Science.gov

Sample records for volatile organic acids

  1. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    PubMed

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products. PMID:20434502

  2. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  3. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  4. Volatile organic acids generated from kerogen during laboratory heating.

    PubMed

    Kawamura, K; Tannenbaum, E; Huizinga, B J; Kaplan, I R

    1986-01-01

    Low molecular weight organic acids were studied in the course of pyrolysis experiments (200-400 degrees C, 2-1,000 h) of kerogen (Green River Formation and Monterey Formation) with and without the presence of water and minerals (montmorillonite, illite and calcite). C1-C10 aliphatic acids and benzoic acid were identified in the pyrolysis products of kerogen. Their distribution is characterized by a dominance of acetic acid followed by formic and propionic acids with an even/odd preference in the range of C4-C10. Total concentrations of these acids amounted to 0.3% of initial kerogen, indicating that kerogen has a good potential for producing organic acids. Geochemical implications of these organic acids are; (1) they are possible intermediates from kerogen to natural gas (CO2, H2, CH4, C2H6, etc.) by decarboxylation, and (2) they may be important and potential contributors to the generation of secondary porosity by dissolving minerals. PMID:11542117

  5. VOC (VOLATILE ORGANIC COMPOUND EMISSION FACTORS FOR THE NAPAP (NATIONAL ACID PRECIPITATION ASSESSMENT PROGRAM) EMISSION INVENTORY

    EPA Science Inventory

    The report gives results of the generation of emission factors for volatile organic compound (VOC) emissions for a number of source classification categories (SCCs), as part of the National Acid Precipitation Assessment Program (NAPAP). Each SCC represents a process or function t...

  6. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    PubMed

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1?D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796?ppt and 25?ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. PMID:26449736

  7. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.

    PubMed

    Yesil, H; Tugtas, A E; Bayrakdar, A; Calli, B

    2014-01-01

    Anaerobic fermentation of organic municipal solid waste was investigated using a leach-bed reactor (LBR) to assess the volatile fatty acid (VFA) production efficiency. The leachate recycle rate in the LBR affected the VFA composition of the leachate. A six-fold increase in the recycle rate resulted in an increase of the acetic acid fraction of leachate from 24.7 to 43.0%. The separation of VFAs via leachate replacement resulted in higher total VFA production. VFA separation from synthetic VFA mix and leachate of a fermented organic waste was assessed via a counter-current flow polytetrafluoroethylene (PTFE) membrane contactor. Acetic and propionic acid permeation fluxes of 13.12 and 14.21 g/m(2).h were obtained at low feed pH values when a synthetic VFA mix was used as a feed solution. The highest selectivity was obtained for caproic acid compared to that of other VFAs when synthetic VFA mix or leachate was used as a feed solution. High pH values and the presence of suspended solids in the leachate adversely affected the permeation rate. PMID:24845331

  8. The interplay of the gut microbiome, bile acids, and volatile organic compounds.

    PubMed

    Sagar, Nidhi M; Cree, Ian A; Covington, James A; Arasaradnam, Ramesh P

    2015-01-01

    Background. There has been an increasing interest in the use of volatile organic compounds (VOCs) as potential surrogate markers of gut dysbiosis in gastrointestinal disease. Gut dysbiosis occurs when pathological imbalances in gut bacterial colonies precipitate disease and has been linked to the dysmetabolism of bile acids (BA) in the gut. BA metabolites as a result of microbial transformations act as signaling molecules and have demonstrated regulation of intestinal homeostasis through the TGR5 and FXR receptors by inhibiting inflammation, preventing pathogen invasion, and maintaining cell integrity. The presence of VOC footprints is the resultant effect to gut microbiome substrate fermentation. Aim. To review the role of the gut microbiome and bile acid signaling in intestinal homeostasis and the resultant use of VOCs as potential noninvasive surrogate biomarkers in gut dysbiosis. Methods. A systematic search on PubMed and Medline databases was performed to identify articles relevant to gut dysbiosis, BA metabolism, and VOCs. Conclusions. The host and presence of the gut microbiome appear to regulate the BA pool size. A dysbiotic gut microbiome results in disrupted intestinal homeostasis, which may be reflected by VOCs, differentiating those who are healthy and those with disease. PMID:25821460

  9. The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds

    PubMed Central

    Sagar, Nidhi M.; Cree, Ian A.; Covington, James A.

    2015-01-01

    Background. There has been an increasing interest in the use of volatile organic compounds (VOCs) as potential surrogate markers of gut dysbiosis in gastrointestinal disease. Gut dysbiosis occurs when pathological imbalances in gut bacterial colonies precipitate disease and has been linked to the dysmetabolism of bile acids (BA) in the gut. BA metabolites as a result of microbial transformations act as signaling molecules and have demonstrated regulation of intestinal homeostasis through the TGR5 and FXR receptors by inhibiting inflammation, preventing pathogen invasion, and maintaining cell integrity. The presence of VOC footprints is the resultant effect to gut microbiome substrate fermentation. Aim. To review the role of the gut microbiome and bile acid signaling in intestinal homeostasis and the resultant use of VOCs as potential noninvasive surrogate biomarkers in gut dysbiosis. Methods. A systematic search on PubMed and Medline databases was performed to identify articles relevant to gut dysbiosis, BA metabolism, and VOCs. Conclusions. The host and presence of the gut microbiome appear to regulate the BA pool size. A dysbiotic gut microbiome results in disrupted intestinal homeostasis, which may be reflected by VOCs, differentiating those who are healthy and those with disease. PMID:25821460

  10. Measurements of Volatile Organic Compounds and Gaseous Sulfuric Acid During the 2008 CAREBEIJING Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zheng, J.; Hu, M.; Zhu, T.

    2009-05-01

    Air quality in Beijing has been a hot topic recently, because Beijing hosted the 2008 summer Olympics. To combat the problem, China ordered numerous factories shut down or used only sporadically during the games to limit air pollution in the area. Another major step involved ordering about one-half of the city's 3.3 million vehicles off the road during the games, allowing only cars on roads with odd or even-numbered license plates on alternate days until the games were over. In addition, China has implemented new auto emission standards since March 2009 with regulations that are similar to those used throughout Europe. Our team at the Texas A&M participated in the 2008 CAREBEIJING campaign, with the objectives of studying the complex chemistry of the air in Beijing, looking at emission controls and their effectiveness, studying the surrounding air from other regions and how it can affect Beijing's air, and comparing all of our findings with air quality in other cities we have examined, such as Mexico City and Houston. In this talk, preliminary results of measurements of volatile organic compounds (VOCs) and gaseous sulfuric acid will be presented to discuss the trends of VOCs and new particle formation associated with the traffic control.

  11. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.

    PubMed

    Khiewwijit, Rungnapha; Keesman, Karel J; Rijnaarts, Huub; Temmink, Hardy

    2015-10-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1h and an SRT of 1 day. The HL-MBR process removed on average 83% of sewage COD, while only 10% of nitrogen and phosphorus was removed. During anaerobic fermentation of HL-MBR concentrate at an SRT of 5 days and 35 C, specific VFA production rate of 282 mg VFA-COD/g VSS could be reached and consisted of 50% acetate, 40% propionate and 10% butyrate. More than 75% of sewage COD was diverted to the concentrate, but only 15% sewage COD was recovered as VFA, due to incomplete VSS degradation at the short treatment time applied. This shows that combined process for the VFA production is technologically feasible and needs further optimization. PMID:26133471

  12. Regeneration of lactic and succinic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    SciTech Connect

    Husson, S.M.; King, C.J.

    1998-08-01

    Leaching with an organic solution of a volatile base was explored as a method of regenerating tertiary amine and pyridyl sorbents. Experimental data are presented that show that regeneration efficiency correlated with the nonaqueous basicity of the regenerant as measured by the Gutmann donicity scale. Essentially complete regeneration of lactic acid-laden Dowex MWA-1 was achieved when 8--10 mol of trimethylamine were present for every mole of adsorbed acid; adequate (>70%) regeneration was obtained at a 2:1 molar ratio. The resulting trimethylamine-lactic acid complex can be thermally decomposed fully when trimethylamine is employed in an organic solvent instead of in water. A likely cause of the incomplete thermal decomposition of trimethylammonium lactate in previous, water-based systems is the aqueous environment in which the decomposition was performed.

  13. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  14. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  15. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.

    PubMed

    Khiewwijit, Rungnapha; Temmink, Hardy; Labanda, Alvaro; Rijnaarts, Huub; Keesman, Karel J

    2015-12-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8-10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7days, gave the highest VFA yield of 440mgVFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms. PMID:26342342

  16. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes.

    PubMed

    Cheng, Fan; Li, Ming; Li, Dawei; Chen, Ling; Jiang, Weizhong; Kitamura, Yutaka; Li, Baoming

    2010-07-01

    Volatile organic acid adsorption, cation dissociation by porphyritic andesite, and their effects on the hydrolysis and acidogenesis of solid food wastes were evaluated through batch experiments. The acetic acid adsorption experiments show that pH was mainly regulated by H(+) adsorption. The mono-layer and multi-layer adsorption were found under the low (8.3-83.2 mmol/L) and high (133.22-532.89 mmol/L) initial acetic acid concentration, respectively. The dissociated cations concentration in acidic solution showed the predominance of Ca(2+). Porphyritic andesite addition elevated the pH levels and accelerated hydrolysis and acidogenesis in the batch fermentation experiment. Leachate of porphyritic andesite addition achieved the highest hydrolysis constant of 22.1 x 10(-3)kgm(-2)d(-1) and VS degradation rates of 3.9 g L(-1)d(-1). The highest activity of microorganisms represented by specific growth rate of ATP, 0.16d(-1), and specific consumption rate of Ca(2+), 0.18d(-1), was obtained by adding leachate of porphyritic andesite. PMID:20156676

  17. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage.

    PubMed

    Villeneuve, M-P; Lebeuf, Y; Gervais, R; Tremblay, G F; Vuillemard, J C; Fortin, J; Chouinard, P Y

    2013-01-01

    Nutrient composition and organoleptic properties of milk can be influenced by cow diets. The objective of this study was to evaluate the forage type effects on volatile organic compounds, fatty acid (FA) profile, and organoleptic properties of milk. Timothy grass was fed as hay, pasture, or silage during a period of 27 d to a group of 21 cows in a complete block design based on days in milk. Each cow also received 7.2 kg/d of a concentrate mix to meet their nutrient requirements. Forage dry matter intake averaged 13.9 kg/d and was not different among treatments. Milk yield was higher for cows fed pasture, intermediate for cows fed silage, and lowest for cows fed hay. However, milk fat content was higher for cows fed hay and silage, compared with cows fed pasture. As a result, fat-corrected milk and fat yield were not different among treatments. Increasing the supply of dietary cis-9,cis-12 18:2 (linoleic acid) and cis-9,cis-12,cis-15 18:3 (?-linolenic acid) when feeding pasture enhanced the concentration of these 2 essential FA in milk fat compared with feeding hay or silage. Moreover, the ratio of 16:0 (palmitic acid) to cis-9 18:1 (oleic acid), which is closely related to the melting properties of milk fat, was lower in milk from cows on pasture than in milk from cows fed hay or silage. Cows fed hay produced milk with higher levels of several free FA and ?-lactones, but less pentanal and 1-pentanol. More dimethyl sulfone and toluene were found in milk of cows on pasture. Cows fed silage produced milk with higher levels of acetone, 2-butanone, and ?-pinene. Results from a sensory evaluation showed that panelists could not detect a difference in flavor between milk from cows fed hay compared with silage. However, a significant number of assessors perceived a difference between milk from cows fed hay compared with milk from cows fed pasture. In a sensory ranking test, the percentage of assessors ranking for the intensity of total (raw milk, fresh milk, and farm milk), sweet (empyreumatic, vanilla, caramel, and sugar), and grassy (grass, leafy vegetable, and plant) flavors was higher for milk from cows fed pasture compared with hay and silage. Using timothy hay, pasture, or silage harvested at a similar stage of development, the current study shows that the taste of milk is affected by the forage type fed to cows. More research is, however, needed to establish a link between the sensory attributes of milk and the observed changes in volatile organic compounds and FA profile. PMID:24035021

  18. Influence of microflora on texture and contents of amino acids, organic acids, and volatiles in semi-hard cheese made with DL-starter and propionibacteria.

    PubMed

    Rehn, U; Vogensen, F K; Persson, S-E; Hallin Saedén, K; Nilsson, B F; Ardö, Y

    2011-03-01

    The microflora of semi-hard cheese made with DL-starter and propionic acid bacteria (PAB) is quite complex, and we investigated the influence of its variation on texture and contents of organic acids, free amino acids, and volatile compounds. Variation in the microflora within the normal range for the cheese variety Grevé was obtained by using a PAB culture in combination with different DL-starters and making the cheeses at 2 dairy plants with different time and temperature profiles during ripening. Propionic acid bacteria dominated the microflora during ripening after a warm room period at levels of log 8 to log 9 cfu/g, which was about 1 log unit higher than the total number of starter bacteria and about 2 log units higher than the number of nonstarter lactic acid bacteria. Eye formation was observed during the warm room period and further ripening (at 8 to 10°C). The amounts of acetate, propionate, total content of free amino acids, 2-propanol, and ethyl propionate in the ripened cheeses were related to the number of PAB. A decrease in the relative content of Asp and Lys and increase of Phe over the ripening time were different from what is observed in semi-hard cheese without PAB. The occurrence of cracks was higher in cheeses with more hydrolyzed α(S1)- and β-casein, higher content of free amino acids, lower strain at fracture (shorter texture), and a greater number of PAB. PMID:21338776

  19. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Hkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  20. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.

    PubMed

    Park, Gwon Woo; Fei, Qiang; Jung, Kwonsu; Chang, Ho Nam; Kim, Yeu-Chun; Kim, Nag-jong; Choi, Jin-dal-rae; Kim, Sangyong; Cho, Jaehoon

    2014-12-01

    Volatile fatty acids (VFAs) derived from organic waste, were used as a low cost carbon source for high bioreactor productivity and titer. A multi-stage continuous high cell density culture (MSC-HCDC) process was employed for economic assessment of microbial lipids for biodiesel production. In a simulation study we used a lipid yield of 0.3 g/g-VFAs, cell mass yield of 0.5 g/g-glucose or wood hydrolyzates, and employed process variables including lipid contents from 10-90% of cell mass, bioreactor productivity of 0.5-48 g/L/h, and plant capacity of 20000-1000000 metric ton (MT)/year. A production cost of USD 1.048/kg-lipid was predicted with raw material costs of USD 0.2/kg for wood hydrolyzates and USD 0.15/kg for VFAs; 9 g/L/h bioreactor productivity; 100, 000 MT/year production capacity; and 75% lipids content. The variables having the highest impact on microbial lipid production costs were the cost of VFAs and lipid yield, followed by lipid content, fermenter cost, and lipid productivity. The cost of raw materials accounted for 66.25% of total operating costs. This study shows that biodiesel from microbial lipids has the potential to become competitive with diesels from other sources. PMID:25262978

  1. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; Dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-03-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC. PMID:26857136

  2. VOLATILIZATION OF ORGANIC POLLUTANTS FROM WATER

    EPA Science Inventory

    The volatilization of organic environmental contaminants from water bodies to the atmosphere was investigated. The general aim was to elucidate the factors that control the volatilization process and develop predictive methods for calculating volatilization rates for various comp...

  3. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson (Kensington, CA); Husson, Scott M. (Berkeley, CA)

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  4. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  5. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY); Sorini-Wong, Susan S. (Laramie, WY)

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  6. SEMI-VOLATILE ORGANIC ACIDS AND OTHER POLAR COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...

  7. Regeneration of lactic and succinic acid-laden basic Sorbents byLeaching with a Volatile Base in an Organic Solvent

    SciTech Connect

    Husson, Scott M.; King, C. Judson

    1997-09-01

    Leaching with an organic solution of a volatile base wasexplored as a method of regenerating tertiary amine and pyridyl sorbents.Experimental data are presented that show that regeneration efficiencycorrelates with the nonaqueous basicity of the regenerant as measured bythe Gutmann donicity scale. Essentially complete regeneration of lacticacid-laden Dowex MWA-1 was achieved when 8-10 mol of trimethylamine werepresent for every mole of adsorbed acid; adequate (>70 percentregeneration was obtained at a 2:1 molar ratio. The; resultingtrimethylamine-lactic acid complex can be thermally decomposed fully whentrimethylamine is employed in an organic solvent instead of in water. Alikely cause of the incomplete thermal decomposition of trimethylammoniumlactate in previous, water-based systems is the aqueous environment inwhich the decomposition was performed.

  8. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  9. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Reagen, William K. (Stillwater, MN)

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  10. Volatile Organic Compounds in Uremia

    PubMed Central

    Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

    2012-01-01

    Background Although uremic fetor has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ?60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 1059 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 1059 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

  11. Sulfur-containing amino acid methionine as the precursor of volatile organic sulfur compounds in algea-induced black bloom.

    PubMed

    Lu, Xin; Fan, Chengxin; He, Wei; Deng, Jiancai; Yin, Hongbin

    2013-01-01

    After the application of methionine, a progressive and significant increase occurred in five volatile organic sulfur compounds (VOSCs): methanethiol (MeSH), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and dimethyl tetrasulfide (DMTeS). Even in the untreated control without a methionine addition, methionine and its catabolites (VOSCs, mainly DMDS) were found in considerable amounts that were high enough to account for the water's offensive odor. However, blackening only occurred in two methionine-amended treatments. The VOSCs production was observed to precede black color development, and the reaching of a peak value for total VOSCs was often followed by water blackening. The presence of glucose stimulated the degradation of methionine while postponing the occurrence of the black color and inhibiting the production of VOSCs. In addition, DMDS was found to be the most abundant species produced after the addition of methionine alone, and DMTeS appeared to be the most important compound produced after the addition of methionine+glucose. These results suggest that methionine acted as an important precursor of the VOSCs in lakes suffering from algea-induced black bloom. The existence of glucose may change the transformation pathway of methionine into VOSCs to form larger molecular weight compounds, such as DMTS and DMTeS. PMID:23586297

  12. A Micro-Orifice Volatilization Impactor coupled to a Chemical Ionization Mass Spectrometer for the detection of organic acids in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Yatavelli, R. L.; Thornton, J. A.

    2007-12-01

    Significant uncertainties related to sources and removal processes of particulate organic matter persist due, in part, to a poor understanding of the molecular-level composition. To address these issues, we are developing a novel technique that couples a micro-orifice volatilization impactor (MOVI) to a chemical ionization mass spectrometer (CIMS) for fast, in situ measurements of specific organic acids expected to be in atmospheric particles. The MOVI-CIMS process has three steps: 1) aerosol collection by inertial impaction, 2) volatilization and sample transfer, and 3) chemical ionization and detection using a quadrupole mass spectrometer. We present results from laboratory characterization of two MOVI designs, one operating at low pressure (60 Torr) and the other at near ambient pressure. The low-pressure impactor has a theoretical cut point of 40nm while the atmospheric pressure impactor (API) has a theoretical cut point of 280nm with a pressure drop of less than 5%. We compare the advantages and disadvantages of these two designs in terms of typical atmospheric particle size distributions. Experimental tests of their theoretical cut-points are used to assess the importance of jet-to- plate distance and particle bounce. In addition, we demonstrate the utility of the MOVI-CIMS technique by employing it in studies of heterogeneous oxidation of particle organics and of secondary organic aerosol formation from biogenic hydrocarbon oxidation. Based on typical signal-to-noise ratio, the MOVI-CIMS demonstrates a detection limit of ~50 ng for monocarboxylic acids when using the LPI version and the iodide ion as a chemical ionization reagent. Preliminary results suggest even lower detection limits are possible with other reagent ions.

  13. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. PMID:26512860

  14. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  15. SOURCE EMISSION MEASUREMENTS OF VOLATILE ORGANIC CHEMICALS

    EPA Science Inventory

    Analytical methods for measuring volatile organic compounds were reviewed. Two commercially available instruments were selected and evaluated in the laboratory; one was judged unacceptable. The other analyzer was evaluated during a limited field test; results were satisfactory an...

  16. TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS

    EPA Science Inventory

    Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...

  17. VOLATILE ORGANIC ANALYSIS BY DIRECT AQUEOUS INJECTION

    EPA Science Inventory

    Gas chromatographic environmental analysis by direct aqueous injection (DAI) was studied for 24 volatile organic analytes (VOAs). Internal standardization was used to determine the precision of analyzing these compounds by DAI. Aequous samples were directly introduced to a gas ch...

  18. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  19. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  20. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids.

    PubMed

    Shen, Liang; Hu, Hongyou; Ji, Hongfang; Cai, Jiyuan; He, Ning; Li, Qingbiao; Wang, Yuanpeng

    2014-08-01

    The two-stage process, coupling volatile fatty acids (VFAs) fermentation and poly(hydroxybutyrate-hydroxyvalerate) (P(HB/HV)) biosynthesis, was investigated for five waste organic materials. The overall conversion efficiencies were glycerol>starch>molasses>waste sludge>protein, meanwhile the maximum P(HB/HV) (1.674 g/L) was obtained from waste starch. Altering the waste type brought more effects on VFAs composition other than the yield in the first stage, which in turn greatly changed the yield in the second stage. Further study showed that even-number carbon VFAs (or odd-number ones) had a good positive linear relationship with P(HB/HV) content of HB (or HV). Additionally, VFA producing microbiota was analyzed by pyrosequencing methods for five wastes, which indicated that specific species (e.g., Lactobacillus for protein; Ethanoligenens for starch; Ruminococcus and Limnobacter for glycerol) were dominant in the community for VFAs production. Potential competition among acidogenic bacteria specially involved to produce some VFA was proposed as well. PMID:24907579

  1. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    PubMed

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi. PMID:26220851

  2. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  3. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  4. COMPLETE CATALYTIC OXIDATION OF VOLATILE ORGANICS

    EPA Science Inventory

    The paper reviews heterogeneous catalytic oxidation, focusing on its application to the control of volatile organic compounds (VOCs) at operating conditions typical of field applications. The parameters for this review are: low to moderate temperatures (25-400 C), atmospheric pre...

  5. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  6. VOLATILE ORGANIC SAMPLING TRAIN - SOOT INTERFERENCE REPORT

    EPA Science Inventory

    The U.S. Environmental Protection Agency uses Method 0030, the Volatile Organic Sampling Train (VOST), as a tool in determining the destruction and removal efficiencies of industrial boilers co-firing hazardous waste. ecently, concerns have been expressed over possible measuremen...

  7. Volatile organic compounds of Schenella pityophilus.

    PubMed

    D'Auria, Maurizio; Racioppi, Rocco; Rana, Gian Luigi

    2013-01-01

    Volatile organic compounds of Schenella pityophilus have been identified via solid-phase microextraction-gas chromatography-mass spectrometry analysis. Ten compounds have been identified, in which 3-methylthio-1-propene was the most significant component. Some other components were previously identified in Tuber aestivum and Tuber melanosporum. PMID:22236093

  8. Emissions of volatile fatty acids from feed at dairy facilities

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Ashkan, Shawn; Krauter, Charles; Campbell, Sean; Hasson, Alam S.

    2010-12-01

    Recent studies suggest that dairy operations may be a major source of non-methane volatile organic compounds in dairy-intensive regions such as Central California, with short chain carboxylic acids (volatile fatty acids or VFAs) as the major components. Emissions of four VFAs (acetic acid, propanoic acid, butanoic acid and hexanoic acid) were measured from two feed sources (silage and total mixed rations (TMR)) at six Central California Dairies over a fifteen-month period. Measurements were made using a combination of flux chambers, solid phase micro-extraction fibers coupled to gas chromatography mass spectrometry (SPME/GC-MS) and infra-red photoaccoustic detection (IR-PAD for acetic acid only). The relationship between acetic acid emissions, source surface temperature and four sample composition factors (acetic acid content, ammonia-nitrogen content, water content and pH) was also investigated. As observed previously, acetic acid dominates the VFA emissions. Fluxes measured by IR-PAD were systematically lower than SPME/GC-MS measurements by a factor of two. High signals in field blanks prevented emissions from animal waste sources (flush lane, bedding, open lot) from being quantified. Acetic acid emissions from feed sources are positively correlated with surface temperature and acetic acid content. The measurements were used to derive a relationship between surface temperature, acetic acid content and the acetic acid flux. The equation derived from SPME/GC-MS measurements predicts estimated annual average acetic acid emissions of (0.7 + 1/-0.4) g m -2 h -1 from silage and (0.2 + 0.3/-0.1) g m -2 h -1 from TMR using annually averaged acetic acid content and meteorological data. However, during the summer months, fluxes may be several times higher than these values.

  9. Key volatile organic compounds emitted from swine nursery house

    NASA Astrophysics Data System (ADS)

    Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

    2011-05-01

    This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

  10. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  11. Acidic volatiles and the Mars Soil

    NASA Astrophysics Data System (ADS)

    Banin, A.; Han, F. X.; Kan, I.; Cicelsky, A.

    1997-06-01

    Large portions of Mars' surface are covered with deposits of fine, homogeneous, weathered dusty-soil material. Nanophase iron oxides, silicate mineraloids, and salts prevail in the soil. The mode of formation of this somewhat peculiar type of soil is still far from being clear. One scenario suggests that weathering took place during early epochs when Mars may have been ``warm and wet.'' The properties of the soil are not easily reconciled with this scenario. We propose another possible scenario that attributes, in part, the peculiar nature of the Martian dust and soil to a relatively ``young'' weathering product formed during the last few hundreds of millions of years in a process that involves acidic volatiles. We tested this hypothesis in an experimental study of the first step of acidolytic weathering of a partly palagonitized volcanic tephra of hawaiitic lava origin, using sulfuric, hydrochloric and nitric acids and their mixtures. The tephra effectively ``neutralize'' the added acidity. The protonic acidity added to the tephra attacks the primary minerals, releasing Fe, Al, and Mg, which control the pH, acting as Lewis-acid species of varying acid strengths. The full amount of acidity added to the tephra is stored in it, but only a very small fraction is preserved as the original protonic acidity. The majority of the added sulfate and chloride were present as salts and easily solubilized minerals. Well-crystallized sulfate salt minerals of aluminum and calcium were detected by powder X ray diffractometry, whereas secondary magnesium and iron minerals were not detected, due probably to lack of crystallinity. The presence of gypsum (CaSO4.2H2O) and alunogen (Al2(SO4)3.17H2O) is probably responsible for the observed increased hygroscopicity of the acidified tephra and their tendency to form hardened crusts. We suggest that if this mechanism is of importance on Mars, then the chemically weathered component of the Martian soil consists of a salt-rich mineral mixture containing the salts of the anionic-ligands SO4 and Cl resulting from volatiles emitted from volcanoes during more recent eruptions (up to 109 years B.P.). The lack of liquid water on Mars surface during that time slowed or halted mineralogical evolution into highly crystallized minerals having large mineral grains. The chemically weathered components are mixed with the products of physical weathering. The recently formed soil may cover and coat more evolved, hydrothermally modified, mineral deposits formed in earlier epochs of Mars.

  12. TMVOC, simulator for multiple volatile organic chemicals

    SciTech Connect

    Pruess, Karsten; Battistelli, Alfredo

    2003-03-25

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

  13. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    SciTech Connect

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  14. Volatile organic carbon/air separation test using gas membranes

    SciTech Connect

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed.

  15. Volatile organic compound (VOC) analysis in blood using spray extraction

    SciTech Connect

    St-Germain, F.; Vachon, B.; Brunet, J.

    1995-12-31

    The quantitation of volatile organic compounds (VOC) in gaseous or liquid media has important ramifications for identifying environmental and medical risks. Due to the volatile nature of these compounds, they are difficult to measure accurately. The authors describe here a new device which extracts volatile and semi-volatile compounds from aqueous samples and transfers them to an ion trap mass spectrometer (MS) for analysis.

  16. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  17. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  18. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  19. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  20. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  1. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  2. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  3. Alkaline dechlorination of chlorinated volatile organic compounds

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1996-06-01

    The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

  4. Volatile organic monitor for industrial effluents

    SciTech Connect

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower & instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing.

  5. PHASE DISTRIBUTIONS OF LOW VOLATILITY ORGANICS IN AMBIENT AIR

    EPA Science Inventory

    Current strategies to control photochemical air pollution rely on abating the emission of volatile organic compounds. Primarily, these compounds exist in the vapor phase, and are those with a carbon number of ten or less. Recent attention has been given to low-volatility organic ...

  6. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  7. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  8. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  9. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  10. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  11. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  12. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  13. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  14. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  15. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  16. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  17. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  18. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  19. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  20. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  1. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  2. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  3. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  4. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  6. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  7. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  8. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  9. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  10. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  11. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  12. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  13. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  14. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  15. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  16. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  17. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  18. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  19. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  20. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  1. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  2. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  3. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  4. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  5. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  6. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  7. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  8. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  9. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  10. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  11. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  12. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  13. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  14. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  15. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  16. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  17. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  18. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  19. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  20. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  1. TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...

  2. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    PubMed

    Bennett, Joan W; Inamdar, Arati A

    2015-09-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  3. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    PubMed Central

    Bennett, Joan W.; Inamdar, Arati A.

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  4. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  5. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae

    PubMed Central

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-01-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and ?-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125

  6. PROTOCOL FOR THE COLLECTION AND ANALYSIS OF VOLATILE POHCS (PRINCIPAL ORGANIC HAZARDOUS CONSTITUENTS) USING VOST (VOLATILE ORGANIC SAMPLING TRAIN)

    EPA Science Inventory

    The document is a state-of-the-art operating protocol for sampling and analysis of volatile organic constituents of flue gas from hazardous waste incinerators or other similar combustor systems using the Volatile Organic Sampling Train (VOST). It is intended to be used for guidan...

  7. Photoacoustic detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Wolff, Marcus; Bruhns, Henry; Zhang, Wenyi

    2011-05-01

    We present first results of a research project that has the goal to develop an analyzer for volatile organic compounds (VOCs) with extraordinarily high detection sensitivity and detection selectivity. Due to its high potential concerning these two key parameters, optical spectroscopy is employed. The new detection scheme is based on photoacoustic spectroscopy (PAS). PA detection utilizes the fact, that the excitation energy of light absorbing molecules is essentially transferred into kinetic energy of the surrounding molecules via inelastic collisions. This causes a local pressure increase in the absorbing gas. If the excitation source is modulated, a sound wave is generated that can be detected by a microphone and phase-sensitively measured using a lock-in amplifier. A considerable challenge of this project is represented by the broad and strongly overlapping absorption bands of the hydrocarbons. Discrimination of the VOCs is possible only by using a spectrally tunable monochromatic radiation source in combination with a sophisticated data analysis algorithm. Therefore, we apply an optical parametric oscillator (OPO) with spectral emission between 3 and 4 ?m.

  8. Catalytic destruction of organic volatile nitrogen compounds

    SciTech Connect

    Lester, G.R.; Homeyer, S.T.

    1993-12-31

    A family of catalysts has been identified for purification of industrial gas streams which are contaminated with odorous and/or toxic volatile nitrogen compounds (VNC). Temperature-conversion curves were measured for destruction of a series of organic VNC`s in moist air at 15,000 hr {sup {minus}1} gas hourly space velocity (STP), and the yields of N{sub 2}, N{sub 2}O, and total NO{sub x} (NO + NO{sub 2}) were measured. The VNCs of interest included primary, secondary and tertiary amines, ethylenediamine, ethanolamine, acetonitrile, dimethylfomamide, pyridine, piperidine and aniline. The ease of destruction of these compounds over a monolithic platinum VNC catalyst as reflected in the temperature required or 95% conversion, ranged from n-propylamine (234{degrees}C) to acetonitrile (343{degrees}C). Selectivity to N{sub 2} plus N{sub 2}O at the temperatures of 95% conversion decreased with increasing T-95 from 93% to 46%. Additional studies were done with triethylamine at several space velocities with the VNC catalyst and with some related PT catalysts. The results of these tests suggest that N{sub 2}, N{sub 2}O, and NO{sub x} (NO + NO{sub 2}) are formed by at least three competitive reaction pathways.

  9. Volatile organic compound stripping at clarifier weirs

    SciTech Connect

    Zytner, R.G.; Rahme, Z.G.; Corsi, R.L.; Labocha, M.; Parker, W.

    1999-10-01

    Volatile organic compound (VOC) stripping at clarifier weirs was investigated for both clean water and primary wastewater using a pilot-scale model with a cross-sectional geometry similar to clarifier weirs. Drop height, type of flow regime over the weir, and weir shape were identified as important parameters influencing mass transfer. It was also observed that VOC stripping from free-fall flow could be correlated with Henry's law constant. A model that accounts for liquid- and gas-phase mass transfer was developed to predict VOC stripping from clean water. The relatively low and consistent gas- and liquid-phase mass-transfer coefficients used in the model suggest that a representative value may apply for all weir conditions. Incorporating a transition coefficient between clean water and wastewater made it possible to predict VOC transfer in primary wastewater based on clean water data. Experimental results and modeling efforts described in this paper could serve as a first step in estimating VOC emissions for flows over clarifiers at wastewater treatment plants.

  10. Volatile organic compound remedial action project

    SciTech Connect

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  11. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  12. Breath measurements as volatile organic compound biomarkers

    SciTech Connect

    Wallace, L.; Buckley, T.; Pellizzari, E.; Gordon, S.

    1996-10-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency`s large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times, {tau}{sub i} in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. 81 refs., 3 figs., 4 tabs.

  13. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of compounds. N-octane, 3-methylheptane, n-nonane, 2,3,4-trimethylpentane and n-hexane parameters ranged between 3 ppbv and maximum value of 10 ppbv. The other VOC parameters are measured below 3 ppbv value. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly influence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde. Keywords: Air quality, Volatile Organic Compounds (VOC), industry, meteorology, urban, Kağıthane, İstanbul. Acknowledgment: This work was part of the TUJJB-TUMEHAP-01-10 and Turkish Scientific and Technical Research Council Project No: 109Y132.

  14. Identification of volatile organic compounds in human cerumen

    PubMed Central

    Prokop-Prigge, Katharine A.; Thaler, Erica; Wysocki, Charles J.; Preti, George

    2014-01-01

    We report here the initial examination of volatile organic compounds (VOCs) emanating from human earwax (cerumen). Recent studies link a single nucleotide polymorphism (SNP) in the adenosine triphosphate (ATP) binding cassette, sub-family C, member 11 gene (ABCC11) to the production of different types of axillary odorants and cerumen. ABCC11 encodes an ATP-driven efflux pump protein that plays an important function in ceruminous apocrine glands of the auditory canal and the secretion of axillary odor precursors. The type of cerumen and underarm odor produced by East Asians differ markedly from that produced by non-Asians. In this initial report we find that both groups emit many of the same VOCs but differ significantly in the amounts produced. The principal odorants are volatile organic C2-to-C6 acids. The physical appearance of cerumen from the two groups also matches previously reported ethnic differences, viz., cerumen from East Asians appears dry and white while that from non-Asians is typically wet and yellowish-brown. PMID:24572763

  15. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.

    PubMed

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-28

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  16. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    PubMed Central

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  17. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  18. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  19. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  20. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  1. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  2. [Emission volatile organic compounds from new textile floor coverings].

    PubMed

    Igielska, Barbara; Pecka, Irena; Sitko, Elzbieta; Nikel, Grazyna; Wiglusz, Renata

    2002-01-01

    The emission of formaldehyde and the other volatile organic compounds (toluene, styrene, 4-PC) and total volatile organic compounds (VOCs) from new textile floor coverings was measured with the use of environmental chamber (0.6 m3 capacity) in the following conditions: temperature 23 degrees C, relative humidity 45%, 1 exchange/hour and factor loading 1 m2 m-3. The formaldehyde was determined by using colorimetric method, VOCs by GC method. The tested carpets did not emit formaldehyde. The emission of other volatile organic compounds was very low and fulfill known requirements. PMID:12621886

  3. Measurement of volatile organic compounds inside automobiles.

    PubMed

    Fedoruk, Marion J; Kerger, Brent D

    2003-01-01

    The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode. PMID:12595882

  4. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-β-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the morning and raised in the afternoon. This is reversed for the "cataflexistyle" morphology. The bVOC mixture emitted by each morphology in morning and afternoon was complex. However for compounds showing a difference (cis-ocimene and Z + E epoxy -ocimene), the emissions from the anaflexistyle were greater than from the cataflexistyle, and were greater in the afternoon compared with the morning emissions. Where large flowering plant species are abundant, big changes in monoterpene emissions at < 2m above ground level over relatively small periods of time during pollination are likely to be missed in larger scale integrated flux measurements.

  5. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  6. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM SURFACTANT SOLUTIONS BY PERVAPORATION

    EPA Science Inventory

    Pervaporation is gradually becoming an accepted and practical method for the recovery of volatile organic compounds (VOCs) from aqueous process and waste streams. As the technolog has matured, new applications for pervaporation have emerged. One such application is the separati...

  7. DEVELOPMENT OF OZONE REACTIVITY SCALES FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Methods for developing a numerical scale ranking reactivities of volatile organic compounds (VOCs) towards ozone formation were investigated. ffects of small VOC additions on ozone formation (incremental reactivities) were calculated for 140 types of VOCs in model scenarios repre...

  8. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  9. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  10. ODOR AND IRRITATION EFFECTS OF A VOLATILE ORGANIC COMPOUND MIXTURE

    EPA Science Inventory

    Human exposure to volatile organic compounds elicits a variety ofsymptoms, many of which are thought to be mediated by the olfactoryand trigeminal systems. his report describes evidence indicatingthat perceived odor intensity diminishes during prolonged exposure,whearas irritatin...

  11. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  12. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward the goal of developing a portable test kit for screening halogenated VOCs in the field.

  13. Volatile organic compound sources for Southern Finland

    NASA Astrophysics Data System (ADS)

    Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

    2014-05-01

    Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in both sites. However during spring biogenic influence increased. In addition to source analysis this behaviour was visible in enhanced diurnal cycles of VOCs (Patokoski et al., 2014, in press). We will present important sources and source areas for Southern Finland's concentrations. References: Patokoski, J., Ruuskanen, T.M., Hellén, H., Taipale, R., Grönholm, T., Kajos, M.K., Petäjä, T., Hakola, H., Kulmala, M. & Rinne, J., 2014. Winter to spring transition and diurnal variation of VOCs in Finland at an urban background site and a rural site. Boreal Env. Res. 19. In press.

  14. Volatile organic compounds from a Tuber melanosporum fermentation system.

    PubMed

    Li, Yuan-Yuan; Wang, Guan; Li, Hong-Mei; Zhong, Jian-Jiang; Tang, Ya-Jie

    2012-12-15

    A total of 59 volatile organic compounds (VOCs) were identified from Tuber melanosporum fermentation: 53 from its fermented mycelia and 32 from the fermentation broth. Alcohol-derived compounds were predominant in both the fermentation mycelia and the broth, although long chain fatty acids and isoprenoids were, for the first time, also found in the mycelia. The intense wine bouquet properties of the broth arose from several specific flavor substances, including sulfur compounds, pyrazines, furans and jasmones. Comparing the VOCs identified in this work with those previously reported, our results are more similar to the composition of the Tuber fruiting-body than previous Tuber fermentations. The composition and accumulation of flavor volatiles (e.g., pyrazines, sulfur compounds, and esters) and major constituents (e.g., 3-methyl-1-butanol and 2-phenylethanol) in this fermentation were significantly influenced by the sucrose concentration in the medium. The obtained information could therefore be useful in applications to convert the flavors of truffle mycelia similar to those of the fruiting-body by optimising the fermentation process. PMID:22980851

  15. Gas chromatography of volatile organic compounds

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1973-01-01

    System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.

  16. Reduction of volatile acidity of wines by selected yeast strains.

    PubMed

    Vilela-Moura, A; Schuller, D; Mendes-Faia, A; Crte-Real, M

    2008-10-01

    Herein, we isolate and characterize wine yeasts with the ability to reduce volatile acidity of wines using a refermentation process, which consists in mixing the acidic wine with freshly crushed grapes or musts or, alternatively, in the incubation with the residual marc. From a set of 135 yeast isolates, four strains revealed the ability to use glucose and acetic acid simultaneously. Three of them were identified as Saccharomyces cerevisiae and one as Lachancea thermotolerans. Among nine commercial S. cerevisiae strains, strains S26, S29, and S30 display similar glucose and acetic acid initial simultaneous consumption pattern and were assessed in refermentation assays. In a medium containing an acidic wine with high glucose-low ethanol concentrations, under low oxygen availability, strain S29 is the most efficient one, whereas L. thermotolerans 44C is able to decrease significantly acetic acid similar to the control strain Zygosaccharomyces bailii ISA 1307 but only under aerobic conditions. Conversely, for low glucose-high ethanol concentrations, under aerobic conditions, S26 is the most efficient acid-degrading strain, while under limited-aerobic conditions, all the S. cerevisiae strains studied display acetic acid degradation efficiencies identical to Z. bailii. Moreover, S26 strain also reveals capacity to decrease volatile acidity of wines. Together, the S. cerevisiae strains characterized herein appear promising for the oenological removal of volatile acidity of acidic wines. PMID:18677471

  17. PROJECTION METHODOLOGY FOR FUTURE STATE LEVEL VOLATILE ORGANIC COMPOUND EMISSIONS FROM STATIONARY SOURCES (VERSION 1.8)

    EPA Science Inventory

    The report presents the model framework used to estimate state level and national future volatile organic compound (VOC) emissions and control costs for stationary industrial and utility sources. The framework involves a projection approach using the 1980 National Acid Precipitat...

  18. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  19. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  20. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Crte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g?L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g?L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity. PMID:23361840

  1. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-07-01

    The emission of Volatile Organic Compounds (VOCs) from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered to be fatty acid oxidation products. These results suggest that one important function of some VOCs in creosotebush is as an antioxidant. We also find that emissions of nitriles from creosotebush represent an unaccounted for loss of nitrogen from arid ecosystems. Our results demonstrate the richness of creosotebush volatile emissions and highlight the need for further research into their atmospheric and ecological impacts.

  2. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-12-01

    We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered to be fatty acid oxidation products. These results suggest that one important function of some VOCs in creosotebush is as an antioxidant. We also find that emissions of nitriles from creosotebush could represent a significant but previously unaccounted nitrogen loss from this arid ecosystem. Our results demonstrate the richness of creosotebush volatile emissions and highlight the need for further research into their atmospheric and ecological impacts.

  3. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (43311.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. PMID:25280600

  4. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  5. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  6. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  7. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  8. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  9. FIELD VALIDATION OF THE VOLATILE ORGANIC SAMPLING TRAIN (VOST) PROTOCOL

    EPA Science Inventory

    With the development of the Volatile Organic Sampling Train (VOST) Protocol (February 1984) to measure organic emissions from hazardous waste incinerators, a wide variety of compounds have been collected and analyzed. Because its use is currently being recommended by regulatory a...

  10. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the laboratory using standard BTEX gases. The LODs for the Tenax TA sampling tubes (determined with a sample volume of 1,000 standard cubic centimeters which is close to the approximate commuter sample volumes collected) were orders of magnitude lower (0.04 to 0.7 parts per billion (ppb) for individual compounds of BTEX) compared to the PIDs' LODs (9.3 to 15 ppb of a BTEX mixture), which makes the Tenax TA sampling method more suitable to measure BTEX concentrations in the sub-parts per billion (ppb) range. PID and Tenax TA data for commuter exposures were inversely related. The concentrations of VOCs measured by the PID were substantially higher than BTEX concentrations measured by collocated Tenax TA samplers. The inverse trend and the large difference in magnitude between PID responses and Tenax TA BTEX measurements indicates the two methods may have been measuring different air pollutants that are negatively correlated. Drivers in Fort Collins, Colorado with closed windows experienced greater time-weighted average BTEX exposures than cyclists (p: 0.04). Commuter BTEX exposures measured in Fort Collins were lower than commuter exposures measured in prior studies that occurred in larger cities (Boston and Copenhagen). Although route and intake may affect a commuter's BTEX dose, these variables are outside of the scope of this study. Within the limitations of this study (including: small sample size, small representative area of Fort Collins, and respiration rates not taken into account), it appears health risks associated with traffic-induced BTEX exposures may be reduced by commuting via cycling instead of driving with windows closed and living in a less populous area that has less vehicle traffic. Although the PID did not reliably measure low-level commuter BTEX exposures, the Tenax TA sampling method did. The PID measured BTEX concentrations reliably in a controlled environment, at high concentrations (300-800 ppb), and in the absence of other air pollutants. In environments where there could be multiple chemicals present that may produce a PID signal (such as nitrogen dioxide), Tenax TA samplers may be a better choice for measuring BTEX. Tenax TA measurements were the only suitable method within this study to measure commuter's BTEX exposure in Fort Collins, Colorado.

  11. Volatile Fatty Acid Requirement of a Strain of Listeria monocytogenes

    PubMed Central

    Larson, A. D.; Hattier, L. V.; McCleskey, C. S.

    1965-01-01

    Larson, A. D. (Louisiana State University, Baton Rouge), L. V. Hattier, and C. S. McCleskey. Volatile fatty acid requirement of a strain of Listeria monocytogenes. J. Bacteriol. 89:819–824. 1965.—Listeria monocytogenes strain 2 requires either isobutyric or 2-methylbutyric acid for growth. Elucidation of this requirement began with characterization of the growth-enhancing substance in culture filtrates of Aerobacter aerogenes. A. aerogenes required tryptose, glucose, and aerobic conditions for excretion of active fatty acids into the medium. Commercial preparations of isobutyric, 2-methylbutyric, isovaleric, 3-methylvaleric, and n-valeric acid supported the growth of strain 2. Purification of these fatty acids by gas chromatography demonstrated that strain 2 responded significantly only to isobutyric and 2-methylbutyric acid. Amines, alcohols, and hydroxy fatty acids, which were structurally related to the active acids, did not satisfy the fatty acid requirement of L. monocytogenes strain 2. Only one isolate (strain 2) of 128 cultures of L. monocytogenes required volatile fatty acid for growth. Images PMID:14273667

  12. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  13. Acid volatile sulphide as an indicator for sediment toxicity?

    SciTech Connect

    Goyvaerts, M.P.; Brucker, N. De; Geuzens, P.

    1995-12-31

    The ratio SEM (Simultaneously Extracted Metals) to AVS (Acid Volatile Sulfide) is considered to be a measure for heavy metal bioavailability for benthic species. When the SEM/AVS ratio exceeds 1 heavy metal toxicity for the benthic organisms is expected. The correlation between the SEM/AVS and the toxicity for the bioluminescent bacterium Photobacterium phosphoreum is investigated. Freshwater sediments originating from different locations with high and low heavy metal contamination are tested. The toxicity test is performed according to the Solid Phase Microtox test (SPT). Unexpectedly, negative correlation between SEM/AVS and SPT toxicity was found (r = {minus}0.82, n = 44). However, sediments with a high sulphide content show a correlation between AVS and toxicity determined by SPT (r = 0.90, n = 18). Comparison with literature data and possible hypothesis for the discrepancies with the data will be presented. Additionally, a validation study concerning the AVS determination has been performed. Some of the aspects involved are: the sampling technique preserving the anoxic conditions of the sediment, the influence of the storage time and storage conditions on the AVS content of the standard conditions and the recovery of the metal sulphides used for the SEM calculation.

  14. [VOLATILE FATTY ACIDS IN SALIVA--BIOLOGICAL MARKERS FOR ASSESSMENT OF DRINKING WATER POLLUTANTS ON CHILDREN].

    PubMed

    Akaizina, A E; Akaizin, E S; Starodumov, V L

    2015-01-01

    The use of modern methods of analysis is aimed to the search of ultimately novel biological markers. Volatile fatty acids in saliva were not used previously for the assessment of the effects of contaminating substances in the drinking water on the body of children. The aim of the study is to investigate the informative value of volatile fatty acids in saliva as biological markers of the impact for the assessment of the exposure to contaminating substances in the drinking water on the body of children. Hygienic assessment of drinking water quality was made according to data of the own research of drinking water from centralized supply system of the city of Ivanovo. For the comparison of indices there was investigated the drinking water from wells at the village Podvyaznovsky of the Ivanovo region. In the Ivanovo water from the distributing network of centralized drinking water supply system of the city of Ivanovo, there were identified indices of the permanganate oxidation and the total concentration of residual chlorine exceeding norms, and also chloroform and carbon tetrachloride were in concentrations not exceeding the norms. Studied by us the samples of drinking water from Podvyaznovsky village wells, the water met the standards for all investigated parameters. The was studied the informative value of volatile fatty acids in the saliva of children aged 9-14 years from the city of Ivanovo and the Podvyaznovsky village, Ivanovo region. There was established the fall in acetic, butyric, isovaleric acids and the total amount of volatile fatty acids in the saliva in children of the city of Ivanovo, consuming water treated with chlorine of Ivanovo centralized drinking water supply system. Indices of volatile fatty acids in saliva are informative for the assessment of the impact of organic pollutants, residual chlorine and organic chlorine compounds of drinking water on the body of children. PMID:26625631

  15. 77 FR 38761 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Organic Compounds; Consumer Products AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... addition of a new rule that sets volatile organic compound (VOC) emissions limits and other restrictions on... recordkeeping requirements, Volatile organic compounds. Dated: June 11, 2012. Susan Hedman,...

  16. Effect of volatile organic compounds from bacteria on nematodes.

    PubMed

    Xu, You-Yao; Lu, Hao; Wang, Xin; Zhang, Ke-Qin; Li, Guo-Hong

    2015-09-01

    The five studied bacterial strains could produce volatile organic compounds (VOCs) that kill nematodes. Based on their 16S rRNA sequences, these strains were identified as Pseudochrobactrum saccharolyticum, Wautersiella falsenii, Proteus hauseri, Arthrobacter nicotianae, and Achromobacter xylosoxidans. The bacterial VOCs were extracted using solid-phase micro-extraction (SPME) and subsequently identified by GC/MS analysis. The VOCs covered a wide range of aldehydes, ketones, alkyls, alcohols, alkenes, esters, alkynes, acids, ethers, as well as heterocyclic and phenolic compounds. Among the 53 VOCs identified, 19 candidates, produced by different bacteria, were selected to test their nematicidal activity (NA) against Caenorhabditis elegans and Meloidogyne incognita. The seven compounds with the highest NAs were acetophenone, S-methyl thiobutyrate, dimethyl disulfide, ethyl 3,3-dimethylacrylate, nonan-2-one, 1-methoxy-4-methylbenzene, and butyl isovalerate. Among them, S-methyl thiobutyrate showed a stronger NA than the commercial insecticide dimethyl disulfide. It was reported for the first time here that the five bacterial strains as well as S-methyl thiobutyrate, ethyl 3,3-dimethylacrylate, 1-methoxy-4-methylbenzene, and butyl isovalerate possess NA. These strains and compounds might provide new insights in the search for novel nematicides. PMID:26363885

  17. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    PubMed

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. PMID:25788118

  18. Volatile organic emissions from the distillation and pyrolysis of vegetation

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Friedli, H.; Guenther, A. B.; Hanson, D.; Harley, P.; Karl, T.

    2005-09-01

    Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were acetic acid, furylaldehyde, methyl acetate, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 mgC/gC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and the pyrolysis of vegetation heated under low turbulence conditions produces concentrations near leaves that reach the lower limits of flammability and the emissions may be important in the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  19. Volatile organic emissions from the distillation and pyrolysis of vegetation

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Friedli, H.; Guenther, A. B.; Hanson, D.; Harley, P.; Karl, T.

    2006-01-01

    Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively.

    The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  20. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  1. MODERN CONTINUOUS SAMPLERS FOR VOLATILE ORGANICS AND INORGANIC GASES

    EPA Science Inventory

    The manuscript discusses EPA methods development in two areas: VOC monitoring and monitoring of dry depositon components. Whole air collection over periods of up to one day in specially prepared stainless steel canisters is beginning to be used routinely for volatile organic comp...

  2. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  3. CHARACTERIZATION OF VOLATILE ORGANIC COMPOUNDS IN AIRBORNE DUST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three methods of extracting volatile organic compounds (VOC's) adsorbed on the airborne dust in a swine finishing building were investigated. Airborne dust was collected in pre-baked glass fiber filters (GFF's) and the compounds were extracted by solvent extraction using dichloromethane, solid phas...

  4. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

  5. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  6. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  7. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  8. REACTIVITY/VOLATILITY CLASSIFICATION OF SELECTED ORGANIC CHEMICALS: EXISTING DATA

    EPA Science Inventory

    This study deals with the reactivity/volatility classification of some 118 organic chemicals specified by the U. S. Environmental Protection Agency (EPA). The classification system has been developed based on existing and available information. It was clear at the outset that lit...

  9. EMISSIONS OF REACTIVE VOLATILE ORGANIC COMPOUNDS FROM UTILITY BOILERS

    EPA Science Inventory

    The report gives results of the measurement of emission factors for reactive volatile organic compounds (VOC) from 43 utility boilers firing bituminous coal, lignite, oil, and natural gas. The boilers ranged in size from 9 to 910 MW. The median reactive VOC emission factors were ...

  10. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  11. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  12. NATIONAL AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS) DATA BASE UPDATE, DOCUMENTATION

    EPA Science Inventory

    Data on the observed concentrations of three hundred twenty (320) volatile organic compounds (VOCs) were compiled, critically evaluated, and assembled into a relational data base. Ambient (i.e., outdoor) measurements, indoor data, and data collected with personal monitors are inc...

  13. Measuring Emissions of Volatile Organic Compounds from Silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

  14. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER

    EPA Science Inventory

    Because ground water is a source of potable water for millions of people, an economical means of removing volatile organic contaminants is essential. Laboratory, pilot-scale and full-scale studies are being carried out in the United States of America to determine the effect of va...

  15. AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER

    EPA Science Inventory

    The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

  16. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER BY ADSORPTION

    EPA Science Inventory

    Laboratory and field studies are underway to determine the effectiveness of activated carbon for removing volatile organic compounds from ground water. For fifteen C1 through C6 compounds being considered for possible regulatory action, the adsorption isotherm capacity ranges fro...

  17. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  18. Qualitative analysis of volatile organic compounds on biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  19. FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  20. PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The contamination of subsurface soil and groundwater by volatile organic compounds (VOCS) is a pervasive problem in the United States. n-situ soil vapor extraction (SVE) and ex-situ thermal desorption are the most adapted technologies for the remediation of contaminated soil whil...

  1. EFFECTS IN HUMANS OF A VOLATILE ORGANIC COMPOUND MIXTURE: SENSORY

    EPA Science Inventory

    Time-course actions for symptoms of the sick building syndrome were derived from 66 healthy males exposed to clean air and a volatile organic (VOC) mixture in separate sessions. he mixture contained 22 VOCs (25 mg/m3 total concentration) commonly found air-borne in new or recentl...

  2. EXPOSURE OF HUMANS TO VOLATILE ORGANIC MIXTURE. III. INFLAMMATORY RESPONSE

    EPA Science Inventory

    A set of symptoms has been described during the past two decades which has been called the "sick building syndrome." hese symptoms include eye, nose, and throat irritation; headache; mental fatigue; and respiratory distress. t is likely that volatile organic compounds (VOC) prese...

  3. History of Martian volatiles - Implications for organic synthesis.

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.

    1971-01-01

    A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history, and that its present tenuous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion.

  4. Monensin and Dichloroacetamide Influences on Methane and Volatile Fatty Acid Production by Rumen Bacteria In Vitro

    PubMed Central

    Slyter, L. L.

    1979-01-01

    The effect of monensin (0 or 33 ?g/g of diet) upon rumen fermentation in the presence and absence of methanogenesis was determined in vitro by using mixed rumen organisms continuously cultured for 17 days. Methane was inhibited by dichloroacetamide (DCA; 32 mg/day) or by a pH of 5.1. Monensin effected a significant decrease in the ratio of acetic to propionic acid in the presence or absence of methanogenesis. In the absence of methanogenesis, the decrease in the ratio of acetic to propionic acid was entirely the result of increased propionic acid, whereas in the presence of methanogenesis the decrease in the ratio was the result of a combination of decreased acetic acid and increased propionic acid. There was a complementary interaction between monensin and DCA on volatile fatty acid production (expressed as millimoles of carbon per day). Addition of monensin to DCA-treated cultures resulted in the production of more acid; however, monensin and DCA had no beneficial effect on total carbon formed as acid and gases as compared with nonsupplemented control cultures. The monensin and DCA also resulted in greater digestion of neutral detergent fiber and less accumulation of formic acid and hydrogen as end products than did DCA alone. l-Lactic acid was produced in small but significantly greater amounts by the low-pH cultures, which also had less volatile fatty acid carbon formed from the fiber fraction of the forage supplied. PMID:16345344

  5. Quantitative estimates of the volatility of ambient organic aerosol

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Jimenez, J. L.

    2010-01-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al. (2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (?Hvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50-80% when the most realistic ?Hvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ?Hvap assumptions. The temperature sensitivity is relatively independent of the particular ?Hvap assumptions whereas dilution sensitivity is found to be greatest for the low (?Hvap = 50 kJ/mol) and lowest for the high (?Hvap = 150 kJ/mol) assumptions. This difference arises from the high ?Hvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ?Hvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ?Hvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ?Hvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (?e) substantially greater than 10-2; at this point it is not possible to place firmer constraints on ?e based on the observations.

  6. Quantitative estimates of the volatility of ambient organic aerosol

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Jimenez, J. L.

    2010-06-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al.~(2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (?Hvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50-80% when the most realistic ?Hvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ?Hvap assumptions. The temperature sensitivity is relatively independent of the particular ?Hvap assumptions whereas dilution sensitivity is found to be greatest for the low (?Hvap = 50 kJ/mol) and lowest for the high (?Hvap = 150 kJ/mol) assumptions. This difference arises from the high ?Hvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ?Hvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ?Hvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ?Hvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (?e) substantially greater than 10-2; at this point it is not possible to place firmer constraints on ?e based on the observations.

  7. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally. PMID:24572423

  8. LOCATING VOLATILE ORGANIC PLUMES ENTERING WATER BODIES USING PASSIVE VAPOR DIFFUSION SAMPLERS

    EPA Science Inventory

    Many water bodies in New England are impacted by volatile organic contaminated groundwater intrusions. To determine the health and ecological impacts of these intrusions, it is important to locate fracture zones that transport groundwater contaminated with volatile organic compou...

  9. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans Alabama: Volatile Organic... ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section...

  10. A laboratory formulated sediment incorporating synthetic acid volatile sulfide

    SciTech Connect

    Gonzalez, A.M.

    1995-12-31

    The usefulness of laboratory formulated sediment (LFS) for sediment research applications might be expanded if sediment characteristics other than particle size distribution, organic carbon and pH could be artificially manipulated. This report describes the development of a LFS containing synthetic acid volatile sulfide (AVS). Several formulations were evaluated with respect to their toxicological effects on Hyalella azteca, and their chemical stability and oxidation dynamics in the H. azteca toxicity test system. Optimal amphipod survival was obtained in prepared LFS formulations where the molar cation-to-sulfide ratio was near unity. The synthetic AVS at the surface of the test system oxidized quickly, but was fairly stable for up to 28 days when isolated from air or oxygenated water. AVS analysis of core slices show a clear, dissolved oxygen-diffusion limited oxidation profile. A selected synthetic AVS formulation, as determined by (maximum) H. azteca survival, was evaluated with respect to complexation of copper and nickel, and the corresponding reduction in metal bioavailability. The toxicity of whole sediment and pore water from metal-spiked LFS containing synthetic AVS was evaluated by the 10-d H. azteca toxicity test and the Microtox{reg_sign} bioassay, respectively. As expected, test responses to amended LFS with metal-to-AVS molar ratios less than one were not significantly different than the unspiked, amended LFS. In contrast, amended LFS with metal-to AVS molar ratios greater than one had significant effects on the response of the two test species. Complexation of the metals was confirmed by sediment and pore water chemical analyses. This formulation may provide consistent and controlled substrates with which to investigate metal/sediment chemistry and toxicity, and to develop sediment quality criteria for metals.

  11. Treatment of odorous volatile fatty acids using a biotrickling filter.

    PubMed

    Tsang, Y F; Chua, H; Sin, S N; Chan, S Y

    2008-02-01

    In this study, a novel fibrous bioreactor was developed for treating odorous compounds present in contaminated air. The first stage of this work was a preliminary study which aimed at investigating the feasibility of using the fibrous bioreactor for the removal of malodorous volatile fatty acids (VFA) that is a common odorous contaminant generated from anaerobic degradation of organic compounds. The kinetics of microbial growth and VFA degradation in the selected culture, and the performance of the submerged bioreactor at different VFA mass loadings were studied. Above 95% of VFA removal efficiencies were achieved at mass loadings up to 22.4 g/m(3)/h. In the second stage, the odour treatment process was scaled up with system design and operational considerations. A trickling biofilter with synthetic fibrous packing medium was employed. The effects of inlet VFA concentration and empty bed retention time (EBRT) on the process performance were investigated. The bioreactor was effective in removing VFA at mass loadings up to 32 g/m(3)/h, beyond which VFA started to accumulate in the recirculation liquid, indicating the biofilm was unable to degrade all of the VFA introduced. Although VFA accumulated in the liquid phase, the removal efficiency remained above 99%. This suggested that the biochemical reaction rather than gas-liquid mass transfer was the limiting step of the treatment process. In addition, the biotrickling filter was stable for long-term operation with relatively low and steady pressure drop, no clogging and degeneration of the packing material occurred during the four-month study. PMID:17321131

  12. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    PubMed

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes. PMID:24811447

  13. Strong emissive nanofibers of organogels for the detection of volatile acid vapors.

    PubMed

    Xue, Pengchong; Sun, Jiabao; Yao, Boqi; Gong, Peng; Zhang, Zhenqi; Qian, Chong; Zhang, Yuan; Lu, Ran

    2015-03-16

    Two L-phenylalanine derivatives with 5,8-bis(2-(carbazol-3-yl)vinyl)quinoxaline (PCQ) and 5,8-bis[2-(carbazol-3-yl)]-2,3-dimethylquinoxaline (DCQ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self-assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ. The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ. Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively. PMID:25393379

  14. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  15. Microbial cycling of volatile organic sulfur compounds in anoxic environments.

    PubMed

    Lomans, B P; Pol, A; Op den Camp, H J M

    2002-01-01

    Microbial cycling of volatile organic sulfur compounds (VOSC) is investigated due to the impact these compounds are thought to have on environmental processes like global temperature control, acid precipitation and the global sulfur cycle. Moreover, in several kinds of industries like composting plants and the paper industry VOSC are released causing odor problems. Waste streams containing these compounds must be treated in order to avoid the release of these compounds to the atmosphere. This paper describes the general mechanisms for the production and degradation of methanethiol (MT) and dimethyl sulfide (DMS), two ubiquitous VOSC in anaerobic environments. Slurry incubations indicated that methylation of sulfide and MT resulting in MT and DMS, respectively, is one of the major mechanisms for VOSC in sulfide-rich anaerobic environments. An anaerobic bacterium that is responsible for the formation of MT and DMS through the anaerobic methylation of H2S and MT was isolated from a freshwater pond after enrichment with syringate as a methyl group donating compound and sole carbon source. In spite of the continuous formation of MT and DMS, steady state concentrations are generally very low. This is due to the microbial degradation of these compounds. Experiments with sulfate-rich and sulfate-amended sediment slurries demonstrated that besides methanogens, sulfate-reducing bacteria can also degrade MT and DMS, provided that sulfate is available. A methanogen was isolated that is able to grow on DMS as the sole carbon source. A large survey of sediments slurries of various origin demonstrated that both isolates are commonly occurring inhabitants of anaerobic environments. PMID:12188577

  16. Volatile organic compound emissions from dry mill fuel ethanol production.

    PubMed

    Brady, Daniel; Pratt, Gregory C

    2007-09-01

    Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor. PMID:17912928

  17. Distribution of volatile organic chemicals in outdoor and indoor air

    NASA Technical Reports Server (NTRS)

    Shah, Jitendra J.; Singh, Hanwant B.

    1988-01-01

    The EPA volatile organic chemistry (VOC) national ambient data base (Shah, 1988) is discussed. The 320 chemicals included in the VOC data base are listed. The methods used to obtain the data are reviewed and the availability, accessibility, and operation of the data base are examined. Tables of the daily outdoor concentrations for 66 chemicals and the daily indoor concentrations for 35 chemicals are presented.

  18. New graphene fiber coating for volatile organic compounds analysis.

    PubMed

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples. PMID:25171504

  19. Analyses of volatile organic compounds from human skin

    PubMed Central

    Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.

    2008-01-01

    Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798

  20. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation

    SciTech Connect

    Xu, Lu; Kollman, Matthew S.; Song, Chen; Shilling, John E.; Ng, L. N.

    2014-01-28

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is applied to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.

  1. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  2. Using volatile fatty acid relationships to predict anaerobic digester failure

    SciTech Connect

    Hill, D.T.; Cobb, S.A.; Bolte, J.P.

    1987-01-01

    During recent years, a number of observations have been made in the literature regarding the level and ratio of certain organic acids and the correlation of these acid relationships with anaerobic digester performance, either complete failure or operation in a stressed state. It is an accepted fact that levels of organic acid are important in digestion for two reasons: (a) organic acids (particularly acetic) are the immediate precursors in the metabolic chain leading to methane formation and (b) if present in high concentration, acids are known to cause stress in the microbial population and can ultimately lead to complete process failure. The recent literature (approximately the last 7 years) was searched for digester performance data and organic acid levels. Seventy observations were used in arriving at a relationship between acetic acid level and propionic to acetic acid ratio and digester failure or success. Methane productivity (L CH4/g VS added) was used as the parameter determining digester performance. A definite trend was recognized that suggests acetic acid levels in excess of 800 mg/L or a propionic to acetic acid ratio greater than 1.4 indicate impending digester failure. A laboratory scale study was then conductd to verify this phenomenon. (Refs. 22).

  3. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas M.; Seaman, Vincent Y.; Charles, M. Judith; Holzinger, Rupert; Goldstein, Allen H.

    2006-08-01

    Biogenic volatile organic compound (BVOC) emissions, such as isoprene and terpenes, can be oxidized to form less volatile carbonyls, acids, and multifunctional oxygenated products that may condense to form secondary organic aerosols (SOA). This research was designed to assess the contribution of oxidized BVOC emissions to SOA in coniferous forests by collecting high-volume particulate samples for 6 days and 5 nights in the summer of 2003. The samples were analyzed for acids, carbonyls, polyols and alkanes to quantify oxidized BVOCs. Terpene and isoprene oxidation products were among the most abundant chemical species detected with the exception of hexadecanoic acid, octadecanoic acid and two butyl esters of unknown origin. The terpene oxidation products of pinonic acid, pinic acid, nopinone and pinonaldehyde showed clear diurnal cycles with concentrations two- to eight-fold higher at night. These cycles resulted from the diurnal cycles in gaseous terpene concentrations and lower temperatures that enhanced condensation of semivolatile chemicals onto aerosols. The terpene-derived compounds averaged 157 118 ng/m3 of particulate organic matter while the isoprene oxidation compounds, namely the 2-methyltetrols and 2-methylglyceric acid, accounted for 53 19 ng/m3. Together, the terpene and isoprene oxidation products represented 36.9% of the identified organic mass of 490 95 ng/m3. PM10 organic matter loadings in the region were approximately 2.1 1.2 ?g/m3, so about 23% of the organic matter was identified and at least 8.6% was oxidized BVOCs. The BVOC oxidation products we measured were significant, but not dominant, contributors to the regional SOA only 75 km downwind of the Sacramento urban area.

  4. Biological aspects of constructing volatile organic compound emission inventories

    NASA Astrophysics Data System (ADS)

    Monson, Russell K.; Lerdau, Manuel T.; Sharkey, Thomas D.; Schimel, David S.; Fall, Ray

    The: emission of volatile organic compounds (VOCs) from vegetation is subject to numerous biological controls. Past inventories have relied heavily on empirical models which are limited in their ability to simulate the response of organisms to short- and long-term changes in their growth environment. In this review we consider the principal biochemical, physiological and ecological controls over VOC emission with specific reference to how such controls can be included in ecosystem-level inventories. A distinction is made between longer-term biological controls over basal VOC emission rates (rates determined under a standard set of environmental conditions) and instantaneous biological and environmental controls over instantaneous VOC emission rates (rates determined at the prevailing, instantaneous set of environmental conditions). Emphasis is placed on the emission of isoprene and monoterpenes. Isoprene emission occurs essentially without a leaf reservoir and is tightly linked to instantaneous photosynthetic metabolism and the activity of isoprene synthase, the enzyme that underlies isoprene production. At present, there are still large uncertainties about which of these controls dominates isoprene emission rate. Ecosystem-level inventories of isoprene emission would be best handled through consideration of (1) the early season induction of isoprene emission, (2) seasonal and spatial variability in light, nitrogen and water availability and their influences on the basal emission rate, and (3) the influence of instantaneous changes in light and temperature on the basal emission rate. Monoterpene emission occurs from a large leaf reservoir, is uncoupled from instantaneous controls over biosynthesis, and is likely linked to whole-plant carbon allocation patterns. Because of the well-defined role of monoterpenes as herbivore deterrents and their linkage to plant carbon balance, there is promise for ecosystem-level inventories based on biological resource allocation models and evolutionary cost-benefit models. Biological sources for several other VOCs have been identified, including methanol, methylbutenol, hexenol, acetone, and formic and acetic acids. However, the controls over these emissions have yet to be determined, and there is no current basis for mechanistic inventory development. From the studies reviewed here we conclude that the incorporation of mechanistic biological controls in future VOC inventories will improve their capacity to predict emissions across complex ecological gradients.

  5. 78 FR 11618 - Approval and Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Organic Compound Definition AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because...

  6. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation.

    PubMed

    Bely, Marina; Rinaldi, Alessandra; Dubourdieu, Denis

    2003-01-01

    We analyzed the variability of volatile acidity and glycerol production by Saccharomyces cerevisiae on a large sample of high sugar musts. The production of volatile acidity was inversely correlated with the maximum cell population and the assimilable nitrogen concentration. The higher the nitrogen concentration, the less volatile acidity was produced. An approach to minimize volatile acidity production during high sugar fermentations by adjustment of assimilable nitrogen in musts was investigated in terms of both quantity and addition time. It was found that the optimal nitrogen concentration in the must is 190 mgN.l(-1). The best moment for nitrogen addition was at the beginning of fermentation. Addition at the end of the growth phase had less effect on volatile acidity reduction. We suggest that by stimulating cell growth, nitrogen addition provides NADH in the redox-equilibrating process, which in turn reduces volatile acidity formation. PMID:16233565

  7. Simple plant-based design strategies for volatile organic pollutants

    SciTech Connect

    Narayanan, M.; Erickson, L.E.; Davis, L.C.

    1999-12-31

    Vegetation which enhances in-situ biodegradation of organic compounds can play a key role in the bioremediation of such contaminants in polluted soils and groundwater. Plants may act directly on some contaminants by degrading them, but their main effect is to enhance microbial populations in the thizosphere. Microbially mediated transformations are thus indirectly facilitated by root exudates which nourish the indigenous microorganisms. Plants may also be viewed as a solar driven pump-and-treat system which can contain a plume and reduce the spread of contaminated water. Laboratory investigations carried out in a growth chamber with alfalfa plants provide evidence for the (microbially mediated) biodegradation of organic compounds such as toluene, phenol and TCE. Alfalfa plants tolerate concentrations of these organics in contaminated water up to 100 mg/L. They facilitate transfer of the contaminants from the saturated to the vadose zone. For volatile organic compounds such as TCE, vegetation provides a controlled release of compounds and hence assures dilution of the TCE evapotranspired into the atmosphere from contaminated soils. Using a range of calculated plausible scenarios, it is shown that intermedia transfer caused by volatilization associated with plants is most unlikely to lead to exceedance of standards for gas phase contamination, for most volatile contaminants. Possible action level exceedances might occur with highly toxic substances including vinyl chloride and carbon tetrachloride, if they re present in ground water at levels above kilogram amounts in a single plume of a few hectares, and released by vigorously growing plants under hot dry conditions. Information needed for the calculation and design of plant-based bioremediation systems for typical sites is discussed in this paper.

  8. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  9. Stripping volatile organic compounds and petroleum hydrocarbons from water

    SciTech Connect

    LaBranche, D.F.; Collins, M. R.

    1996-05-01

    Volatile organic compounds (VOCs) and petroleum products are ubiquitous groundwater contaminants. Petroleum products, for example, diesel fuel, contain a wide array of volatile, semivolatile, and large-chain hydrocarbon compounds. This research sought to determine whether air stripping can provide a site-specific treatment solution for petroleum-contaminated groundwaters and to document the abilities and limitations of tray-type (ShallowTray{sup TM}) air-stripping technology. Full factorial experimental trials were conducted to determine the influence of inlet water flow rate and temperature on trichloroethylene (TCE), perchloroethylene (PCE), and total petroleum hydrocarbon (TPH) removal. As expected, TPH removal controlled air stripper performance, and liquid temperature affected removal more than flow rate. The mass-transfer rate of TCE and PCE from water to air was controlled by the compound`s volatility, whereas the TPH mass-transfer rate was controlled by the compound`s concentration gradient. Results indicate that economical air stripping of VOC and TPH compounds can be achieved using low liquid flow rates (20 to 75 L/min), high air/water ratios (225 to 898), and medium liquid temperatures (16{degree}C to 28{degree}C) in tray-type air strippers. 19 refs., 7 figs., 6 tabs.

  10. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    PubMed

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. PMID:23200002

  11. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  12. Volatile organic compound and respirable particle monitoring in residences

    NASA Astrophysics Data System (ADS)

    Bunding Lee, K. A.; Ananth, G. P.; Hood, A. L.; Schroeder, J. A.; Clobes, A. L.

    1995-05-01

    Continuous particle and volatile organic compound (VOC) monitoring in residential homes were combined to measure indoor air quality. Fourier transform infrared spectroscopy (FTIR) was used to monitor the VOCs. There are several advantages to this technique, including quantifying components, identification of unexpected components, following levels of these components with time, and identifying sources of specific VOCs. In addition, the relationship of human activities to VOC levels was determined. In addition to the FTIR measurements, we have made measurements on particulate levels which are important to consider for indoor air quality.

  13. Stability of volatile organics in environmental soil samples. Final report

    SciTech Connect

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  14. Stability of volatile organics in environmental soil samples

    SciTech Connect

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  15. Exhaled breath volatile organic compound biomarkers in lung cancer.

    PubMed

    Mazzone, Peter J

    2012-05-23

    There has been an increased focus on the development of non-invasive biomarkers capable of accurately identifying lung cancer early in its course and characterizing the nature of the cancer. Exhaled breath is a non-traditional source of biomarkers. In the following sections I will outline recent developments in the evaluation and management of lung cancer that highlight the need for biomarker development, then summarize the evidence suggesting the potential of exhaled breath volatile organic compound biomarkers to meet this need. I will focus on advances that have taken place since 2008, when this topic was last addressed in the Journal of Breath Research. PMID:22622411

  16. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants

    PubMed Central

    Schmelz, Eric A.; Engelberth, Juergen; Alborn, Hans T.; O'Donnell, Phillip; Sammons, Matt; Toshima, Hiroaki; Tumlinson, James H.

    2003-01-01

    Phytohormones regulate the protective responses of plants against both biotic and abiotic stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. A bottleneck in crosstalk research is the quantification of numerous interacting phytohormones and regulators. The chemical analysis of salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid is typically achieved by using separate and complex methodologies. Moreover, pathogen-produced phytohormone mimics, such as the phytotoxin coronatine (COR), have not been directly quantified in plant tissues. We address these problems by using a simple preparation and a GC-MS-based metabolic profiling approach. Plant tissue is extracted in aqueous 1-propanol and mixed with dichloromethane. Carboxylic acids present in the organic layer are methylated by using trimethylsilyldiazomethane; analytes are volatilized under heat, collected on a polymeric absorbent, and eluted with solvent into a sample vial. Analytes are separated by using gas chromatography and quantified by using chemical-ionization mass spectrometry that produces predominantly [M+H]+ parent ions. We use this technique to examine levels of COR, phytohormones, and volatile organic compounds in model systems, including Arabidopsis thaliana during infection with Pseudomonas syringae pv. tomato DC3000, corn (Zea mays) under herbivory by corn earworm (Helicoverpa zea), tobacco (Nicotiana tabacum) after mechanical damage, and tomato (Lycopersicon esculentum) during drought stress. Numerous complex changes induced by pathogen infection, including the accumulation of COR, salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid illustrate the potential and simplicity of this approach in quantifying signaling crosstalk interactions that occur at the level of synthesis and accumulation. PMID:12874387

  17. Meeting new air standards with a volatile organic treatment train

    SciTech Connect

    Bowers, J.S.; Dennison, D.; May, G.

    1995-02-01

    The U.S. Environmental Protection Agency (EPA) issued the second phase of the organic air emission standards for hazardous waste treatment, storage, and disposal facilities (TSDFs) and hazardous waste generators in December 1994. These standards (referred to as the Subpart CC standards) are designed to further reduce organic air emissions from hazardous waste management activities. To comply with these new air standards, Lawrence Livermore National Laboratory (LLNL) is designing a volatile organic removal and destruction treatment train to modify its existing Waste Water Treatment Tank Farm (hereafter called Tank Farm). LLNL`s Tank Farm consists of six, 7,000-L open-top tanks used to store and treat aqueous low-level radioactive, mixed, and hazardous waste before discharging it to the local publicly owned treatment works. The waste stored and treated in the tanks have elevated volatile organic constituent (VOC) concentrations. According to the Subpart CC standards, tanks handling waste with similar VOC concentrations must be retrofitted with a cover and an emission control device for cover openings that achieves at least a 95% reduction in the total organic content of the vented gas stream. However, LLNL concluded that the removal and destruction of VOCs from waste before they enter the Tank Farm would demonstrate compliance with the Subpart CC standards more effectively and be more cost effective than installation of air emission control devices on the Tank Farm. LLNL has designed this removal and destruction technique to consist of an air stripper, high-efficiency particulate air (HEPA) filter, catalytic oxidizer, scrubber, and mist eliminator.

  18. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. PMID:25898090

  19. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  20. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site`s 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE`s Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  1. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  2. Emission of volatile organic compounds (VOCs) from PVC floor coverings.

    PubMed

    Wiglusz, R; Igielska, B; Sitko, E; Nikel, G; Jarnuszkiewicz, I

    1998-01-01

    In this study 29 PVC floor coverings were tested for emission of vinyl chloride (VC) and other volatile organic compounds (VOCs). A study on the effect of higher temperature on emission of VOCs from newly manufactured PVC flooring was also carried out. The study was conducted in climatic chamber, according to Polish Standard PN-89/Z-04021. GC method was used for analyzing of the compounds emitted. VC was not emitted from any of the floorings tested. Other VOCs were emitted in different concentrations. The influence of temperature on emission was conducted at temperatures of 23 degrees C and 35 degrees C from 2 hrs up to 180 days after introduction of materials in the chamber. The increase of temperature caused increase of total volatile organic compounds (TVOC) emission during 24 hrs of experiment. Then the emission was comparable for both temperatures. After 9 days emission of identified and unidentified compounds (TVOC) showed a rapid decay and stayed on very low level during a few months. The study conducted showed that PVC floorings after 10 days of installation in the room should not be source of indoor air contamination. PMID:10431652

  3. Evaporation of volatile organic compounds from human skin in vitro.

    PubMed

    Gajjar, Rachna M; Miller, Matthew A; Kasting, Gerald B

    2013-08-01

    The specific evaporation rates of 21 volatile organic compounds (VOCs) from either human skin or a glass substrate mounted in modified Franz diffusion cells were determined gravimetrically. The diffusion cells were positioned either on a laboratory bench top or in a controlled position in a fume hood, simulating indoor and outdoor environments, respectively. A data set of 54 observations (34 skin and 20 glass) was assembled and subjected to a correlation analysis employing 5 evaporative mass transfer relationships drawn from the literature. Models developed by Nielsen et al. (Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments: a theoretical approach based on laminar boundary layer theory. Ann Occup Hyg 1995;39:497-511.) and the U.S. Environmental Protection Agency (Peress, Estimate evaporative losses from spills. Chem Eng Prog 2003; April: 32-34.) were found to be the most effective at correlating observed and calculated evaporation rates under the various conditions. The U.S. EPA model was selected for further use based on its simplicity. This is a turbulent flow model based only on vapor pressure and molecular weight of the VOC and the effective air flow rate u. Optimum values of u for the two laboratory environments studied were 0.23 m s(-1) (bench top) and 0.92 m s(-1) (fume hood). PMID:23609116

  4. Fungal volatile organic compounds and their role in ecosystems.

    PubMed

    Hung, Richard; Lee, Samantha; Bennett, Joan W

    2015-04-01

    All odorants are volatile organic compounds (VOCs), i.e., low molecular weight compounds that easily evaporate at normal temperatures and pressure. Fungal VOCs are relatively understudied compared to VOCs of bacterial, plant, or synthetic origin. Much of the research to date on fungal VOCs has focused on their food and flavor properties, their use as indirect indicators of fungal growth in agriculture, or their role as semiochemicals for insects. In addition, research into fungal volatiles has also taken place to monitor spoilage, for purposes of chemotaxonomy, for use in biofilters and for biodiesel, to detect plant and animal disease, for "mycofumigation," and with respect to plant health. As methods for the analysis of gas phase molecules have improved, it has become apparent that fungal VOC are more chemically varied and more biologically active than has generally been realized. In particular, there is increasing data that show that fungal VOCs frequently mediate interactions between organisms within and across different ecological niches. The goal of this mini review is to orchestrate data on fungal VOCs obtained from disparate disciplines as well as to draw attention to the ecological importance of fungal VOCs in signaling between different species. Technologies and approaches that are common in one area of research are often unknown in others, and the study of fungal VOCs would benefit from more cross talk between subdisciplines. PMID:25773975

  5. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  6. Cyclodextrin-based microsensors for volatile organic compounds

    SciTech Connect

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  7. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  8. Electrophysiological and behavioral responses of Thanatophilus sinuatus Fabricius (Coleoptera: Silphidae) to selected cadaveric volatile organic compounds.

    PubMed

    Dekeirsschieter, Jessica; Frederickx, Christine; Lognay, Georges; Brostaux, Yves; Verheggen, Francois J; Haubruge, Eric

    2013-07-01

    Soon after death, carcasses release volatile chemicals that attract carrion insects including Silphidae. Nevertheless, it is not known which chemical cues are involved in the attractiveness of the carcass. So far, little information is available on the chemical ecology of carrion beetles, particularly concerning the subfamily of Silphinae. The biological role of selected cadaveric volatile organic compounds including dimethyldisulfide (DMDS), butan-1-ol, n-butanoic acid, indole, phenol, p-cresol, putrescine, and cadaverine on the silphine species, Thanatophilus sinuatus Fabricius, was investigated using both electrophysiological and behavioral techniques. Among the tested cadaveric compounds, butan-1-ol and DMDS elicited the strongest electroantennography (EAG) from both T. sinuatus male and female antennae. In a two-arm olfactometer, males and females were significantly attracted to DMDS for both tested doses, whereas only males were attracted to p-cresol at 100 ng. Putrescine was repellent to males at the dose of 1 ?g. PMID:23822801

  9. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore »and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  10. Phase partitioning and volatility of secondary organic aerosol components formed from ?-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.

  11. Phase partitioning and volatility of secondary organic aerosol components formed from ?-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.

  12. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  13. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGESBeta

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  14. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  15. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  16. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prvt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 ?g m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.

  17. Development of novel biofilters for treatment of volatile organic compounds

    SciTech Connect

    Bishop, D.F.; Govind, R.

    1995-12-31

    Biofiltration involves contacting a contaminated gas stream with immobilized microorganisms in a contactor to biodegrade the contaminants. It is emerging as an attractive technology for removing low concentrations (i.e., less than 800 ppmv) of volatile organic chemicals (VOCs) from air. Compared with other technologies, biofiltration fully mineralizes the contaminants, is inexpensive and reliable, and requires no posttreatment. In the study described in this paper, four types of media consisting of porous ceramic monoliths with several straight passages were studied to determine the effects of adsorptive and nonadsorptive media on biofilter startup time, dynamic response to step changes in inlet substrate concentration, biofilm adherence, and overall VOC-removal efficiency. Volatile compounds studied were benzene, toluene, ethylbenzene, m-xylene, and o-xylene. Adsorbing media such as activated carbon, when compared with nonadsorbing media such as ceramic, exhibit faster biofilter startup, are more stable to dynamic changes in inlet concentration, and attain higher VOC-removal efficiencies due to better adherence of biofilm on media surfaces.

  18. Evaluation of volatile organic emissions from hazardous waste incinerators

    SciTech Connect

    Sedman, R.M.; Esparza, J.R. )

    1991-08-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators.

  19. Evaluation of volatile organic emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928

  20. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    PubMed

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mnica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-10-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400?mg?L(-1) of TVFA) was obtained with 30C and 3?g?L(-1) of sodium bicarbonate. The peak of VFA was in 45?h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53?cm(3)?h(-1)). The process was validated experimentally and 3400?g?L(-1) of TVFA were obtained with a low relative standard deviation. PMID:25885093

  1. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  2. A method for the combined measurement of volatile and condensable organic AMC in semiconductor applications

    NASA Astrophysics Data System (ADS)

    Miller, Charles M.; Zaloga, Emily C.; Lobert, Jürgen M.

    2014-04-01

    Monitoring airborne molecular contamination (AMC) at the parts per trillion (ppt) level in cleanroom environments, scanner applications and compressed gas lines is essential for processes, equipment and yield-control. For the operation of EUV tools, in particular, volatile organic contamination is known to have as much impact as condensable organic compounds, which requires a suitable sampling and measurement methodology. Some of the current industry standards use sample traps comprised of porous 2,6-diphenylene-oxide polymer resin, such as Tenax®, for measuring volatile organic (<6 C-atoms, approximately IPA/acetone to toluene) and condensable organic (>6 C atoms, about toluene and higher) AMC. Inherent problems associated with these traps are a number of artifacts and chemical reactions that reduce accuracy of reported organic AMC concentrations. The break-down of the polymeric material forms false positive artifacts when used in the presence of reactive gases, such as nitrous acid and ozone, which attack and degrade the polymer to form detectable AMC. Most importantly, these traps have poor capture efficiency for volatile organic compounds (VOC). To address the disadvantages of polymer-based sample traps, we developed a method based on carbonaceous, multi-layered adsorbent traps to replace the 2,6-diphenylene-oxide polymer resin sample trap type. Along with the new trap's ability to retain volatile organics, the trap was found to provide artifact-free results. With industry trends towards detecting more contaminants while continuously reducing required reporting limits for those compounds, artifact-free and accurate detection of AMC is needed at the parts per quadrillion (ppq) level. The proposed, multi-layered trap substantially increases laboratory productivity and reduces cost by eliminating the need to analyze condensable and volatile organic compounds in two separate methods. In our studies, even some organic compounds with six C-atoms, that are part of exposure tool OEM requirements, were not effectively retained by polymeric traps, but were fully retained on the multi-layered adsorbent trap. This demonstrates that the standard trap used in the industry will result in significantly underreporting actual AMC concentrations for volatile organic compounds, including some siloxanes (TMS, HMDSO, D3). Performance of the proposed trap was excellent at both zero and 50% relative humidity, an important metric, as the trap is used for AMC detection in dry supply gases and humidified environments. Retention of all organic compounds was quantitative for more than 30 liters of air, sufficient for ppq-level detection limits. Desorption efficiency was 94% for C26 compounds. Pressure drop through the new trap was comparable to that of polymer-based traps and much lower than other, commercially available carbonaceous traps. Precision of repeated analyses was 5%, a very good result. Resolution of IPA and acetone was complete and that of a mix of halogenated refrigerants was much improved over existing methods. We propose to adopt this methodology as a new industry standard to overcome widespread inaccuracy in the reporting of volatile organic AMC and false positive condensable AMC.

  3. Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process

    SciTech Connect

    Koebel, M.; Elsener, M.

    1998-10-01

    The main part of the VOCs (volatile organic compounds) contained in diesel exhaust ({approx}80%) is oxidized to CO and CO{sub 2} over an SCR (selective catalytic reduction) catalyst. CO is the major product of this oxidation, representing about 50--70% of the formed products (CO + CO{sub 2}). This preferential formation of CO leads to a pronounced increase of CO emissions when an SCR process is added to a diesel engine. A small fraction of the VOCs is selectively oxidized to carboxylic acids over the SCR catalyst. This selectivity is due to the acidic properties of the catalyst causing the preferential desorption at the oxidation state of the acid. The main products of these oxidation reactions are the lower monocarboxylic acids and some dicarboxylic acids forming stable anhydrides, especially maleic and phthalic acid. The highest emissions of these acids are found at low temperatures; they decrease at higher temperatures. Formic acid is preferentially decomposed into carbon monoxide and water. It must therefore be assumed that the strong increase of CO mentioned above is due to a mechanism involving the thermal decomposition of formic acid formed from various primary VOCs.

  4. 77 FR 52630 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Organic Compounds; Architectural and Industrial Maintenance Coatings AGENCY: Environmental Protection... Implementation Plan (SIP) the addition of a new rule that sets emissions limits on the amount of volatile...

  5. Development and Mining of a Volatile Organic Compound Database

    PubMed Central

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md.; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  6. Development and mining of a volatile organic compound database.

    PubMed

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  7. The effects of fungal volatile organic compounds on bone marrow stromal cells.

    PubMed

    Hokeness, Kirsten; Kratch, Jacqueline; Nadolny, Christina; Aicardi, Kristie; Reid, Christopher W

    2014-01-01

    Evidence has shown that individuals exposed to indoor toxic molds for extended periods of time have elevated risk of developing numerous respiratory illnesses. It is not clear at the cellular level what impact mold exposure has on the immune system. Herein, we show that 2 fungal volatiles (E)-2-octenal and oct-1-en-3-ol have cytotoxic effects on murine bone marrow stromal cells. To further analyze alterations to the cell, we evaluated the impact these volatile organic compounds have on membrane composition and hence fluidity. Both (E)-2-octenal and oct-1-en-3-ol exposure caused a shift to unsaturated fatty acids and lower cholesterol levels in the membrane. This indicates that the volatile organic compounds under investigation increased membrane fluidity. These vast changes to the cell membrane are known to contribute to the breakdown of normal cell function and possibly lead to death. Since bone marrow stromal cells are vital for the appropriate development and activation of immune cells, this study provides the foundation for understanding the mechanism at a cellular level for how mold exposure can lead to immune-related disease conditions. PMID:24392920

  8. Volatile Organic Compound Optical Fiber Sensors: A Review

    PubMed Central

    Elosua, Cesar; Matias, Ignacio R.; Bariain, Candido; Arregui, Francisco J.

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.

  9. Source fingerprints for receptor modeling of volatile organics

    SciTech Connect

    Scheff, P.A. ); Wadden, R.A.; Bates, B.A. ); Aronian, P.F. )

    1989-04-01

    The development of receptor models for the determination of the sources of an ambient air pollution requires that the composition of the pollutant at the point of emissions be known. For this study, composition information for 10 sources of volatile organic compounds (VOC) were evaluated and source fingerprints developed. The source categories include motor vehicles, gasoline vapor, petroleum refineries, architectural coatings, graphic arts, waste-water treatment, vapor degreasing, dry cleaning, automobile assembly (including body painting), and polyethylene production. The fingerprints are presented for a group of 23 compounds. These compounds were selected for a variety of reasons including ease of measurement in the ambient environment, compound toxicity, reactivity, and usefulness in previous receptor modeling applications. In general, the data for sources of VOC are remarkably consistent from study to study. Because the profiles for many of the sources of VOC are controlled by physical and chemical process (e.g. combustion) and not raw material composition, the fingerprints have general applicability.

  10. Indoor Volatile Organic Compounds and Chemical Sensitivity Reactions

    PubMed Central

    Win-Shwe, Tin-Tin; Arashidani, Keiichi; Kunugita, Naoki

    2013-01-01

    Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

  11. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  12. Catalytic oxidation process cleans volatile organics from exhaust

    SciTech Connect

    Haggin, J.

    1994-06-27

    Unsteady-state catalytic oxidation is the basis of a technology now becoming available in the US for removing volatile organic compounds (VOCs) from industrial exhaust streams. The technology originated in Russia and is being developed for the US market by Monsanto Enviro-Chem Systems, St. Louis. At least 149 of the 189 pollutants identified by EPA are VOCs. EPA estimates that the initial cost to industry for equipment to remove the hazardous materials will be about $350 million. The expected annual maintenance bill to treat the major pollution sources is about $182 million. Catalytic oxidizers are applicable to most, but not all, VOC removal applications. The advantages in most cases are VOC removal efficiencies of at least 99%, half the energy requirement of other systems, low operating temperatures, stable operation with variable flow rates and VOC concentrations, and low capital and operating costs.

  13. Analysis of organic volatile residues in 9 mm spent cartridges.

    PubMed

    Weyermann, Cline; Belaud, Vanessa; Riva, Fabiano; Romolo, Francesco Saverio

    2009-04-15

    Determining the time since discharge of spent cartridges found on a crime scene may be very useful in firearm investigations. The potential of small calibre munitions was barely studied in the past and this work did therefore focus on that problematic. The first step was to optimise the detection potential of solid-phase microextraction (SPME) followed by gas chromatography coupled to a mass spectrometry detector (GC/MS). This allowed determining the organic volatile composition of empty cartridges immediately after a gunshot. Identification of 32 detected compounds was confirmed by the analysis of reference substances. Preliminary aging studies over 32 h were carried out on selected target compounds to evaluate their potential to determine the time since discharge of empty cartridge cases. PMID:19217228

  14. Exposure of humans to a volatile organic mixture. 2. Sensory

    SciTech Connect

    Hudnell, H.K.; Otto, D.A.; House, D.E.; Molhave, L.

    1992-01-01

    Time-course functions for symptoms of the sick building syndrome were derived from 66 healthy males exposed to clean air and a volatile organic compound (VOC) mixture in separate sessions. The mixture contained 22 VOCs (25 mg/cu m total concentration) commonly found air-borne in new or recently renovated buildings. Subjects rated the intensity of perceived irritation, odor, and other variables before and twice during 2.75 hr exposure periods. Eye and throat irritation, headache, and drowsiness increased or showed no evidence of adaptation during exposure, whereas odor intensity decreased by 30%. These results indicate that irritation intensity and other symptoms are not related in any simple fashion to odor intensity, suggesting that the symptoms may not be a psychosomatic response to detection of an aversive odor. Instead, subthreshold levels of VOCs may interact additively or hyperadditively and stimulate trigeminal nerve receptors.

  15. Apparatus for sensing volatile organic chemicals in fluids

    DOEpatents

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  16. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  17. Organic acids as indicators of VOC oxidation: Measurements of formic acid and other gas-phase acids during SOAS

    NASA Astrophysics Data System (ADS)

    Farmer, D.; Brophy, P.; Murschell, T.

    2013-12-01

    Oxidation of volatile organic compounds (VOCs) in the atmosphere affects not only the oxidative capacity of the atmosphere, but also the formation of secondary organic aerosol. Organic acids are produced during VOC oxidation, although additional sources include biomass burning and primary emissions. While some organic acids are semi-volatile and dominantly present in the aerosol phase, formic acid and other small organic acids are dominantly present in the gas phase. The concentrations of these gas-phase organic acids can provide insight into oxidation chemistry. Here, we present measurements made during the Southern Oxidant and Aerosol Study (SOAS) in Centerville, Alabama during the summer of 2013 by a high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) operated in a novel switching reagent ion mode to measure gas phase organic acids with both acetate (CH3COO-) and iodide (I-) reagent ions. Formic acid was quantified using for both ionization schemes using multiple calibration techniques. In this study, we will focus on the impact of anthropogenic pollutants, including nitrogen and sulfur oxides, on oxidation chemistry, and discuss the potential use of organic acids as tracers for atmospheric oxidation chemistry.

  18. Removal of gasoline volatile organic compounds via air biofiltration

    SciTech Connect

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.; DeSantis, P.; Andrilenas, J.S.

    1995-12-31

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO{sub 2} + H{sub 2}O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m{sup 3}. Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency.

  19. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  20. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  1. Volatile organic compound emission profiles of four common arctic plants

    NASA Astrophysics Data System (ADS)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine; Rinnan, Riikka

    2015-11-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions and the MT and SQT emissions standardized to 30 °C were highest in the first measurement in early July, while the other species had the highest emissions in the last measurement in early August. As climate change is expected to increase plant biomass and change vegetation composition in the Arctic, the BVOC emissions from arctic ecosystems will also change. Our results suggest that if the abundance of deciduous shrubs like Betula and Salix spp. increases at the expense of slower growing evergreens like E. hermaphroditum, there is the potential for increased emissions of isoprene, MTs and non-isoprenoid BVOCs in the Arctic.

  2. Qualitative analysis of volatile organic compounds on biochar.

    PubMed

    Spokas, Kurt A; Novak, Jeffrey M; Stewart, Catherine E; Cantrell, Keri B; Uchimiya, Minori; Dusaire, Martin G; Ro, Kyoung S

    2011-10-01

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and were observed to possess diverse sorbed VOC composition. There were over 140 individual chemical compounds thermally desorbed from some biochars, with hydrothermal carbonization (HTC) and fast pyrolysis biochars typically possessing the greatest number of sorbed volatiles. In contrast, gasification, thermal or chemical processed biochars, soil kiln mound, and open pit biochars possessed low to non-detectable levels of VOCs. Slow pyrolysis biochars were highly variable in terms of their sorbed VOC content. There were no clear feedstock dependencies to the sorbed VOC composition, suggesting a stronger linkage with biochar production conditions coupled to post-production handling and processing. Lower pyrolytic temperatures (?350C) produced biochars with sorbed VOCs consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars (>350C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects. PMID:21788060

  3. Pretreatment of macroalgae for volatile fatty acid production.

    PubMed

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. PMID:23942360

  4. Soil sampling and analysis for volatile organic compounds.

    PubMed

    Lewis, T E; Crockett, A B; Siegrist, R L

    1994-05-01

    Concerns over data quality have raised many questions related to sampling soils for volatile organic compounds (VOCs). This paper was prepared in response to some of these questions and concerns expressed by Remedial Project Managers (RPMs) and On-Scene Coordinators (OSCs). The following questions are frequently asked: 1. Is there a specific device suggested for sampling soils for VOCs? 2. Are there significant losses of VOCs when transferring a soil sample from a sampling device (e.g., split spoon) into the sample container? 3. What is the best method for getting the sample from the split spoon (or other device) into the sample container? 4. Are there smaller devices such as subcore samplers available for collecting aliquots from the larger core and efficiently transferring the sample into the sample container? 5. Are certain containers better than others for shipping and storing soil samples for VOC analysis? 6. Are there any reliable preservation procedures for reducing VOC losses from soil samples and for extending holding times? Guidance is provided for selecting the most effective sampling device for collecting samples from soil matrices. The techniques for sample collection, sample handling, containerizing, shipment, and storage described in this paper reduce VOC losses and generally provide more representative samples for volatile organic analyses (VOA) than techniques in current use. For a discussion on the proper use of sampling equipment the reader should refer to other sources (Acker, 1974; U.S. EPA, 1983; U.S. EPA, 1986a).Soil, as referred to in this report, encompasses the mass (surface and subsurface) of unconsolidated mantle of weathered rock and loose material lying above solid rock. Further, a distinction must be made as to what fraction of the unconsolidated material is soil and what fraction is not. The soil component here is defined as all mineral and naturally occurring organic material that is 2 mm or less in size. This is the size normally used to differentiate between soils (consisting of sands, silts, and clays) and gravels.Although numerous sampling situations may be encountered, this paper focuses on three broad categories of sites that might be sampled for VOCs: 1. Open test pit or trench. 2. Surface soils (<5 ft in depth). 3. Subsurface soils (>5 ft in depth). PMID:24213831

  5. Analysis of low- and non-volatile organic substances in the environment

    SciTech Connect

    DeLuca, S.J.

    1986-01-01

    Three analytical techniques were utilized for the analysis of low- and non-volatile organic materials in various environmental samples. Gas chromatography-mass spectrometry was used to characterize lipid materials extracted from atmospheric aerosol samples collected over the equatorial Pacific ocean. Although terrestrial-derived lipids were present, the major source of the aerosol lipids appeared to be local marine sources whereas previous reports of non-equatorial Pacific ocean aerosols indicated a major terrestrial source of lipids. A supercritical fluid chromatograph (SFC), with flame ionization and mass spectrometric detectors, was constructed for analysis of compound mixtures which could not be adequately separated by gas chromatography or liquid chromatography. One such application was the separation and quantitation of glycerol tetraether lipids of archaebacteria. A new theory of solute retention in SFC, in which entropy changes play a significant role, was also developed. Pattern recognition procedures were applied to pyrolysis-mass spectrometry (Py-MS) data for the characterization of complex non-volatile organic mixtures. In one study, Py-MS data were used to distinguish humic acids from fulvic acids in a varied suite of humic materials. Another Py-MS study involved the classification of southeast Asian environmental samples associated with yellow rain. The method classified samples as either pollen or bee feces with a 95% success rate.

  6. [Assessment of the emission of volatile organic compounds from polyurethane foams].

    PubMed

    Pecka, Irena; Wiglusz, Renata; Sitko, Elzbieta; Nikel, Grazyna

    2004-01-01

    The emission of 2,4- and 2,6-diaminotoluene, triethylenediamine, diethanolamine and other volatile organic compounds from polyurethane foams was examined in environmental chamber. Tested materials did not release of amines. The emission of total volatile organic compounds showed differences for polyurethane samples but did not exceed ecological standards. PMID:15493351

  7. VOLATILE ORGANIC COMPOUND MODEL-QUALITY ASSURANCE AND SENSITIVITY TESTING (VERSION 1.8)

    EPA Science Inventory

    The report describes test runs of the Volatile Organic Compound Model (VOCM), Version 1.8. VOCM predicts future emission levels of volatile organic compounds (VOCs) by projecting uncontrolled base year emissions into the future. These projected emissions are then reduced by const...

  8. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  9. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  10. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  11. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  12. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  13. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  14. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  15. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  16. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  17. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  18. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  19. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Volatile Organic HAP (VOHAP) Limits... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP... 571 728 Mist 610 2,235 Navigational aids 550 1,597 Nonskid 340 571 728 Nuclear 420 841 1,069...

  20. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  1. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  2. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  3. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  4. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  5. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Volatile Organic HAP (VOHAP) Limits... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP... 571 728 Mist 610 2,235 Navigational aids 550 1,597 Nonskid 340 571 728 Nuclear 420 841 1,069...

  6. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  7. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  8. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  9. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  10. DEVELOPMENT OF THE VOLATILE ORGANIC SAMPLING TRAIN (VOST) FOR USE IN DETERMINING INCINERATOR EFFICIENCY

    EPA Science Inventory

    The paper discusses the development, initial evaluation, and field application to incinerators of a new sampling train for volatile organic species. The Volatile Organic Sampling Train (VOST) is a simple portable device, combining Tenax and Tenax/charcoal cartridges as collection...

  11. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  12. Removal of volatile organic compounds (VOCs) using biofilters

    SciTech Connect

    Carriere, P.E.; Mohaghegh, S.D.; Madabhushi, B.S.

    1995-12-31

    One of the most significant air pollution control challenges being faced by the Federal and State agencies and the chemical process industries is the control of emissions of volatile organic compounds (VOCs). VOCs are discharged from process industries as major components of mixed organic wastes which contaminate the environment. Among these wastes, benzene, toluene, ethyl benzene and xylene are classified as major pollutants with high frequencies of occurrence on the EPA list of priority pollutants. Biofiltration, a recent air pollution control technology, is the removal and decomposition of contaminants present in emissions of non hazardous substances using a biologically activated medium. Biofiltration involves contacting the contaminated emission gas stream with microorganisms in a filter media. Biofiltration utilizes microorganisms immobilized in the form of a biofilm layer on an adsorptive filter media. Compared to other technologies, biofiltration is inexpensive, reliable and requires no post treatment. The main objective of this study was to compare the performance of both Granular Activated Carbon (GAC) and Biologically Activated Carbon (BAC) for the removal of benzene and toluene.

  13. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools

    NASA Astrophysics Data System (ADS)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia

    2015-04-01

    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  14. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  15. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Hkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  16. Volatile Organic Compound Emissions from Larrea tridentate (Creosote bush) during the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Jardine, K. J.; Kurc, S. A.; Guenther, A. B.; Scott, R. L.; Huxman, T. E.; Abrell, L.

    2009-12-01

    The North American monsoon is experienced as a pronounced increase in rainfall from an extremely dry June (< 5 mm precipitation) to a rainy July (> 80 mm) over large areas of the Sonoran desert in southwestern United States and northwestern Mexico. While the sudden availability of water, high temperatures and solar insolation is known to stimulate the primary productivity of the Sonoran desert, little is known about the emissions of volatile organic compounds (VOCs) from this region. Atmospheric VOCs impact climate and air quality by influencing the oxidizing capacity and acidity of the atmosphere and by contributing to aerosol particles. Although it is often a dominant species in North and South American deserts and is known for the production of a rich set of VOCs, few measurements of VOC emissions from creosote bush exist. We present preliminary results from a field study in southern Arizona aimed at quantifying the exchange rates of VOCs from a creosote bush dominated ecosystem during and after the monsoon season. Ecosystem exchange rates were measured with the technique of virtual disjunct eddy covariance (PTR-MS) and relaxed eddy accumulation (GC-MS). Branch enclosure studies show a diurnal pattern of VOCs emissions typically observed in other forest sites including oxygenated VOCs and volatile isoprenoids. However, a large number of additional VOCs mainly derived from the oxidation of fatty acids and the Shikimic Acid Pathway are also released.

  17. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles

    PubMed Central

    Alborn, Hans T.; Hansen, Trond V.; Jones, Tappey H.; Bennett, Derrick C.; Tumlinson, James H.; Schmelz, Eric A.; Teal, Peter E. A.

    2007-01-01

    A previously unidentified class of compounds has been isolated from the regurgitant of the grasshopper species Schistocerca americana. These compounds (named here caeliferins) are composed of saturated and monounsaturated sulfated ?-hydroxy fatty acids in which the ?-carbon is functionalized with either a sulfated hydroxyl or a carboxyl conjugated to glycine via an amide bond. The regurgitant contains a series of these compounds with fatty acid chains of 1520 carbons and in varying proportions. Of these, the 16-carbon analogs are predominant and are also most active in inducing release of volatile organic compounds when applied to damaged leaves of corn seedlings. Caeliferins are nonlepidopteran elicitors identified in insect herbivores. This adds a category of insect herbivore-produced elicitors of plant responses, providing further evidence of the ability of plants to detect and respond to a broad range of insect herbivore-produced compounds. PMID:17664416

  18. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  19. UNDERSTANDING THE CONTRIBUTIONS AND INTERACTIONS OF SUGARS, ACIDS AND AROMA VOLATILES TO OVERALL TOMATO FLAVOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contribution and interaction of sugars, acids and volatiles to tomato (Lycoperscon esculentum Mill.) flavor is little understood. Coarsely chopped deodorized tomato puree was spiked with different levels of individual food grade volatiles, reported to contribute to tomato flavor, as well as two...

  20. Anaerobic rotating disc batch reactor nutrient removal process enhanced by volatile fatty acid addition.

    PubMed

    Rodziewicz, Joanna; Janczukowicz, Wojciech; Mielcarek, Artur; Filipkowska, Urszula; K?odowska, Izabella; Ostrowska, Kamila; Duchniewicz, Sylwia

    2015-01-01

    RBC effluent needs further treatment because of water-quality standards requiring low nitrogen and phosphorus concentrations. It may be achieved by using reactors with biomass immobilized on the filling's surface as post-denitrification biofilm reactors. Due to the lack of organic matter in treated wastewater, the introduction of external carbon sources becomes necessary. The new attached growth bioreactor--anaerobic rotating disc batch reactor (ARDBR)--was examined as a post-denitrification reactor. The impact of selected volatile fatty acids on nutrient removal efficiency in an ARDBR was studied. The biofilm was developing on totally submerged discs mounted coaxially on a vertical shaft. Acetic, propionic, butyric and caproic acids were applied. Wastewaters were removed from the reactors after 24-h treatment, together with the excess solids. In the ARDBR tank, there was no biomass in the suspended form at the beginning of the treatment process. Acids with a higher number of carbon atoms (butyric and caproic) were the most efficient in denitrification process. The highest phosphorus removal efficiency was noted in the ARDBR with butyric and propionic acids. The lowest unitary consumption of the external source of carbon in denitrification was recorded for acetic acid, whereas the highest one for caproic acid. PMID:25252632

  1. EVALUATION OF THE WALKTHROUGH SURVEY METHOD FOR DETECTION OF VOLATILE ORGANIC COMPOUND LEAKS

    EPA Science Inventory

    During 1978 and 1979, the Emission Standards and Engineering Division of EPA's Office of Air Quality Planning and Standards conducted a fugitive volatile organic compound (VOC) emission sampling program in organic chemical manufacturing plants and petroleum refineries. As a part ...

  2. Compositing water samples for analysis of volatile organic compounds

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Maluk, T.L.

    2000-01-01

    Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive accurate values for the mean concentration of VOCs from a single VOC analysis using established techniques for the collection of representative, discrete water samples. Such samples are then composited with a gas-tight syringe. This methodology can be employed in conjunction with chemical assessment using a conventional laboratory, field-portable equipment, or a mobile laboratory. Estimates of mass loadings in wastewater and urban storm runoff can be generated using values for the flow-weighted mean VOC concentrations. Spatially integrated mean VOC concentrations are useful for the evaluation of drinking waters. Factors that influence the value for the total error are identified.

  3. RECOVERY OF PRINCIPAL ORGANIC HAZARDOUS CONSTITUENTS AND PRODUCTS OF INCOMPLETE COMBUSTION FROM A VOLATILE ORGANIC SAMPLING TRAIN

    EPA Science Inventory

    The report describes an investigation of the recovery efficiencies of selected principal organic hazardous constituents (POHCs) from the Volatile Organic Sampling Train (VOST) under laboratory conditions. The compounds included: vinyl chloride, carbon tetrachloride, trichloroethy...

  4. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    PubMed

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (?200 C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. PMID:25218204

  5. Volatile and amino acid profiling of dry cured hams from different swine breeds and processing methods.

    PubMed

    Garca-Gonzlez, Diego L; Aparicio, Ramn; Aparicio-Ruiz, Ramn

    2013-01-01

    The flavor of dry cured ham explains the high appreciation of this product and it determines consumer acceptance. Volatile compounds provide valuable information about the odor and sensory quality of dry cured hams. Since amino acids are the origin of some volatile compounds of dry cured ham, the volatile and amino acid compositions of forty-one dry cured hams from Spain and France were determined to establish associations between them. The samples included different pig breeds (non Iberian vs. Iberian), which were additionally affected by different maturation times and feeding types (acorn vs. fodder). Results showed that 20 volatile compounds were able to distinguish Iberian and non Iberian hams, and 16 of those had relevant sensory impact according to their odor activity values. 3-Methylbutanol, 2-heptanol and hexanal were among the most concentrated volatile compounds. In the case of non-volatile compounds, the concentrations of amino acids were generally higher in Iberian hams, and all the amino acids were able to distinguish Iberian from non Iberian hams with the exception of tryptophan and asparagine. A strong correlation of some amino acids with volatile compounds was found in the particular case of alcohols and aldehydes when only Iberian hams were considered. The high correlation values found in some cases proved that proteolysis plays an important role in aroma generation. PMID:23552905

  6. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses. PMID:12416797

  7. Modeling Emissions of Volatile Organic Compounds from New Carpets

    SciTech Connect

    Little, J.C.; Hodgson, A.T.; Gadgil, A.J.

    1993-02-01

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the polymer/air partition coefficients generally increase as the vapor pressure of the compounds decrease. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that predictions of VOCs emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  8. Elimination kinetics of volatile organics in humans using breath measurements

    SciTech Connect

    Pellizzari, E.D.; Wallace, L.A.; Gordon, S.M. )

    1992-07-01

    During the past decade significant strides have been made toward understanding the sources and factors which lead to volatile organic chemical (VOC) exposure in the general population. Less is known, however, about the impact of low-level environmental exposure on human health. Investigations are underway in a number of laboratories in an effort to determine the uptake, distribution, metabolism, and elimination kinetics for VOCs in humans. We examined the elimination kinetics for the third phase for ten VOCs--1,1,-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, m,p-xylenes, o-xylene, ethylbenzene, p-dichlorobenzene, and limonene--in human subjects. Subjects were exposed to a variety of common consumer products and breath samples were collected post-exposure while the subjects spent up to 10 hr in a clean air environment. VOCs from breath samples were collected into canisters or onto Tenax GC cartridges and analyzed by gas chromatography-mass spectrometry. Exponential modeling of the decay data was performed to obtain kinetic parameters. The half-lives for trichloroethylene and 1,1,1-trichloroethane were approximately 5 to 8 hr for the four subjects. In general, the magnitude and range of variability was larger for toluene, limonene, and p-dichlorobenzene than for the other VOCs; the elimination rate spanning a few hours to a day or two. Thus, VOCs exhibit relatively short residence times in the body relative to other halo-carbons, such as polychlorinated biphenyls and dioxins.

  9. Cost effective passive sampling device for volatile organic compounds monitoring

    NASA Astrophysics Data System (ADS)

    Thammakhet, Chongdee; Muneesawang, Vilailuk; Thavarungkul, Panote; Kanatharana, Proespichaya

    A laboratory-built passive sampler was developed as a simple and cost effective device for monitoring volatile organic compounds (VOCs) such as benzene, toluene and xylene (BTX). Common glass bottles (screw cap, 10 ml, 67.610.6 mm ID), packed with 75 mg of activated Tenax TA, were used as passive samplers. After exposed to real sample, the adsorbent was desorbed using a laboratory-built thermal desorption device. The analytes were purged to fill a sampling loop and then injected by a gas sampling valve to a gas chromatograph with a flame ionization detector (FID). All parameters, i.e. , desorption time, purge flow rate, gas chromatograph conditions were optimized to obtain high sensitivity, resolution and short analysis time. The system was calibrated by BTX standard gas and the linear regression coefficient of greater than 0.99 was obtained with detection limits 0.3, 0.2 and 0.7 ?g m -3 for benzene, toluene and xylene, respectively. The proposed method was implemented for the monitoring of BTX at 10 gasoline stations in Hat Yai, Thailand. The concentrations were found in the range of N.D.-19, 12-200 and 23-200 ?g m -3 for benzene, toluene and xylene, respectively.

  10. Predicting the emission rate of volatile organic compounds fromvinyl flooring

    SciTech Connect

    Cox, Steven S.; Little, John C.; Hodgson, Alfred T.

    2001-03-01

    A model for predicting the rate at which a volatile organic compound (VOC) is emitted from a diffusion-controlled material is validated for three contaminants (n-pentadecane, n-tetradecane, and phenol) found in vinyl flooring (VF). Model parameters are the initial VOC concentration in the material-phase (C{sub 0}), the material/air partition coefficient (K), and the material-phase diffusion coefficient (D). The model was verified by comparing predicted gas-phase concentrations to data obtained during small-scale chamber tests, and by comparing predicted material-phase concentrations to those measured at the conclusion of the chamber tests. Chamber tests were conducted with the VF placed top side up and bottom side up. With the exception of phenol, and within the limits of experimental precision, the mass of VOCs recovered in the gas phase balances the mass emitted from the material phase. The model parameters (C{sub 0}, K, and D) were measured using procedures that were completely independent of the chamber test. Gas- and material-phase predictions compare well to the bottom-side-up chamber data. The lower emission rates for the top-side-up orientation may be explained by the presence of a low-permeability surface layer. The sink effect of the stainless steel chamber surface was shown to be negligible.

  11. Membrane bioreactor for control of volatile organic compound emissions

    SciTech Connect

    Ergas, S.J.; McGrath, M.S.

    1997-06-01

    A membrane bioreactor system that overcomes many of the limitations of conventional compost biofilters is described. The system utilizes microporous hydrophobic hollow fiber membranes for mass transfer of volatile organic compounds (VOCs) from the gas phase to a microbially active liquid phase. The reactor design provides a high biomass concentration, a method for wasting biomass, and a method for addition of pH buffers, nutrients, cometabolites, and/or other amendments. A theoretical model is developed, describing mass transfer and biodegradation in the membrane bioreactor. Reactor performance was determined in a laboratory scale membrane bioreactor over a range of gas loading rates using toluene as a model VOC. Toluene removal efficiency was greater than 98% at an inlet concentration of 100 ppm, and a gas residence time of less than 2 s. Factors controlling bioreactor performance were determined through both experiments and theoretical modeling to include: compound Henry`s law constant, membrane specific surface area, gas and VOC loading rates, liquid phase turbulence, and biomass substrate utilization rate.

  12. Indoor chemistry. Ozone, volatile organic compounds, and carpets

    SciTech Connect

    Weschler, C.J. ); Hodgson, A.T.; Wooley, J.D. )

    1992-12-01

    Volatile organic compounds (VOCs) have been measured in a freshly carpeted 20-m[sup 3] stainless-steel room in both the absence and presence of ozone (ozone concentrations ranging from 30 to 50 ppb, with one experiment conducted at 400 ppb). Four different types of carpeting were exposed, and in each set of experiments, the room was ventilated at 1 air exchange/h. The gas-phase concentrations of selected carpet emissions (e.g., 4-phenylcyclohexene, 4-vinylcyclohexene, and styrene) significantly decreased in the presence of ozone. Conversely, the concentrations of other compounds (e.g., formaldehyde, acetaldehyde, and aldehydes with between 5 and 10 carbons) significantly increased. Furthermore, the total concentration of VOCs increased markedly in the presence of ozone. The additional VOCs appear to have been generated by reactions between ozone and relatively nonvolatile compounds associated with the carpets. These studies suggest that VOCs measured within a building at elevated ozone levels (>30 ppb) may differ from those measured at lower ozone levels (<10 ppb). 12 refs., 2 figs., 6 tabs.

  13. Biofiltration for control of volatile organic compounds (VOCS)

    SciTech Connect

    Bishop, D.F.; Govind, R.

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  14. Volatile organic compounds in the atmosphere of Mexico City

    NASA Astrophysics Data System (ADS)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  15. Personal exposure to volatile organic compounds in the Czech Republic.

    PubMed

    Svecova, Vlasta; Topinka, Jan; Solansky, Ivo; Sram, Radim J

    2012-09-01

    Personal exposures to volatile organic compounds (VOCs) were measured in the three industrial cities in the Czech Republic, Ostrava, Karvina and Havirov, while the city of Prague served as a control in a large-scale molecular epidemiological study identifying the impacts of air pollution on human health. Office workers from Ostrava and city policemen from Karvina, Havirov and Prague were monitored in the winter and summer of 2009. Only adult non-smokers participated in the study (N=160). Radiello-diffusive passive samplers were used to measure the exposure to benzene, toluene, ethylbenzene, meta- plus para-xylene and ortho-xylene (BTEX). All participants completed a personal questionnaire and a time-location-activity diary (TLAD). The average personal BTEX exposure levels in both seasons were 7.2/34.3/4.4/16.1??g/m(3), respectively. The benzene levels were highest in winter in Karvina, Ostrava and Prague: 8.5, 7.2 and 5.3??g/m(3), respectively. The personal exposures to BTEX were higher than the corresponding stationary monitoring levels detected in the individual localities (P<0.001; except m,p-xylene in summer). The indoor environment, ETS (environmental tobacco smoke), cooking, a home-heating fireplace or gas stove, automobile use and being in a restaurant were important predictors for benzene personal exposure. Ostrava's outdoor benzene pollution was a significant factor increasing the exposure of the Ostrava study participants in winter (P<0.05). PMID:22669500

  16. The Composition of Organics and Volatiles in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous progress has been made in our understanding of the composition of interstellar dust through the combined use of telescopic observations, theoretical models, laboratory studies of analogs, and the analysis of interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This paper reviews some of our current knowledge of the organic and volatile materials thought to exist in the ISM. These compounds supply a significant portion of the material that makes up the interstellar dense molecular clouds from which new stars and planetary systems are formed, and thus represents an important reservoir of material that could play key roles in the formation and evolution of life. This paper will largely focus on solid materials, as opposed to gases, since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a brief discussion of the astrobiological relevance of some of the compounds now known or suspected to be present in the ISM.

  17. Volatile organic compounds (VOCs) fingerprint of Alzheimer's disease.

    PubMed

    Mazzatenta, Andrea; Pokorski, Mieczyslaw; Sartucci, Ferdinando; Domenici, Luciano; Di Giulio, Camillo

    2015-04-01

    Alzheimer's disease (AD) is a profoundly life changing condition and once diagnosis occurs, this is typically at a relatively late stage into the disease process. Therefore, a shift to earlier diagnosis, which means several decades before the onset of the typical manifestation of the disease, will be an important step forward for the patient. A promising diagnostic and screening tool to answer this purpose is represented by breath and exhaled volatile organic compounds (VOCs) analysis. In fact, human exhaled breath contains several thousand of VOCs that vary in abundance and number in correlation with the physiological status. The exhaled VOCs reflect the metabolism, including the neuronal ones, in healthy and pathological conditions. A growing number of studies clearly demonstrate the effectiveness of VOCs analysis in identifying pathologies, including neurodegenerative diseases. In the present study we recorded, in real time, breath parameters and exhaled VOCs. We were able to demonstrate a significant alteration in breath parameters induced by the pathology of AD. Further, we provide the putative VOCs fingerprint of AD. These vital findings are an important step toward the early diagnosis of AD. PMID:25308706

  18. Volatile organic compound monitoring by photo acoustic radiometry

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-12-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 {mu}m. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations.

  19. Evaluation of Volatile Organic Compound Emissions from Megacities and Wildfires

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Lamarque, J.; Wiedinmyer, C.; Mirage Science Team; Arctas Science Team

    2011-12-01

    Volatile organic compounds (VOCs) play a critical role in determining air quality through their impact on ozone production and other pollutants. Tropospheric chemistry models use a variety of treatments for the lumping of VOCs in their chemical mechanisms, as a compromise between detailed treatment and computational speed. However, emission inventories are frequently provided for only total VOCs with little or no information on how to split the emissions among the model species, introducing additional uncertainty to the model simulations. Global model simulations using the Model for Ozone and Related Chemical Tracers (MOZART-4) and several different emission inventories are evaluated through detailed comparison to aircraft and surface observations. In particular, correlations between measured VOCs and CO are used to test the emission inventory emission ratios of the modeled VOC species. For example, megacity VOC emissions will be evaluated with surface measurements in Mumbai, Shanghai and Tokyo, as well as aircraft measurements from the NSF/MIRAGE experiment downwind of Mexico City. Wildfire emissions in Siberia, Canada and California will be evaluated using airborne observations of the NASA/ARCTAS experiment.

  20. Constituents of volatile organic compounds of evaporating essential oil

    NASA Astrophysics Data System (ADS)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  1. Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules

    NASA Astrophysics Data System (ADS)

    Brooke, G.; Popović, S.; Vušković, L.

    2002-05-01

    We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.

  2. Methods in plant foliar volatile organic compounds research1

    PubMed Central

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  3. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, Tănase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  4. Volatile organic compounds in rural atmospheres of central Portugal.

    PubMed

    Cerqueira, M A; Pio, C A; Gomes, P A; Matos, J S; Nunes, T V

    2003-09-01

    Atmospheric concentrations of volatile organic compounds were measured at two rural sites in central Portugal. The sites were chosen to be in line with the summer northwesterly sea breezes in order to study the evolution of the chemical composition of air masses during transport to inland areas. The most abundant non-oxygenated hydrocarbon in the ambient air was isoprene and the monoterpenes alpha-pinene, beta-pinene and 1,8 cineol. The maximum isoprene levels (6-7 ppb) were recorded at the most inland site, suggesting an enrichment of coastal air masses with biogenic emissions during transport over eucalyptus forests. Formaldehyde was the most prominent carbonyl compound in the atmosphere but acetaldehyde and acrolein were also abundant. Concentrations of carbonyl compounds had a tendency to be higher inland, particularly for glyoxal, methyl glyoxal, methyl vinyl ketone, metacrolein and pentanal. The observed increases indicate that carbonyls were produced by photochemical oxidation of biogenic hydrocarbons in aged air masses with coastal origin. Isoprene, monoterpenes and various carbonyls exhibited pronounced diurnal variations, which are explained on the basis of emissions from vegetation, oxidation pathways of biogenic hydrocarbons and meteorological conditions. PMID:12922060

  5. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    NASA Astrophysics Data System (ADS)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  6. Remediation of ground water containing volatile organic compounds and tritium

    SciTech Connect

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.

  7. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    SciTech Connect

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 {times} 10{sup 4}. Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl{sup 4} was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC`s in other environments.

  8. Evaluation of volatile organic compound reduction technologies for metal coatings

    SciTech Connect

    Wang, Y.; Huang, E.W.

    1997-12-31

    Under the sponsorship of California Air Resources Board, AeroVironment Environmental Services, Inc. (AVES) is currently conducting a study to demonstrate a new zero-VOC Industrial Maintenance Metal Coating. This new technology can help the coating industry reduce emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). In a previous study conducted by AVES, current VOCs technologies available on the market for metal parts and product coatings were evaluated for compliance with the South Coast Air Quality Management District (SCAQMD) proposed Rule 1107 (Metal Parts and Product Coatings). There are low-VOC coating products available for industries of interest. For general metal coating applications, certain coating products can comply with current SCAQMD Rule 1107 VOC limits. Some of the low-VOC products that are considered as a substitute or an alternative to high-VOC petroleum-based products are summarized. The current available emerging technologies offer a great opportunity for emission reduction through a gradual shift from high to low/no VOC coatings. By phasing in low/no VOC coatings, industries will be able to reduce energy use and air emissions without installation of add-on controls.

  9. Screening for emphysema via exhaled volatile organic compounds.

    PubMed

    Cristescu, S M; Gietema, H A; Blanchet, L; Kruitwagen, C L J J; Munnik, P; van Klaveren, R J; Lammers, J W J; Buydens, L; Harren, F J M; Zanen, P

    2011-12-01

    Chronic obstructive pulmonary disease (COPD)/emphysema risk groups are well defined and screening allows for early identification of disease. The capability of exhaled volatile organic compounds (VOCs) to detect emphysema, as found by computed tomography (CT) in current and former heavy smokers participating in a lung cancer screening trial, was investigated. CT scans, pulmonary function tests and breath sample collections were obtained from 204 subjects. Breath samples were analyzed with a proton-transfer reaction mass spectrometer (PTR-MS) to obtain VOC profiles listed as ions at various mass-to-charge ratios (m/z). Using bootstrapped stepwise forward logistic regression, we identified specific breath profiles as a potential tool for the diagnosis of emphysema, of airflow limitation or gas-exchange impairment. A marker for emphysema was found at m/z 87 (tentatively attributed to 2-methylbutanal). The area under the receiver operating characteristic curve (ROC) of this marker to diagnose emphysema was 0.588 (95% CI 0.453-0.662). Mass-to-charge ratios m/z 52 (most likely chloramine) and m/z 135 (alkyl benzene) were linked to obstructive disease and m/z 122 (most probably alkyl homologs) to an impaired diffusion capacity. ROC areas were 0.646 (95% CI 0.562-0.730) and 0.671 (95% CI 0.524-0.710), respectively. In the screening setting, exhaled VOCs measured by PTR-MS constitute weak markers for emphysema, pulmonary obstruction and impaired diffusion capacity. PMID:22071870

  10. A novel nanostructure for ultrasensitive volatile organic compound sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Huaizhou; Rizal, Binod; Ren, Zhifeng; Naughton, Michael J.; Chiles, Thomas C.; Cai, Dong

    2011-03-01

    We have developed an arrayed nanocoaxial structure for the ultrasensitive sensing detection and identification of volatile organic compounds (VOC) by dielectric impedance spectroscopy. VOC molecules are absorbed into porous dielectric material in the annulus between nanoscale coax electrodes. A theoretical expression for the basic adsorption mechanism agrees with the experimental results. Detection sensitivities at parts-per-billion levels were demonstrated for a variety of VOCs. A limit-of-detection of ethanol reached ~ 100 parts-per-trillion, following a Freundlich power-law isotherm across four decades of ethanol concentration. A linear dependence on VOC dielectric constant was observed. Dielectric impedance nanospectroscopy was also performed by scanning frequency from 10 mHz to 1 MHz, with distinctive spectra of different VOCs discovered. These were utilized to conduct colorimetric identification of VOCs. The results suggest our novel nanocoaxial sensor can be used as a sensitive, broadband, and multimodal sensing platform for chemical detection. The National Cancer Institute CA137681, the Department of Navy, the National Science Foundation PHY-0804718, and the Seaver Institute. Emails: caid@bc.edu; naughton@bc.edu.

  11. Volatile fatty acids as malodorous compounds in wool scouring water and lanolin. Origin and characterisation.

    PubMed

    Jover, E; Abalos, M; Ortiz, L; Bayona, J M

    2003-12-01

    Volatile fatty acids (C2-C7) analysis in wool scouring water and lanolin is presented. These substances are of major interest as malodorous compounds in urban and industrial wastewaters. In this work, they have been analysed in wool scouring water by headspace solid-phase microextraction followed by gas chromatography negative chemical ionisation mass spectrometry. Most of the volatile fatty acids have been identified at microg g(-1) levels. In addition, since lanolin is a major impurity of raw wool, volatile fatty acid patterns of wool scouring water and lanolin have been compared in order to establish the origin of these compounds in the wastewater. Finally, the efficiency of the deodorization step, mandatory to obtain commercial lanolin, has been assessed taking into account the decrease in volatile fatty acid content from the raw wool to the lanolin. PMID:14977142

  12. Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.

    2013-12-01

    Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.

  13. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  14. Source apportionment of volatile organic compounds measured in Edmonton, Alberta

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Aklilu, Yayne-Abeba; Brown, Steven G.; Lyder, David A.

    2013-12-01

    From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central site) and an industrial area on the eastern side of the city (East site). Concentrations of most VOCs were highest at the East site, with an average total VOC mass concentration of 221 ?g m-3. The average total VOC mass concentration at the Central site was 65 ?g m-3. The United States Environmental Protection Agency's positive matrix factorization receptor model (EPA PMF) was used to apportion ambient concentrations of VOCs into eleven factors, which were associated with emissions sources. On average, 94 and 99% of the measured mass were apportioned by PMF at the East and Central site, respectively. Factors include transportation combustion (gasoline and diesel), industrial sources (industrial evaporative, industrial feedstock, gasoline production/storage, industrial chemical use), mixed mobile and industrial (gasoline evaporative, fugitive butane), a biogenic source, a natural gas related source, and a factor that was associated with global background pollutants transported into the area. Transportation sources accounted for more than half of the reconstructed VOC mass concentration at the Central site, but less than 10% of the reconstructed mass concentration at the East site. By contrast, industrial sources accounted for ten times more of the reconstructed VOC mass concentration at the East site than at the Central site and were responsible for approximately 75% of the reconstructed VOC mass concentration observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to the reconstructed VOC mass concentration at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the reconstructed VOC mass concentration at the East site in contrast to less than 2% of the reconstructed mass concentration at the Central site. Natural gas related emissions accounted for 10%-20% of the reconstructed mass concentration at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the reconstructed VOC mass concentration at the Central site and less than 3% of the reconstructed mass concentration at the East site.

  15. Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Docherty, K. S.; Mohr, C.; Ulbrich, I. M.; Ziemann, P. J.; Onasch, T. B.; Jimenez, J. L.

    2009-04-01

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) for rapid quantification of chemically-resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from a-pinene and gasoline vapor. Almost all atmospheric models represent POA as non-volatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semi-volatile behavior and that most POAs are at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles BBOA because of its high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are less volatile.

  16. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  17. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC/MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  18. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor.

    PubMed

    Ramos, M E; Bonelli, P R; Cukierman, A L; Ribeiro Carrott, M M L; Carrott, P J M

    2010-05-15

    Activated carbon cloths (ACC) were prepared from lyocell, a novel regenerated cellulose nanofibre fabric, by phosphoric acid activation in inert atmosphere at two different final thermal treatment temperatures (864 and 963 degrees C). Benzene, toluene and n-hexane isotherms at 298 and 273K were measured in order to gain insight into the porous structure of the ACC and to evaluate their performance for the removal of volatile organic compounds (VOCs). The Dubinin-Radushkevich equation was employed to evaluate textural parameters of the ACC. The textural characteristics of the ACC were compared with those previously determined from nitrogen (77K) and carbon dioxide (273K) adsorption data. The samples were essentially microporous. The textural parameters calculated from the hydrocarbon isotherms were in good agreement with those evaluated from nitrogen isotherms for the ACC with the wider microporosity. Additionally, the Freundlich model provided a good description of the experimental isotherms for the three volatile organic compounds. The ACC obtained at the higher temperature exhibited a larger adsorption capacity. The ACC were also electrically conductive and showed potential for regeneration by the Joule effect, as determined from macroscopic electrical measurements before and after n-hexane adsorption. PMID:20042290

  19. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    PubMed Central

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  20. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii.

    PubMed

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 ?g, below which it caused, together with 1-undecene (?10 ?g), broccoli growth increase. PMID:26500627

  1. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Volatile Organic Compound (VOC... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  2. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Volatile Organic Compound (VOC) Content... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  3. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Volatile Organic Compound (VOC) Content... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  4. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Volatile Organic Compound (VOC) Content... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  5. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Volatile Organic Compound (VOC... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  6. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Volatile Organic Compound (VOC... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  7. VAPORIZATION TECHNIQUE TO MEASURE MUTAGENIC ACTIVITY OF VOLATILE ORGANIC CHEMICALS IN THE AMES/'SALOMELLA' ASSAY

    EPA Science Inventory

    The purpose of the research was to develop and characterize a sensitive test method to detect mutagenic activity of volatile liquid organic chemicals (i.e., volatiles) in the Ames/Salmonella assay. A Tedlar bag vaporization technique was developed which increased contact time bet...

  8. A Comparison of volatile organic compound profiles from bacteria on poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  9. Volatile Organic Compounds Produced by Bacteria from the Poultry Processing Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  10. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  11. Volatility of organic aerosol and its components in the megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.

  12. Modeling volatile organic compound levels near hazardous waste sites

    SciTech Connect

    Santanam, S. . School of Public Health); Smith, D.G. )

    1988-01-01

    Two aspects of volatile organic chemicals (VOCs) emitted from hazardous waste facilities, ambient concentrations, and emission rates respectively, have drawn considerable attention in the past years. While both of these address the same issue, the complexities of real world situations may render them incapable of capturing all the information necessary for reliable modeling or prediction of VOC emissions. Intra and inter site variabilities in VOC emission rates profoundly influence the magnitudes of any modeled or monitored concentrations. In a comparison of models used for emission estimations, Hwang pointed out the limitations of field data for model validation while indicating that several general emission estimation techniques are consistent with the available measurements. In a multiple site monitoring study, LaRegina et. al., concluded that more concentrated sampling schedules with extensive meteorological data collection are required to account for variabilities in observed VOC levels. This presentation is focused on aspects of land treatment facilities and landfills, but excludes all types of liquid waste systems. Initially, the authors briefly review the factors that influence VOC emission and concentration measurements at hazardous waste sites. The authors then describe a method to quantify the variabilities of these measurements using dissimilarity index identified above. The application of the method is illustrated using the data reported from four previous field studies. In addition, in the modeling section of this paper, a hypothetical waste site example with DI estimates for ambient concentrations is developed. Comparison of the empirical observations and the behavior of this hypothetical case are presented to illustrate the value of applying this DI technique to TSDF situations.

  13. Production of volatile organic compounds in cultures of cryptophytes

    NASA Astrophysics Data System (ADS)

    Yamakoshi, T.; Kurihara, M.; Hashimoto, S.

    2010-12-01

    Volatile organic compounds (VOCs) are known to be produced by macroalgae, phytoplankton and bacteria in the ocean. Some phytoplankton species are known for the production of VOCs such as halomethanes and isoprene in cultures. To discuss the diversity of VOCs production among phytoplankton species, we incubated the strains of cryptophytes and measured concentrations of VOCs and chlorophyll a. Because VOCs productions of cryptophytes were poorly understood, we selected them to cover the lack of data for VOCs production. Phytoplankton cultures were grown in autoclaved f/2-Si medium with GF/F filtered aged seawater. Culture temperature and light conditions were 24.1 0.2C and 78 4 ?E m-2 s-1 (1 E = 1 mol of photons) from full-spectrum vita-lite fluorescent lamp (12 h light:12 h dark cycle). VOCs concentrations in the medium were measured using a purge and trap (Tekmar PT 5000J)- gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5973N). The concentrations of chlorophyll a was also measured using fluorometer (Turner TD-700). Isoprene concentrations were increased to 290 pmol L-1 during the exponential phase in Rhodomonas salina culture. Isoprene production rate was 0.78 ?mol g chl.a-1 day-1. This value is within the range of isoprene production by other phytoplankton species reported in the previous paper. As for halomethanes, dibromomethane concentrations were increased during the incubation time. Some iodohalomethanes were also increased during the death phase. We are currently examining the production of halomethanes in other strains of Cryptophyta.

  14. Commuter exposure to volatile organic compounds under different driving conditions

    NASA Astrophysics Data System (ADS)

    Jo, Wan-Kuen; Park, Kun-Ho

    The driving conditions that were tested for the in-vehicle concentrations of selected volatile organic compounds (VOCs) included transport modes, fuel distributions, vehicle ventilation conditions, driving routes, commute seasons, car models, and driving periods. This study involved two sampling seasons (winter and summer). The in-auto/in-bus/fixed site ratio of the wintertime mean concentrations was about 6/3/1 for total VOCs and 8/3/1 for benzene. On the median, the in-auto/in-bus exposure ratio ranged from 1.5 to 2.8 for the morning commutes, and ranged from 2.4 to 4.5 for evening commutes, depending on the target compounds. The wintertime in-auto concentrations were significantly higher ( p<0.05), on the average 3-5 times higher, in a carbureted engine than in the three electronic fuel-injected cars. For the summertime in-auto concentrations of the target compounds except benzene, there were no significant differences between low and high ventilation conditions on the two urban routes. The urban in-auto benzene concentration was significantly higher ( p<0.05) under the low ventilation condition. For the rural commutes, the in-auto concentrations of all target compounds were significantly higher ( p<0.05) under the low ventilation condition. The in-auto VOC concentrations on the two urban routes did not differ significantly, and they were greater than the rural in-auto concentrations, with the differences being significant ( p<0.05) for all target compounds. The summertime in-auto concentrations of benzene and toluene were greater than the wintertime in-auto concentrations, with the difference being significant ( p<0.05), while the concentrations of the other target compounds were not significantly different between the two seasons. Neither car models nor driving periods influenced the in-auto VOC concentrations.

  15. Exposure to volatile organic compounds in healthcare settings

    PubMed Central

    LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; Stefaniak, Aleksandr B

    2015-01-01

    Objectives To identify and summarise volatile organic compound (VOC) exposure profiles of healthcare occupations. Methods Personal (n=143) and mobile area (n=207) evacuated canisters were collected and analysed by a gas chromatograph/mass spectrometer to assess exposures to 14 VOCs among 14 healthcare occupations in five hospitals. Participants were volunteers identified by their supervisors. Summary statistics were calculated by occupation. Principal component analysis (PCA) was used to reduce the 14 analyte inputs to five orthogonal factors and identify occupations that were associated with these factors. Linear regressions were used to assess the association between personal and mobile area samples. Results Exposure profiles differed among occupations; ethanol had the highest geometric mean (GM) among nursing assistants (~4900 and ~1900 μg/m3, personal and area), and 2-propanol had the highest GM among medical equipment preparers (~4600 and ~2000 μg/m3, personal and area). The highest total personal VOC exposures were among nursing assistants (~9200 μg/m3), licensed practical nurses (~8700 μg/m3) and medical equipment preparers (~7900 μg/m3). The influence of the PCA factors developed from personal exposure estimates varied by occupation, which enabled a comparative assessment of occupations. For example, factor 1, indicative of solvent use, was positively correlated with clinical laboratory and floor stripping/waxing occupations and tasks. Overall, a significant correlation was observed (r=0.88) between matched personal and mobile area samples, but varied considerably by analyte (r=0.23–0.64). Conclusions Healthcare workers are exposed to a variety of chemicals that vary with the activities and products used during activities. These VOC profiles are useful for estimating exposures for occupational hazard ranking for industrial hygienists as well as epidemiological studies. PMID:25011549

  16. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    SciTech Connect

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-12-31

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone` The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS).

  17. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer

    PubMed Central

    Khalid, Tanzeela; Aggio, Raphael; White, Paul; De Lacy Costello, Ben; Persad, Raj; Al-Kateb, Huda; Jones, Peter; Probert, Chris S.; Ratcliffe, Norman

    2015-01-01

    The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 6264% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 6365%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states. PMID:26599280

  18. Sources of Volatile Organic Compounds (VOCs) in the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  19. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  20. Volatile organic compounds (VOCs) in photochemically aged air from the Eastern and Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Derstroff, Bettina; Stoenner, Christof; Klüpfel, Thomas; Sauvage, Carina; Crowley, John; Phillips, Gavin; Parchatka, Uwe; Lelieveld, Jos; Williams, Jonathan

    2015-04-01

    In summer 2014 a comprehensively instrumented measurement campaign (CYPHEX) was conducted in northwest Cyprus in order to investigate atmospheric oxidation chemistry in the Mediterranean region. The site was periodically influenced by the northerly Etesian winds advecting air from Eastern Europe (Turkey and Greece) and from westerly winds bringing more photochemically processed emissions from Western Europe (Spain and France). In this study the data from a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) are analyzed. Generally, oxidized volatile organic compounds (OVOCs) such as methanol and acetone were measured in high mixing ratios (max. 9.5 ppb, min. 1.3 ppb, average 3.2 ppb for methanol, max. 7.9 ppb, min. 1.3 ppb, average 2.4 ppb for acetone ) while precursors like propane showed low values (max. 500 ppt). This demonstrates that the air measured was oxidized to a high degree over the Mediterranean Sea. Low values of acetonitrile throughout the campaign indicated no significant influence of biomass burning on the data. Temporal variations in VOC mixing ratios and precursor/product ratios over the campaign can be explained by using the HYSPLIT backward trajectory model which delineated air masses originating from Eastern and Western Europe. Diel variations of reactive VOCs such as isoprene and terpenes were also observed at the site. A sharp increase in isoprene and monoterpenes at circa 9:00 local time indicated that the 600 m hilltop site was influenced by ascending boundary layer air at this time. In this study, particular emphasis is placed on acetic (ethanoic) acid measured by PTR- TOF-MS and calibrated by a permeation source. Acetic acid is an atmospheric oxidation product of multiple volatile organic compounds, emitted directly from vegetation, and found in abundance in the Mediterranean region (max. 2.7 ppb, min. 0.2 ppb, average 0.8 ppb). Acetic acid contributes to the acidity of precipitation in remote areas, can be incorporated into aerosols by adsorption on the surface and thereby alter the activity due to their high polarity. Correlations of acetic acid with peracetic acid, humidity and ozone have been investigated in order to better understand the sources influencing acetic acid at the site and to assess its potential as a marker for Criegee radical chemistry.

  1. Determination of the volatile and semi-volatile secondary metabolites, and aristolochic acids in Aristolochia ringens Vahl.

    PubMed

    Stashenko, Elena E; Andrs Ordez, Sergio; Marn, Nstor Armando; Martnez, Jairo Ren

    2009-10-01

    Volatile and semi-volatile secondary metabolites, as well as aristolochic acids (AA), present in leaves, stems, and flowers of Aristolochia ringens were determined by gas chromatography (GC)-mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods, respectively. Metabolite isolation was performed using different extraction techniques: microwave-assisted hydrodistillation (MWHD), supercritical fluid extraction, and headspace solid-phase microextraction (HS-SPME). The chemical composition of the extracts and oils was established by GC-MS. The determinations of AAI and AAII were conducted by methanolic extraction of different plant parts followed by HPLC analysis. Essential oil yields from leaves and stems were 0.008 +/- 0.0022% and 0.047 +/- 0.0026%, respectively. Aristolochia ringens flowers did not yield essential oil under MWHD. Sesquiterpene hydrocarbons (66%) were the main compounds in the essential oil isolated from leaves whereas monoterpene hydrocarbons (73%) predominated in the stems essential oil. Yields of extracts isolated by SFE from leaves, stems, and flowers were 4 +/- 1.8%, 1.2 +/- 0.25%, and 4 +/- 1.8%, respectively. In vivo HS-SPME of flowers isolated compounds with known unpleasant smells such as volatile aldehydes and short-chain carboxylic acids. HPLC analysis detected the presence of AAII in the flowers of Aristolochia ringens at a concentration of 610 +/- 47 mg/kg of dried flower. PMID:19835696

  2. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  3. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  4. Exchange of volatile organic compounds in the boreal forest floor

    NASA Astrophysics Data System (ADS)

    Aaltonen, Hermanni; Bck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Helln, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into consideration when assessing ecosystem level VOC fluxes. These results can be utilized also in air chemistry models, which are almost entirely lacking the below-canopy compartment. Kulmala, M., Suni, T., Lehtinen, K.E.J., Dal Maso, M., Boy, M., Reissell, A., Rannik, ., Aalto, P., Keronen, P., Hakola, H., Bck, J., Hoffmann, T., Vesala, T. & Hari, P. 2004. A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics 4: 557-562.

  5. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho-nitrophenols photolysis. The model results are compared with observations from different surface and aircraft campaigns in order to estimate the accuracy of the model.

  6. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-08-01

    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  7. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-03-01

    A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  8. Modelling the volatile and organic content of Enceladus' ocean

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Lunine, Jonathan

    2015-04-01

    A variety of Cassini data on Enceladus suggest that the jets of material spraying out of the south polar region of this Saturnian moon are connected to a regional or global ocean below an icy crust -- an ocean in contact with a rocky core [1, 2, 3]. In this study we construct models of the mineralogical and elemental composition of Enceladus' rocky core so as to predict the abundance of species that may provide more detail on the extent of hydrothermal evolution of the ocean and its interaction with the rocky core. Using equations of state of the relevant material, the models are made consistent with the values of the gravity coefficients [1]. We investigate the amount of organic molecules (amino acids and fatty acids) as well as the amount of 40Ar that could be present in Enceladus' deep ocean and, therefore, in the icy grains expelled into space. Some models show that the conditions in Enceladus rocky core can be very similar to those existing in the Earth's oceanic crust, suggesting that all of Enceladus rocky core would have been leached over the age of the solar system. The amount of 40Ar dissolved in the ocean provides constraints on the amount of K in the building blocks of Enceladus, the amount of leaching of the silicate fraction, and the extent of the ocean. Based on chondritic abundances for K, we have calculated that the total potential of 40Ar is about 5.6x1012 kg. We also investigate the amount of organic material that would have been concentrated in the ocean. The Murchison meteorite contains about 60 ppm of amino acids, mainly glycine [4]. Assuming that all the rocky core has been leached by water, the modelled concentration of amino acids exceeds 150 ppm. Carboxylic acids were detected in the Asuka carbonaceous chondrites in Antarctica with values, for example, of 90 nmol/g of benzoic acid. Assuming this value, about 35 ppm of benzoic acid would be present in Enceladus' ocean. The concentrations are larger if the ocean is not global, but rather limited to the South Pole [1], and assuming that all the leached material is concentrated in the regional ocean (and not partially trapped elsewhere in ice). A future mission to Enceladus could eventually measure these quantities in order to assess the extent of evolution of Enceladus, and the potential presence of the building blocks of life in its ocean. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2014) Science, 344, 78. [2] Porco C. et al. (2014) The Astronomical Journal, 148:45. [3] Hedman M. M. et al. (2013) Nature, 500, 182-184. [4] Sephton M.A. (2002) Nat. Prod. Rep., 19, 292-311.

  9. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors.

    PubMed

    Qin, Gaihua; Tao, Shutian; Zhang, Huping; Huang, Wenjiang; Wu, Juyou; Xu, Yiliu; Zhang, Shaoling

    2014-01-01

    To examine the biochemical metabolism of aroma volatiles derived from fatty acids, pear fruits were incubated in vitro with metabolic precursors of these compounds. Aroma volatiles, especially esters, were significantly increased, both qualitatively and quantitatively, in pear fruits fed on fatty acid metabolic precursors. Cultivars having different flavor characteristics had distinctly different aroma volatile metabolisms. More esters were formed in fruity-flavored "Nanguoli" fruits than in green-flavored "Dangshansuli" fruits fed on the same quantities of linoleic acid and linolenic acid. Hexanal and hexanol were more efficient metabolic intermediates for volatile synthesis than linoleic acid and linolenic acid. Hexyl esters were the predominant esters produced by pear fruits fed on hexanol, and their contents in "Dangshansuli" fruits were higher than in "Nanguoli" fruits. Hexyl esters and hexanoate esters were the primary esters produced in pear fruits fed on hexanal, however the content of hexyl ester in "Dangshansuli" was approximately three times that in "Nanguoli". The higher contents of hexyl esters in "Dangshansuli" may have resulted from a higher level of hexanol derived from hexanal. In conclusion, the synthesis of aroma volatiles was largely dependent on the metabolic precursors presented. PMID:25474290

  10. Methanol ice VUV photo-processing: GC-MS analysis of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Mrad, Ninette Abou; Duvernay, Fabrice; Chiavassa, Thierry; Danger, Grégoire

    2016-02-01

    Next to water, methanol is one of the most abundant molecules in astrophysical ices. A new experimental approach is presented here for the direct monitoring via gas chromatography coupled to mass spectrometry GC-MS of a sublimating photo-processed pure methanol ice. Unprecedentedly, in a same analysis, compelling evidences for the formation of 33 volatile organic compounds are provided. These latter are C1 to C6 products including alcohols, aldehydes, ketones, esters, ethers and carboxylic acids. Few C3 and all C4 detected compounds have been identified for the first time. Tentative detection of few C5 and C6 compounds are also presented. GC-MS allows for the first time the direct quantification of C2 to C4 photoproducts and shows that their abundances decrease with the increase of their carbon chain length. These qualitative and quantitative measurements provide important complementary results to previous experiments, and present interesting similarities with observations of sources rich in methanol.

  11. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  12. AUTOMATED CRYOGENIC PRECONCENTRATION AND GAS CHROMATOGRAPHIC DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    The performances of two nominally identical automated monitors for quantifying volatile organic compounds were compared on identical ambient laboratory air samples. The monitors incorporate cryogenic preconcentration subunits specially designed for controlled release of liquid ni...

  13. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  14. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  15. HUMAN EXPOSURES TO VOLATILE HALOGENATED ORGANIC CHEMICALS IN INDOOR AND OUTDOOR AIR

    EPA Science Inventory

    Volatile halogenated organic chemicals are found in indoor and outdoor air, often at concentrations substantially above those in remote, unpopulated areas. The outdoor ambient concentrations vary considerably among sampling stations throughout the United States, as well as diurna...

  16. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. Methods: ...

  17. INTERLABORATORY STUDY OF A TEST METHOD FOR MEASURING TOTAL VOLATILE ORGANIC COMPOUND CONTENT OF CONSUMER PRODUCTS

    EPA Science Inventory

    The report describes results of an interlaboratory study to estimate repeatability (precision of analyses performed by a single laboratory) and reproducibility (precision analyses performed by different laboratories) of a consumer products volatile organic compound (VOC) measurem...

  18. FIELD EVALUATION OF A SIMPLE MICROCOSM SIMULATING THE BEHAVIOR OF VOLATILE ORGANIC COMPOUNDS IN SUBSURFACE MATERIALS

    EPA Science Inventory

    A simple batch microcosm had previously been developed to simulate the behavior of volatile organic compounds in unconsolidated subsurface material. The microcosm was evaluated by comparing the behavior of tetrachloroethylene, bromoform, carbon tetrachloride, 1,2-dichlorobenzene,...

  19. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  20. COMPARISON OF PROCEDURES TO DETERMINE ADSORPTION CAPACITY OF VOLATILE ORGANIC COMPOUNDS ON ACTIVATED CARBON

    EPA Science Inventory

    Numerous volatile organic compounds (VOCs) are under regulatory consideration for inclusion in the National Primary Drinking Water Standards. Adsorption is a cost-effective treatment technology for control of VOCs. Adsorption capacities were determined for fifteen VOCs in distill...

  1. EXPOSURE OF HUMANS TO A VOLATILE ORGANIC MIXTURE: I. BEHAVIORAL ASSESSMENT

    EPA Science Inventory

    Subjective reactions of discomfort, impaired air quality, irritation of mucosal membranes, and impaired memory have been reported to chemically sensitive subjects during exposure to volatile organic compounds (VOC's) found in new buildings. 6 normal healthy male subjects aged 18-...

  2. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  3. NEUROTOXIC EFFECTS OF CONTROLLED EXPOSURE TO A COMPLEX MIXTURE OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Subjective reactions of discomfort, impaired air quality, irritation of mucosal membranes, and impaired memory have been reported in chemically sensitive subjects during exposure to volatile organic compounds (VOC's) found in new buildings. 6 normal healthy male subjects aged 18-...

  4. VOLATILE ORGANIC COMPOUNDS IN INDOOR AIR: A SURVEY OF VARIOUS STRUCTURES

    EPA Science Inventory

    Co-workers collected indoor air samples in their homes in SUMMA polished canisters. Upon receipt in the laboratory, the whole air samples were analyzed for volatile organic compounds (VOCs) using cryogenic sample preconcentration and subsequent capillary column chromatography. Ea...

  5. RELATIONSHIPS BETWEEN LEVELS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND BLOOD FROM THE GENERAL POPULATION

    EPA Science Inventory

    Background: The relationships between levels of volatile organic compounds (VOCs) in blood and air have not been well characterized in the general population where exposure concentrations are generally at ppb levels. Objectives: This study investigates relationships between ...

  6. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  7. FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...

  8. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  9. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessire, Jean-Marie; Buatois, Bruno; Fruchier, Alain; Sol, Vincent; Fons, Franoise

    2015-06-01

    Twelve French Asplenioideae ferns (genera Asplenium and subgenera Ceterach and Phyllitis) were investigated for the first time for volatile organic compounds (VOC) using GC-MS. Sixty-two VOC biosynthesized from the lipidic, shikimic, terpenic and carotenoid pathways were identified. Several VOC profiles can be highlighted from Asplenium jahandiezii and A. xalternifolium with exclusively lipidic derivatives to A. onopteris with an equal ratio of lipidic/shikimic compounds. Very few terpenes as caryophyllene derivatives were identified, but only in A. obovatum subsp. bilotii. The main odorous lipidic derivatives were (E)-2-decenal (waxy and fatty odor), nonanal (aldehydic and waxy odor with a fresh green nuance), (E)-2-heptenal (green odor with a fatty note) and 1-octen-3-ol (mushroom-like odor), reported for all species. A few VOC are present in several species in high content, i.e., 9-oxononanoic acid used as a precursor for biopolymers (19% in A. jahandiezii), 4-hydroxyacetophenone with a sweet and heavy floral odor (17.1% in A. onopteris), and 4-hydroxybenzoic acid used as a precursor in the synthesis of parabens (11.3% in A. foreziense). Most of the identified compounds have pharmacological activities, i.e., octanoic acid as antimicrobial, in particular against Salmonellas, with fatty and waxy odor (41.1% in A. petrarchae), tetradecanoic acid with trypanocidal activity (13.3% in A. obovatum subsp. bilotii), 4-hydroxybenzoic acid (8.7% in A. onopteris) with antimicrobial and anti-aging effects, 3,4-dihydroxybenzaldehyde as an inhibitor of growth of human cancer cells (6.7% in Ceterach officinarum), and phenylacetic acid with antifungal and antibacterial activities (5.8% in A. onopteris). Propionylfilicinic acid was identified in the twelve species. The broad spectrum of odorous and bioactive VOC identified from the Asplenium, Ceterach and Phyllitis species are indeed of great interest to the cosmetic and food industries. PMID:26197556

  10. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, high concentrations of methanol and monoterpenes were found above some of these regions. These observations demonstrate the ability to measure fluxes from specific sources by eddy covariance from an aircraft, and suggest the utility of measurements using fast response chemical sensors to constrain emission inventories and map out source distributions for a much broader array of trace gases than was observed in this study. This paper reports the first regional direct eddy covariance fluxes of isoprene. The emissions of VOCs measured from aircraft with 2 km spatial resolution can quantify the distribution of major sources providing the observations required for testing statewide emission inventories of these important trace gases. These measurements will be used in a future study to assess BVOC emission models and their driving variable datasets.

  11. Exposure to volatile organic compounds: Comparison among different transportation modes

    NASA Astrophysics Data System (ADS)

    Do, Duc Hoai; Van Langenhove, Herman; Chigbo, Stephen Izuchukwu; Amare, Abebech Nuguse; Demeestere, Kristof; Walgraeve, Christophe

    2014-09-01

    The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41-57%, 59-72% and 58-72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.

  12. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and/or spills that might have resulted in groundwater contamination in this sediment, although several relatively small accidental releases of VOCs have occurred in the past in the northern portion of the 300 Area. It is likely that large quantities of degreasing solutions were disposed to the North and South Process Ponds during the 1950s and 1960s, and that evidence for them in the upper portion of the unconfined aquifer has been removed because of groundwater movement through the much more transmissive sediment. Also, investigations to date have revealed no evidence to suggest that a dense, non-aqueous phase liquid remains undetected in the subsurface. Potential pathways for contamination to migrate from this finer-grained sediment include groundwater movement through the interval to offshore locations in the Columbia River channel, dispersion out of the finer-grained interval into the overlying transmissive sediment (again, with transport to the riverbed), and potential future withdrawal via water supply wells.

  13. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  14. Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Long, Russell W.; Modey, William K.; Eatough, Norman L.

    Ammonium nitrate and semi-volatile organic compounds are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with current US EPA accepted methods such as the PM 2.5 FRM or other single filter samplers due to significant losses of semi-volatile material (SVM) from particles collected on the filter during sampling. Continuous PM 2.5 mass measurements are attempted using methods such as the R&P TEOM monitor. This method, however, heats the sample to remove particle-bound water which also results in evaporation of SVM. Research at Brigham Young University has resulted in samplers for both the integrated and continuous measurement of total PM 2.5, including the SVM. The PC-BOSS is a charcoal diffusion denuder based sampler for the determination of fine particulate chemical composition including the semi-volatile organic material. The RAMS is a modified TEOM monitor which includes diffusion denuders and Nafion dryers to remove gas phase material which can be absorbed by a charcoal sorbent filter. The RAMS then uses a "sandwich filter" consisting of a conventional particle collecting Teflon coated TX40 filter, followed by an activated charcoal sorbent filter which retains any semi-volatile ammonium nitrate or organic material lost from the particles collected on the TEOM monitor Teflon coated filter, thus allowing for determination of total PM 2.5 mass including the SVM. Recent research conducted by Brigham Young University using these two samplers has indicated the following about semi-volatile organic aerosol: The majority of semi-volatile fine particulate organic material is secondary organic aerosol. This semi-volatile organic aerosol is not retained on the heated filter of a regular TEOM monitor and hence is not measured by this sampling technique. In addition, secondary ammonium nitrate is also lost. Much of the semi-volatile organic aerosol is also lost during sampling from single filter samplers such as the PM 2.5 FRM sampler. The amount of semi-volatile organic aerosol lost from single filter samplers can vary from less than 1/3 that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. Semi-volatile organic aerosol can only be reliably collected using an appropriate denuder sampler. Either a PM 2.5 FRM sampler or the IMPROVE sampler can be easily modified to a denuder sampler with filters which can be analyzed for semi-volatile OC, nonvolatile OC and EC using existing OC/EC analytical techniques. The research upon which these statements are based is summarized in this document.

  15. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork.

    PubMed

    Nieminen, Timo T; Dalgaard, Paw; Björkroth, Johanna

    2016-02-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds detected in the pork samples, the levels of acetoin, diacetyl and 3-methyl-1-butanol had the highest correlations with the sensory scores and bacterial concentrations. These compounds accumulated in all of the four monitored lots of non-sterile pork but not in the sterilized pork during chilled storage. According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples with high proportion of Photobacterium spp. were associated with accumulation of acetoin, diacetyl and 3-methyl-1-butanol in meat, but these compounds did not explain all the off-odors reported in sensory analyses. PMID:26623935

  16. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes.

    PubMed

    Dekeirsschieter, J; Verheggen, F J; Gohy, M; Hubrecht, F; Bourguignon, L; Lognay, G; Haubruge, E

    2009-08-10

    Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate the entomofaunal colonization. Insects communicate with their environment through the use of chemical mediators, which in the case of necrophagous insects, may consist in the cadaveric volatile organic compounds (VOCs) released by the corpse under decomposition. Previous studies have focused on cadaveric VOCs released from human corpses. Nevertheless, studies on human corpses are restricted for many reasons, including ethics. Forensic entomologists use pig as animal model but very few information are available about the decompositional VOCs released by a decaying pig carcass. We here tested a passive sampling technique, the Radiello diffusive sampler, to monitor the cadaveric VOCs released by decomposing pig carcasses in three biotopes (crop field, forest, urban site). A total of 104 chemical compounds, exclusively produced by the decompositional process, were identified by thermal desorption interfaced with gas chromatography and mass spectrometry (TDS-GC-MS). Ninety, 85 and 57 cadaveric VOCs were identified on pig carcasses laying on the agricultural site, the forest biotope and in the urban site, respectively. The main cadaveric VOCs are acids, cyclic hydrocarbons, oxygenated compounds, sulfur and nitrogen compounds. A better knowledge of the smell of death and their volatile constituents may have many applications in forensic sciences. PMID:19423246

  17. A Push-Pull Test to Measure Volatilization Fluxes of Organic Pollutants without Flux Chambers

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2011-12-01

    Volatilization of organic contaminants is a potentially significant removal mechanism from wetlands, but field measurements are scarce and the physiochemical controls on volatilization from wetland soils remain poorly understood. It has been established that volatilization rates of certain pollutants are enhanced by vegetation and are strongly correlated with evapotranspiration (ET). These observations rely on flux chambers measurements, which are characterized by significant uncertainty due the chamber's effects on the meteorological variables around the plant and consequent impact on the biophysical processes governing ET and plant uptake of soil contaminants. Here we present data from a mesocosm study using a modified single-well push-pull test to measure in-situ volatilization rates from inundated soils vegetated with the wetland macrophytes Scirpus acutus and Typha latifolia, as well as from unplanted soil. This new method uses a test solution containing the volatile tracers sulfur hexafluoride (SF6), helium (He), and dichlorodifluoromethane (CFC-12) to estimate first-order volatilization rates and examine the relationship between physiochemical properties and volatilization rates. The test also yields an estimate for the volume of subsurface gas bubbles, which is used to derive a retardation factor for the effect of interphase partitioning on the estimation of kinetic parameters. We evaluate models to partition observed fluxes into different pathways for plant-mediated volatilization: transpirational uptake and consequent volatilization, and gas-phase diffusion through porous root aerenchyma. Those models are then used to scale tracer-derived volatilization fluxes to priority organic pollutants including benzene, trichloroethylene, and vinyl chloride. We also discuss the implementation of this method at field scales to estimate volatilization as a component of phytoremediation applications.

  18. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and storage of silage. Aldehydes may also be produced aerobically by spoilage microorganisms through the oxidation of alcohols. Abiotic reactions may be important for production of methanol and esters. Although silage additives appear to affect VOC production in individual studies, bacterial inoculants have not shown a consistent effect on ethanol, and effects on other VOCs have not been studied. Production of acetic acid is understood, and production could be minimized, but a decrease could lead to an increase in other, more volatile and more reactive, VOCs. Chemical additives designed for controlling yeasts and undesirable bacteria show promise for reducing ethanol production in corn silage. More work is needed to understand silage VOC production and emission from silage, including: additional measurements of VOC concentrations or production in silage of all types, and an exploration of the causes of variability; accurate on-farm measurements of VOC emission, including an assessment of the importance of individual ensiling stages and practices that could reduce emission of existing VOCs; and work on understanding the sources of silage VOCs and possible approaches for reducing production.

  19. DETERMINATION OF VOLATILE ORGANICS IN INDUSTRIAL AND MUNICIPAL WASTEWATERS

    EPA Science Inventory

    This report describes the systematic evaluation of a series of parameters leading to the development of a test procedure for 36 volatile priority pollutants in wastewaters. A study of the effect of pH, temperature, and residual chlorine on the aqueous stability of the compounds l...

  20. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  1. Molecular corridors and parameterizations of volatility in the evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pöschl, U.; Shiraiwa, M.

    2015-10-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the volatility of organic compounds containing oxygen, nitrogen and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  2. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  3. Pinhole corrosion of CH-TRU waste containers by volatile organic compounds

    SciTech Connect

    Zeek, D.P.

    1998-03-01

    In the spring of 1996 at the Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex, an epidemic of corroded CH-TRU waste drums was encountered. The observed corrosion was in the form of rusty brown streaks that emanated from pinholes in about the upper one-third of the 55 gal drums. Wet streaks were tested as highly acidic by litmus paper. The liquid that emanated from the pinholes was found to be hydrochloric (HCl) acid. An investigation concluded that the pinholes were localized pitting corrosion caused by HCl acid formed in the drum headspace from reactions involving chlorinated volatile organic compounds (VOCs) in the waste and the unlined steel of the internal drum wall. The pinholes occurred in the upper parts of the drums because this corresponds to the internal headspace region above the rigid liner. Affected drums had a few to hundreds of pinholes with no detectable release of radioactivity. This was due to the internal packaging of waste in heavy polyethylene and/or polyvinyl chloride waste bags inside a rigid high-density polyethylene liner. The corrective action taken was to overpack pinhole corrosion drums into polyethylene-lined 83-gal drums and to test hundreds of drums with drum filters, but without pinhole corrosion, for the presence of HCl acid in the headspace gas with colorimetric tubes fitted to the drum filters. These colorimetric tubes contain a substance that changes color in reaction to HCl acid when headspace gas is drawn by a hand pump. Only drums that had a significant probability for the presence of HCl acid in the headspace were segregated in storage to allow ready inspection and efficient handling, if needed. It is recommended that any facility involved in the long-term storage of waste or other contents, that include chlorinated VOCs in unlined steel containers, be wary for the possible development of pinhole corrosion.

  4. Analytical aspects of cyanobacterial volatile organic compounds for investigation of their production behavior.

    PubMed

    Fujise, Daiki; Tsuji, Kiyomi; Fukushima, Naoko; Kawai, Kohei; Harada, Ken-ichi

    2010-09-24

    In order to fully understand the role of volatile organic compounds (VOCs) under natural conditions, an adaptable analytical method was developed as the first step. beta-Ionone, beta-cyclocitral, 2-methyl-1-butanol and 3-methyl-1-butanol were simultaneously analyzed in addition to geosmin and 2-MIB using GC/MS with SPME. The slight modification of a known method allowed the simultaneous detection and quantification of these VOCs. The SIM of the 3-methyl-1-butanol was always accompanied by a shoulder peak, suggesting the presence of two compounds. In order to separate both compounds, the GC/MS conditions were optimized, and the additional peak was identified as 2-methyl-1-butanol by direct comparison of the authentic compound, indicating that the Microcystis strain always produces a mixture of 2-methyl-1-butanol and 3-methyl-1-butanol. Furthermore, it was found that 2-methyl-1-butanol and 3-methyl-1-butanol were predominant in the dissolved fractions. beta-Cyclocitral was easily oxidized to provide the oxidation product, 2,6,6-trimethylcyclohexene-1-carboxylic acid, which causes the blue color formation of cyanobacteria as a consequence of acid stress. The intact acid could be satisfactorily analyzed using the usual GC/MS without derivatization. PMID:20797719

  5. Detection of Volatile Organic Compounds by Weight-Detectable Sensors coated with Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Hiroki; Sato, Seiko; Fukawa, Tadashi; Ikehara, Tsuyoshi; Maeda, Ryutaro; Mihara, Takashi; Kimura, Mutsumi

    2014-09-01

    Detection of volatile organic compounds (VOCs) using weight-detectable quartz microbalance and silicon-based microcantilever sensors coated with crystalline metal-organic framework (MOF) thin films is described in this paper. The thin films of two MOFs were grown from COOH-terminated self-assembled monolayers onto the gold electrodes of sensor platforms. The MOF layers worked as the effective concentrators of VOC gases, and the adsorption/desorption processes of the VOCs could be monitored by the frequency changes of weight-detectable sensors. Moreover, the MOF layers provided VOC sensing selectivity to the weight-detectable sensors through the size-selective adsorption of the VOCs within the regulated nanospace of the MOFs.

  6. Detection of Volatile Organic Compounds by Weight-Detectable Sensors coated with Metal-Organic Frameworks

    PubMed Central

    Yamagiwa, Hiroki; Sato, Seiko; Fukawa, Tadashi; Ikehara, Tsuyoshi; Maeda, Ryutaro; Mihara, Takashi; Kimura, Mutsumi

    2014-01-01

    Detection of volatile organic compounds (VOCs) using weight-detectable quartz microbalance and silicon-based microcantilever sensors coated with crystalline metal-organic framework (MOF) thin films is described in this paper. The thin films of two MOFs were grown from COOH-terminated self-assembled monolayers onto the gold electrodes of sensor platforms. The MOF layers worked as the effective concentrators of VOC gases, and the adsorption/desorption processes of the VOCs could be monitored by the frequency changes of weight-detectable sensors. Moreover, the MOF layers provided VOC sensing selectivity to the weight-detectable sensors through the size-selective adsorption of the VOCs within the regulated nanospace of the MOFs. PMID:25175808

  7. Lewis-Acid/Base Effects on Gallium Volatility in Molten Chlorides

    SciTech Connect

    Williams, D.F.

    2001-02-26

    It has been proposed that GaCl{sub 3} can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl{sub 3} is quite volatile (boiling point, 201 C), the behavior of GaCl{sub 3} dissolved in chloride salts is different due to solution effects and is critically dependent on the composition of the solvent salt (i.e., its Lewis-acid/base character). In this report, the behavior of gallium in prototypical Lewis-acid and Lewis-base salts is compared. It was found that gallium volatility is suppressed in basic melts and enhanced in acidic melts. The implications of these results on the potential for simple gallium removal in molten salt systems are significant.

  8. Analysis of volatile components, fatty acids, and phytosterols of Abies koreana growing in Poland.

    PubMed

    Wajs-Bonikowska, Anna; Olejnika, Karol; Bonikowski, Rados?aw; Banaszczakb, Piotr

    2013-09-01

    Extracts and essential oils from seeds as well as essential oils from cone scales and needles with twigs of the Abies koreana population were studied. An analysis of Korean fir essential oils allowed us to determine 147 volatile compounds. The identified compounds constituted 97-99% of the seed, cone and needle oils. The main volatile in the seed and needle oils was limonene (56.6% and 23.4%, respectively), while the predominant volatile in cone oils was alpha-pinene (51.2%). Korean fir seeds provided a rich source of both essential oil (3.8-8.5%) and extract, which was isolated with a 24.5% yield and contained numerous groups of fatty acids and phytosterols (414 microg/100g extract). The most prominent fatty acids were unsaturated, among which linoleic (41.2%) and oleic (31.2%) fatty acid were the main ones while the dominant sterols were isomers of ergostadienol and beta-sitosterol. A. koreana seeds, cones and needles are a source of many volatile bioactive compounds while the seed extract, with a pleasant scent, contained not only volatiles, but also fractions rich in fatty acids and phytosterols. These facts make A. koreana essential oils and especially the seed extract potential components of cosmetics. PMID:24273870

  9. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew A

    2012-04-01

    Addition of an inorganic acid or base was detrimental to net phosphorus removals in short-term batch experiments, suggesting there might be system upset when pH changes. In contrast, addition of volatile fatty acids (VFAs) increased anaerobic phosphorus release and aerobic phosphorus uptake while maintaining or improving net phosphorus removals. The effect of pH change differed if the acid or base added was inorganic versus organic. Volatile fatty acids that resulted in poly-3-hydroxy-butyrate rather than poly-3-hydroxy-valerate resulted in greater net phosphorus removals, and this corresponded to differences in consumption of reducing equivalents. Acetic acid resulted in improved net phosphorus removal compared to sodium acetate, suggesting that acid forms of VFAs might be superior as supplemental VFAs. It is hypothesized that anaerobic phosphorus release following addition of inorganic acid is primarily a result of phosphorus and proton (H+) symport (excretion from the cell) for pH homeostasis, whereas addition of VFAs results in phosphorus and H+ release to maintain the proton motive force. PMID:22834218

  10. The Reduction of HNO3 to HONO by Volatile Organic Compounds Associated with Rush Hour Traffic

    NASA Astrophysics Data System (ADS)

    Rutter, A. P.; Malloy, Q.; Scheuer, E.; Gutierrez, C.; Calzada, M.; Dibb, J. E.; Griffin, R. J.

    2012-12-01

    Nitrous acid (HONO) is an important source of OH radicals in urban environments. However, the sources of HONO are not completely understood, which makes modeling urban atmospheric chemistry difficult. During a previous field study in Houston, TX a correlation was observed between increases in HONO and organic aerosol freshly emitted by motor vehicle traffic during morning rush hours (Ziemba et al., 2010). This source of HONO could not be explained by primary HONO emissions, and the hypothesis was drawn that the HONO was being formed from the reduction of HNO3 by the organic aerosols emitted by motor vehicles. To test this hypothesis, nitric acid (HNO3) was combined in a flow tube with aerosols made from automobile engine oil, which were used as a model for the organic aerosols emitted by rush hour traffic. Reduction of the HNO3 to HONO was observed, although the reaction was found to occur with the volatile organic carbon compounds (VOCs) found in the aerosol vapor, and not the particle surfaces. To explore this further Teflon raschig rings were added to the flow tube to increase surface area but the reaction was not enhanced, confirming the reaction to be homogeneous. The HONO formation observed ranged between 0.1 and 0.5 ppb hr-1 with a mean of 0.30.1 ppb hr-1, for typical nitric acid concentrations of 4-5 ppb and estimated concentrations of the reactive components in the engine oil vapor of between 200 and 300 ppt. The observations in this study compared well to the cited field study which observed formation rates between 0.05 and 0.5 ppb hr-1 with an average of 0.30.15 ppb hr-1. Water vapor was found to decrease the HONO formation rate by 0.1 ppb hr-1 for every1% of increase in the water mixing ratio. Reference Ziemba L.D., Dibb J.E., Griffin R.J., Anderson C.H., Whitlow S.I., Lefer B.L., Rappenglueck B., and Flynn J. (2010) Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere. Atmospheric Environment, 44, 4081-4089 (33). doi: 10.1016/j.atmosenv.2008.12.024. Available on the Internet at ://WOS:000282866300009.

  11. Volatile organic compounds obtained by in vitro callus cultivation of Plectranthus ornatus Codd. (Lamiaceae).

    PubMed

    Passinho-Soares, Helna C; Meira, Paloma R; David, Juceni P; Mesquita, Paulo R R; do Vale, Ademir E; de M Rodrigues, Frederico; de P Pereira, Pedro A; de Santana, José Raniere F; de Oliveira, Fabio S; de Andrade, Jailson B; David, Jorge M

    2013-01-01

    Plectranthus spp (Lamiaceae) are plants of economic importance because they are sources of aromatic essential oils and are also cultivated and several species of this genus are used as folk medicines. This paper describes the effects of different concentrations of the 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) on the induction of callus from nodal segments of Plectranthus ornatus Codd and in the production of volatile organic compounds (monoterpenes and sesquiterpenes). The 20 and 40 day calli were subjected to solid phase micro extraction (HS-SPME) and submitted to GCMS analysis. Variations in VOCs between the samples were observed and, a direct relationship was observed between of the major constituent detected (α-terpinyl acetate) and the monoterpenes α-thujene, α-pinene, β-pinene, camphene, sabinene and α-limonene that were present in the volatile fractions. Besides α-terpinyl acetate, isobornyl acetate and α-limonene were also major constituents. Variations were observed in VOCs in the analyzed periods. The best cultivation media for the production of VOCs was found to be MS0 (control). Moderate success was achieved by treatment with 2.68 µM and 5:37 µM NAA (Group 2). With 2,4-D (9.0 µM), only the presence of α-terpinyl acetate and isocumene were detected and, with 2.26 µM of 2,4-D was produced mainly α-terpinyl acetate, α-thujene and β-caryophyllene (16.2%). The VOC profiles present in P. ornatus were interpreted using PCA and HCA. The results permitted us to determine the best cultivation media for VOC production and, the PCA and HCA analysis allowed us to recognize four groups among the different treatments from the compounds identified in this set of treatments. PMID:24064448

  12. Volatile organics off-gassed among tobacco-exposed clothing fabrics.

    PubMed

    Chien, Yeh-Chung; Chang, Cheng-Ping; Liu, Zheng-Zhe

    2011-10-15

    This work evaluates the characteristics of short-term release of volatile and semi-volatile organic chemicals from clothing fabrics that are exposed to environmental tobacco smoke (ETS). Various fabrics were concurrently exposed to ETS in a controlled facility, and the chemicals off-gassed were sampled using solid phase micro-extraction coupled with GC/MS analysis. Toluene-reference concentration (TRC) was calculated for nine selected chemicals and compared. The number of chemicals identified from ETS-exposed fabrics ranged from 13 (polyester and acetate) to 32 (linen). All fabrics off-gassed formaldehyde, tetradecanoic acid and n-hexadecanoic acid, while seven out of eight fabrics emitted furfural, benzonitrile, naphthalene and decanal. Natural fibers of plant origin (cotton and linen) off-gassed higher concentrations (TRC>100 ?g/l) of chemicals that have low molecular weight (~100 or less) than did natural fibers of animal origin (wool and silk) and synthetic fibers. Conversely, wool and silk off-gassed more chemicals that are of high molecular weight (>200), such as TDA (TRC>100 ?g/l) and n-HDA (TRC>500 ?g/l), than did other fabrics. Fabric structure (for a particular material) significantly affects chemical off-gassing. Cotton typically used for polo shirt (knitted) off-gassed significantly (p<0.05) higher TRC for chemicals with molecular weight of ~100 (such as furfural) than did other cottons of woven style. The dyeing of fabric (white vs. black) had a limited effect on emission, while increasing contact time with ETS increased the intensity of chemical emissions. The mean TRC for cotton exposed for 12 min was nearly doubled than those exposed for 8min, but no difference existed for polyester. PMID:21852036

  13. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  14. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  15. A volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  16. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    PubMed Central

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A.; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J.; Katzir, Nurit; Lewinsohn, Efraim

    2010-01-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and ?-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective ?-keto acids, utilizing ?-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6?kDa and 42.7?kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants. PMID:20065117

  17. Characterization of volatile organic compounds in smoke at municipal structural fires.

    PubMed

    Austin, C C; Wang, D; Ecobichon, D J; Dussault, G

    2001-07-20

    The objective of this study was to characterize volatile organic compounds (VOCs) found at municipal structural fires in order to identify sources of long-term health risks to firefighters, which may be contributing factors in heart disease and cancer. Firefighters collected air into evacuated Summa canisters inside burning buildings at nine municipal structural fires under conditions where they judged that at least some firefighters might remove their self-contained breathing apparatus masks. Volatile organic compounds were identified and quantified for 144 target compounds using cryogenic preconcentration and gas chromatography/mass spectral detection (GC/MSD) methodology operating in selected ion monitoring mode. Samples were also analyzed in SCAN mode and examined for the appearance of substances that were not present in the instrument standard calibration mixture. The spectra of municipal structural fires were surprisingly similar and remarkable for their simplicity, which was largely due to the dominating presence of benzene along with toluene and naphthalene. Propene and 1,3-butadiene were found in all of the fires, and styrene and other alkyl-substituted benzene compounds were frequently identified. Similar "fingerprints" of the same 14 substances (propene, benzene, xylenes, 1-butene/2-methylpropene, toluene, propane, 1,2-butadiene, 2-methylbutane, ethylbenzene, naphthalene, styrene, cyclopentene, 1-methylcyclopentene, isopropylbenzene) previously identified at experimental fires burning various solid combustible materials were also found at municipal structural fires, accounting for 76.8% of the total VOCs measured. Statistically significant positive correlations were found between increasing levels of benzene and levels of propene, the xylenes, toluene, 1-butene/2-methylpropene, 1,3-butadiene, and naphthalene. Given the toxicity/carcinogenicity of those VOCs that were found in the highest concentrations, particularly benzene, 1,3-butadiene, and styrene, further investigation of VOC exposures of firefighters is warranted. Benzene, or its metabolic product s-phenylmercapturic acid in urine, was identified as a suitable chemical marker for firefighter exposure to combustion products. PMID:11482799

  18. A Novel Method for Analyzing Microbially Affiliated Volatile Organic Compounds in Soil Environments

    NASA Astrophysics Data System (ADS)

    Ruhs, C. V.; McNeal, K. S.

    2010-12-01

    A concerted, international effort by citizens, governments, industries and educational systems is necessary to address the myriad environmental issues that face us today. The authors of this paper concentrate on soil environments and, specifically, the methods currently used to characterize them. The ability to efficiently and effectively monitor and characterize various soils is desired, allows for the study, supervision, and protection of natural and cultivated ecosystems, and may assist stakeholders in meeting governmentally-imposed environmental standards. This research addresses soil characterization by a comparison of four methods that emphasize a combination of microbial community and metabolic measures: BIOLOG, fatty acid methyl-ester analysis (FAME), descriptive physical and chemical analysis (moisture content, pH, carbon content, nutrient content, and grain size), and the novel soil-microbe volatile organic compound analysis (SMVOC) presented in this work. In order to achieve the method comparison, soils were collected from three climatic regions (Bahamas, Michigan, and Mississippi), with three samples taken from niche ecosystems found at each climatic region (a total of nine sites). Of interest to the authors is whether or not an investigation of microbial communities and the volatile organic compounds (VOCs) produced by microbial communities from nine separate soil ecosystems provides useful information about soil dynamics. In essence, is analysis of soil-derived VOCs using gas chromatography-mass spectrometry (GC-MS) an effective method for characterizing microbial communities and their metabolic activity of soils rapidly and accurately compared with the other three traditional characterization methods? Preliminary results suggest that VOCs in each of these locales differ with changes in soil types, soil moisture, and bacterial community. Each niche site shows distinct patterns in both VOCs and BIOLOG readings. Results will be presented to show the efficacy of the SMVOC approach and the statistical alignment of the VOC and community measures.

  19. Importance of volatile organic compounds photochemistry over a forested area in central Greece

    NASA Astrophysics Data System (ADS)

    Tsigaridis, Kostas; Kanakidou, Maria

    The impact of biogenic volatile organic compound (BVOC) on the chemical composition of the boundary layer in a valley-forested site of central Greece is investigated by using a chemical box model able to simulate ?- and ?-pinene and isoprene photochemistry in the troposphere. The model assimilates the meteorological conditions and mixing ratios of long-lived species observed during the AEROBIC field campaign in July-August 1997. Only 23-61% of the observed ozone (O 3) mixing ratios can be attributed to the local photochemistry during the first part of the experiment, whereas this contribution increases to 80-96% during the second part of the campaign. The remaining part of O 3 is reaching the boundary layer mainly from the free troposphere during the morning opening of the valley. The local net photochemical production of O 3 is calculated to be up to 10 ppbv h -1, up to 60% of which is attributed to BVOC chemistry. BVOC oxidation is also shown to be an important source of carbon monoxide (CO) producing 1.5-2.5 ppbv CO h -1, carbonyl compounds and organic acids in particular contributing by about 1.5-4.3, 0.2-1.1 and 0.1-1 ppbv to the daytime ambient levels of formaldehyde, acetone and formic acid, respectively. BVOC oxidation is also able to produce about 1.3 ?g m -3 (0.3-2.5 ?g m -3) of secondary organic aerosol (SOA) that is 9-38% of the observed total organic aerosol levels.

  20. Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    SciTech Connect

    Hodzic, A.; Kleinman, L.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; DeCarlo, P. F.; Fast, J.

    2010-06-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ('ROB') and Grieshop et al. (2009) ('GRI') are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2-4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/{Delta}CO ratio for the ROB case increases from 20-30 {micro}g sm{sup -3} ppm{sup -1} up to 60-70 {micro}g sm{sup -3} ppm{sup -1} between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R{sup 2} = 0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio.

  1. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.; Madronich, Sasha; Canagaratna, M. R.; DeCarlo, Peter F.; Kleinman, Lawrence I.; Fast, Jerome D.

    2010-06-21

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of traditional anthropogenic and biogenic VOC precursors. In this study, the 3D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to explicitly include the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. For the first time, 3D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, but also against and oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (3-6 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total SOA at the surface during the day and is somewhat larger than that from aromatics, especially at the T1 site at the edge of the city. The downwind SOA production from the continued multi-generation S/IVOC oxidation products actively continues. Similar to aircraft observations, the predicted OA/DCO ratio for the ROB case increases from 20-30 mg sm-3 ppm-1 up to 60-70 mg sm-3 ppm-1 between a fresh and 1-day aged air mass, while the GRI case produces a 30-40% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA evolution with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the very important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for improvements in current parameterizations. We note that other proposed pathways of SOA formation such as formation from very volatile species like glyoxal were not included in our simulations, which can also contribute SOA mass and especially increase the O/C ratio.

  2. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  3. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana

    PubMed Central

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatographymass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. PMID:24475190

  4. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs. PMID:19708365

  5. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  6. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  7. SOIL SORPTION OF VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS IN A MIXTURE

    EPA Science Inventory

    Studies were conducted to evaluate lipophilicity as a predictor of sorption for a mixture of organic compounds with high vapor pressures commonly present at hazardous waste sites. orption partition coefficients (Kp) for the mixture of 16 volatile and semivolatile organic compound...

  8. VALIDATION OF THE VOLATILE ORGANIC SAMPLING TRAIN (VOST) PROTOCOL. VOLUME 2. FIELD VALIDATION PHASE

    EPA Science Inventory

    With the development of the Volatile Organic Sampling Train (VOST) Protocol (February 1984) to measure organic emissions from hazardous waste incinerators, a wide variety of compounds have been collected and analyzed. Because its use is currently being recommended by regulatory a...

  9. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  10. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  11. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  12. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  13. LABORATORY AND FIELD EVALUATION OF THE SEMI-VOST (SEMI-VOLATILE ORGANIC SAMPLING TRAIN) METHOD

    EPA Science Inventory

    Laboratory studies and a second field evaluation have been completed to assess the performance of the Semi-Volatile Organic Sampling Train (Semi-VOST) method for measuring concentrations of principal organic hazardous constituents (POHCs) with boiling points greater than 100 deg ...

  14. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  15. Acid volatile sulfide and simultaneously extracted metals in superficial sediments from Baihua Lake, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiping; Hu, Jiwei; Huang, Xianfei; Shen, Wei; Jin, Mei; Fu, Liya; Jin, Xiaofei

    2013-09-01

    The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 ?mol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 ?mol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.

  16. Au-Polypyrrole Framework Nanostructures for Improved Localized Surface Plasmon Resonance Volatile Organic Compounds Gas Sensing.

    PubMed

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Kim, Sae-Wan; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2015-10-01

    In this paper, we propose an Au-polypyrrole (Ppy) nanorod gas sensor for the detection of volatile organic compound (VOC) gases. This gas sensor operates on the principle of localized surface plasmon resonance (LSPR). The Au-Ppy nanorods used in this experiment were synthesized using an anodic aluminum oxide template by the electrochemical deposition method. Using field emission scanning electron microscopy, we confirmed that the Au-Ppy nanorod arrays were successfully fabricated with a uniform size. By depositing gold, the Au-Ppy nanorods exhibited both optical and LSPR interference. The gas sensing properties of the fabricated nanorods were tested for VOCs such as acetic acid, benzene, and toluene with a short response time (~1 min). Moreover, the proposed VOC gas sensing system was tested with three types of VOC gases over a wide concentration range from 10 to 100 ppm. Highest sensitivity was observed for acetic acid gas, which had a linear relation with the gas concentration, indicating that the system can be used as a gas sensor. PMID:26726404

  17. A Standardized Sampling Procedure for the Determination of Volatile Organic Compounds (VOC) Determined in Snow Samples

    NASA Astrophysics Data System (ADS)

    Kos, G.; Ariya, P. A.

    2005-12-01

    Snow samples were collected from different semi-remote and urban environments using a standardized sampling procedure in order to minimize sampling errors. Samples were collected in pre-cleaned amber glass and sterile HDPE containers. Glass bottles and all non-sterilized equipment were washed with low nutrient detergent, acid washed and rinsed with ultra-pure water. Samples were collected using pre-sterilized or acid-washed sampling tools and blanks, consisting of ultra-pure water, which were treated identically to the collected samples in to monitor contamination from sampling equipment and the different types of containers. Analysis for VOC was carried out with a previously described, but modified solid phase micro-extraction (SPME) pre-concentration method and determination of compounds using gas-chromatography with mass spectrometric detection (GC-MS) (1). Low concentrations required the use of larger sample volumes and splitless injection mode. Samples analyzed were collected in and around Montreal, Quebec (45.28 N/73.45 W) at Mont-Saint Hilaire (altitude: 415 m a.s.l.), Downtown Montreal and Parc Tremblant. We will present and compare results from all sites, and the implication for atmospheric processes will be discussed. References (1) Kos G, Ariya PA (2004), Determination of Volatile Organic Compounds in Snow Using Solid Phase Micro Extraction, Eos Trans. AGU, 85 (47), Fall Meet. Suppl., Abstract A11B-53

  18. Volatilization of iodine from nitric acid using peroxide

    DOEpatents

    Cathers, G.I.; Shipman, C.J.

    1975-10-21

    A method for removing radioactive iodine from nitric acid solution by adding hydrogen peroxide to the solution while concurrently holding the solution at the boiling point and distilling hydrogen iodide from the solution is reported.

  19. Changes in the Mouse Intestinal Microflora During Weaning: Role of Volatile Fatty Acids

    PubMed Central

    Lee, Adrian; Gemmell, Erica

    1972-01-01

    The influence of volatile fatty acids on the ecology of the bacterial flora of the mouse intestinal tract has been studied in three situations where large fluctuations in the composition of the microflora have been observed. Young mice were shown to ingest solid food particles when 11 days old; this correlated with the appearance of strictly anaerobic fusiform bacilli in the intestinal lumen and a 10,000-fold decrease in numbers of coliform bacilli. Over the same period, volatile fatty acids were shown by gas-liquid chromatography to appear in the intestinal content. It is suggested that the fusiform bacilli are responsible for the presence of the volatile acids (especially butyric acid) which exert an inhibitory effect on the coliform bacteria, resulting in the decline in numbers. When germ-free mice are placed in a specific pathogen-free mouse colony, changes in the intestinal flora occurred which were similar to those observed in the young mice approaching weaning. Once again, the decline in the coliform population correlated with the appearance of significant levels of butyric acid in the large intestine. In a further series of experiments, mice were fed penicillin and levels of the intestinal fatty acids were measured. The antibiotic eliminated the anaerobic fusiforms from the intestine, resulting in the disappearance of significant levels of butyric acid and a million-fold increase in the numbers of coliform bacilli. Images PMID:4656353

  20. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-01-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  1. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems. PMID:26850316

  2. The influences of mass loading and rapid dilution of secondary organic aerosol on particle volatility

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Chen, C.; Johnson, D.; Cappa, C. D.

    2015-08-01

    The thermally induced evaporation of secondary organic aerosol (SOA) has been characterized for SOA formed from the dark ozonolysis of ?-pinene at initial mass concentrations ranging from 1 to 800 ?g m-3. Temperature-dependent particle size distributions were measured using a thermodenuder and the resulting mass thermograms were compared between the SOA formed at the various SOA mass concentrations. Negligible differences were observed between the mass thermograms for SOA concentrations < 300 ?g m-3. At higher SOA concentrations, the observed mass thermograms indicated the SOA was actually slightly less volatile than the SOA at lower concentrations; this is likely an artifact due to either saturation of the gas phase or to recondensation during cooling. The thermograms observed when the SOA was formed at high concentrations (> 380 ?g m-3) and then rapidly isothermally diluted to low concentrations (1-20 ?g m-3) were identical to those for the SOA that was initially formed at low concentrations. The experimental results were compared to a kinetic model that simulates particle evaporation upon heating in a thermodenuder for a given input volatility distribution and particle composition. Three cases were considered: (1) the SOA was composed of semi-volatile monomer species with a volatility distribution based on that derived previously from consideration of SOA growth experiments; (2) the initial SOA was composed almost entirely of non-volatile dimers that decompose upon heating into their semi-volatile monomer units, which can then evaporate; and (3) where a volatility distribution was derived by fitting the model to the observed mass thermograms. It was found that good agreement is obtained between model predictions and the observations when the particle composition is dominated by either compounds of low volatility or by dimers. These same models were used to simulate isothermal evaporation of the SOA and were found to be broadly consistent with literature observations that indicate that SOA evaporation occurs with multiple timescales. The use of the semi-volatile monomer volatility distribution fails to reproduce the observed evaporation. The presence of dimers and larger oligomers in secondary organic aerosol formed from products of the reaction of ?-pinene and O3 has been well established in laboratory studies. However, the timescale and relative importance of the formation of oligomers or low-volatility compounds in the growth and evaporation of SOA has been debated. This study provides further support that low-volatility compounds and oligomers are formed in ?-pinene + O3 in high abundances and suggests that their formation occurs rapidly upon particle formation.

  3. The influences of mass loading and rapid dilution of secondary organic aerosol on particle volatility

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Chen, C.; Johnson, D.; Cappa, C. D.

    2015-04-01

    The thermally-induced evaporation of secondary organic aerosol (SOA) has been characterized for SOA formed from the dark ozonolysis of ?-pinene + O3 at initial mass concentrations ranging from 1 to 800 ?g m-3. Temperature-dependent particle size distributions were measured using a thermodenuder and the resulting mass thermograms were compared between the SOA formed at the various SOA mass concentrations. Negligible differences were observed between the mass thermograms for SOA concentrations < 300 ?g m-3. At higher SOA concentrations, the observed mass thermograms indicated the SOA was actually slightly less volatile than the SOA at lower concentrations; this is likely an artifact due to either saturation of the gas-phase or to re-condensation during cooling. The thermograms observed when the SOA was formed at high concentrations (> 380 ?g m-3) and then rapidly isothermally diluted to low concentrations (1-20 ?g m-3) were identical to those for the SOA that was initially formed at low concentrations. The experimental results were compared to a kinetic model that simulates particle evaporation upon heating in a thermodenuder for a given input volatility distribution and particle composition. Three cases were considered: (1) the SOA was composed of semi-volatile monomer species with a volatility distribution based on that derived previously from consideration of SOA growth experiments, (2) the initial SOA was composed almost entirely of non-volatile dimers that decompose upon heating into their semi-volatile monomer units, which can then evaporate; and (3) where a volatility distribution was derived by fitting the model to the observed mass thermograms. It was found that good agreement is obtained between model predictions and the observations when the particle composition is either dominated by compounds of low volatility or by dimers. These same models were used to simulate isothermal evaporation of the SOA and were found to be broadly consistent with literature observations that indicate that SOA evaporation occurs with multiple timescales. The use of the semi-volatile monomer volatility distribution fails to reproduce the observed evaporation. The presence of dimers and larger oligomers in secondary organic aerosol formed from products of the reaction of ?-pinene and O3 has been well-established in laboratory studies. However, the timescale and relative importance of the formation of oligomers or low volatility compounds in the growth and evaporation of SOA has been debated. This study provides further support that low volatility compounds and oligomers are formed in ?-pinene + O3 in high abundances and suggests that their formation occurs rapidly upon particle formation.

  4. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  5. Interaction of volatiles, sugars and acids on perception of tomato aroma and flavor descriptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the effect of sugars and acid levels on perception of aroma volatiles, intensity of tomato characteristic earthy/medicinal/musty, green/grassy/viny and fruity/floral aroma and flavor descriptors were evaluated using coarsely choped partially deodorized tomato puree spiked with 1...

  6. ACID-VOLATILE SULFIDE AS A FACTOR MEDIATING CADMIUM AND NICKEL BIOAVAILABILITY IN CONTAMINATED SEDIMENTS

    EPA Science Inventory

    We investigated the influence of sulfide, measured as acid-volatile sulfide (AVS), on the bioavailability of cadmium and nickel in sediments. eventeen samples from an estuarine system heavily contaminated with cadmium and nickel were analyzed for AVS and simultaneously extracted ...

  7. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID VOLATILE SULFIDE AND INTERSTITAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (A VS) is formed only in anoxic sediments, therefo...

  8. Relationship of soluble solids, acidity and aroma volatiles to flavor in late-season navel oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Navel orange flavor development during early fruit maturation is strongly dependent on changes in soluble solids concentration (SSC) and titratable acidity (TA), while later in the season other factors, such as aroma volatiles, also become important. The flavor of individual oranges can differ gre...

  9. Evaluation of Volatilization by Organic Chemicals Residing Below the Soil Surface

    NASA Astrophysics Data System (ADS)

    Jury, William A.; Russo, David; Streile, Gary; El Abd, Hesham

    1990-01-01

    Although volatile organic compounds located in buried waste repositories or distributed through the unsaturated soil zone have the potential to migrate to the atmosphere by vapor diffusion, little attention has been paid in the past to estimating the importance of volatilization losses. In this paper a screening model is introduced which evaluates the relative volatilization losses of a number of organic compounds under standard soil conditions. The model is an analytic solution to the problem wherein the organic chemical is located at time zero at uniform concentration in a finite layer of soil covered by a layer of soil devoid of chemical. The compound is assumed to move by vapor or liquid diffusion and by mass flow under the influence of steady upward or zero water flow while undergoing first-order degradation and linear equilibrium adsorption. Loss to the atmosphere is governed by vapor diffusion through a stagnant air boundary layer. Calculations are performed on 35 organic compounds in two model soils with properties characteristic of sandy and clayey soil. The model identifies those compounds with high potential for loss during 1 year after incorporation under 100 cm of soil cover and also is used to calculate the minimum soil cover thickness required to reduce volatilization losses to insignificant levels during the lifetime of the compound in the soil. From the latter calculation it was determined that certain compounds may volatilize from deep subsurface locations or even groundwater unless the soil surface is sealed to prevent gas migration.

  10. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation.

    PubMed

    Xu, Lu; Kollman, Matthew S; Song, Chen; Shilling, John E; Ng, Nga L

    2014-02-18

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways, including with NO, NO2, and HO2. The volatility and oxidation state of isoprene SOA are sensitive to and exhibit a nonlinear dependence on NOx levels. Depending on the NOx levels, the SOA formed in mixed experiments can be of similar or lower volatility compared to that formed in HO2-dominant experiments. The dependence of SOA yield, volatility, and oxidation state on the NOx level likely arises from gas-phase RO2 chemistry and succeeding particle-phase oligomerization reactions. The NOx level also plays a strong role in SOA aging. While the volatility of SOA in mixed experiments does not change substantially over time, SOA becomes less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. PMID:24471688

  11. Proteomic response of the phytopathogen Phyllosticta citricarpa to antimicrobial volatile organic compounds from Saccharomyces cerevisiae.

    PubMed

    Fialho, Mauricio Batista; de Andrade, Alexander; Bonatto, José Matheus Camargo; Salvato, Fernanda; Labate, Carlos Alberto; Pascholati, Sérgio Florentino

    2016-02-01

    Volatile organic compounds (VOCs) released by Saccharomyces cerevisiae inhibit plant pathogens, including the filamentous fungus Phyllosticta citricarpa, causal agent of citrus black spot. VOCs mediate relevant interactions between organisms in nature, and antimicrobial VOCs are promising, environmentally safer fumigants to control phytopathogens. As the mechanisms by which VOCs inhibit microorganisms are not well characterized, we evaluated the proteomic response in P. citricarpa after exposure for 12h to a reconstituted mixture of VOCs (alcohols and esters) originally identified in S. cerevisiae. Total protein was extracted and separated by 2D-PAGE, and differentially expressed proteins were identified by LC-MS/MS. About 600 proteins were detected, of which 29 were downregulated and 11 were upregulated. These proteins are involved in metabolism, genetic information processing, cellular processes, and transport. Enzymes related to energy-generating pathways, particularly glycolysis and the tricarboxylic acid cycle, were the most strongly affected. Thus, the data indicate that antimicrobial VOCs interfere with essential metabolic pathways in P. citricarpa to prevent fungal growth. PMID:26805613

  12. Multisorbent tubes for collecting volatile organic compounds in spacecraft air

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Beck, S. W.; Limero, T. F.; James, J. T.

    2000-01-01

    The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and > 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.

  13. Volatile organic compounds of polyethylene vinyl acetate plastic are toxic to living organisms.

    PubMed

    Meng, Tingzhu Teresa

    2014-01-01

    Volatile organic compounds (VOCs) in polyvinyl chloride (PVC) plastic products readily evaporate; as a result, hazardous gases enter the ecosystem, and cause cancer in humans and other animals. Polyethylene vinyl acetate (PEVA) plastic has recently become a popular alternative to PVC since it is chlorine-free. In order to determine whether PEVA is harmful to humans, this research employed the freshwater oligochaete Lumbriculus variegatus as a model to compare their oxygen intakes while they were exposed to the original stock solutions of PEVA, PVC or distilled water at a different length of time for one day, four days or eight days. During the exposure periods, the oxygen intakes in both PEVA and PVC groups were much higher than in the distilled water group, indicating that VOCs in both PEVA and PVC were toxins that stressed L. variegatus. Furthermore, none of the worms fully recovered during the24-hr recovery period. Additionally, the L. variegatus did not clump together tightly after four or eight days' exposure to either of the two types of plastic solutions, which meant that both PEVA and PVC negatively affected the social behaviors of these blackworms. The LD50 tests also supported the observations above. For the first time, our results have shown that PEVA plastic has adverse effects on living organisms, and therefore it is not a safe alternative to PVC. Further studies should identify specific compounds causing the adverse effects, and determine whether toxic effect occurs in more complex organisms, especially humans. PMID:25242410

  14. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Aerosol microphysics do not significantly alter the mean OA vertical profile or comparison with surface measurements. This might not be the case for semi-volatile OA with microphysics.

  15. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    PubMed Central

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  16. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  17. Closed cycle cooler for VOC preconcentration. Final report. [VOC (volatile organic compound)

    SciTech Connect

    Smith, D.L.

    1993-09-01

    The use of automated gas chromatographs at air quality network monitoring stations to obtain measurements of ambient concentrations of volatile organic compounds (VOCs) has been a goal of EPA's Atmospheric Research and Exposure Assessment Laboratory. Presently, instrument designs require excessive amounts of cryogen to preconcentrate and resolve the more volatile organic compounds. The large consumption of cryogen becomes a major disadvantage when deploying the automated systems in field monitoring studies. In the current work a closed cycle cooling device was evaluated for its capability in replacing or reducing the need of cryogen for operating automated gas chromatographs.

  18. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires

    NASA Astrophysics Data System (ADS)

    Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon

    2014-06-01

    Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

  19. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge based on short-term experiments is risky being transferred to an ecotype which is governed under natural conditions by long term flooding. Furthermore, contrasting such experiments with usually young trees (saplings or a few years old) nothing is known about the emission behavior of adult trees under field conditions.

  20. Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kudo, Shinji; Tanimoto, Hiroshi; Inomata, Satoshi; Saito, Shinji; Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Wang, Zifa; Chen, Hongyan; Dong, Huabin; Zhang, Meigen; Yamaji, Kazuyo

    2014-06-01

    Open crop residue burning is one of the major sources of air pollutants including the precursors of photooxidants like ozone and secondary organic aerosol. We made measurements of trace gases including nonmethane volatile organic compounds (NMVOCs) in a rural area in central East China in June 2010. During the campaign, we identified six biomass burning events in total through the simultaneous enhancement of carbon monoxide and acetonitrile. Four cases represented fresh plumes (<2 h after emission), and two cases represented aged plumes (>3 h after emission), as determined by photochemical age. While we were not able to quantify formic acid, we identified an enhancement of major oxygenated volatile organic compounds (OVOCs) as well as low molecular alkanes and alkenes, and aromatic hydrocarbons in these plumes. The observed normalized excess mixing ratios (NEMRs) of OVOCs and alkenes showed dependence on air mass age, even in fresh smoke plumes, supporting the view that these species are rapidly produced and destructed, respectively, during plume evolution. Based on the NEMR data in the fresh plumes, we calculated the emission factors (EFs) of individual NMVOC. The comparison to previous reports suggests that the EFs of formaldehyde and acetic acid have been overestimated, while those of alkenes have been underestimated. Finally, we suggest that open burning of wheat residue in China releases about 0.34 Tg NMVOCs annually. If we applied the same EFs to all crops, the annual NMVOC emissions would be 2.33 Tg. The EFs of speciated NMVOCs can be used to improve the existing inventories.

  1. Analysis of volatile organic compounds of Fuji apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  2. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  3. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates.

    PubMed

    Yang, Chunping; Chen, Hong; Zeng, Guangming; Zhu, Xueqing; Suidan, Makram T

    2008-01-01

    Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32.1, 64.2, 128, and 256 g ether/(m3 x h) (16.06 g ether/(m3 x h) approximately 1.0 kg chemical oxygen demand (COD)/(m3 x d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m3 x h). However, when the VOC loading rate was increased to 256 g ether/(m3 x h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs. PMID:18595394

  4. Effect of ammonia on the volatility of organic diacids.

    PubMed

    Paciga, Andrea L; Riipinen, Ilona; Pandis, Spyros N

    2014-12-01

    The effect of ammonia on the partitioning of two dicarboxylic acids, oxalic (C2) and adipic (C6) is determined. Measurements by a tandem differential mobility analysis system and a thermodenuder (TD-TDMA) system are used to estimate the saturation vapor pressure and enthalpy of vaporization of ammonium oxalate and adipate. Ammonia dramatically lowered the vapor pressure of oxalic acid, by several orders of magnitude, with an estimated vapor pressure of 1.7 0.8 10(6) Pa at 298 K. The vapor pressure of ammonium adipate was 2.5 0.8 10(5) Pa at 298 K, similar to that of adipic acid. These results suggest that the dominance of oxalate in diacid concentrations measured in ambient aerosol could be attributed to the salt formation with ammonia. PMID:25356879

  5. Intake of toxic and carcinogenic volatile organic compounds from secondhand smoke in motor vehicles

    PubMed Central

    St.Helen, Gideon; Jacob, Peyton; Peng, Margaret; Dempsey, Delia A.; Hammond, S. Katharine; Benowitz, Neal L.

    2014-01-01

    Background Volatile organic compounds (VOCs) from tobacco smoke are associated with cancer, cardiovascular, and respiratory diseases. The objective of this study was to characterize the exposure of nonsmokers to VOCs from secondhand smoke (SHS) in vehicles using mercapturic acid metabolites. Methods Fourteen nonsmokers were individually exposed in the backseat to one hour of SHS from a smoker seating in the drivers seat who smoked 3 cigarettes at 20 minute intervals in a stationary car with windows opened by 10 cm. Baseline and 0-8 h post-exposure mercapturic acid metabolites of 9 VOCs were measured in urine. Air-to-urine VOC ratios were estimated based on respirable particulates (PM2.5) or air nicotine concentration, and lifetime excess risk (LER) of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene was estimated for adults. Results The greatest increase in 0-8 h post-exposure concentrations of mercapturic acids from baseline was MHBMA-3 (parent, 1,3-butadiene) (2.1-fold), then CNEMA (acrylonitrile) (1.7-fold), PMA (benzene) (1.6-fold), MMA (methylating agents) (1.6-fold), and HEMA (ethylene oxide) (1.3-fold). The LER of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene in SHS for 5 hour a week ranged from 15.510?6 to 28.110?6 for adults, using air nicotine and PM2.5 to predict air VOC exposure, respectively. Conclusion Nonsmokers have significant intake of multiple VOCs from breathing SHS in cars, corresponding to health risks that exceed the acceptable level. Impact Smoking in cars may be associated with increased risks of cancer, respiratory, and cardiovascular diseases among nonsmokers. PMID:25398951

  6. Volatile organic chemical emissions from structural insulated panel (SIP) materials and implications for indoor air quality

    SciTech Connect

    Hodgson, Alfred T.

    2003-09-01

    The emissions of volatile organic compounds (VOCs) from structural insulated panel (SIP) materials were investigated. Specimens of newly produced SIPs and associated panel adhesives were obtained from two relatively large manufacturers. Additionally, specimens of the oriented strand board (OSB) used as the inner and outer sheathing and the extruded polystyrene core for the SIP were obtained from one manufacturer. Using small-scale chambers, emissions of formaldehyde, acetaldehyde, acetic acid and other VOCs from SIPs, OSB and polystyrene were measured over a period of four months and from the adhesives over two months. SIP specimens overlaid by gypsum board panels were also tested over four months. The predominant VOCs emitted by the SIPs included acetic acid, pentanal, hexanal and styrene. The emissions of formaldehyde and acetaldehyde were relatively low. Acetic acid and the aldehydes derived from the OSB, while styrene derived from the polystyrene. One of the SIPs emitted toluene and methyl acetate. The adhesives primarily emitted a mixture of hydrocarbons. The emission rates of most VOCs from the SIP/gypsum board assemblies were approximately the same or higher than their respective emission rates from the unfinished SIPs. Modeling using VOC emission factors obtained for the SIP/gypsum board assemblies demonstrated the potential for SIP materials to degrade indoor air quality in houses. A field study to investigate VOC concentrations and emission rates in SIP houses relative to closely matched conventionally constructed houses is necessary to determine the actual impacts of SIPs. If significant impacts are observed, to it may be desirable to develop control measures to reduce the emissions of VOCs from SIPs, such as the substitution of lower emitting materials or the use of vapor diffusion barriers.

  7. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  8. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  9. Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia polymorpha).

    PubMed

    Kihara, Hirotomo; Tanaka, Maya; Yamato, Katsuyuki T; Horibata, Akira; Yamada, Atsushi; Kita, Sayaka; Ishizaki, Kimitsune; Kajikawa, Masataka; Fukuzawa, Hideya; Kohchi, Takayuki; Akakabe, Yoshihiko; Matsui, Kenji

    2014-11-01

    Eight-carbon (C8) volatiles, such as 1-octen-3-ol, octan-3-one, and octan-3-ol, are ubiquitously found among fungi and bryophytes. In this study, it was found that the thalli of the common liverwort Marchantia polymorpha, a model plant species, emitted high amounts of C8 volatiles mainly consisting of (R)-1-octen-3-ol and octan-3-one upon mechanical wounding. The induction of emission took place within 40min. In intact thalli, 1-octen-3-yl acetate was the predominant C8 volatile while tissue disruption resulted in conversion of the acetate to 1-octen-3-ol. This conversion was carried out by an esterase showing stereospecificity to (R)-1-octen-3-yl acetate. From the transgenic line of M. polymorpha (des6(KO)) lacking arachidonic acid and eicosapentaenoic acid, formation of C8 volatiles was only minimally observed, which indicated that arachidonic and/or eicosapentaenoic acids were essential to form C8 volatiles in M. polymorpha. When des6(KO) thalli were exposed to the vapor of 1-octen-3-ol, they absorbed the alcohol and converted it into 1-octen-3-yl acetate and octan-3-one. Therefore, this implied that 1-octen-3-ol was the primary C8 product formed from arachidonic acid, and further metabolism involving acetylation and oxidoreduction occurred to diversify the C8 products. Octan-3-one was only minimally formed from completely disrupted thalli, while it was formed as the most abundant product in partially disrupted thalli. Therefore, it is assumed that the remaining intact tissues were involved in the conversion of 1-octen-3-ol to octan-3-one in the partially disrupted thalli. The conversion was partly promoted by addition of NAD(P)H into the completely disrupted tissues, suggesting an NAD(P)H-dependent oxidoreductase was involved in the conversion. PMID:25174554

  10. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. PMID:23339903

  11. Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity.

    PubMed

    Zhu, Zhangbing; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Lu, Haifeng; Duan, Na; Si, Buchun; Shen, Ruixia; Lu, Jianwen

    2016-01-01

    This study focused on the degradation of cornstalk and recovery of reducing sugars and volatile fatty acids (VFAs) at different hydrothermal treatment severity (HTS) (4.17-8.28, 190-320C). The highest recovery of reducing sugars and VFAs reached 92.39% of aqueous products, equal to 34.79% based on dry biomass (HTS, 6.31). GC-MS and HPLC identified that the aqueous contained furfural (0.35-2.88g/L) and 5-hydroxymethyl furfural (0-0.85g/L) besides reducing sugars and VFAs. Hemicellulose and cellulose were completely degraded at a HTS of 5.70 and 7.60, respectively. SEM analysis showed that cornstalk was gradually changed from rigid and highly ordered fibrils to molten and grainy structure as HTS increased. FT-IR and TGA revealed the significant changes of organic groups for cornstalk before and after hydrothermal treatment at different HTS. Hydrothermal treatment might be promising for providing feedstocks suitable for biohythane production. PMID:26316401

  12. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.

    PubMed

    Su, Gaoqiang; Wang, Shuying; Yuan, Zhiguo; Peng, Yongzhen

    2016-03-01

    Volatile fatty acids (VFAs) are essential for removing biological nitrogen and phosphorus in wastewater treatment plants. The purpose of this work was to investigate whether and how the addition of NaCl could improve the production of VFAs from waste activated sludge (WAS). Sludge solubilization was efficiently improved by the addition of NaCl. Both protein and carbohydrate in the fermentation liquid increased with the dosage of NaCl, and it provided a larger amount of organic compounds for the production of the VFAs. NaCl had inhibitory effects on the production of methane and a high dosage of NaCl could severely suppress the growth of methanogens, which decreased the consumption of the VFAs. Consequently, the production of VFAs was significantly enhanced by the addition of NaCl. The maximum production of VFAs was achieved with the highest dosage of NaCl (3316 mg (COD)/L at the NaCl dosage 0.5 mol/L; 783 mg (COD)/L without the addition of NaCl). Therefore, this study indicates that using NaCl could be an efficient method for improving the production of VFAs from WAS. PMID:26320405

  13. Alcohol, volatile fatty acid, phenol, and methane emissions from dairy cows and fresh manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their waste as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOC) and greenhouse gases (GH...

  14. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    NASA Astrophysics Data System (ADS)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  15. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  16. Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress

    PubMed Central

    Fiedler, Nancy; Laumbach, Robert; Kelly-McNeil, Kathie; Lioy, Paul; Fan, Zhi-Hua; Zhang, Junfeng; Ottenweller, John; Ohman-Strickland, Pamela; Kipen, Howard

    2005-01-01

    In our present study we tested the health effects among women of controlled exposures to volatile organic compounds (VOCs), with and without ozone (O3), and psychological stress. Each subject was exposed to the following three conditions at 1-week intervals (within-subject factor): VOCs (26 mg/m3), VOCs + O3 (26 mg/m3 + 40 ppb), and ambient air with a 1-min spike of VOCs (2.5 mg/m3). As a between-subjects factor, half the subjects were randomly assigned to perform a stressor. Subjects were 130 healthy women (mean age, 27.2 years; mean education, 15.2 years). Health effects measured before, during, and after each 140-min exposure included symptoms, neurobehavioral performance, salivary cortisol, and lung function. Mixing VOCs with O3 was shown to produce irritating compounds including aldehydes, hydrogen peroxide, organic acids, secondary organic aerosols, and ultrafine particles (particulate matter with aerodynamic diameter < 0.1 ?m). Exposure to VOCs with and without O3 did not result in significant subjective or objective health effects. Psychological stress significantly increased salivary cortisol and symptoms of anxiety regardless of exposure condition. Neither lung function nor neurobehavioral performance was compromised by exposure to VOCs or VOCs + O3. Although numerous epidemiologic studies suggest that symptoms are significantly increased among workers in buildings with poor ventilation and mixtures of VOCs, our acute exposure study was not consistent with these epidemiologic findings. Stress appears to be a more significant factor than chemical exposures in affecting some of the health end points measured in our present study. PMID:16263509

  17. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    NASA Astrophysics Data System (ADS)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  18. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2.

    PubMed

    Kim, Jong-Seon; Yoo, Hae-Wook; Choi, Hyung Ouk; Jung, Hee-Tae

    2014-10-01

    One of the most important issues in the development of gas sensors for breath analysis is the fabrication of gas sensor arrays that possess different responses for recognizing patterns for volatile organic compounds (VOCs). Here, we develop a high-performance chemiresistor with a tunable sensor response and high sensitivity for representative VOC groups by using molybdenum disulfide (MoS2) and by conjugating a thiolated ligand (mercaptoundecanoic acid (MUA)) to MoS2 surface. Primitive and MUA-conjugated MoS2 sensing channels exhibit distinctly different sensor responses toward VOCs. In particular, the primitive MoS2 sensor presents positive responses for oxygen-functionalized VOCs, while the MUA-conjugated MoS2 sensor presents negative responses for the same analytes. Such characteristic sensor responses demonstrate that ligand conjugation successfully adds functionality to a MoS2 matrix. Thus, this will be a promising approach to constructing a versatile sensor array, by conjugating a wide variety of thiolated ligands on the MoS2 surface. Furthermore, these MoS2 sensors in this study exhibit high sensitivity to representative VOCs down to a concentration of 1 ppm. This approach to fabricating a tunable and sensitive VOC sensor may lead to a valuable real-world application for lung cancer diagnosis by breath analysis. PMID:25191976

  19. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation.

    PubMed

    Wang, Changsong; Dong, Ran; Wang, Xiaoyang; Lian, Ailing; Chi, Chunjie; Ke, Chaofu; Guo, Lei; Liu, Shanshan; Zhao, Wei; Xu, Guowang; Li, Enyou

    2014-01-01

    In this study, single-lung ventilation was used to detect differences in the volatile organic compound (VOCs) profiles between lung tissues in healthy and affected lungs. In addition, changes that occurred after lung cancer resection in both the VOCs profiles of exhaled breath from ipsilateral and contralateral lungs and the VOCs profiles of exhaled breath and blood sample headspaces were also determined. Eighteen patients with non-small cell carcinoma were enrolled. Alveolar breath samples were taken separately from healthy and diseased lungs before and after the tumor resection. Solid phase microextraction-gas chromatography/mass spectrometry was used to assess the exhaled VOCs of the study participants. The VOCs exhibited significant differences between the contralateral and ipsilateral lungs before surgery, the contralateral and ipsilateral lungs after surgery, the ipsilateral lungs before and after surgery, and the blood samples from before and after surgery; 12, 19, 12 and 5 characteristic metabolites played decisive roles in sample classification, respectively. 2,2-Dimethyldecane, tetradecane, 2,2,4,6,6-pentamethylheptane, 2,3,4-trimethyldecane, nonane, 3,4,5,6-tetramethyloctane, and hexadecane may be generated from lipid peroxidation during surgery. Caprolactam and propanoic acid may be more promising exhaled breath biomarkers for lung cancer. PMID:25482491

  20. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation

    PubMed Central

    Wang, Changsong; Dong, Ran; Wang, Xiaoyang; Lian, Ailing; Chi, Chunjie; Ke, Chaofu; Guo, Lei; Liu, Shanshan; Zhao, Wei; Xu, Guowang; Li, Enyou

    2014-01-01

    In this study, single-lung ventilation was used to detect differences in the volatile organic compound (VOCs) profiles between lung tissues in healthy and affected lungs. In addition, changes that occurred after lung cancer resection in both the VOCs profiles of exhaled breath from ipsilateral and contralateral lungs and the VOCs profiles of exhaled breath and blood sample headspaces were also determined. Eighteen patients with non-small cell carcinoma were enrolled. Alveolar breath samples were taken separately from healthy and diseased lungs before and after the tumor resection. Solid phase microextraction–gas chromatography/mass spectrometry was used to assess the exhaled VOCs of the study participants. The VOCs exhibited significant differences between the contralateral and ipsilateral lungs before surgery, the contralateral and ipsilateral lungs after surgery, the ipsilateral lungs before and after surgery, and the blood samples from before and after surgery; 12, 19, 12 and 5 characteristic metabolites played decisive roles in sample classification, respectively. 2,2-Dimethyldecane, tetradecane, 2,2,4,6,6-pentamethylheptane, 2,3,4-trimethyldecane, nonane, 3,4,5,6-tetramethyloctane, and hexadecane may be generated from lipid peroxidation during surgery. Caprolactam and propanoic acid may be more promising exhaled breath biomarkers for lung cancer. PMID:25482491