exchanger to recover waste heat from hot combustion exhaust. Among various heat recovery methods, it is known that the regenerative system has the highest thermal efficiency (> 90%). The normal regenerative heat exchanger design is to use ceramic heat sink material packed in a fixed-bed configuration to capture excess heat from outgoing hot combustion exhaust and use it later to preheat incoming cold VOC laden gas stream by periodically switching gas streams using valves. This paper presents a novel design of the regenerative catalytic oxidizer. This design uses a honeycomb rotor with discrete parallel channels as the heat transfer media on which catalyst is coated to promote oxidation reaction. Heat recovery of this unit is accomplished by rotating the rotor between cold and hot flow streams. The thermal efficiency of the unit can be controlled by the rotation speed. Because it can rotate between hot and cold streams at higher rate than that can be achieved by valve switching, the rotary regenerative catalytic oxidizer uses much less heat transfer media than that is normally required for the fixed-bed design for the same thermal efficiency. This leads to a more compact and less costly unit design. The continuous rotation mechanism also eliminates the pressure fluctuation that is experienced by the fixed-bed design using valves for flow switching. The advantages of this new design are demonstrated by the data collected from a laboratory scale test unit.

  15. Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing.

    PubMed

    Liu, Ying; Shao, Min; Kuster, William C; Goldan, Paul D; Li, Xiaohua; Lu, Sihua; de Gouw, Joost A

    2009-01-01

    It is important to identify the sources of reactive volatile organic compounds (VOCs) in Beijing for effective ground-level ozone abatement. In this paper, semihourly measurements of hydrocarbons and oxygenated VOCs (OVOCs) were taken at an urban site in Beijing in August2005. C2-C5 alkenes, isoprene, and C1-C3 aldehydes were determined as "key reactive species" by their OH loss rates. Principal component analysis (PCA) was used to define the major sources of reactive species and to classify the dominant air mass types at the sampling site. Vehicle exhaust was the largest contributor to reactive alkenes. More aged air masses with enriched OVOCs traveled mainly from the east or southeast of Beijing. The OVOC sources were estimated by a least-squares fit approach and included primary emissions, secondary sources, and background. Approximately half of the C1-C3 aldehydes were attributed to secondary sources, while regional background accounted for 21-23% of the mixing ratios of aldehydes. Primary anthropogenic emissions were comparable to biogenic contributions (10-16%). PMID:19209587

  16. PREDICTING THE EMISSIONS OF INDIVIDUAL VOCS FROM PETROLEUM-BASED INDOOR COATINGS

    EPA Science Inventory

    The indoor use of petroleum-based coating materials may cause elevated volatile organic compound (VOC) concentrations. This paper presents a newly developed mass transfer model for estimating the emissions of individual VOCs from freshly coated surfaces. Results of a four-step va...

  17. Analysis and comparison of trends in concentrations and emissions of VOC and CO and VOC:CO ratios in urban European cities

    NASA Astrophysics Data System (ADS)

    D'Angiola, A.; von Schneidemesser, E.; Granier, C.; Law, K.; Monks, P. S.

    2010-12-01

    Since 2007, more than half of the world's population live in urban areas. Megacities, urban agglomerations with more than 10 million inhabitants, are rapidly increasing in number: in 1950 there were only two, New York and Tokyo with ~12 million, while by 2005 there were already 20, with Tokyo ranging the 35 millions. The urban atmospheres of these megacities are dominated by pollutants associated with vehicular emissions, as well as the formation of secondary pollutants responsible for photochemical smog. A comparative assessment of emissions and concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) ratios in London (L) and Paris (P) is hereby presented. The work is based on three recent studies by Baker et al. (2008), Parrish et al. (2009) and von Schneidemesser et al. (in press) where concentrations of these compounds were analyzed for 28 US cities in the former and some global megacities in the second and third studies. Considering the fact that VOC provide information on the main emissions sources of cities, these studies found that even though concentrations of VOC varied greatly among cities, the ratio with the combustion tracer CO remained rather constant and was very useful for city comparison, as well as a good indicator of traffic emissions. VOC patterns in ambient air concentrations were observed to be similar in most cities, being able to consider that deviations from those patterns could be the result of measurement problems. Nevertheless, the representation of these emissions in global inventories has large uncertainties. The goal of our study is to compare and contrast emission inventory estimates with measured ambient concentrations of non-methane hydrocarbons (NMHC) and CO, as well as NMHC:CO ratios. Within the European CityZen project we have built an updated global emissions inventory with the best available datasets of anthropogenic, biomass burning and natural sources. As part of this research we will follow the same approach to compare emissions ratios between NMHC and CO for the megacities region of Paris and London and to compare these trends with measured ambient concentrations from three monitoring sites: Eltham (L) suburban station, Marylebone Road (L) kerbside station and Les Halles (P) urban station for the period 1997-2006.

  18. On-road emission characteristics of VOCs from diesel trucks in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Cao, Xinyue; Jiang, Xi; Zhang, Yingzhi; He, Kebin

    2015-02-01

    This paper is the first in our series of papers aimed at understanding the volatile organic compound (VOC) emissions of vehicles in Beijing by conducting on-board emission measurements. This paper focuses on diesel vehicles. In this work, 18 China III diesel vehicles, including seven light-duty diesel trucks (LDDTs), four medium-duty diesel trucks (MDDTs) and seven heavy-duty diesel trucks (HDDTs), were examined when the vehicles were driven on predesigned fixed test routes in Beijing in China using a portable emissions measurement system (PEMS). Tedlar bag sampling and 2,4-dinitrophenyhydrazine (DNPH) cartridge sampling were used to collect VOC species, and gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC) were used to analyze these samples. We obtained the VOC emission factors and relative compositions for diesel trucks of different sizes under different driving patterns. In total, 64 VOC species were quantified in this study, including 25 alkanes, four alkenes, 13 aromatics, 13 carbonyls and nine other compounds. The emission factors of the total VOCs based on mileage traveled for HDDTs were higher than those of LDDTs and MDDTs. Carbonyls, aromatics and alkanes were the dominant VOC species. Carbonyls accounted for 42.7%-69.2% of the total VOCs in the three types of tested diesel trucks. The total VOC emission factors of the tested vehicles that were driven on non-highway routes were 1.5-2.0 times higher than those of the vehicles driven on the highway. As for the OFP calculation results, with increased vehicle size, the ozone formation potential presented an increasing trend. Among the VOC components, carbonyls were the primary contributor to OFP. In addition, the OFPs under non-highway driving cycles were 1.3-1.7 times those under highway driving cycles. The results of this study will be helpful in improving our understanding of VOCs emitted from on-road diesel trucks in China.

  19. Numerical modeling of VOC emissions from ozone reactions with human-worn clothing in an aircraft cabin

    E-print Network

    Chen, Qingyan "Yan"

    compounds (VOCs) are indoor air pollutants with many adverse health effects for humans. Ozone reactions compounds (VOCs) are an important class of indoor air pollutants. Exposure to VOCs has been associated). Another important source of VOCs in the indoor air are the gaseous and surface reactions of ozone

  20. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    NASA Astrophysics Data System (ADS)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic VOCs emitted in the local valley by the vegetation, thus enhancing O3 formation in this forested site. The only VOC species that showed a somewhat different daily pattern were monoterpenes because of their local biogenic emission. Isoprene also followed in part the daily pattern of monoterpenes, but only in summer when its biotic sources were stronger. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources.

  1. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    NASA Astrophysics Data System (ADS)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-07-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic VOCs emitted in the local valley by the vegetation, thus enhancing O3 formation in this forested site. The only VOC species that showed a somewhat different daily pattern were monoterpenes because of their local biogenic emission. Isoprene also followed in part the daily pattern of monoterpenes, but only in summer when its biotic sources were stronger. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources.

  2. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties. PMID:26179779

  3. VOC EMISSION REDUCTION STUDY AT THE HILL AIR FORCE BASE BUILDING 515 PAINTING FACILITY

    EPA Science Inventory

    The report describes the development of safe and cost effective strategies for controlling volatile organic compound (voc) emissions from Air Force painting facilities. A series of sampling and analysis tests were conducted to measure hazardous constituent compound concentrations...

  4. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    SciTech Connect

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  5. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Hu, W. W.; Shao, M.; Wang, M.; Chen, W. T.; Lu, S. H.; Zeng, L. M.; Hu, M.

    2013-09-01

    Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated chemical losses of most VOC species during the Changdao campaign. A photochemical-age-based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory data, but determined emission ratios of oxygenated VOCs (OVOCs) are significantly higher than those from emission inventory data. The photochemical-age-based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of organic aerosol (OA) to CO is determined to be 14.9 ?g m-3 ppm-1, and secondary organic aeorosols (SOA) are produced at an enhancement ratio of 18.8 ?g m-3 ppm-1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 ?g m-3 ppm-1 CO) and low-NOx conditions (6.5 ?g m-3 ppm-1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (> C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. The SOA formation potential of primary VOC emissions determined from field campaigns in Beijing and Pearl River Delta (PRD) is lower than the measured SOA levels reported in the two regions, indicating SOA formation is also beyond explainable by VOC oxidation in the two city clusters.

  6. Spatio-temporal distribution of VOC emissions in urban area based on receptor modeling

    NASA Astrophysics Data System (ADS)

    Stoji?, A.; Staniši? Stoji?, S.; Miji?, Z.; Šoštari?, A.; Rajši?, S.

    2015-04-01

    In the present study, the concentrations of VOC were measured using Proton Transfer Reaction Mass Spectrometer, together with NOx, NO2, NO, SO2, CO, and PM10 during winter 2014 in Belgrade, Serbia. For the purpose of source apportionment, receptor models Positive Matrix Factorization and Unmix were applied to the obtained dataset, both resolving six profiles. The reliable identification of pollutant sources, description of their characteristics, and estimation of their spatio-temporal distribution are presented through comprehensive analysis and comparison of receptor model solutions, with respect to meteorological data, planetary boundary layer height, and regional and long-range transport. For emissions from petrochemical industry and oil refinery a significant contribution of transport is observed, and hybrid receptor models were applied for identification of potential non-local source regions.

  7. Emissions of Volatile Organic Compounds (VOCs) Associated with Natural Gas Production in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.

    2012-12-01

    Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The source composition of most point sources was similar to the typical enhancement ratios observed at the ground site, whereas the new well with the flow-back pond showed a somewhat different composition.

  8. NOx and VOC species profiles for gas fired stationary combustion sources. Volume 1. Final report

    SciTech Connect

    Hansell, D.W.; England, G.C.; Grant, R.

    1995-01-01

    Eight gas fired sources were tested including three internal combustion (IC) engines, a gas turbine, two refinery process heaters, a steam generator, and a utility boiler: Various fuel types were used including natural gas (MG), refinery gas (RG), landfill gas (LG), and field gas (FG). Over 100 substances were included on the target analyte list for each source including paraffins, olefins, acetylenes, naphthenes, aromatics, 1,3 Butadiene, aldehydes, NO, and NOx. Of the 21 VOCs detected, Methane was the most prevalent. The IC engines had the highest total organic emissions and 1,3 Butadiene was detected at the LG and FG IC Engines only. Benzene and toluene were detected at most sources and aldehydes were detected at each of the sources. IC Engines had the highest NOx concentration.

  9. Odorous VOC emissions following land application of swine manure slurry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine manure is often applied to crop land as a fertilizer source. Odor emissions from land-applied swine manure may pose a possible nuisance to downwind populations if not applied with sufficient forethought. A research project was conducted to assess the time decay of odorous volatile organic co...

  10. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-10-01

    Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (?OA / ?CO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.

  11. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    PubMed

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer. PMID:24582651

  12. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ?100 HP (Except...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... of 40 CFR part 63, subpart ZZZZ, Table 2A do not have to comply with the CO emission standards...

  13. VOC emissions from residential combustion of Southern and mid-European woods

    NASA Astrophysics Data System (ADS)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  14. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly distinguished from typical urban emissions associated with on-road combustion sources. We show that each geologic basin has a unique VOC source signature. We will examine the effects of photochemical processing of the primary VOC emissions by comparing the composition and OH reactivity for the wintertime studies to the summertime when there is active photochemistry occurring.

  15. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin

    NASA Astrophysics Data System (ADS)

    Guan, Jun; Li, Zheng; Yang, Xudong

    2015-06-01

    Volatile organic compounds (VOCs) are one of the most important types of air pollutants in aircraft cabin. Balancing source intensity of VOCs and ventilation strategies is an essential conducive way to obtain acceptable aircraft cabin environment. This paper intends to develop a simplified model by a case study to estimate the net VOC emission rates of cabin interior, and contributions from outside and inside the aircraft cabin. In-flight continuous measurements of total VOCs (TVOC) in cabin air were made in six domestic flights in March 2013. The results indicate that the concentrations of TVOC mostly ranged from 0.20 mg m-3 to 0.40 mg m-3 in cabin air, which first increased at ascent, and then kept elevated during cruise, and decreased at descent in general. For further ventilation information, carbon dioxide (CO2) in supply air and re-circulated air was simultaneously observed as a ventilation tracer to calculate the bleed air ratios, outside airflow rates and total airflow rates in these flights. And thus, the emission rates derived from cabin interior and contributions of TVOC from bleed air and cabin interior were estimated for the whole flight accordingly. Results indicate that during the cruise phase, TVOC in cabin air mainly came from cabin interiors. However, contributions from outside air also became significant during taxiing on the ground, ascent and descent phases. The simplified model would be useful for developing better control strategies of aircraft cabin air quality.

  16. The impact of NO x, CO and VOC emissions on the air quality of Zurich airport

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor; Schäfer, Klaus; Jahn, Carsten; Hoffmann, Herbert; Bauerfeind, Martina; Fleuti, Emanuel; Rappenglück, Bernhard

    To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO 2, CO and CO 2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C 2-C 3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.

  17. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    NASA Astrophysics Data System (ADS)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  18. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ?100 HP (Except...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart...

  19. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ?100 HP (Except...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart...

  20. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ?100 HP (Except...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart...

  1. Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Vlasenko, A.; Staebler, R. M.; Stroud, C.; Makar, P. A.; Liggio, J.; Li, S.-M.; Brown, S.

    2014-02-01

    Understanding of the atmosphere/forest canopy exchange of volatile organic compounds (VOCs) requires insight into deposition, emission, and chemical reactions of VOCs below the canopy. Currently, uncertainties in canopy processes, such as stomatal uptake, deposition, and sub-canopy chemistry, make it difficult to derive biogenic VOC emission inventories from canopy VOC concentration gradients. Between 18 July and 9 August 2009, VOCs were measured with proton-transfer-reaction mass spectrometry (PTR-MS) at 6 heights between 1 and 6 m beneath a 23 m high mixed-forest canopy. Measured VOCs included methanol, isoprene, acetone, methacrolein + methyl vinyl ketone (MACR+MVK), monoterpenes and sesquiterpenes. There are pronounced differences in the behaviour of isoprene and its by-products and that of the terpenes. Non-terpene fluxes are predominantly downward. In contrast, the terpene fluxes are significantly upward. A 1-dimensional canopy model was used to compare results to measurements with and without surface deposition of isoprene and MACR+MVK and emissions of monoterpenes and sesquiterpenes. Results suggest deposition velocities of 27 mm s-1 for isoprene and 12 mm s-1 for MACR+MVK and daytime surface emission rates of 63 ?g m-2 h-1 for monoterpenes. The modelled isoprene surface deposition is approximately 2% of the canopy top isoprene emissions and the modelled emissions of monoterpenes comprise approximately 15 to 27% of the canopy-top monoterpene emissions to the atmosphere. These results suggest that surface monoterpene emissions are significant for forest canopy/atmosphere exchange for this mixed forest location and surface uptake is relatively small for all the species measured in this study.

  2. A Global inventory of volatile organic compound emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Watson, Joel J.; Jones, Julian W.

    1992-06-01

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs. Consequently, a global inventory of anthropogenic VOC emissions has been developed. The inventory includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds which possess different chemical reactivities in the atmosphere. The technical approach used to develop this inventory involved four major steps. The first step was to identify the major anthropogenic sources of VOC emissions in the United States and to group these sources into 28 general source groups. Source groups were developed to represent general categories such as "sources associated with oil and natural gas production" and more specific categories such as savanna buming. Emission factors for these source groups were then developed using different techniques and data bases. For example, emission factors for oil and natural gas production were estimated by dividing the United States' emissions from oil and gas production operations by the amount of oil and natural gas produced in the United States. Multiplication of these emission factors by production/consumption statistics for other countries yielded global VOC emission estimates for specific source groups within those countries. The final step in development of the VOC inventory was to distribute emissions into 10° by 10° grid cells using detailed maps of population and industrial activity. The results of this study show total global anthropogenic VOC emissions of about 110,000 Gg/yr. This estimate is about 10% lower than global VOC inventories developed by other researchers. The study identifies the United States as the largest emitter (21% of the total global VOC), followed by the (former) USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of VOC emissions.

  3. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  4. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P- 474a Chang*, J.C.S., Guo*, Z., Fortmann, R.C., and Lao, H.-C. Characterization and Reduction of Formaldehyde Emissions from a Low-VOC Latex Paint. Indoor Air 12 (1):10-16 (2002). EPA/600/J-02/187. 01/10/2000 The patterns of formaldehyde emission from a low vol...

  5. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in sharp increase of chamber air formaldehy...

  6. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Hu, W. W.; Shao, M.; Wang, M.; Chen, W. T.; Lu, S. H.; Zeng, L. M.; Hu, M.

    2013-03-01

    Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs) are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 ?g m-3 ppm-1 and SOA are produced at an enhancement ratio of 18.8 ?g m-3 ppm-1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 ?g m-3 ppm-1 CO) and low-NOx condition (6.5 ?g m-3 ppm-1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (>C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD), indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0-13.7 Tg yr-1, with a fraction of at least 2.7 Tg yr-1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  7. Characterization of VOC Emission from Materials in Vehicular Environment at Varied Temperatures: Correlation Development and Validation

    PubMed Central

    Xiong, Jianyin; Yang, Tao; Tan, Jianwei; Li, Lan; Ge, Yunshan

    2015-01-01

    The steady state VOC concentration in automobile cabin is taken as a good indicator to characterize the material emission behaviors and evaluate the vehicular air quality. Most studies in this field focus on experimental investigation while theoretical analysis is lacking. In this paper we firstly develop a simplified physical model to describe the VOC emission from automobile materials, and then derive a theoretical correlation between the steady state cabin VOC concentration (Ca) and temperature (T), which indicates that the logarithm of Ca/T0.75 is in a linear relationship with 1/T. Experiments of chemical emissions in three car cabins at different temperatures (24°C, 29°C, 35°C) were conducted. Eight VOCs specified in the Chinese National Standard GB/T 27630–2011 were taken for analysis. The good agreement between the correlation and experimental results from our tests, as well as the data taken from literature demonstrates the effectiveness of the derived correlation. Further study indicates that the slope and intercept of the correlation follows linear association. With the derived correlation, the steady state cabin VOC concentration different from the test conditions can be conveniently obtained. This study should be helpful for analyzing temperature-dependent emission phenomena in automobiles and predicting associated health risks. PMID:26452146

  8. Constraints on the sources and impacts of volatile organic compounds (VOCs) over North America from tall tower measurements

    NASA Astrophysics Data System (ADS)

    Hu, Lu

    This dissertation presents the first-ever in-situ tall tower measurements of volatile organic compound (VOC) concentrations. The data span August 2009 through July 2012, and provide new constraints on seasonal and long-term controls on VOC sources and their atmospheric effects. The 200 m sampling height provides a large-scale footprint, while the tall tower location, near the intersection of the main North American ecosystems and at times downwind of the Twin Cities, affords information on natural emissions from some of the most important US landscapes as well as on anthropogenic sources. I interpret the dataset using an atmospheric chemical transport model (GEOS-Chem CTM), with a focus on several key atmospheric VOCs. This dissertation finds that current models underestimate methanol emission rates for younger versus older leaves. This biased seasonality means that the photochemical role for methanol early in the growing season is presently underestimated. A Bayesian inverse analysis of the tall tower observations reveals that the prior estimate of North American anthropogenic acetone sources (based on the US EPA's NEI05 inventory) is accurate to within 20%. However, biogenic acetone emissions from broadleaf trees, shrubs, and herbaceous plants are presently underestimated (˜37%), while emissions from needleleaf trees plus secondary production from biogenic precursors are overestimated by a similar amount (˜40%). Model-measurement comparisons imply that isoprene emissions in the immediate vicinity of the tall tower are accurately captured by the MEGANv2.1 biogenic inventory, but that larger-scale regional emissions are underestimated, reflecting the heterogeneous land cover in this transitional landscape. Isoprene emissions play a key role in seasonal shifts between VOC-limited chemistry in the spring and fall and NOx-limited or transitional chemistry in the summer. A Bayesian inverse analysis based on the tall tower measurements suggests that: i) the RETRO global emission inventory significantly overestimates (> two-fold) US C6-C8 aromatic emissions; ii) the US EPA's NEI08 inventory likewise overestimates the toluene flux by a factor of 3, partly reflecting a bias in the estimated non-road emissions; and iii) total annual emissions of benzene and C8 aromatics in the EPA's NEI08 are accurate to within the analysis uncertainty, but with some seasonal biases for on-road emissions.

  9. Control of VOC emissions from a flexographic printing facility using an industrial biotrickling filter.

    PubMed

    Sempere, F; Martínez-Soria, V; Penya-Roja, J M; Waalkens, A; Gabaldón, C

    2012-01-01

    The study of an industrial unit of biotrickling filter for the treatment of the exhaust gases of a flexographic facility was investigated over a 2-year period with the objective to meet the volatile organic compound (VOC) regulatory emission limits. Increasing the water flow rate from 2 to 40 m(3) h(-1) improved the performance of the process, meeting the VOC regulation when 40 m(3) h(-1) were used. An empty bed residence time (EBRT) of 36 s was used when the inlet air temperature was 18.7 °C, and an EBRT as low as 26 s was set when the inlet temperature was 26.8 °C. During this long-term operation, the pressure drop over the column of the bioreactor was completely controlled avoiding clogging problems and the system could perfectly handle the non-working periods without VOC emission, demonstrating its robustness and feasibility to treat the emission of the flexographic sector. PMID:22173423

  10. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal

    NASA Astrophysics Data System (ADS)

    Evtyugina, Margarita; Calvo, Ana Isabel; Nunes, Teresa; Alves, Célia; Fernandes, Ana Patrícia; Tarelho, Luís; Vicente, Ana; Pio, Casimiro

    2013-01-01

    Emissions of trace gases and C5-C10 volatile organic compounds (VOCs) from Mediterranean wildfires occurring in Portugal in summer 2010 were studied. Fire smoke was collected in Tedlar bags and analysed for CO, CO2, total hydrocarbons (THC) and VOCs. The CO, CO2 and THC emission factors (EFs) were 206 ± 79, 1377 ± 142 and 8.1 ± 9 g kg-1 biomass burned (dry basis), respectively. VOC emissions from Mediterranean wildfires were reported for the first time. Aromatic hydrocarbons were major components of the identified VOC emissions. Among them, benzene and toluene were dominant compounds with EFs averaging 0.747 ± 0.303 and 0.567 ± 0.422 g kg-1 biomass burned (dry basis), respectively. Considerable amounts of oxygenated organic volatile compounds (OVOCs) and isoprenoids were detected. 2-Furaldehyde and hexanal were the most abundant measured OVOCs with EFs of 0.337 ± 0.259 and 0.088 ± 0.039 g kg-1 biomass burned (dry basis), respectively. The isoprenoid emissions were dominated by isoprene (EF = 0.207 ± 0.195 g kg-1 dry biomass burned) and ?-pinene (EF = 0.112 ± 0.093 g kg-1 dry biomass burned). Emission data obtained in this work are useful for validating and improving emission inventories, as well for carrying out modelling studies to assess the effects of vegetation fires on air pollution and tropospheric chemistry.

  11. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (?-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not easily detected by flux measurements, give reason to perform more screening at leaf level and, whenever possible, within the forests under ambient conditions.

  12. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    NASA Astrophysics Data System (ADS)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.

  13. CHARACTERIZATION OF LOW-VOC LATEX PAINTS: VOLATILE ORGANIC COMPOUND CONTENT, VOC AND ALDEHYDE EMISSIONS, AND PAINT PERFORMANCE

    EPA Science Inventory

    The report gives results of laboratory tests to evaluate commercially available latex paints advertised as "low-odor," "low-VOC (volatile organic compound)," or "no-VOC." Measurements were performed to quantify the total content of VOCs in the paints...

  14. MODEL FOR EVALUATION OF REFINERY AND SYNFUELS VOC (VOLATILE ORGANIC COMPOUNDS) EMISSION DATA. VOLUME 1. TECHNICAL REPORT AND APPENDIX A

    EPA Science Inventory

    The report describes the development of a model for estimating emissions of volatile organic compounds (VOCs) from petroleum refineries and synfuel plants. The model, responding to a need to define a consistent and comprehensive approach for estimating VOC emissions from these tw...

  15. MODEL FOR EVALUATION OF REFINERY AND SYNFUELS VOC (VOLATILE ORGANIC COMPOUNDS) EMISSION DATA. VOLUME 2. APPENDICES B AND C

    EPA Science Inventory

    The report describes the development of a model for estimating emissions of volatile organic compounds (VOCs) from petroleum refineries and synfuel plants. The model, responding to a need to define a consistent and comprehensive approach for estimating VOC emissions from these tw...

  16. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX PAINT AND ALKYD PAINTS

    EPA Science Inventory

    The report gives details of a small-chamber test method developed by the EPA for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current knowledge about VOC, including hazardous air pollutant, emissions from interior paints generated...

  17. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX AND ALKYD PAINTS

    EPA Science Inventory

    This document provides a detailed report on the small-chamber test method developed by EPA/NRMRL
    for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current
    knowledge about VOC, including hazardous air pollutant, emissions fr...

  18. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX AND ALKYD PAINTS

    EPA Science Inventory

    The report gives details of a small-chamber test method, developed by EPA for characterizing volatile organic compound (VOC) emissions from inte-rior latex and alkyd paints. Current knowledge about VOC, including haz-ardous air pollutant, emissions from in-terior paints generated...

  19. Composition and emissions of VOCs in main- and side-stream smoke of research cigarettes

    NASA Astrophysics Data System (ADS)

    Charles, Simone M.; Batterman, S. A.; Jia, Chunrong

    It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296-535 ?g cig -1), toluene (541-1003 ?g cig -1), styrene (90-162 ?g cig -1), 2-dimethyl furan (71-244 ?g cig -1), naphthalene (15-18 ?g cig -1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests.

  20. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  1. Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity

    NASA Astrophysics Data System (ADS)

    Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P.

    The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s -1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run. Some of the building products continued to affect the perceived air quality despite the concentrations of the selected VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee that a building product has no impact on the perceived air quality.

  2. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ?100 HP (Except...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO...

  3. Source and risk apportionment of selected VOCs and PM?.? species using partially constrained receptor models with multiple time resolution data.

    PubMed

    Liao, Ho-Tang; Chou, Charles C-K; Chow, Judith C; Watson, John G; Hopke, Philip K; Wu, Chang-Fu

    2015-10-01

    This study was conducted to identify and quantify the sources of selected volatile organic compounds (VOCs) and fine particulate matter (PM2.5) by using a partially constrained source apportionment model suitable for multiple time resolution data. Hourly VOC, 12-h and 24-h PM2.5 speciation data were collected during three seasons in 2013. Eight factors were retrieved from the Positive Matrix Factorization solutions and adding source profile constraints enhanced the interpretability of source profiles. Results showed that the evaporative emission factor was the largest contributor (25%) to VOC mass concentration, while the largest contributor to PM2.5 mass concentration was soil dust/regional transport related factor (26%). In terms of risk prioritization, traffic/industry related factor was the major cause for benzene, ethylbenzene, Cr, and polycyclic aromatic hydrocarbons (29-69%) while petrochemical related factor contributed most to the Ni risk (36%). This indicated that a larger contributor to mass concentration may not correspond to a higher risk. PMID:26057474

  4. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions

    EPA Science Inventory

    In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998–2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas,...

  5. THE EFFECTS OF AN OILY-PHASE ON VOC EMISSIONS FROM INDUSTRIAL WASTEWATER

    EPA Science Inventory

    Research findings will substantially improve the existing knowledge base related to VOC and HAP emissions from three phase systems (oil, water, air). Results should be of interest to both the regulating and regulated communities of Texas in the context that the rel...

  6. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - FUGITIVE VOC EMISSIONS IN THE SYNTHETIC ORGANIC CHEMICALS MANUFACTURING INDUSTRY

    EPA Science Inventory

    This 29 - page Technology Transfer Environmental Regulations and Technology publication is intended as an introduction to the Synthetic Organic Chemicals Manufacturing Industry (SOCMI) ugitive VOC emissions standards. he Clean Air Act, as amended in 1977, directed he U.S. Environ...

  7. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  8. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    PubMed Central

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2013-01-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ – water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m?2 s?1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m?2 s?1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting. PMID:24348524

  9. Southern California Edison's (SCE) Research Program for Industrial Volatile Organic Compound (VOC) Emissions Control 

    E-print Network

    Sung, R. D.; Cascone, R.; Reese, J.

    1990-01-01

    EDISON'S (SCE) RESEARCH PROGRAM FOR INDUSTRIAL VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS CONTROL ROGER D. SUNG RON CASCONE JIM REESE Program Manager Senior Consultant Manager Southern California Edison Chem Systems, Inc. Applied Utility Systems...-on controls. Vendors were identified, contacted, and evaluated for system performance. Industrial targets were selected based on need for assistance, magnitude of emissions, and number of facilities affected. Many facility operators were approached...

  10. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    DOE PAGESBeta

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-18

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatographmore »coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  11. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  12. VOC PREVENTION OPTIONS FOR SURFACE COATING

    EPA Science Inventory

    The paper discusses some of the volatile organic compound (VOC) prevention options for surface coating. Most small surface coating industries are considered to be stationary area sources. Although stationary area sources may account for as much as 50% of national VOC emissions, t...

  13. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.

    2015-08-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 ?g m-3 in 2005 to 2.05 ?g m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.

  14. Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Vlasenko, A.; Staebler, R. M.; Stroud, C.; Makar, P. A.; Liggio, J.; Li, S.-M.; Brown, S.

    2014-09-01

    Understanding of the atmosphere/forest canopy exchange of volatile organic compounds (VOCs) requires insight into the deposition, emission, and chemical reactions of VOCs below the canopy. Between 18 July and 9 August 2009, VOCs were measured with proton-transfer-reaction mass spectrometry (PTR-MS) at six heights between 1 and 6 m beneath a 23 m high mixed-forest canopy. Measured VOCs included methanol, isoprene, acetone, methacrolein and methyl vinyl ketone (MACR + MVK), monoterpenes, and sesquiterpenes. There are pronounced differences in the behaviour of isoprene and its by-products and that of the terpenes. Non-terpene mixing ratios increase with height, suggesting predominantly downward fluxes. In contrast, the terpene mixing ratios decrease with height, suggesting upward fluxes. A 1-D canopy model was used to compare results to measurements with and without surface deposition of isoprene and MACR + MVK and emissions of monoterpenes and sesquiterpenes. Results suggest deposition velocities of 2.7 mm s-1 for isoprene and 1.2 mm s-1 for MACR + MVK and daytime surface emission rates of 63 ?g m-2 h-1 for monoterpenes. The modelled isoprene surface deposition is approximately 2% of the canopy-top isoprene emissions and the modelled emissions of monoterpenes comprise approximately 15 to 27% of the canopy-top monoterpene emissions to the atmosphere. These results suggest that surface monoterpene emissions are significant for forest canopy/atmosphere exchange for this mixed-forest location and surface uptake is relatively small for all the species measured in this study.

  15. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant-derived VOCs, implying dairy cattle have a smaller effect on ozone formation than currently assumed by air districts in central California.

  16. Challenges in using flux chambers to measure ammonia and VOC emissions from open feedlot pen surfaces and retention ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few methodologies currently available to estimate ammonia and volatile organic compound (VOC) emissions from livestock operations have been adequately validated for accuracy. Flow-through flux chambers and wind tunnels are sometimes used; however, ammonia and VOC flux from pen or pond surfaces are a...

  17. Source apportionment of VOCs and aerosols at Cap Corsica during the ChArMEx field campaign

    NASA Astrophysics Data System (ADS)

    Sauvage, Stephane; Michoud, Vincent; Dusanter, Sébastien; Leonardis, Thierry; Sciare, Jean; Marchand, Nicolas; Langley DeWitt, Helen; Locoge, Nadine

    2015-04-01

    Models of atmospheric chemistry suggest that aged anthropogenic air masses still contain significant levels of reactive trace gases such as mono- and multi-functional oxygenated Volatile Organic Compounds (VOCs), even after several days of oxidation. These air masses can significantly impact the oxidative capacity and the formation rate of secondary pollutants, especially of Secondary Organic Aerosol (SOA), at remote locations. However, large uncertainties still remain about chemical processes occurring during long range transport that lead to the oxidation of anthropogenic pollutants. An extended suite of trace gases and aerosols was acquired as part of the 2013 ChArMEx field campaign at a remote site in Cape Corsica, a receptor site experiencing events of long range transport of anthropogenic plumes from different urbanized areas (south of France, Spain, Italy, North of Africa). In this presentation, the VOC dataset is used to provide a better description of VOC sources at this remote site, as well as a better understanding of chemical processes occurring during long range transport of anthropogenic plumes. We will present a source apportionment of primary and secondary VOCs based on an analysis of time series and air mass trajectories. We will also present the results from a Concentration Field (CF) analysis to identify potential source areas influencing the receptor site. Finally, a Positive Matrix Factorization (PMF) analysis will be presented to highlight co-variation factors of the measured species that are representative of primary emissions, but also of physico-chemical transformations occurring during long range transport. These results provide relevant information to study chemical processes occurring in different types of plumes transported over the Mediterranean basin and to investigate gas-aerosol coupling.

  18. Measured and estimated benzene and volatile organic carbon (VOC) emissions at a major U.S. refinery/chemical plant: Comparison and prioritization.

    PubMed

    Hoyt, Daniel; Raun, Loren H

    2015-08-01

    Estimates of emissions for processes and point sources at petroleum refineries and chemical plants provide the foundation for many other environmental evaluations and policy decisions. The most commonly used method, based on emission factors, results in unreliable estimates. More information regarding the actual emissions within a facility is necessary to provide a foundation for improving emission factors and prioritizing which emission factors most need improvement. Identification of which emission factors both perform poorly and introduce the largest error is needed to provide such a prioritization. To address this need, benzene and volatile organic compound (VOC) emissions within a major chemical plant/refinery were measured and compared with emission factor estimates. The results of this study indicate estimated emissions were never higher and commonly lower than the measured emissions. At one source location, VOC emissions were found to be largely representative of those measured (i.e., the catalytic reformer), but more often, emissions were significantly underestimated (e.g., up to 448 times greater than estimated at a floating roof tank). The sources with both the largest relative error between the estimate and the measurement and the largest magnitude of emissions in this study were a wastewater treatment process, an aromatics concentration unit and benzene extraction unit process area, and two sets of tanks (sets 7 and 8). Emission factors for these sources are priorities for further evaluation and improvement in this chemical plant/refinery. This study presents empirical data that demonstrate the need to validate and improve emission factors. Emission factors needing improvement are prioritized by identifying those that are weak models and introduce the largest error in magnitude of emissions. The results can also be used to prioritize evaluations of the emissions sources and controls, and any operational conditions or erroneous assumptions that may be contributing to the error. PMID:26067830

  19. Behavior of VOCs and carbonyl compounds emission from different types of wallpapers in Korea.

    PubMed

    Lim, Jungyun; Kim, Suejin; Kim, Arong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok

    2014-04-01

    Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m²·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products. PMID:24747540

  20. Behavior of VOCs and Carbonyl Compounds Emission from Different Types of Wallpapers in Korea

    PubMed Central

    Lim, Jungyun; Kim, Suejin; Kim, ARong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok

    2014-01-01

    Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m2·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products. PMID:24747540

  1. Investigation of the emissions and profiles of a wide range of VOCs during the Clean air for London project

    NASA Astrophysics Data System (ADS)

    Holmes, Rachel; Lidster, Richard; Hamilton, Jacqueline; Lee, James; Hopkins, James; Whalley, Lisa; Lewis, Alistair

    2014-05-01

    The majority of the World's population live in polluted urbanized areas. Poor air quality is shortening life expectancy of people in the UK by an average 7-8 months and costs society around £20 billion per year.[1] Despite this, our understanding of atmospheric processing in urban environments and its effect on air quality is incomplete. Air quality models are used to predict how air quality changes given different concentrations of pollution precursors, such as volatile organic compounds (VOCs). The urban environment of megacities pose a unique challenge for air quality measurements and modelling, due to high population densities, pollution levels and complex infrastructure. For over 60 years the air quality in London has been monitored, however the existing measurements are limited to a small group of compounds. In order to fully understand the chemical and physical processes that occur in London, more intensive and comprehensive measurements should be made. The Clean air for London (ClearfLo) project was conducted to investigate the air quality, in particular the boundary layer pollution, of London. A relatively new technique, comprehensive two dimensional gas chromatography (GC×GC) [2] was combined with a well-established dual channel GC (DC-GC) [3] system to provide a more comprehensive measurement of VOCs. A total of 78 individual VOCs (36 aliphatics, 19 monoaromatics, 21 oxygenated and 2 halogenated) and 10 groups of VOCs (8 aliphatic, 1 monoaromatic and 1 monoterpene) from C1-C13+ were quantified. Seasonal and diurnal profiles of these VOCs have been found which show the influence of emission source and chemical processing. Including these extra VOCs should enhance the prediction capability of air quality models thus informing policy makers on how to potentially improve air quality in megacities. References 1. House of Commons Environmental Audit Committee, Air Quality: A follow-up report, Ninth Report of session 2012-12. 2. Lidster, R.T., J.F. Hamilton, and A.C. Lewis, The application of two total transfer valve modulators for comprehensive two-dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011. 34(7): p. 812-821. 3. Hopkins, J.R., C.E. Jones, and A.C. Lewis, A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds. Journal of Environmental Monitoring, 2011. 13(8): p. 2268-2276.

  2. Source Contributions to VOC's to Ozone Formation in Southeast Texas Using a Source-oriented Air Quality Model 

    E-print Network

    Krishnan, Anupama

    2011-08-08

    Houston-Galveston-Brazoria area is in severe non-attainment status for ozone compliance. Source-oriented mechanistic modeling was used to determine the major sources of VOCs that contributes to ozone formation during the Texas Air Quality Study (Tex...

  3. NOx and VOC species profiles for gas fired stationary combustion sources. Volume 2. Field and sampling data. Final report

    SciTech Connect

    Hansell, D.W.; England, G.C.; Grant, R.

    1995-01-01

    Eight gas fired sources were tested including three internal combustion (IC) engines, gas turbine, two refinery process heaters, a steam generator, and a utility boiler. Various fuel types were used including natural gas (MG), refinery gas (RG), landfill gas (LG), and field gas (FG). Over 100 substances were included on the target analyte list for each source including paraffins, olefins, acetylenes, naphthenes, aromatics, 1,3 Butadiene, aldehydes, NO, and NOx. Of the 21 VOCs detected, Methane was the most prevalent. The IC engines had the highest total organic emissions and 1,3 Butadiene was detected at the LG and FG IC Engines only. Benzene and toluene were detected at most sources and aldehydes were detected at each of the sources.

  4. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge based on short-term experiments is risky being transferred to an ecotype which is governed under natural conditions by long term flooding. Furthermore, contrasting such experiments with usually young trees (saplings or a few years old) nothing is known about the emission behavior of adult trees under field conditions.

  5. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  6. Silent discharge plasma for point-of-use abatement of VOC emissions. Final report ESHCOO3(b)

    SciTech Connect

    Coogan, J.J.; Jassal, A.

    1997-02-14

    Los Alamos and SEMATECH have evaluated a silent discharge plasma (SDP) device for point-of-use (POU) control of specific semiconductor VOC emissions at the source. Destruction efficiencies were initially determined at the bench scale using controlled gas mixtures and system performance was measured for simulated emissions containing a variety of volatile organic compounds (including HMDS) and PFCs. Based on this work, a field-pilot unit was designed and tested at a SEMATECH member site using two slip-streams: (1) PGMEA and HMDS gas mixture from lithography tools and the, (2) acetone, PCE and methanol from a wet bench cleaning tool. Based on the pilot test data, CoO estimates for the SDP technology show annual operating expenses (including amortized capital and installation costs, maintenance, and utilities) are $8.3K for a single 250 scfm lithotrack tool. End-of-pipe (EOP) system costs are $33.3K per 1000 scfm as compared to about $22K per 1000 scfm for a typical EOP concentrator/thermal abatement system. LANL does not recommend replacing existing EOP systems with SDP. However SDP could be easily installed in {open_quotes}niche{close_quotes} circumstances for POU control of VOCs from lithotrack tools.

  7. Long-term variations in natural, terrestrial VOC emissions: 1000-1990 AD

    NASA Astrophysics Data System (ADS)

    Acosta, J. C.; Struthers, H.; Zorita, E.; Ekman, A. M.; Riipinen, I.

    2012-12-01

    Natural vegetation emits large amounts of volatile organic compounds (e.g. monoterpenes and isoprene) into the atmosphere. Estimates of the total global source of biogenic volatile organic compounds (BVOCs) in the past millennium range between 1050 and 1100 Tg yr-1 (Adams et al. 2001). BVOCs have multiple impacts on atmospheric chemistry, for example they are believed to affect ozone formation, decrease the oxidizing capacity of the troposphere and substantially alter the concentrations of tropospheric aerosol in continental regions (Seinfeld et al., 1998). Organic compounds constitute 20-90% of the submicron aerosol mass, depending on location. Most of this contribution is secondary, meaning that the emitted VOCs are oxidized in the atmosphere followed by gas-to-particle conversion of the oxidation products (Jimenez et al., 2009). BVOCs emitted by vegetation are the dominant source of secondary organic aerosol (SOA) in the atmosphere (Guenther et al., 1995). Estimates on the present-day organic aerosol budgets are improving rapidly, but it is unclear how the organic aerosol fraction has evolved in the past. Such information is, however, needed for accurate estimates on the climate forcing caused by aerosols. Understanding the factors that have governed BVOC emissions in the past is a prerequisite for completing this task. We evaluate the variability of global fluxes of isoprene, monoterpenes and sesquiterpenes over the last millennium using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). MEGAN estimates the emission activity of BVOCs using meteorological (Air temperature, solar radiation, soil moisture) and landcover (Plant Functional Types (PFTs) and Leaf Area Index (LAI)) inputs. The model is driven off-line using meteorological fields from existing Max Planck Institute Earth System Model (MPI-ESM) (Jungclaus et al. 2010) millennium simulations, and reconstructions of the global changes PFTs and LAI (Kaplan et al., 2010). We evaluate the long-term response of terrestrial BVOC emission activity to variations in land-use change and climatic factors, and find that compared to preindustrial times (1000-1800 A.D.), global isoprene emissions have decreased 8%, monoterpenes emissions have increased 10% and sesquiterpenes emissions have increased 15% during the time period 1950-1990 A.D.. The results suggest that the variation of isoprene emissions is governed by land-use changes, while monoterpenenes and sesquiterpenes variations are dominated by climate variability. Adams, J.M. (2001). Chemosphere - Global Change Science, 3, 73-91 J.H. Seinfeld and S. N. Pandis. (1998). Atmospheric Chemistry and Physics . Wiley, New York Jimenez, J. L. et al. (2009). Science, 326, 1525-1529 Kaplan, J. O. et al (2010). The Holocene 21(5), 775-791 Guenther, A. et al. (1995). J. Geophys. Res., 100, 8873-8892 Hoyle, C. R. et al. (2011). Atmos. Chem. Phys., 11, 321-343 A. Guenther et al. (2006). Atmospheric Chemistry and Physics, 6:3181-3210 J. H. Jungclaus et al. (2010). Climate of the Past, 6:723-737

  8. On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Shen, Xianbao; Cao, Xinyue; Jiang, Xi; Ye, Yu; He, Kebin

    2015-03-01

    This paper is the second in a series of papers aimed at understanding volatile organic compound (VOC) emissions from motor vehicles in Beijing using on-board emission measurements, focusing specifically on rural vehicles (RVs). In this work, 13 RVs, including 6 different 3-wheel (3-W) RVs and 7 different 4-wheel (4-W) RVs, were examined using a portable emissions measurement system (PEMS) as the vehicles were driven on predesigned fixed test routes in rural areas of Beijing. Overall, 50 VOC species were quantified in this study, including 18 alkanes, 5 alkenes, 11 aromatics, 13 carbonyls and 3 other compounds. The average emission factor (EF) of the total VOCs for the 4-W RVs based on the distance traveled was 326.2 ± 129.3 mg/km, which is 2.5 times greater than that of the 3-W RVs. However, the VOC emissions for the 3-W RVs had higher EFs based on their CO2 emissions due to the different fuel economies of the two types of RVs. Formaldehyde, toluene, acetaldehyde, m-xylene, p-xylene, isopentane, benzene, ethylbenzene, n-pentane, 2-methoxy-2-methylpropane and butenal were the dominant VOC species from the RVs, accounting for an average of 68.6% of the total VOC emissions. Overall, the RVs had high proportions of aromatics and carbonyls. The ozone formation potentials (OFPs) were 670.6 ± 227.2 and 1454.1 ± 643.0 mg O3/km for the 3-W and 4-W RVs, respectively, and approximately 60%-70% of the OFP resulted from carbonyls. We estimated that the 3-W and 4-W RVs accounted for approximately 50% and 10%, respectively, of the total OFP caused by diesel vehicles (including diesel trucks and RVs) in Beijing in 2012. Thus, more attention should be given to VOC emissions and their impact on ozone formation.

  9. Controlling VOC and air toxic emissions from aircraft refinishing facilities -- A new approach

    SciTech Connect

    Ayer, J.

    1997-12-31

    Preliminary studies conducted by the EPA and Air Force indicate that significant cost reductions are achievable by reducing booth exhaust flow rates via recirculation. Based on these results, the EPA and the US Marine Corps launched a full scale demonstration program in which several paint booths were modified at the Barstow MCLB to encompass recirculation and other ventilation system optimization strategies. Additionally, the booth exhaust streams were vented to an innovative VOC emission control device that has extremely low operating costs. The paper describes this full-scale demonstration program in which booth exhaust flow rates were safely reduced from 143,000 cfm to 44,000 cfm. This program (completed in September, 1996) encompassed several innovative elements, including: Permanent installation of split-flow/recirculation ventilation in 3 high production paint booths. Use of Variable Frequency Drive Fans to continually reduce booth flow rates to the lowest level while maintaining compliance with OSHA mandates. Integration of an innovative monitoring system using Fourier Transform Infrared (FTIR) to continuously monitor/speciate organic compound concentrations in recirculation ducts and ensure safe system operation. Installation of an ambient temperature emission control system that oxidizes the exhaust stream VOCs and is capable of instantaneous startup/shutdown operations; this is ideal for the Barstow MCLB high production operation. The ventilation systems were tested extensively to ensure a safe and efficient working environment; these test results indicate that recirculation and other system modifications successfully reduced flow rates to achieve low cost emission control. Results of a detailed economic analysis are also presented which demonstrate that ventilation system modification costs are quickly recovered from the installation/operation of a smaller VOC emission control device.

  10. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region

    NASA Astrophysics Data System (ADS)

    Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Odabasi, Mustafa; Elbir, Tolga; Bayram, Abdurrahman

    2014-12-01

    Source apportionment is generally applied to a time series of pollutant concentrations measured at a single site. However, in a complex airshed having multiple pollutant sources, it may be helpful to collect samples from several sites to ensure that some of them have low contributions from specific sources. Ambient air samples (n = 160) were collected by passive sampling during four seasons in 2009 and 2010 at forty different sites in Aliaga, Turkey to determine the spatial, seasonal variations and possible sources of volatile organic compounds (VOCs). Fifty-eight VOCs (?58VOC) were detected. ?58VOC concentrations ranged between 0.1 and 1770 ?g m-3 (avg ± SD, 67 ± 193 ?g m-3). Aliphatic hydrocarbons were generally predominant with a high percentage of contribution (31%-88%) at all sites. Aromatic VOCs were the second highest group (8-50%), followed by halogenated VOCs (1-24%) and oxygenated VOCs (0.04-5.9%). Highly variable spatial distribution of ambient VOC concentrations suggested that the major sources in this region were industrial plants. Generally, VOC concentrations were higher in summer than in winter probably due to increased volatilization from their sources at higher ambient temperatures. However, high atmospheric VOC concentrations were also observed in winter and fall near the petroleum refinery and petrochemical complex, probably due to the calm conditions and high atmospheric stability that is commonly encountered during the winter months in the area, restricting the dilution of pollutants. The newest version of EPA PMF (V5.0) (Positive Matrix Factorization) having the capability of handling multiple site data was used for source apportionment. Refinery and petroleum products, petrochemical industry, solvent use and industrial processes, and vehicle exhaust were the identified VOC sources in the study area, contributing 56%, 22%, 12%, and 10%, respectively to the ?58VOC concentrations. Carcinogenic risks due to lifetime exposure to seven VOCs were also estimated. Estimated risks were the highest for 1,2-dichloroethane, followed by benzene, chloroform, and carbon tetrachloride. Carcinogenic risks for trichloroethene, 1,1,2-trichloroethane, and bromoform were lower than the general acceptable risk level of 1.0 × 10-6. However, risks for 1,2-dichloroethane, benzene, chloroform, and carbon tetrachloride were substantially higher than the acceptable level. It was concluded that carcinogenic risks may reach considerably high levels for a significant portion of the population living in the study area.

  11. Characterization of VOC Sources during the Texas Air Quality Study 2000 Using Proton-Transfer-Reaction Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.

    2002-12-01

    We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.

  12. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  13. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and storage of silage. Aldehydes may also be produced aerobically by spoilage microorganisms through the oxidation of alcohols. Abiotic reactions may be important for production of methanol and esters. Although silage additives appear to affect VOC production in individual studies, bacterial inoculants have not shown a consistent effect on ethanol, and effects on other VOCs have not been studied. Production of acetic acid is understood, and production could be minimized, but a decrease could lead to an increase in other, more volatile and more reactive, VOCs. Chemical additives designed for controlling yeasts and undesirable bacteria show promise for reducing ethanol production in corn silage. More work is needed to understand silage VOC production and emission from silage, including: additional measurements of VOC concentrations or production in silage of all types, and an exploration of the causes of variability; accurate on-farm measurements of VOC emission, including an assessment of the importance of individual ensiling stages and practices that could reduce emission of existing VOCs; and work on understanding the sources of silage VOCs and possible approaches for reducing production.

  14. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    SciTech Connect

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  15. Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium

    SciTech Connect

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M.; Kaplan, J. O.; Guenther, Alex B.; Arneth, A.; Riipinen, I.

    2014-06-16

    We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8 GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signicant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 15 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% 19 20 less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8GUESS), for isoprene and monoterpenes. We found the millennial trends ofglobal isoprene emissions to be mostly a*ected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signifcant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 16 17 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 18 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

  16. Light-duty vehicle PM and VOC speciated emissions at differing ambient temperatues with ethanol blend gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the U.S., interest is increasing in how these fuel blends affect PM and VOC emissions. EPA conducted a study characterizing emissions from two flex-fuel and one non-flex-fueled light-duty vehicles operated on a chassis dynamom...

  17. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium

    PubMed Central

    Acosta Navarro, J C; Smolander, S; Struthers, H; Zorita, E; Ekman, A M L; Kaplan, J O; Guenther, A; Arneth, A; Riipinen, I

    2014-01-01

    We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr?1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr?1(15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr?1(10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr?1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr?1(10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. PMID:25866703

  18. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M. L.; Kaplan, J. O.; Guenther, A.; Arneth, A.; Riipinen, I.

    2014-06-01

    We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr-1(15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1(10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1(10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

  19. Large decrease of VOC emissions of Switzerland's car fleet during the past decade: results from a highway tunnel study

    NASA Astrophysics Data System (ADS)

    Stemmler, Konrad; Bugmann, Stefan; Buchmann, Brigitte; Reimann, Stefan; Staehelin, Johannes

    The emissions of 14 C 4-C 8 VOC species from road traffic have been measured in a highway tunnel (Gubristtunnel) near Zurich, Switzerland in 2002. The investigated traffic situation corresponds to highway driving with an average speed of 90 km h -1 and hot engine conditions. The comparison with measurements in the same tunnel performed in 1993 indicates that the emission factors of the individual hydrocarbons decreased on average by 80% in the 9 years between both investigations. This improvement can mainly be explained by the nearly complete elimination of non-catalyst gasoline-fuelled cars from the Swiss car fleet in the past decade. The relative emission strengths of the quantified individual VOCs were similar in 1993 and 2002. The emission factors reported in this study are the lowest reported from on-road vehicle emission measurements so far, indicating the efficient technology of modern car fleets with respect to VOC emissions. The emission factors derived from the tunnel study are compared to modelled emission factors based on dynamometric test measurements on Swiss passenger cars. The employed model is the Handbuch für Emissionsfaktoren des Strassenverkehrs; version 1.2 (Umweltbundesamt Berlin and INFRAS AG Bern, 1999). A good agreement between the modelled and measured emissions was found for the investigated traffic situation, indicating that the development of the VOC emissions during the last decade is well understood on the basis of the fleet composition and the dynamometric test measurements. The observed VOC emission reduction corresponds to a traffic situation, where an optimal exhaust gas catalyst performance can be expected. Factors leading to a somewhat less beneficial influence of the catalytic converter technique in other relevant driving situations are therefore additionally discussed.

  20. Forecasting of VOC emissions from traffic and industry using classification and regression multivariate methods.

    PubMed

    Stoji?, Andreja; Maleti?, Dimitrije; Staniši? Stoji?, Svetlana; Miji?, Zoran; Šoštari?, Andrej

    2015-07-15

    In this study, advanced multivariate methods were applied for VOC source apportionment and subsequent short-term forecast of industrial- and vehicle exhaust-related contributions in Belgrade urban area (Serbia). The VOC concentrations were measured using PTR-MS, together with inorganic gaseous pollutants (NOx, NO, NO2, SO2, and CO), PM10, and meteorological parameters. US EPA Positive Matrix Factorization and Unmix receptor models were applied to the obtained dataset both resolving six source profiles. For the purpose of forecasting industrial- and vehicle exhaust-related source contributions, different multivariate methods were employed in two separate cases, relying on meteorological data, and on meteorological data and concentrations of inorganic gaseous pollutants, respectively. The results indicate that Boosted Decision Trees and Multi-Layer Perceptrons were the best performing methods. According to the results, forecasting accuracy was high (lowest relative error of only 6%), in particular when the forecast was based on both meteorological parameters and concentrations of inorganic gaseous pollutants. PMID:25828408

  1. On-line field measurements of VOC emissions from a spruce tree at SMEAR Estonia

    NASA Astrophysics Data System (ADS)

    Bourtsoukidis, Efstratios; Bonn, Boris; Noe, Steffen

    2013-04-01

    We have investigated VOC emissions from a Norway spruce tree (Picea abies) in a hemi-boreal mixed forest in September and October 2012, using Proton Transfer Reaction Mass Spectrometry and Gas Chromatography - Mass Spectrometry techniques, applied in a dynamic branch enclosure system that was automatically operated with an electrical compressor. Parallel to BVOC measurements a vast amount of atmospheric (CO2, CH4, H2O, CO, particles) and meteorological (temperature, relative humidity, photosynthetic active radiation, wind speed and direction, precipitation) parameters were measured in the ambient atmosphere and inside the cuvette enclosure (temperature, relative humidity, O3). Prior to the measuring period, an innovatory experimental setup was built at Järvselja forest station, in order to accomplish the detection of BVOC and minimize sampling losses. Therefore, a new inlet line, consisting of 19.4m of heated and isolated glass tube was constructed. The new inlet system applied, allowed the on-line detection and calculation of sesquiterpene (SQT) emission rates for the first time in a hemi-boreal forest site. It total, 12 atmospheric relevant BVOCs were continuously monitored for a three week period and the emission rates were derived. Along with diurnal profiles and continuous timeless, some interesting observations showed the possibility of ozone effect on SQT emissions, the possibility of radiation effect on MT emissions, the higher induced emissions due to mechanical stress and the possibility for a valid intercomparison between different spruce trees located in mountain Kleiner Feldberg (Germany) and in Järvseja forest station (Estonia).

  2. RERANKING OF AREA SOURCES IN LIGHT OF SEASONAL/ REGIONAL EMISSION FACTORS AND STATE/LOCAL NEEDS

    EPA Science Inventory

    The report gives results of an effort to provide a better understanding of air pollution area sources and their emissions, to prioritize their importance as emitters of volatile organic compounds (VOCs), and to identify sources for which better emission estimation methodologies a...

  3. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Müller, M.; Eichler, P.; Mikoviny, T.; Beyersdorf, A. J.; Crawford, J. H.; Diskin, G. S.; Yang, M. M.; Yokelson, R. J.; Weinheimer, A. J.; Fried, A.

    2014-12-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  4. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; Mikoviny, Tomas; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Yang, Melissa; Yokelson, Robert; Weinheimer, Andrew; Fried, Alan; Wisthaler, Armin

    2015-04-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  5. LOW-VOC COATINGS FOR AUTOMOBILE REFINISHING USING NOVEL POLYMER RESINS

    EPA Science Inventory

    Coating operations release a significant portion of the non-mobile source, volatile organic compounds (VOCs) into the air. The U.S. EPA's Emissions Characterization and Prevention Branch has formulated novel low-VOC coatings for the automotive refinishing sector that reduce VOC l...

  6. Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors 

    E-print Network

    Kota, Sri H

    2014-07-25

    using fluxes of 18 VOCs measured on a tall tower in urban Houston during 2008. Vehicle contributions to the observed flux were determined using the Multilinear Engine (ME-2), a receptor-oriented source apportionment model. Emission factors of vehicle...

  7. SPATIAL AND SOURCE TYPE DISTRIBUTION OF EMISSIONS OF SELECTED TOXIC VOLATILE ORGANIC COMPOUNDS IN THE UNITED STATES IN 1990

    EPA Science Inventory

    The annual anthropogenic emission, principal contributing source types, and spatial distributions for selected toxic volatile organic compounds (VOCS) are presented for the United States. oxic compounds addressed include acrylonitrile, benzene, perchloroethylene, and trichloroeth...

  8. National survey of MTBE and other VOCs in community drinking-water sources

    USGS Publications Warehouse

    Clawges, Rick M.; Rowe, Barbara L.; Zogorski, John S.

    2001-01-01

    Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The chemical properties and widespread use of MTBE can result in contamination of private and public drinking-water sources. MTBE contamination is a concern in drinking water because of the compound's low taste and odor threshold and potential human-health effects.

  9. Characterization of VOCs Across Pennsylvania: Assessing Emissions from Rural, Forested, Agricultural and Natural Gas Drilling-Impacted Areas

    NASA Astrophysics Data System (ADS)

    Grannas, A. M.; Fuentes, J. D.; Ramos-Garcés, F.; Wang, D. K.; Martins, D. K.

    2012-12-01

    Volatile organic compounds (VOCs) of both biogenic and anthropogenic origin are important to troposphere chemistry, particularly the formation of photochemical smog and secondary organic aerosol. There is concern that increased natural gas exploration may lead to increased emissions of certain VOCs during well development and due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, a variety of VOCs were measured using canister sampling from a mobile measurement platform. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and gas well-impacted sites. As expected, biogenic VOCs and isoprene oxidation products were enhanced in forested regions, while anthropogenic non-methane hydrocarbons were enhanced in urban areas. BTEX (benzene, toluene, ethylbenzene and xylenes) was enhanced in urban areas, but the concentrations of BTEX measured near developing and existing natural gas sites were similar to rural and forested sites. Halogenated hydrocarbons and Freon compounds were consistent at all site locations. We will discuss the specific concentrations and signatures of these compounds and assess the potential impact of agricultural activities and gas well development on the observed VOC concentrations and variability.

  10. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  11. ESTIMATION OF THE RATE OF VOC EMISSIONS FROM SOLVENT-BASED INDOOR COATING MATERIALS BASED ON PRODUCT FORMULATION

    EPA Science Inventory

    Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with ...

  12. EMISSIONS OF BIOGENIC OXIDANT AND PM PRECURSORS: VERY HIGH REACTIVITY VOCS AND SURFACE LAYER CHEMISTRY ABOVE FORESTS

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOCs) -- chemicals emitted naturally by the green foliage of a forest, for example -- have been repeatedly shown to be important contributors to ozone pollution levels in many parts of the country. Recently, both the National Rese...

  13. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 1. ASSESSMENT OF CATALYTIC INCINERATION AND COMPETING CONTROLS

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  14. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  15. DEVELOPMENT OF THE 1980 NAPAP (NATIONAL ACID PRECIPITATION ASSESSMENT PROGRAM) EMISSIONS INVENTORY: AREA SOURCES, PRODUCT D (VERSION 5.0)

    EPA Science Inventory

    The 1980 NAPAP Emissions Inventory area source emissions data for the 48 contiguous United States are contained in the data file. Annual emissions of 11 pollutants (SO2, SO4, NOx, Pb, CO, HCl, HF, NH3, TSP, VOC, and total hydrocarbons) from 88 area source categories in 3,070 coun...

  16. RESEARCH AREA -- MOBILE SOURCE OZONE PRECURSOR EMISSIONS CHARACTERIZATION AND MODELING (ATMOSPHERIC PROTECTION BRANCH - AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volatile organic compounds (VOCs) in the U.S. Due to the dynamic operation of motor vehicles, emissions are highl...

  17. ATLAS OF SOURCE EMISSION PARTICLES

    EPA Science Inventory

    An atlas of various source emission particles characterized by electron optical techniques has been compiled for use by air pollution investigators. The particles studied were emitted by mobile, stationary, and natural sources. Sources included automobiles, manufacturing operatio...

  18. Location and characterization of emission sources for airborne volatile organic compounds inside a refinery in Taiwan.

    PubMed

    Chen, Ching-Liang; Shu, Chi-Min; Fang, Hung-Yuan

    2006-09-01

    This study aimed to locate VOC emission sources and characterized their emitted VOCs. To avoid interferences from vehicle exhaust, all sampling sites were positioned inside the refinery. Samples, taken with canisters, were analyzed by GC-MS according to TO-14 method. The survey period extended from Febrary 2004 to December 2004, sampling twice per season. To interpret a large number of VOC data was a rather difficult task. This study featured using ordinary application software, Excel and Surfer, instead of expensive one like GIS, to overcome it. Consolidating data into a database on Excel facilitated retrieval, statistical analysis and presentation in the form of either table or graph. The cross analysis of the data suggested that the abundant VOCs were alkanes, alkenes, aromatics and cyclic HCs. Emission sources were located by mapping the concentration distribution of these four types of VOCs in terms of contour maps on Surfer. During eight surveys, five emission sources were located and their VOCs were characterized. PMID:16741796

  19. [Emission strength and source apportionment of volatile organic compounds in Shanghai during 2010 EXPO].

    PubMed

    Wang, Hong-Li; Chen, Chang-Hong; Huang, Hai-Ying; Wang, Qian; Chen, Yi-Ran; Huang, Cheng; Li, Li; Zhang, Gang-Feng; Chen, Ming-Hua; Lou, Sheng-Rong; Qiao, Li-Ping

    2012-12-01

    The emission strength of VOCs was estimated in the study, based on the volatile organic compounds (VOCs) measurement results. Air mass backward trajectories were computed and cluster analysis was done combining with the corresponding air pollution indexes and VOCs concentrations. Source apportionment of VOCs was studied using receptor model. According to this study, VOCs emission in Shanghai per hour resulted in the VOCs concentration increment of (5.98 +/- 3.18) x 10(-9) during 2010 EXPO (from 1st May to 31st October in 2010), which was decreased by about 1 x 10(-9) compared to that in the same period of 2009. Under the control of the air masses roughly from the east (40%), the API was lower than 50. Influenced by the air masses from the northwest, the air quality was the worst with the average API higher than 70. The air masses from the southwest also resulted in bad air quality, with API higher than 60. The air masses originated from the west accounted for 25%, followed by the south and north air mass (20%). The VOCs concentrations were positively related to API in the same air mass, R2 = 0.599. During the 2010 EXPO, the emission related to vehicles including exhaust and gasoline evaporation contributed the largest amount of VOCs, approximately about -40%, followed by industry including industrial processes and coal combustion (30% - 40%), and solvent use and painting (20%). The biogenic emission was also considerable and accounted for 6% of VOCs in summer. PMID:23379136

  20. Ozone trends across the United States over a period of decreasing NOx and VOC emissions.

    PubMed

    Simon, Heather; Reff, Adam; Wells, Benjamin; Xing, Jia; Frank, Neil

    2015-01-01

    In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998-2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas, and at the upper end of the ozone distribution. Conversely, increasing ozone trends generally occur in the winter, in more urbanized areas, and at the lower end of the ozone distribution. The 95(th) percentile ozone concentrations decreased at urban, suburban, and rural monitors by 1-2 ppb/yr in the summer and 0.5-1 ppb/yr in the winter. In the summer, there are both increasing and decreasing trends in fifth percentile ozone concentrations of less than 0.5 ppb/yr at urban and suburban monitors, while fifth percentile ozone concentrations at rural monitors decreased by up to 1 ppb/yr. In the winter, fifth percentile ozone concentrations generally increased by 0.1-1 ppb/yr. These results demonstrate the large scale success of U.S. control strategies targeted at decreasing peak ozone concentrations. In addition, they indicate that as anthropogenic NOx emissions have decreased, the ozone distribution has been compressed, leading to less spatial and temporal variability. PMID:25517137

  1. Investigation of the source composition and temporal distribution of volatile organic compounds (VOCs) in a suburban area of the northwest of Spain using chemometric methods

    NASA Astrophysics Data System (ADS)

    Pérez-Rial, D.; López-Mahía, P.; Tauler, R.

    2010-12-01

    Data sets obtained from the quantitative analysis of 43 volatile organic compounds in air samples acquired every hour in 50 different sampling days (covering the different seasons) during the years 2005 and 2006 in a suburban area of the NW Spain have been investigated by different chemometric methods including matrix augmentation principal component analysis (MA-PCA) and parallel factor analysis (PARAFAC). The application of these two chemometric methods allowed the estimation of the chemical profiles of the main pollution sources operating over the investigated location and also unravelling their main temporal patterns. Using PCA, it was possible to identify four main different sources related to different VOC families (aromatic, aliphatic, halogenated and biogenic). However, the temporal emission patterns could not be properly resolved when the data of each individual sampling day were considered separately. When VOC emissions during the same week and for the whole year (50 sampling days) were simultaneously analysed by a new matrix augmentation PCA (MA-PCA) strategy and by PARAFAC, a better recovery and description of the daily and hourly temporal trends were achieved. In fact, the combination of MA-PCA with the score rearrangement followed by the first singular value decomposition allowed the extraction of daily cyclical emission trends that were subjacent in the original non-trilinear data matrix by means of a very simple methodology facilitating the interpretation of these complex data sets.

  2. Cost effectiveness of silent discharge plasma for point-of-use VOC emissions control in semiconductor fabrication

    SciTech Connect

    Cummings, M.; Booth, S.R.

    1996-12-11

    Extensive research into the treatment and control of Volatile Organic Compounds (VOCs) from semiconductor industry manufacturing processes has identified the need for alternatives to existing combustion devices. Specifically, semiconductor manufacturing design is moving toward the application of effective, small-scale, abatement control technologies for specific point-of-use (POU) waste streams associated with a particular component or manufacturing tool. The consortium of companies involved in semiconductor precompetitive research and development known collectively as SEMATECH recently evaluated eleven emerging environmental technologies designed to treat POU process emissions of VOCs specific to the semiconductor industry. After rigorous technical review only one technology, the Silent Discharge Plasma (SDP) developed at Low Alamos National Laboratory, was considered to successfully meet the required technical performance standards and potential cost effectiveness necessary for continued consideration by SEMATECH in their point-of-use emissions control plans.

  3. Investigating Sources and Emissions of Volatile Organic Compounds in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Harley, R. A.; Weber, R.; Karlik, J. F.; Goldstein, A. H.

    2011-12-01

    Emissions of Volatile Organic Compounds (VOCs) are regulated both as primary air pollutants and as precursors to the formation of secondary organic aerosol and tropospheric ozone. The San Joaquin Valley, a non-attainment area for ozone and PM2.5, contains a variety of point, area, and mobile VOC sources that contribute to both primary and secondary pollution. Using ambient measurements of over 100 different VOCs and Intermediate Volatility Organic Compounds (IVOCs) made at multiple field sites, we assess the magnitude and importance of various VOC sources in the San Joaquin Valley. Hourly measurements were made during the spring and summer of 2010 via in-situ gas chromatography in Bakersfield, CA as part of the CalNex experiment and also at a rural site located 100 km north of Bakersfield. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel during the summer of 2010. Measurements include a broad array of anthropogenic and biogenic VOCs ranging in size from 1 to 17 carbon atoms, including many compounds with functional groups or substituents (e.g. aldehydes, ketones, alcohols, halogens, sulfur, & nitrogen). Using statistical methods of source apportionment, covariance, source receptor modeling, and air parcel back trajectories, we assess the impact of various sources on observed VOC concentrations at our field sites in the San Joaquin Valley. Prevalent sources include gasoline and diesel-vehicle exhaust, petroleum extraction/refining, biogenic emissions from agricultural crops and natural vegetation, and emissions from dairy operations and animal husbandry. We use measurements of fresh motor vehicle emissions from the Caldecott tunnel to constrain apportionment of gasoline and diesel-related VOCs and IVOCs in the San Joaquin Valley. Initial results from Bakersfield show substantial influence from local anthropogenic VOC sources, but there is evidence for transport of emissions from both anthropogenic and biogenic sources elsewhere in the region. For example, large biogenic sources appear to be regional rather than local since concentrations of isoprene peak in the late afternoon/evening suggesting transport from northern parts of the valley. We observed elevated concentrations of numerous alcohols and carbonyls in the San Joaquin Valley; for example mixing ratios of ethanol and acetone at the Bakersfield supersite had inner quartile ranges of 1.2-9.4 ppbv and 0.58-1.6 ppbv, with daytime averages near 2 and 1 ppbv, respectively. Additionally, we assess the sources and emissions of the IVOCs observed in the San Joaquin Valley, which include polycyclic aromatic hydrocarbons, large biogenic compounds, and high molecular weight alkanes and aromatics.

  4. METHANE EMISSIONS FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    The chapter identifies and describes major industrial sources of methane (CH4) emissions. or each source type examined, it identifies CH4 release points and discusses in detail the factors affecting emissions. t also summarizes and discusses available global and country-specific ...

  5. DEVELOPMENT OF THE 1980 NAPAP (NATIONAL ACID PRECIPITATION ASSESSMENT PROGRAM) EMISSIONS INVENTORY: POINT SOURCES, PRODUCT B (VERSION 5.0)

    EPA Science Inventory

    The 1980 NAPAP Emissions Inventory point source emissions data for the 48 contiguous United States are contained in the data file. Annual emissions of 11 pollutants (SO2, SO4, NOx, Pb, CO, HC1, HF, NH3, TSP, VOC, and total hydrocarbons) from 13,769 plants encompassing 34,483 emis...

  6. RERANKING OF AREA SOURCES IN LIGHT OF SEASONAL/REGIONAL EMISSION FACTORS AND STAE/LOCAL NEEDS

    EPA Science Inventory

    The report gives results of an effort to provide a better understanding of air pollution area sources and their emissions, to prioritize their importance as emitters of volatile organic compounds (VOCs), and to identify sources for which better emission estimation methodologies a...

  7. VOC Control: Current practices and future trends

    SciTech Connect

    Moretti, E.C.; Mukhopadhyay, N. )

    1993-07-01

    One of the most formidable challenges posed by the Clean Air Act Amendments of 1990 (CAAA) is the search for efficient and economical control strategies for volatile organic compounds (VOCs). VOCs are precursors to ground-level ozone, a major component in the formation of smog. Under the CAAA, thousands of currently unregulated sources will be required to reduce or eliminate VOC emissions. In addition, sources that are currently regulated may seek to evaluate alternative VOC control strategies to meet stricter regulatory requirements such as the maximum achievable control technology (MACT) requirements in Title III of the CAAA. Because of the increasing attention being given to VOC control, the American Institute of Chemical Engineers' (AIChE) Center for Waste Reduction Technologies (CWRT) initiated a study of VOC control technologies and regulatory initiatives. A key objective of the project was to identify and describe existing VOC control technologies and air regulations, as well as emerging technologies and forthcoming regulations. That work is the basis for this article.

  8. Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.

    PubMed

    Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio

    2012-01-01

    The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission. PMID:22375544

  9. Control of VOCs emissions by condenser pre-treatment in a semiconductor fab.

    PubMed

    Lin, Yu-Chih; Chang, Feng-Tang; Bai, Hsunling; Pei, Bau-Shei

    2005-04-11

    The performance of a modified design of local condensers to pre-treat a variety of volatile organic compounds (VOCs) emitted from the stripping process of a semiconductor fab was tested in this study. The reaction temperature of the condensers was controlled at around 10 degrees C, it is relatively higher than the traditional condenser reaction temperature. Both VOCs and water vapors were condensed and formed liquid films. This resulted in an enhancement of the VOCs removals, especially for VOCs of high boiling points or solubility. This can help to prevent the follow up zeolite concentrator from damage. The performance of the integrated system of condenser/zeolite concentrator could, therefore, remain highly efficient for a longer operation time. Its annualized cost would also be lower than installing the zeolite concentrator only. PMID:15811658

  10. Comparison of VOC emissions between air-dried and heat-treated Norway spruce ( Picea abies), Scots pine ( Pinus sylvesteris) and European aspen ( Populus tremula) wood

    NASA Astrophysics Data System (ADS)

    Hyttinen, Marko; Masalin-Weijo, Marika; Kalliokoski, Pentti; Pasanen, Pertti

    2010-12-01

    Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.

  11. Emission rates of C 8-C 15 VOCs from seaweed and sand in the inter-tidal zone at Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Sartin, J. H.; Halsall, C. J.; Hayward, S.; Hewitt, C. N.

    Emission fluxes for a range of C 8-C 15 volatile organic compounds (VOCs) were determined from the seaweed Fucus spiralis (spiral wrack) and an adjacent sand surface during low tide on the coastline of Mace Head, Ireland. These two surface types, assessed using dynamic flux chamber systems, are typical of the Mace Head inter-tidal zone. A range of n-alkanes and oxygenates were routinely identified in the measurement of chamber air. Examination of the odd/even n-alkane ratios and use of the carbon preference index (CPI) suggested a biogenic source for these compounds (CPIs >2 in for all samples). Fluxes of n-pentadecane, the most predominant n-alkane, ranged from 0.2 to 5.1 ?g m -2 h -1 (0.9-24 nmol m -2 h -1), while oxygenates such as nonanal and decanal had fluxes ranging from <0.1 to 4.4 ?g m -2 h -1 (<0.1-31 nmol m -2 h -1) and <0.1 to 4.6 ?g m -2 h -1 (<0.1-30 nmol m -2 h -1), respectively. Seaweed emission rates for n-pentadecane were correlated with photosynthetically active radiation (PAR) ( rs=0.94) while emissions from sand showed correlation with temperature ( rs=0.85). This suggests a possible biochemical route controlling the release of n-pentadecane from spiral wrack, and temperature-driven volatilisation from sand. Volatilisation from residual seawater trapped in the sand may explain the comparable flux of both n-alkanes and oxygenates from this surface. Unlike the n-alkanes, oxygenate fluxes from sand correlate with PAR, suggesting a photodependent production from organic carbon residues present in seawater. Comparison with previous flux estimates from coastal seawater indicates that the two source types ( Fucus spiralis and bare sand) are significant but not dominant sources of these VOCs.

  12. ASSESSMENT OF NEUROBEHAVIORAL RESPONSE IN HUMANS TO LOW-LEVEL VOLATILE ORGANIC COMPOUND (VOC) SOURCES

    EPA Science Inventory

    Occupants of sick buildings often complain of CNS symptoms including headache and memory loss, but little objective evidence of neurobehavioral effects exists. vailable evidence of neurobehavioral effects of low level VOC exposure representative of new buildings is reviewed. etho...

  13. Multimedia trade off: Material substitution results in reduced VOC emissions and increased organic loading to liquid phase treatment processes

    SciTech Connect

    Yonge, D.R.; Trussler, S.; Claiborn, C.; Watts, R.

    1996-12-31

    Environmental concern regarding VOC emissions has resulted in efforts directed toward defining reliable and cost effective methods of emission reduction. One method that has attracted considerable interest is material substitution; the replacement of a hazardous material used in an industrial process or operation with one that is of less concern. A specific example of material replacement is the use of glycol ethers in place of more volatile surface cleaning agents. Such replacement significantly reduces VOC emissions, but often at the expense of increases in liquid phase contaminant loading. A comprehensive study was undertaken to define the fate of glycol ethers during metal surface cleaning operations. Information was also obtained regarding their impact of pretreatment operations and biodegradability. It was determined that the glycol ethers studied were amenable to catalyzed peroxide oxidation but that treatment process modification would be necessary to maintain desired effluent quality. Oxidation process optimization yielded evidence of the formation of an oxidation by-product that is interfering with OH{circ} formation or acting as an OH{circ} quenching agent. Preliminary biodegradation studies indicated that diethylene glycol monobutyl ether is biodegradable under aerobic conditions with no observed detrimental effects on sludge settling.

  14. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China.

    PubMed

    Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit

    2015-11-01

    Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ? RQtotals ? 8.99 × 10) but little human health risks (6.84 × 10(-7) ? RQtotals ? 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. PMID:26142752

  15. A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes

    PubMed Central

    Blair, Sandra L.; Epstein, Scott A.; Nizkorodov, Sergey A.; Staimer, Norbert

    2015-01-01

    Tobacco-free electronic cigarettes (e-cigarettes), which are currently not regulated by the FDA, have become widespread as a “safe” form of smoking. One approach to evaluate the potential toxicity of e-cigarettes and other types of potentially “reduced-harm” cigarettes is to compare their emissions of volatile organic compounds (VOCs), including reactive organic electrophillic compounds such as acrolein, and particulate matter to those of conventional and reference cigarettes. Our newly designed fast-flow tube system enabled us to analyze VOC composition and particle number concentration in real-time by promptly diluting puffs of mainstream smoke obtained from different brands of combustion cigarettes and e-cigarettes. A proton transfer reaction time-of-flight mass spectrometer (PTRMS) was used to analyze real-time cigarette VOC emissions with a 1 s time resolution. Particles were detected with a condensation particle counter (CPC). This technique offers real-time analysis of VOCs and particles in each puff without sample aging and does not require any sample pretreatment or extra handling. Several important determining factors in VOC and particle concentration were investigated: (1) puff frequency; (2) puff number; (3) tar content; (4) filter type. Results indicate that electronic cigarettes are not free from acrolein and acetaldehyde emissions and produce comparable particle number concentrations to those of combustion cigarettes, more specifically to the 1R5F reference cigarette. Unlike conventional cigarettes, which emit different amounts of particles and VOCs each puff, there was no significant puff dependence in the e-cigarette emissions. Charcoal filter cigarettes did not fully prevent the emission of acrolein and other VOCs.

  16. [Study on control and management for industrial volatile organic compounds (VOCs) in China].

    PubMed

    Wang, Hai-Lin; Zhang, Guo-Ning; Nei, Lei; Wang, Yu-Fei; Hao, Zheng-Ping

    2011-12-01

    Volatile organic compounds (VOCs) emitted from industrial sources account for a large percent of total anthropogenic VOCs. In this paper, VOCs emission characterization, control technologies and management were discussed. VOCs from industrial emissions were characterized by high intensity, wide range and uneven distribution, which focused on Bejing-Tianjin Joint Belt, Shangdong Peninsula, Yangtze River Delta and the Pearl River Delta. The current technologies for VOCs treatment include adsorption, catalytic combustion, bio-degradation and others, which were applied in petrochemical, oil vapor recovery, shipbuilding, printing, pharmaceutical, feather manufacturing and so on. The scarcity of related regulations/standards plus ineffective supervision make the VOCs management difficult. Therefore, it is suggested that VOCs treatment be firstly performed from key areas and industries, and then carried out step by step. By establishing of actual reducing amount control system and more detailed VOCs emission standards and regulations, applying practical technologies together with demonstration projects, and setting up VOCs emission registration and classification-related-charge system, VOCs could be reduced effectively. PMID:22468504

  17. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  18. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    NASA Astrophysics Data System (ADS)

    Bon, D. M.; Ulbrich, I. M.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L.; Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Springston, S.; Vargas, O.

    2011-03-01

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of ~2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  19. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    NASA Astrophysics Data System (ADS)

    Bon, D. M.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A.; Blake, D.; Fall, R.; Jimenez, J. L.; Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Springston, S.; Ulbrich, I. M.; Vargas, O.

    2010-10-01

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs are determined from early-morning enhancement ratios and compared to emission ratios calculated from the PMF results. Average emission ratios for non-oxygenated species relative to CO are on average a factor of 2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing and to estimate OVOC emission ratios. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. The total PIT-MS signal was summed to estimate the fraction of identified vs. unidentified VOC species.

  20. Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission

    NASA Astrophysics Data System (ADS)

    Leong, Shing Tet; Muttamara, S.; Laortanakul, Preecha

    Emission rates of benzene, toluene, m-xylene, formaldehyde and acetaldehyde were measured in a fleet of 16 in-use vehicles. The test was performed on a chassis dynamometer incorporated with Bangkok Driving Cycle test mode. Three different test fuels: unleaded gasoline, gasoline blended with 10% ethanol (E10) and gasoline blended with 15% ethanol (E15) were used to determine the different compositions of exhaust emissions from various vehicles. The effects of ethanol content fuels on emissions were tested by three types of vehicles: cars with no catalytic converter installation, cars with three-way catalytic converter and cars with dual-bed catalytic converter. The test result showed wide variations in the average emission rates with different mileages, fuel types and catalytic converters (benzene: 3.33-56.48 mg/km, toluene: 8.62-124.66 mg/km, m-xylene: 2.97-51.65 mg/km, formaldehyde: 20.82-477.57 mg/km and acetaldehyde: 9.46-219.86 mg/km). There was a modest reduction in emission rate of benzene, toluene and m-xylene in cars using E10 and E15 fuels. Use of ethanol fuels, however, leads to increased formaldehyde and acetaldehyde emission rates. Our analysis revealed that alternative fuels and technologies give significant reduction in toxic VOC pollutants from automobile emission—particularly car with dual-bed catalytic converter using E10 fuel.

  1. Flooding effects on plant physiology and VOC emissions from Amazonian tree species from two different flooding environments: Varzea and Igapo

    NASA Astrophysics Data System (ADS)

    Bracho Nunez, A.; Knothe, N.; Liberato, M. A. R.; Schebeske, G.; Ciccioli, P.; Piedade, M. T. F.; Kesselmeier, J.

    2009-04-01

    A land area of 300.000 km² in the Amazon basin is subjected to a continuous flooding pulse, being flooded for 210 days a-1 on an average (Junk et al. 1993). To survive the flooding period vegetation has developed several morphological, anatomical and physiological strategies to mitigate the produced stress due to root anoxia. One of the strategies is fermentation of sucrose in the roots to comply with the energy demand under anoxia. The resulting toxic metabolite ethanol is transported through the transpiration stream to the leaves and can be directly emitted into the atmosphere or converted to acetaldehyde and/or acetate, still volatile enough to be partly released. We investigated short-term and long-term flooding effects on physiology and VOC emission by plant species from várzea and igapó and observed ethanol and acetaldehyde emissions from the várzea species Vatairea guianensis after one day of flooding, which decreased considerably within the next three days. The same species from igapó showed no acetaldehyde emission and much lower emission rates of ethanol, than the várzea species. In contrast Hevea spruceana from both várzea and igapó showed no ethanol or acetaldehyde emissions. After long term flooding (2 months) we did not find any emissions of acetaldehyde or ethanol from all plant species investigated. However, isoprene and monoterpene emissions were clearly affected, showing a significant decrease. Carbon dioxide assimilation was not affected by short term flooding, but declined after two months root anoxia in the case of Hevea spruceana.

  2. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Equipment leaks of VOC. 60.562-2 Section 60.562-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions from...

  3. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Equipment leaks of VOC. 60.562-2 Section 60.562-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions from...

  4. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    PubMed Central

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-01-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129?g m?3) with increasing puff velocity (0.05 to 1?L min?1). A strong correlation existed between sampling volume and consumed solution mass (R2?=?0.9972?±?0.0021 (n?=?4)). In the EC solution, acetic acid was considerably high (25.8??g mL?1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24?±?0.15??g mL?1 (n?=?4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138?±?250??g m?3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL?1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid). PMID:26553711

  5. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-01-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129?g m(-3)) with increasing puff velocity (0.05 to 1?L min(-1)). A strong correlation existed between sampling volume and consumed solution mass (R(2)?=?0.9972?±?0.0021 (n?=?4)). In the EC solution, acetic acid was considerably high (25.8??g mL(-1)), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24?±?0.15??g mL(-1) (n?=?4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138?±?250??g m(-3)). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL(-1)) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid). PMID:26553711

  6. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-11-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129?g m?3) with increasing puff velocity (0.05 to 1?L min?1). A strong correlation existed between sampling volume and consumed solution mass (R2?=?0.9972?±?0.0021 (n?=?4)). In the EC solution, acetic acid was considerably high (25.8??g mL?1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24?±?0.15??g mL?1 (n?=?4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138?±?250??g m?3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL?1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).

  7. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  8. Volatile organic compound (VOC) emissions characterization during the flow-back phase of a hydraulically refractured well in the Uintah Basin, Utah using mobile PTR-MS measurements

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Warneke, C.; Brown, S. S.; De Gouw, J. A.; Dube, W. P.; Edwards, P.; Gilman, J.; Graus, M.; Helleis, F.; Kofler, J.; Lerner, B. M.; Orphal, J.; Petron, G.; Roberts, J. M.; Zahn, A.

    2014-12-01

    Ongoing improvements in advanced technologies for crude oil and natural gas extraction from unconventional reserves, such as directional drilling and hydraulic fracturing, have greatly increased the production of fossil fuels within recent years. The latest forecasts even estimate an enhancement of 56% in total natural gas production due to increased development of shale gas, tight gas and offshore natural gas resources from 2012 to 2040 with the largest contribution from shale formations [US EIA: Annual Energy Outlook 2014]. During the field intensive 'Energy and Environment - Uintah Basin Winter Ozone Study (UBWOS)', measurements of volatile organic compounds (VOCs) were made using proton-transfer-reactions mass spectrometry (PTR-MS) at the ground site Horse Pool and using a mobile laboratory in the Uintah Basin, Utah, which is a region well known for intense fossil fuel production. A reworked gas well in the Red Wash fields was sampled regularly within two weeks performing mobile laboratory measurements downwind of the well site. The well had been recently hydraulically refractured at that time and waste water was collected into an open flow-back pond. Very high mixing ratios of aromatic hydrocarbons (C6-C13) up to the ppm range were observed coming from condensate and flow-back reservoirs. The measurements are used to determine sources of specific VOC emissions originating from the different parts of the well site and mass spectra are used to classify the air composition in contrast to samples taken at the Horse Pool field site and crude oil samples from South Louisiana. Enhancement ratios and time series of measured peak values for aromatics showed no clear trend, which indicates changes in emissions with operations at the site.

  9. NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE I

    EPA Science Inventory

    Vapor permeation holds much promise for becoming a highly efficient means of preventing VOC emissions that are now generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operations, and printing operations. A limitation of...

  10. NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE II

    EPA Science Inventory

    Vapor permeation with highly permeable and organic-selective membranes is becoming an increasingly popular technique for preventing VOC emissions that are generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operat...

  11. The Chicago VOC trading system : the consequences of market design for performance

    E-print Network

    Kosobud, Richard F.

    2004-01-01

    The Chicago cap-and-trade approach to regulating stationary source VOC emissions in the Chicago ozone non-attainment area is a pioneering program that could set a precedent for other urban areas troubled by high ozone ...

  12. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China

    NASA Astrophysics Data System (ADS)

    Situ, S.; Guenther, A.; Wang, X.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-01

    This study investigated the impacts of seasonal and regional variability in biogenic volatile organic compounds (BVOCs) on surface ozone over the Pearl River delta (PRD) region in southern China in 2010 with the WRF-Chem/MEGAN (Weather Research and Forecasting coupled with Chemistry/Model of Emissions of Gases and Aerosols from Nature) modeling system. Compared to observations in the literature and this study, MEGAN tends to predict reasonable BVOC emissions in summer, but may overestimate isoprene emissions in autumn, even when the local high-resolution land-cover data and observed emission factors of BVOCs from local plant species are combined to constrain the MEGAN BVOC emissions model. With the standard MEGAN output, it is shown that the impact of BVOC emissions on the surface ozone peak is ~3 ppb on average with a maximum of 24.8 ppb over the PRD region in autumn, while the impact is ~10 ppb on average, with a maximum value of 34.0 ppb in summer. The areas where surface ozone is sensitive to BVOC emissions are different in autumn and in summer, which is primarily due to the change of prevailing wind over the PRD; nevertheless, in both autumn and summer, the surface ozone is most sensitive to the BVOC emissions in the urban area because the area is usually VOC-limited. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables were also performed to assess the sensitivity of surface ozone to MEGAN drivers, and the results reveal that land cover and emission factors of BVOCs are the most important drivers and have large impacts on the predicted surface ozone.

  13. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

  14. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    SciTech Connect

    Sindelarova, K.; Granier, Claire; Bouarar, I.; Guenther, Alex B.; Tilmes, S.; Stavrakou, T.; Muller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-09-09

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic VOCs available on a monthly basis for the time period of 1980 - 2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg(C) yr1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of * 17% of the reference isoprene total. A greater impact was observed for sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene in ventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene and*-pinene showed a reasonable agreement with surface flux measurements in the Amazon andthe model was able to capture the seasonal variation of emissions in this region.

  15. The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid (CNSL).

    PubMed

    Kim, Sumin

    2010-10-15

    To discuss the reduction of formaldehyde and volatile organic compound (VOC) emissions from engineered flooring, cashew nut shell liquid (CNSL)-formaldehyde (CF) resin and CF/PVAc resin were applied for the maple face of the veneer bonding on plywood. The CF resin was used to replace urea-formaldehyde (UF) resin in the formaldehyde-based resin system in order to reduce formaldehyde and VOC emissions from the adhesives used between the plywoods and fancy veneers. For the CF/PVAc resins, 5, 10, 20 or 30% of PVAc was added to the CF resin. The CF/PVAc resins showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The standard formaldehyde emission test and a VOC analyzer were used to determine the formaldehyde and VOC emissions, respectively, from the engineered floorings. The CF resin and CF/PVAc resin systems with UV coating satisfied the E(1) and E(0) grades of the Korean Standard. TVOC emission was slightly increased by the PVAc addition. PMID:20362392

  16. Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil.

    PubMed

    Brito, Joel; Wurm, Florian; Yáñez-Serrano, Ana Maria; de Assunção, João Vicente; Godoy, José Marcus; Artaxo, Paulo

    2015-10-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with 20 million people and over 8 million vehicles. Over the past decade a large increase in biofuel usage, more notably ethanol by light-duty vehicles, has made Brazil, and in particular São Paulo, a unique case worldwide. This study presents the first assessment of emission ratios of a selected group of volatile organic compounds (VOCs) relative to carbon monoxide (CO) under ambient conditions. The VOCs studied here include aromatics such as benzene (1.03 pptv/ppbv CO), toluene (3.10 pptv/ppbv CO) and Oxygenated VOCs such as methanol (5.39 pptv/ppbv CO), acetaldehyde (3.93 pptv/ppbv CO), acetone (3.59 pptv/ppbv CO), methyl ethyl ketone (1.42 pptv/ppbv CO), and others. Despite the specificity of the fuel composition, emission ratios were in surprisingly close agreement with other megacities in Europe or in North America. Such results include species whose emission factors have been previously reported to decline (e.g., benzene) or increase (e.g., acetaldehyde) with ethanol usage. Furthermore, diurnal profiles and temperature analysis aid separating the primary anthropogenic, secondary or biogenic components of the species studied here. This study shows that a significant fraction of ethanol in gasoline blends does not result in a well-defined trend in VOC emission profile and certainly motivates further studies. PMID:26368841

  17. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 5. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-3

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  18. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 8. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-6

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  19. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 7. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-5

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  20. At the cutting edge of VOC destruction

    SciTech Connect

    1995-05-01

    Of the 189 substances named as Hazardous Air Pollutants under Title 3 of the 1990 Clean Air Act Amendments, approximately 160 are classified as volatile organic compounds (VOCs). Stationary sources producing as little as 10 tons per year of any listed substance or 25 tons per year of any combination of listed substances are subject to Title 5 permitting regulations. This shifts the focus from larger installations and means that cost-effective VOC control must be made available for sources producing flows under 5,000 cfm at concentrations less than 500 ppm. And, the VOCs must be controlled without producing high NO{sub x} emissions. In response to this need, Alzeta Corp., with support from the Gas Research Institute (GRI), has developed and is testing the Edge Plus+ family of VOC abatement devices. The systems are specially designed for low flows and low concentrations and can be configured to destroy virtually all types of VOCS. The gas-fired systems use thermal destruction units that provide greater than 99.99% destruction and removal efficiency (DRE) over a wide range of concentrations and operating conditions, thus assuring compliance with all existing and proposed regulations. They also produce less than 10 ppm NO{sub x} and CO (less than 0.01 lbs./MMbtu input).

  1. Determinants of personal, indoor and outdoor VOC concentrations: An analysis of the RIOPA data

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2014-01-01

    Community and environmental exposure to volatile organic compounds (VOCs) has been associated with a number of emission sources and activities, e.g., environmental tobacco smoke and pumping gasoline. Such factors have been identified from mostly small studies with relatively limited information regarding influences on VOC levels. This study uses data from the Relationship of Indoor Outdoor and Personal Air (RIOPA) study to investigate environmental, individual and social determinants of VOC concentrations. RIOPA included outdoor, indoor and personal measurements of 18 VOCs from 310 non-smoking households and adults in three cities and two seasons, and collected a wide range of information pertaining to participants, family members, households, and neighborhoods. Exposure determinants were identified using stepwise regressions and linear mixed-effect models. Most VOC exposure (66 to 78% of the total exposure, depending on VOC) occurred indoors, and outdoor VOC sources accounted for 5 (d-limonene) to 81% (carbon tetrachloride) of the total exposure. Personal exposure and indoor measurements had similar determinants, which depended on the VOC. Gasoline-related VOCs (e.g., benzene, methyl tertiary butyl ether) were associated with city, residences with attached garages, self-pumping of gas, wind speed, and house air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-dichlorobenzene and chloroform) also were associated with city and AER, and with house size and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene and trichloroethylene) were associated with city, residence water supply type, and dry-cleaner visits. These and other relationships were significant, explained from 10 to 40% of the variation, and are consistent with known emission sources and the literature. Outdoor concentrations had only two common determinants: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of VOC concentrations were due to outdoor sources. City, personal activities, household characteristics and meteorology were significant determinants. PMID:24034784

  2. Development of a Pulsed Secondary Electron Emission Gun and its Application to VOC Treatment

    NASA Astrophysics Data System (ADS)

    Kato, Daisuke; Sugihara, Ryo; Shimizu, Masashi; Watanabe, Masato; Hotta, Eiki

    An electron beam is widely used for various purposes in industry. We have developed a pulsed secondary electron emission gun (SEEG) which uses pulsed discharge and high voltage technology. The device has some inherent advantages, such as compactness in size and generation of a uniform and wide electron beam. The SEEG consists of a wire ion plasma source, a cathode plate in a vacuum chamber and an electron beam irradiation part. In this paper, we improved the SEEG for stable operation. Previously an abnormal electrical discharge in the vacuum chamber disturbed prolonged electron beam irradiation. Therefore, based on the simulation result of an electrical potential distribution, we installed a plate of reducing electric stress in the vacuum chamber. Then the stable operation of the SEEG became possible. In addition, we have conducted experiment on decomposition of toluene using the SEEG in N2 and Air. The decomposition rate in N2 was higher than that in air. The addition of O2 and increase of humidity in N2 decreased the decomposition rate. Reaction products such as benzene and xylene were identified in N2 by means of GC-MS. On the other hand, benzaldehyde and formic acid were identified in Air. It is conceivable that the difference of byproducts is caused by the presence or absence of OH radical.

  3. Waterpipe smoke: source of toxic and carcinogenic VOCs, phenols and heavy metals?

    PubMed

    Schubert, Jens; Müller, Frederic D; Schmidt, Roman; Luch, Andreas; Schulz, Thomas G

    2015-11-01

    The use of the waterpipe, a traditional aid for the consumption of tobacco, has spread worldwide and is steadily increasing especially among the youth. On the other hand, there is a lack of knowledge regarding the composition of mainstream waterpipe smoke and the toxicological risks associated with this kind of smoking habit. Using a standardized machine smoking protocol, mainstream waterpipe smoke was generated and further analyzed for twelve volatile organic compounds (VOCs) and eight phenolic compounds by applying gas chromatography-mass spectrometry and reverse-phase high-performance liquid chromatography-fluorescence detection, respectively. Additionally, seventeen elements were analyzed in waterpipe tobacco and charcoal prior to and after smoking, applying inductively coupled plasma-mass spectrometry to assess the maximum exposure of these elements. For the first time ever, we have been able to show that waterpipe mainstream smoke contains high levels of the human carcinogen benzene. Compared with cigarette smoke yields, the levels were 6.2-fold higher, thus representing a significant health hazard for the waterpipe smoker. Furthermore, we found that waterpipe mainstream smoke contains considerable amounts of catechol, hydroquinone and phenol, each of which causing some health concern at least. The analysis of waterpipe tobacco and charcoal revealed that both matrices contained considerable amounts of the toxic elements nickel, cadmium, lead and chromium. Altogether, the data on VOCs, phenols and elements presented in this study clearly point to the health hazards associated with the consumption of tobacco using waterpipes. PMID:25248501

  4. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  5. A survey of California plant species with a portable VOC analyzer for biogenic emission inventory development

    NASA Astrophysics Data System (ADS)

    Karlik, John F.; McKay, Alistair H.; Welch, Jason M.; Winer, Arthur M.

    An accurate estimate of the magnitude of biogenic volatile organic compound (BVOC) emissions in California's airsheds is critical for formulating effective strategies to reduce concentrations of fine particles, ozone, and other secondary air pollutants which affect human health and reduce yields of agricultural crops. However, California's natural and urban landscapes contain more than 6000 species, and the BVOC emissions from only a small fraction of these species have been characterized by quantitative measurements. A taxonomic method has been proposed to assign BVOC emission rate measurements to unmeasured species, but data are needed for additional plant families and genera to further develop and test this taxonomic approach. In the present study, BVOC emissions from more than 250 plant species were measured through a semi-quantitative method employing calibrated portable analyzers with photoionization detectors (PID). Replicate samples of live foliage were placed in plastic bags, in both light and darkened conditions, and the BVOC emissions categorized as low, medium or high. To validate our approach, for 63 plant species we compared our PID-measured BVOC emissions with published values, based on gas chromatography (GC) or GC-mass spectrometry, and found them to be well correlated. The method employed was more suited for detecting compounds with relatively higher emission rates, such as isoprene, than compounds with low emission rates, which could include monoterpenes and oxygenated compounds. For approximately 200 plant species not previously measured, the results provide further evidence that plant taxonomy can serve as a useful guide for generalizing the emissions behavior of many, but not all, plant families and genera.

  6. [Investigation on emission properties of biogenic VOCs of landscape plants in Shenzhen].

    PubMed

    Huang, Ai-Kui; Li, Nan; Guenther, Alex; Greenberg, Jim; Baker, Brad; Graessli, Michael; Bai, Jian-Hui

    2011-12-01

    Isoprene and monoterpene emissions were characterized using flow and enclosure sampling method and GC-MS in USA for 158 species of plants growing in Shenzhen, China. This survey was designed to include all of the dominant plants within the Shenzhen region as well as unique plants such as Cycads. These are the first measurements in a subtropical Asian metropolis. Substantial isoprene emissions were observed from thirty-one species, including Caryota mitis, Adenanthera pavonina var. microsperma, Mangifera indica and Excoecoria agalloch. Monoterpene emissions were observed from fifty-two species, including Passiflora edulis, Bambusa glaucescens cv. silverstripe as well as some primitive and rare Cycadaceae and Cyatheaceae plants. For the first time some of red plants have been measured, most of them have the ability of releasing terpene. These results will be used to develop biogenic emission model estimates for Shenzhen and the surrounding region that can be used as inputs for regional air quality models. PMID:22468517

  7. ANALYSIS OF SOCMI (SYNTHETIC ORGANIC CHEMICAL MANUFACTURING INDUSTRY) VOC (VOLATILE ORGANIC COMPOUND) FUGITIVE EMISSIONS DATA

    EPA Science Inventory

    The report gives results of an examination of fugitive emission data from Synthetic Organic Chemical Manufacturing Industry (SOCMI) processing units (Collected under earlier EPA studies) for correlations between process variables and leak frequency. Although line temperature did ...

  8. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A.; Mahata, K. S.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.

    2015-09-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the Valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS)-the first such deployment in South Asia. 71 ion peaks (for which measured ambient concentrations exceeded the 2 ? detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m/?m > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The highest average VOC mixing ratios during the measurement period were (in rank order): acetaldehyde (8.8 ppb), methanol (7.4 ppb), acetone (4.2 ppb), benzene (2.7 ppb), toluene (1.5 ppb), isoprene (1.1 ppb), acetonitrile (1.1 ppb), C8-aromatics (~ 1 ppb), furan (~ 0.5 ppb), and C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z = 69.070) and furan (m/z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~ 1 ppb) and isoprene (~ 1 ppb) to be among the highest reported till date. Two "new" ambient compounds namely, formamide (m/z = 46.029) and acetamide (m/z = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust) which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene, and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were: benzene > naphthalene > toluene > xylenes > monoterpenes > trimethyl-benzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley and improve its air quality.

  9. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    NASA Astrophysics Data System (ADS)

    Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-04-01

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr-1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, ?-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

  10. SOURCE RECEPTOR STUDY OF VOLATILE ORGANIC COMPOUNDS AND PARTICULATE MATTER IN THE KANAWHA VALLEY, WV - PART II: ANALYSIS OF FACTORS CONTRIBUTING TO VOC AND PARTICLE EXPOSURES

    EPA Science Inventory

    The Kanawha Valley region of West Virginia includes a deep river valley with a large population living in close proximity to many potential sources of ambient volatile organics compounds (VOCs). he Valley runs approximately 100 km from Alloy to Nitro and is between 100 and 200 m ...

  11. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. PMID:25434272

  12. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  13. PARAMETERS IMPACTING THE EMISSIONS OF SELECTED VOCS FROM THE TONER FOR A SPECIFIC PHOTOCOPIER

    EPA Science Inventory

    The paper gives results of the measurement of emissions--using a laboratory thermal desorption apparatus--from a number of nominally identical photocopier toners (manufactured for use in a specific model copier) when the toners were heated to fuser temperature (180-200?C). The o...

  14. DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS

    EPA Science Inventory

    The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...

  15. Temperature and air velocity effects on ethanol emission from corn silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some areas. Recent research suggests that silage is a major source of these VOCs, but only limited data exist on VOC emission from silage. Ethanol is normally the most abu...

  16. Flameless thermal destruction of VOCs

    SciTech Connect

    Hohl, H.M.

    1997-04-01

    A new technology controls volatile organic compounds (VOCs) emissions with high destruction efficiencies. This article describes the technology developed by Thermatrix, Inc. of San Jose, CA. The field proven flameless thermal oxidation (FTO) is capable of destroying over 99.99 percent of a wide range of organic air pollution. Topics covered include FTO technology, high destruction efficiencies, VOCs in wastewater from chemical manufacturing; refinery fugitive emissions.

  17. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) of this section reveals that these conditions were not maintained, the source must return to biweekly... incorporating sight, sound, or smell are acceptable. Each detection of a leak shall be recorded and the...

  18. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section reveals that these conditions were not maintained, the source must return to biweekly... incorporating sight, sound, or smell are acceptable. Each detection of a leak shall be recorded and the...

  19. Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China.

    PubMed

    Ni, Zhe; Liu, Jianguo; Song, Mingying; Wang, Xiaowei; Ren, Lianhai; Kong, Xin

    2015-03-01

    Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 ?g/m3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 ?g/m3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air. PMID:25766011

  20. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... total organic compounds liquid or vapor leaks. For purposes of this paragraph, detection methods incorporating sight, sound, or smell are acceptable. Each detection of a leak shall be recorded and the source of the leak repaired within 15 calendar days after it is detected....

  1. Analysis of mobile source air toxics (MSATs)–Near-Road VOC and carbonyl concentrations

    EPA Science Inventory

    Exposures to mobile source air toxics (MSATs) have been associated with numerous adverse health effects. While thousands of air toxic compounds are emitted from mobile sources, a subset of compounds are considered high priority due to their significant contribution to cancer and...

  2. TV picture-tube manufacturer uses regenerative catalytic oxidizer to reduce VOC emissions

    SciTech Connect

    1995-11-01

    Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depth comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.

  3. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    NASA Astrophysics Data System (ADS)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 ? g -1 h -1 for wheat to 0.8 ?g g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 ?g g -1 h -1 for the investigations of 20°C.

  4. Characterization of VOC sources in an urban area based on PTR-MS measurements and receptor modelling.

    PubMed

    Stoji?, A; Stoji?, S Staniši?; Šoštari?, A; Ili?, L; Miji?, Z; Rajši?, S

    2015-09-01

    In this study, the concentrations of volatile organic compounds were measured by the use of proton transfer reaction mass spectrometry, together with NO x , NO, NO2, SO2, CO and PM10 and meteorological parameters in an urban area of Belgrade during winter 2014. The multivariate receptor model US EPA Unmix was applied to the obtained dataset resolving six source profiles, which can be attributed to traffic-related emissions, gasoline evaporation/oil refineries, petrochemical industry/biogenic emissions, aged plumes, solid-fuel burning and local laboratories. Besides the vehicle exhaust, accounting for 27.6 % of the total mixing ratios, industrial emissions, which are present in three out of six resolved profiles, exert a significant impact on air quality in the urban area. The major contribution of regional and long-range transport was determined for source profiles associated with petrochemical industry/biogenic emissions (40 %) and gasoline evaporation/oil refineries (29 %) using trajectory sector analysis. The concentration-weighted trajectory model was applied with the aim of resolving the spatial distribution of potential distant sources, and the results indicated that emission sources from neighbouring countries, as well as from Slovakia, Greece, Poland and Scandinavian countries, significantly contribute to the observed concentrations. PMID:25925144

  5. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  6. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  7. Ethanol emission from loose corn silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage and silage-containing feed on dairy farms have recently been identified as a source of volatile organic compound (VOC) emissions. In this work, we present measurements of ethanol (a dominant silage VOC) emission from loose corn silage samples made using a wind tunnel system. Flux of ethanol f...

  8. Air exchange rates and migration of VOCs in basements and residences.

    PubMed

    Du, L; Batterman, S; Godwin, C; Rowe, Z; Chin, J-Y

    2015-12-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multitracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walk-through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 ?g/m(3) , respectively; maximum concentrations were 54, 888, 1117, and 134 ?g/m(3) . Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  9. INSTRUMENTAL SENSING OF STATIONARY SOURCE EMISSIONS

    EPA Science Inventory

    Remote sensing methods offer a number of advantages over contact measurement methods in the area of enforcement and surveillance of emissions from stationary sources. Several techniques have been developed that can measure the gas concentration, effluent velocity, and particulate...

  10. SOURCE ASSESSMENT: ACRYLONITRILE MANUFACTURE (AIR EMISSIONS)

    EPA Science Inventory

    The report gives results of an analysis of atmospheric emissions from propylene-based acrylonitrile manufacturing plants. Uncontrolled and controlled emission factors are given for each species emitted to the atmosphere from each source within a typical plant, based on field samp...

  11. SOURCE ASSESSMENT: PHTHALIC ANHYDRIDE (AIR EMISSIONS)

    EPA Science Inventory

    The report gives results of an analysis of atmospheric (air) emissions from ortho-xylene- and naphthalene-based phthalic anhydride manufacturing plants. Uncontrolled and controlled emission factors are given for each species emitted to the atmosphere from each source within a typ...

  12. Mobile source emissions inventory development. Final report

    SciTech Connect

    Fang, K.Y.; De Paul, F.T.; Heavisides, T.; Wagner, D.

    1991-03-01

    The study was undertaken to develop a methodology for preparing a 5km by 5km areal gridded mobile source emissions inventory for areas of Illinois which are in nonattainment status with regard to National Ambient Air Quality Standards. A pilot emissions inventory was developed by linking the USEPA mobile source emissions program (MOBILE4) with existing traffic data from the Illinois Department of Transportation's (IDOT) Highway Record Data Bank (HRDB), the Chicago Area Transportation Study (CATS) and Illinois Department of Energy and Natural Resources' (ENR) Geographic Information System (GIS). The methodology developed here was applied to one pollutant in one test case county in Illinois. Hydrocarbon emissions from mobile sources in Kane county are the focus of the study. Vehicle type, vehicle age, and Vehicle Miles of Travel (VMT) distributions were obtained from information provided in the 1982 Illinois State Implementation Plan (SIP). Among the products of the project is a preliminary 25-sq km gridded mobile source hydrocarbon emissions inventory for Kane county. Numerical results as well as a color correlated overview map of the county-wide gridded emissions inventory are provided in the report. Recommendations for improving the methodology and further developing gridded mobile source emission inventories for other Illinois counties are also provided.

  13. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  14. IMPROVING EMISSIONS ESTIMATES WITH COMPUTATIONAL INTELLIGENCE, DATABASE EXPANSION, AND COMPREHENSIVE VALIDATION

    EPA Science Inventory

    The report discusses an EPA investigation of techniques to improve methods for estimating volatile organic compound (VOC) emissions from area sources. Using the automobile refinishing industry for a detailed area source case study, an emission estimation method is being developed...

  15. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility-only model suggested that differences in the volatility of the precursors were able to explain most of the variability observed in the SOA formation. For aircraft exhaust, the previous methods to simulate SOA formation from SVOC and IVOC performed poorly. A more physically-realistic modeling framework was developed, which was then used to show that SOA formation from aircraft exhaust was (a) higher for petroleum-based than synthetically derived jet fuel and (b) higher at lower engine loads and vice versa. All of the SOA data from combustion emissions experiments were used to determine source-specific parameterizations to model SOA formation from SVOC, IVOC and other unspeciated emissions. The new parameterizations were used to investigate their influence on the OA budget in the United States. Combustion sources were estimated to emit about 2.61 Tg yr-1 of SVOC, 1VOC and other unspeciated emissions (sixth of the total anthropogenic organic emissions), which are predicted to double SOA production from combustion sources in the United States. The contribution of SVOC and IVOC emissions to global SOA formation was assessed using a global climate model. Simulations were performed using a modified version of GISS GCM 11'. The modified model predicted that SVOC and IVOC contributed to half of the OA mass in the atmosphere. Their inclusion improved OA model-measurement comparisons for absolute concentrations, POA-SOA split and volatility (gas-particle partitioning) globally suggesting that atmospheric models need to incorporate SOA formation from SVOC and IVOC if they are to reasonably predict the abundance and properties of aerosols. This thesis demonstrates that SVOC/IVOC and possibly other unspeciated organics emitted by combustion sources are very important precursors of SOA and potentially large contributors to the atmospheric aerosol mass. Models used for research and policy applications need to represent them to improve model-predictions of aerosols on climate and health outcomes. The improved modeling frameworks developed in this dissertation are suitable for implementa

  16. Photocatalytic Degradation of VOC's by TOTO's Hydrotect (TiO2 Impregnated) Surfaces

    E-print Network

    Bergin, Mike

    concern in indoor environments, where concentrations can accumulate due to indoor emission sources reduce specific VOC levels in indoor environments. I. Introduction and Background Many everyday products of common products, as well as industrial processes and natural sources (i.e. terrestrial plants) generate

  17. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater

    USGS Publications Warehouse

    Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S.

    1997-01-01

    Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection rat lOW microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a l-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10-15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal being 'on' for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the 'source-on' concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4, add 5 were all no- net recharge cases. The mechanism responsible for this effect was the dispersion acting on each downward infiltration event, and also on the ET-induced flow. The ability of MTBE to reach groundwater in cases 2-5 is taken as evidence of the potential importance of urban air as a non-point source for VOCs in shallow urban groundwater. Two subcases were run for both case 4 and case 5: subcase a (water and VOCs move with ET) and subcase b (water only moves with ET).Numerical simulations were conducted using a 1-D model domain set in medium sand to provide a test of whether methyl-tert-butyl ether (MTBE) and other atmospheric volatile organic compounds could move to shallow groundwater within the 10-15 y time frame over which MTBE was used in large amounts. The gasoline additive MTBE is of special interest because of its: current levels in some urban air; strong partitioning from air into water; resistance to degradation; use as an octane-booster since the 1970s; rapidly increasing use in the 1990s to reduce CO and O3 in urban air; and its frequent detection at low microgram per liter levels in shallow urban groundwater.

  18. Evaluation of Mobile Source Emissions and Trends

    NASA Astrophysics Data System (ADS)

    Dallmann, Timothy Ryan

    Mobile sources contribute significantly to air pollution problems. Relevant pollutants include numerous gaseous and particle-phase species that can affect human health, ecosystems, and climate. Accurate inventories of emissions from these sources are needed to help understand possible adverse impacts, and to develop effective air quality management strategies. Unfortunately large uncertainties persist in the understanding of mobile source emissions, and how these emissions are changing over time. This dissertation aims to evaluate long-term trends in mobile source emissions in the United States, and to make detailed measurements of emissions from present-day fleets of on-road vehicles operating in California. Long-term trends in mobile source emissions of nitrogen oxides (NO x) and fine particulate matter (PM2.5) in the United States were investigated through development of a fuel-based emission inventory. Annual emissions from on- and off-road gasoline and diesel engines were quantified for the years 1996-2006. Diesel engines were found to be the dominant mobile source of NOx and PM2.5, and on-road diesel vehicles were identified as the single largest anthropogenic source of NOx emissions in the United States as of 2005. The importance of diesel engines as a source of exhaust particulate matter emissions has led to the recent introduction of advanced emission control technologies in the United States, such as diesel particle filters (DPF), which have been required since 2007 for all new on-road heavy-duty (HD) diesel engines. In addition to national requirements for the use of such control devices on new engines, California has mandated accelerated clean-up of statewide emissions from older in-use diesel engines. The plume capture method was further applied to measure emissions from a more diverse population of trucks observed at the Caldecott tunnel in summer 2010. Emissions from hundreds of individual trucks were measured, and emission factor distributions were characterized for nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde, BC, as well as optical properties of the emitted particles. Emission factor distributions for all species were skewed, with a small fraction of trucks contributing disproportionately to total emissions. These findings confirm that the use of catalyzed DPF systems is leading to increased primary NO2 emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 +/- 0.03. This value of aerosol SSA is very low compared to typical values (0.90-0.99) observed in ambient air studies. It is indicative of a strongly light-absorbing aerosol, due to the high BC emissions that are a characteristic feature of diesel exhaust PM emissions. Measurements at the Caldecott tunnel also included efforts to quantify light-duty (LD) gasoline vehicle emission factors, and further investigation of the relative contributions of on-road gasoline and diesel engines to air pollutant emissions. Measurements of CO, NOx, PM2.5, BC, and organic aerosol (OA) were made in a tunnel traffic bore where LD vehicles account for >99% of total traffic. Measured pollutant concentrations were apportioned between LD gasoline vehicles and diesel trucks, and fleet-average emission factors were quantified for LD gasoline vehicles using a carbon balance method. Diesel trucks contributed 18 +/- 3, 22 +/- 5, 44 +/- 8% of measured NOx, OA, and BC concentrations, respectively, despite accounting for <1% of total vehicles. Emission factors and overall fuel consumption for gasoline and diesel engines were used to describe the relative contributions of these sources to overall on-road vehicle emissions. Gasoline engines were found to be the dominant source of CO, an insignificant source of BC, and a relatively minor source of on-road OA emissions at urban, state, and national scales. Measurements at the Caldecott tunnel also featured use of a new high-resolution time-of-fligh

  19. Removal of Volatile Organic Contaminants (VOCs) From theGroundwater Sources of Drinking Water via Granular Activated Carbon Treatment

    EPA Science Inventory

    The overall goal of this project was to assess the feasibility of granular activated carbon (GAC) for the treatment of selected carcinogenic volatile organic compounds (cVOC) to sub-?g/L levels. The project consisted of three tasks. The task objectives are:? Task I - d...

  20. CRITICAL EVALUATION OF THE DIFFUSION HYPOTHESIS IN THE THEORY OF POROUS MEDIA VOLATILE ORGANIC COMPOUND (VOC) SOURCES AND SINKS

    EPA Science Inventory

    The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...

  1. Do vehicular emissions dominate the source of C6-C8 aromatics in the megacity Shanghai of eastern China?

    PubMed

    Wang, Hongli; Wang, Qian; Chen, Jianmin; Chen, Changhong; Huang, Cheng; Qiao, Liping; Lou, Shengrong; Lu, Jun

    2015-01-01

    The characteristic ratios of volatile organic compounds (VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6-C8 aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08 (benzene), 0.70 ± 0.12 (toluene), 0.41 ± 0.09 (m,p-xylenes), 0.16 ± 0.04 (o-xylene), 0.023 ± 0.011 (styrene), and 0.15 ± 0.02 (ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6-C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals (kOH) was larger than that of the vehicular indicator, while for species with smaller kOH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios. PMID:25597688

  2. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  3. Hydrocarbon emissions and characterization of methane sources in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Marrero, J. E.; Townsend-Small, A.; Meinardi, S.; Blake, D. R.

    2014-12-01

    As energy demand and costs continue to rise worldwide, so does the development of energy from natural gas. The United States in particular has expanded its natural gas industry, becoming one of the world's top gas producing countries. The Barnett Shale of northern Texas is one of the most developed and productive natural gas shale plays in the United States. However, emissions from the many oil and gas system components in the region have not been fully characterized. An extensive list of volatile organic compounds (VOCs) was measured from 120 whole air canisters collected throughout the Barnett shale in October 2013. Known methane sources were targeted and included oil and natural gas well pads, compressor stations, distribution pipelines and city gates, cattle feedlots and landfills. C1-C5 alkanes were elevated throughout the region and were similar to or greater than concentrations in major U.S. cities. The VOC source signature for oil and gas operations was distinguished from biogenic sources. Average ethane content relative to methane was calculated for each of the source types, and ranged from 0.7 to 12.8%. For the whole region, the ethane content was 7.2±6.1%, illustrating the high variability and effect of the various hydrocarbon sources on the local air.

  4. DEVELOPING A NO-VOC WOOD TOPCOAT

    EPA Science Inventory

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  5. [Pollution characteristics and ozone formation potential of ambient VOCs in winter and spring in Xiamen].

    PubMed

    Xu, Hui; Zhang, Han; Xing, Zhen-yu; Deng, Jun-jun

    2015-01-01

    Air samples were collected at urban and rural sites in Xiamen from January to April 2014. The concentrations of 48 ambient volatile organic compounds (VOC) species were measured by the method of cryogenic pre-concentrator and gas chromatography-mass spectrometry (GC/MS). The ozone formation potential (OFP) of VOCs was also calculated with the method of maximum incremental reactivity (MIR). The results showed that the average mixing ratios of VOCs in winter were 11.13 x 10(-9) and 7.17 x 10(-9) at urban and rural sites, respectively, and those in spring were 24.88 x 10(-9) and 11.27 x 10(-9) at urban and rural sites, respectively. At both sites, alkanes contributed the most to VOCs, followed by aromatics and alkenes. The ratios of B/T showed that vehicle and solvent evaporation were the main sources of VOCs at urban site. While at rural site, transport of anthropogenic sources was another important source of VOCs besides local biomass emissions. Ten main components including propene, n-butane, i-butane, n-pentane, i-pentane, n-hexane, benzene, toluene, ethylbenzene and m/p-xylene accounted for 61.57% and 45.83% of total VOCs at urban and rural sites in winter, respectively, and 62.83% and 53.74% at urban and rural sites in spring, respectively. Aromatics contributed the most to total OFP, followed by alkenes. Alkanes contributed the least to OFP with the highest concentration. C3, C4 alkenes and aromatics were found to be the more reactive species with relatively high contributions to ozone formation in Xiamen. Comparing the average MIR of VOCs at the two sites, it was found that the reactivity of VOCs at rural site was higher than that at urban site. PMID:25898641

  6. Modeling VOC transport in simulated waste drums

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum.

  7. CONTROLLING NOX EMISSION FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx ...

  8. Nitrogen Source Effects on Nitrous Oxide Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of N fertilizer source and tillage on nitrous oxide (N2O) emissions from soils under several irrigated, crop management systems were evaluated. Irrigated corn production systems [conventional-till continuous corn (CT-CC); no-till continuous corn (NT-CC); NT corn-dry bean (NT-CDb); and NT cor...

  9. NOVEL NANOPARTICULATE CATALYSTS FOR IMPROVED VOC TREATMENT DEVICES - PHASE I

    EPA Science Inventory

    Catalytic oxidation of VOCs is increasingly used for treatment of large-volume emissions at relatively dilute VOC levels. The best performing catalytic oxidation devices for attainment of very high VOC destruction levels employ precious metal catalysts, the costs of which a...

  10. Optimization of FLEC-SPME for field passive sampling of VOCs emitted from solid building materials.

    PubMed

    Nicolle, Jérôme; Desauziers, Valérie; Mocho, Pierre; Ramalho, Olivier

    2009-12-15

    The FLEC-SPME sampler, described in a previous paper, consists of an emission cell coupled with solid phase microextraction (SPME) for passive sampling of VOCs emitted from building materials. It represents an interesting alternative to standard dynamic sampling protocol as it is easier to implement. If standard dynamic sampling determines emission rates, passive FLEC-SPME aims to the determination of the concentration in air at the material surface. That could be assumed provided that material/air equilibrium is reached. Thus, VOCs emission kinetics were studied for 3 different materials (pine wood panel, carpet and PVC floor) to determine equilibrium times. Then, the relevance of the method has been assessed using new materials through a 3-day emission test. Qualitative results were compared to those obtained from the standard method to check the ability of FLEC-SPME to detect the most toxic compounds, named "VOCs of interest" and listed in the French regulation. Minor differences were observed, so this methodology seems promising, especially for field studies aiming in the identification of VOCs sources in buildings. Moreover, the concentration at the material surface combined to emission modeling could be used to predict indoor VOCs concentrations helping in indoor air quality diagnostic. PMID:19836544

  11. Emission source microscopy for electromagnetic interference source localization

    NASA Astrophysics Data System (ADS)

    Maheshwari, Pratik Rajesh

    For complex and large systems with multiple sources, it is often difficult to localize the sources of radiation. Near-field electromagnetic scanning is used often for root-cause diagnosis by determining field distribution close to the PCB. In the near-field, the evanescent waves are dominant, which may lead to the misinterpretation of them being the dominant sources contributing to the far-field. Another limitation of near-field scanning is that the probe may not be able to access all locations near the PCB due to the complex geometry and high component density. Two-dimensional synthetic aperture radar is a well-known technique used for antenna diagnostic and alignment of phase array antennas. Using a technique which is derived from the synthetic aperture radar we present emission source microscopy to localize the sources of active radiation on a PCB. After obtaining the location of sources, using near field to far-field transformation, it is shown that the far-field radiation patterns and the total radiated power can be estimated. Using masking algorithms the contribution of individual sources to far-field can be determined. The source localization methodology is presented along with simulation and measurement results on real-DUTs. The results show that the proposed method is capable of detecting multiple active sources on a complex PCB. Different phase measurement methods are presented along with the measurement results. Also, methods to reduce the scanning time for source localization are presented.

  12. Recent VOC Control Test Data for a Reactive VOC Converter- Scrubber System for Non-Thermal Control of VOCs 

    E-print Network

    McGinness, M.

    2003-01-01

    HAP (Hazardous Air Pollutant) and VOC (Volatile Organic Compound) thermal emission control devices (ECD) usually require large amounts of energy to operate. They also require large capital investments in heat recovery options and large amounts...

  13. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10?ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11?ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90?GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ?50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  14. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  15. Ultrafast spontaneous emission source using plasmonic nanoantennas.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Argyropoulos, Christos; Huang, Jiani; Smith, David R; Mikkelsen, Maiken H

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10?ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11?ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90?GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ?50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  16. EVALUATION OF LOW-VOC LATEX PAINTS

    EPA Science Inventory

    The paper gives results of an evaluation of four commercially available low-VOC (volatile organic compound) latex paints as substitutes for conventional latex paints by assessing both their emission characteristics and their performance as coatings. Bulk analysis indicated that ...

  17. The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012

    NASA Astrophysics Data System (ADS)

    Malley, C. S.; Braban, C. F.; Dumitrean, P.; Cape, J. N.; Heal, M. R.

    2015-07-01

    The impact of 27 volatile organic compounds (VOCs) on the regional O3 increment was investigated using measurements made at the UK EMEP supersites Harwell (1999-2001 and 2010-2012) and Auchencorth (2012). Ozone at these sites is representative of rural O3 in south-east England and northern UK, respectively. The monthly-diurnal regional O3 increment was defined as the difference between the regional and hemispheric background O3 concentrations, respectively, derived from oxidant vs. NOx correlation plots, and cluster analysis of back trajectories arriving at Mace Head, Ireland. At Harwell, which had substantially greater regional O3 increments than Auchencorth, variation in the regional O3 increment mirrored afternoon depletion of anthropogenic VOCs due to photochemistry (after accounting for diurnal changes in boundary layer mixing depth, and weighting VOC concentrations according to their photochemical ozone creation potential). A positive regional O3 increment occurred consistently during the summer, during which time afternoon photochemical depletion was calculated for the majority of measured VOCs, and to the greatest extent for ethene and m+p-xylene. This indicates that, of the measured VOCs, ethene and m+p-xylene emissions reduction would be most effective in reducing the regional O3 increment but that reductions in a larger number of VOCs would be required for further improvement. The VOC diurnal photochemical depletion was linked to anthropogenic sources of the VOC emissions through the integration of gridded anthropogenic VOC emission estimates over 96 h air-mass back trajectories. This demonstrated that one factor limiting the effectiveness of VOC gridded emissions for use in measurement and modelling studies is the highly aggregated nature of the 11 SNAP (Selected Nomenclature for Air Pollution) source sectors in which they are reported, as monthly variation in speciated VOC trajectory emissions did not reflect monthly changes in individual VOC diurnal photochemical depletion. Additionally, the major VOC emission source sectors during elevated regional O3 increment at Harwell were more narrowly defined through disaggregation of the SNAP emissions to 91 NFR (Nomenclature for Reporting) codes (i.e. sectors 3D2 (domestic solvent use), 3D3 (other product use) and 2D2 (food and drink)). However, spatial variation in the contribution of NFR sectors to parent SNAP emissions could only be accounted for at the country level. Hence, the future reporting of gridded VOC emissions in source sectors more highly disaggregated than currently (e.g. to NFR codes) would facilitate a more precise identification of those VOC sources most important for mitigation of the impact of VOCs on O3 formation. In summary, this work presents a clear methodology for achieving a coherent VOC, regional-O3-impact chemical climate using measurement data and explores the effect of limited emission and measurement species on the understanding of the regional VOC contribution to O3 concentrations.

  18. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  19. NMHC emissions from Asia: sources and transport

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Blake, D. R.; Barletta, B.; Meinardi, S.; Rowland, F. S.; Chan, J. C.; Takegawa, N.; Kondo, Y.; Koike, M.; Kita, K.; Takigawa, M.; Kawakami, S.; Ogawa, T.

    2002-12-01

    Recent rapid industrialization and economic growth in Asia changed the industrial structure, land use, and people's lifestyle resulting in a dramatic change in the amount and composition of the gas emissions from Asia. Because emissions can be transported very rapidly once convected to the free troposphere, Asian emissions can affect both local and regional air quality and climate. To access the impact of changing emission from Asia, an airborne observation campaign PEACE (the Pacific Exploration of Asian Continental Emission) phase-A and B were conducted in January and April - May 2002, respectively, sponsored by NASDA (National Space Development Agency of Japan). The concentrations of NMHCs (nonmethanehydrocarbons) and halocarbons were obtained by whole air sampling and subsequent gas chromatography analyses in the laboratory. Quantified onboard the aircraft were CO, CO2, O3, NO, NO2, NOy, H2O, SO2, aerosols, and condensation nuclei. The experiment was conducted in the vicinity of Japan and PEACE-A and B represent the local winter and spring weather conditions. The trace gas distributions in the lower troposphere were often influenced by local pollution (i.e. from Japan, Korea) while those of the long-range transport (i.e. from Europe) were occasionally seen in the upper troposphere. This is confirmed by the airmass age estimation using the ratios of short-lived gases (i.e. C2H4) vs. more stable compounds (i.e. CO). Emissions from China were distinguished using data obtained from ground-based sampling and measurements. Transport from China was seen both in the lower troposphere and upper troposphere. Some case studies on source identification will be discussed.

  20. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    EPA Science Inventory

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  1. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  2. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA - VOLUME I. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol (TEG) units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural ga...

  3. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA - VOLUME II. APPENDICES

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol (TEG) units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural ga...

  4. Truckee Meadows PM and VOC apportionment study: Winter 1997

    SciTech Connect

    Gofa, F.; Gertler, A.W.; Jennison, B.; Goodrich, A.

    1998-12-31

    An ambient monitoring and source apportionment study was carried out in the Truckee Meadows area of northern Nevada in the winter of 1997. The goal was to measure ambient levels of PM10, PM2.5, and volatile organic compounds (VOCs) and determine the relative importance of their contributing sources. Two monitoring stations, one in the downtown Reno area (urban) and the other in Sparks (residential), collected ten 24-hour samples, on a one-in-six schedule. A total of twenty PM10 (Reno and Sparks), ten PM2.5 (Sparks), and ten VOC/canister and semi-volatile/Tenax (Reno) samples were obtained. Particle samples were analyzed for mass, organic/elemental carbon, ions, ammonium, and metals. Canister samples were analyzed for C2 to C12 hydrocarbons, while Tenax cartridges were analyzed for C8 to C20 hydrocarbons. Chemical mass balance (CMB) receptor modeling was performed on both the inorganic and organic data to estimate the contributions from different sources to the observed ambient concentrations. PM2.5 comprised roughly 50% of the PM10 concentration in the Sparks area. At the downtown Reno site, geological sources, such as resuspended road dust, construction sites and unpaved roads, contributed on average about 70% of the average PM10, while the Sparks geological contribution was about 55% of the average PM10. Other major PM10 sources included motor vehicles, wood smoke, and secondary sources (ammonium sulfate and ammonium nitrate). PM2.5 was dominated by almost equal contributions from motor vehicles and wood smoke. The results are in contrast to a 1986 study, which found greater relative contributions from motor vehicles and wood burning to the observed PM10. The VOC apportionment found that the sampling site was heavily influenced by mobile source emissions, with an average sum of gasoline-vehicle exhaust, diesel exhaust, and headspace vapor of 77% of the total VOCs.

  5. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    SciTech Connect

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  6. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Situ, S.; Guenther, A.; Wang, X.; Jiang, X.; Turnipseed, A.; Wu, Z.; Zhou, G.; Bai, J.; Wang, X.

    2013-03-01

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by ~3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou-Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  7. Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs

    NASA Astrophysics Data System (ADS)

    Ohura, Takeshi; Amagai, Takashi; Shen, Xueyou; Li, Shuang; Zhang, Ping; Zhu, Lizhong

    2009-12-01

    We conducted a comparative study on the indoor air quality for Japan and China to investigate aromatic volatile organic compounds (VOCs) in indoor microenvironments (living room, bedroom, and kitchen) and outdoors in summer and winter during 2006-2007. Samples were taken from Shizuoka in Japan and Hangzhou in China, which are urban cities with similar latitudes. Throughout the samplings, the indoor and outdoor concentrations of many of the targeted VOCs (benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes) in China were significantly higher than those in Japan. The indoor concentrations of VOCs in Japan were somewhat consistent with those outdoors, whereas those in China tended to be higher than those outdoors. Here, we investigated the differences in VOC concentrations between Japan and China. Compositional analysis of indoor and outdoor VOCs showed bilateral differences; the contribution of benzene in China was remarkably higher than that in Japan. Significant correlations ( p < 0.05) for benzene were observed among the concentrations in indoor microenvironments and between the outdoors and living rooms or kitchens in Japan. In China, however, significant correlations were observed only between living rooms and bedrooms. These findings suggest differences in strengths of indoor VOC emissions between Japan and China. The source characterizations were also investigated using principal component analysis/absolute principal component scores. It was found that outdoor sources including vehicle emission and industrial sources, and human activity could be significant sources of indoor VOC pollution in Japan and China respectively. In addition, the lifetime cancer risks estimated from unit risks and geometric mean indoor concentrations of carcinogenic VOCs were 2.3 × 10 -5 in Japan and 21 × 10 -5 in China, indicating that the exposure risks in China were approximately 10 times higher than those in Japan.

  8. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  9. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  10. Comparison of seasonal phenol and p-cresol emissions from ground-level area sources in a dairy operation in central Texas.

    PubMed

    Borhan, M S; Capareda, S; Mukhtar, S; Faulkner, W B; McGee, R; Parnell, C B

    2012-04-01

    Although there are more than 200 odor-causing volatile organic compounds (VOCs), phenol and p-cresol are two prominent odor-causing VOCs found downwind from concentrated animal feeding operations (CAFOs). The VOC emissions from cattle and dairy production are difficult to quantify accurately because of their low concentrations, spatial variability, and limitations of available instruments. To quantify VOCs, a protocol following US. Environmental Protection Agency (EPA) Method TO-14A has been established based on the isolation flux chamber method and a portable gas chromatograph (GC) coupled with a purge-and-trap system. The general objective of this research was to quantify phenol and p-cresol emission rates (ERs) from different ground-level area sources (GLASs) in a free-stall dairy during summer and winter seasons using this protocol. Two-week-long sampling campaigns were conducted in a dairy operation in central Texas. Twenty-nine air samples were collected during winter and 37 samples were collected during summer from six specifically delineated GLASs (barn, loafing pen, lagoon, settling basin, silage pile, and walkway) at the free-stall dairy. Thirteen VOCs were identified during the sampling period and the GC was calibrated for phenol and p-cresol, the primary odorous VOCs identified. The overall calculated ERs for phenol and p-cresol were 2656 +/- 728 and 763 +/- 212 mg hd(-1) day(-1), respectively, during winter. Overall phenol and p-cresol ERs were calculated to be 1183 +/- 361 and 551 +/- 214 mg hd(-1) day(-1), respectively, during summer. In general, overall phenol and p-cresol ERs during winter were about 2.3 and 1.4 times, respectively, higher than those during summer. PMID:22616280

  11. Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization

    SciTech Connect

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-12-01

    Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

  12. Source characteristics of Jovian hectometric radio emissions

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Direct confirmation that low-frequency Jovian hectometric (HOM) radio emissions centered near 0 deg central meridian longitude consist of distinct, oppositely polarized northern and southern beams has been achieved using data from the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. Distinct northern and southern beams were observed in the frequency range from approximately 300 kHz to 1 MHz for at least eight Jovian rotations during the Ulysses inbound pass at distances from 100 to 40 R(sub j). The radiation from the two magnetic hemispheres was measured from different Jovigraphic longitudes and magnetic (or centrifugal) latitudes. Observed temporal variations in the radio intensities, with time scales on the order of 30 min, may result either from longitudinal variations of the HOM sources or from longitudinal density variations in the Io plasma torus. Using the URAP direction-finding capabilities and assuming a tilted dipole planetary magnetic field model, the three-dimensional HOM source locations, the L shell through these source locations, and the beam opening angles were independently deduced. The HOM sources were found to originate at approximately 3 R(sub j) and on low L shells (L approximately 4 to 6), with beam opening angles ranging from 10 to 50 deg.

  13. Source gases: Concentrations, emissions, and trends

    NASA Technical Reports Server (NTRS)

    Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.

    1991-01-01

    Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.

  14. Atmospheric process evaluation of mobile source emissions

    SciTech Connect

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  15. VOC prevention options for surface coating. Rept. for Jun-Aug 91

    SciTech Connect

    McMinn, B.W.; Newman, C.R.; McCrillis, R.C.; Kosusko, M.

    1991-01-01

    The paper discusses some of the volatile organic compound (VOC) prevention options for surface coating. Most small surface coating industries are considered to be stationary area sources. Although stationary area sources may account for as much as 50% of national VOC emissions, they are often not amenable to add-on controls because of cost and the difficulty in capturing emissions. Pollution prevention techniques, such as product substitutions, process modifications, alternative technologies, and improved housekeeping, are needed to reduce VOC emissions from coating operations, thereby aiding in attaining the ozone standard and in decreasing exposure to air toxics. Some currently used products which may be alternatives to traditional solvent-based coatings include powder, waterborne, radiation-curable, and high-solids coatings. Many coating facilities have also reduced VOC emissions by converting conventional spray, airless, or air-assisted airless equipment to electrostatic or high-volume low-pressure units. In addition, several existing technologies that combine the benefits of both process modifications and product substitutions are discussed.

  16. Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China

    NASA Astrophysics Data System (ADS)

    Han, Meng; Lu, Xueqiang; Zhao, Chunsheng; Ran, Liang; Han, Suqin

    2015-03-01

    Tianjin is the third largest megacity and the fastest growth area in China, and consequently faces the problems of surface ozone and haze episodes. This study measures and characterizes volatile organic compounds (VOCs), which are ozone precursors, to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin, China during the HaChi (Haze in China) summer campaign in 2009. A total of 107 species of ambient VOCs were detected, and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv, respectively. Of those, 51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization. The identified sources of VOCs were significantly related to vehicular activities, which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin. Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas, although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%). We conclude that controlling vehicle emissions should be a top priority for VOC reduction, and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life, especially in suburban areas.

  17. DEVELOPMENT OF LASER-BASED SENSORS FOR VOC/NOX AND METALS EMISSIONS MONITORING, CP 1060-97

    EPA Science Inventory

    This project addresses the growing Department of Defense (DoD) and Department of Energy (DOE) needs to monitor air emissions in order to comply with more stringent regulatory pressures, such as the Clean Air Act Amendment (CAAA). Specifically, we are focused on the development of...

  18. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

    NASA Astrophysics Data System (ADS)

    Drewniak, Beth A.; Snyder, Peter K.; Steiner, Allison L.; Twine, Tracy E.; Wuebbles, Donald J.

    2014-01-01

    A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5-6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs.

  19. Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Wood, E. C.; Jayne, J. T.; Nelson, D. D.; Trimborn, A. M.; Dunlea, E.; Knighton, W. B.; Mendoza, A.; Allen, D. T.; Kolb, C. E.; Molina, M. J.; Molina, L. T.

    2009-01-01

    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP) for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. Nitrogen oxides emissions for on-road heavy-duty diesel truck (HDDT) were measured near Austin, Texas, as well as in both Mexican cities, with NOy emission ratios in Austin < Mexico City < Mexicali.

  20. Comparison of emission ratios from on-road sources using a mobile laboratory under various driving and operational sampling modes

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Wood, E. C.

    2008-04-01

    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005. In this paper we analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties obtained during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005 by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. On-road heavy-duty diesel truck (HDDT) nitrogen oxides emissions were measured near Austin, Texas, as well as in both Mexican cities, with NOy emission ratios in Austin < Mexico City < Mexicali.

  1. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    NASA Astrophysics Data System (ADS)

    Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-09-01

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission data set of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This data set, developed under the Monitoring Atmospheric Composition and Climate project (MACC), is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr-1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the data sets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, ?-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

  2. IDENTIFICATION AND CHARACTERIZATION OF MISSING AND UNACCOUNTED FOR AREA SOURCE CATEGORIES

    EPA Science Inventory

    The report identifies and characterizes missing or unaccounted for area source categories. Area source emissions of particulate matter (TSP), sulfur dioxide (SO2), oxides of nitrogen (NOx), reactive volatile organic compounds (VOCs), and carbon monoxide (CO) are estimated annuall...

  3. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Emission limits for existing sources. 63.843 Section 63.843 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for...

  4. 40 CFR 63.843 - Emission limits for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Emission limits for existing sources. 63.843 Section 63.843 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for...

  5. Solutions for VOC and HAPS control on natural gas fired internal combustion engines

    SciTech Connect

    Marcus, J.Z.; Sleigh, S.; Cotherman, R.

    1996-12-31

    Natural gas fired stationary internal combustion engines (IC engines) emit volatile organic compounds (VOC) and hazardous air pollutants (HAP) as part of their normal operations. VOC and HAP emissions are coming under increased scrutiny with the advent of such Clean Air Act Amendments of 1990 regulations as Title I`s Reasonably Available Control Technology (RACT), Title III`s Maximum Achievable Control Technology (MACT) and Title V`s Operating Permit Program (Title V). In addition, many states are imposing more stringent emission limits on these sources. These emissions may also contribute to the reportable chemicals from the total facility under SARA Title III. Numerous facilities nationwide are interested in reducing these emissions in order to comply with current requirements, to opt out of requirements or to reduce reportable chemicals. This paper will examine the source of these emissions, and discuss combustion control technologies and system operating flexibility, end-of-pipe control technologies, and system tuning opportunities which have the potential to reduce VOC and HAP emissions from IC engines. Data will be presented on potential emission reduction efficiencies achievable using the various control options. 7 refs., 4 tabs.

  6. Unspeciated Organic Emissions From Combustion Sources And Their Influence On The Secondary Organic Aerosol Budget In The United States

    NASA Astrophysics Data System (ADS)

    Jathar, S.; Gordon, T.; Hennigan, C. J.; Pye, H. O.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Combustion sources are a major source of organic emissions and therefore a potentially important source for secondary organic aerosol (SOA) formation in the atmosphere. Although speciated organic emissions from combustion sources are considered in models to form SOA, a large fraction of the organics are unspeciated. In this work, we analyze data from numerous smog chamber experiments, which photo-oxidized dilute emissions from different combustion sources (on-road gasoline vehicles, aircraft, on-road diesel vehicles, wood burning and open biomass burning), to determine the contribution that unspeciated emissions make to SOA formation. An SOA model based on speciated organics is able to explain, on average, 8-31% of the SOA measured in the experiments. We hypothesize that the remainder results from the gas-phase oxidation of unspeciated emissions, which account on average for 25-75% of the non-methane organic gas (NMOG) emissions. Using the SOA data, we develop, for the first time, source-specific parameterizations to model SOA from unspeciated emissions; all sources seem to have median SOA yields similar to large n-alkanes (C12+). To assess the influence of unspeciated emissions on SOA formation regionally, we use the parameterization to predict SOA production in the United States. Using emissions data collected during the smog chamber experiments and data available in literature, we build a gross inventory for unspeciated emissions in the United States. We discover that unspeciated organics might be included in the current generation of SOA models but misallocated in terms of its SOA potential. The top six combustion sources (on- and off-road gasoline, on- and off-road diesel, open biomass and wood burning) emit 2.61 Tg yr-1 of unspeciated emissions (20% of US anthropogenic VOC emissions from combustion sources) and are estimated to form a minimum of 0.68 Tg yr-1 of SOA; the estimate is a third of the biogenic SOA produced in the US. We predict that accounting for SOA from unspeciated emissions will double modeled SOA formation from anthropogenic combustion sources. Primary organic aerosol (POA) emission factors and secondary organic aerosol (SOA) box-plots for five source categories. The colored bars on the right show the median range for the entire data.

  7. Ethanol emission from loose corn silage and exposed silage particles

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  8. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    NASA Astrophysics Data System (ADS)

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2011-09-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from 1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m,p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990's, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air collected in the 1999/2000 cohort. Despite some limitations, the NHANES data provides a unique, long term and direct measurement of VOC exposures and trends.

  9. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2015-01-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m, p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m, p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990’s, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air collected in the 1999/2000 cohort. Despite some limitations, the NHANES data provides a unique, long term and direct measurement of VOC exposures and trends. PMID:25705111

  10. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study provide important information and modeling tools to evaluate the impact of LVP-VOCs on air quality and suggest the need for future research on emissions of LVP-VOCs at the point of use.

  11. Development of toxics emission factors from source test data collected under the air toxics hot spots program. Volume 1. Final report

    SciTech Connect

    1996-04-11

    Air toxic emission factors were developed from source test data collected under the Air Toxics `Hot Spots` Information and Assessment Act of 1987. Emission factors were calculated, from a selection of 200 priority tests, for trace metals including hexavalent chromium, PCDD/PCDF, PAH and other SVOC, benzene, toluene and other VOC, aldehydes, and HCl. The emission factor calculation procedures included categorizing each test by design and operating parameters. Statistics were applied to determine which parameters had a primary impact on emissions. These primary parameters were used to identify distinct groups of devices. Several quality ratings were assigned to each emission factor including the confidence interval, relative standard deviation, population rating, and source test method rating.

  12. Development of toxics emission factors from source test data collected under the air toxics hot spots program. Volume 2. Final report

    SciTech Connect

    1996-04-11

    Air toxic emission factors were developed from source test data collected under the Air Toxics `Hot Spots` Information and Assessment Act of 1987. Emission factors were calculated, from a selection of 200 priority tests, for trace metals including hexavalent chromium, PCDD/PCDF, PAH and other SVOC, benzene, toluene and other VOC, aldehydes, and HCl. The emission factor calculation procedures included categorizing each test by design and operating parameters. Statistics were applied to determine which parameters had a primary impact on emissions. These primary parameters were used to identify distinct groups of devices. Several quality ratings were assigned to each emission factor including the confidence interval, relative standard deviation, population rating, and source test method rating.

  13. Constraining Emission Models of Luminous Blazar Sources

    SciTech Connect

    Sikora, Marek; Stawarz, Lukasz; Moderski, Rafal; Nalewajko, Krzysztof; Madejski, Greg; /KIPAC, Menlo Park /SLAC

    2009-10-30

    Many luminous blazars which are associated with quasar-type active galactic nuclei display broad-band spectra characterized by a large luminosity ratio of their high-energy ({gamma}-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars have also typically very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line-region, or dusty molecular torus. The lack or weakness of bulk Compton and Klein-Nishina features indicated by the presently available data favors production of {gamma}-rays via up-scattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical and {gamma}-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intra-day flares occasionally observed in powerful blazars sources.

  14. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

  15. RESEARCH ON EMISSIONS AND MITIGATION OF POP'S FROM COMBUSTION SOURCES

    EPA Science Inventory

    Chapter summarizes EPA's research on emissions and control of persistent organic pollutants (POPS) from combustion sources, with emphasis on source characterization and measurement, formation and destruction mechanisms, formation prevention, and flue gas cleaning. Laboratory exp...

  16. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-10-20

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  17. Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: flow-cell experiments.

    PubMed

    Mainhagu, J; Morrison, C; Truex, M; Oostrom, M; Brusseau, M L

    2014-10-15

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local-extraction point, whereas increases were observed for monitoring points located between the local-extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points. PMID:25171394

  18. RESEARCH AREA -- MOBILE SOURCE EMISSIONS (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, APPCD, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volotile organic compounds) in the U.S. The research objective of the Emissions Characterization and Prevention Br...

  19. VOCs monitoring system simulation and design

    NASA Astrophysics Data System (ADS)

    Caldararu, Florin; Vasile, Alexandru; Vatra, Cosmin

    2010-11-01

    The designed and simulated system will be used in the tanning industry, for Volatile Organic Compound (VOC) measurements. In this industry, about 90% of the solvent contained in the emulsions evaporates during its application, giving rise to VOC, which are at the same time hazardous atmospheric pollutants and one of the sources of ground level photochemical ozone formation. It results that a monitoring system is necessary in a leather finishing process, in order to detect hazardous VOC concentration and conducting process in order of VOC concentration diminishing. The paper presents the design of a VOC monitoring system, which includes sensors for VOCs and temperature, the conditioning circuitry for these sensors, the suction system of the gas in the hood, the data acquisition and the computing system and graphic interface. The used sensor in the detection system is a semiconductor sensor, produced by Figaro Engineering Inc., characterized by a short response time, high sensitivity at almost all VOC substances. The design of the conditioning circuitry and data acquisition is done in order to compensate the sensor response variation with temperature and to maintain the low response time of the sensor. The temperature compensation is obtained by using a thermistor circuitry, and the compensation is done within the software design. A Mitsubishi PLC is used to receive the output signals of the circuits including the sensor and of the thermistor, respectively. The acquisition and computing system is done using Mitsubishi ALPHA 2 controller and a graphical terminal, GOT 1000.

  20. Odor and VOC Emissions from Pan Frying of Mackerel at Three Stages: Raw, Well-Done, and Charred

    PubMed Central

    Ahn, Jeong-Hyeon; Szulejko, Jan E.; Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won

    2014-01-01

    Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel) were analyzed at three different cooking stages (stage 1 = raw (R), stage 2 = well-done (W), and stage 3 = overcooked/charred (O)). Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O), e.g., 465 (trimethylamine) and 106 ppb (acetic acid). In contrast, at stage 2 (W), the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R)) and during overcooking leading to charring (stage 3 (O)). As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality. PMID:25405596

  1. Odor and VOC emissions from pan frying of mackerel at three stages: raw, well-done, and charred.

    PubMed

    Ahn, Jeong-Hyeon; Szulejko, Jan E; Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won

    2014-11-01

    Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel) were analyzed at three different cooking stages (stage 1 = raw (R), stage 2 = well-done (W), and stage 3 = overcooked/charred (O)). Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O), e.g., 465 (trimethylamine) and 106 ppb (acetic acid). In contrast, at stage 2 (W), the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R)) and during overcooking leading to charring (stage 3 (O)). As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality. PMID:25405596

  2. 40 CFR 60.634 - Alternative means of emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plants...emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under any design,...

  3. NONFERROUS INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for the nonferrous industry. After a review of available information characterizing particulate emissions from nonferrous plants, the data were summarized and ...

  4. EMISSIONS FORECASTS FOR INDUSTRIAL PROCESS SOURCES

    EPA Science Inventory

    The report gives national and regional air emissions forecasts from several sulfur oxide and nitrogen oxide (SOx and NOx) emissions control Process Model Projection Technique (PROMPT) test runs. PROMPT, one of a number of National Acid Precipitation Assessment Program emission fo...

  5. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L.; Wang, Q.

    2014-06-01

    Understanding the sources of volatile organic compounds (VOCs) is essential for ground-level ozone and secondary organic aerosol (SOA) abatement measures. We made VOC measurements at 27 sites and online observations at an urban site in Beijing from July 2009 to January 2012. Based on these measurement data, we determined the spatial and temporal distribution of VOCs, estimated their annual emission strengths based on their emission ratios relative to carbon monoxide (CO), and quantified the relative contributions of various sources using the chemical mass balance (CMB) model. These results from ambient measurements were compared with existing emission inventories to evaluate the spatial distribution, species-specific emissions, and source structure of VOCs in Beijing. The measured VOC distributions revealed a hotspot in the southern suburban area of Beijing, whereas current emission inventories suggested that VOC emissions were concentrated in downtown areas. Compared with results derived from ambient measurements, the annual inventoried emissions of oxygenated VOC (OVOC) species and C2-C4 alkanes may be underestimated, while the emissions of styrene and 1,3-butadiene may be overestimated by current inventories. Source apportionment using the CMB model identified vehicular exhaust as the most important VOC source, with the relative contribution of 49%, in good agreement with the 40-51% estimated by emission inventories. The relative contribution of paint and solvent utilization obtained from the CMB model was 14%, significantly lower than the value of 32% reported by one existing inventory. Meanwhile, the relative contribution of liquefied petroleum gas (LPG) usage calculated using the CMB model was 6%, whereas LPG usage contribution was not reported by current emission inventories. These results suggested that VOC emission strengths in southern suburban area of Beijing, annual emissions of C2-C4 alkanes, OVOCs and some alkenes, and the contributions of solvent and paint utilization and LPG usage in current inventories all require significant revisions.

  6. Source apportionment vs. emission inventories of non-methane hydrocarbons (NMHC) in an urban area of the Middle East: local and global perspectives

    NASA Astrophysics Data System (ADS)

    Salameh, T.; Sauvage, S.; Afif, C.; Borbon, A.; Locoge, N.

    2015-10-01

    We applied the Positive Matrix Factorization model to two large datasets collected during two intensive measurement campaigns (summer 2011 and winter 2012) at a sub-urban site in Beirut, Lebanon, in order to identify NMHC sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation) in winter and in summer accounting for 51 and 74 wt % respectively in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer). The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The national road transport inventory shows lowest emissions than the ones from PMF but with a reasonable difference lower than 50 %. Global inventories show higher discrepancies with lower emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is a strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector. Highlights: - PMF model was applied to identify major NMHC sources and their seasonal variation. - Gasoline evaporation accounts for more than 40 % both in winter and in summer. - NMHC urban emissions are dominated by traffic related sources in both seasons. - Agreement with the emission inventory regarding the relative contribution of the on-road mobile source but disagreement in terms of emission quantities suggesting an underestimation of the inventories.

  7. Development of toxics emission factors from source test data collected under the air toxics hot spots program: Database user`s manual version 1.2, windows and MacIntosh. Final report

    SciTech Connect

    1996-04-01

    Air toxic emission factors were developed from source test data collected under the Air Toxics `Hot Spots` Information and Assessment Act of 1987. Emission factors were calculated, from a selection of 200 priority tests, for trace metals including hexavalent chromium, PCDD/PCDF, PAH and other SVOC, benzene, toluene and other VOC, aldehydes, and HCl. The emission factor calculation procedures included categorizing each test by design and operating parameters. Statistics were applied to determine which parameters had a primary impact on emissions. These primary parameters were used to identify distinct groups of devices. Several quality ratings were assigned to each emission factor including the confidence interval, relative standard deviation, population rating, and source test method rating. A graphical user interface (GUI) was developed to display the emission factors and quality information for each group. The GUI allows the user to sort, list, print, and export emission factors from any emission factor group or combination of emission factor groups.

  8. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  9. A mass transfer model of ethanol emission from thin layers of corn silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies may be important emission sources for volatile organic compounds (VOCs). Reactive organic gases (ROG) emissions from dairy farms are the second largest source responsible for ozone formation in the California’s San Joaquin Valley. Animal feed was found to be a major ROG emission source on da...

  10. Validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L.; Wang, Q.

    2013-10-01

    Understanding the sources of volatile organic compounds (VOCs) is essential for ground-level ozone and secondary organic aerosols (SOA) abatement measures. We made measurements at 28 sites and online observations at an urban site in Beijing from July 2009 to January 2012. From these we determined the spatial and temporal distributions of VOCs, estimated their annual emission strengths based on their emission ratios relative to CO, and quantified the relative contributions of various sources using the chemical mass balance (CMB) model. The results from ambient measurements were compared with existing emission inventories to evaluate the spatial distribution, species-specific emissions, and source structure of VOCs. The measured VOC distributions revealed a hotspot in the southern suburban area of Beijing, whereas current emission inventories suggested that VOC emissions were concentrated in downtown areas. Compared with results derived from ambient measurements, the annual inventoried emissions of oxygenated VOC (OVOC) species and C2-C4 alkanes might be underestimated, while the emissions of styrene and 1,3-butadiene might be overestimated by current inventories. Source apportionment using the CMB model identified vehicular exhaust as the most important VOC source, contributing 46%, in good agreement with the 40-51% assumed by emission inventories. However, the relative contribution of solvent and paint usage obtained from the CMB model was only 5%, significantly lower than the values reported by emission inventories (14-32%). Meanwhile, the relative contribution of industrial processes calculated using the CMB model was 17%, slightly higher than that in emission inventories. These results suggested that VOCs emission strengths in southern suburban area of Beijing, annual emissions of alkenes and OVOCs, and the contributions of solvent and paint usage and industrial processes in current inventories, all require significant revision.

  11. Shallow vs. Deep Fluid Sources In Hydrothermal Systems: New Insights From VOC Composition In Fumarolic Discharges And Soil Gases Of Yellowstone National Park (USA)

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Capecchiacci, F.; Montegrossi, G.; Caliro, S.; Chiodini, G.; Vaselli, O.

    2008-12-01

    The origin of non-methane volatile organic compounds (VOCs) in hydrothermal fluids is related to two distinct mechanisms regulated by different thermodynamic conditions (e.g. Des Marais et al., 1981; Mango, 2000; Capaccioni and Mangani, 2001): i) thermogenic reactions, such as catalytic reforming and/or thermal cracking, which proceed within the main reservoir at medium-to-high temperature (150-350°C) and reduced conditions; ii) biodegradation processes, occurring at relatively shallow depth, where uprising fluids have <150°C and suffer oxidizing conditions. According to these considerations, the main aim of the present investigation is to discriminate the different fluid sources feeding the hydrothermal system on the basis of the C2-C15 organic compounds in fumarolic discharges and soil gases collected at the Yellowstone National Park (USA). A total of 64 and 66 different species were identified in the gas discharges and in the soil gas samples, respectively. The composition of the organic gas fraction in the fumarolic fluids is relatively homogeneous, being dominated by C2-C6 alkanes (81 %) and showing relatively high concentrations of alkenes (13 %), aromatics (3.7 %) and cyclics (1.4 %). Differently, the relative percentages of alkanes and alkenes in the soil gas, where VOC abundances are about two orders of magnitude less abundant than those in the gas discharges, are significantly lower (64 and 6.8 %, respectively) and cyclics are absent. On the other hand, oxygenated species (17.8 %), aromatics (5.6 %) and Cl-bearing compounds (4.5 %) results to be enriched with respect to those measured in the gas vents. Such compositional differences are likely to be due to the bacterial activity in the soil that causes the production of ketones, esters, alcohols, aldehydes and organic acids from the C-H species (hydrocarbons sensu strictu). Organic acids, mainly constituted by ossalic acid and traces of tartaric, malonic citric and succinic ones, were also determined in the fumarolic condensates. This seems to indicate that biodegradation likely occurs even within the hydrothermal systems, since the production of low molecular mass organic acids is to be related to bacterial activity (Arnetoli et al., 2008 and references therein). S-bearing compounds are strongly controlled by the fS values and this would explain the relatively high concentrations of these species in the H2S-rich fumarolic discharges. As far as it concerns the relatively high abundance of halogenated compounds in the soil gases, it can be suggested that the origin of these species is likely to be related to atmospheric contribution. Actually, formation of Cl- bearing species from reactions between VOCs and Cl-rich fluids, such as those of the deep hydrothermal reservoir, is still matter of debate. Therefore, we may speculate that these compounds, characterized by chemical inertness, are added to the hydrothermal fluids from meteoric water recharging the system. References: Arnetoli, M., Montegrossi, G., Buccianti, A., Gonnelli, C., 2008. J. Agricol. Food Chem., 56, 789- 795. Capaccioni, B., Mangani, F., 2001. Earth Planet. Sci. Lett., 188, 543-555. Des Marais, D.J., Donchin, J.H., Truesdell, A.H., Nehring, N.L., 1981. Nature, 292, 826-828. Mango, F.D., 2000. Geochim. Cosmochim. Acta, 64, 1265-1277.

  12. PROTOCOL FOR THE FIELD VALIDATION OF STATIONARY SOURCE EMISSION MEASUREMENTS

    EPA Science Inventory

    A protocol has been developed to enable source operators to comply with provisions of Title III of the Clean Air Act Amendments of 1990 which allows certain exemptions if reductions in emissions can be demonstrated and validated source emission test methods are not available. sse...

  13. Source sampling of particulate matter emissions from cotton harvesting - System field testing and emission factor development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...

  14. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.; Crawford, James H.

    2010-01-01

    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.

  15. Registration for the Hanford Site: Sources of radioactive emissions

    SciTech Connect

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ``Radionuclide Air Emissions Report for the Hanford Site,`` published annually. It is a requirement that the following Statement of Compliance be provided: ``The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ``above sources`` is to be understood as meaning the combined air emissions from all sources registered by this submittal.

  16. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    PubMed

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment. PMID:16739797

  17. Dry Sources of Plume Emissions on Enceladus

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2009-12-01

    Salt-bearing icy particles [1], inorganic gases [2] and organic species [2,3] emitted from Enceladus could originate in the heterogeneous icy shell that captured oceanic water and primordial solids earlier in history. A major trapping could have occurred during sinking of a dense (1.6 g/cm3) primordial rock-ice crust [4] into an early salt-, gas- and organic-bearing ocean [5]. The lack of spectral and geological signs for rocky components at the surface is consistent with the submergence of primordial crust that has not been affected by initial water-rock differentiation. The sinking could have been triggered by impacts and/or volume changes in the interior. A rapid submergence could have caused vigorous boiling and freezing of oceanic water that appeared at the surface. The low temperature of submerged crust, and cooling of surface waters may have limited major melting of sunken rock-ice blocks. Some primary spices (e.g. HCN [2]), if released from sunken rock-ice debris, could have been re-captured in ice, which limited their chemical interactions. After formation of a thin icy shell, diking events and impacts caused further trapping of salty oceanic water in multiple disrupted areas, as occurred on Europa. Condensed and soluble organic compounds, and at least some CO2, N2, CH4 and light hydrocarbons released via oceanic degassing were trapped as well. The concentration of salts in rapidly frozen oceanic water reflected oceanic composition, and the salt/water ratio in Na-rich E-ring particles [1] may represent salinity of the early ocean. In fact, the salinity inferred from the composition of salt-rich particles (4-20 g/kg H2O [1]) and salt composition matches models for the early ocean [5]. The Na-poor E-ring particles [1] may originate from a middle part of the icy shell that formed through slow downward freezing and expelling impurities into solution. The dominance of Na-poor E-ring icy grains (~93%, [1]) implies a low volume of salty ice that represents rapidly frozen early oceanic water. A lack of highly saline particles in E ring that are expected to form due to significant evaporation of an aqueous reservoir also argues for dry sources. The E-ring grains [1,3] may represent neither thick salt deposits at the core-ice boundary nor brines that may exist at that boundary today [5]. A low upper limit for atomic Na content at Enceladus [6] is consistent with Na emission in salt particles from dry sources. A low (far from eutectic) NH3/H2O ratio in plumes [2] implies dry sources as well. If present, primary species (e.g. NH3, HCN) in plums [2] and Mg silicates in E-ring particles [3] could originate from unmelted fragments of sunken primordial crust that have been incorporated into the formed icy shell. The structural heterogeneity of current icy shell may account for the chemical diversity of gases [2] and solids [1,3] emitted from Enceladus. Refs.: [1] Portberg F. et al. (2009) Nature 459, 1098-1101. [2] Waite J. et al. et al. (2009) Nature 460, 487-490. [3] Postberg F. et al. (2008) Icarus 193, 438-454. [4] Schubert G. et al. (2007) Icarus 188, 335-345. [5] Zolotov M. (2007) GRL 34, L23203. [6] Schneider N. et al. (2009) Nature 459, 1098-1101.

  18. Extended emission sources observed via two-proton correlations

    SciTech Connect

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.; Plasil, F.; Young, G.R.; Pratt, S.; Chen, Z.; Gelbke, C.K.; Lynch, W.G.; Pochodzalla, J.

    1989-01-01

    Two-particle correlations between light particles emitted in heavy-ion reactions may be used to extract information on the spatial extent and time development of the emission source. Such measurements have provided evidence for the formation and decay of localized regions of high excitation. An interesting aspect of these measurements is the observation that the less energetic particles are emitted from sources of larger apparent dimensions. This has been interpreted as an indication that the lower energy particles are emitted at a later, more equilibrated stage of the reaction. As originally pointed out by Koonin, the dependence of the two-particle correlation on the direction of the relative momentum, with respect to the direction of emission, may provide information on the source lifetime and shape. Although spatial and temporal effects are not strictly distinguishable, a long-lived spherical emission source will have a characteristically prolate appearance, elongated in the direction of emission. We present an analysis of the directional dependence of the two-proton correlation function and extract the shape of the proton emission source. The source shape is observed to vary from that of the compound nucleus for the emission of energetic protons to an extended spherical shape for the emission of low-energy protons, contrary to expectations for a long-lived evaporative source of compound nucleus dimensions. 2 figs.

  19. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 6. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-4

    EPA Science Inventory

    Radian Corporation is conducting a testing program for the EPA to document the performance of catalytic incinerators applied to industrial processes for volatile organic compound (VOC) control. Performance data collected at each test site is being summarized in a series of test r...

  20. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 2. FINAL REPORT ON CATALYTIC INCINERATOR PERFORMANCE AT SIX INDUSTRIAL SITES

    EPA Science Inventory

    The task of meeting these objectives was accomplished in two phases. In the first phase, information was assembled from the literature on the use and cost of using catalytic incineration for VOC control. This phase of the study provides results in the following areas: A review of...

  1. Levels and Sources of Volatile Organic Compounds in Homes of Children with Asthma

    PubMed Central

    Chin, Jo-Yu; Godwin, Christopher; Parker, Edith; Robins, Thomas; Lewis, Toby; Harbin, Paul; Batterman, Stuart

    2014-01-01

    Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2,274 ?g/m3 (mean = 150 ?g/m3; median = 91 ?g/m3); 56 VOCs were quantified; and d-limonene, toluene, p, m-xylene and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4-dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2-dichloroethane, tetrachloroethene and trichloroethylene. Concentrations varied mostly due to between-residence and seasonal variation. Identified emission sources included cigarette smoking, solvent-related emissions, renovations, household products and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources is important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, e.g., sales restrictions, improved product labeling and consumer education, are recommended. PMID:24329990

  2. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. PMID:22154341

  3. A LOW COST CATALYTIC FILTER FOR SIMULTANEOUS VOC AND PARTICULATE REMOVAL - PHASE II

    EPA Science Inventory

    Emissions of VOC's are subject to control by the EPA both because VOC's are regarded as ozone precursors and because many specific VOC's are hazardous air pollutants (HAP's) under the Clean Air Act Amendments. A number of industries generate offgases with both fine particul...

  4. Global comparison of VOC and CO observations in urban areas Erika von Schneidemesser a

    E-print Network

    by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertakenGlobal comparison of VOC and CO observations in urban areas Erika von Schneidemesser a , Paul S% of total anthropogenic emissions in Asia and contain 30% of the Asian population, therefore exerting

  5. Remote Sensing of Mobile Source Air Pollutant Emissions: Variability and Uncertainty in On-Road Emissions

    E-print Network

    Frey, H. Christopher

    Remote Sensing of Mobile Source Air Pollutant Emissions: Variability and Uncertainty in On-Controlled" Vehicles 3 1.4 Conventional Approaches To Estimating Motor Vehicle Emissions 5 1.5 Remote Sensing of On-Road Emissions 6 2.0 REMOTE SENSING: THEORY AND OPERATION 10 2.1 Remote Sensing Device (RSD) Equipment 10 2.2 Non

  6. Quasi-monochromatic field-emission x-ray source

    SciTech Connect

    Diop, Babacar; Binh, Vu Thien

    2012-09-15

    By favoring the L-peak emission over the bremsstrahlung part, direct quasi-monochromatic soft x-ray emission has been obtained with a field emission (FE) x-ray source. The electron impact x-ray setup uses an arrayed cathode of carbon nanopearl FE tips as a stable cold electron source within a vacuum of 10{sup -6}-10{sup -7} Torr. The high brightness of the FE e-beam coupled with the array structure of the cold cathode allows a smoother control of the x-ray emission intensity. The wavelength of the x-ray source can be modified by the choice of target materials. Using Mo as the target material, the x-ray emission shows a peak centered at 2.45 keV with a monochromaticity between 75% and 55% and a FWHM in the range of 450 eV.

  7. Characteristics and photochemical potentials of volatile organics emission from stack exhaust gas of industrial processes

    SciTech Connect

    Hsu, Y.C.; Tsai, J.H.; Lin, T.C.; Cheng, C.C.; Huang, Y.H.

    1999-07-01

    The main objective of this project was to measure the main volatile organic compounds (VOCs) in stack gas from the downstream petrochemical plants. Six pollution sources of industrial processes, including Acrylonitrile-Butadiene-Styrene (ABS), Vinyl Chloride(VC), Polyvinyl Chloride (PVC), Acrylic Resin, para-Terephthalic Acid (PTA) and Polyurethane (PU) synthetic manufacturing processes, were measured by using USEPA Method 18. The concentration and emission rate database of twenty-seven VOCs has been established. Fifty-two selected stacks were sampled and analyzed for VOCs. Analysis of emission factors and characteristics of the twenty-seven VOCs in these stacks show that the emission characteristics are various among different industrial processes. The order of the single-stack VOCs average emission factor are ABS (1.109 lbs VOCs/ton-ABS; 22 stacks) {gt} Acrylic Resin (0.651 lbs VOCs/ton-acrylic resin; 7 stacks) {gt} PU Synthetic (0.606 lbs VOCs/ton-PU synthetic; 4 stacks) {gt} PTA (0.054 lbs VOCs/ton-PTA; 4 stacks) {gt} PVC (0.014 lbs VOCs/ton-PVC; 11 stacks) {gt} VC ({lt} 0.001; 4 stacks) manufacturing processes. The emission factors of VOC in AP-42 database for the processes of are 5 to 40 times higher than those of VOCs in this research. Because of the equipment of pollutant control setting up before the emitted exhaust gas, their average emission factors in these measured processes are almost lower than those of VOCs in AP-42 database. Compared with the characteristics of VOCs, there is little similarity in VOC characteristics for the stacks of six processes between the results from this research and the data from US EPA SPECIATE data system. Furthermore, according to maximum incremental reactivities (MIR) of VOCs probed into photochemical reaction potentials, the results show that those of PTA manufacturing process have an ozone formation potential of 2.33 g O{sub 3}/g VOCs, which is higher than other processes.

  8. MEASUREMENT OF PM-10 EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Measurements of PM-10 particulate matter emissions from stationary sources were performed using two sampling approaches currently under development. PM-10 particulate matter is defined as all particles nominally 10 micrometers aerodynamic diameter and smaller. Aerodynamic inertia...

  9. METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

  10. DEVELOPMENT OF A MONITOR FOR HCN IN MOBILE SOURCE EMISSIONS

    EPA Science Inventory

    Three real-time monitors for measurement of HCN concentrations in mobile source emissions have been designed, built, tested, and delivered to the Environmental Protection Agency (EPA). The important design parameters for these identical instruments were determined during the firs...

  11. SOURCES OF ORGANIC AEROSOL: SEMIVOLATILE EMISSIONS AND PHOTOCHEMICAL AGING

    EPA Science Inventory

    The proposed research integrates emissions testing, smog chamber experiments, and regional chemical transport models (CTMs) to investigate the sources of organic aerosol in urban and regional environments.

  12. AIR POLLUTION: GROUND-BASED SENSING OF SOURCE EMISSIONS

    EPA Science Inventory

    Some types of gaseous pollution sources, particularly extended area industrial complexes and those producing hot combustion products, cannot be monitored adequately with conventional point sampling methods. To aid in characterizing emissions from and in developing remote sensing ...

  13. EFFECTIVE SAMPLING TECHNIQUES FOR PARTICULATE EMISSIONS FROM ATYPICAL STATIONARY SOURCES

    EPA Science Inventory

    Sampling techniques for measuring particulate emissions from four 'atypical' stationary source categories were developed and evaluated. The categories include low effluent velocity streams, extended dimensions, partially or totally unconfined flow, and saturated gas streams or ga...

  14. DETECTING SMALL LOW EMISSION RADIATING SOURCES Moritz Allmaras

    E-print Network

    of the Department of Homeland Security is to prevent smuggling of weapon-grade nuclear materials (e.g., [24 photons is detected by a collimated camera. When dealing with low emission sources, one wants to capture

  15. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources...efficiency of less than 97 percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing...

  16. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources...efficiency of less than 97 percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing...

  17. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources...efficiency of less than 97 percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing...

  18. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources...efficiency of less than 97 percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing...

  19. 40 CFR 63.1157 - Emission standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1157 Emission standards for existing sources...efficiency of less than 97 percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of an existing...

  20. Possible nightside source dominance in nonthermal radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.

    1985-01-01

    Desch and Kaiser (1984) have formulated a radiometric Bode's law from which they have attempted to estimate the low frequency, nonthermal radio power of the magnetosphere of Uranus. It is shown here that, if Uranus possesses a magnetosphere, it is more likely that the radio emission is from the nightside as opposed to the dayside as assumed by Desch and Kaiser. A nightside source for the radio emissions would radically alter the predicted time for direct observations of the emissions.

  1. IRON AND STEEL PLANT OPEN SOURCE FUGITIVE EMISSION EVALUATION

    EPA Science Inventory

    The report gives results of field tests aimed at increasing the reliability of equations used to predict emission factors for open fugitive emission sources at iron and steel plants. The accuracy of previously developed equations is limited by the restricted number of actual test...

  2. CHARACTERIZATION OF EMISSIONS FROM COMBUSTION SOURCES: CONTROLLED STUDIES

    EPA Science Inventory

    The paper summarizes Session I papers (given at the EPA Workshop on Characterization of Contaminant Emissions from Indoor Sources, Chapel Hill, NC, May 1985) that illustrate the progress made to date on characterizing indoor combustion emissions from unvented space heaters, gas a...

  3. Nitrogen fertilizer source and placement effects on nitrous oxide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) source and placement effects on nitrous oxide (N2O) emissions from strip-till (ST) and no-till (NT), irrigated continuous corn fields were evaluated from 2009-2011 near Fort Collins, CO. Emissions were monitored from plots receiving commonly used urea and UAN and four enhanced-efficien...

  4. Ammonia emissions from non-agricultural sources in the UK

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Dragosits, U.; Tang, Y. S.; Fowler, D.

    A detailed literature review has been undertaken of the magnitude of non-agricultural sources of ammonia (NH 3) in the United Kingdom. Key elements of the work included estimation of nitrogen (N) excreted by different sources (birds, animals, babies, human sweat), review of miscellaneous combustion sources, as well as identification of industrial sources and use of NH 3 as a solvent. Overall the total non-agricultural emission of NH 3 from the UK in 1996 is estimated here as 54 (27-106) kt NH 3-N yr -1, although this includes 11 (6-23) kt yr -1 from agriculture related sources (sewage sludge spreading, biomass burning and agro-industry). Compared with previous estimates for 1990, component source magnitudes have changed both because of revised average emissions per source unit (emission factors) and changes in the source activity between 1990 and 1996. Sources with larger average emission factors than before include horses, wild animals and sea bird colonies, industry, sugar beet processing, household products and non-agricultural fertilizer use, with the last three sources being included for the first time. Sources with smaller emission factors than before include: land spreading of sewage sludge, direct human emissions (sweat, breath, smoking, infants), pets (cats and dogs) and fertilizer manufacture. Between 1990 and 1996 source activities increased for sewage spreading (due to reduced dumping at sea) and transport (due to increased use of catalytic converters), but decreased for coal combustion. Combined with the current UK estimates of agricultural NH 3 emissions of 229 kt N yr -1 (1996), total UK NH 3 emissions are estimated at 283 kt N yr -1. Allowing for an import of reduced nitrogen (NH x) of 30 kt N yr -1 and deposition of 230 kt N yr -1, these figures imply an export of 83 kt NH 3-N yr -1. Although export is larger than previously estimated, due to the larger contribution of non-agricultural NH 3 emissions, it is still insufficient to balance the UK budget, for which around 150 kt NH 3-N are estimated to be exported. The shortfall in the budget is, nevertheless, well within the range of uncertainty of the total emissions.

  5. Aerostat-Lofted Instrument Platform and Sampling Method for Determination of Emissions from Open Area Sources

    EPA Science Inventory

    Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...

  6. Removal of Volatile Organic Contaminants (VOCs) from the Groundwater Sources of Drinking Water via Granular Activated Carbon Treatment (WaterRF Report 4440)

    EPA Science Inventory

    The overall goal of this project was to assess the feasibility of granular activated carbon (GAC) for the treatment of selected carcinogenic volatile organic compounds (cVOC) to sub-?g/L levels. The project consisted of three tasks. The task objectives are:? Task I - determine c...

  7. Asbestos emissions from baghouse controlled sources.

    PubMed

    Harwood, C F; Oestreich, D K; Siebert, P; Stockham, J D

    1975-08-01

    There is virtually no information published on the absolute efficiency of baghouses in reducing the emmisions of fine particles of asbestos. This lack of information is unfortunate because serious occupational health problems may result from the common practice of recirculating air to conserve energy. Emission testing has been conducted at five asbestos processing plants where the emissions are controlled by baghouses. The results showed that the mass removal efficiency frequently exceeded 99.00%. Membrane filter samples of the effluent were examined by optical and electron microscope. It was observed that despite the high mass efficiency, the number of fibers emitted, which were greater than 1.5 mum in length, was about 10(4)-10(5) fibers/m3, while the number of fibers less than 1.5 mum was 10(7)-10(8) fibers/m3. The significance of the size of the fibers in terms of probably health impact is briefly discussed. PMID:1227285

  8. Identifying Hydrocarbon Source Region Emission Signatures for Oil and Gas Facilities and Beyond Using Ambient Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Nathan, B.; Lary, D. J.

    2014-12-01

    The Texas Commission on Environmental Quality (TCEQ) has fourteen stations in the Barnett Shale that take ambient concentration measurements of forty-six non-methane hydrocarbons. We gathered all measurements for the period of October 16-31, 2013, and applied Lagrangian trajectories to each air parcel that was measured, to achieve a domain filling of the Barnett region. Regular grids of concentration values for each VOC at each hour were constructed, then implemented into an unsupervised machine learning classification. This self-organizing map assigned classification numbers to each grid cell in each hourly grid, where a class number essentially corresponded with a signature of representative concentration values for all forty-six hydrocarbons. Two hundred was determined to be an appropriate number of classes for this classification. Similarly, we applied a self-organizing map to the wind speed and resultant direction measurements recorded at each station. This classification grouped together the hours in our time frame into six distinct wind regimes. Concentration class numbers were analyzed for different wind regimes, and for the whole time period. A grouping of classes with numbers in the middle-to-upper forties was discovered near and downwind of oil and gas facilities. The validity and accuracy of this method was confirmed by performing a site-by-site comparison against an independent study which analyzed the VOC concentrations at three TCEQ stations. This opened the door to expand the dataset to include other ground-based measurements of both non-methane VOC and methane concentrations, to further trace back emission sources.

  9. Gap-filling of VOC flux data for deriving annual budgets: Case study at a mountain meadow

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Hörtnagl, Lukas; Hansel, Armin; Wohlfahrt, Georg

    2013-04-01

    Although the biosphere is currently thought to be the main source for atmospheric volatile organic compounds (VOCs) longer time series of VOC measurements are barely available and the accuracy VOC modeling approaches still suffers from a lack of flux measurement data. However, long-term VOC flux data sets could provide a way to improve the quality of modeling approaches and make a first step towards a better VOC quantification. We used VOC flux data of methanol, acetone, acetaldehyde and the monoterpenes, which were measured by means of a proton transfer reaction - mass spectrometer PTR-MS utilising the disjunct eddy covariance method (vDEC) above an intensively managed mountain grassland in Stubai Valley (Austria), to compare the performance of four different gap filling approaches and to get complete annual time series of the VOCs for the years 2009 and 2011. Assuming a zero flux from the grassland during the winter period, when the meadow is usually covered by snow, the average cumulative VOC fluxes above the grassland show with 103 mg C m-2 in the year 2009 and 464 mg C m-2 in the year 2011 a high inter-annual variability. The gap filling using the filling method which performs best on the data introduced mean errors of 20 mg C m-2 in 2009 and 13 mg C m-2 in 2011. Methanol was with average cumulative emission fluxes of 375 mg C m-2 and 442 mg C m-2 during the year 2009 the main compound contributing to the VOC balance during both years. The cumulative fluxes of methanol using the four different gap-filling approaches agreed within a range smaller than 7 percent in 2009 and 2 percent in 2011. During the first year (2009) the cumulative deposition fluxes of monoterpenes (on average 317 mg C m-2) turned out to have also a big influence on the overall VOC balance (its cumulative flux variation depending on the used gap filling method was less than 10 percent). All other compounds showed fluxes which were below 10 percent of the methanol emission flux in 2009 while flux contribution of the non-methanol compounds was less than 5 percent of the total budget in 2011.

  10. SOURCES, EMISSION AND EXPOSURE TO TRICHLOROETHYLENE (TCE) AND RELATED CHEMICALS

    EPA Science Inventory

    This report documents the sources, emission, environmental fate and exposures for TCE, some of its metabolites, and some other chemicals known to produce identical metabolites. The major findings for TCE are:


    1. The primary sources releasing TCE to the environment ...

    2. CRITICAL REVIEW OF OPEN SOURCE PARTICULATE EMISSION MEASUREMENTS: FIELD COMPARISON

      EPA Science Inventory

      The report gives results of a review of sampling and analytical procedures used by various testing firms to quantify particulate emissions from open sources; e.g., roads and storage piles. Seven firms, who account for nearly 100 percent of all open source data in the literature, ...

    3. Volatile organic compound emissions from silage systems

      Technology Transfer Automated Retrieval System (TEKTRAN)

      As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

    4. Snowmobile contributions to mobile source emissions in Yellowstone National Park.

      PubMed

      Bishop, G A; Morris, J A; Stedman, D H

      2001-07-15

      Increases in the number of winter visitors to Yellowstone National Park during the past decade have raised concerns over the environmental impacts of snowmobiling in the park. During the 1998-99 season, more than 62,000 snowmobile and 1300 snow coach trips entered the park. Using the University of Denver's vehicle exhaust remote-sensing equipment, 1385 measurements of carbon monoxide (CO) and hydrocarbon (HC) emissions were collected from in-use snowmobiles at the west and south entrances to the park. Overall means of 392 +/- 4 g CO and 237 +/- 1 g HC were observed per kilogram of fuel consumed. In addition, using an ultraviolet monochromator, 460 measurements of toluene emissions were collected with a mean of 39 +/- 1 g toluene/kg of fuel. Using these data, a mobile source emissions inventory based on fuel use for Yellowstone National Park shows that snowmobiles account for 27% of the annual emissions of carbon monoxide and 77% of annual emissions of hydrocarbons using an equivalent best estimate for the summer mobile source emissions. Use of oxygenated fuels in snowmobiles was found to reduce CO emissions by 13.2 +/- 6.5% without an observed effect on HC emissions. Liquid-cooled sleds were found to have HC emissions 9.5 +/- 2.2% higher than those from fan-cooled sleds because of the increased intake and exhaust port sizes required in the larger liquid-cooled engines, which increases blowby in the 2-stroke engines. PMID:11478237

    5. Source Emissions in Multipollutant Air Quality Management

      EPA Science Inventory

      Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

    6. CHARACTERIZATION OF NITROUS OXIDE EMISSION SOURCES

      EPA Science Inventory

      The report presents a global inventory of nitrous oxide (N2O) based on reevaluation of previous estimates and additions of previously uninventoried source categories. (NOTE: N2O is both a greenhouse gas and a precursor of nitric oxide (NO) which destroys stratospheric ozone.) The...

    7. Detecting Isobaric VOCs

      SciTech Connect

      Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom; Alexander, M. Lizabeth

      2003-09-01

      Volatile organic compounds (VOCs) can be monitored by proton transfer reaction (PTR) MS, in which a PTR drift tube is coupled to a quadrupole mass spectrometer. In this technique, compounds undergo proton transfer reactions when they collide with H?O? ions. This soft chemical ionization method, which results in little fragmentation, allows researchers to detect trace levels of VOCs from relatively uncomplicated spectra. Sometimes, the m/z values of VOCs are similar or identical, rendering it impossible to make a positive identification. Thus, Michael Alexander and co-workers at the Pacific Northwest National Laboratory, San Francisco State University, and Innsbruck University (Austria) developed a novel instrument that couples a PTR drift tube to an ion trap mass spectrometer, which can perform MS/MS, to produce characteristic fragments of isobaric species.

    8. Pulsed, atmospheric pressure plasma source for emission spectrometry

      DOEpatents

      Duan, Yixiang; Jin, Zhe; Su, Yongxuan

      2004-05-11

      A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

    9. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

      NASA Astrophysics Data System (ADS)

      Shetty, Suraj K.

      Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and surface area of 90.25 cm2 g -1). The model result demonstrated that a batch of activated carbon

    10. Source characterization of volatile organic compounds affecting the air quality in a coastal urban area of South Texas.

      PubMed

      Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla

      2008-09-01

      Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530

    11. METHOD FOR SEPARATING VOLATILE ORGANIC CARBON FROM 0.1 M3 OF AIR TO IDENTIFY SOURCES OF OZONE PRECURSORS VIA ISOTOPE (14C) MEASUREMENTS

      EPA Science Inventory

      Atmospheric non-methane volatile organic compounds (VOCS) are known to play an important role in urban ozone formation during the summer. o respond to the need for a direct measure of VOC source contributions from biogenic (14C/12C=10-12) and fossil fuel (14C/12C=O) emissions, a ...

  1. Ice emission and the redshifts of submillimeter sources

    E-print Network

    C. C. Dudley; M. Imanishi; P. R. Maloney

    2008-02-12

    Observations at submillimeter wavelengths have revealed a population of sources thought to be at relatively large redshifts. The position of the 850 $\\mu$m passband on the Rayleigh-Jeans portion of the Planck function leads to a maximum redshift estimate of $z\\sim$4.5 since sources will not retain their redshift independent brightness close to the peak of the Planck function and thus drop out of surveys. Here we review evidence that ice absorption is present in the spectra of local ultraluminous infrared galaxies which are often taken as analogs for the 850 $\\mu$m source population. We consider the implication of this absorption for ice induced spectral structure at far infrared wavelengths and present marginal astronomical evidence that amorphous ice may have a feature similar to crystalline ice near 150 $\\mu$m. Recent corroborative laboratory evidence is supportive of this conclusion. It is argued that early metal enrichment by pair instability SN may lead to a high ice content relative to refractory dust at high redshift and a fairly robust detection of ice emission in a $z=6.42$ quasar is presented. It is further shown that ice emission is needed to understand the 450 $\\mu$m sources observed in the GOODS-N field. We are thus encouraged to apply far infrared ice emission models to the available observations of HDF 850.1, the brightest submillimeter source in the {\\it Hubble Deep Field}. We suggest that a redshift as large as 13 may need to be considered for this source, nearly a factor of three above the usual top estimate. Inclusion of the possibility of far infrared ice emission in the spectral energy distributions of model sources generally broadens the range of redshifts to be considered for submillimeter sources compared to models without ice emission.

  2. Solvent cleaning/degreasing source category emission inventory. Final report

    SciTech Connect

    Roe, S.M.; Jones, L.; Costello, P.J.

    1996-08-23

    In this study, the contractor determined the amount of solvent used in solvent cleaning/degreasing operations in California by district and by county during 1993 (the base year) for various equipment groups, and specified sources of information for future annual updates for the emissions inventory. The resulting data will be used to revise and update the solvent cleaning/degreasing emissions inventory and to assist in the development of control measures for ozone, in compliance with the Clean Air Act.

  3. Studies of acoustic emission from point and extended sources

    NASA Astrophysics Data System (ADS)

    Sachse, W.; Kim, K. Y.; Chen, C. P.

    1986-01-01

    The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.

  4. Control for NOx Emissions from Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Maria E.; Collins, Michelle M.

    2000-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote research and development (R&D) that could contribute to solve the problems of air, soil, and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phase 1 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the ten-week summer program. During this period, support has been given to implement the modifications suggested for Phase 2 of the project, which focus on oxidation reactions carried at lower temperatures using an ultraviolet source. The redesign and assembly of the modifications for the scrubbing system was the main objective of this research.

  5. ON-ROAD VEHICLE EMISSIONS: USA STUDIES

    EPA Science Inventory

    Several recent events in mobile sources emissions measurements have caused a major reassessment in the amounts of volatile organic compounds (VOC) and carbon monoxide (CO) in the ambient air attributed to mobile sources. hese include the comparison of real world in-use vehicle em...

  6. Diagnosis of air quality through observation and modeling of volatile organic compounds (VOCs) as pollution tracers

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Tzu; Hsieh, Hsin-Cheng; Chen, Sheng-Po; Chang, Julius S.; Lin, Neng-Huei; Chang, Chih-Chung; Wang, Jia-Lin

    2012-08-01

    This study used selected ambient volatile organic compounds (VOCs) as pollution tracers to study the effects of meteorology on air quality. A remote coastal site was chosen as a receptor to monitor pollutants transported upwind from urban traffic and industrial sources. Large concentration variability in VOC concentrations was observed at the coastal site due to rapid changes in meteorology, which caused periodic land-sea exchange of air masses. To assure the quality of the on-line measurements, uniform concentrations of chlorofluorocarbon-113 (CFC-113) were exploited as an internal check of the instrument's stability and the resulting data quality. A VOC speciated air quality model was employed to simulate both temporal and spatial distributions of VOC plumes. The model successfully captured the general features of the variations of toluene as a pollution tracer, which suggests that emissions and meteorology were reasonably well simulated in the model. Through validation by observation, the model can display both the temporal and spatial distribution of air pollutants in a dynamic manner. Thus, a more insightful understanding of how local air quality is affected by meteorology can be obtained.

  7. Mulivariate receptor modeling of SCAQS VOC and airborne particle composition data. Final report

    SciTech Connect

    Henry, R.C.; Mi, Y.; Moran, W.

    1999-01-01

    USC used speciated Volatile Organic Carbon (VOC) gaseous phase and secondary particulate matter size fraction less than ten micron (PM10) data collected during the 1987 Southern California Air Quality Study (SCAQS) to determine the composition of gaseous and airborne particles. USC used the Source Apportionment by Factors with Explicit Restrictions (SAFER) and the Source Identification through Empirical Orthogonal Functions (SITEOF) source-receptor models that use basic physical constraints (source compositions) to narrow the types of solutions they provide. Roadway (tailpipe plus running evaporative) emissions, whole gasoline, and gasoline vapor, were found to be responsible for most of the ambient VOC; and higher proportion of evaporative emissions in the afternoons which is consistent with higher emissions from parked vehicles at higher afternoon temperatures. Roadway (direct tailpipe plus re-entrained road dust) emissions and soil defined as all crustal materials not directly associated with roadways, were found to be responsible for most of the non-PM10. The SAFER model was successfully applied; the SITEOF model was unsuccessful because it could not use the wind fields from the SCAQS data.

  8. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  9. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...PET and polystyrene affected sources-emissions control provisions. 63.1316 Section...AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air...

  10. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and polystyrene affected sources-emissions control provisions. 63.1316...PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air...

  11. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...and polystyrene affected sources-emissions control provisions. 63.1316...PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air...

  12. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...PET and polystyrene affected sources-emissions control provisions. 63.1316 Section...AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air...

  13. EMISSIONS ASSESSMENT OF CONVENTIONAL STATIONARY SYSTEMS: VOLUME III. EXTERNAL COMBUSTION SOURCES FOR ELECTRICITY GENERATION

    EPA Science Inventory

    The report characterizes multimedia emissions from external combustion sources for electricity generation. Study results indicate that external combustion sources for electricity generation contribute significantly to the nationwide emissions burden. Flue gas emissions of NOx, SO...

  14. CO2 EMISSIONS FROM BIOENERGY AND OTHER BIOGENIC SOURCES IN STATIONARY SOURCES

    EPA Science Inventory

    On January 12, 2011, EPA announced a series of steps to address the treatment of biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with accounting for biogenic carbon dioxide emissions from stationary sour...

  15. Deposition of terpenes to vegetation - a paradigm shift towards bidirectional VOC exchange?

    NASA Astrophysics Data System (ADS)

    Bamberger, I.; Hörtnagl, L.; Ruuskanen, T.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.

    2012-04-01

    Biogenic volatile organic compounds (BVOCs) are important precursors for secondary organic aerosol (SOA) formation (Hallquist et al., 2009). In addition reactive BVOCs play a crucial role in local tropospheric ozone production (Atkinson, 2000). According to the present scientific understanding vegetation is recognized as a major VOC emission source rather than a deposition sink. Our recent observations however demonstrate that an uptake of terpene compounds to mountain grassland can be significant - at least under certain atmospheric conditions. After a severe hailstorm volume mixing ratios (VMR) of locally emitted terpene compounds originating from conifers located at the mountain slopes were strongly enhanced, even during daytime hours. Weeks after the hailstorm our PTR-MS and PTR-time-of-flight (PTR-TOF) instruments still measured deposition fluxes of monoterpenes (m/z 137.133), sesquiterpenes (m/z 205.195), and oxygenated terpenes (m/z 153.128) to the grassland. The total amount of terpenoids (on a carbon basis) deposited to the grassland during the weeks after the hailstorm is comparable to the total methanol emission of the entire growing season (Bamberger et al., 2011). These findings pose the question whether the terminology should be adjusted from VOC emission to VOC exchange.

  16. Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Capecchiacci, F.; Cabassi, J.; Calabrese, S.; Vaselli, O.; Rouwet, D.; Pecoraino, G.; Chiodini, G.

    2012-09-01

    In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, chlorofluorocarbon (CFC) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data.

  17. 40 CFR 62.4622 - Emission inventories, source surveillance, reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission inventories, source... public such data. Within 30 days after receipt of any such written request, the Regional Administrator... limitations or other control measures that are part of the applicable plan. (2) Commencing after the...

  18. MEASURING INORGANIC AND ALKYL LEAD EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Described are the results from studies done to provide test methods for state and local air pollution control agencies to measure accurately the lead emissions from stationary source stacks as required in the National Ambient Air Quality Standard for Lead. Inorganic lead is colle...

  19. SENSITIVITY OF RADM TO POINT SOURCE EMISSIONS PROCESSING

    EPA Science Inventory

    The Regional Acid Deposition Model (RADM) and associated Engineering Model have been developed to study episodic source-receptor relationships on a regional scale. he RADM includes transport, chemical transformation, and deposition processes as well as input of emissions into the...

  20. FEASIBILITY OF DEVELOPING SOURCE SAMPLING METHODS FOR ASBESTOS EMISSIONS

    EPA Science Inventory

    The objective of this program was to determine the feasibility of developing methods for sampling asbestos in the emissions of major asbestos sources: (1) ore production and taconite production, (2) asbestos-cement production, (3) asbestos felt and paper production, and (4) the p...

  1. COMPARATIVE STUDY OF OPEN SOURCE PARTICULATE EMISSION MEASURING TECHNIQUES

    EPA Science Inventory

    The paper gives results of a comparative study of variations in measuring and analytical techniques used to assess sources upon which emission factor data bases are built (in an effort to quantify these technique-dependent parameters). The study included a simultaneous, side-by-s...

  2. Methane emission by goats consuming different sources of condensed tannins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-four yearling Boer x Spanish wethers (7/8 Boer; initial body weight [BW] of 37.5 plus/minus 0.91 kg) were used to assess effects of different condensed tannin (CT) sources on methane emission. Diets were Kobe lespedeza (Lespedeza striata; K), K plus quebracho providing CT at 5% of dry matter...

  3. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  4. VOCs: Air pollution control. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning various aspects of air pollution control for volatile organic compounds (VOCs). Topics include the detection and measurement of emissions, as well as control technology options. Also covered are regulation and compliance guidelines for VOC emissions. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  5. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...limiting particulate matter emissions from wood products industry sources. 49.128...limiting particulate matter emissions from wood products industry sources. (a) What...matter that may be emitted from certain wood products industry sources operating...

  6. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  7. Carbonyl emissions from commercial cooking sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Yu, Jian Zhen; Chu, Kam Wah; Yeung, Lam Lung

    2006-08-01

    Cooking fumes are an important carbonyl emission source, especially in a highly urbanized city, such as Hong Kong. Cooking exhaust from 15 commercial kitchens of a variety of cooking styles was sampled and analyzed for a suite of 13 carbonyl compounds. Carbonyl compositions were varied among the different cooking styles. Formaldehyde was generally the most abundant carbonyl, and its contribution to the total carbonyl amount on a molar basis ranged from 12 to 60%. Acrolein was also found to be an abundant carbonyl in the cooking exhaust. The highest contribution by acrolein to the total carbonyls was found to be 30% in the exhaust of a western-style steak restaurant. Long-chain saturated carbonyls, that is, heptanal, octanal, and nonanal, accounted for a significant fraction (> 40%) of the total carbonyls in kitchens that always used heated cooking oils. Two dicarbonyls, glyoxal and methylglyoxal, had a various presence in the cooking emissions, ranging from negligible to 10%. The presence of benzaldehyde and tolualdehyde was mostly negligible in the sampled kitchen exhaust. Annual emission rates of both individual carbonyls and total carbonyls were estimated for various types of commercial kitchens. Local-style fast-food shops contributed the highest total carbonyl emissions per year mainly because of the large number of this kind of restaurant in Hong Kong. The citywide annual emission rates of the three most toxic carbonyls, formaldehyde, acetaldehyde, and acrolein, were estimated assuming that the limited number of sampled restaurants were representative of the average restaurants. Such estimates of carbonyl emission rates were comparable to the estimated carbonyl emissions from vehicular sources, suggesting the importance of commercial cooking as a source for carbonyls in Hong Kong. PMID:16933641

  8. EPA's mobile monitoring of source emissions and near-source impact

    EPA Science Inventory

    Real-time ambient monitoring onboard a moving vehicle is a unique data collection approach applied to characterize large-area sources, such as major roadways, and detect fugitive emissions from distributed sources, such as leaking oil wells. EPA's Office of Research and Developme...

  9. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from material system (namely, substrate//glue//vinyl tile).

  10. Denitrification as a Source of NO Emissions using Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Abalos, Diego; Dixon, Liz; Vallejo, Antonio; Watson, Catherine; McGeough, Karen; Well, Reinhard; Matthews, Peter

    2015-04-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O) which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. Depending on the environmental conditions such as substrate availability, pH and water filled pore space (WFPS) N2O emissions have been attributed to both processes, whereas NO emissions are thought to predominantly derive from nitrification. This is due to the fact that the environmental factors which promote denitrifying conditions also restrict gaseous diffusivity causing consumption of the highly reactive NO. Recent findings however challenge this assumption indicating that denitrification can be a significant source of NO. Attributing gaseous emissions to specific soil processes is still difficult; however, advanced isotopic methods show great potential. Labelling methods rely on the use of 15N enriched substrates, whereas isotopomer analyses rely on differences in the utilisation of heavy vs light N and O isotopes at natural abundance. The present study analysed the effect of different enrichment levels on gaseous emissions using the gas-flow-soil-core technique (Cardenas et al 2003). This system provides continuous measurements of NO, N2O as well as N2 fluxes by exchanging the normal atmosphere with a mixture of He:O2 (80:20). This was combined with 15N labelled isotopic techniques and isotopomer measurements to determine the source and processes responsible for the measured N-emissions. Nutrient solutions were applied containing KNO3 with 15N at natural abundance, 5 atom% and 20 atom% enrichment at a rate of 75 kg N ha-1 together with glucose at a rate of 400 kg C ha-1. Results showed that at the higher level of enrichment gaseous emissions were affected by showing an increase in emissions of NO and N2O. Additionally, under denitrifying conditions (high WFPS and NO3- availability) denitrification played a key role in NO emissions. Emissions will be simulated from an extension of the dual porous PoreXpert model (Laudone et al, 2011). These results will confirm the proximity of the critical percolation path (added NO-) to the hot spots of microbes, indicating the preference for the use of added NO3- versus native NO3-. References: Cárdenas et al (2003). Soil Biology and Biochemistry 35, 867-870 Laudone et al. (2011) Journal of Hydrology 409, 283-290

  11. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation phenomenon in real environmental conditions.

  12. EPA`s emissions models for general nonroad sources

    SciTech Connect

    Fieber, J.; Rosenbaum, A.; Vranka, R.; Kleinhesselink, D.

    1996-12-31

    Under the sponsorship of the US EPA`s Office of Mobile Sources, SAI has developed a computer model for nonroad mobile sources. Although data and methodologies continue to be revisited, the alpha version of the model has been completed and is currently under review at EPA. The model contains modules for estimating equipment populations, activity, emission factors, and total emissions. It adjusts these estimates to predict total emissions for the calendar year and at a level of detail specified by the user (e.g., average annual estimates at a national level, hourly estimates for a specific county). The EPA`s nonroad model provides estimates for the following general classes of nonroad equipment: General Nonroad Sources: (1) Lawn and garden equipment; (2) Airport service equipment; (3) Recreational; (4) Light Commercial; (5) Industrial; (6) Construction; (7) Agricultural; and (8) Logging. Special Nonroad Sources: (1) Locomotives; (2) Aircraft; and (3) Marine Vessels. With the exception of locomotives, aircraft, and marine vessels, the methodologies used within the model are quite similar for all these source groupings. Information for specific equipment types (e.g., 15-25 horsepower, gasoline 2-stroke engine commercial turf equipment) will also be provided if the user requests this level of detail. Written in FORTRAN and designed for personal computers (though it can be ported to workstations), this new emissions tool includes an interface to improve its ease of use and flexibility. We present here some of the features of the model and provide an overview of the internal methods used for the equipment groups listed under general nonroad sources.

  13. A framework for modeling non-steady-state concentrations of semivolatile organic compounds indoors ? I: Emissions from diffusional sources and sorption by interior surfaces

    EPA Science Inventory

    Over the past two decades, more than 20 mass transfer models have been developed for the sources, sinks, and barriers for volatile and semivolatile organic compounds (VOCs and SVOCs) in the indoor environment. While these models have greatly improved our understanding of VOC and ...

  14. Low VOC drying of lumber and wood panel products. Progress report No. 5

    SciTech Connect

    Wild, P.; Yan, Hui; Banerjee, S.

    1997-10-01

    This progress report summarizes three accomplishments in a study of low volatile organic compound (VOC) drying of lumber and wood panel products. A mathematical model for predicting moisture emissions from particle was constructed and is being extended to VOCs. VOCs emissions from drying boards show that VOCs appear to be evenly released from all surfaces. Preliminary results from monthly analyses of loblolly pines indicate that resin acids appear to decrease between March to August, and that no consistent trends are apparent for terpenes. 3 refs., 13 figs., 1 tab.

  15. 40 CFR 60.613 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Monitoring of emissions and operations. 60.613 Section 60.613 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions From...

  16. Gap-filling strategies for annual VOC flux data sets

    PubMed Central

    Bamberger, I.; Hörtnagl, L.; Walser, M.; Hansel, A.; Wohlfahrt, G.

    2013-01-01

    Up to now the limited knowledge about the exchange of volatile organic compounds (VOCs) between the biosphere and the atmosphere is one of the factors which hinders more accurate climate predictions. Complete long-term flux data sets of several VOCs to quantify the annual exchange and validate recent VOC models are basically not available. In combination with long-term VOC flux measurements the application of gap-filling routines is inevitable in order to replace missing data and make an important step towards a better understanding of the VOC ecosystem-atmosphere exchange on longer time scales. We performed VOC flux measurements above a mountain meadow in Austria during two complete growing seasons (from snowmelt in spring to snow reestablishment in late autumn) and used this data set to test the performance of four different gap-filling routines, mean diurnal variation (MDV), mean gliding window (MGW), look up tables (LUT) and linear interpolation (LIP), in terms of their ability to replace missing flux data in order to obtain reliable VOC sums. According to our findings the MDV routine was outstanding with regard to the minimization of the gap-filling error for both years and all quantified VOCs. The other gap-filling routines, which performed gap-filling on 24 h average values, introduced considerably larger uncertainties. The error which was introduced by the application of the different filling routines increased linearly with the number of data gaps. Although average VOC fluxes measured during the winter period (complete snow coverage) were close to zero, these were highly variable and the filling of the winter period resulted in considerably higher uncertainties compared to the application of gap-filling during the measurement period. The annual patterns of the overall cumulative fluxes for the quantified VOCs showed a completely different behavior in 2009, which was an exceptional year due to the occurrence of a severe hailstorm, compared to 2011. Methanol was the compound which contributed with 381.5 mgCm?2 and 449.9 mgCm?2 most to the cumulative VOC carbon emissions in 2009 and 2011, respectively. In contrast to methanol emissions, however, considerable amounts of monoterpenes (?327.3 mgCm?2) were deposited to the mountain meadow in consequence to the hailstorm in 2009. Other quantified VOCs had considerably lower influences on the annual patterns. PMID:24363783

  17. Switching regulator emission control circuit for ion sources

    NASA Technical Reports Server (NTRS)

    Clay, F. P., Jr.; Brock, F. J.; Melfi, L. T., Jr.

    1975-01-01

    An electron emission control circuit of the switching regulator type operating at 100 kHz has been developed which maintains a constant emission current within 0.1% for a cathode power demand variation of approximately 100%. The power output stage has an efficiency of 67%, and the overall efficiency is 45% when driving a thoria-coated iridium cathode having a nominal resistance at operating temperature of 2.5 ohms. Under optimum conditions, the bus power demand is 1.75 W. The circuit is useful in controlling the electron emission current of ion sources in applications which involve a substantial variation of the cathode work function, such as oxygen partial pressure measurements over a large dynamic range.

  18. The infrared emission bands. III. Southern IRAS sources.

    PubMed

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features. PMID:11542167

  19. Global High-Resolution Emission Inventories from Combustion Sources

    NASA Astrophysics Data System (ADS)

    Tao, S.; Huang, Y.; Chen, H.; Shen, H.

    2014-12-01

    A series efforts have been made to reduce uncertainty of emission inventories from combustion sources. The inventories developed are highly resolved spatially (0.1 degree), temporally (monthly or daily), and sectorically (over 60 combustion sources). Sub-national, instead of national fuel data are used to reduce spatial bias due to uneven distribution of per person energy consumption within large countries. Space-for-time substitution method was developed to model the dependence of residential energy consumptions on a series of meteorological and socioeconomic conditions. The regression models were used to project temporal variation of energy consumption, subsequently emissions of greenhouse gases and air pollutants. The models can also be used to downscale spatial distribution of residential emissions. By using this approach, global emission inventories of black carbon, polycyclic aromatic hydrocarbons, mercury, TSP, PM10, and PM2.5 have been established. The inventories were used to potential health impact assessment, atmospheric transport and long-range transport modeling, as well as exposure and health impact modeling.

  20. Methanol Maser Emission from Galactic Center Sources with Excess 4.5 ?m Emission

    NASA Astrophysics Data System (ADS)

    Chambers, E. T.; Yusef-Zadeh, F.; Roberts, D.

    2011-05-01

    We present a study of signatures of on-going star formation in a sample of protostellar objects with enhanced 4.5 ?m emission ("green" sources) near the Galactic center. To understand how star formation in the Galactic center region compares to that of the Galactic disk, we used the Expanded Very Large Array to observe radiatively excited Class II 6.7 GHz CH3OH masers and collisionally excited Class I 44 GHz CH3OH masers, both tracers of high-mass star formation, toward a sample of 34 Galactic center and foreground "green" sources. We find that 33% ± 15% of Galactic center sources are coincident with 6.7 GHz masers, and that 44% ± 17% of foreground sources are coincident with 6.7 GHz masers. For 44 GHz masers, we find correlation rates of 27% ± 13% and 25% ± 13% for Galactic center green sources and foreground green sources, respectively. Based on these CH3OH maser detection rates, as well as correlations of green sources with other tracers of star formation, such as 24 ?m emission and infrared dark clouds (IRDCs), we find no significant difference between the green sources in the Galactic center and those foreground to it. This suggests that once the star formation process has begun, the environmental differences between the Galactic center region and the Galactic disk have little effect on its observational signatures. We do find, however, some evidence that may support a recent episode of star formation in the Galactic center region.

  1. Uranian H Ly-alpha emission - The interstellar wind source

    NASA Technical Reports Server (NTRS)

    Yelle, R. V.; Sandel, B. R.

    1986-01-01

    IUE observation of Uranian emissions in hydrogen Lyman alpha (H Ly-alpha) over the past four years have recently been summarized by Clarke et al. (1985). Over this time period they find an average H Ly-alpha brightness of 1260 R which they estimate is composed of 200 R of solar scattered radiation and 1060 R from a collisional source. A third component, not considered by previous authors, is the reflection of H Ly-alpha emissions from the interstellar wind. Hydrogen in the interstellar wind forms an extended source of H Ly-alpha whose importance relative to the solar flux increases with distance from the sun. The present paper demonstrates that scattering of interstellar H Ly-alpha is more important than scattering of solar H Ly-alpha for reasonable values of H column abundance and, in fact, may make up 10-40 percent of the observed signal. Large H column abundances are still required to explain the H Ly-alpha brightness solely on the basis of resonant scattering; therefore it is likely that the emissions are due in part to collisional sources and in part to the scattering of interstellar H Ly-alpha with solar scattering playing a minor role.

  2. Assessment of Methane and VOC Emissions on Select Upstream Oil and Gas Production Operations Using Remote Measurements, Interim Report on Recent Survey Studies

    EPA Science Inventory

    Environmentally responsible development of oil and gas assets in the United States is facilitated by advancement of sector-specific air pollution emission measurement and modeling tools. Emissions from upstream oil and gas production are complex in nature due to the variety of e...

  3. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H(-) ion sources.

    PubMed

    Han, B X; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2014-02-01

    A RF-driven, Cs-enhanced H(-) ion source feeds the SNS accelerator with a high current (typically >50 mA), ?1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a means for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN (aluminum nitrite) chamber and an external RF antenna are also briefly discussed. PMID:24593570

  4. Stress-induced biogenic VOC emissions from typical European tree species, their impact on secondary organic aerosol formation and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kindler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2011-12-01

    Biogenic volatile organic compounds (BVOC) are precursors of secondary organic aerosols (SOA), which can scatter and absorb radiation. BVOC therefore indirectly impact the Earth's climate. Earth's climate is projected to change, possibly putting and vegetation under stress due to intensive heat and drought periods. Such stress situations will alter BVOC emissions that may induce feedbacks between vegetation and climate change. The main aim of our study is to determine whether such effect exists. A first step was to determine the impacts of drought and heat on BVOC emissions and subsequent SOA formation. Experiments were performed in the Juelich plant atmosphere chamber. Pine and Spruce were taken as representatives for species exhibiting storage organs for monoterpenes (MT). Beech and Birch were used as species with MT emissions closely coupled to CO2 uptake. The plants were stored under well-defined conditions of temperature and light intensity. Heat stress was induced by increasing the chamber temperature; drought stress was induced by not irrigating the plants. A fraction of the air leaving the plant chamber was fed into a reaction chamber where SOA formation was induced by OH-initiated oxidation. During stress situations the plants' BVOC emissions changed significantly. As a general feature we found that combined heat and drought stress increased MT emissions from conifers but decreased MT emissions from the broadleaf species. The former was attributed to a heat-induced breakdown of storage organs. The latter was attributed to a general breakdown of biosynthetic activity. SOA formation potentials were changed together with the MT emissions. The decrease in SOA formation potential due to the decrease of MT emissions from broadleaf species was amplified by additional emissions of green leaf volatiles (GLV). Obviously, GLV can suppress SOA formation by suppressing OH concentrations. GLV were also emitted from the conifers under heat stress. However the contribution of GLV to the BVOC mix was too low to suppress SOA formation significantly. Therefore, increases of MT emissions from heat stressed conifers followed by an increased SOA formation potential might be seen as a process leading to a negative climate feedback. This hypothesis was contested by the observation of a heat stress induced breakdown of pathogen-induced BVOC emissions. Conifers infested by aphids showed strong emissions of SQT and BVOC synthesized downstream of the shikimate pathway. Also these emissions are closely coupled to the CO2 uptake. Hence, these emissions vanished after heat stress causing a strong decrease of the SOA formation potential. At this stage it is difficult to assess whether heat and drought stress cause a negative or a positive feedbacks between vegetation and climate. Nevertheless, we conclude that such feedbacks exist. Key words: BVOC, SOA formation

  5. Carbonyl emissions from vehicular exhausts sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Cheng, Yan; Yu, Jian Zhen; Lam, Ka Man; Feng, Natale Sin Yau; Huang, Yu

    2012-02-01

    Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides. PMID:22442938

  6. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 true What emission limits must I meet for tire production affected...Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I meet for tire production...

  7. Estimation of emissions from charcoal lighter fluid and review of alternatives. Final report

    SciTech Connect

    Campbell, D.L.; Stockton, M.B.

    1990-01-01

    The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. VOCs contribute to the formation of ozone; therefore, the ozone nonattainment issue has focused attention on VOCs emitted from many sources. VOCs are emitted when charcoal lighter fluid is used, but these emissions are difficult to quantify. Evaporative VOC losses occur from the lighter fluid prior to ignition, and combustion VOC losses occur from burning lighter-fluid-soaked charcoal briquettes. This study evaluates tests conducted to date on charcoal lighter fluid emissions. The information is most complete for evaporative VOC losses. The estimates vary greatly, however, based on the length of time between application of the lighter fluid and ignition. The limited tests conducted to date have not distinguished lighter fluid from charcoal-briquette combustion emissions.

  8. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  9. Atmospheric measurement of point source fossil CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2014-05-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  10. Thermal response and recyclability of poly(stearylacrylate-co-ethylene glycol dimethacrylate) gel as a VOCs absorbent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of absorbent materials for volatile organic compounds (VOCs) is in demand for a variety of environmental applications including protective barriers for VOCs point sources. One of the challenges for the currently available VOCs absorbents is their recyclability. In this study, we syn...

  11. REVISED EMISSIONS ESTIMATION METHODOLOGIES FOR INDUSTRIAL, RESIDENTIAL, AND ELECTRIC UTILITY STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report describes the development of improved and streamlined EPA emission estimation methods for stationary combustion area sources by the Joint Emissions Inventory Oversight Group (JEIOG) research program. These sources include categories traditionally labeled "other statio...

  12. 40 CFR 63.1356 - Sources with multiple emissions limit or monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Other § 63.1356 Sources with multiple emissions limit or monitoring requirements....

  13. 40 CFR 63.1356 - Sources with multiple emissions limit or monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Other § 63.1356 Sources with multiple emissions limit or monitoring requirements....

  14. 40 CFR 63.1356 - Sources with multiple emission limits or monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Other § 63.1356 Sources with multiple emission limits or monitoring requirements....

  15. 40 CFR 63.1356 - Sources with multiple emission limits or monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Other § 63.1356 Sources with multiple emission limits or monitoring requirements....

  16. REVISED EMISSIONS ESTIMATION METHODOLOGIES FOR INDUSTRIAL, RESIDENTIAL, AND ELECTRIC UTILITY STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report describes the development of improved and streamlined EPA emission estimation methods for stationary combustion area sources by the Joint Emissions Inventory Oversight Group (JEIOG) research program. hese sources include categories traditionally labeled "other stationa...

  17. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  18. Polar and non-polar volatile organic compounds (VOCs) in urban Algiers and saharian sites of Algeria

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Meklati, Brahim Youcef; Brancaleoni, Enzo; Frattoni, Massimiliano; Ciccioli, Paolo

    For the first time, polar and non-polar organic compounds from C 4 to C 20 have been identified and quantified in one urban and two saharan sites located in Algeria. They were collected on adsorption traps filled with graphitic carbons and analyzed by high-resolution gas chromatography-mass spectrometry after thermal desorption. More than 190 compounds released by man-made and biogenic sources or formed in air by degradation of photochemical smog precursors were identified in the city center of Algiers. Some of them were never reported before. During our determinations, high levels of pollution characterized the city. Transport of anthropogenic pollutants together with some biogenic emission from date palm trees was mainly responsible for the levels of VOCs measured in Melika oasis located at the entrance of the Sahara desert. Background tropospheric levels of VOCs were instead detected in Bouchene sandy site of the Sahara desert where no biogenic sources were present.

  19. A fast source for quantitative acoustic emission and its application

    NASA Astrophysics Data System (ADS)

    Masaki, Ryuji; Takemoto, Mikio; Ono, Kanji

    1999-12-01

    We demonstrate a new artificial fracture source for quantitative acoustic emission (AE) characterization. The source utilizes the break-down of silicone oil (or other liquids) placed inside a crack (or a slit). This is a dipole source with a rise time under 0.1 ?s. It is much faster than a pencil-lead-break source and allows the calibration of a sensor-structure system to 7-10 MHz. We irradiated a focused Q-switched Nd-YAG laser beam (15 to 90 mJ energy) on silicon placed in a slit on a cylindrical block. The out-of-plane displacement produced by the resultant bulk waves was monitored on the outside surface using a heterodyne-type laser interferometer. This break-down source was employed to determine the transfer functions of an AE transducer and propagation medium. Finally, we studied AE signals due to the delayed fracture of a butt-welded dual-phase stainless steel, using the break-down source for calibration. Brittle-fracture events were successfully characterized.

  20. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific sourc

  1. Modeling unsteady-state VOC transport in simulated waste drums. Revision 1

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG&G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured.

  2. Quantitative Acoustic Emission Source Characterization in AN Aluminum Specimen.

    NASA Astrophysics Data System (ADS)

    Hsieh, Paonan

    This research utilizes quantitative acoustic emission (AE) techniques to investigate the formation and propagation of the Mode I tensile cracks in metal. The objective is to characterize the fracture process by analyzing the detected acoustic emission signals and comparing them to the theoretical responses of known sources in the same material. The study focused on the dynamic growth of cracks inside the material. The characteristics of the cracks such as the location, orientation, size, and propagation speed are determined from the detected signals by signal processing and deconvolution techniques. An experiment was carried out on a specimen made from 7075-T651 high -strength aluminum alloy, for its well-defined crack growth process. Cracks were generated in the specimen by monotonic tensile loading, and acoustic emission (AE) signals emitted from the cracks were detected by a group of ultrasonic piezoelectric transducers mounted on the surfaces of the specimen. The locations of AE sources were calculated by a least-squares fitting of the arrival time differences among individual transducers determined by a signal-overlap method. An algorithm was developed to search for the optimum sensor positions, in order to achieve fast convergence in the source locating process. New data acquisition and signal processing software packages were also developed to improve the efficiency and convenience of existing ones. The model of moment tensor was used to represent the AE sources. The components of the moment tensors were determined by a linear least-squares fitting of the P-wave strength of the detected signals to that of the Green's functions. The type and orientation of the AE sources were calculated from the principal directions of the moment tensor matrices. The time functions of the AE sources were then determined by a conjugate-gradient deconvolution techniques. The detected AE events were found to be located in a horizontal plane, ahead of the tip of the pre-crack and outside of the plastic zone. Most of the sources were found to consist of mixed-mode fractures dominated by a large shear component and possessed a short rise time of approximately 200 ns.

  3. SETTING PRIORITIES FOR CONTROL OF FUGITIVE PARTICULATE EMISSIONS FROM OPEN SOURCES

    EPA Science Inventory

    The report describes setting priorities for controlling fugitive particulate emissions. Emission rate estimates of suspended particulates from open sources in the U.S. were obtained from emission factors and source extents in the literature. Major open sources, with their estimat...

  4. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I...

  5. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I...

  6. Extended H2 emission line sources from UWISH2

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Makin, S. V.; Davis, C. J.; Gledhill, T. M.; Kim, Y.; Koo, B.-C.; Rowles, J.; Eislöffel, J.; Nicholas, J.; Lee, J. J.; Williamson, J.; Buckner, A. S. M.

    2015-12-01

    We present the extended source catalogue for the UKIRT Wide Field Infrared Survey for H2 (UWISH2). The survey is unbiased along the inner Galactic Plane from l ? 357° to l ? 65° and |b| ? 1.5° and covers 209 deg2. A further 42.0 and 35.5 deg2 of high dust column density regions have been targeted in Cygnus and Auriga. We have identified 33 200 individual extended H2 features. They have been classified to be associated with about 700 groups of jets and outflows, 284 individual (candidate) planetary nebulae, 30 supernova remnants and about 1300 photodissociation regions. We find a clear decline of star formation activity (traced by H2 emission from jets and photodissociation regions) with increasing distance from the Galactic Centre. About 60 per cent of the detected candidate planetary nebulae have no known counterpart and 25 per cent of all supernova remnants have detectable H2 emission associated with them.

  7. mVOC: a database of microbial volatiles

    PubMed Central

    Lemfack, Marie Chantal; Nickel, Janette; Dunkel, Mathias; Preissner, Robert; Piechulla, Birgit

    2014-01-01

    Scents are well known to be emitted from flowers and animals. In nature, these volatiles are responsible for inter- and intra-organismic communication, e.g. attraction and defence. Consequently, they influence and improve the establishment of organisms and populations in ecological niches by acting as single compounds or in mixtures. Despite the known wealth of volatile organic compounds (VOCs) from species of the plant and animal kingdom, in the past, less attention has been focused on volatiles of microorganisms. Although fast and affordable sequencing methods facilitate the detection of microbial diseases, however, the analysis of signature or fingerprint volatiles will be faster and easier. Microbial VOCs (mVOCs) are presently used as marker to detect human diseases, food spoilage or moulds in houses. Furthermore, mVOCs exhibited antagonistic potential against pathogens in vitro, but their biological roles in the ecosystems remain to be investigated. Information on volatile emission from bacteria and fungi is presently scattered in the literature, and no public and up-to-date collection on mVOCs is available. To address this need, we have developed mVOC, a database available online at http://bioinformatics.charite.de/mvoc. PMID:24311565

  8. The Use of Conditional Probability Functions and Potential Source Contribution Functions to Identify Source Regions and Advection Pathways of Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2007-09-01

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston ship channel from June to October 2003. Over 50 volatile organic compound (VOC) concentrations were measured on the hourly collected samples. Routine surface observations of wind directions measured at each of the receptor sites were used extensively. We show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to allow clusters of groups of VOCs to form with similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/trans-2-butene and cis-/trans-2-pentene, have similar CPF patterns. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns among themselves too. We also show how trajectory information can be used in conjunction with the PSCF analysis to produce a graphic analysis suggesting specific source areas for a given VOC. The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  9. Characterization of VOCs and odorants on PM from animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOC) emitted from animal feeding operations negatively impact local and potentially regional air quality though the release of both odorous and ozone precursor molecules. Characterizing emissions of VOCs from AFOs is strongly influenced by both the method and location of ...

  10. METHANOL MASER EMISSION FROM GALACTIC CENTER SOURCES WITH EXCESS 4.5 {mu}m EMISSION

    SciTech Connect

    Chambers, E. T.; Yusef-Zadeh, F.; Roberts, D. E-mail: zadeh@northwestern.edu

    2011-05-20

    We present a study of signatures of on-going star formation in a sample of protostellar objects with enhanced 4.5 {mu}m emission ('green' sources) near the Galactic center. To understand how star formation in the Galactic center region compares to that of the Galactic disk, we used the Expanded Very Large Array to observe radiatively excited Class II 6.7 GHz CH{sub 3}OH masers and collisionally excited Class I 44 GHz CH{sub 3}OH masers, both tracers of high-mass star formation, toward a sample of 34 Galactic center and foreground 'green' sources. We find that 33% {+-} 15% of Galactic center sources are coincident with 6.7 GHz masers, and that 44% {+-} 17% of foreground sources are coincident with 6.7 GHz masers. For 44 GHz masers, we find correlation rates of 27% {+-} 13% and 25% {+-} 13% for Galactic center green sources and foreground green sources, respectively. Based on these CH{sub 3}OH maser detection rates, as well as correlations of green sources with other tracers of star formation, such as 24 {mu}m emission and infrared dark clouds (IRDCs), we find no significant difference between the green sources in the Galactic center and those foreground to it. This suggests that once the star formation process has begun, the environmental differences between the Galactic center region and the Galactic disk have little effect on its observational signatures. We do find, however, some evidence that may support a recent episode of star formation in the Galactic center region.

  11. The Power Source(s) of Nearby Low-Ionization Nuclear Emission Regions

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Maoz, Dan; Barth, Aaron J.; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2015-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low-accretion rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright LINERs, NGC 1052, NGC 4278 and NGC 4579, with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond (corresponding to 5-50 pc) scale to find what and how far from the nucleus these other energy sources are. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that line ratios, such as [O III]/[O II] and [O III]/H-beta change as a function of distance from the nucleus. Within 5 pc, the line ratios suggest AGN photoionization. At larger distances the line ratios seem to be inconsistent with AGN photoionization, but they appear to be consistent with excitation by hot stars or shocks.

  12. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, S. D.; Zeng, L. M.; Li, L. Y.; Li, Y. Q.; Wu, R. R.

    2015-07-01

    Ambient volatile organic compounds (VOCs) were measured using an online system, gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID), in Beijing, China, before, during, and after Asia-Pacific Economic Cooperation (APEC) China 2014, when stringent air quality control measures were implemented. Positive matrix factorization (PMF) was applied to identify the major VOC contributing sources and their temporal variations. The secondary organic aerosols potential (SOAP) approach was used to estimate variations of precursor source contributions to SOA formation. The average VOC mixing ratios during the three periods were 86.17, 48.28, and 72.97 ppbv, respectively. The mixing ratios of total VOC during the control period were reduced by 44 %, and the mixing ratios of acetonitrile, halocarbons, oxygenated VOCs (OVOCs), aromatics, acetylene, alkanes, and alkenes decreased by approximately 65, 62, 54, 53, 37, 36, and 23 %, respectively. The mixing ratios of all measured VOC species decreased during control, and the most affected species were chlorinated VOCs (chloroethane, 1,1-dichloroethylene, chlorobenzene). PMF analysis indicated eight major sources of ambient VOCs, and emissions from target control sources were clearly reduced during the control period. Compared with the values before control, contributions of vehicular exhaust were most reduced, followed by industrial manufacturing and solvent utilization. Reductions of these three sources were responsible for 50, 26, and 16 % of the reductions in ambient VOCs. Contributions of evaporated or liquid gasoline and industrial chemical feedstock were slightly reduced, and contributions of secondary and long-lived species were relatively stable. Due to central heating, emissions from fuel combustion kept on increasing during the whole campaign; because of weak control of liquid petroleum gas (LPG), the highest emissions of LPG occurred in the control period. Vehicle-related sources were the most important precursor sources likely responsible for the reduction in SOA formation during this campaign.

  13. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results illustrate that even in closely related individuals there are inherent differences in VOC emissions that are not due to simple differences in metabolic rates and that elevated CO2 reduces these inherent differences. Even though VOC rates were lower under elevated CO2 they were still much higher than emissions reported for switchgrass, another biofuel species, which means that future regional air quality around biofuel plantations will be influenced by the choice of biofuel species.

  14. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  15. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NASA Astrophysics Data System (ADS)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national (geo-referenced) emission inventories and also to other resources that can be employed when such national inventories are lacking.

  16. Reduction of odorous VOC in phenolics solutions and swine manure slurry using soybean peroxidase and hydrogen peroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A research project was conducted to evaluate the efficacy of low-activity soybean peroxidase (SBP; 0.75 U/mg) and H2O2 for reducing emissions of odorous volatile organic compounds (VOC) from standard solutions (phenol and 4-methylphenol; 1 mM each) and swine manure slurry. VOC emissions were measu...

  17. Alcohol, volatile fatty acid, phenol, and methane emissions from dairy cows and fresh manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their waste as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOC) and greenhouse gases (GH...

  18. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  19. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric... for the proposed Standards of Performance for Greenhouse Gas Emissions for New Stationary...

  20. Z mode waves as the source of Saturn narrowband radio emissions

    E-print Network

    Gurnett, Donald A.

    Z mode waves as the source of Saturn narrowband radio emissions ShengYi Ye,1 J. D. Menietti,1 G present the first magnetic field measurements of Saturn narrowband emissions validating. S. Kurth (2010), Z mode waves as the source of Saturn narrowband radio emissions, J. Geophys. Res

  1. 40 CFR Table 2 to Subpart Qqqq of... - Emission Limits for Existing Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Existing Affected Sources 2 Table 2 to Subpart QQQQ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards...

  2. Development of new VOC exposure metrics and their relationship to ''Sick Building Syndrome'' symptoms

    SciTech Connect

    Ten Brinke, JoAnn

    1995-08-01

    Volatile organic compounds (VOCs) are suspected to contribute significantly to ''Sick Building Syndrome'' (SBS), a complex of subchronic symptoms that occurs during and in general decreases away from occupancy of the building in question. A new approach takes into account individual VOC potencies, as well as the highly correlated nature of the complex VOC mixtures found indoors. The new VOC metrics are statistically significant predictors of symptom outcomes from the California Healthy Buildings Study data. Multivariate logistic regression analyses were used to test the hypothesis that a summary measure of the VOC mixture, other risk factors, and covariates for each worker will lead to better prediction of symptom outcome. VOC metrics based on animal irritancy measures and principal component analysis had the most influence in the prediction of eye, dermal, and nasal symptoms. After adjustment, a water-based paints and solvents source was found to be associated with dermal and eye irritation. The more typical VOC exposure metrics used in prior analyses were not useful in symptom prediction in the adjusted model (total VOC (TVOC), or sum of individually identified VOCs ({Sigma}VOC{sub i})). Also not useful were three other VOC metrics that took into account potency, but did not adjust for the highly correlated nature of the data set, or the presence of VOCs that were not measured. High TVOC values (2--7 mg m{sup {minus}3}) due to the presence of liquid-process photocopiers observed in several study spaces significantly influenced symptoms. Analyses without the high TVOC values reduced, but did not eliminate the ability of the VOC exposure metric based on irritancy and principal component analysis to explain symptom outcome.

  3. X-RAY EMISSION FROM THE SOMBRERO GALAXY: DISCRETE SOURCES

    SciTech Connect

    Li Zhiyuan; Jones, Christine; Forman, William R.; Kraft, Ralph P.; Stefano, Rosanne Di; Spitler, Lee R.; Tang, Shikui; Wang, Q. Daniel; Gilfanov, Marat; Revnivtsev, Mikhail

    2010-10-01

    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of {approx}200 ks. With a detection limit of L{sub X} {approx} 10{sup 37} erg s{sup -1} and a field of view covering a galactocentric radius of {approx}30 kpc (11.'5), 383 sources are detected. Cross-correlation with Spitler et al.'s catalog of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-ray sources in GCs, presumably low-mass X-ray binaries (LMXBs). Metal-rich GCs are found to have a higher probability of hosting these LMXBs, a trend similar to that found in elliptical galaxies. On the other hand, the four most luminous GC LMXBs, with apparently super-Eddington luminosities for an accreting neutron star, are found in metal-poor GCs. We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-law indices ({approx}1.1 for the GC-LF and {approx}1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC-LF at fainter luminosities down to 10{sup 35} erg s{sup -1}. The derived index rules out a faint-end slope flatter than 1.1 at a 2{sigma} significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of {approx}1.0 below 10{sup 37} erg s{sup -1}. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic active galactic nuclei (52 {+-} 11 [1{sigma}]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.

  4. BASELINE EMISSIONS FORECASTS FOR INDUSTRIAL NON-BOILER SOURCES

    EPA Science Inventory

    The report gives regional air emission forecasts from three Process Model Projection Technique (PROMPT) runs. These estimates illustrate a range of possible future emissions. PROMPT, one of a number of National Acid Precipitation Assessment Program emission forecasting models, pr...

  5. PAH diagnostic ratios for the identification of pollution emission sources.

    PubMed

    Tobiszewski, Marek; Namie?nik, Jacek

    2012-03-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. PMID:22243855

  6. EVALUATION AND PERFORMANCE ASSESSMENT OF INNOVATIVE LOW-VOC CONTACT ADHESIVES IN WOOD LAMINATING OPERATIONS

    EPA Science Inventory

    The report gives results of an evaluation and assessment of the perfor-mance, economics, and emission reduction potential upon application of low-volatile organic compound (VOC) waterborne contact adhesive formulations specifically ina manual laminating operation for assembling s...

  7. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-2 Standards...technologically-required feature of the pump whereby polymer fluid used to provide lubrication...

  8. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-2 Standards...technologically-required feature of the pump whereby polymer fluid used to provide lubrication...

  9. SOA formation potential of emissions from soil and leaf litter.

    PubMed

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 ?g-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and ?-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation. PMID:24328143

  10. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Volatile Organic Compound (VOC) Content Limits for Automobile...PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for...

  11. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Volatile Organic Compound (VOC) Content Limits for Automobile...PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for...

  12. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Volatile Organic Compound (VOC) Content Limits for Automobile...PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for...

  13. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Volatile Organic Compound (VOC) Content Limits for Automobile...PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for...

  14. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Volatile Organic Compound (VOC) Content Limits for Automobile...CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile...

  15. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    EPA Science Inventory

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  16. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    E-print Network

    Zavala, M.

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies ...

  17. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  18. Sources of variation in d13 C of fossil fuel emissions in Salt

    E-print Network

    Ehleringer, Jim

    Sources of variation in d13 C of fossil fuel emissions in Salt Lake City, USA S.E. Bush a,*, D Abstract The isotopic composition of fossil fuels is an important component of many studies of C sources. In this study, the C isotope composition (d13 C) of exhaust from the major fossil fuel emission sources in Salt

  19. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)