Science.gov

Sample records for volcano aleutian islands

  1. August 2008 eruption of Kasatochi volcano, Aleutian Islands, Alaska-resetting an Island Landscape

    USGS Publications Warehouse

    Scott, W.E.; Nye, C.J.; Waythomas, C.F.; Neal, C.A.

    2010-01-01

    Kasatochi Island, the subaerial portion of a small volcano in the western Aleutian volcanic arc, erupted on 7-8 August 2008. Pyroclastic flows and surges swept the island repeatedly and buried most of it and the near-shore zone in decimeters to tens of meters of deposits. Several key seabird rookeries in taluses were rendered useless. The eruption lasted for about 24 hours and included two initial explosive pulses and pauses over a 6-hr period that produced ash-poor eruption clouds, a 10-hr period of continuous ash-rich emissions initiated by an explosive pulse and punctuated by two others, and a final 8-hr period of waning ash emissions. The deposits of the eruption include a basal muddy tephra that probably reflects initial eruptions through the shallow crater lake, a sequence of pumiceous and lithic-rich pyroclastic deposits produced by flow, surge, and fall processes during a period of energetic explosive eruption, and a fine-grained upper mantle of pyroclastic-fall and -surge deposits that probably reflects the waning eruptive stage as lake and ground water again gained access to the erupting magma. An eruption with similar impact on the island's environment had not occurred for at least several centuries. Since the 2008 eruption, the volcano has remained quiet other than emission of volcanic gases. Erosion and deposition are rapidly altering slopes and beaches. ?? 2010 Regents of the University of Colorado.

  2. The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.

    2010-12-01

    Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.

  3. The 2008 Eruption of Kasatochi Volcano, Central Aleutian Islands, Alaska: Reconnaissance Observations and Preliminary Physical Volcanology

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Schneider, D. J.; Prejean, S. G.

    2008-12-01

    The August 7, 2008 eruption of Kasatochi volcano was the first documented historical eruption of this small (3 x 3 km) island volcano with a 1 km2 lake filled crater in the central Aleutian Islands of Alaska. Reports of previous Kasatochi eruptions are unconfirmed and lacking in detail and little is known about the eruptive history. Three explosively-generated ash plumes reaching altitudes of 15 to 20 km were observed in satellite data and were preceded by some of the most intense seismicity yet recorded by the Alaska Volcano Observatory (AVO) seismic network. Eruptive products on Kasatochi Island observed on August 22 and 23 consist of pumice-bearing, lithic-rich pyroclastic-flow deposits overlain by a 1-2 m thick sequence of fine- grained pyroclastic-surge, and -fall deposits all exposed at the coastline. These deposits completely blanket Kasatochi Island to a depth of many meters. Pyroclastic flows entered the sea and extended the coastline 300-400 m beyond prominent wave cut cliffs and sea stacks. Tide gauge data from Adak Island, 80 km to the west, indicate a small tsunami with maximum water amplitude of 20 cm, was initiated during the eruption. Kasatochi volcano lacks a real-time seismic monitoring network. Seismic activity was detected by AVO instruments on Great Sitkin Island 40 km to the west, and thus the timing of eruptive events is approximate. The eruption began explosively at 2201 UTC on August 7, and was followed by at least two additional strong eruptive bursts at 0150 UTC and 0435 UTC, August 8. Satellite data show a significant ash cloud associated with the 0435 UTC event followed by at least 14 hours of continuous ash emission. The lack of a strong ash signature in satellite data suggest that the first two plumes were ash poor. Satellite data also show a large emission of SO2 that entered the stratosphere. Correlation of eruptive periods with deposits on the island is not yet possible, but it appears that pyroclastic flows were emplaced during

  4. Geology and 40Ar/39Ar Geochronology of Akutan Volcano, Eastern Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Jicha, B. R.

    2013-12-01

    40Ar/39Ar dating and new whole-rock geochemical analyses are used to establish an eruptive chronology for Akutan volcano, Akutan Island, in the eastern Aleutian island arc. Akutan Island (166° W, 54.1° N) is the site of long-lived volcanism and the entire island comprises volcanic rocks as old as 3.3 Ma (Richter et al., 1998, USGS Open-File 98-135). Our current focus is on the 225 km2 western half of the island, which is home to the Holocene active cone, Holocene to latest Pleistocene satellite vents, and underlying middle Pleistocene volcanic basement rocks. Eruptive products span the tholeiitic-calc-alkaline boundary, are medium-K, and range from basalt to dacite. Furnace incremental heating experiments on groundmass separates of 38 samples resulted in 29 40Ar/39Ar ages. The remainder did not yield radiogenic 40Ar contents and are likely Holocene in age. The oldest ages (1251×10 and 1385×12 ka) are from a wedge of flat-lying dissected lavas north of the Holocene cone; these likely represent the upper part of the volcanic basement that underlies the entire island. Above a major unconformity lie basaltic andesite to dacite lavas that range from 765× 4 to 522×8 ka. The eroded remnants of the source volcano for these flows appears to crop out as a series of variably hydrothermally altered breccias and domes 5 km east-northeast of the current summit. A 625 m-tall eroded basaltic center, Lava Peak, sits 6 km northwest of the summit; its deeply incised western flank exposes lava flows and a plug. Two flows are dated at 598×16 and 602×15 ka. A high ridge 1.5 km south of the summit is made of oxidized, mostly andesitic lavas 284-249 ka old; these are presumably the remnants of an eruptive center located near the current cone. Flat Top Peak, 3.5 km southwest of the summit, produced almost exclusively basalts and six dated lavas range from 155×8 to 98×18 ka. Lavas from Flat Top (1065 m asl) are deeply eroded suggesting extensive ice cover during marine isotope

  5. SAR-based Estimation of Glacial Extent and Velocity Fields on Isanotski Volcano, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Sousa, D.; Lee, A.; Parker, O. P.; Pressler, Y.; Guo, S.; Osmanoglu, B.; Schmidt, C.

    2012-12-01

    Global studies show that Earth's glaciers are losing mass at increasing rates, creating a challenge for communities that rely on them as natural resources. Field observation of glacial environments is limited by cost and inaccessibility. Optical remote sensing is often precluded by cloud cover and seasonal darkness. Synthetic aperture radar (SAR) overcomes these obstacles by using microwave-frequency electromagnetic radiation to provide high resolution information on large spatial scales and in remote, atmospherically obscured environments. SAR is capable of penetrating clouds, operating in darkness, and discriminating between targets with ambiguous spectral signatures. This study evaluated the efficacy of two SAR Earth observation methods on small (< 7 km2) glaciers in rugged topography. The glaciers chosen for this study lie on Isanotski Volcano in Unimak Island, Aleutian Archipelago, USA. The local community on the island, the City of False Pass, relies on glacial melt for drinking water and hydropower. Two methods were used: (1) velocity field estimation based on Repeat Image Feature Tracking (RIFT) and (2) glacial boundary delineation based on interferometric coherence mapping. NASA Uninhabited Aerial Vehicle SAR (UAVSAR) single-polarized power images and JAXA Advanced Land Observing Satellite Phased Array type L-band SAR (ALOS PALSAR) single-look complex images were analyzed over the period 2008-2011. UAVSAR image pairs were coregistered to sub-pixel accuracy and processed with the Coregistration of Optically Sensed Images and Correlation (COSI-Corr) feature tracking module to derive glacial velocity field estimates. Maximum glacier velocities ranged from 28.9 meters/year to 58.3 meters/year. Glacial boundaries were determined from interferometric coherence of ALOS PALSAR data and subsequently refined with masking operations based on terrain slope and segment size. Accuracy was assessed against hand-digitized outlines from high resolution UAVSAR power images

  6. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    Augustine volcano in Cook Inlet, Alaska, the number of calls to Ops, emails to the webmaster, and the amount of data served via the AVO website greatly increased during elevated volcanic activity designated by the USGS aviation color code and volcano alert level. Lessons learned include, Ops staffing requirements during periods of high call volume, the need for ash fall hazard information in multiple languages, and the value of real-time observations of remote Aleutian eruptions made by local mariners. An important theme of public inquiries concerned the amount and potential climate impacts of the significant sulfur dioxide gas and ash plumes emitted by Okmok and Kasatochi, including specific questions on the amount of sulfur dioxide discharged during each eruption. The significant plumes produced at the onset of the Okmok and Kasatochi eruptions also had lengthy national and international aviation impacts and yet-to-be resolved hemispherical or possible global, climactic effects.

  7. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  8. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  9. Studies of Aleutian volcanoes based on two decades of SAR imagery

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2015-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to aid the investigation of magmatic processes. We processed nearly 12,000 SAR images of Aleutian volcanoes acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. This talk summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-varying volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical eruptions, and data from seismology, petrology, gas geochemistry, and other sources, we have developed conceptual models for the magma plumbing systems and behaviors of many volcanoes in the Aleutian arc. We realize that these models are simplistic, but it is our hope that they will serve as foundations that will be refined as additional information becomes available.

  10. Case study: Bioremediation in the Aleutian Islands

    SciTech Connect

    Steward, K.J.; Laford, H.D.

    1995-12-31

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m{sup 3} of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations.

  11. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  12. Double Glacier Volcano, a 'new' Quaternary volcano in the eastern Aleutian volcanic arc

    USGS Publications Warehouse

    Reed, B.L.; Lanphere, M.A.; Miller, T.P.

    1992-01-01

    The Double Glacier Volcano (DGV) is a small dome complex of porphyritic hornblende andesite and dacite that is part of the Cook Inlet segment of Quaternary volcanoes of the eastern Aleutian arc. Its discovery reduces the previously described large volcano gap in Cook Inlet segment to a distance similar to that between other volcanoes in the area. DGV lavas are medium-K, calcalkaline andesites and dacites with concentrations of major and minor elements similar to the other Quaternary volcanoes of the Cook Inlet segment. Available K-Ar ages indicate that DGV was active 600-900 ka. ?? 1992 Springer-Verlag.

  13. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  14. Criconematina (nematoda: tylenchida) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1982-01-01

    A new genus (Cerchnotocriconema) and three new species (C. psephinum, Hemicycliophora anchitkaensis, and Paratylenchus amundseni) are described from Adak and Amchitka Islands in the Aleutian chain. The new genus differs from all other criconematid genera in having irregular, convex sculpturing consisting of small, oval plates on the anterior and posterior regions of each annule, with the mid-annular region minutely punctate or dentate. H. amchitkaensis n. sp. resembles H. sinilis Thorne and H. zuckermani Brzeski, but has only one head annule, instead of two. P. amundseni n. sp., which has a stylet 17 to 19 ..mu..m long, is similar to P. tatea Wu and Townsend and P. labiosus Anderson and Kimpinski, but differs by the presence of males and the possession of conoid-truncate lip region, functional spermatheca, and long male tail (c = 8.5 to 9.5). Seriespinula seymouri Wu (Mehta and Raski), Nothocriconema longulum (Gunhold) De Grisse and Loof, and Macroposthonia xenoplax (Raski) De Grisse and Loof are also reported from the islands.

  15. 76 FR 3089 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region Bering Sea & Aleutian Islands Crab Permits AGENCY: National Oceanic and Atmospheric Administration... of a currently approved collection. The Crab Rationalization Program allocates Bering Sea and Aleutian Islands (BSAI) crab resources among harvesters, processors, and coastal communities through...

  16. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  17. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Bering Sea and Aleutian Islands (BSAI... Aleutian Islands (BSAI) Crab species program. (a) Purpose. This section's purpose is to implement the... Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs pursuant to § 679.2...

  18. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  19. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  20. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  1. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and

  2. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. PMID:21328563

  3. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  4. Geothermal Drilling In The Aleutians Reveals New Insights On Volcanic History Of Akutan Volcano

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.

    2013-12-01

    In 2010, two thermal gradient wells were drilled in the Hot Springs Bay Valley geothermal resource area on Akutan Island, Alaska. Well TG-2 was drilled in the region of hot springs occurrence near the mouth of the valley and reached a depth of 253 m (833'). Well TG-4 was drilled near the head of the valley, closer to the current volcano, and reached a depth of 457 m (1500'). The core recovered from these wells represent the only drill core extracted from an Aleutian volcano to date and reveals an important missing piece of the surficial eruptive and erosional history of the volcano that cannot be determined from surface evaluation of recent eruptive deposits laid down on 500 ka bedrock outcrops. No intrusive rocks were encountered, indicating a rich history of surficial activity. The core is dominated (46% of recovered core) by basaltic lava flow deposits (49-52 wt% SiO2), consistent with other observed deposits on the island. These flows are interspersed with andesite lava flows (20% of core, ranging from 53-58 wt% SiO2), abundant mass wasting deposits (27% of core) and a series of ash and ash tuff layers that are some of the most silicic deposits identified at Akutan (up to 66 wt% SiO2). Ash deposits are restricted to the upper 125 m in both wells, are significantly thicker in TG-4, and are difficult to correlate between the two wells. Mass wasting deposits are diverse, including a subset characterized by matrix-supported heterolithologic breccias enclosed in a crystalline basaltic lava host. A shell-rich zone at 273 meters depth indicates that the transition between sub-marine and sub-aerial activity may be recorded in the core.

  5. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  6. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  7. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  8. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  9. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Alaska Peninsula, AK to Aleutian Islands, AK. 7.170... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to...

  10. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports AGENCY: National Oceanic and... Fisheries Service (NMFS) manages the crab fisheries in the waters off the coast of Alaska under the Fishery Management Plan (FMP) for the Bering Sea and Aleutian Islands (BSAI) Crab. The Magnuson-Stevens...

  11. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  12. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  13. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  14. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  15. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  16. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  17. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  18. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  19. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  20. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  1. Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989-2002

    USGS Publications Warehouse

    Power, J.A.; Stihler, S.D.; White, R.A.; Moran, S.C.

    2004-01-01

    Between October 12, 1989 and December 31, 2002, the Alaska Volcano Observatory (AVO) located 162 deep long-period (DLP) events beneath 11 volcanic centers in the Aleutian arc. These events generally occur at mid- to lower-crustal depths (10-45 km) and are characterized by emergent phases, extended codas, and a strong spectral peak between 1.0 and 3.0 Hz. Observed wave velocities and particle motions indicate that the dominant phases are P- and S-waves. DLP epicenters often extend over broad areas (5-20 km) surrounding the active volcanoes. The average reduced displacement of Aleutian DLPs is 26.5 cm2 and the largest event has a reduced displacement of 589 cm2 (or ML 2.5). Aleutian DLP events occur both as solitary events and as sequences of events with several occurring over a period of 1-30 min. Within the sequences, individual DLPs are often separated by lower-amplitude volcanic tremor with a similar spectral character. Occasionally, volcano-tectonic earthquakes that locate at similar depths are contained within the DLP sequences. At most, Aleutian volcanoes DLPs appear to loosely surround the main volcanic vent and occur as part of background seismicity. A likely explanation is that they reflect a relatively steady-state process of magma ascent over broad areas in the lower and middle portions of the crust. At Mount Spurr, DLP seismicity was initiated by the 1992 eruptions and then slowly declined until 1997. At Shishaldin Volcano, a short-lived increase in DLP seismicity occurred about 10 months prior to the April 19, 1999 eruption. These observations suggest a link between eruptive activity and magma flux in the mid- to lower-crust and uppermost mantle.

  2. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  3. A burial cave in the western Aleutian Islands, Alaska.

    PubMed

    West, Dixie; Lefèvre, Christine; Corbett, Debra; Crockford, Susan

    2003-01-01

    During the 1998 field season, the Western Aleutians Archaeological and Paleobiological Project (WAAPP) team located a cave in the Near Islands, Alaska. Near the entrance of the cave, the team identified work areas and sleeping/sitting areas surrounded by cultural debris and animal bones. Human burials were found in the cave interior. In 2000, with permission from The Aleut Corporation, archaeologists revisited the site. Current research suggests three distinct occupations or uses for this cave. Aleuts buried their dead in shallow graves at the rear of the cave circa 1,200 to 800 years ago. Aleuts used the front of the cave as a temporary hunting camp as early as 390 years ago. Finally, Japanese and American military debris and graffiti reveal that the cave was visited during and after World War II. Russian trappers may have also taken shelter there 150 to 200 years ago. This is the first report of Aleut cave burials west of the Delarof Islands in the central Aleutians. PMID:21755641

  4. Non-volcanic tremor in the Aleutian Islands captured by a mini-seismic array

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Prejean, S. G.

    2013-12-01

    The Aleutian Islands are an interesting place to study because of the presence of abundant seismicity, both subduction and volcano related. In addition to regular earthquakes, the Islands host both volcanic and non-volcanic tremor. To capture this rich variety of seismicity, we designed and installed a mini-seismic array on Akutan Island in 2012. Akutan is located in the eastern Aleutians just off the tip of the Alaska Peninsula, near the eastern edge of the 1957 Mw8.6 earthquake rupture zone. A mini-seismic array is particularly useful in this logistically challenging environment where land cover is limited. We recorded and analyzed about 2 months of data, and found both volcanic and non-volcanic events. Here we focus on non-volcanic tremor and its characteristics as captured by the Akutan array. Akutan Island and the surrounding area turn out to be prolific producers of tremor. An automatic beam-backprojection algorithm [Ghosh et al., 2009] detects almost daily tremor activity with durations ranging from several minutes to more than 3.5 hours. On average, beam-backprojection detects 1.3 hours of tremor activity per day and in total, it detects about 5 times more duration of tremor activity compared to a visual check for tremor signal using the existing seismic network. We observe tremor sources both west and east of the Akutan array. Western sources are the most active ones and their slowness parameters are consistent with the locations of low-frequency earthquakes detected by Brown et al., 2013. The eastern source area has not been identified previously and appears to be active for only a few times during this study, but shows continuous activity for several hours. In addition, we observe temporal evolution of slowness parameters consistent with steady tremor migration. Moreover, low frequency earthquakes with impulsive body wave phases are identified within the tremor signal. They show S-minus-P times consistent with their being located at the model plate

  5. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... Islands and straight lines between the islands connecting the following coordinates in the order...

  6. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Schaen, Allen J.; Jicha, Brian R.; Kay, Suzanne M.; Singer, Brad S.; Tibbetts, Ashley

    2016-03-01

    The Delarof Islands in the Aleutian Arc near 179º W record ˜37 million years of discontinuous arc magmatism along a SW-NE cross-arc transect from near the trench to the active volcanic front. Geochemical and geochronologic data from the pre-Pleistocene volcanic record in this region are limited and the 40Ar/39Ar, isotopic, and trace element data presented here are the first from units older than the Pleistocene-Holocene volcanoes (Tanaga, Gareloi). Twenty-two new 40Ar/39Ar ages establish a temporal framework for geochemical data and reveal that magmatism in the Delarof region was coincident with two arc-wide magmatic flare ups in the late Eocene/early Oligocene and latest Miocene/Pliocene. Mafic lavas and plutons in the southern Delarofs give 40Ar/39Ar plateau ages ranging from 36.8 ± 0.2 to 26.9 ± 0.6 Ma on Amatignak Island and 37.0 ± 0.2 to 29.3 ± 1.0 Ma on Ulak Island. To the north 25 km, 40Ar/39Ar ages from the central Delarof Islands, Kavalga, Ogliuga, and Skagul are late Miocene (6.28 ± 0.04 Ma) to Pliocene (4.77 ± 0.18 Ma) with younger ages to the northeast. A significant transition in arc chemistry occurs in the Pleistocene where lavas from active volcanoes Gareloi and Tanaga exhibit higher sediment and hydrous fluid signatures (Th/La, Cs/Ta, La/Sm, LILE abundances) and lower 143Nd/144Nd than older Delarof Island units closer to the trench. Similar findings from Eocene-Miocene lavas from Amchitka to Adak suggest that a previously minor sediment melt component became more pronounced in the Quaternary.

  7. 76 FR 3090 - Proposed Information Collection; Comment Request; Alaska Region; Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Region; Bering Sea and Aleutian Islands Crab Arbitration AGENCY: National Oceanic and Atmospheric... for Gulf of Alaska groundfish fisheries, arbitration system, monitoring, economic data collection, and cost recovery fee collection. The Crab Rationalization Program Arbitration System is established by...

  8. Origins of linguistic diversity in the Aleutian Islands.

    PubMed

    Berge, Anna

    2010-12-01

    The Aleut language, currently spoken along the Aleutian chain and the Pribilof and Commander islands, is the only language in its branch of the Eskimo-Aleut language family, and traditional methods of linguistic reconstruction have neither satisfactorily explained its relationship with languages on the Asian continent nor its development from Proto-Eskimo-Aleut. Linguistic reconstruction has always been important in understanding the prehistory and history of the Aleuts, and new approaches in comparative linguistics, more comprehensive information on typological features of neighboring languages, and continuing language documentation allow us to propose a rich and continuous history of contact with various groups of people. I evaluate evidence that the Aleut language may have been shaped by contact with neighbors in Asia and Alaska, eventually giving rise to its differentiation from the Eskimo languages. I look at dialect differentiation along the Aleutian chain and what this differentiation reveals about the migration trends of the Aleut along the chain. I look at the colonial expansion of the Aleut-speaking area and resulting additional varieties of Aleut in the historical period. Finally, I review the effects of the Russian and American colonial periods on the Aleut language and the severe endangerment that the language faces today as a result. I conclude that there is evidence of possible Aleut contact with both neighboring peoples; however, much of this evidence has not yet been subjected to systematic comparative reconstructions. Linguistic evidence supports theories of at least two westward expansions of Aleuts along the island chain, but it is not yet clear what motivated the dialect differentiations. Finally, I offer some thoughts on directions for future dialect studies and the continuing documentation of Aleut. PMID:21417884

  9. Modeling potential tsunami sources for deposits near Unalaska Island, Aleutian Islands

    NASA Astrophysics Data System (ADS)

    La Selle, S.; Gelfenbaum, G. R.

    2013-12-01

    In regions with little seismic data and short historical records of earthquakes, we can use preserved tsunami deposits and tsunami modeling to infer if, when and where tsunamigenic earthquakes have occurred. The Aleutian-Alaska subduction zone in the region offshore of Unalaska Island is one such region where the historical and paleo-seismicity is poorly understood. This section of the subduction zone is not thought to have ruptured historically in a large earthquake, leading some to designate the region as a seismic gap. By modeling various historical and synthetic earthquake sources, we investigate whether or not tsunamis that left deposits near Unalaska Island were generated by earthquakes rupturing through Unalaska Gap. Preliminary field investigations near the eastern end of Unalaska Island have identified paleotsunami deposits well above sea level, suggesting that multiple tsunamis in the last 5,000 years have flooded low-lying areas over 1 km inland. Other indicators of tsunami inundation, such as a breached cobble beach berm and driftwood logs stranded far inland, were tentatively attributed to the March 9, 1957 tsunami, which had reported runup of 13 to 22 meters on Umnak and Unimak Islands, to the west and east of Unalaska. In order to determine if tsunami inundation could have reached the runup markers observed on Unalaska, we modeled the 1957 tsunami using GeoCLAW, a numerical model that simulates tsunami generation, propagation, and inundation. The published rupture orientation and slip distribution for the MW 8.6, 1957 earthquake (Johnson et al., 1994) was used as the tsunami source, which delineates a 1200 km long rupture zone along the Aleutian trench from Delarof Island to Unimak Island. Model results indicate that runup and inundation from this particular source are too low to account for the runup markers observed in the field, because slip is concentrated in the western half of the rupture zone, far from Unalaska. To ascertain if any realistic

  10. Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Masterlark, Timothy; Power, J.; Dzurisin, D.; Wicks, C.

    2002-01-01

    Sequential interferometric synthetic aperture radar images of Kiska, the westernmost historically active volcano in the Aleutian arc, show that a circular area about 3 km in diameter centered near the summit subsided by as much as 10 cm from 1995 to 2001, mostly during 1999 and 2000. An elastic Mogi-type deformation model suggests that the source is within 1 km of the surface. Based on the shallow source depth, the copious amounts of steam during recent eruptions, and recent field reports of vigorous steaming and persistent ground shaking near the summit area, we attribute the subsidence to decreased pore-fluid pressure within a shallow hydrothermal system beneath the summit area.

  11. Three new species of heteroderoidea (nematoda) from the Aleutian Islands

    SciTech Connect

    Bernard, E.C.

    1981-10-01

    Three new species of Heteroderoidea are described from Adak and Amchitka Islands in the Aleutian chain. Second-stage juveniles of Thecavermiculatus crassicrustata, n. sp., differ from those of T. gracililancea Robbins by having longer stylets (40 to 50 ..mu..m vs 19 to 22 ..mu..m). The female of T. crassicrustata has a longer neck, a more posterior excretory pore, and lacks a posterior protuberance. Meloidodera eurytyla, n. sp., differs from other Meloidodera spp. in that second-stage juveniles have longer stylets (32 to 35 ..mu..m) and much more massive styletknobs, while males have a longitudinally striated basal head annule. Meloidogyne subarctica, n. sp., can be separated from other Meloidogyne spp. by combinations of the following characteristics: perineal pattern with large oval areas in the tail region devoid of striae, arch with few unbroken striae; female excretory pore 1.5 to 2.5 x the stylet length from the anterior end; haploid chromosome number = 18; the spermatheca filled with sperm; stylet length of second-stage juveniles 13.5 to 15.4 ..mu..m.

  12. Hair methylmercury levels of mummies of the Aleutian Islands, Alaska

    SciTech Connect

    Egeland, G.M. Ponce, Rafael Bloom, Nicolas S. Knecht, Rick Loring, Stephen Middaugh, John P.

    2009-04-15

    Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86). For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.

  13. Paleomagnetic Evidence for Significant Rotations Within the Aleutian Island Arc.

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Krutikov, L.

    2006-12-01

    Present-day motion of the Pacific plate relative to the North American plate changes along the Aleutian arc from normal convergence in the east to transform motion in the west. It was postulated by Geist et al. (Tectonics 7, 327-341, 1988) that strain partitioning could result in tectonic segmentation of the lithosphere, caused by increasing obliquity of plate convergence and characterized by clockwise rotation and westward translation of discrete blocks. Their analysis of the present day morphology and tectonic setting of the western half of the arc suggests the presence of rotated blocks, and implies that the rotation is ongoing. Published high-quality paleomagnetic data from the far western end of the arc show rotations that are compatible with this model. This result is based on rocks of Eocene (Bering and Medny Islands) and Miocene (Shemya Island) age, thus the magnetically observed rotations could have occurred at any time since their origin. New paleomagnetic and geochronologic data from Miocene age volcanic rocks on Amchitka Island also indicate clockwise rotation at some time since the rocks were formed (13.8+/-0.2 Ma). However, two other high-quality paleomagnetic data sets from Eocene/Oligocene aged sediments from the eastern part of the arc (Atka and Umnak Islands) are significantly rotated in the same clockwise sense as the western end. Since plate convergence at these two eastern sites has been roughly normal since mid-Eocene time, strain partitioning related to oblique convergence is unlikely to be the cause of the rotation. Models involving rotation of the entire island arc to explain the similarity in magnitude and sense of the rotations seen in the paleomagnetic data require large relative latitude changes between the two ends of the arc. Though possible, such a model would put serious constraints on scenarios for the tectonic development of the Bering Sea Plate required to accommodate the degree of rotation suggested by the data. The answer may

  14. 76 FR 43658 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2011/2012 crab fishing year so...

  15. 76 FR 44297 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands King and Tanner Crab Fishery Resources.... SUMMARY: The Bering Sea/Aleutian Islands (BSAI) Crab Rationalization Program (CR Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. Amendment 30 would amend...

  16. 75 FR 43147 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2010/2011 crab fishing year so...

  17. 77 FR 44216 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... recovery under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2012/2013 crab fishing year....

  18. 78 FR 46577 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Alaska; Bering Sea and Aleutian Islands Crab Rationalization Cost Recovery Program AGENCY: National... under the Bering Sea and Aleutian Islands Crab Rationalization Program. This action is intended to provide holders of crab allocations with the fee percentage for the 2013/2014 crab fishing year so...

  19. 78 FR 24362 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013... Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea of the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  20. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL..., Subpt. E, Fig. 6 Figure 6 to Subpart E of Part 300—Alaska Peninsula and Aleutian Islands Rural and...

  1. 76 FR 49417 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...NMFS proposes regulations that would implement Amendment 93 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (FMP). This proposed rule would amend the Bering Sea and Aleutian Islands Amendment 80 Program to modify the criteria for forming and participating in a harvesting cooperative. This action is necessary to encourage greater......

  2. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  3. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  4. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  5. 50 CFR 600.1106 - Longline catcher processor subsector Bering Sea and Aleutian Islands (BSAI) non-pollock...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... Bering Sea and Aleutian Islands (BSAI) non-pollock groundfish species fee payment and collection system... chapter defined as groundfish area/species endorsements. (c) Reduction loan amount. The reduction...

  6. Spawning phenology and geography of Aleutian Islands and eastern Bering Sea Pacific cod (Gadus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Neidetcher, Sandra K.; Hurst, Thomas P.; Ciannelli, Lorenzo; Logerwell, Elizabeth A.

    2014-11-01

    Pacific cod (Gadus macrocephalus) is an economically and ecologically important species in the southeastern Bering Sea and Aleutian Islands, yet little is known about the spawning dynamics of Pacific cod in these regions. To address this knowledge gap, we applied a gross anatomical maturity key for Pacific cod to describe temporal and spatial patterns of reproductive status over three winter spawning seasons: 2005, 2006, and 2007. Maturity status of female Pacific cod was assessed by fishery observers during sampling of commercial catches and used to construct maps showing spawning activity in the Bering Sea and Aleutian Islands. Most spawning activity was observed on the Bering Sea shelf and Aleutian Island plateaus between 100 and 200 m depth. Data for those days when a high percentage of spawning stage fish were observed were used to identify areas with concentrations of spawning fish. Spawning concentrations were identified north of Unimak Island, in the vicinity of the Pribilof Islands, at the shelf break near Zhemchug Canyon, and adjacent to islands in the central and western Aleutian Islands along the continental shelf. The spawning season was found to begin in the last days of February or early March and extend through early to mid-April. Variation in spawning time (averaging ~10 days between years) may have been associated with a change from warm (2005) to cold (2007) climate conditions during the study period. Our information on Pacific cod spawning patterns will help inform fishery management decisions, models of spawning and larval dispersal and the spatial structure of the stock.

  7. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  8. Preliminary geology of the Tanaga Island volcanic cluster, western Aleutians (Alaska)

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Browne, B. L.; Larsen, J. F.

    2004-12-01

    During 2003, the northwestern portion of Tanaga Island (178° W) was mapped in detail for the first time during fieldwork by Alaska Volcano Observatory geologists in conjunction with the installation of a volcano monitoring seismic network. The northern half of the island is approximately 20 km across and comprises four discrete volcanic centers, from west to east: Sajaka (area = 22 km2), Tanaga (20 km2), East Tanaga (15 km2), and Takawangha (54 km2). The three western centers are steep-sided cones of Holocene age, and have grown in the scar formed by a catastrophic Pleistocene sector collapse directed to the northwest. To the east, a >300 m-thick sequence of volcanic and volcaniclastic rocks (Pre-Tanaga unit) underlies Takawangha, which has been active throughout the Pleistocene and Holocene. Holocene eruptive products from all four centers are predominantly lava flows, with minor explosive activity recorded in tephra sections. Additionally, Sajaka experienced a relatively young (mid-Holocene?) sector collapse of its west flank, accompanied by eruption of laterally-directed pyroclastic flows. A morphologically young cone of scoria and thin basalt flows has grown in the collapse scar. Whole-rock geochemical data on 130 samples of lava and scoria from the four centers and the Pre-Tanaga unit are basalts through low-SiO2 andesites. All but ten lavas have molar Mg# between 0.35 and 0.5 and the remainder are between 0.5 and 0.61; no primitive lavas were discovered on Tanaga Island. Lava flows of Holocene age from Tanaga and East Tanaga follow medium-K trends, all lavas from Takawangha are high-K, and Sajaka and Pre-Tanaga lavas fall along both trends. High-K lavas are enriched in other LILE (Rb, Ba, Pb) as well, and fall near or above the high end of published Aleutian lavas for these elements. The lavas exhibit petrographic as well as compositional diversity: mafic phases in Tanaga lavas are olivine, two pyroxenes, and amphibole, at East Tanaga lavas contain two

  9. 76 FR 68161 - Proposed Information Collection; Comment Request; Aleutian Islands Pollock Fishery Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... signed into law on January 23, 2004. Section 803 of this law allocates the Aleutian Islands (AI) directed... Aleut Corporation to authorize one or more agents for activities necessary for conducting the AI directed pollock fishery. Management provisions for the AI directed pollock fishery include:...

  10. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Sound blue king crab. NVDC means the U.S. Coast Guard's National Vessel Documentation Center located in...) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND... Aleutian Islands (BSAI) Crab species program. (a) Purpose. This section's purpose is to implement...

  11. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bering Sea and Aleutian Islands (BSAI) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Specific Fishery or Program...

  12. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands (BSAI) Crab species program. 600.1103 Section 600.1103 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Specific Fishery or Program...

  13. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  14. Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1982

    SciTech Connect

    Bakkala, R.G.; Low, L.; Ito, D.H.; Narita, R.E.; Ronholt, L.L.

    1983-03-01

    This report contains an assessment of the condition of groundfish and squid in the eastern Bering Sea and Aleutian Islands region through 1982. The assessments are based on species-by-species analyses of the data collected from the commercial fishery and research vessel surveys. Most of the resources in the Bering Sea-Aleutians management region are in good condition, including walleye pollock, Pacific cod, the flatfishes, and Atka mackerel. Pacific cod and yellowfin sole are in excellent condition and at historic high levels of abundance.

  15. Muria Volcano, Island of Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of the north coast of central Java, Indonesia centers on the currently inactive Muria Volcano (6.5S, 111.0E). Muria is 5,330 ft. tall and lies just north of Java's main volcanic belt which runs east - west down the spine of the island attesting to the volcanic origin of the more than 1,500 Indonesian Islands.

  16. Mount Dutton volcano, Alaska: Aleutian arc analog to Unzen volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miller, T. P.; Chertkoff, D. G.; Eichelberger, J. C.; Coombs, M. L.

    1999-04-01

    Holocene eruptions from Mount Dutton, a small Late Quaternary volcano near the tip of the Alaska Peninsula, bear strong physical and petrologic similarities to the 1990-1995 Unzen Fugendake eruption in Japan. The volcano had a protracted phase of effusive calcalkaline andesitic (54-59 wt.% SiO 2) cone-building in the late Pleistocene followed by an abrupt switch to more silicic (˜65 wt.% SiO 2) lavas, emplaced as a central summit cluster of steep-sided domes beginning in the early Holocene. The flanks of the volcano are mantled by pyroclastic flows, debris flows, and talus formed as a result of gravitational dome collapse. Disequilibrium mineral assemblages, including coexisting quartz and olivine in eruptive episodes ranging from the initial cone-building basaltic andesite lavas to the latest Holocene dacite domes, suggest extensive magma mixing. In addition, up to meter-sized, pillow-like cognate mafic enclaves of hornblende+plagioclase+glass are common in the latest of the summit dacite domes. Mineralogical evidence and bulk chemical data indicate the enclaves represent a high-alumina basalt parent with variable and subordinate reservoir contaminant, and the host lava is reservoir magma with variable and subordinate basaltic contaminant. Mount Dutton's history and petrology can be interpreted as reflecting the monotonous repetitive intrusion of mantle-derived mafic magma into a silicic crystal-rich crustal reservoir. During the Holocene, these injections resulted in the extrusion of partially crystallized, viscous, `sticky' central domes which typically failed by collapse resulting in small volume Merapi-type flowage deposits. We speculate that slow introduction of mafic magma into the silicic chamber leads both to enclave formation and to the effusive eruption style. Mount Dutton volcano experienced severe shallow earthquake swarms in 1984, 1988, and to a lesser extent in 1991; although none of these swarms resulted in an eruption, their epicenter distribution

  17. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes

    USGS Publications Warehouse

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark

    2003-01-01

    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  18. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  19. Abundance, trends and distribution of baleen whales off Western Alaska and the central Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Zerbini, Alexandre N.; Waite, Janice M.; Laake, Jeffrey L.; Wade, Paul R.

    2006-11-01

    Large whales were extensively hunted in coastal waters off Alaska, but current distribution, population sizes and trends are poorly known. Line transect surveys were conducted in coastal waters of the Aleutian Islands and the Alaska Peninsula in the summer of 2001-2003. Abundances of three species were estimated by conventional and multiple covariate distance sampling (MCDS) methods. Time series of abundance estimates were used to derive rates of increase for fin whales ( Balaenoptera physalus) and humpback whales ( Megaptera novaeangliae). Fin whales occurred primarily from the Kenai Peninsula to the Shumagin Islands, but were abundant only near the Semidi Islands and Kodiak. Humpback whales were found from the Kenai Peninsula to Umnak Island and were more abundant near Kodiak, the Shumagin Islands and north of Unimak Pass. Minke whales ( B. acutorostrata) occurred primarily in the Aleutian Islands, with a few sightings south of the Alaska Peninsula and near Kodiak Island. Humpback whales were observed in large numbers in their former whaling grounds. In contrast, high densities of fin whales were not observed around the eastern Aleutian Islands, where whaling occurred. Average abundance estimates (95% CI) for fin, humpback and minke whales were 1652 (1142-2389), 2644 (1899-3680), and 1233 (656-2315), respectively. Annual rates of increase were estimated at 4.8% (95% CI=4.1-5.4%) for fin and 6.6% (5.2-8.6%) for humpback whales. This study provides the first estimate of the rate of increase of fin whales in the North Pacific Ocean. The estimated trends are consistent with those of other recovering baleen whales. There were no sightings of blue or North Pacific right whales, indicating the continued depleted status of these species.

  20. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  1. A new population of Aleutian shield fern (Polystichum aleuticum C. Christens.) on Adak Island, Alaska

    USGS Publications Warehouse

    Talbot, S.L.; Talbot, S. S.

    2002-01-01

    We report and describe a new population of the endangered Aleutian shield fern (Polystichum aleuticum C. Christens.) discovered on Mount Reed, Adak Island, Alaska. The new population is located at a lower elevation than the other known populations, placing the species' known elevational range between 338 m and 525 m. The discovery of this population is significant because it increases the total number of known populations and individuals for the species.

  2. Four new species of Haplosclerida (Porifera, Demospongiae) from the Aleutian Islands, Alaska.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2013-01-01

    Four new species of Haplosclerida are described from the Aleutian Islands, Alaska: Callyspongia mucosa n.sp., Cladocroce infundibulum n. sp., Cladocroce attu n. sp. and Cladocroce kiska n. sp. The new species are described and compared to congeners of the region. This is the northernmost record of the genus Callyspongia and the first record of the subgenus Callyspongia from the North Pacific Ocean. To accommodate Cladocroce kiska in its genus the definition has to be broadened to allow sigmas. PMID:26106744

  3. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect

    Nye, C.J. . Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK . Div. of Geological and Geophysical Surveys); Motyka, R.J. . Div. of Geological and Geophysical Surveys); Turner, D.L. . Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  4. Volcano Analog Exploration Opportunities in Reunion Island

    NASA Astrophysics Data System (ADS)

    Pignolet, Guy; Bertil, Alain; Huet, Patrice

    While general information has already been given in previous papers about the SALM (Moon Mars Analogue Site) in Reunion Island, this status papers gives more useful details with : - a survey of Lava Tubes and other volcanic structures at Piton de la Fournaise volcano that are suitable for Moon and Mars analogue studies, - an overview of sampling and other exploration and evaluation techniques that may be tested on the analogue site for future use on Solar System bodies

  5. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  6. Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

    PubMed

    Kenney, Leah A; von Hippel, Frank A; Willacker, James J; O'Hara, Todd M

    2012-11-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ(13)C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  7. MERCURY CONCENTRATIONS OF A RESIDENT FRESHWATER FORAGE FISH AT ADAK ISLAND, ALEUTIAN ARCHIPELAGO, ALASKA

    PubMed Central

    Kenney, Leah A.; von Hippel, Frank A.; Willacker, James J.; O’Hara, Todd M.

    2015-01-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ13C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  8. 77 FR 74161 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Program. Regulations implementing these amendments were published on March 2, 2005 (70 FR 10174), and are... blue king crab, and Pribilof Islands red and blue king crab. The North Region is north of 54 20' N... Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands King and Tanner Crab Fishery...

  9. Dispersal and behavior of pacific halibut hippoglossus stenolepis in the bering sea and Aleutian islands region

    USGS Publications Warehouse

    Seitz, A.C.; Loher, T.; Norcross, B.L.; Nielsen, J.L.

    2011-01-01

    Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.

  10. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679 Wildlife and... 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...

  11. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  12. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  13. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  14. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  15. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  16. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies

    USGS Publications Warehouse

    Maron, J.L.; Estes, J.A.; Croll, D.A.; Danner, E.M.; Elmendorf, S.C.; Buckelew, S.L.

    2006-01-01

    The ramifying effects of top predators on food webs traditionally have been studied within the framework of trophic cascades. Trophic cascades are compelling because they embody powerful indirect effects of predators on primary production. Although less studied, indirect effects of predators may occur via routes that are not exclusively trophic. We quantified how the introduction of foxes onto the Aleutian Islands transformed plant communities by reducing abundant seabird populations, thereby disrupting nutrient subsidies vectored by seabirds from sea to land. We compared soil and plant fertility, plant biomass and community composition, and stable isotopes of nitrogen in soil, plants, and other organisms on nine fox-infested and nine historically fox-free islands across the Aleutians. Additionally, we experimentally augmented nutrients on a fox-infested island to test whether differences in plant productivity and composition between fox-infested and fox-free islands could have arisen from differences in nutrient inputs between island types. Islands with historical fox infestations had soils low in phosphorus and nitrogen and plants low in tissue nitrogen. Soils, plants, slugs, flies, spiders, and bird droppings on these islands had low d15N values indicating that these organisms obtained nitrogen from internally derived sources. In contrast, soils, plants, and higher trophic level organisms on fox-free islands had elevated d15N signatures indicating that they utilized nutrients derived from the marine environment. Furthermore, soil phosphorus (but not nitrogen) and plant tissue nitrogen were higher on fox-free than fox-infested islands. Nutrient subsidized fox-free islands supported lush, high biomass plant communities dominated by graminoids. Fox-infested islands were less graminoid dominated and had higher cover and biomass of low-lying forbs and dwarf shrubs. While d15N profiles of soils and plants and graminoid biomass varied with island size and distance from

  17. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  18. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W., II

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  19. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  20. Insights Into Aleutian Volcanism from Insar Observations

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2013-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to enhance the study of magmatic processes. To study Aleutian volcanism, we processed nearly 12,000 SAR images acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. Where surface displacements were sufficiently strong, we used analytical models to estimate the location, shape, and volume change of deformation sources. This paper summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-variant volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Among the inferred mechanisms are magma accumulation in and withdrawal from crustal magma reservoirs, pressurization/depressurization of hydrothermal systems, and thermo-elastic contraction of young lava flows. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical

  1. 76 FR 55276 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... of the BSAI (76 FR 11139, March 1, 2011) and an apportionment from the non-specified reserve of groundfish (76 FR 17360, March 29, 2011). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands AGENCY: National Marine...

  2. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  3. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  4. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  5. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 6 Figure 6 to Subpart E of Part...

  6. 76 FR 47155 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...NMFS has requested the Center for Independent Experts (CIE) to conduct a peer review of the agency's economic data collection program for the Bering Sea/Aleutian Islands crab fisheries managed under the BSAI Crab Rationalization program. The CIE, operated by Northern Taiga Ventures, Inc., provides independent peer reviews of NMFS's fisheries stock assessments and other science products. The......

  7. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system. 600.1104 Section 600.1104 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS...

  8. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system. 600.1104 Section 600.1104 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS...

  9. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pribilof blue king (the corresponding crab rationalization fishery is Pribilof red king and blue king crab), and (6) St. Matthew blue king (the corresponding crab rationalization fishery is also St. Matthew blue... Aleutian Islands red king, $237,588.04; (5) For Pribilof red king and Pribilof blue king,...

  10. 78 FR 16195 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-XC311 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and 2014 Harvest Specifications...

  11. 75 FR 11778 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ...NMFS announces final 2010 and 2011 harvest specifications and prohibited species catch allowances for the groundfish fishery of the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to establish harvest limits for groundfish during the 2010 and 2011 fishing years, and to accomplish the goals and objectives of the Fishery Management Plan for Groundfish of the BSAI......

  12. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Carr, M. J.; Herzberg, C. T.; Ozerov, A.

    2013-12-01

    Kamchatka peninsula (Russia) is an island-arc with a complex geological history and structure. It has three distinct volcanic fronts, whose origins are still debated. Moreover, a junction with the Aleutian Arc (at ~56oN) complicates the understanding of geodynamics at the region. The process of magma generation in Kamchatka involves several components: N-MORB mantle wedge (variably depleted), slab fluids and melts, and enriched mantle [Churikova et al. 2001, 2007; Yogodzinsky et al. 2001; Volynets et al. 2010]. Two of these end members (mantle wedge, slab fluids) are well studied [Portnyagin et al. 2007; Duggen et al. 2007]. However, the nature/genesis of the enriched magmas is unclear. In the standard model of arc volcanism depleted mantle peridotite in the mantle wedge partially melts to form parental basalts. However, evidence for pyroxenite melting in the arc environment was reported for the Mexican Volcanic Belt [Straub et al, 2008; Straub et al, 2013] and for Kamchatka [Portnyagin, 2009; Portnyagin, 2011; Bryant et al., 2011; Gavrilenko, 2012]. High precision Ni, Ca, and Mn contents of olivines from Gorely volcano confirm the existence of pyroxenite source in the mantle wedge [Gavrilenko, 2013]. Our forward modeling using Arc Basalt Simulator 4.0 (ABS) by [Kimura et al. 2011]) shows that we have primitive mantle as a source for Gorely volcano, a mantle more enriched than the DMM in the standard model for arc magmatism) REE inverse modeling [after Feigenson et al, 1983] agrees with the ABS forward model, returning the same REE pattern for the source. In contrast, ABS modeling for Mutnovsky volcano (next to Gorely, but closer to the trench) shows standard DMM as the source for the volcano. We conclude that DMM is the composition for the mantle wedge rocks beneath Gorely volcano, but the enrichment of the parental melts at Gorely volcano is caused by reaction of DMM peridotite with slab melts/fluids to produce pyroxenite.

  13. Volcano-Ice Interactions During Recent Eruptions of Aleutian Arc Volcanoes and Implications for Melt Water Generation

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.

    2013-12-01

    Recent eruptions in Alaska (Redoubt 2009; Pavlof 2007, 2013; Veniaminof 2013) all involved ice eruptive-product interactions that led to variable amounts of melt water generation. Production of melt water during explosive eruptions is the primary mechanism for lahar generation, which is a significant and sometimes-deadly hazard at snow and ice clad volcanoes. During the 2009 eruption of Redoubt Volcano, pyroclastic flows produced by explosive destruction of lava domes swept across and eroded glacier ice and generated large quantities of melt water that formed correspondingly large lahars (107-109 m3) in the Drift River valley north of the volcano. Three of the twenty lahars generated during the eruption were large enough to threaten an oil storage facility 40 km from the volcano. During eruptions of Pavlof Volcano in 2007 and 2013 spatter-fed lava flows and minor pyroclastic flows descended over snow and ice on the upper flanks of the volcano and produced some melt water that generated lahars in the associated drainages. These lahars were smaller than those associated with the 2009 eruption of Redoubt Volcano because the melt water generation mechanism was different. At Veniaminof Volcano, a low-level eruption beginning in June 2013 produced small lava flows that flowed passively over glacier ice and produced only limited amounts of melt water. Although melt pits surrounding the lava flows eventually developed, the rate of melt water production was gradual and no significant outflows of water occurred. These eruptions and comparison with past events highlight the various mechanisms for melt water production during eruptive activity at snow and ice clad Alaskan volcanoes. Dynamic emplacement of eruptive products over glacier ice that involves significant erosion of ice and snow leads to production of large volumes of melt water. Less dynamic, but still energetic interactions such as those that have occurred at Pavlof Volcano, produce smaller amounts of melt and

  14. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  15. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  16. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    NASA Astrophysics Data System (ADS)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation

  17. Genetic differentiation of the Kittlitz's Murrelet Brachyramphus brevirostris in the Aleutian Islands and Gulf of Alaska

    USGS Publications Warehouse

    Birt, T.P.; Mackinnon, D.; Piatt, J.F.; Friesen, V.L.

    2011-01-01

    Information about the distribution of genetic variation within and among local populations of the Kittlitz's Murrelet Brachyramphus brevirostris is needed for effective conservation of this rare and declining species. We compared variation in a 429 base pair fragment of the mitochondrial control region and 11 microsatellite loci among 53 Kittlitz's Murrelets from three sites in the western Aleutian Islands (Attu Island) and Gulf of Alaska (Glacier Bay and Kachemak Bay). We found that birds in these two regions differ genetically in three assessments: (1) global and pairwise indices of genetic differentiation were significantly greater than zero, (2) mitochondrial haplotypes differed by a minimum of nine substitutions, and (3) molecular assignments indicated little gene flow between regions. The data suggest that birds in these regions have been genetically isolated for an extended period. We conclude that Kittlitz's Murrelets from Attu Island and from the Gulf of Alaska represent separate evolutionarily significant units, and should be treated as such for conservation. Genetic data for Kittlitz's Murrelets from the remainder of the breeding range are urgently needed.

  18. Late Holocene coastal stratigraphy of Sitkinak Island reveals Aleutian-Alaska megathrust earthquakes and tsunamis southwest of Kodiak Island

    NASA Astrophysics Data System (ADS)

    Nelson, A. R.; Briggs, R. W.; Kemp, A.; Haeussler, P. J.; Engelhart, S. E.; Dura, T.; Angster, S. J.; Bradley, L.

    2012-12-01

    Uncertainty in earthquake and tsunami prehistory of the Aleutian-Alaska megathrust westward of central Kodiak Island limit assessments of southern Alaska's earthquake hazard and forecasts of potentially damaging tsunamis along much of North America's west coast. Sitkinak Island, one of the Trinity Islands off the southwest tip of Kodiak Island, lies at the western end of the rupture zone of the 1964 Mw9.2 earthquake. Plafker reports that a rancher on the north coast of Sitkinak Island observed ~0.6 m of shoreline uplift immediately following the 1964 earthquake, and the island is now subsiding at about 3 mm/yr (PBO GPS). Although a high tsunami in 1788 caused the relocation of the first Russian settlement on southwestern Kodiak Island, the eastern extent of the megathrust rupture accompanying the tsunami is uncertain. Interpretation of GPS observations from the Shumagin Islands, 380 km southwest of Kodiak Island, suggests an entirely to partially creeping megathrust in that region. Here we report the first stratigraphic evidence of tsunami inundation and land-level change during prehistoric earthquakes west of central Kodiak Island. Beneath tidal and freshwater marshes around a lagoon on the south coast of Sitkinak Island, 27 cores and tidal outcrops reveal the deposits of four to six tsunamis in 2200 years and two to four abrupt changes in lithology that may correspond with coseismic uplift and subsidence over the past millennia. A 2- to 45-mm-thick bed of clean to peaty sand in sequences of tidal sediment and freshwater peat, identified in more than one-half the cores as far inland as 1.5 km, was probably deposited by the 1788 tsunami. A 14C age on Scirpus seeds, double 137Cs peaks at 2 cm and 7 cm depths (Chernobyl and 1963?), a consistent decline in 210Pb values, and our assumption of an exponential compaction rate for freshwater peat, point to a late 18th century age for the sand bed. Initial 14C ages suggest that two similar extensive sandy beds, identified

  19. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine

    NASA Astrophysics Data System (ADS)

    Singer, Brad S.; Jicha, Brian R.; Leeman, William P.; Rogers, Nick W.; Thirlwall, Matthew F.; Ryan, Jeff; Nicolaysen, Kirsten E.

    2007-06-01

    Trace element and Sr-Nd-Pb isotope compositions of basaltic lavas from 11 volcanoes spanning 1300 km of the Aleutian Island arc provide new constraints on the recycling of elements in melts and fluids derived from subducted oceanic crust and sediment. Despite a nearly twofold variation in the flux of sediment subducted along the Aleutians, proxies indicating the presence of sediment melt in the magma source, including Th/La and Th/Nd, do not vary systematically along strike. In contrast, ratios including B/La, B/Nb, B/Be, Cs/La, Pb/Ce, and Li/Y suggest that the quantity or composition of fluid transferred from the slab into the mantle wedge varies an order of magnitude along strike and is apparently correlated with sediment flux. However, the most distinctive fluid addition corresponds spatially with subduction of the Amlia Fracture Zone (AFZ), a likely repository for H2O-rich serpentinite. Sr, Nd, and Pb isotope ratios, together with Th/Nd and B/La ratios, show that the majority of these basalts reflect a common baseline metasomatism of the mantle that accumulated, perhaps over millions of years, via small additions of both slab fluids and partially melted sediment. The paradox of requiring slab surface temperatures high enough to melt a layer of sediment, while lower-temperature dehydration reactions that supply water occur sufficiently deep to flux melting >80 km beneath the volcanoes is reconciled in a four-stage model: (1) as sediment and altered ocean crust is carried to ˜60 km depth and temperatures increase to ˜650°C, metamorphic dehydration reactions release most of the fluid and B to the shallow mantle wedge beneath the fore arc, but some of this mantle is metasomatized and flows downward; (2) the uppermost layer of sediment begins to melt at ˜750°C and >60 km depth; this small volume of melt physically mingles with the overlying metasomatized mantle wedge as it flows further downdip; (3) below the sediment veneer, the uppermost 1 km of ocean crust

  20. Imaging an Active Volcano Edifice at Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli

    2008-08-01

    An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  1. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource

  2. Organochlorine contaminants in fishes from coastal waters west of Amukta Pass, Aleutian Islands, Alaska, USA.

    PubMed

    Miles, A Keith; Ricca, Mark A; Anthony, Robert G; Estes, James A

    2009-08-01

    Organochlorines were examined in liver and stable isotopes in muscle of fishes from the western Aleutian Islands, Alaska, in relation to islands or locations affected by military occupation. Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and rock greenling (Hexagrammos lagocephalus) were collected from nearshore waters at contemporary (decommissioned) and historical (World War II) military locations, as well as at reference locations. Total (Sigma) polychlorinated biphenyls (PCBs) dominated the suite of organochlorine groups (SigmaDDTs, Sigmachlordane cyclodienes, Sigmaother cyclodienes, and Sigmachlorinated benzenes and cyclohexanes) detected in fishes at all locations, followed by SigmaDDTs and Sigmachlordanes; dichlorodiphenyldichloroethylene (p,p'DDE) composed 52 to 66% of SigmaDDTs by species. Organochlorine concentrations were higher or similar in cod compared to halibut and lowest in greenling; they were among the highest for fishes in Arctic or near Arctic waters. Organochlorine group concentrations varied among species and locations, but SigmaPCB concentrations in all species were consistently higher at military locations than at reference locations. Moreover, all organochlorine group concentrations were higher in halibut from military locations than those from reference locations. A wide range of molecular weight organochlorines was detected at all locations, which implied regional or long-range transport and deposition, as well as local point-source contamination. Furthermore, a preponderance of higher-chlorinated PCB congeners in fishes from contemporary military islands implied recent exposure. Concentrations in all organochlorine groups increased with delta15N enrichment in fishes, and analyses of residual variation provided further evidence of different sources of SigmaPCBs and p,p'DDE among species and locations. PMID:19374473

  3. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  4. Adakitic volcanism in the eastern Aleutian arc: Petrology and geochemistry of Hayes volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    McHugh, K.; Hart, W. K.; Coombs, M. L.

    2012-12-01

    Located in south-central Alaska, 135 km northwest of Anchorage, Hayes volcano is responsible for the most widespread tephra fall deposit in the regional Holocene record (~3,500 BP). Hayes is bounded to the west by the Cook Inlet volcanoes (CIV; Mt. Spurr, Redoubt, Iliamna, and Augustine) and separated from the nearest volcanism to the east, Mount Drum of the Wrangell Volcanic Field (WVF), by a 400 km-wide volcanic gap. We report initial results of the first systematic geochemical and petrologic study of Hayes volcano. Hayes eruptive products are calc-alkaline dacites and rhyolites that have anomalous characteristics within the region. Major and trace element analyses reveal that the Hayes rhyolites are more silicic (~74 wt. % SiO2) than compositions observed in other CIV, and its dacitic products possess the distinctive geochemical signatures of adakitic magmas. Key aspects of the Hayes dacite geochemistry include: 16.03 - 17.54 wt. % Al2O3, 0.97 - 2.25 wt. % MgO, Sr/Y = 60 - 78, Yb = 0.9 - 1.2 ppm, Ba/La = 31 - 79. Such signatures are consistent with melting of a metamorphosed basaltic source that leaves behind a residue of garnet ± amphibole ± pyroxene via processes such as melting of a subducting oceanic slab or underplated mafic lower crust, rather than flux melting of the mantle wedge by dehydration of the down-going slab. Additionally, Hayes tephras display a distinctive mineralogy of biotite with amphibole in greater abundance than pyroxene, a characteristic not observed at other CIV. Furthermore, Hayes rhyolites and dacites exhibit little isotopic heterogeneity (87Sr/86Sr = 0.70384 - 0.70395, 206Pb/204Pb = 18.866 - 18.889) suggesting these lavas originate from the same source. Hayes volcano is approximately situated above the western margin of the subducting Yakutat terrane and where the dip of the Pacific slab beneath Cook Inlet shallows northward. Due to its position along the margin of the subducting Yakutat terrane, it is plausible that Hayes magmas

  5. Detection and location of earthquakes in the central Aleutian subduction zone using island and ocean bottom seismograph stations

    SciTech Connect

    Frohlich, C.; Billington, S.; Engdahl, E.R.; Malahoff, A.

    1982-08-10

    A network of eight University of Texas ocean bottom seismographs (OBS) operated for 6 weeks in 1978 about 50 km offshore of Adak Island, Alaska, and nearly islands. In 1979 a similar network of nine instruments was deployed for 7 weeks farther offshore within and up to 100 km seaward of the Aleutian trench. For shallow earthquakes on the outer trench slope, for shallow earthquakes in the thrust zone, and for intermediate-depth events we have analyzed the OBS and island-based network data and evaluated the island network's capabilities for earthquake detection and location and for focal mechanism determination. Our three major conclusions are presented. The first concerns shallow earthquakes on the outer trench slope. In 1979 about 30 earthquakes occurred within the Aleutian trench and up to 60 km seaward of the trench axis. The island network located none of these events and detected P phases for only three of them. Ray tracing shows that the islands lie in a geometric shadow zone for events on the outer trench slope. The best located events are shallower than 20 km and exhibit first motions consistent with normal faulting. Several authors have suggested that these events are caused by bending of the oceanic lithosphere at the outer rise prior to subduction. If so, then the event locations reported here show that the bending stresses exceed the strength of lithosphere only in a narrow zone extending about 10 km landward and 60 km seaward of the trench axis. The second conclusion concerns shallow earthquakes in the thrust zone. Epicenters determined by island stations alone are virtually identical to epicenters determined using data from both island and OBS stations. The third conclusion concerns earthquakes deeper than 70 km. Epicenters determined using island network stations alone lie 10 to 80 km south of those determined using OBS and island stations, with the differences between epicenters depending both on event depth and on the velocity model used.

  6. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska.

    PubMed

    Kaler, Robb S A; Kenney, Leah A; Bond, Alexander L; Eagles-Smith, Collin A

    2014-05-15

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz's murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands. PMID:24656750

  7. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.

    2014-01-01

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.

  8. New species of sponges (Porifera, Demospongiae) from the Aleutian Islands and Gulf of Alaska.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2015-01-01

    Ten new species of demosponges, assigned to the orders Poecilosclerida, Axinellida and Dictyoceratida, discovered in the Gulf of Alaska and along the Aleutian Island Archipelago are described and compared to relevant congeners. Poecilosclerida include Cornulum globosum n. sp., Megaciella lobata n. sp., M. triangulata n. sp., Artemisina clavata n. sp., A. flabellata n. sp., Coelosphaera (Histodermion) kigushimkada n. sp., Stelodoryx mucosa n. sp. and S. siphofuscus n. sp. Axinellida is represented by Raspailia (Hymeraphiopsis) fruticosa n. sp. and Dictyoceratida is represented by Dysidea kenkriegeri n. sp. The genus Cornulum is modified to allow for smooth tylotes. We report several noteworthy biogeographical observations. We describe only the third species within the subgenus Histodermion and the first from the Indo-Pacific Region. Additionally, the subgenus Hymerhaphiopsis was previously represented by only a single species from Antarctica. We also report the first record of a dictyoceratid species from Alaska. The new collections further highlight the richness of the sponge fauna from the region, particularly for the Poecilosclerida. PMID:26624419

  9. Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands

    USGS Publications Warehouse

    Okal, E.A.; Plafker, G.; Synolakis, C.E.; Borrero, J.C.

    2003-01-01

    The 1946 Aleutian earthquake stands out among tsunamigenic events because it generated both very high run-up near the earthquake source region and a destructive trans-Pacific tsunami. We obtained new data on the distribution of its tsunami in the near field along south-facing coasts between Unimak Pass on the west and Sanak Island on the east by measuring the height of driftwood and beach materials that were deposited by the tsunami above the extreme storm tide level. Our data indicate that (1) the highest measured run-up, which is at the Scotch Cap lighthouse, was 42 m above tide level or about 37 m above present storm tide elevation; (2) run-up along the rugged coast from Scotch Cap for 12 km northwest to Sennett Point is 12-18 m, and for 30 km east of Scotch Cap to Cape Lutke it is 24-42 m; (3) run-up along the broad lowlands bordering Unimak Bight is 10-20 m, and in-undation is locally more than 2 km; (5) run-up diminishes to 8 m or less at the southeast corner of Unimak Island; (6) no evidence was found for run-up above present storm tides (about 4-5 m above MLLW) on the Ikatan Peninsula or areas along the coast to the west; and (7) run-up above storm tide level in the Sanak Island group is restricted to southwest-facing coasts of Sanak, Long, and Clifford Islands, where it is continuous and locally up to 24 m high. Generation of the tsunami by one or more major earthquake-triggered submarine landslides near the shelf edge south of Unimak Island seems to be the only viable mechanism to account for the data on wave arrival time, run-up heights, and distribution, as well as for unconfirmed anecdotal reports of local postquake increases in water depth and diminished bottom-fisheries productivity. A preliminary hydrodynamic simulation of the local tsunami propagation and run-up using a dipolar model of a possible landslide off Davidson Bank provides an acceptable fit to the characteristics of the distribution of local run-up, with a value at 34 m at the Scotch Cap

  10. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  11. The geomorphology of an Aleutian volcano following a major eruption: The 7-8 August 2008 eruption of Kasatochi Volcano, Alaska, and its aftermath

    USGS Publications Warehouse

    Waythomas, C.F.; Scott, W.E.; Nye, C.J.

    2010-01-01

    Analysis of satellite images of Kasatochi volcano and field studies in 2008 and 2009 have shown that within about one year of the 78 August 2008 eruption, significant geomorphic changes associated with surface and coastal erosion have occurred. Gully erosion has removed 300,000 to 600,000 m3 of mostly fine-grained volcanic sediment from the flanks of the volcano and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins on the south and west flanks of the volcano, with drainage areas of 0.7 and 0.5 km2, are about 104 m3 km-2 yr-1 and are comparable to sediment yields documented at other volcanoes affected by recent eruptive activity. Estimates of the retreat of coastal cliffs also made from analysis of satellite images indicate average annual erosion rates of 80 to 140 m yr-1. If such rates persist it could take 35 years for wave erosion to reach the pre-eruption coastline, which was extended seaward about 400 m by the accumulation of erupted volcanic material. As of 13 September 2009, the date of the most recent satellite image of the island, the total volume of material eroded by wave action was about 106 m3. We did not investigate the distribution of volcanic sediment in the near shore ocean around Kasatochi Island, but it appears that erosion and sediment dispersal in the nearshore environment will be greatest during large storms when the combination of high waves and rainfall runoff are most likely to coincide. ?? 2010 Regents of the University of Colorado.

  12. Towards a Network Matched Filter Observatory for Alaska/Aleutian Volcano Monitoring and Research.

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.

    2015-12-01

    Network Matched Filtering (NMF, commonly referred to as template matching), is a procedure which utilizes waveforms recorded from a cataloged seismic event (the "template event") to find additional seismic events by cross-correlating the template event with continuous seismic data over the time period of interest. NMF has been successfully used to populate seismic catalogs for a wide variety of seismic signals which are difficult to identify, such as tectonic low frequency earthquakes, early or triggered aftershocks, and small magnitude induced seismic sequences. NMF provides robust event detection of signals with signal to noise ratios near one, and the output of the filter is largely independent of unrelated seismic noise, making it an ideal technique for identifying events during noisy time periods, such as immediately following a large earthquake or during a volcanic eruption. We also show how NMF can be used over longer time periods, with dynamic seismic network status, to more robustly compare time periods with disparate network geometries. Here, we present efforts to develop processing infrastructure for semi-automated execution of the NMF technique applied to volcanoes in the state of Alaska. We present a series of case studies involving both monitored and unmonitored volcanoes. Given the large scope of this endeavor, we focus our preliminary efforts on cataloging deep long period (DLP) seismicity, as DLP's have high scientific interest (as well as providing a reasonable benchmark), have been cataloged at many of Alaska's volcanoes, and yet are rare enough to speed up code development and testing. At Redoubt, for example, we use NMF to develop a catalog of ~300 DLP's from 2008 through July 2015. Most cataloged DLP's and new matches from NMF occurred close in time to the 2009 eruption, but we find that DLP activity has continued through July 2015. At Kasatochi, an unmonitored volcano which erupted in 2008, we show that NMF is more effective at cataloging

  13. Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites

    NASA Technical Reports Server (NTRS)

    Wentink, T., Jr.

    1973-01-01

    The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.

  14. A preliminary seismic study of Taal Volcano, Luzon Island Philippines

    NASA Astrophysics Data System (ADS)

    You, S.-H.; Gung, Y.; Lin, C.-H.; Konstantinou, K. I.; Chang, T.-M.; Chang, E. T. Y.; Solidum, R.

    2013-03-01

    The very active Taal Volcano lies in the southern part of Luzon Island only 60 km from Manila, the capital of the Philippines. In March 2008 we deployed a temporary seismic network around Taal that consisted of 8 three-component short period seismometers. This network recorded during the period from March to November 2008 about 1050 local events. In the early data processing stages, unexpected linear drifting of clock time was clearly identified for a number of stations. The drifting rates of each problematic station were determined and the errors were corrected before further processing. Initial location of each event was derived by manually picked P-/S-phases arrival times using HYPO71 and a general velocity model based on AK135. Since the velocity structure beneath Taal is essentially unknown, we used travel times of 338 well-located events in order to derive a minimum 1D velocity model using VELEST. The resulting locations show that most events occurred at the shallow depth beneath the Taal Volcano, and two major earthquake groups were noticed, with one lying underneath the western shore of Taal lake and the other one spread around the eastern flank of the Taal Volcano. Since there is no reported volcano activities during the operation period of our seismic array, we are still not confident to interpret these findings in terms of other natures of volcano at the current stage. However, our work represents an important pioneer step towards other more advanced seismic studies in Taal Volcano.

  15. New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska.

    PubMed

    Reiswig, Henry M; Stone, Robert P

    2013-01-01

    Hexactinellida from deep-water communities of the central Aleutian Islands, Alaska, are described. They were mostly collected by the remotely operated vehicle 'Jason II' from 494–2311 m depths during a 2004 RV 'Roger Revelle' expedition, but one shallow-water species collected with a shrimp trawl from 155 m in the same area is included. The excellent condition of the ROV-collected specimens enabled valuable redescription of some species previously known only from badly damaged specimens. New taxa include one new genus and eight new species in five families. Farreidae consist of two new species, Farrea aleutiana and F. aspondyla. Euretidae consists of only Pinulasma fistulosum n. gen., n. sp. Tretodictyidae include only Tretodictyum amchitkensis n. sp. Euplectellidae consists of only the widespread species Regadrella okinoseana Ijima, reported here over 3,700 km from its closest previously known occurrence. The most diverse family, Rossellidae, consists of Aulosaccus ijimai (Schulze), Aulosaccus schulzei Ijima, Bathydorus sp. (young stage not determinable to species), Caulophacus (Caulophacus) adakensis n. sp., Acanthascus koltuni n. sp., Staurocalyptus psilosus n. sp., Staurocalyptus tylotus n. sp. and Rhabdocalyptus mirabilis Schulze. We present argument for reinstatement of the abolished rossellid subfamily Acanthascinae and return of the subgenera  Staurocalyptus Ijima and Rhabdocalyptus Schulze to their previous generic status. These fauna provides important complexity to the hard substrate communities that likely serve as nursery areas for the young stages of commercially important fish and crab species, refuge from predation for both young and adult stages, and also as a focal source of prey for juvenile and adult stages of those same species. PMID:25325089

  16. An Overview of Geodetic Volcano Research in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  17. Long term volcano monitoring by using advanced Persistent Scatterer SAR Interferometry technique: A case study at Unimak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.; Freymueller, J. T.; Lu, Z.

    2012-12-01

    Unimak Island, the largest island in the eastern Aleutians of Alaska, is home to three major active volcanoes: Shishaldin, Fisher, and Westdahl. Shishaldin and Westdahl erupted within the past 2 decades and Fisher has shown persistent hydrothermal activity (Mann and Freymueller, 2003). Therefore, Unimak Island is of particular interest to geoscientists. Surface deformation on Unimak Island has been studied in several previous efforts. Lu et al. (2000, 2003) applied conventional InSAR techniques to study surface inflation at Westdahl during 1991 and 2000. Mann and Freymueller (2003) used GPS measurements to analyze inflation at Westdahl and subsidence at Fisher during 1998-2001. Moran et al., ( 2006) reported that Shishaldin, the most active volcano in the island , experienced no significant deformation during the 1993 to 2003 period bracketing two eruptions. In this paper, we present deformation measurements at Unimak Islank during 2003-2010 using advanced persistent scatterer InSAR (PSI). Due to the non-urban setting in a subarctic environment and the limited data acquisition, the number of images usable for PSI processing is limited to about 1-3 acquisitions per year. The relatively smaller image stack and the irregular acquisition distribution in time pose challenges in the PSI time-series processing. Therefore, we have developed a modified PSI technique that integrates external atmospheric information from numerical weather predication models to assist in the removal of atmospheric artifacts [1]. Deformation modeling based on PSI results will be also presented. Our new results will be combined with previous findings to address the magma plumbing system at Unimak Island. 1) W. Gong, F. J. Meyer (2012): Optimized filter design for irregular acquired data stack in Persistent Scatterers Synthetic Aperture Radar Interferometry, Proceeding of Geosciences and Remote Sensing Symposium (IGARSS), 2012 IEEE International, Munich, Germany.

  18. Observing the Historic Eruption of Northern Mariana Islands Volcano

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Shore, Patrick J.; Sauter, Allan; Hilton, David R.; Fischer, Tobias; Camacho, Juan T.

    2004-01-01

    Anatahan volcano erupted for the first time in recorded history at about 7:30 GMT on 10 May 2003, covering the island of Anatahan, in the Commonwealth of the Northern Mariana Islands (CNMI), with ash, and providing scientists with important opportunities to study this volcano. The eruption was first reported by the National Oceanic and Atmospheric Administration's Volcanic Ash Advisory Center at 12:32 GMT, based on satellite images of the ash cloud. At about the same time, unusual light flares were observed from an approaching small ship, the Super Emerald, which was carrying a group of seismologists from Washington University in St. Louis, Scripps Institution of Oceanography, and the CNMI Emergency Management Office. As morning broke, the ship was approximately 10 km from the island, and those on board witnessed billowing ash and gas rise from the volcano's caldera to form a great cloud exceeding 6 km in altitude (Figure 1). The scientists were in the region installing land seismographs for the Mariana Subduction Factory Imaging Experiment, a joint U.S.-Japanese deployment of 20 land broadband seismographs and 58 ocean bottom seismographs funded (on the U.S. side) by the Margins program of the National Science Foundation. The experiment has the goal of imaging the magma production regions and mantle flow patterns within the upper mantle beneath the Mariana arc and backarc (see http://epsc.wustl.edu/seismology/MARIANA).

  19. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  20. Geologic Map and Eruptive History of Veniaminof Volcano Record Aleutian Arc Processing of Mantle-Derived Melts

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Sisson, T. W.; Calvert, A. T.; Nye, C. J.

    2009-12-01

    Mount Veniaminof, one of the largest volcanoes in the Aleutian arc, has a basal diameter of ~40 km, a volume of ~350 km3, an 8-km-diameter ice-filled caldera, and an active intracaldera cone. The geology of this tholeiitic basalt-to-dacite volcano has been mapped at 1:50,000 scale. Over 100 Quaternary volcanic map units are characterized by 600 chemical analyses of rocks and nearly 100 40Ar/39Ar and K-Ar ages. Throughout its history, lava flows from Veniaminof recorded alternately ice/melt-water chilling or ice-free conditions that are consistent with independent paleoclimatic records. Exposures from deep glacial valleys to the caldera rim reveal a long history dominated by basalt and basaltic andesite from ≥260 ka to 150 ka that includes compositions as primitive as 9.4% MgO and 130 ppm Ni at 50% SiO2. Basaltic andesite, common throughout Veniaminof's history, has low compatible-element contents that indicate an origin by fractionation of basaltic magma. Repeated eruption of more differentiated melts from a shallow intrusive complex, represented by granodiorite (crystallized dacitic magma) and cumulate gabbro and diorite xenoliths in pyroclastic deposits, has featured virtually aphyric andesite since 150 ka and dacite (to 69.5% SiO2) beginning ~110 ka. These variably differentiated liquids segregated from crystal mush, possibly by gas-driven filter pressing, and commonly vented but also solidified at depth. A large composite cone was present at least as early as 200 ka. Although asymmetric edifice morphology hints at early sector collapse to the southeast, coeval vents on northwest and southeast flanks and the distribution of extensive lava units indicate that a large cone (again) was present by 120 ka. Flank eruption of a wide variety of Veniaminof magmas was common from plate-convergence-parallel northwest-trending fissures from at least as early as ca. 80 ka. At 56 ka and at 46 ka, voluminous dacite lava erupted on both northwest and southeast flanks. A

  1. Seismic monitoring at Deception Island volcano (Antarctica): Recent advances

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.

    2012-04-01

    Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating

  2. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  3. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  4. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  5. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  6. Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand

    USGS Publications Warehouse

    Houghton, B.F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.

    1992-01-01

    Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.

  7. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  8. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  9. Volcano hazards and potential risks on St. Paul Island, Pribilof Islands, Bering Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Winer, G. S.

    2009-05-01

    Volcano hazards and potential risks on St. Paul Island, Alaska, are assessed on the basis of the recent volcanic history of the island. The long-term frequency of volcanic eruptions is estimated using a count of 40 identifiable vents considered to represent separate eruptions. Assuming regular temporal spacing of these events during the period 360,000 to 3230 y.b.p., the estimated mean recurrence time is 0.11 × 10 - 3 eruption/year and the eruptive interval is approximately 8900 years. Volcano hazards on St. Paul are associated exclusively with the eruption of low viscosity alkali basaltic magma. The most important are lava flows, tephra fallout, and base surges. Other hazards include volcanic gases, seismicity and ground deformation associated with dike intrusion beneath rift zones, and explosive lava-water interactions along coastal regions and water-saturated ground. The general characteristics of past volcanism on St. Paul indicate that the most likely styles of future eruptions will be (1) Hawaiian-style eruptions with fire fountains and pahoehoe lava flows issuing from one of two polygenetic shield volcanoes on the island; (2) Strombolian-style, scoria cone-building eruptions with associated tephra fallout and eruption of short pahoehoe lava flows; and (3) explosive Surtseyan-style, phreatomagmatic eruptions initiating at some point along St. Paul's insular shelf. Given the relatively restricted range in volcanic phenomena on St. Paul, the most significant question regarding volcano hazard and risk assessment is whether future eruptions will be confined to the same region on the island as the most recent activity. If future activity follows the recent past, resulting volcano hazards will most likely be located at inland areas sufficiently far from habitation that they will pose little threat to life or property. An important caveat, however, is that St. Paul is constructed almost entirely from the products of volcanic eruptions with vents located all over

  10. Hydrochemical fluxes from Baransky volcano, Iturup, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Chelnokov, George; Zharkov, Rafael; Bragin, Ivan; Kharitonova, Natalia

    2014-05-01

    The Sernaya River and its tributary the Kipyashaya River are the only rivers that drain all thermal waters coming down the Baransky volcano (Iturup, the Kuril Islands). Hydrological parameters and a chemical composition relating to these rivers and all inflow streams coming from the volcano were measured from August to October 2013. The main aims of this investigation were to develop a data baseline for the catchment of the Sernaya River in order to monitor the Baransky volcano, to estimate total discharge of solute elements and finally to identify thermal groundwater inflow. Since the Kipyashaya River and the Sernaya River receive all water streams coming along the south-west and south flanks of the Baransky volcano within approximately 10 kilometers we can suggest that the whole thermal discharge runs into the Kipyashaya River. Thus a frequent sampling of the rivers presents the best way to monitor the volcano as they comprise a mix of all thermal waters from the Baransky volcano. The Sernaia River, at the end of its course along the flanks of the Baransky volcano, has a total flux of 12 m³/s ± 1%. Multiplication of the discharge by the concentration in main ions of the river at this point yields an aggregate flux of ~130 tons/day ± 10%. This flux performs the dissolution flux as a result of rocks dissolution beneath the active crater and in the aquifer of the Kipyashaya River. Cl total discharge was estimated at ~33 tons/day ± 10%, SO4 ~67 tons/day ± 10%, and total cation discharge ~28 tons/day ± 10%. The Kipyashaya River brings in to the Sernaya River 15 tons/day ± 10% of Cl, ~30 tons/day ± 10% of SO4, and ~3,5 tons/day ± 10% cations average. Several thermal springs with low water discharge are located on the right waterside of the Sernaya River 100 m up and down from the Kipyashaya River influx. These thermal springs with Cl discharge ~ 5g/s have significant concentrations of Ca due to water-rock interaction with basement rocks. The way of sampling

  11. Displacement Partitioning, Boundary-Parallel Terrane Migration, and Arc-Parallel Extension in the Aleutian Islands Based on Structural Analysis and GPS Geodesy

    NASA Astrophysics Data System (ADS)

    Ave Lallemant, H. G.; Oldow, J. S.; Lewis, D. S.

    2001-12-01

    Structural analysis of the deformed rocks on several Aleutian Islands (Attu, Adak, Atka, and Unalaska) combined with published bathymetric and seismic reflection data support the existence of displacement partitioning along the Aleutian arc. Brittle structures are remarkably consistent among all islands studied and record arc-normal contraction, arc-parallel transcurrent motion, and arc-parallel extension. This process is still active as shown by earthquake-focal mechanisms and a GPS velocity field determined from five Aleutian Islands (Attu, Shemya, Adak, Atka, and Unalaska). GPS site velocities determined from campaigns in 1996, 1998, 1999, and 2000 increase from east to west along the island arc. Primary GPS sites on five islands were occupied for three-weeks each during two to four campaigns. In a North American reference frame the sites show a systematic increase in arc-parallel motion from Unalaska (4 mm/yr) in the east to Shemya (25 mm/yr) and Attu (31 mm/yr) in the west. Velocities for Adak and Atka near the center of the Aleutian arc are 10 mm/yr and 7 mm/yr, respectively and show a greater component of arc-normal displacement than sites at the eastern and western ends of the island chain. Secondary sites occupied for several days during alternating campaigns on Attu, Adak, and Unalaska have velocities consistent with the primary GPS sites for each island. On Atka, secondary site velocities record a significant divergence from the velocity of the primary site and indicate either transtensional deformation within the island or contamination of the primary site velocity by local strain accumulation. These results indicate that convergence between the North American and Pacific plates is partitioned into arc-normal and arc-parallel components. The arc-normal component causes shortening (thrusting and folding) along an axis oriented at a high-angle to the plate boundary and the arc-parallel component causes displacements along several arc

  12. Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska

    USGS Publications Warehouse

    Nelson, Alan R.; Briggs, Richard; Dura, Tina; Engelhart, Simon E.; Gelfenbaum, Guy; Bradley, Lee-Ann; Forman, S.L.; Vane, Christopher H.; Kelley, K.A.

    2015-01-01

    cannot estimate source earthquake locations or magnitudes for most tsunami-deposited beds. We infer that no more than 3 of the 23 possible tsunamis beds at both sites were deposited following upper plate faulting or submarine landslides independent of megathrust earthquakes. If so, the Semidi segment of the Alaska-Aleutian megathrust near Chirikof Island probably sent high tsunamis southward every 180–270 yr for at least the past 3500 yr.                   

  13. U.S. Geological Survey (USGS) Western Region Kasatochi Volcano Coastal and Ocean Science

    USGS Publications Warehouse

    DeGange, Anthony

    2010-01-01

    Alaska is noteworthy as a region of frequent seismic and volcanic activity. The region contains 52 historically active volcanoes, 14 of which have had at least one major eruptive event since 1990. Despite the high frequency of volcanic activity in Alaska, comprehensive studies of how ecosystems respond to volcanic eruptions are non-existent. On August 7, 2008, Kasatochi Volcano, in the central Aleutian Islands, erupted catastrophically, covering the island with ash and hot pyroclastic flow material. Kasatochi Island was an annual monitoring site of the U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge (AMNWR); therefore, features of the terrestrial and nearshore ecosystems of the island were well known. In 2009, the U.S. Geological Survey (USGS), AMNWR, and University of Alaska Fairbanks began long-term studies to better understand the effects of the eruption and the role of volcanism in structuring ecosystems in the Aleutian Islands, a volcano-dominated region with high natural resource values.

  14. Energy released at Teide Volcano,Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Lopez, D. L.; Perez, N. M.; Marrero, R.

    2003-12-01

    Teide volcano (3715 m high) is located at the northern scarp of the Las Ca¤adas caldera, a large depression at the center of Tenerife Island. Las Ca¤adas has been produced by multiple episodes of caldera collapse and giant landslides. The basanite-phonolite magmatic system associated with Teide volcano is emitting gases that reach the summit producing weak fumaroles. The chemical composition of these fumaroles and the flux of diffuse soil CO2 degassing at the summit cone (0.5 km2) has been used to determine the energy released as passive degassing in this volcano. Previous investigations show that Teide's summit is emitting 400 tons m2 day-1 of CO2 to the atmosphere. The composition of CH4, CO2, CO, and H2O indicate a chemical equilibrium temperature of 234° C and 75% condensation of water vapor within the volcanic edifice (Chiodini and Marini, 1998). The composition of the gases before condensation was restored and assumed to represent the composition at the equilibrium zone. The energy stored by the gases at the equilibration zone is assumed to be released as the gases move towards the discharge zone. The following processes are considered: change in pressure and temperature for water from the equilibration zone to the zone of condensation, latent heat released during the water condensation process, cooling of the condensed water from the condensation temperature to ambient temperature, and change of pressure and temperature for CO2 from the equilibrium to the discharge zone. Thermodynamic calculations of the energy released in each one of these processes indicate that 144 MW are released at Teide. Energy flux is 288 MW m-2. Most of this energy is released during the condensation process. This energy output compares with other hydrothermal systems of the world. These results show that during periods of passive degassing, fumarolic activity is limited by the geometry and elevation of the volcanic structure and the internal thermodynamic conditions.

  15. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  16. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    NASA Astrophysics Data System (ADS)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  17. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  18. Evolution and geochemistry of the Tertiary calc-alkaline plutons in the Adak Island region of the central Aleutian oceanic island arc

    NASA Astrophysics Data System (ADS)

    Kay, Suzanne; Citron, Gary P.; Kay, Robert W.; Jicha, Brian; Tibbetts, Ashley

    2014-05-01

    Calc-alkaline plutons are major crustal building blocks of continental margin mountain belts like the Mesozoic to Tertiary Andes and the Sierra Nevada, but are rare in oceanic island arcs. Some of the most calc-alkaline I-type island arc plutons are in the Central Aleutians with the most extreme signatures, as indicated by FeO/MgO ratios of < ~2 at 48-70% wt. % SiO2, in the ~10 km wide Oligocene Hidden Bay pluton on southern Adak Island and the 10 km wide Miocene Kagalaska pluton to the north on eastern Adak and the adjacent Kagalaska Island. Although small compared to most continental plutons, similarities in intrusive units, mineralogy and chemistry suggest common formation processes. The Aleutian calc-alkaline plutonic rocks mainly differ from continental plutons in having more oceanic like isotopic (87Sr/86Sr = 0.703-0.7033; Epsilon Nd = 9-7.8) and LIL (e.g., higher K/Rb) ratios. The Adak region plutons differ from Tertiary plutons on Unalaska Island further east in being more K-rich and in having a more oxidized and lower-temperature mineralogy. From a regional perspective, the Adak area plutons intrude Eocene/Oligocene Finger Bay Formation mafic volcanic and sedimentary rocks and postdate the small ~38 Ma tholeiitic Finger Bay pluton. The chemistry of these older magmatic rocks is basically similar to that of young Central Aleutian magmatic rocks with boninites and arc tholeiitic magmas seemingly being absent. The formation of the calc-alkaline plutons seems to require a sufficient crustal thickness, fluid concentration and contractional stress such that magma chambers can stabilize significant amounts of pargasitic hornblende. Seismic receiver function analyses (Janiszewski et al., 2013) indicate the modern Adak crust is ~ 37 km thick. Existing and new hornblende, plagioclase and biotite Ar/Ar ages from 16 Hidden Bay pluton and Gannet Lake stock gabbro, porphyritic diorite, diorite, granodiorite, leucogranodiorite and aplite samples range from 34.6 to 30

  19. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect

    Bruce Wright

    2011-08-30

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  20. Preliminary Geologic Map of Mount Pagan Volcano, Pagan Island, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.

    2006-01-01

    Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaros and form part of the inner arc. The active inner arc extends south from Anatahan, where volcanoes, some of which are active, form seamounts west of the older outer arc. Other volcanic seamounts of the active arc surmount the East Mariana Ridge in the vicinity of Anatahan and Sarigan and north and south of Farallon de Pajaros. Six volcanoes (Farallon de Pajaros, Asuncion, Agrigan, Mount Pagan, Guguan, and Anatahan) in the northern islands

  1. MORPHOLOGY AND MOLECULAR PHYLOGENY OF AUREOPHYCUS ALEUTICUS GEN. ET SP. NOV. (LAMINARIALES, PHAEOPHYCEAE) FROM THE ALEUTIAN ISLANDS(1).

    PubMed

    Kawai, Hiroshi; Hanyuda, Takeaki; Lindeberg, Mandy; Lindstrom, Sandra C

    2008-08-01

    A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ∼2 m in height and ∼0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V-shape; the stipe is solid and flattened, slightly translucent, attaining ∼1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet-shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1-5.8S-ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the "Group 1" clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales. PMID:27041620

  2. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  3. The First Historical Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Hilton, D. R.; Demoor, J.; Jaffe, L.; Spilde, M. N.; Counce, D.; Camacho, J. T.

    2003-12-01

    The first historical eruption of Anatahan volcano occurred on May 10, 2003. The MARGINS office responded by authorizing helicopter surveillance and ship deployment to visit the volcano. The helicopter flight on May 19 allowed visual observations and identification of the east crater as the source of the eruption. The top of the plume was estimated to be at 10,000 ft - significantly less than the 30,000 ft of the initial blast. No bombs were ejected out of the east crater at this time but were falling back into the crater. The bombs looked irregular in shape, massive and were estimated to be a few m in diameter. Bombs and tephra samples were collected from the eastern side of the island when blasts were occurring at a rate of approx. 1 per 5min. The ship visit followed on May 21 to the western side of the island for collection of samples and SO2 flux measurements, along with maintenance of a previously deployed seismometer. Volcanic samples collected on Anatahan consisted of bombs, ash and scoria from the present eruption and old lavas (age unknown). The ash section on the western shore was 25 cm thick and consisted of the following sequence (bottom to top): 0-5 inversely? graded dark ash with scoria and pumice clasts (1-2 cm), 20-25 cm: well sorted clast-supported scoria (max 2 cm) with some fine ash. The maximum total thickness measured at a site 6 km from the east crater was approximately 45 cm. The sequence is interpreted as 1) initial blast 2) interaction of magma with water (from pre-existing hydrothermal system) as evidenced by accretionary lapilli 3) magmatic phase of the eruption producing juvenile material. Electron microprobe analyses of the pumice and scoria show uniform compositions of ~ 60wt% SiO2 in the glass; zoned plagioclase with average composition of 61% An, 37.7% Ab, 1.2% Or; pyroxenes (19.4% Wo, 53.4% En, 26.7% Fs) and Fe-Ti oxides. Sulfur and Cl contents are approx. 100 and 1500 ppm, respectively. Water content of the glass may be several wt

  4. Island-arc magmatic processes beneath South Pagan Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Trusdell, F. A.; Garcia, M. O.; Pietruszka, A. J.

    2007-12-01

    The island-arc volcanoes that make up the Northern Mariana Islands are among the most historically active stratovolcanoes along the Pacific plate, yet they have been poorly studied due to their remote location and difficult accessibility. One of the least studied areas in the Northern Mariana Islands is Pagan Island, located near the center of the Mariana ridge. Pagan Island consists of two Holocene stratovolcanoes, Mount Pagan and South Pagan. Remarkably little is known about South Pagan including its eruptive history, potential volcanic hazards, and geochemical evolution due to a small population of inhabitants, a short and intermittent recorded history, and few geological studies. There is abundant evidence that eruption of South Pagan could pose significant hazards to both residents of the Northern Mariana Islands and to aircraft flying in the western Pacific. For example, following Mount Pagan's most recent explosive eruption (VEI = 4) in 1981, destructive rain-triggered volcanic debris flows buried large tracts of land, including the site of a village that contained a school, dispensary, church, and power generating buildings. Preliminary field studies in May 2006 by the USGS showed that a full spectrum of hazardous phenomena originated from South Pagan in the past, including pyroclastic flows and surges, caldera collapses, and volcanic debris flows. Two previously unrecognized active fumaroles near the summit of South Pagan were discovered suggesting that potential volcanic hazards currently exist in this area. A majority of the new lava samples are vesicular, clinopyroxene-plagioclase basalts with minor plagioclase xenocrysts and gabbroic xenoliths. The purpose of this study is to understand the compositional history of South Pagan and how it relates to the crustal and mantle magmatic processes beneath the central Northern Mariana Islands. Pb, Sr and Nd isotope ratios, major and trace element abundances, and mineral chemistry were determined and will be

  5. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  6. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  7. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  8. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Statistical and Reporting Areas 1 Figure 1 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Islands Statistical and Reporting Areas ER15NO99.000 b. Coordinates Code Description 300 Russian waters... statistical area is the part of a reporting area contained in the EEZ....

  9. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study.

    PubMed

    Burger, Joanna

    2007-11-01

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  10. Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Wilkins, Mark E.; Rose, Craig S.; Coon, Catherine

    2011-11-01

    The abundance of some marine fish species are correlated to the abundance of habitat-forming benthic organisms such as sponges and corals. A concern for fisheries management agencies is the recovery of these benthic invertebrates from removal or mortality from bottom trawling and other commercial fisheries activities. Using a logistic model, observations of available substrate and data from bottom trawl surveys of the Aleutian Islands, Alaska, we estimated recovery rates of sponges and corals following removal. The model predicted the observed sponge and coral catch in bottom trawl surveys relatively accurately ( R2=0.38 and 0.46). For sponges, the results show that intrinsic growth rates were slow ( r=0.107 yr -1). Results show that intrinsic growth rates of corals were also slow ( r=0.062 yr -1). The best models for corals and sponges were models that did not include the impacts of commercial fishing removals. Subsequent recovery times for both taxa were also predicted to be slow. Mortality of 67% of the initial sponge biomass would recover to 80% of the original biomass after 20 years, while mortality of 67% of the coral biomass would recover to 80% of the original biomass after 34 years. The modeled recovery times were consistent with previous studies in estimating that recovery times were of the order of decades, however improved data from directed studies would no doubt improve parameter estimates and reduce the uncertainty in the model results. Given their role as a major ecosystem component and potential habitat for marine fish, damage and removal of sponges and corals must be considered when estimating the impacts of commercial bottom trawling on the seafloor.

  11. Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska

    PubMed Central

    Hardell, Sara; Tilander, Hanna; Welfinger-Smith, Gretchen; Burger, Joanna; Carpenter, David O.

    2010-01-01

    Background Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate. Methods and Findings This study examined the levels of PCBs and three pesticides [p, p′-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p′-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits. Conclusion The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health

  12. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study

    SciTech Connect

    Burger, Joanna

    2007-11-15

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  13. Origin of Japanese White-Eyes and Brown-Eared Bulbuls on the Volcano Islands.

    PubMed

    Sugita, Norimasa; Kawakami, Kazuto; Nishiumi, Isao

    2016-04-01

    The Ogasawara Archipelago comprises two groups of oceanic islands: the Bonin Islands, formed in the Paleogene, and the Volcano Islands, formed in the Quaternary. These groups are located within a moderate distance (ca. 160-270 km) of one another; thus, most land bird species are not distinguished as different subspecies. Two land birds, however, show unusual distribution. The Japanese white-eyes Zosterops japonicus originally inhabited only the Volcano Islands, but has been introduced to the Bonin Islands. The brown-eared bulbuls Hypsipetes amaurotis are distributed as a different subspecies. We investigated their genetic differences and divergences in the Ogasawara Archipelago using mitochondria DNA. The Volcano population of white-eyes had four endemic haplotypes that were divergent from one another, except for the Bonin population, which shared three haplotypes with the Volcano, Izu, and Ryukyu Islands and did not have any endemic haplotype. This is the first genetic suggestion that the Bonin population is a hybrid of introduced populations. With respect to bulbuls, the Volcano and Bonin Islands each had a single endemic haplotype. The Volcano haplotype is closest to a haplotype shared with Izu, the Japanese mainland, Daito and Ryukyu, whereas the Bonin haplotype is closest to one endemic to the south Ryukyu Islands. This indicates that the sources of the two bulbul populations can be geologically and temporally distinguished. The populations of the two species in the Ogasawara Archipelago are irreplaceable, owing to their genetic differences and should be regarded as evolutionarily significant units. In order to prevent introgression between the two populations, we must restrict interisland transfers. PMID:27032679

  14. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  15. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  16. Monitoring the evolution of Deception Island volcano from magnetic anomaly data (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Catalán, Manuel; Martos, Yasmina M.; Galindo-Zaldívar, Jesús; Funaki, Minoru

    2014-12-01

    Deception Island is a young and active volcano located in the south-western part of Bransfield back-arc basin. During the last twenty years the Royal Observatory of the Spanish Navy has carried out geophysical surveys in the area. In addition, an unmanned aerial vehicle flight was conducted in 2011 at 800 m height on the northern half of Deception Island. Analysing and comparing magnetic grids obtained in different periods and tie point readings allow us to detect temporal changes and isolate signals of volcanic origin. Magnetic survey cruises performed in Deception Island's inner bay (1988, 1999 and 2008), and the study of its outer area's magnetic anomaly changes, point to a period of high variations concentrated between December 1989 and December 1999 that may be related to the two main recent periods of seismic activity (1992 and January 1999). From December 1999 to December 2008, there were no significant changes in seismic activity; nevertheless, our data show some magnetic alterations, which might signal the slow progress of a volcanic environment towards equilibrium. Interpreting these magnetic changes called for the construction of several forward models. Additionally, we put forth this kind of study as a suitable, economical and easy method for monitoring an active volcanic system whenever it is possible to measure the magnetic field with accurate positioning, and if the external field components are removed correctly.

  17. Shallow seismic imaging of flank collapse structures in oceanic island volcanoes: Application to the Western Canary Islands

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; González, P.; Tiampo, K. F.

    2013-12-01

    Volcanic flank collapse counts among the many hazards associated with volcanic activity. This type of event involves the mobilization of large volumes, producing debris avalanches. It affects mostly oceanic island volcanoes, involving the potential for tsunami occurrence. Geophysical imaging can illuminate subvolcanic features such as volcano-tectonic structures, magmatic plumbing systems or differences in rock type. The most commonly used geophysical methods are gravity, electromagnetics and seismics. In particular, seismic measurements quantify anomalies in seismic waves propagation velocities and can be used to obtain information on the subsurface arrangement of different materials. In the Western Canary Islands, the Cumbre Vieja volcano in La Palma (Canary Islands) has been proposed to be near the collapse stage. Previous geophysical studies that have been carried out on the flank of the volcano comprise gravity and electromagnetic methods. These types of surveys gather information on the deep structures of the volcano (1-2 km). In this project, we complement previous studies by using seismic methods to investigate the near-surface seismic structure of the Cumbre Vieja fault system (La Palma Island) and the structure of the well-developed San Andres fault system (El Hierro Island). We aim to compare the Cumbre Vieja and San Andres fault systems to infer the degree of maturity of collapse structures. We carried out reflection and refraction seismic surveys in order to image approximately the first 10 meters of the subsurface. We used 24 low frequency (4,5 Hz) geophones as receivers and a sledge hammer as the seismic source. The survey lines were located across visible parts of the fault systems at the Cumbre Vieja volcano and the San Andres fault in El Hierro. Here, we present the survey setup and results from the preliminary analysis of the data.

  18. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  19. Observations of Seafloor Outcrops in the Oblique Subduction Setting of Adak Canyon: Implications for Understanding the Early History of the Aleutian Island Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G.; Scholl, D.; Jicha, B.; Wyatt, C.; Singer, B.; Kelemen, P.

    2004-12-01

    Submarine canyons in the western Aleutians (west of 177°W) are formed by oblique subduction, which has broken crustal blocks away from the arc massif and rotated them in clockwise sense, resulting in the formation of triangular-shaped summit basins and deep, structurally controlled submarine canyons (Geist et al., Tectonics v7, p327, 1988). A series of dives with the ROV Jason II on July 28-30, 2004 on Adak Canyon has provided the first-ever view of seafloor outcrops in an Aleutian canyon formed by this process. Two dives on the canyon's steep eastern wall revealed extensive exposures of blocky outcrops of volcanic rock at depths of 2900-1500 m. Samples of these units collected by the Jason II are a mixture of dark, pyroxene and plagioclase-phyric lavas and volcaniclastics. Degree of weathering/alteration is highly variable but some samples appear fresh. We anticipate that these rocks are offshore-equivalents of the Finger Bay Volcanics, which represent the earliest phase of Aleutian volcanism exposed on nearby Adak Island (e.g., Coats, 1956, USGS Bull. 1028-C). Exposures of granitic rock in Adak Canyon form low ledges of exfoliating outcrop interspersed with spheroidally weathered, bouldery sub-crop, in the depth range of 1800-1600 meters. Obtaining in-situ samples from these massive and subrounded exposures was not possible with the Jason II, but recovery of large, sub-angular slabs that litter the surface included samples of fresh diorite, fine-grained felsic intrusives and hydrothermally altered volcanic country rock. The stratigraphically highest exposures observed in Adak Canyon are gently dipping, poorly lithified `Middle Series' sedimentary rocks of probable Miocene-Oligocene age. All outcrop surfaces in Adak Canyon are covered with a uniformly dark brown, opaque coating of Mn oxide less than 1mm thick. Well-rounded cobbles and boulders interpreted to be glacial drift are largely free of Mn oxide coatings. Thick pavements of Mn-oxide were not observed

  20. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska.

    PubMed

    Stewart, Nathan L; Konar, Brenda; Tinker, M Tim

    2015-03-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands. PMID:25416538

  1. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  2. Post-eruptive morphological evolution of island volcanoes: Surtsey as a modern case study

    NASA Astrophysics Data System (ADS)

    Romagnoli, C.; Jakobsson, S. P.

    2015-12-01

    Surtsey is a small volcanic island in the Vestmannaeyjar archipelago, off the south coast of Iceland. The eruption leading to the island's emersion lasted for 3.5 yr (1963-1967) while destructive forces have been active for over 50 yr (1963-present-day) during which Surtsey has suffered rapid subaerial and submarine erosion and undergone major morphological changes. Surtsey is a well-documented modern example of the post-eruptive degradational stage of island volcanoes, and has provided the unique opportunity to continuously observe and quantify the effects of intense geomorphic processes. In this paper we focus on coastal and marine processes re-shaping the shoreline and shallow-water portions of the Surtsey complex since its formation and on the related geomorphological record. Analogies with the post-eruptive morphological evolution of recently active island volcanoes at the emerging stage, encompassing different climatic conditions, wave regimes and geological contexts, are discussed.

  3. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  4. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  5. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  6. Magma Differentiation in the Plumbing System of an Alkaline Ocean Island Volcano (Fuerteventura, Canary Island).

    NASA Astrophysics Data System (ADS)

    Tornare, E.; Bussy, F.; Pilet, S.

    2014-12-01

    Magma differentiation and mixing are generally regarded as taking place in magma chambers, sills or reservoirs, while magma stagnates before continuing to ascent or erupt. Here we consider differentiation to occur during magma rise in vertical dykes, as documented in the PX1 pluton, Fuerteventura, which is part of the root-zone of an eroded ocean island volcano. PX1 is a vertically layered cumulative body composed of meter to decameter-wide bands of clinopyroxenites and gabbros, surrounded by a very high-grade contact aureole (ca. 1000°C, Hobson et al., 1998). Many clinopyroxenites are characterized by a coarse-grained texture and complexly zoned clinopyroxene crystals. Resorption features and reverse zoning observed in rims are evidence for successive pulses. Percolation of high temperature basaltic melts through the accumulating crystal-rich mush would generate the complexly zoned clinopyroxenes and lead to crystal coarsening. We interpret these coarse-grained clinopyroxenites as crystal-rich magma channels, through which sustained magma fluxes travelled to the surface over a long period of time, thus generating the contact aureole. On the other hand, gabbro bands are interpreted as sluggish magma pulses emplaced in a cooler environment during the waning stages of magmatic activity. We thus propose a model of magma differentiation by dynamic fractionation in dykes throughout magma ascent in the plumbing system of basaltic volcanoes. This model assumes fractional crystallization of continuously rising magmas in vertical channels all along their way to the surface through phenocryst accumulation and crystal-melt interaction processes.

  7. Mercury, arsenic, cadmium, chromium lead, and selenium in feathers of pigeon guillemots (Cepphus columba) from Prince William Sound and the Aleutian Islands of Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David

    2007-11-15

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of pigeon guillemots (Cepphus columba) from breeding colonies in Prince William Sound and in the Aleutian Islands (Amchitka, Kiska) to test the null hypothesis that there were no differences in metal levels as a function of location, gender, or whether the birds were from oiled or unoiled areas in Prince William Sound. Birds from locations with oil from the Exxon Valdez Oil Spill in the environment had higher levels of cadmium and lead than those from unoiled places in Prince William Sound, but otherwise there were no differences in metal levels in feathers. The feathers of pigeon guillemots from Prince William Sound had significantly higher levels of cadmium and manganese, but significantly lower levels of mercury than those from Amchitka or Kiska in the Aleutians. Amchitka had the lowest levels of chromium, and Kiska had the highest levels of selenium. There were few gender-related differences, although females had higher levels of mercury and selenium in their feathers than did males. The levels of most metals are below the known effects levels, except for mercury and selenium, which are high enough to potentially pose a risk to pigeon guillemots and to their predators. PMID:17765292

  8. Hydroacoustic Records of the First Historical Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Dziak, R.; Park, M.; Matsumoto, H.; Fox, C.; Byun, S.; Fowler, M.; Haxel, J.; Embley, R.

    2003-12-01

    For the past decade, NOAA/Pacific Marine Environmental Laboratory has monitored volcano-seismic activity from western Pacific island-arc volcanoes using an array of U.S. Navy hydrophones (called SOSUS) deployed at fixed locations throughout the North Pacific Ocean. SOSUS hydrophones are mounted within the SOFAR channel and record the hydroacoustic tertiary phase or T-wave of oceanic earthquakes from throughout the Pacific basin. Since acoustic T-waves obey cylindrical energy attenuation as opposed to the spherical attenuation of solid-earth seismic phases, sound channel hydrophones can detect often smaller and therefore more numerous earthquakes than land-based seismic networks. This property allowed for the detection of harmonic tremor from a submarine volcano in the Volcano Islands on hydrophones >14,000 km away in the eastern Pacific. The first historical eruption of Anatahan Volcano appears to have started (from satellite imagery) at 1730Z on 10 May, with an ash plume visible by 2232Z (BGVN, 5 May 2003). Records from a broadband seismometer deployed on nearby ( ˜6.5 km) Sarigan Island indicate earthquake activity increased at about 1300Z on 10 May (D. Weins, pers com). SOSUS hydrophones in the western Pacific ( ˜4000 km distant) also recorded increased earthquake activity at 1300Z on 10 May as well as continuous, low-frequency (<10 Hz) energy (possible volcanic tremor) that began about a day before the seismicity. The earthquakes and tremor were detected on only two SOSUS hydrophones and therefore it was not possible to estimate their source location. The arrival azimuth of the signals were, however, consistent with a source in the Mariana Islands. To complement the SOSUS hydrophone array coverage in the western Pacific Ocean, an array of five autonomous hydrophones were deployed in February 2003 (sponsored by NOAA's Ocean Exploration Program) within the SOFAR channel along the active island- and back-arc of the Mariana Islands. All five hydrophones (1-110 Hz

  9. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  10. Sheared sheet intrusions as mechanism for lateral flank displacement on basaltic volcanoes: Applications to Réunion Island volcanoes

    NASA Astrophysics Data System (ADS)

    Cayol, V.; Catry, T.; Michon, L.; Chaput, M.; Famin, V.; Bodart, O.; Froger, J.-L.; Romagnoli, C.

    2014-10-01

    Field work carried out on the Piton des Neiges volcano (Réunion Island) suggests that the injection of magma along detachments could trigger flank failure by conjugate opening and shear displacement. We use 3-D numerical models to compare the ability of purely opened sheet intrusions, sheared sheet intrusions, and normal faults to induce flank displacement on basaltic volcanoes. We assume that shear stress change on fractures results from stress anisotropy of the host rock under gravity. Exploring a large range of stress anisotropies, fracture dips, and fracture depth over length ratios, we determine that the amount of shear displacement is independent of the proximity to the ground surface. Sheared sheet intrusions are the most efficient slip medium on volcanoes. Consequently, the largest flank displacement is induced by the longest, deepest sheared intrusion dipping closest to 45° in a host rock with the highest stress anisotropy. Using our model in a forward way, we provide shear and normal displacements for buried fractures. Applying the model to a pile of sills at the Piton des Neiges volcano, we determine that the mean shear displacement caused by each intrusion was 3.7 m, leading to a total of a 180-260 m of lateral displacement for the 50 m high pile of sills. Using our model in an inverse way, we formulate a decision tree to determine some fracture characteristics and the host rock stress anisotropy from ratios of maximum surface displacements. This procedure provides a priori models, which can be used to bound the parameter space before it is explored through a formal inversion. Applying the decision tree to the 1.4 m coeruptive flank displacement recorded at Piton de la Fournaise in 2007, we find that it probably originated from a shallow eastward dipping subhorizontal normal fault.

  11. Sheared sheet intrusions as a mechanism for lateral flank displacement on basaltic volcanoes: Applications to Réunion Island volcanoes

    NASA Astrophysics Data System (ADS)

    Cayol, V.; Catry, T.; Michon, L.; Chaput, M.; Famin, V.; Bodart, O.; Froger, J. L.; Romagnoli, C.

    2014-12-01

    Field work carried out on the Piton des Neiges volcano (Réunion Island) suggests that the injection of magma along detachments could trigger flank failure by conjugate opening and shear displacement [Famin and Michon, 2010]. We use 3D numerical models to compare the ability of purely opened sheet intrusions, sheared sheet intrusions, and normal faults to induce flank displacement on basaltic volcanoes (Figure). We assume that shear stress change on fractures which are not normal to a principal stress results from stress anisotropy of the host rock under gravity. Exploring a large range of stress anisotropies, fracture dips, and fracture depth over length ratios, we determine that the amount of shear displacement is independent of the proximity to the ground surface. Sheared sheet intrusions are the most efficient slip medium on volcanoes. Using our model in a forward way, we provide shear and normal displacements for buried fractures. Applying the model to a pile of sills at the Piton des Neiges volcano, we determine that the mean shear displacement caused by each intrusion was 3.7 m, leading to a total of a 180-260 m of lateral displacement for the 50 m high pile of sills. Using our model in an inverse way, we formulate a decision tree to determine some fracture characteristics and the host rock stress anisotropy from ratios of maximum surface displacements. This procedure provides a priori models, thus limits to the parameter space which can be further explored through a formal inversion. Applying this procedure to the 1.4 m co-eruptive flank displacement recorded at Piton de la Fournaise in 2007, we find that it probably originated from a shallow eastward-dipping sub-horizontal normal fault.

  12. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  13. Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri; Kotenko, Tatiana

    2015-04-01

    Shiashkotan Island belongs to the Northern Kuril island arc and consists of two joined volcanoes, Sinarka and Kuntomintar, with about 18 km of distance between the summits. Both volcanoes are active, with historic eruptions, and both emit fumarolic gases. Sinarka volcano is degassing through the extrusive dome with inaccessible strong and hot (> 400 °C) fumaroles. A large fumarolic field of the Kuntomintar volcano situated in a wide eroded caldera-like crater hosts many fumarolic vents with temperatures from boiling point to 480 °C. Both volcanoes are characterized by intense hydrothermal activity discharging acid SO4-Cl waters, which are drained to the Sea of Okhotsk by streams. At least 4 groups of near-neutral Na-Mg-Ca-Cl-SO4 springs with temperatures in the range of 50-80 °C are located at the sea level, within tide zones and discharge slightly altered diluted seawater. Volcanic gas of Kuntomintar as well as all types of hydrothermal manifestations of both volcanoes were collected and analyzed for major and trace elements and water isotopes. Volcanic gases are typical for arc volcanoes with 3He/4He corrected for air contamination up to 6.4 Ra (Ra = 1.4 × 10- 6, the air ratio) and δ13C (CO2) within - 10‰ to - 8 ‰ VPDB. Using a saturation indices approach it is shown that acid volcanic waters are formed at a shallow level, whereas waters of the coastal springs are partially equilibrated with rocks at ~ 180 °C. Trace element distribution and concentrations and the total REE depend on the water type, acidity and Al + Fe concentration. The REE pattern for acidic waters is unusual but similar to that found in some acidic crater lake waters. The total hydrothermal discharge of Cl and S from the island associated with volcanic activity is estimated at ca. 20 t/d and 40 t/d, respectively, based on the measurements of flow rates of the draining streams and their chemistry. The chemical erosion of the island by surface and thermal waters is estimated at 27 and

  14. Estimate of sulfate emitted from Sakurajima volcano to the Japanese Islands

    SciTech Connect

    Mizuno, Tateki; Maeda, Takahisa; Tanaka, Chie; Takeuchi, Kiyohide

    1996-12-31

    Concentration of sulfate increased in a summer night over the wide area of the Kanto plain. Since the effect of long range transport of particulate sulfurs was suggested, Lagrangian dispersion-advection analysis of particles was carried out using global scale weather analytical data. Results show that the concentration observed at the Kanto plain coupled be increased by the effect of the volcanic gas which had been emitted from an active volcano {open_quotes}Sakurajima{close_quotes}, located in the distance of about 1,00 km at south-west of the Kanto area, before 3 days. This phenomenon suggests that sulfate emitted from the active volcano Sakurajima might affect acid deposition of all over the Japanese Islands. This report shows estimated concentration of deposition of sulfate from Sakurajima to the Japan Islands using the same model applied to the Kanto area.

  15. Seismic signature of a phreatic explosion: Hydrofracturing damage at Karthala volcano, Grande Comore Island, Indian Ocean

    USGS Publications Warehouse

    Savin, C.; Grasso, J.-R.; Bachelery, P.

    2005-01-01

    Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995. ?? Springer-Verlag 2005.

  16. Seismic signature of a phreatic explosion: hydrofracturing damage at Karthala volcano, Grande Comore Island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Savin, Cécile; Grasso, Jean-Robert; Bachelery, Patrick

    2005-09-01

    Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.

  17. Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii

    USGS Publications Warehouse

    Holcomb, R.T.; Reiners, P.W.; Nelson, B.K.; Sawyer, N.-L.E.

    1997-01-01

    The island of Kauai has always been interpreted as a single shield volcano, but lavas of previously correlated reversed-to-normal magnetic-polarity transitions on opposite sides of the island differ significantly in isotopic composition. Samples from west Kauai have 87Sr/86Sr 18.25; samples from east Kauai have 87Sr/86Sr > 0.7037, ??Nd ??? 6.14, and 206Pb/204Pb < 18.25. Available data suggest that a younger eastern shield grew on the collapsed flank of an older western one.

  18. VOLInSAR-PF, the InSAR Volcano Observatory Service at Piton de la Fournaise Volcano (La Reunion Island).

    NASA Astrophysics Data System (ADS)

    Froger, Jean-Luc; Cayol, Valérie; Augier, Aurélien; Souriot, Thierry

    2010-05-01

    Since 2003, we carry out a systematic InSAR survey of the Piton de la Fournaise volcano, Reunion Island, in the framework of an AO-ENVISAT project. Since 2005 this activity gets the status of Observatory Service of the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC). From 375 ASAR images acquired between 2003 and 2010, we have produced more than 2100 interferograms that allowed us to map the deformations related to 21 eruptions and thus to better understand the internal processes acting during each eruption. In the same time, we have developed an automatic procedure to provide full resolution interferograms, trough a dedicated WEB site, to the Volcano Observatory of Piton de la Fournaise (OVPF), and our other partners, within a few hours after receiving the ASAR images. In this way, our work is a first step toward an operational system of InSAR monitoring of volcanic activity. Since the beginning of 2010, the VOLInSAR-PF database is also open to the entire community, trough an anonymous login that gives access to slightly reduced resolution interferograms. We will present the VOLInSAR-PF database, the main results it provides concerning the way Piton de la Fournaise is deforming, and the main perspectives for monitoring provided by the new InSAR data (PALSAR-ALOS, TerraSAR-X, RADARSAT-2, COSMO-Skymed) we are beginning to integrate in the database.

  19. Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, Daria; Barclay, Andrew; Almendros, Javier; IbañEz Godoy, Jesús M.; Wilcock, William S. D.; Ben-Zvi, Tami

    2009-06-01

    Deception Island (62°59'S, 60°41'W) is an active volcano located in the Bransfield Strait between the Antarctic Peninsula and the South Shetland Islands. The island is composed of rocks that date from <0.75 Ma to historical eruptions (1842, 1967, 1969, and 1970), and nowadays most of its activity is represented by vigorous hydrothermal circulation, slight resurgence of the inner bay floor, and intense seismicity, with frequent volcano-tectonic and long-period events. In January 2005 an extensive seismic survey took place in and around the island to collect high-quality data for a high-resolution P wave velocity tomography study. A total of 95 land and 14 ocean bottom seismometers were deployed, and more than 6600 air gun shots were fired. As a result of this experiment, more than 70,000 travel time data were used to obtain the velocity model, which resolves strong P wave velocity contrasts down to 5 km depth. The joint interpretation of the Vp distribution together with the results of geological, geochemical, and other geophysical (magnetic and gravimetric) measurements allows us to map and interpret several volcanic features of the island and surroundings. The most striking feature is the low P wave velocity beneath the caldera floor which represents the seismic image of an extensive region of magma beneath a sediment-filled basin. Another low-velocity zone to the east of Deception Island corresponds to seafloor sedimentary deposits, while high velocities to the northwest are interpreted as the crystalline basement of the South Shetland Islands platform. In general, in the tomographic image we observe NE-SW and NW-SE distributions of velocity contrasts that are compatible with the regional tectonic directions and suggest that the volcanic evolution of Deception Island is strongly conditioned by the Bransfield Basin geodynamics.

  20. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  1. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while

  2. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks

  3. 75 FR 4491 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Eastern Aleutian District and the Bering Sea subarea of the Bering Sea and Aleutian Islands... necessary to fully use the 2010 A season total allowable catch (TAC) of Atka mackerel in these...

  4. 78 FR 42023 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... under Sec. 679.2(d)(1)(iii) on June 11, 2013 (78 FR 35771, June 14, 2013). As of July 8, 2013, NMFS has... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY... mackerel in the Central Aleutian district (CAI) of the Bering Sea and Aleutian Islands Management...

  5. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    USGS Publications Warehouse

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  6. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    NASA Astrophysics Data System (ADS)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  7. Preliminary Volcano-Hazard Assessment for the Tanaga Volcanic Cluster, Tanaga Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2007-01-01

    Summary of Volcano Hazards at Tanaga Volcanic Cluster The Tanaga volcanic cluster lies on the northwest part of Tanaga Island, about 100 kilometers west of Adak, Alaska, and 2,025 kilometers southwest of Anchorage, Alaska. The cluster consists of three volcanoes-from west to east, they are Sajaka, Tanaga, and Takawangha. All three volcanoes have erupted in the last 1,000 years, producing lava flows and tephra (ash) deposits. A much less frequent, but potentially more hazardous phenomenon, is volcanic edifice collapse into the sea, which likely happens only on a timescale of every few thousands of years, at most. Parts of the volcanic bedrock near Takawangha have been altered by hydrothermal activity and are prone to slope failure, but such events only present a local hazard. Given the volcanic cluster's remote location, the primary hazard from the Tanaga volcanoes is airborne ash that could affect aircraft. In this report, we summarize the major volcanic hazards associated with the Tanaga volcanic cluster.

  8. Numerical Modeling of Sound from the Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Park, M.; Dziak, R. P.; Byun, S.; Fox, C. G.; Matsumoto, H.

    2003-12-01

    NOAA VENTS Program deployed an array of five autonomous underwater hydrophones within the SOFAR channel along the Mariana chain in February 2003 to monitor seafloor volcanic eruptions and submarine earthquakes (sponsored by NOAA's Ocean Exploration Program). These five hydrophones will be recovered in September 2003 using KORDI R/V Onnuri. The first historical eruption of Anatahan volcano in the Mariana Islands began on 10 May 2003. It is expected that the hydrophone data will include the hydroacoustic records of the eruption of Anatahan Volcano. The signals recorded from the eruption will be numerically modeled using a T-wave excitation mechanism developed from the mode scattering theory of Park et al. (2001). They found that scattering from the rough seabottom converts the acoustic energy of seafloor earthquakes from the directly excited ocean crustal/water column modes to the propagating acoustic modes of T-waves, and developed an algorithm to numerically model oceanic earthquake's T-waves. We modified this numerical model of Park et al. (2001) to predict the T-waves generated from volcanic sources by adopting a buried magmatic pipe model (Chouet, 1985). We derived a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of magma. Numerical modeling of the sound from the eruption requires us to determine governing factors such as the pipe radius and magma viscosity that will enable us to grasp the inward nature of Anatahan volcano.

  9. Contrasting andesitic magmatic systems in adjacent North Island volcanoes, New Zealand: implications for predicting eruptions

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Smith, I. E.; Gamble, J. A.; Moebis, A.; Cronin, S. J.

    2011-12-01

    For active or dormant andesite volcanoes, detailed, stratigraphically controlled, geochemical and petrological information enables an understanding of the magma supply and plumbing system feeding eruptions at the surface. This can establish a basis for predictive eruption models and thus for hazard prediction and management. The potential for petrography to inform volcanic hazard management is demonstrated by comparing two andesitic volcanoes located at the southern end of the Taupo Volcanic Zone in New Zealand's North Island. Ngauruhoe has been constructed over the past 3-5 ka and last erupted in 1975. Nearby Ruapehu has a much longer eruptive history extending back beyond 230 ka B.P. Despite their close spatial proximity, the two volcanoes show geochemical contrasts suggesting that each magmatic system has operated separately. The petrology and geochemistry (major and trace element chemistry, U-series isotopes, Sr and Nd isotopes) of eruptives from each volcano reflect magma evolution in a complex magma storage and plumbing system with magma chemistry strongly influenced by fractional crystallisation and crustal assimilation but in the case of Ngauruhoe there is evidence for cyclicity in the evolution of magma batches and this appears to be driven by periodic replenishment of the magmatic system from the mantle. In contrast, the past 2 ka of eruptive history at Ruapehu reflects random tapping of shallow, volume magma reservoirs.

  10. Carbon-14 ages of the past 20 ka of eruptive activity of Teide volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Guillou, H.; Paterne, M.; Pérez Torrado, F. J.; Paris, R.; Badiola, E. R.

    2003-04-01

    Teide volcano, the highest volcano on earth (3718 m a.s.l., >7 Km high) after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the Island of Tenerife. Its most recent eruptive activity (last 20 Ka) is associated with the very active NW branch of the 120º triple rift system of the island. Most of the eruptions of Tenerife during the past 20 ka have occurred along this volcanic feature, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon-14 ages, obtained via coupled mass spectrometer, and others in process, provide important time constraints on the evolution of Teide's volcanic system, the frequency and distribution of its eruptions, and the associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1240 ± 60 years BP, but to the Pico Viejo volcano (17570 ± 150 years BP), flank parasitic vents (Mña. Abejera upper vent, 5170 ± 110 years BP; Mña. Abejera lower vent, 4790 ± 70 years BP; Mancha Ruana, 2420 ± 70 years BP; Mña. La Angostura, 2010 ± 60 years BP and Roques Blancos, 1790 ± 60 years BP) and the NW rift (Mña. Chío, 3620 ± 70 years BP). Although the volcanic activity during the past 20 ka included the involvement of at least 7 voluminous phonolitic flank vents in the northern, more unstable slopes of the Teide, it took place without any apparent response of the volcano; on the contrary, these eruptions seemed to progressively buttress and

  11. Ground Water in Kilauea Volcano and Adjacent Areas of Mauna Loa Volcano, Island of Hawaii

    USGS Publications Warehouse

    Takasaki, Kiyoshi J.

    1993-01-01

    About 1,000 million gallons of water per day moves toward or into ground-water bodies of Kilauea Volcano from the lavas of Mauna Loa Volcano. This movement continues only to the northern boundaries of the east and southwest rift zones of Kilauea, where a substantial quantity of ground water is deflected downslope to other ground-water bodies or to the ocean. In the western part of Kilauea, the kaoiki fault system, which parallels the southwest rift zone, may be the main barrier to ground-water movement. The diversion of the ground water is manifested in the western part of Kilauea by the presence of large springs at the shore end of the Kaoiki fault system, and in the eastern part by the apparently large flow of unheated basal ground water north of the east rift zone. Thus, recharge to ground water in the rift zones of Kilauea and to the areas to the south of the rift zones may be largely by local rainfall. Recharge from rainfall for all of Kilauea is about 1,250 million gallons per day. Beneath the upper slopes of the Kilauea rift zones, ground-water levels are 2,000 feet or more above mean sea level, or more than 1,000 feet below land surface. Ground-water levels are at these high altitudes because numerous and closely spaced dikes at depth in the upper slopes impound the ground water. In the lower slopes, because the number of dikes decreases toward the surface, the presence of a sufficient number of dikes capable of impounding ground water at altitudes substantially above sea level is unlikely. In surrounding basal ground-water reservoirs, fresh basal ground water floats on seawater and, through a transition zone of mixed freshwater and seawater, discharges into the sea. The hydraulic conductivity of the dike-free lavas ranges from about 3,000 to about 7,000 feet per day. The conductivity in the upper slopes of the rift ranges from about 5 to 30 feet per day and that of the lower slopes of the east rift zone was calculated at about 7,000 feet per day. The

  12. Investigation of the Influence of the Amlia Fracture Zone on the Islands of Four Mountains Region of the Aleutian Arc, AK

    NASA Astrophysics Data System (ADS)

    Nicolaysen, K. P.; Myers, J. D.; Weis, D.

    2013-12-01

    Regional isotopic and trace element investigations of the magmatic source characteristics of the Aleutian arc have attributed regional patterns to variations in the contribution of eclogite through slab melting, to increased proportions of sediment melts, and to variation in the amount of fluid derived by progressive metamorphism of the downgoing slab. Currently the Amlia Fracture Zone (AFZ) is located between the islands of Atka and Seguam and marks a prominent boundary between subduction of large quantities of trench sediments to the east versus sediment impoverished subduction to the west of the AFZ. This boundary is not stationary through time. Instead oblique subduction of the Pacific plate moves the AFZ westward along the arc front, causing sequential subduction beneath the islands of Chuginadak, Yunaska and Seguam circa 5, 2.5 and 1 million years ago, respectively. Lavas from Atka Island, which has not yet received the sediment and fluid spike from the AFZ, act as reference compositions. Comparison of bulk rock trace element ratios and Sr, Nd, Hf, and Pb isotopic compositions for lavas from these islands relative to Atka show that contributions from melted subducted sediment are important in the genesis of Holocene and Pleistocene lavas erupted in the Islands of Four Mountains region of the arc. Sr and Pb isotopic compositions for Yunaska and Chuginadak lavas are as high or higher than Seguam values and trend in the direction of sediment values. La/Nb ratios similarly indicate sediment melting is important for all these lavas. Comparison of values for Holocene relative to Pleistocene values indicate that once sediments are introduced to the magma source, they persist in affecting magma compositions. Comparison of higher Mg# lavas (molar Mg#>50) shows that a group of the oldest sampled lavas on Chuginadak have much lower 208Pb/204Pb, 206Pb/204Pb, and 87Sr/86Sr and higher 143Nd/144Nd, Zr/Y and Zn/Mn relative to all sampled Holocene and Pleistocene lavas from

  13. Volcano-hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: Geochemistry and solute fluxes of magmatic chlorine and sulfur

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri; Kotenko, Tatiana; Hattori, Keiko; Kotenko, Leonid; Solis-Pichardo, Gabriela

    2016-01-01

    Ebeko volcano at the northern part of Paramushir Island in the Kuril island arc produces frequent phreatic eruptions and relatively strong fumarolic activity at the summit area ~ 1000 m above sea level (asl). The fumaroles are characterized by low-temperature, HCl- and S-rich gas and numerous hyper-acid pools (pH < 1) without drains. At ~ 550 m asl, in the Yurieva stream canyon, many hot (up to 87 °C) springs discharge ultra-acidic (pH 1-2) SO4-Cl water into the stream and finally into the Sea of Okhotsk. During quiescent stages of degassing, these fumaroles emit 1000-2000 t/d of water vapor, < 20 t/d of SO2 and < 5 t/d of HCl. The measurement of acidic hot Yurieva springs shows that the flux of Cl and S, 60-80 t/d each, is independent on the volcanic activity in the last two decades. Such high flux of Cl is among the highest ever measured in a volcano-hydrothermal system. Oxygen and hydrogen isotopic composition of water and Cl concentration for Yurieva springs show an excellent positive correlation, indicating a mixing between meteoric water and magmatic vapor. In contrast, volcanic gas condensates of Ebeko fumaroles do not show a simple mixing trend but rather a complicated data suggesting evaporation of the acidic brine. Temperatures calculated from gas compositions and isotope data are similar, ranging from 150 to 250 °C, which is consistent with the presence of a liquid aquifer below the Ebeko fumarolic fields. Saturation indices of non-silicate minerals suggest temperatures ranging from 150 to 200 °C for Yurieva springs. Trace elements (including REE) and Sr isotope composition suggest congruent dissolution of the Ebeko volcanic rocks by acidic waters. Waters of Yurieva springs and waters of the summit thermal fields (including volcanic gas condensates) are different in Cl/SO4 ratios and isotopic compositions, suggesting complicated boiling-condensation-mixing processes.

  14. What drives centuries-long polygenetic scoria cone activity at Barren Island volcano?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu

    2014-12-01

    Barren Island in the Andaman Sea is an active mafic stratovolcano, which had explosive and effusive eruptions, followed by caldera formation, in prehistoric time (poorly dated). A scoria cone within the caldera, marking volcanic resurgence, was active periodically from 1787 to 1832 (the historic eruptions). Since 1991, the same scoria cone has produced six eruptions, commonly including lava flows. Links between Barren Island's eruptions and giant earthquakes (such as the 26 December 2004 Great Sumatra megathrust earthquake) have been suggested, though there is no general correlation between them. The ≥ 227-year-long activity of the scoria cone, named here Shanku ("cone"), is normally driven by purely magmatic processes. I present a "source to surface" model for Barren Island and Shanku, including the source region, deeper and shallow magma chambers, volcanotectonics, dyking from magma chambers, and eruptions and eruptive style as controlled by crustal stresses, composition and volatile content. Calculations show that dykes ~ 0.5 m thick and a few hundred meters long, originating from shallow-level magma chambers (~ 5 km deep), are suitable feeders of the Shanku eruptions. Shanku, a polygenetic scoria cone (at least 13 eruptions since 1787), has three excellent analogues, namely Anak Krakatau (40 eruptions since 1927), Cerro Negro (23 eruptions since 1850), and Yasur (persistent activity for the past hundreds of years). This is an important category of volcanoes, gradational between small "monogenetic" scoria cones and larger "polygenetic" volcanoes.

  15. Man against volcano: The eruption on Heimaey, Vestmann Islands, Iceland

    USGS Publications Warehouse

    Williams, R.S., Jr.; Moore, J.G.

    1976-01-01

    The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 states, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth science phenomena throughout the world. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated but, more importantly, the potential damage had been reduced markedly by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town. The Survey's interest and involvement in the Heimaey eruption in Iceland was occasioned by the possibility that the procedures used to control the course of the flowing lava and to reduce the damage in a modern town may some day be needed in Hawaii and possibly even in the continental United States. This publication is based on the observations of two USGS geologists, Richard S. Williams, Jr. and James G. Moore, as well as on information from the Icelandic Ministry for Foreign Affairs, Icelandic scientists' reports through the Center for Short-Lived Phenomena, and other published scientific reports. A number of Icelandic scientists studied the scientific aspects of the eruption and the engineering aspects of the control of lava flows, in particular, Professors Thorbjb'rn Sigurgeirsson and Sigurdur Thorarinsson of the University of Iceland Science Institute. Also, Icelandic governmental officials provided logistical and other support, in particular, Mr. Steingnmur Hermannsson, Director, Icelandic National Research Council and Professor Magnus Magnusson, Director, University of Iceland Science Institute.

  16. Aeromagnetic constraints on the subsurface structure of Stromboli Volcano, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Okuma, Shigeo; Stotter, Christian; Supper, Robert; Nakatsuka, Tadashi; Furukawa, Ryuta; Motschka, Klaus

    2009-12-01

    Two helicopter-borne magnetic surveys were conducted over Stromboli Volcano and its surrounding areas on the Aeolian Islands, southern Italy in 2002 and 2004 to better understand the subsurface structure of the area. Observed data from those surveys were merged and aeromagnetic anomalies for Stromboli Island and its vicinity were reduced onto a smoothed surface, assuming equivalent anomalies below the observed surface. The magnetic terrain effects were calculated for the magnetic anomalies of the study area, assuming the magnetic structure comprised of an ensemble of prisms extending from the ground surface to a depth of 3000 m below sea level: the average magnetization intensity was calculated to be 2.2 A/m for the edifice of Stromboli shallower than 1200 m below sea level by comparing the observed and synthetic data. Next, apparent magnetization intensity mapping was applied to the observed anomalies using a uniform magnetization of 2.2 A/m as the initial value. The apparent magnetization intensity map indicates magnetic heterogeneities among volcanic rocks which constitute the edifice of the volcano. The most remarkable feature of the magnetization intensity map is a magnetization low which occupies the center of the island where the summit craters reside, suggesting demagnetization caused by the heat of conduits and/or hydrothermal activity in addition to the thick accumulation of less magnetic pyroclastic rocks. By comparing topographic and geologic maps, it can be seen that magnetization highs are distributed on the exposures of basaltic-andesite to andesite lavas (Paleostromboli I), shoshonitic lavas with an eccentric vent and a shield volcano (Neostromboli), on the south, north and west coasts of the volcano, respectively. These magnetization highs further extend offshore, implying the seaward continuation of these volcanic rocks. 3-D magnetic imaging was preliminarily applied to the same magnetic anomalies as well as for the magnetization intensity mapping

  17. A large self-potential anomaly on Unzen volcano, Shimabra peninsula, Kyushu island, Japan

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Tanaka, Y.

    1995-02-01

    Self-potential (SP) observation was carried out in the summit area of Unzen, one of the active volcanoes in Kyushu island, Japan. We found a positive SP anomaly in the vicinity of the newly extruded lava dome. The potential difference across the anomaly exceeds 1000 mV per 500 m. Streaming potentials associated with subsurface hydrothermal convection seem to be the most reasonable mechanism for the positive anomaly. In association with the first emergence of the lava dome a sharp increase of SP was detected, which is considered to be a result of the growth of the hydro-thermal system.

  18. Eruption of soufriere volcano on st. Vincent island, 1971-1972.

    PubMed

    Aspinall, W P; Sigurdsson, H; Shepherd, J B

    1973-07-13

    The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903. PMID:17746610

  19. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  20. Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands, May 2000

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; de Ronde, Cornel E. J.; Lupton, John E.; McInnes, Brent I. A.

    2002-11-01

    A serendipitous encounter with an erupting, shallow submarine volcano in the Solomon Islands provided a rare opportunity to map and sample the dispersal of volcanogenic emissions into the surrounding water column. Kavachi, episodically active since at least 1939, is a forearc volcano located on the Pacific plate only ˜30 km northeast of its convergent boundary with the downgoing Indo-Australian plate. During 14 May 2000 we observed explosive phreatomagmatic eruptions at several minute intervals, creating a complex distribution of plumes of volcanic glass shards throughout the water column at a distance of ˜1.5 km from the summit. At distances of 4 5 km, shallow-water (<250 m) plumes had dissipated, but deeper plumes were ubiquitous down to seafloor depths of 1500 m. Only 2 of 22 water samples (at 14 and 237 m depth) showed evidence of hydrothermal and magmatic enrichment. These samples were elevated in δ3He, Fe, and Mn (one sample only), but not in CO2. We infer that the volcano flanks were essentially impermeable to fluid emissions and that the observed particle halo was created by magma shattering and resuspension. Most magmatic and hydrothermal fluids were thus discharged directly from the summit into the atmosphere.

  1. Upper Mantle Magma Storage and Transport Beneath the Miocene Teno Volcano, Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Longpré, M.; Troll, V. R.; Hansteen, T. H.

    2008-12-01

    The nature and dynamics of magma plumbing systems are key variables to the understanding of overlying volcanic edifices. With the exception of a few intensely studied localities, these variables are typically unconstrained at volcanoes worldwide. Where attempted, studies of magma storage and transport systems reveal complex plumbing geometries, for a range of geological settings, indicating that assumptions of shallow, spherical-elliptical magma chambers are often oversimplified. At highly active volcanoes, geophysical monitoring is an effective tool to investigate plumbing system geometries. In the Canary Islands, however, the low eruption frequency results in poor deformation and volcano-seismic data sets, and volcanologists thus have to rely on alternative methods to study the magma plumbing system of Canarian volcanoes. We use clinopyroxene-liquid thermobarometry [Putirka et al. 1996, Contrib. Mineral. Petrol.], aided by petrography and major element chemistry, to reconstruct the magma plumbing system of the late Miocene, largely mafic Teno shield-volcano, Tenerife. In thin section, abundant clinopyroxene phenocrysts display darker coloured outer rims, which commonly host acicular apatite microcrystals and sometimes form dentritic protrusions. This is coupled with steep normal Fe-Mg zoning and drastic TiO2 enrichment at the clinopyroxene rims, and similar normal zonations are also observed in coexisting olivine. We suggest that the rims formed due to decompression induced crystallisation upon rapid magma ascent and accompanying degassing and undercooling. This process took place under disequilibrium conditions, implying that clinopyroxene rim compositions may not always be suitable for thermobarometric calculations. On the other hand, clinopyroxene compositions excluding the outer rims generally appear to be in chemical equilibrium with the host melt (fused groundmass and whole-rock compositions for ankaramitic and basaltic samples, respectively

  2. Shield volcanoes of Marie Byrd Land, West Antarctic rift: oceanic island similarities, continental signature, and tectonic controls

    NASA Astrophysics Data System (ADS)

    LeMasurier, Wesley

    2013-06-01

    The Marie Byrd Land volcanic province is largely defined by 18 large (up to ~1,800 km3) alkaline shield volcanoes, each surmounted by a summit section of varied felsic rocks dominated by trachytic flows. They are distributed over a 500 × 800-km block-faulted dome within the West Antarctic rift. The basement contact of volcanic sections is ~500 masl at one site and 3,000 mbsl at another, 70 km away, which illustrates the scale of block faulting but complicates an understanding of volcanic structure. Furthermore, the continental ice sheet buries 16 volcanoes to progressively greater heights inland. However, five are sufficiently exposed to allow meaningful comparisons with alkaline oceanic island volcanoes; these comparisons are used as a guide to estimate the structure of Marie Byrd Land volcanoes. The type example for this study is Mt. Murphy, the most completely exposed volcano. It consists of a 1,400-m section of alkaline basalt overlain by trachyte and benmoreite flows that make up ~7-13 % of the volcano volume. In gross structure and composition, Mt. Murphy is similar to Gran Canaria volcano, Canary Islands, but the percent of felsic rock may be three times that of Gran Canaria, if the estimate is approximately correct. Departures from the oceanic island example are believed to represent the imprint of the Marie Byrd Land lithosphere and tectonic environment on volcano evolution. These include a lack of order in the sequence of felsic rock types, lack of progression toward more silica undersaturated compositions with time, absence of a highly undersaturated mafic resurgent stage, and perhaps, a relatively large volume of felsic rock.

  3. Estimated pressure source on Kozu Island volcano, South Central Japan, from GPS measurements (July 1996-August 1999)

    NASA Astrophysics Data System (ADS)

    Kimata, Fumiaki; Kariya, Shin-ichi; Fujita, Masayuki; Matsumoto, Kunio; Tabei, Takao; Segawa, Jiro; Yamada, Akiko

    2000-11-01

    Although the Kozu Island Volcano, one of the Izu Islands Volcanoes in the south part Central Japan, is an active volcano, there is no record of the eruption for about 1100 years since the last eruption in 833 A.D. Since 1988, frequent earthquake swarms are observed around the Kozu Island, and the uplift of 2-4 cm/yr is observed on the island by tidal observations. Station velocities detected by GPS measurements since 1989 show velocities that differ from the convergent velocity of the Philippine Sea plate calculated from plate motion models. A local GPS network with 12 stations is occupied around the volcano, and the GPS measurements are repeated every about six month since July 1996. Inflated deformation of 2-4 cm/yr are detected from the GPS measurements and the pressure source is estimated to be located in the northeastern part of the island at a depth of 2.1 km using Mogi solution. Negative gravity changes of more than 30 microgal are also measured above the pressure source in the period November 1998 to July 1999, consistent with uplift.

  4. Upper Mantle Magma Storage and Transport Beneath the Miocene Teno Volcano, Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Longpré, M.; Troll, V. R.; Hansteen, T. H.

    2007-12-01

    The nature and dynamics of magma plumbing systems are key variables to the understanding of overlying volcanic edifices. With the exception of a few intensely studied localities, these variables are typically unconstrained at volcanoes around the world. Where attempted, studies of magma storage and transport reveal complex plumbing geometries, for a range of geological settings, indicating that assumptions of shallow, spherical-elliptical magma chambers are often oversimplified. At the highly active, basaltic shield-volcanoes, geophysical monitoring is an effective tool to investigate plumbing system geometries. In the Canary Islands, however, the low eruption frequency results in poor deformation and volcano-seismic data sets and, hence, volcanologists have to rely on alternative methods to study the magma plumbing system of Canarian volcanoes. We use clinopyroxene-liquid thermobarometry [Putirka et al. 1996, Contrib. Mineral. Petrol.], aided by petrography and mineral major element chemistry, to reconstruct the magma plumbing system of the late Miocene Teno shield-volcano, Tenerife. Thin section observations show that the numerous clinopyroxene phenocrysts display darker coloured outer rims, which commonly host acicular apatite microcrystals and sometimes form dentritic protrusions. This is coupled with steep normal Fe-Mg zoning and drastic TiO2 enrichment. Supported by similar Fe-Mg zonations in olivine, this suggests that these rims formed due to decompression induced crystallisation upon rapid magma ascent and accompanying degassing and undercooling. This process took place under disequilibrium conditions, implying that clinopyroxene rim compositions may not always be suitable for thermobarometric investigations. On the other hand, clinopyroxene compositions excluding the outer rims generally appear to be in chemical equilibrium with the melt. Thermobarometry indicates that clinopyroxene crystallisation occurred in the uppermost mantle, mostly from 20 to 40 km

  5. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; M. Kennedy, Ben; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other

  6. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging ... the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of ...

  7. Geothermal resource assessment in the Aleutian Islands and Alaska peninsula: Quarterly progress report, January 1--March 30, 1989

    SciTech Connect

    Turner, D.L.; Nye, C.J.

    1989-03-30

    In this report the authors have now completed dating work on 20 rock samples. Analytical results for the dated samples are given in the enclosed table. The results are generally in good agreement with observed stratigraphic relationships and provide a well-constrained time framework for the eruptive history of this volcanic area. The argon extraction and potassium analyses are completed and the argon sample is awaiting mass spectrometry. In addition to documenting the eruptive history of Umnak volcanoes, the K-Ar ages will provide a time framework for the chemical evolution of the magmatic system, when combined with the rock chemistry analyses presently in progress at U.C., Santa Cruz. 1 tab.

  8. ECHEYDE. Teide volcano and protohistoric Guanche settlements of Tenerife, Canary islands

    NASA Astrophysics Data System (ADS)

    Ilaria Pannaccione Apa, Maria; Barrera Rodriguez, Sergio; Fabrizia Buongiorno, Maria

    2010-05-01

    The volcanic origin and activity of the Canary island territory represent one of inhabitants growing factors of the along the recent geology, besides, the rich land fertility due to lava flows, was one of the reasons of their colonization by guanche culture. In general their social structure, based on chiefdom, as the Menceyatos, poor on technologies and strictly related to natural resources, could be considered as a real winning survival strategy face to an active volcanic island. The locational analysis carried out in this brief study shows that the western menceyatos were almost populated despite the possible high risks resulting from eruptions, landslides and lava flows. On the contrary, it seems clear that there was a total adaptation to the landscape, given by the high proportion of occupations in cave. Resilient mechanisms were probably transmitted during local assemblies, as a common strategy to face the events, despite the Spanish chronicles didn't inform of any particular guanche cultural tradition associated with Teide volcano and related hazards. The volcanic eruptions with low explosive features during last 10.000 years did not caused major cultural changes, whereas large ash falls produced a real damages with the consequence of human displacements along the limited island territories. [Canary Islands, Guanche, Volcanic Activity, Resilience

  9. Insights into Magma Evolution in the Islands of the Four Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Fulton, A. A.; Izbekov, P. E.; Nicolaysen, K. P.

    2015-12-01

    The Islands of the Four Mountains (IFM) is a group of small volcanoes in the central region of Alaska's Aleutian island arc. There are few studies of this remote group of islands despite their rich archeological history and diverse eruptive histories. This study focuses on silicic deposits from the IFM to shed light on the area's history of large explosive eruptions and the IFM's chemical relationship to the rest of the central Aleutian Islands. This study applies whole rock geochemistry, detailed petrographic analysis, and electron microprobe analysis to samples of volcanic deposits from Tana, Cleveland, Carlisle, and Herbert volcanoes, including the first documented ignimbrite deposit in the IFM, found on northern Tana. The IFM lavas range from basaltic to dacitic and follow typical island arc and calc-alkaline chemical trends, providing evidence of high aqueous fluid input to the mantle wedge, as well as varying levels of influence from subducted sediments. Tana, the largest (~12 km2) and most siliceous of the IFM volcanoes, expresses anomalies in K and Rb concentrations that may aid in the refinement of the continental-oceanic crust boundary location along the Aleutian arc. Plagioclase phenocryst disequilibrium textures and compositions provide evidence of mixing and recharge in the IFM magma chambers. Multiple plagioclase phenocryst populations, euhedral pyroxene crystals in disequilibrium with the melt, and angular xenolithic clasts in the Tana ignimbrite suggest a rapid mixing and heating event that triggered its large explosive eruption during the Pleistocene.

  10. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    Sakurajima volcano is the Quaternary post-caldera volcano of Aira caldera, which was caused by the eruption of huge amount of silicic pyroclastics, situated on Ryukyu arc, southern Kyushu Island, Japan. This volcano is quite active, so it can be considered that the preparation of next caldera-forming eruption with huge amount of silicic magma is proceeding. It is, therefore, expected that the investigation of magma genesis of Sakurajima volcano give us information for the mechanism generating huge amount of silicic magma, which cause the caldera formation. We analyzed major and trace elements with Sr, Nd and Pb isotopic compositions of volcanic rocks from Sakurajima volcano. We sampled (ol) - opx - cpx - pl andesite and dacite from almost all the volcanic units defined by Fukuyama and Ono (1981). In addition to Sakurajima samples, we also studied basaltic rocks erupted at pre-caldera stage of the Aira caldera to estimate the primary magma of Sakurajima volcano. Major and trace element variations generally show linear trends on the Harker diagrams, with the exception of P2O5 and TiO2. Based on the trend of P2O5 vs.SiO2, we divided studied samples low-P (P2O5 < 0.15 wt. %) and high-P (P2O5 > 0.15 wt. %) groups and these groups also display two distinct trends on TiO2-SiO2 diagram. The composition of trace elements shows typical island arc character as depletion of Nb and enrichments of Rb, K and Pb, suggesting addition of aqueous fluids to the mantle wedge. The Zr and Nb concentrations make a liner trend (Zr/Nb = 27) and this trend across from tend of MORB (Zr/Nb = 35) to that of crustal materials (Zr/Nb=17). The Sr, Nd and Pb isotopic compositions broadly plot to on the mixing curve connecting MORB-type mantle and sediments of the Philippine Sea Plate, indicating that the primary magma was generated by partial melting of MORB-type mantle wedge, which was hydrated with fluids derived from the subducted Philippine Sea sediments. But we found that our data plot apart

  11. Seismic vulnerability of dwellings at Sete Cidades Volcano (S. Miguel Island, Azores)

    NASA Astrophysics Data System (ADS)

    Gomes, A.; Gaspar, J. L.; Queiroz, G.

    2006-01-01

    Since the settlement of S. Miguel Island (Azores), in the XV century, several earthquakes caused important human losses and severe damages on the island. Sete Cidades Volcano area, located in the westernmost part of the island, was attained by strong seismic crises of tectonic and volcanic origin and major events reached a maximum historical intensity of IX (European Macroseismic Scale 1998) in this zone. Aiming to evaluate the impact of a future major earthquakes, a field survey was carried out in ten parishes of Ponta Delgada County, located on the flanks of Sete Cidades volcano and inside it is caldera. A total of 7019 buildings were identified, being 4351 recognized as dwellings. The total number of inhabitants in the studied area is 11429. In this work, dwellings were classified according to their vulnerability to earthquakes (Classes A to F), using the structure types table of the EMS-98, adapted to the types of constructions made in the Azores. It was concluded that 76% (3306) of the houses belong to Class A, and 17% (740) to Class B, which are the classes of higher vulnerability. If the area is affected by a seismic event with intensity IX it is estimated, that 57% (2480) to 77% (3350) of the dwellings will partially or totally collapse and 15% (652) to 25% (1088) will need to be rehabilitated. In this scenario, considering the average of inhabitants per house for each parish, 82% (9372) to 92% (10515) of the population will be affected. The number of deaths, injured and dislodged people will pose severe problems to the civil protection authorities and will cause social and economic disruption in the entire archipelago.

  12. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in

  13. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  14. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people.

    This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features.

    The ASTER instrument is a cooperative project between NASA, JPL, and the Japanese Ministry of International Trade and Industry.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the

  15. Experimental constraints on steam-driven eruptions at White Island volcano (New Zealand)

    NASA Astrophysics Data System (ADS)

    Scheu, Bettina; Mayer, Klaus; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    The recent activity at White Island volcano is primarily characterized by strong hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions, down to micro-eruptions through a mud-rich crater lake. We analyzed the response of various sample types to rapid decompression caused by steam-flashing and/or gas expansion, mimicking steam-driven (phreatic) eruptions. The samples investigated comprise unconsolidated ash/lapilli as well as consolidated ash tuffs with different degree of alteration. All sample sets underwent, where possible, microstructural, geochemical and petrophysical characterization (as porosity, permeability and uniaxial compressive strength (UCS)). This allowed us to assess the role of following factors for phreatic eruptions: (1) PT-conditions leading to either steam-flashing or steam expansion (2) the behavior of loose versus consolidated material, as the influence of fragmentation, ejection velocity, grain size reduction (3) the porosity and its changes, (4) the alteration of the samples, leading to changes in UCS, porosity, and permeability. Besides their role during the short moment of a phreatic eruption itself, the strength and the permeability of rocks of the entire White Island volcanic complex and in detail above the hydrothermal system in the crater area are key factors for the recent activity at White Island. They crucially influence the distribution of fluids and gases; strong and low-permeable layers can act as pressure seals, defining the area and overpressure of a steam-driven eruption.

  16. Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.; Pernin, Noémie; Jacquemard, Laura; Baud, Patrick; Farquharson, Jamie I.; Scheu, Bettina; Lavallée, Yan; Gilg, H. Albert; Letham-Brake, Mark; Mayer, Klaus; Jolly, Arthur D.; Reuschlé, Thierry; Dingwell, Donald B.

    2015-03-01

    Volcanic hydrothermal systems host a prodigious variety of physico-chemical conditions. The physico-chemical state and mechanical behaviour of rocks within is correspondingly complex and often characterised by vast heterogeneity. Here, we present uniaxial and triaxial compression experiments designed to investigate the breadth of mechanical behaviour and failure modes (dilatant or compactant) for hydrothermally-altered lava and ash tuff deposits from Whakaari (White Island volcano) in New Zealand, a volcano with a well-documented and very active hydrothermal system. Our deformation experiments show that the failure mode of low porosity lava remains dilatant over a range of depths (up to pressures corresponding to depths of about 2 km). Upon failure, shear fractures, the result of the coalescence of dilatational microcracks, are universally present. The high porosity ash tuffs switch however from a dilatant to a compactant failure mode (driven by progressive distributed pore collapse) at relatively low pressure (corresponding to a depth of about 250 m). We capture the salient features of the dynamic conditions (e.g., differential stress, effective pressure) in a schematic cross section for the Whakaari hydrothermal system and map, for the different lithologies, areas susceptible to either dilatant vs. compactive modes of failure. The failure mode will impact, for example, the evolution of rock physical properties (e.g., porosity, permeability, and elastic wave velocity) and the nature of the seismicity accompanying periods of unrest. We outline accordingly the potential implications for the interpretation of seismic signals, outgassing, ground deformation, and the volcanic structural stability for Whakaari and similar hydrothermally-active volcanoes worldwide.

  17. Ten years of satellite observations reveal highly variable sulphur dioxide emissions at Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    McCormick, Brendan; Popp, Christoph; Andrews, Benjamin; Cottrell, Elizabeth

    2015-07-01

    Satellite remote sensing enables continuous multiyear observations of volcanic activity in remote settings. Anatahan (Mariana Islands) is a remote volcano in the western North Pacific. Available ground-based measurements of sulphur dioxide (SO2) gas emissions at Anatahan place it among thelargest volcanic SO2 sources worldwide. These ground-based measurements, however, are restricted to eruptive intervals. Anatahan's activity since 2003 has been dominated temporally by prolonged periods of quiescence. Using 10 years of satellite observations from OMI, AIRS, SCIAMACHY, and GOME-2, we report highly variable SO2 emissions within and between eruptive and quiescent intervals at Anatahan. We find close correspondence between levels of activity reported at the volcano and levels of SO2 emissions detected from space. Eruptive SO2 emission rates have a mean value of ˜6400 t d-1, but frequently are in excess of 20,000 t d-1. Conversely, SO2 emissions during quiescent intervals are below the detection limit of space-based sensors and therefore are not likely to exceed ˜300 t d-1. We show that while Anatahan occupies a quiescent state for 85% of the past 10 years, only ˜15% of total SO2 emissions over this interval occur during quiescence, with the remaining ˜85% released in short duration but intense syn-eruptive degassing. We propose that the integration of multiyear satellite data sets and activity histories are a powerful complement to targeted ground-based campaign measurements in better describing the long-term degassing behavior of remote volcanoes.

  18. Identifying rift zones on volcanoes: an example from La Réunion island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bonali, Fabio Luca; Corazzato, Claudia; Tibaldi, Alessandro

    2011-04-01

    We describe a methodology for identifying complex rift zones on recent or active volcanoes, where structures hidden by recent deposits and logistical conditions might prevent carrying out detailed fieldwork. La Réunion island was chosen as a test-site. We used georeferenced topographic maps, aerial photos and digital terrain models to perform a statistical analysis of several morphometric parameters of pyroclastic cones. This provides a great deal of geometric information that can help in distinguishing the localisation and orientation of buried magma-feeding fractures, which constitute the surface expression of rift zones. It also allowed the construction of a complete GIS database of the pyroclastic cones. La Réunion is a perfect example where past and active volcanic rift zones are mostly expressed by clusters of monogenic centres. The data has been validated in the field and compared and integrated with the distribution and geometry of dyke swarms. Results show the presence of several main and secondary rift segments of different ages, locations and orientations, whose origin is discussed considering regional tectonics, local geomorphology, and volcano deformation.

  19. Coccidia of Aleutian Canada geese

    USGS Publications Warehouse

    Greiner, E.C.; Forrester, Donald J.; Carpenter, J.W.; Yparraguirre, D.R.

    1981-01-01

    Fecal samples from 122 captive and 130 free-ranging Aleutian Canada geese (Branta canadensis leucopareia) were examined for oocysts of coccidia. Freeranging geese sampled on the spring staging ground near Crescent City, California were infected with Eimeria hermani, E. truncata, E. magnalabia, E. fulva, E. clarkei and Tyzzeria parvula. Except for E. clarkei, the same species of coccidia were found in geese on their breeding grounds in Alaska. Most of the coccidial infections in captive geese from Amchitka Island, Alaska and Patuxent Wildlife Research Center, Maryland, consisted of Tyzzeria.

  20. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  1. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  2. Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress

    NASA Astrophysics Data System (ADS)

    Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.

    2013-12-01

    By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and

  3. Cascades/Aleutian Play Fairway Analysis: Data and Map Files

    SciTech Connect

    Lisa Shevenell

    2015-11-15

    Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.

  4. Two Decades of Degassing at Kilauea Volcano, Hawai`i: Perspectives on Island Impacts

    NASA Astrophysics Data System (ADS)

    Elias, T.; Sutton, A. J.

    2003-12-01

    The ongoing eruption of Kilauea provides an opportunity to examine how volcanic emissions impact the natural and human environment of the island of Hawai`i. Kilauea has released ˜ 13 megatons of SO2 gas into the troposphere since the current eruption began in 1983, more than any single anthropogenic source in the U.S. During prevailing trade wind conditions, measurements of SO2 gas, aerosol mass, and aerosol acidity downwind of Kilauea document the conversion of SO2 to acid aerosol as the plume propagates to the leeward side of the island. Lidar measurements suggest a gas-to-particle conversion rate (t1/2) of 6 hours. When trade winds are disrupted, ambient SO2 and particle measurements in Hawai`i Volcanoes National Park have shown episodes of particle concentrations of ˜ 100 μ g/m3 and SO2 concentrations in excess of 4000 ppb. Federal health standards and WHO guidelines for SO2 have been exceeded repeatedly at this near-source location. Documented effects from volcanic emissions on the island of Hawai`i include the rapid corrosion of metal objects, degradation of domestic water quality, agricultural crop damage, and adverse impacts on human respiratory and pulmonary function. Other impacts may include decreases in local rainfall and increased mortality of asthmatics. For the period 1986 to 1993, after the eruption became continuous, deaths from asthma on the island of Hawai`i increased by a factor of ten. Three current health studies seek to investigate the relationship between exposure to volcanic pollution and health effects. In addition to measuring gas and particle exposures, these studies examine lung development in children around the island, disease prevalence in adults residing in communities downwind of volcanic degassing sources, and acute effects in asthmatic children and healthy children and adults. In the absence of conclusive evidence linking exposure and health effects, the USGS, in collaboration with the National Park Service, has developed a

  5. Material culture across the Aleutian archipelago.

    PubMed

    Hatfield, Virginia L

    2010-12-01

    The material evidence from sites across the Aleutian Islands reflects colonization events, subsequent adaptations, and influxes of ideas and/or people from the east. The occurrence in the eastern Aleutians of bifacial technology around 7000 BP, of artifacts similar to the Arctic Small Tool tradition between 4000 and 3500 BP, and of slate and jet objects around 1000 BP reflects repeated surges of influence or movement of peoples from further east into the eastern end of the chain. In the central and western Aleutians, influence or perhaps colonization from east of the Aleutians is also marked by the occurrence of bifacial technology about 6500 BP and the appearance of slate artifacts after 1000 BP, suggesting the movement of ideas or people from further east. Basic trends across the archipelago include a decrease in formal chipped-stone tools, an increase in the use and the complexity of bone technology, and the increase in use and variety of ground-stone tools. In addition, increasing village site sizes and denser midden deposits are seen later in time throughout the archipelago. The similarity in sites and assemblages, albeit with regional variations, reflects trends that are seen across the chain and indicates that these island communities were not isolated from one another or from mainland Alaska. PMID:21417883

  6. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  7. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan

    PubMed Central

    Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H.

    2002-01-01

    Significant anomalous changes in the ultra low frequency range (≈0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals. PMID:12032286

  8. Petroleum potential of volcanogenic and volcano-sedimentary rocks in ancient and recent island arcs: Caucasus, Komandorskie, and Kuril islands, eastern Kamchatka

    SciTech Connect

    Levin, L.E. )

    1993-09-01

    In the Late Cretaceous-Eocene, subduction of the Tethys oceanic plate under the island arc of the lesser Caucasus contributed to the appearance of the special conditions favorable for petroleum occurrence: (1) tectono-magmatic destruction of the crust of the Transcaucasus median massif and formation of hydrocarbon traps of different types and origins, and (2) high heat flow lasting until the recent epoch. These led flow-intensive generation of hydrocarbons in the shallow-water sediments of the paleoshelf of the Transcaucasus massif and accumulation of hydrocarbons not only in the sedimentary but also in the volcanogenic and volcano-sedimentary reservoirs (Samgori-Patardzeuli, Muradhanly fields, etc.). At the end of the Oligocene, the geodynamic setting in the northwestern margins of the Pacific Ocean was mainly similar to that within the Transcaucasus median massif. At the end of Oligocene-Miocene, such conditions determined the tectono-magmatic destruction of the continental crust and formation of the series of interarc rifts. The main fields of Japan, with accumulations in the volcanogenic and volcano-sedimentary rocks, are concentrated here. Its analog is the rift located in the southern part of a single east Kuril basin, where petroleum occurrence is only inferred. In the separate troughs, the thickness of the volcano-sedimentary cover is 4-6 km. The stratigraphic section of the cover contains the volcanic and volcano-sedimentary sediments of the Neogene-Pleistocene. The studies of the sections of the Komandorskie islands, eastern Kamchatka, Kuril Islands, and western Sakhalin indicate that distribution of reservoirs depends on the stage of evolution of the rifts and adjacent island arcs.

  9. Evidence for a Great Aleutian Paleotsunami on Kaua`i

    NASA Astrophysics Data System (ADS)

    Butler, R.; Bai, Y.; Burney, D. A.; Cheung, K.; Yamazaki, Y.

    2013-12-01

    The Hawaiian Islands location amid the Pacific Ocean is threatened by tsunamis from great earthquakes in nearly all directions. Historical great earthquakes Mw>8.5 in the last 100 years have produced large inundations and loss of life in the Islands, but have not accounted for a substantial (>100 m^3) paleotsunami deposit in the Makauwahi sinkhole at Maha`ulepu on the Island of Kaua`i. High-resolution, digital elevation models of bathymetry and topography have been used in conjunction with a non-linear, hydrostatic tsunami model to simulate inundations from giant earthquakes in the Aleutian Islands and elsewhere to estimate the extent of tsunami threats to the State of Hawaii. We model the inundation of the sinkhole by an earthquake with a minimum moment-magnitude of Mw 9.2 located within the eastern Aleutians, where the tsunami energy is focused toward Hawaii. An alternative hypothesis wherein the deposit entered through a small cave entrance is not consistent with fine speleothems, intact in the cave, that pre-date the deposit. The results indicate that a giant earthquake in the eastern Aleutian Islands circa 1425-1665 AD, located between the source regions of the 1946 and 1957 great tsunamigenic earthquakes, generated a tsunami in Hawaii much larger than the historical record. A tsunami deposit in the Aleutians dated circa ~1550 AD is consistent with this eastern Aleutian source region.

  10. Monitoring Cumbre Vieja volcano (La Palma, Canary Islands) from 2001 to 2015 by means of diffuse CO2 degassing

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Berry, Hannah; Robinson, Helen; Rodríguez, Fátima; Dionis, Samara; Pérez, Nemesio M.

    2016-04-01

    La Palma Island, the fifth longest (706 km2) and second highest (2,423 m asl) of the Canary Islands, is located at the northwestern end of the archipelago. Subaerial volcanic activity on La Palma started ˜2.0 My ago and has taken place exclusively at the southern part of the island in the last 123 ka, where Cumbre Vieja volcano, the most active basaltic volcano in the Canaries, has been constructed. Cumbre Vieja volcano, which has been likened to a Hawaiian-style rift zone, includes a main north-south rift zone 20 km long and up to 1,950 m in elevation, and covers 220 km2 with vents located also at the northwest and northeast. Nowadays, there are no visible gas emissions from fumaroles or hot springs at Cumbre Vieja, but large amounts of CO2 are released as diffuse soil emanations from the flanks of the volcano. Recent studies have shown that enhanced endogenous contributions of deep-seated CO2 might have been responsible for higher diffuse CO2 emission values (Padrón et al., 2015). We report here the latest results of the diffuse CO2 efflux survey at Cumbre Vieja volcano. The CO2 efflux measurements were taken using the accumulation chamber method in the summer period of 2015 to constrain the total CO2 output from the studied area and to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for Cumbre Vieja. Soil CO2 efflux values ranged from non-detectable up to 360 g m‑2 d‑1. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. The spatial distribution of diffuse CO2 emission values did not seem to be controlled by the main structural features of the volcano since the highest values were measured in the southern part. The total CO2 output released to the atmosphere in a diffuse way has been estimated at 359 t d‑1, which represents one of the lowest emission rates reported since 1997 (Padrón et al., 2015). Our results confirm the volcanic quiescence state of Cumbre Vieja, but reassert

  11. On the time-scales of magmatism at island-arc volcanoes.

    PubMed

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less. PMID

  12. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, P. A.; Tanaka, H.; Miyamoto, S.; Perez, N.; Barrancos, J.; Padron, E.; Hernandez, I.

    2012-12-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great

  13. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernández, Iñigo; Hernández, Pedro; Pérez, Nemesio; Tanaka, Hiroyuki; Miyamoto, Seygo; Barrancos, José; Padrón, Eleazar

    2013-04-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great

  14. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  15. The forensics of sub-surface processes on island volcanoes from integrated geodetic observations: results from Tenerife and Montserrat (Invited)

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.

    2009-12-01

    Spatio-temporal variations in geodetic signals at active volcanoes provide important insight on governing subsurface processes. This contribution explores the phenomenology of volcanic unrest and eruptive activity from the perspective of both ground deformation and gravimetric investigations at an ocean island volcanic complex (Tenerife, Canary Islands) and an active andesitic arc volcano (Soufrière Hills volcano [SHV], Montserrat). Despite their marked differences in volcanic evolution and tectonic settings both volcanic systems show remarkable similarities in their subsurface processes. On Tenerife, during unrest in 2004-5, mass movement at depth was quantified by time-lapse gravimetric observations despite the absence of significant ground deformation. Shallow migration of hydrous fluids is identified as the main cause for the unrest marking the reactivation of the central volcanic complex after a century of quiescence. The combination of static and dynamic gravimetric data reveals a causality between the major structural building blocks of the island and the pattern of mass variations. Low density bodies underlie areas of maximum mass variations at the complex. Gravimetric data also indicate that the shallow plumbing system of the 3700 m tall Pico Teide/Pico Viejo composite volcano remained unaffected by the unrest. On Montserrat, time-lapse gravimetric data invoke the existence of a previously unrecognized fault zone beneath the centre of the island that is influenced by changes in stress distribution associated with volcanic activity at SHV. The fault zone either provides a trace for ground water flow or responds to a changed stress field via volcano-tectonic coupling with an elastic opening/closing of fractures. Continuous gravimetric (CG) data enabled the calibration of a new precision tidal model for the island resulting in a reduction of the signal-to-noise ratio by about one order of magnitude. Detided CG records reveal particular gravity perturbations

  16. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Haldar, Dhanapati

    2006-01-01

    Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ˜2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ˜400 km 3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ˜1.3 km 3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994-1995. A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994-1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb-Ta and enrichments of K-Rb-Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile. BI basalts and basaltic andesites have variable abundances of phenocrystic-microphenocrystic olivine plus Cr-Al-Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of

  17. Infrasonic monitoring of the eruption at a remote island volcano, Nishino-shima

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Kikuchi, Junji; Nishida, Kiwamu; Sugioka, Hiroko; Hamano, Yozo

    2016-04-01

    Nishino-shima volcano in some 1000 km south of Tokyo is active since November, 2013. The new island has grown to almost swallow the original Nishino-shima island. We installed infrasonic stations to Chichi-jima, which is the closest inhabited island in 130 km to the east of Nishino-shima, and have been detecting clear infrasonic signals from the direction of Nishino-shima since May 2014. We also conducted infrasonic and visual observation in the research cruise close to Nishino-shima on 26th and 27th of February, 2015. The data was compared with the infrasonic data recorded at Chichi-jima to confirm that infrasound associated with the Strombolian activity of Nishino-shima was recorded at the distance of 130 km. The detection of infrasound at such a distance obviously depends on the atmospheric structure. Here we present a simple method to evaluate the atmospheric effect, which is crucial for interpreting the infrasonic observation to the change of volcanic activity. The method is similar to the Monte Carlo phonon method proposed by Shearer and Earle (2004) to investigate seismic scattering wave fields. A million phonon particles were transmitted from the ground to the atmosphere in random angles in 45 degrees from the horizontal direction. Ray-tracing calculation (Tahira, 1982) was performed for each particles assuming one dimensional atmospheric structure with the effect of wind advection in the plane. We counted the number of the particles that reached Chichi-jima in the area of the infrasound stations spanning about 1 km, and regarded that the number represented the infrasound energy that reached the stations. Perfect reflection was assumed on the sea surface, but the particles that were trapped in the bottom layer thinner than the scale of the infrasonic wave length were eliminated. The calculation was performed for atmospheric structures from May 2014 to December 2015, using the data from radiosonde measurements twice a day by the Japan Meteorology Agency. The

  18. Hydrogeochemical, Stable Isotopes and Hydrology of Fogo Volcano Perched Aquifers: São Miguel Island, Azores (Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, P. C.; Boutt, D. F.; Martini, A. M.; Ferstad, J.; Rodrigues, F. C.

    2012-12-01

    Fogo Volcano is located at central part of São Miguel Island and corresponds to a polygenetic volcano with a caldera made by an intercalated accumulation of volcaniclastic deposits and lava flows. São Miguel Island is one of the nine volcanic islands that form the Azores Archipelago. The volcano is 950 meters high, with a caldera diameter of 3.2 Km, which holds a lake inside. The last eruption occurred in 1563-1564, as one of a group of seven traquitic eruptions occurring within the last 5000 years. The volcanic activity is related to hydrothermal activity in a geothermal field located in the volcanoes North flank. The hydrology of Fogo Volcano is characterized by a series of perched-water bodies drained by a large number of springs grouped at different altitudes on the volcano flanks. It is possible to identify three types of water (1) Fresh water, cold temperature (12 - 17 C) with low dissolved solids contents (average conductivity of 179 μS/cm), pH range between 6.60 and 7.82, dominated by the major ions Na, K, HCO3, and Cl, and correspond mainly to sodium bicarbonate type water. (2) Mineral water, cold temperature (12.5 - 19.4 C) with low dissolved solids contents (average conductivity of 261 μS/cm), acid pH range between 4.62 and 6.79, and correspond mainly to sodium bicarbonate type water. (3) Thermal water, with temperature of 32 C, high dissolved solids content (4.62 mS/cm), with a pH around 4.50 and belongs to sodium sulfate type water. South Fogo volcano have only fresh water springs and at high elevation, springs drained from pumice fall deposits near 700 m of altitude. Water dissolved solids contents increased slightly with springs at lower altitude due to water-rock interaction. Springs sampled around 700 m high have a conductivity average of 85 μS/cm, at 520 m an average of 129 μS/cm, at 430 m an average of 182 μS/cm, at 200 m an average of 192 μS/cm and at 12 m high sea level and average of 472 μS/cm. This trend is observed at North Fogo

  19. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  20. Sar interferometry time series analysis of surface deformation for Piton de la Fournaise volcano, Reunion Island

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Remy, Dominique; Froger, Jean-Luc; Darrozes, José; Bonvalot, Sylvain

    2015-04-01

    Piton de la Fournaise, located on the south-eastern side of Réunion Island in the Indian Ocean, is a hotspot oceanic basaltic shield volcano whose activity began more than 500,000 years ago. It is one of the most active volcanoes in the world with a high eruptive frequency on average one eruption every 9 months since 1998. In April 2007, Piton de la Fournaise experienced an exceptional eruption which is considered as the largest historical eruption ever observed during the 20th and 21th centuries, characterized by an effusion of 210 ×106 m3 volume of lava with a 340 m consequent collapse of the Dolomieu crater and the onset of a landslide on the eastern flank. ENVISAT and ALOS data analysis showed that the subsidence of central cone and landslide of eastern flank continued deforming after this eruption at least until June 2008, but no clear ground deformation has been detected after this date from Band-C or Band-L radar images. We so perform a detailed spatio-temporal analysis of ground motions on Piton de la Fournaise using X-band InSAR time series acquired from 2009 to 2014. X-Band was chosen because it provides high spatial resolution (up to 1 m), short revisit period (minimum 11 days) and a highest sensibility to ground deformation. Our large dataset of X-band radar images is composed of 106 COSMO-SkyMed and 96 TerraSAR-X Single-Look Complex images acquired in ascending and descending orbits. The interferograms were generated using DORIS. A high resolution reference Digital Elevation Model (DEM) (5m x 5m Lidar DEM) was used to model and remove the topographic contribution from the interferograms. We employed next StaMPS/MTI (Hooper et al., 2012) to generate the displacement time series and we analyzed the time-dependant behavior of surface displacement using a principal component analysis (PCA) decomposition. This analysis clearly reveals that the large eastward motion affecting the eastern flank of Piton de la Fournaise remained active (LOS velocity of about

  1. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  2. Exploring the "Sharkcano": Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands) using simple, cost-effective methods.

    NASA Astrophysics Data System (ADS)

    Phillips, B. T.; Albert, S.; Carey, S.; DeCiccio, A.; Dunbabin, M.; Flinders, A. F.; Grinham, A. R.; Henning, B.; Howell, C.; Kelley, K. A.; Scott, J. J.

    2015-12-01

    Kavachi is a highly active undersea volcano located in the Western Province of the Solomon Islands, known for its frequent phreatomagmatic eruptions and ephemeral island-forming activity. The remote location of Kavachi and its explosive behavior has restricted scientific exploration of the volcano, limiting observations to surface imagery and peripheral water-column data. An expedition to Kavachi in January 2015 was timed with a rare lull in volcanic activity, allowing for observation of the inside of Kavachi's caldera and its flanks. Here we present medium-resolution bathymetry of the main peak paired with benthic imagery, petrologic analysis of samples from the caldera rim, measurements of gas flux over the main peak, and hydrothermal plume structure data. A second peak was discovered to the Southwest of the main cone and displayed evidence of diffuse-flow venting. Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes. Most equipment used in this study was lightweight, relatively low-cost, and deployed using small boats; these methods may offer developing nations an economic means to explore deep-sea environments within their own territorial waters.

  3. Aseismic inflation of Westdahl volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C.; Dzurisin, D.; Thatcher, W.; Freymueller, J.T.; McNutt, S.R.; Mann, Dorte

    2000-01-01

    Westdahl volcano, located at the west end of Unimak Island in the central Aleutian volcanic arc, Alaska, is a broad shield that produced moderate-sized eruptions in 1964, 1978-79, and 1991-92. Satellite radar interferometry detected about 17 cm of volcano-wide inflation from September 1993 to October 1998. Multiple independent interferograms reveal that the deformation rate has not been steady; more inflation occurred from 1993 to 1995 than from 1995 to 1998. Numerical modeling indicates that a source located about 9 km beneath the center of the volcano inflated by about 0.05 km3 from 1993 to 1998. On the basis of the timing and volume of recent eruptions at Westdahl and the fact that it has been inflating for more than 5 years, the next eruption can be expected within the next several years.

  4. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  5. THE EXTENT OF SEA FLOOR VOLCANISM AND NATURE OF PRIMITIVE MAGMAS IN THE WESTERN ALEUTIANS

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Turka, J.; Portnyagin, M.; Kelemen, P. B.; Vervoort, J. D.; Sims, K. W.; Bindeman, I. N.

    2009-12-01

    Results of the 2005 Western Aleutian Volcano Expedition (WAVE) and the June 2009 cruise of the German-Russian KALMAR project (Kamchatka-Aleutian Margin) include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts located 300 km west of Buldir Island, the westernmost emergent volcano in the Aleutians. The newly discovered features fall on a volcanic line connecting Buldir and other emergent volcanoes to Piip Seamount, which is located in the far west. These discoveries suggest that the surface expression of Aleutian volcanism slips below sea level at 175°E, but is otherwise continuous from 170°W to 167°E. Geochemical results from the Ingenstrem Depression (60 km west of Buldir) define two compositional groups, which provide insight into the nature of primitive Aleutian magmatism. Low-Sr lavas (<700 ppm Sr) are basalts and andesites with moderately enriched trace element patterns (La/Yb 4-8, Sr/Y<30) and relatively radiogenic Sr (87/86=0.7031-0.7033), typical of IAB. High-Sr lavas (>700 ppm) are plagioclase and hornblende-phyric andesites and dacites with fractionated trace element patterns (Sr/Y>50) and low Y (<12 ppm) and HREE. Sr isotopes for all lavas are inversely correlated with Sr/Y and SiO2, so the most felsic samples (65-67% SiO2), which have the highest Sr abundances and most fractionated trace element patterns (Sr/Y>120) are also the most isotopically depleted (87/86<0.7028). Major and trace elements are well correlated with isotopes defining primitive end-members at 87/86<0.7027 (high-Sr), and >0.7032 (low Sr). The narrow range for Nd isotopes (8.5-9.5 epsNd) suggests that the main source of Sr and Nd may be seawater-altered subducted oceanic crust; however, oxygen isotopes on olivine and hornblende separates are similar to MORB for both groups (delta18O=5.1-5.6 per-mil, olivine-equ). Available data do not identify a high-Sr lava with whole-rock Mg# and olivine phenocryst compositions appropriate for equilibration

  6. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    NASA Astrophysics Data System (ADS)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  7. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  8. Fluxes of magmatic chlorine and sulfur from volcano-hydrothermal systems. Examples for Northern Kuril Islands Paramushir and Shiashkotan.

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri

    2015-04-01

    The total flux of components degassed from the magma through persistently degassing volcanoes comprises of the volcanic vapor flux from fumaroles to the atmosphere, diffuse flux through volcanic slopes and the hydrothermal flux to the local hydrologic network. The hydrothermal flux may be provided by the discharge of fluids formed at depth over the magma body and/or by acid waters which are formed by the absorption of the ascending volcanic vapor by shallow ground. The anion composition (Cl and SO4) of the discharging thermal waters from a volcano-hydrothermal system originates from the volcanic vapor and should be taken into account in estimations of the magmatic volatile output and volatile recycling in subduction zones. Here we report the chemical (major and trace elements) and isotopic composition of acidic and neutral thermal waters, chemical and isotopic composition of volcanic vapors and solute fluxes from the northern Kurilian islands Paramushir (Ebeko volcanic center) and Shiashkotan (volcanoes Sinarka and Kuntomintar). The total measured outputs of chloride and sulfur from the system in 2006-2014 were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are one order of magnitude higher than the fumarolic output of Cl and S from the low-temperature fumarolic field of Ebeko (<120°C). The estimated discharge rate of hot (85°C) water from the system with ~ 3500 ppm of chloride is about 0.3 m3s-1 which is among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. The total hydrothermal discharge of Cl and S from Shiashkotan island to the Sea of Okhotsk associated with magmatic activity of two volcanoes is estimated as ca. 20 t/d and 40 t/d, respectively, which is close to the fumarolic output from both volcanoes (Sinarka and Kuntomintar) estimated using the chemistry and flow rates of fumaroles those measured temperature is

  9. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    NASA Astrophysics Data System (ADS)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr < 0.7040; ɛNd > 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  10. Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica.

    PubMed

    Deheyn, Dimitri D; Gendreau, Philippe; Baldwin, Roberta J; Latz, Michael I

    2005-07-01

    This study assessed whether trace elements present at Deception Island, an active submarine volcano in the Antarctic Peninsula, show enhanced biological availability to the local marine community. Using a weak acid extraction method to dissolve organic material and leach associated but not constitutive trace elements of sediments, fifteen elements were measured from seafloor sediment, seawater particulates, and tissues of benthic (bivalves, brittlestars, sea urchins) and pelagic (demersal and pelagic fishes, krill) organisms collected in the flooded caldera. The highest element concentrations were associated with seafloor sediment, the lowest with seawater particulates and organism tissues. In the case of Ag and Se, concentrations were highest in organism tissue, indicating contamination through the food chain and biomagnification of those elements. The elements Al, Fe, Mn, Sr, Ti, and to a lesser extent Zn, were the most concentrated of the trace elements for all sample types. This indicates that the whole ecosystem of Deception Island is contaminated with trace elements from local geothermal activity, which is also reflected in the pattern of element contamination in organisms. Accordingly, element concentrations were higher in organisms collected at Deception Island compared to those from the neighboring non-active volcanic King George Island, suggesting that volcanic activity enhances bioavailability of trace elements to marine organisms. Trace element concentrations were highest in digestive tissue of organisms, suggesting that elements at Deception Island are incorporated into the marine food web mainly through a dietary route. PMID:15649525

  11. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Power, J.A.; Dzurisin, D.

    2000-01-01

    In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.

  12. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  13. Argon geochronology of late Pleistocene to Holocene Westdahl volcano, Unimak Island, Alaska

    USGS Publications Warehouse

    Calvert, Andrew T.; Moore, Richard B.; McGimsey, Robert G.

    2005-01-01

    High-precision 40Ar/39Ar geochronology of selected lavas from Westdahl Volcano places time constraints on several key prehistoric eruptive phases of this large active volcano. A dike cutting old pyroclastic-flow and associated lahar deposits from a precursor volcano yields an age of 1,654+/-11 k.y., dating this precursor volcano as older than early Pleistocene. A total of 11 geographically distributed lavas with ages ranging from 47+/-14 to 127+/-2 k.y. date construction of the Westdahl volcanic center. Lava flows cut by an apparent caldera-rim structure yielded ages of 81+/-5 and 121+/-8 k.y., placing a maximum date of 81 ka on caldera formation. Late Pleistocene and Holocene lavas fill the caldera, but most of them are obscured by the large summit icecap.

  14. Diffuse volcanic degassing and thermal energy release 2015 surveys from the summit cone of Teide volcano, Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Asensio-Ramos, María; Padilla, Germán; Alonso, Mar; Halliwell, Simon; Sharp, Emerson; Butters, Damaris; Ingman, Dylan; Alexander, Scott; Cook, Jenny; Pérez, Nemesio M.

    2016-04-01

    The summit cone of Teide volcano (Spain) is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83° C) corresponds to the boiling point of water at discharge conditions. Water is the major component of these fumarolic emissions, followed by CO2, N2, H2, H2S, HCl, Ar, CH4, He and CO, a composition typical of hydrothermal fluids. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). In July 2015, a soil and fumarole gas survey was undertaken in order to estimate the diffuse volcanic degassing and thermal energy release from the summit cone of Teide volcano. A diffuse CO2 emission survey was performed selecting 170 observation sites according to the accumulation chamber method. Soil CO2 efflux values range from non-detectable (˜0.5 g m‑2d‑1) up to 10,672 g m‑2d‑1, with an average value of 601 g m‑2d‑1. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Measurement of soil CO2 efflux allowed an estimation of 162 ± 14 t d‑1 of deep seated derived CO2. To calculate the steam discharge associated with this volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio equal to 1.19 (range, 0.44-3.42) as a representative value of the H2O/CO2 mass ratios for Teide fumaroles. The resulting estimate of the steam flow associated with the gas flux is equal to 193 t d‑1. The condensation of this steam results in a thermal energy release of 5.0×1011J d‑1 for Teide volcano or a total heat flow of 6 MWt. The diffuse gas emissions and thermal energy released from the summit of Teide volcano are comparable to those observed at other volcanoes. Sustained surveillance using these methods will be valuable for monitoring the activity of Teide volcano.

  15. Debris avalanche triggered by sill intrusions in basaltic volcanoes (Piton des Neiges, La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.

    2014-12-01

    Debris avalanches derived from the flanks of volcanic islands are among the largest on Earth. Debris avalanches are rare, catastrophic destabilizations that still keep geologists debating about the mechanisms that initiate them and make them travel huge runout distances. To shed light on the trigger of such destabilizations, we studied the inland scar of a debris avalanche deposit cropping out at Piton des Neiges, a dormant and eroded basaltic volcano of La Réunion Island. The avalanche deposit rests on a pile of 50-70 sill intrusions with a shallow northward dip, i.e. toward the sea. We measured the anisotropy of magnetic susceptibility in a transect across the uppermost sill of the pile in contact with the avalanche deposit. This transect reveals a strongly asymmetric magnetic fabric, consistent with a north-directed shear movement of the upper intrusion wall. This suggests that the upper sill induced a co-intrusive shear displacement of the volcano flank toward the sea. The upper sill margin in contact with the avalanche is striated, showing that this intrusion is older than the avalanche. Striae indicate a northward direction of avalanche runout. The upper sill margin also displays a magmatic lineation consistent with a magma flow in the intrusion toward the north. There is thus a striking kinematic consistency between the directions of intrusion propagation and avalanche runout, both oriented toward the sea. From the above results, we propose that repeated sill intrusions, such as observed on Piton des Neiges, increase the instability of a volcanic edifice. Each injection induces an incremental slip of the overlying rock mass, which may eventually end up into a landslide. Sill intrusions associated with seaward displacements of volcano flank, such as inferred for the April 2007 eruption of Piton de la Fournaise (also in La Réunion), should therefore be considered as a potential trigger of debris avalanches.

  16. Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Kyle, P. R.; Counce, D.

    2008-11-01

    Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO 2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10 - 4 and 8.1 × 10 - 6 kg s - 11 , respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10 - 4 , 1.2 × 10 - 5 , and 4.5 × 10 - 6 kg s - 1 , respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039-15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10 - 4 in 1997/1999 to 3 × 10 - 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10 - 4 , Hg = 1.1 × 10 - 5 , As = 1.3 × 10 - 4 , Sb = 1.9 × 10 - 5 and Se = 1.5 × 10 - 5 kg s - 1 . Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.

  17. Shallow submarine volcano group in the early stage of island arc development: Geology and petrology of small islands south off Hahajima main island, the Ogasawara Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, Kyoko; Umino, Susumu; Ishizuka, Osamu

    2014-05-01

    Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.

  18. Controlled-source seismic investigations of the crustal structure beneath Erebus volcano and Ross Island, Antarctica: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maraj, S.; Kyle, P. R.; Zandomeneghi, D.; Knox, H. A.; Aster, R. C.; Snelson, C. M.; Miller, P. E.; Kaip, G. M.

    2009-12-01

    During the 2008-09 Austral summer field season we undertook a controlled-source seismic experiment (Tomo-Erebus, TE) to examine the shallow magmatic system beneath the active Erebus volcano (TE-3D) and the crustal structure beneath Ross Island. Here we report on the TE-2D component, which was designed to produce a two-dimensional P-wave velocity model along an east-west profile across Ross Island. Marine geophysical observations near Ross Island have identified the north-south trending Terror Rift within the older and broader Victoria Land Basin, which are a component of the intraplate West Antarctic Rift System. Mount Erebus and Ross Island are circumstantially associated with the Terror Rift and its thin (~20 km) crust. The nature, extent and role of the Terror Rift in controlling the evolution of Ross Island volcanism and the on-going eruptive activity of Erebus volcano are unknown. In TE-2D, we deployed 21 seismic recorders (Ref Tek 130) with three-component 4.5 Hz geophones (Sercel L-28-3D) along a 90-km east-west line between Capes Royds and Crozier. These were supplemented by 79 similar instruments deployed for the high-resolution TE-3D experiment within a 3 x 3 km grid around the summit crater of Erebus, an array of 8 permanent short period and broadband sensors used to monitor the activity of Erebus and 23 three-component sensors (Guralp CMG-40T, 30s-100 Hz) positioned around the flanks and summit of Erebus. Fifteen chemical sources were loaded in holes drilled about 15 m deep in the snow and ice. The size of these shots ranged from 75 to 600 kg of ANFO with the largest shots at the ends of the profile. An additional shot was detonated in the sea (McMurdo Sound) using 200 kg of dynamite. Due to the rugged terrain, short field seasons and large area to be covered, the seismometer spacing along the TE-2D profile is quite large (~ 5 km spacing), resulting in poor near-surface data resolution. However, the data have a high signal to noise ratio with clear

  19. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  20. Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Ebinger, C. J.

    2013-12-01

    Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods Cyndi Kelly1, Jesse F. Lawrence1, Cindy Ebinger2 1Stanford University, Department of Geophysics, 397 Panama Mall, Stanford, CA 94305, USA 2University of Rochester, Department of Earth and Environmental Science, 227 Hutchison Hall, Rochester, NY 14627, USA Low-magnitude seismic signals generated by processes that characterize volcanic and hydrothermal systems and their plumbing networks are difficult to observe remotely. Seismic records from these systems tend to be extremely 'noisy', making it difficult to resolve 3D subsurface structures using traditional seismic methods. Easily identifiable high-amplitude bursts within the noise that might be suitable for use with traditional seismic methods (i.e. eruptions) tend to occur relatively infrequently compared to the length of an entire eruptive cycle. Furthermore, while these impulsive events might help constrain the dynamics of a particular eruption, they shed little insight into the mechanisms that occur throughout an entire eruption sequence. It has been shown, however, that the much more abundant low-amplitude seismic 'noise' in these records (i.e. volcanic or geyser 'tremor') actually represents a series of overlapping low-magnitude displacements that can be directly linked to magma, fluid, and volatile movement at depth. This 'noisy' data therefore likely contains valuable information about the processes occurring in the volcanic or hydrothermal system before, during and after eruption events. In this study, we present a new method to comprehensively study how the seismic source distribution of all events - including micro-events - evolves during different phases of the eruption sequence of Sierra Negra Volcano in the Galapagos Islands. We apply a back-projection search algorithm to image sources of seismic 'noise' at Sierra Negra Volcano during a proposed intrusion event. By analyzing

  1. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  2. High-K andesite petrogenesis and crustal evolution: Evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Price, Richard C.; Smith, Ian E. M.; Stewart, Robert B.; Gamble, John A.; Gruender, Kerstin; Maas, Roland

    2016-07-01

    This study uses the geochemistry and petrology of xenoliths to constrain the evolutionary pathways of host magmas at two adjacent andesitic volcanoes in New Zealand's North Island. Egmont (Mt. Taranaki) is located on the west coast of the North Island and Ruapehu lies 140 km to the east at the southern end of the Taupo Volcanic Zone, the principal locus of subduction-related magmatism in New Zealand. Xenoliths are common in the eruptives of both volcanoes but the xenoliths suites are petrographically and geochemically different. Ruapehu xenoliths are predominantly pyroxene-plagioclase granulites derived from Mesozoic meta-greywacke basement and the underlying oceanic crust. The xenolith population of Egmont Volcano is more complex. It includes sedimentary, metamorphic and plutonic rocks from the underlying basement but is dominated by coarse grained, mafic and ultramafic igneous rocks. Gabbroic xenoliths (Group 1) are composed of plagioclase, clinopyroxene and amphibole whereas ultramafic xenoliths are dominated by amphibole (Group 2) or pyroxene (Group 3) or, in very rare cases, olivine (Group 4). In Group 1 xenoliths plagioclase and clinopyroxene and in some cases amphibole show cumulate textures. Amphibole also occurs as intercumulate poikilitic crystals or as blebs or laminae replacing pyroxene. Some Group 2 xenoliths have cumulate textures but near monomineralic amphibole xenoliths are coarse grained with bladed or comb textures. Pyroxene in Group 3 xenoliths has a polygonal granoblastic texture that is commonly overprinted by veining and amphibole replacement. Group 1 and most Group 2 xenoliths have major, trace element and Sr, Nd and Pb isotope compositions indicating affinity with the host volcanic rocks. Geochemical variation can be modelled by assimilation fractional crystallisation (AFC) and fractional crystallisation (FC) of basaltic parents assuming an assimilant with the composition of average crystalline basement and Group 1 xenoliths have

  3. A new SO2 emissions budget for Anatahan volcano (Mariana Islands) based on ten years of satellite observations

    NASA Astrophysics Data System (ADS)

    McCormick, Brendan; Popp, Christoph; Andrews, Benjamin; Cottrell, Elizabeth

    2015-04-01

    Satellite remote sensing offers great potential for the study of sulphur dioxide (SO2) gas emissions from volcanoes worldwide. Anatahan is a remote volcano in the Mariana Islands, SW Pacific. Existing SO2 emissions data from Anatahan, from ground-based UV spectrometer measurements, place the volcano among the largest natural SO2 sources worldwide. However, these measurements are limited in number and only available from intervals of eruptive activity. Activity varies widely at Anatahan: over the past decade, records held in the Smithsonian Institution Global Volcanism Program Volcanoes of the World database describe the alternation of intense eruptions with long intervals of quiescence, where much lower intensity activity took place. We present ten years of satellite-based measurements of SO2 in the atmosphere over Anatahan, using data from the UV spectrometers OMI, GOME-2, and SCIAMACHY, and the IR spectrometer AIRS. We find Anatahan's emissions to be highly variable both within and between intervals of eruption and quiescence. We demonstrate a close agreement between trends in SO2 emission evident from our remote sensing data and records of activity compiled from a range of other sources and instruments, across daily to annual temporal scales. Mean eruptive SO2 emissions at Anatahan are ~6400 t/d, and range from <1000 to >18000 t/d. Quiescent emissions are below our instrument detection limits and are therefore unlikely to exceed 150-300 t/d. Overall, accounting for both eruptive and quiescent emissions, we calculate a revised decadal mean SO2 emission rate of 1060-1200 t/d. We further calculate a total decadal SO2 yield from Anatahan of 4-5 Mt, significantly lower than the 17-34 Mt calculated if ground-based campaign data are used in isolation. The use of isolated measurements to extrapolate longer term emissions budgets is subject to clear uncertainty, and we argue that our satellite observations, covering a longer interval of Anatahan's history, are better

  4. The 2003 eruption of Anatahan volcano, Commonwealth of the Northern Mariana Islands: Chronology, volcanology, and deformation

    USGS Publications Warehouse

    Trusdell, F.A.; Moore, R.B.; Sako, M.; White, R.A.; Koyanagi, S.K.; Chong, R.; Camacho, J.T.

    2005-01-01

    The first historical eruption on Anatahan Island occurred on 10 May 2003 from the east crater of the volcano. The eruption was preceded by several hours of seismicity. Two and a half hours before the outbreak, the number of earthquakes surged to more than 100 events per hour. At 0730 UTC, the Washington Volcanic Ash Advisory Center issued an ash advisory. Although the eruption lasted for 3 months, the majority of erupted material was expelled during the first 2 weeks. The opening episode of the eruption resulted in a deposit of juvenile scoria and lithic clasts, the latter derived from geothermally altered colluvial fill from the vent area. The opening episode was followed by crater enlargement and deepening, which produced deposits of coarse, reddish-brown ash containing a mixture of juvenile and lithic clasts. The third episode of the eruption produced coarse ash and lapilli comprised of juvenile scoria and minor amounts of lithics. Plume heights were 4500 to 13,000 m for the initial three phases. The fourth episode, from about May 18 through early August, was characterized by smaller plume heights of 900 to 2400 m, and steam was the dominant component. Minor amounts of coarse ash and accretionary-lapilli ash comprise most of the deposits of the fourth episode, although ballistic blocks and bombs of andesite lava are also locally present. These andesite blocks were emplaced by an explosion on 14 June, which destroyed a small lava dome extruded during the first week of June. Activity waned as the summer progressed, and subsequent ash deposits accumulated in July and early August, by which time the eruption had effectively ended. In September and October, degassing and geothermal activity continued, characterized by small geysers, boiling water, and jetting steam. Noteworthy deviations from this activity were a surge event in late May-early June and the destruction of the lava dome on 14 June. We calculated on-land tephra-fall deposits to have a bulk volume of

  5. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  6. Volcano-ice-sea interaction in the Cerro Santa Marta area, northwest James Ross Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Calabozo, Fernando M.; Strelin, Jorge A.; Orihashi, Yuji; Sumino, Hirochika; Keller, Randall A.

    2015-05-01

    We present here the results of detailed mapping, lithofacies analysis and stratigraphy of the Neogene James Ross Island Volcanic Group (Antarctic Peninsula) in the Cerro Santa Marta area (northwest of James Ross Island), in order to give constraints on the evolution of a glaciated volcanic island. Our field results included recognition and interpretation of seventeen volcanic and glacial lithofacies, together with their vertical and lateral arrangements, supported by four new unspiked K-Ar ages. This allowed us to conclude that the construction of the volcanic pile in this area took place during two main eruptive stages (Eruptive Stages 1 and 2), separated from the Cretaceous bedrock and from each other by two major glacial unconformities (U1 and U2). The U1 unconformity is related to Antarctic Peninsula Ice sheet expansion during the late Miocene (before 6.2 Ma) and deposition of glacial lithofacies in a glaciomarine setting. Following this glacial advance, Eruptive Stage 1 (6.2-4.6 Ma) volcanism started with subaerial extrusion of lava flows from an unrecognized vent north of the study area, with eruptions later fed from vent/s centered at Cerro Santa Marta volcano, where cinder cone deposits and a volcanic conduit/lava lake are preserved. These lava flows fed an extensive (> 7 km long) hyaloclastite delta system that was probably emplaced in a shallow marine environment. A second unconformity (U2) was related to expansion of a local ice cap, centered on James Ross Island, which truncated all the eruptive units of Eruptive Stage 1. Concomitant with glacier advance, renewed volcanic activity (Eruptive Stage 2) started after 4.6 Ma and volcanic products were fed again by Cerro Santa Marta vents. We infer that glaciovolcanic eruptions occurred under a moderately thin (~ 300 m) glacier, in good agreement with previous estimates of paleo-ice thickness for the James Ross Island area during the Pliocene.

  7. Imaging rapidly deforming ocean island volcanoes in the western Galápagos archipelago, Ecuador

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Ruiz, Mario; Belachew, Manahloh

    2014-01-01

    Using local body wave arrival-time tomography methods to determine 3-D seismic velocity structure, we imaged the plumbing system of Sierra Negra Volcano, Galápagos. This hot spot volcanic chain includes some of the fastest deforming volcanoes in the world, making this an ideal location to study shield volcano plumbing systems. We inverted P and S wave arrivals recorded on a 15-station temporary array between July 2009 and June 2011 using an a priori 1-D velocity model constrained by offshore refraction studies. With local seismicity from nearby volcanoes as well as the ring fault system, the model resolution is good between depths of 3 and 15.5 km. The propagation of S waves throughout this volume argues against any large high-melt accumulations, although a shallow melt sill may exist above 5 km. We image a broad low-velocity region (>25 km laterally) below Sierra Negra at depths ~8-15 km. No large, regional velocity increase is found within the limits of good resolution, suggesting that crust is thicker than 15 km beneath the western Galápagos archipelago. Our results are consistent with crustal accretion of mafic cumulates from a large-volume magma chamber that may span the boundary between preplume and accreted crust. The similarity between our results and those of Hawaii leave open the possibility that the crust has also been thickened by under-plating.

  8. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  9. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Dzurisin, D.; Thatcher, W.; Power, J.

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite

  10. Hydroacoustic records and a numerical model of the source mechanism from the first historical eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Park, M.; Matsumoto, H.; Byun, S.-K.

    2005-08-01

    Anatahan Volcano in the Commonwealth of the Northern Mariana Islands (CNMI) erupted for the first time in recorded history on 10 May 2003. The underwater acoustic records ( T-waves) of earthquakes, explosions, and tremor produced during the eruption were recorded on a sound channel hydrophone deployed in February 2003. Acoustic propagation models show that the seismic to acoustic conversion at Anatahan is particularly efficient, aided by the upward slope of the seamount toward the hydrophone. The hydrophone records confirm the onset of earthquake activity between 0100 and 0200Z on 10 May, with a substantial increase in seismicity beginning at ˜ 0620Z. In addition, the onset of continuous, low-frequency (3-40 Hz) acoustic energy that is likely volcanic tremor related to magma intrusion was also observed at 0620Z. The hydrophone recorded 1401 earthquakes during the first 3 days of the eruption. A histogram of seismicity indicates two main periods of explosion/eruption activity, the first beginning at ˜ 0620Z on 10 May and the second at ˜ 0000Z on 11 May. Relative earthquake depth estimates indicate that both eruption periods were accompanied by earthquake activity from deep within the Anatahan volcanic edifice. A numerical representation of the Anatahan volcano-seismic source was developed to examine the character of acoustic signals generated from the eruption governed by the geometry of the source and the physical properties of the magma. A magma pipe source mechanism is used to compute the seismo-acoustic wavefield on the flank of the Anatahan volcanic edifice (on the seafloor and in the water column) due to mode conversion by roughness scattering. A fluid-filled pipe model was chosen because it allows for a more straightforward relation between volcano geometry and spectral features of harmonic tremor as well as its morphologic similarity to a submerged volcanic edifice.

  11. Role of the structural inheritance of the oceanic lithosphere in the magmato-tectonic evolution of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Saint-Ange, Francky; Bachelery, Patrick; Villeneuve, Nicolas; Staudacher, Thomas

    2007-04-01

    La Réunion Island is located east of Madagascar, on the eastern rim of the tectonically inactive Mascarene Basin. This island is composed of three shield volcanoes of which only Piton de la Fournaise is currently active. Although the magmatic activity is restricted to Piton de la Fournaise, a scattered seismicity occurs on the whole 200 km wide volcanic edifice and in the underlying oceanic crust. We carried out a multiscale analysis to understand (1) the origin of the seismicity in the geodynamic context and (2) the role of the oceanic lithosphere in the deformation of Piton de la Fournaise and La Réunion Island. Analysis of the magmatic system suggests that the magma ascent is controlled by large N25-30 and N125-130 fracture zones located below the Enclos depression. We also show that the orientation difference between the eruptive fissures and the related dykes result from a rotation of the main principal stress σ1 from vertical to downslope through the surface. Combining a Digital Elevation Model (DEM) analysis, field observations and the geophysical data reveals that the volcano is affected by large fault zones. The fault distribution indicates the predominance of a main N70-80 trend. Magnetic data show the same N80 orientation characterizing the remnant part of the Alizés volcano. Such parallel alignment suggests a control exerted by the underlying Alizés volcano on Piton de la Fournaise. Furthermore, the alignment between the crustal orientations and the structures determined on the island suggests a control of the crustal structures in La Réunion's volcano-tectonic activity. Contrary to several volcanic islands such as Hawaii and Tenerife, La Réunion volcanoes lie on an upbending crust. Then, we interpret the reactivation of the crustal faults as resulting from a crustal uplift related to the thermal erosion of the base of the lithosphere and/or to strong underplating. The upward deformation may prevent the spreading of the volcanoes, as no evidence

  12. Real-time infrasonic monitoring of the eruption at a remote island volcano using seismoacoustic cross correlation

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu; Ichihara, Mie

    2016-02-01

    On 2013 November 20, a submarine eruption started close to Nishinoshima island, which lies ˜1000 km south of Tokyo. Real-time monitoring of the eruption is crucial for understanding the formation processes of the new volcano island and related disaster prevention. In situ monitoring, however, is difficult in practice because the closest inhabited island, Chichijima, is 130 km away from Nishinoshima. This study presents an infrasonic monitoring method that uses cross-correlating records at a pair of online stations on Chichijima. One is the horizontal ground velocity recorded at a permanent seismic station operated by the Japan Meteorological Agency (JMA). The seismic records were corrected for atmospheric pressure using an empirical ground response to infrasound. The other is the air pressure recorded at the JMA Meteorological Observatory. For each station, we divided the whole records into 3600-s segments. To suppress outliers, each segment was normalized by the envelope function. We then calculated cross-correlation functions between the pair of stations using the fast Fourier transform. They present clear successive arrivals of infrasound coming from Nishinoshima. We also conducted an offline tripartite-array observation using three low-frequency microphones with a station spacing of ˜50 m installed in 2013 May. The array analysis supports the results obtained from the online stations. The typical root-mean-squared amplitude is on the order of 0.01 Pa, and the typical duration is several days. The amplitudes were primarily controlled by the effective sound velocity structure from Nishinoshima to Chichijima. The infrasonic observations together with the meteorological observation at Chichijima suggest that infrasonic activity was not present in the first two weeks in 2015 January. With the help of a more quantitative estimation of the meteorological effect, we could infer eruptive activity in real time. Now many online seismic stations are available worldwide

  13. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kanzaki, Tadao; Ozawa, Takejiro; Okamoto, Makoto; Kakihana, Hidetake

    1982-11-01

    Boron samples from 40 fumarolic condensates from volcanoes in the Ryukyu arc (Satsuma Iwo-jima and Shiratori Iwo-yama) and the North-east Japan arc (Usu-shinzan, Showa-shinzan, Esan and Issaikyo-yama) all have 11B /10B ratios close to 4.07. Higher values, from 4.09 to 4.13, were only observed in condensates from volcanoes in the southernmost end of the North-east Japan arc (Nasu-dake), the northern part of the Izu-Bonin arc (Hakone), and the North Mariana arc (Ogasawara Iwo-jima). These higher values suggest geological interaction of the magmas with sea-water enriched in 11B.

  14. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d‑1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  15. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    PubMed Central

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  16. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    PubMed

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  17. Chronology of the seismic and ground deformation precursors of the 2014 Fogo Volcano - Cape Verde Islands - eruption.

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Faria, B. V. E.

    2015-12-01

    The most recent eruption of Fogo Volcano, Cape Verde Islands started on the 23 November 2014 at 10h15 (CVT), after 19 years of quiescence. Several months before the begging of the eruption, the seismic activity started to deviate from the baseline, with the appearance of a class of events that was not recorded before then. This activity was characterized by a significant number of instrumentally detected, very low magnitude seismic events, sometimes more than 100 per day. In September those events became more energetic and analysis indicated that they could be of volcano-tectonic (VT) origin. The first VT event to be located was on 4 October with a 2.5 local magnitude: it was located slightly to the south of the middle of the island at between 15.5 and 16 km depth. This was deeper than normal for background VT events and coincided with the depth of last magma equilibration in the 1995 eruption. It was therefore interpreted as a possible precursor of an eruption: thus the alert level was raised to level 2, and the civil protection authorities were informed. On the following weeks the rate of VT events slightly increased and the focal depths became shallower. Very sporadic harmonic volcano tremor episodes and very few and weak long-period events were also recorded. From about the 15 to 21 November, the VT activity rate oscillated, and hypocentres tended to gather in the vicinity of an inferred dike emplacement and at shallower depth - 6 to 5 km b.s.l. On the first hours of the 22 November seismic rate increased from 3 to 6 events per hour and the events became more energetic. After 19h30 (CVT), when the magma reached the ductile-brittle transition zone (5 to 4 km b.s.l), the seismic rate increased again to more than one event per minute; earthquake magnitudes increased as well. At about 03h00 (CVT) the tilt records shown a prominent ground deformation. Continuous volcanic tremor started only one to half an hour before the start of the eruption.

  18. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin, Ricca, Mark A.

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  19. Petrogenesis of Mafic and Ultramafic Enclaves from the Central Aleutian Arc, and Implications for the Formation of New Crust

    NASA Astrophysics Data System (ADS)

    Nadin, E. S.; Kentner, A. E.; Nye, C. J.; Izbekov, P. E.

    2014-12-01

    Mafic and ultramafic enclaves from the 2008 eruption of Kasatochi volcano, central Aleutians, provide insight into the sub-arc structure in this section of the subduction zone. Textural, mineralogical, and chemical similarities between these enclaves and those from neighboring Adak Island volcanoes suggest that sub-arc conditions are similar enough to form the same igneous "strata" in this part of the arc. Kasatochi gabbroic enclaves are undeformed cumulates of 0.1-11 cm euhedral plagioclase and pargasitic hornblende crystals, with minor clinopyroxene and magnetite and cryptocrystalline interstitial glass. Adak gabbro inclusions also contain plagioclase, pargasitic hornblende, clinopyroxene, and magnetite. Gabbroic enclaves from both volcanic islands typically have elongate and aligned minerals, in contrast with the granular textures of the ultramafic suite. Kasatochi ultramafic samples include wehrlite, clinopyroxenite, and olivine clinopyroxenite with Fo83-84 olivine, Mg- and Ca- rich clinopyroxene, and spinel, and pargasitic hornblende present only as a secondary, interstitial phase. Similarly, wehrlite and clinopyroxenite samples from Adak also contain forsteritic olivine, clinopyroxene, spinel, and interstitial pargasitic hornblende. The presence of hornblende and the lack of deformation textures in the cumulate gabbros from both islands suggest that these rocks were stored under similar pressure, temperature, and host-magma conditions prior to eruption. Kasatochi gabbro enclaves are compositionally related to their host basaltic andesite, as suggested by fractionation trends. There is no apparent chemical relationship between the ultramafic enclaves and the 2008 basaltic andesite, nor are these samples ever found within their host rock. Based on compositional similarities to ultramafic xenoliths from Adak Island, the Kasatochi ultramafic suite could have formed by the fractionation of spinel-lherzolite in the upper mantle. Whole-rock REE analyses show

  20. Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure?

    NASA Astrophysics Data System (ADS)

    Brunet, Morgane; Le Friant, Anne; Boudon, Georges; Lafuerza, Sara; Talling, Peter; Hornbach, Matthew; Ishizuka, Osamu; Lebas, Elodie; Guyard, Hervé

    2016-03-01

    Landslides are common features in the vicinity of volcanic islands. In this contribution, we investigate landslides emplacement and dynamics around the volcanic island of Martinique based on the first scientific drilling of such deposits. The evolution of the active Montagne Pelée volcano on this island has been marked by three major flank-collapses that removed much of the western flank of the volcano. Subaerial collapse volumes vary from 2 to 25 km3 and debris avalanches flowed into the Grenada Basin. High-resolution seismic data (AGUADOMAR-1999, CARAVAL-2002, and GWADASEIS-2009) is combined with new drill cores that penetrate up to 430 m through the three submarine landslide deposits previously associated to the aerial flank-collapses (Site U1399, Site U1400, Site U1401, IODP Expedition 340, Joides Resolution, March-April 2012). This combined geophysical and core data provide an improved understanding of landslide processes offshore a volcanic island. The integrated analysis shows a large submarine landslide deposit, without debris avalanche deposits coming from the volcano, comprising up to 300 km3 of remobilized seafloor sediment that extends for 70 km away from the coast and covers an area of 2100 km2. Our new data suggest that the aerial debris avalanche deposit enter the sea but stop at the base of submarine flank. We propose a new model dealing with seafloor sediment failures and landslide propagation mechanisms, triggered by volcanic flank-collapse events affecting Montagne Pelée volcano. Newly recognized landslide deposits occur deeper in the stratigraphy, suggesting the recurrence of large-scale mass-wasting processes offshore the island and thus, the necessity to better assess the associated tsunami hazards in the region.

  1. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  2. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    USGS Publications Warehouse

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  3. Mt. St. Augustine, Alaska: Geochemical evolution of an eastern Aleutian volcanic center

    SciTech Connect

    Johnson, K.E. . Dept. of Geology); Harmon, R.S. . Kingsley Dunham Centre); Moorbath, S. . Dept. of Earth Sciences); Sigmarsson, O. )

    1993-04-01

    Mt. St. Augustine is a calc-alkaline Quaternary volcano, situated within Cook Inlet, Alaska. The island is composed of low- to medium-K andesite and dacite domes and pyroclastic flows. Major element variations indicate the magmatic evolution is dominantly influenced by fractionation and magma-mixing processes. Incompatible element and isotopic compositions suggest that despite its continental location, crustal assimilation is not significant factor in magmatic evolution. Alkali contents for Augustine are generally lower than elsewhere in the Aleutians (e.g. Augustine Cs/Rb = 0.016--0.024, K/Rb = 372--553; Aleutians Cs/Rb = 0.016--0.17, K/Rb = 231--745). Sr- and Nd-isotope ratios encompass narrow ranges ([sup 87]Sr/[sup 86]Sr = 0.70317--0.70343; [sup 143]Nd/[sup 144]Nd = 0.513011--0.513085), characteristic of uncontaminated mantle-derived melts. U-Th disequilibrium isotopic values also indicate little or no assimilation of evolved continental crust. Pb-isotopic ranges are also relatively restricted ([sup 206]Pb/[sup 204]Pb = 18.62--18.82; [sup 207]Pb/[sup 204]Pb = 15.54--15.57; [sup 208]Pb/[sup 204]Pb = 38.18--38.34) and comparison with north Pacific enriched (OIB) and depleted (MORB) mantle sources suggest the incorporation of only a small percentage of subducted terrigenous sediments. A model for Augustine magma genesis is proposed where parental magmas are generated by 5--20% partial melting of a lherzolite mantle with up to a 5% subducted terrigenous sediment component. The major influence of the thickened continental crust is to prevent the ascent and eruption of basaltic magma. The data exhibit no temporal variations, indicating that the magmatic system which produced the historic eruptions is well established.

  4. IESID: Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Peci, Luis Miguel; Berrocoso, Manuel; Páez, Raúl; Fernández-Ros, Alberto; de Gil, Amós

    2012-11-01

    When establishing the relative distance between two GNSS-GPS stations with sub-centimeter accuracy, it is necessary to have auxiliary data, some of which can only be collected some time after the moment of measurement. However, for monitoring highly-active geodynamic areas, such as volcanoes and landslides, data precision is not as essential as rapid availability, processing of data in real-time, and fast interpretation of the results. This paper describes the development of an integrated automatic system for monitoring volcanic deformation in quasi real-time, applied to the Deception volcano (Antarctica). This experimental system integrates two independent modules that enable researchers to monitor and control the status of the GNSS-GPS stations, and to determine a surface deformation parameter. It comprises three permanent stations, one of which serves as the reference for assessing the relative distance in relation to the other two. The availability of GNSS-GPS data in quasi real-time is achieved by means of a WiFi infrastructure and automated data processing. This system provides, in quasi real-time, a time series of varying distances that tells us the extent to which any ground deformation is taking place.

  5. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    NASA Astrophysics Data System (ADS)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    In the summer of 2008, the Alaska Volcano Observatory (AVO) successfully forecast eruption at an unmonitored volcano, Kasatochi, and was unable to forecast eruption at a well monitored volcano, Okmok. We use these case studies to explore the limitations and opportunities of seismically monitored and unmonitored systems and to evaluate situations when we can expect to succeed and when we must expect to fail in eruption forecasting. Challenges in forecasting eruptions include interpreting seismicity in context of volcanic history, developing a firm understanding of distance scales over which pre- and co-eruptive seismic signals are observed, and improving our ability to discriminate processes causing tremor. Kasatochi Volcano is a 3 km wide island in the central Aleutian Islands with no confirmed historical activity. Little is known about the eruptive history of the volcano. It was not considered an immediate threat until 3 days prior to eruption. A report of ground shaking by a biology field crew on the island on August 4 was the first indication of unrest. On August 6 a vigorous seismic swarm became apparent on the nearest seismic stations 40 km distant. The aviation color code/volcano alert level at Kasatochi was increased to Yellow/Advisory in response to increasing magnitude and frequency of earthquakes. The color code/alert level was increased to Orange/Watch on August 7 when volcanic tremor was observed in the wake of the largest earthquake in the sequence, a M 5.6. Three hours after the onset of volcanic tremor, eruption was confirmed by satellite data and the color code/alert level increased to Red/Warning. Eruption forecasting was possible only due to the exceptionally large moment release of pre-eruptive seismicity. The key challenge in evaluating the situation was distinguishing between tectonic activity and a volcanic swarm. It is likely there were weeks to months of precursory seismicity, however little instrumental record exists due to the lack of a

  6. Ground deformation of Tenerife volcano island revealed by 1992-2005 DInSAR time series:

    NASA Astrophysics Data System (ADS)

    Tizzani, P.

    2009-04-01

    We study the state of deformation of Tenerife Island using Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Small BAseline Subset (SBAS) DInSAR algorithm to radar images acquired from 1992 to 2005 by ERS sensors to determine the deformation rate distribution and the time series for the coherent pixels identified in the island. Our analysis reveals that the summit area of the volcanic edifice is characterized by a continuous subsidence extending well beyond Las Cañadas caldera rim and corresponding to the intrusive core of the island. These results, coupled with GPS ones, structural and geological information and deformation modelling, suggest that the intrusive complex is subsiding into a weak lithosphere and that the volcanic edifice is in a state of compression. We also detect more localized deformation patterns correlated with water table changes and variations in the time deformation associated with the seismic crisis in 2004.

  7. Towards a Proactive Risk Mitigation Strategy at La Fossa Volcano, Vulcano Island

    NASA Astrophysics Data System (ADS)

    Biass, S.; Gregg, C. E.; Frischknecht, C.; Falcone, J. L.; Lestuzzi, P.; di Traglia, F.; Rosi, M.; Bonadonna, C.

    2014-12-01

    A comprehensive risk assessment framework was built to develop proactive risk reduction measures for Vulcano Island, Italy. This framework includes identification of eruption scenarios; probabilistic hazard assessment, quantification of hazard impacts on the built environment, accessibility assessment on the island and risk perception study. Vulcano, a 21 km2 island with two primary communities host to 900 permanent residents and up to 10,000 visitors during summer, shows a strong dependency on the mainland for basic needs (water, energy) and relies on a ~2 month tourism season for its economy. The recent stratigraphy reveals a dominance of vulcanian and subplinian eruptions, producing a range of hazards acting at different time scales. We developed new methods to probabilistically quantify the hazard related to ballistics, lahars and tephra for all eruption styles. We also elaborated field- and GIS- based methods to assess the physical vulnerability of the built environment and created dynamic models of accessibility. Results outline the difference of hazard between short and long-lasting eruptions. A subplinian eruption has a 50% probability of impacting ~30% of the buildings within days after the eruption, but the year-long damage resulting from a long-lasting vulcanian eruption is similar if tephra is not removed from rooftops. Similarly, a subplinian eruption results in a volume of 7x105 m3 of material potentially remobilized into lahars soon after the eruption. Similar volumes are expected for a vulcanian activity over years, increasing the hazard of small lahars. Preferential lahar paths affect critical infrastructures lacking redundancy, such as the road network, communications systems, the island's only gas station, and access to the island's two evacuation ports. Such results from hazard, physical and systemic vulnerability help establish proactive volcanic risk mitigation strategies and may be applicable in other island settings.

  8. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  9. Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands

    NASA Astrophysics Data System (ADS)

    Yudovskaya, Marina A.; Distler, Vadim V.; Chaplygin, Ilya V.; Mokhov, Andrew V.; Trubkin, Nikolai V.; Gorbacheva, Sonya A.

    2006-03-01

    The distribution of gold in high-temperature fumarole gases of the Kudryavy volcano (Kurile Islands) was measured for gas, gas condensate, natural fumarolic sublimates, and precipitates in silica tubes from vents with outlet temperatures ranging from 380 to 870°C. Gold abundance in condensates ranges from 0.3 to 2.4 ppb, which is significantly lower than the abundances of transition metals. Gold contents in zoned precipitates from silica tubes increase gradually with a decrease in temperature to a maximum of 8 ppm in the oxychloride zone at a temperature of approximately 300°C. Total Au content in moderate-temperature sulfide and oxychloride zones is mainly a result of Au inclusions in the abundant Fe-Cu and Zn sulfide minerals as determined by instrumental neutron activation analysis. Most Au occurs as a Cu-Au-Ag triple alloy. Single grains of native gold and binary Au-Ag alloys were also identified among sublimates, but aggregates and crystals of Cu-Au-Ag alloy were found in all fumarolic fields, both in silica tube precipitates and in natural fumarolic crusts. Although the Au triple alloy is homogeneous on the scale of microns and has a composition close to (Cu,Ni,Zn)3(Au,Ag)2, transmission electron microscopy (TEM) shows that these alloy solid solutions consist of monocrystal domains of Au-Ag, Au-Cu, and possibly Cu2O. Gold occurs in oxide assemblages due to the decomposition of its halogenide complexes under high-temperature conditions (650-870°C). In lower temperature zones (<650°C), Au behavior is related to sulfur compounds whose evolution is strongly controlled by redox state. Other minerals that formed from gas transport and precipitation at Kudryavy volcano include garnet, aegirine, diopside, magnetite, anhydrite, molybdenite, multivalent molybdenum oxides (molybdite, tugarinovite, and ilsemannite), powellite, scheelite, wolframite, Na-K chlorides, pyrrhotite, wurtzite, greenockite, pyrite, galena, cubanite, rare native metals (including Fe, Cr, Mo

  10. 3-D Anisotropic Ambient Noise Tomography of Piton De La Fournaise Volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Rivet, D. N.; Landes, M.; Shapiro, N.

    2014-12-01

    We cross-correlate four years of seismic noise continuously recorded by the seismic monitoring network of the Piton de la Fournaise volcano (La Réunion Island). The network is composed of 40 stations 27 of which have 3-component sensors. We use Vertical-to-Vertical (ZZ) cross-correlation components from all stations and Radial-to-Radial (RR) and Transverse-to-Transverse (TT) cross-correlations computed from 3-component records. The group velocity dispersion curves for Rayleigh and Love waves are measured using a Frequency-Time Analysis. We average measurements from ZZ and RR components to finally obtain 577 Rayleigh-wave dispersion curves. 395 Love-wave dispersion curves are obtained from the TT cross-correlations. We then regionalize the group velocities measurements to construct 2D dispersion maps at a set of periods between 0.4 and 8 s. Finally, we construct a 3D shear-velocity model down to 3 km below the sea level by jointly inverting the Rayleigh and Love wave group velocity maps with a Neighborhood Algorithm and with taking into account the radial anisotropy. The distribution of 3-D Voigt averaged S-wave velocities shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The most western high-velocity anomaly is located below the actual "Plaine des Sables" and could be attributed to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body is located below the summit of the volcano and likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly is located below the "Grandes Pentes" and the "Grand Brûlé" areas and is thought to be an imprint of the solidified magma chamber of the ancient dismantled "Les Alizé" volcano. The distribution of the radial anisotropy shows two main anomalies: a positive anisotropy (Vsh>Vsv) above sea level highlighting the recent edifice of Piton de

  11. Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Pozgay, Sara H.; Shore, Patrick J.; Sauter, Allan W.; White, Randall A.

    2005-09-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that commonly deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a Strekheisen STS-2 seismograph deployed in an underground insulated chamber 7 km west of the active vent. An ultra-long period signal with a dominant period of several hours was recorded on the E-W component beginning at 06:20 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center. The signal is much smaller on the N-S component and absent on the vertical component, suggesting it results from tilt that is approximately radial with respect to the active vent. An estimate of tilt as a function of time is recovered by deconvolving the record to acceleration and dividing by the acceleration of gravity. The record indicates an initial episode of tilt downward away from the volcanic center from 06:20-09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses, recording deflation, from 09:30 until 17:50, after which the tilt signal becomes insignificant. The inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events subsequently resumed after the end of the deflationary tilt. The maximum tilt of 2 microradians can be used to estimate the volume of the source inflation (~2 million m3), assuming a simple Mogi source model. These calculations are consistent with other estimates of source volume if reasonable source depths are assumed. Examination of broadband records of other eruptions may disclose further previously unrecognized tilt signals.

  12. Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands

    USGS Publications Warehouse

    Wiens, D.A.; Pozgay, S.H.; Shore, P.J.; Sauter, A.W.; White, R.A.

    2005-01-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that commonly deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a Strekheisen STS-2 seismograph deployed in an underground insulated chamber 7 km west of the active vent. An ultra-long period signal with a dominant period of several hours was recorded on the E-W component beginning at 06:20 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center. The signal is much smaller on the N-S component and absent on the vertical component, suggesting it results from tilt that is approximately radial with respect to the active vent. An estimate of tilt as a function of time is recovered by deconvolving the record to acceleration and dividing by the acceleration of gravity. The record indicates an initial episode of tilt downward away from the volcanic center from 06:20-09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses, recording deflation, from 09:30 until 17:50, after which the tilt signal becomes insignificant. The inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events subsequently resumed after the end of the deflationary tilt. The maximum tilt of 2 microradians can be used to estimate the volume of the source inflation (???2 million in m3), assuming a simple Mogi source model. These calculations are consistent with other estimates of source volume if reasonable source depths are assumed. Examination of broadband records of other eruptions may disclose further previously unrecognized tilt signals. Copyright 2005 by the American

  13. Long- and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Padilla, G.; Calvo, D.; Padrón, E.; Melian, G.; Dionis, S.; Nolasco, D.; Barrancos, J.; Rodríguez, F.; Pérez, N.

    2012-04-01

    Lanzarote Island is an emergent part of the East Canary Ridge and it is situated approximately 100 km from the NW coast of Morocco, covering an area of about 795km2. The largest historical eruption of the Canary Islands, Timanfaya, took place during 1730-36 in this island when long-term eruptions from a NE-SW-trending fissure formed the Montañas del Fuego. The last eruption at Lanzarote Island occurred during 1824, Tinguaton volcano, and produced a much smaller lava flow that reached the SW coast. At present, one of the most prominent phenomena at Timanfaya volcanic field is the high maintained superficial temperatures occurring in the area since the 1730 volcanic eruption. The maximum temperatures recorded in this zone are 605°C, taken in a slightly inclined well 13 m deep. Since fumarolic activity is absent at the surface environment of Lanzarote, to study the diffuse CO2 emission becomes an ideal geochemical tool for monitoring its volcanic activity. Soil CO2 efflux surveys were conducted throughout Timanfaya volcanic field and surrounding areas during the summer periods of 2006, 2007, 2008, 2009, fall period of 2010 and winter, spring and summer periods of 2011 to investigate long and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano. Soil CO2 efflux surveys were undertaken at Timanfaya volcanic field always under stable weather conditions to minimize effects of meteorological conditions on the CO2 at the soil atmosphere. Approximately 370-430 sampling sites were selected at the surface environment of Timanfaya to obtain an even distribution of the sampling points over the study area. The accumulation chamber method (Parkinson et al., 1981) was used to perform soil CO2 efflux measurements in-situ by means of a portable non dispersive infrared (NDIR) CO2 analyzer, which was interfaced to a hand size computer that runs data acquisition software. At each sampling site, soil temperature at 15 and 40cm depth was also measured by

  14. The role of slab melting in the petrogenesis of high-Mg andesites: evidence from Simbo Volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    König, S.; Schuth, S.; Münker, C.; Qopoto, C.

    2007-01-01

    The petrogenesis of high-Mg andesites (HMA) in subduction zones involves shallow melting of refractory mantle sources or, alternatively, the interaction of ascending slab-derived melts with mantle peridotite. To unravel the petrogenesis of HMA, we report major, trace element and Sr-Nd-Hf-Pb isotope data for a newly found occurrence of HMA in the New Georgia group, Solomon Islands, SW-Pacific. Volcanism in the Solomon Islands was initiated by subduction of the Pacific plate beneath the Indian-Australian plate until a reversal of subduction polarity occurred ca. 10 Ma ago. Currently, the Indian-Australian plate is subducted northeastwards along the San Cristobál trench, forming the younger and still active southwestern Solomon island arc. However, a fossil slab of Pacific crust is still present beneath the arc. The edifice of the active volcano Simbo is located directly in the San Cristobál trench on top of the subducting Indian-Australian plate. Simbo Island lies on top of a strike-slip fault of the adjacent Woodlark spreading centre that is subducted beneath the Pacific plate. Geochemical and petrological compositions of volcanic rocks from Simbo are in marked contrast to those of volcanic rocks from islands north of the trench (mostly arc basalts). Simbo-type rocks are opx-bearing HMA, displaying 60-62 wt% SiO2 but rather primitive Mg-Ni-Cr characteristics with 4-6 wt% MgO, up to 65 ppm Ni, up to 264 ppm Cr and Mg# from 67 to 75. The compositions of the Simbo andesites are explained by a binary mixture of silicic and basaltic melts. Relict olivine phenocrysts with Fo88-90 and reaction-rims of opx also support a mixing model. The basaltic endmember is similar to back-arc basalts from the Woodlark Ridge. A slab melt affinity of the silicic mixing component is indicated by Gd(N)/Yb(N) of up to 2.2 that is higher if compared to MORB and other arc basalts from the Solomon Islands. 87Sr/86Sr, ɛNd and ɛHf values in the analysed rocks range from 0.7035 to 0.7040, +6

  15. Magma chamber history related to the shield building stage of Piton des Neiges volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Berthod, Carole; Michon, Laurent; Famin, Vincent; Bascou, Jérôme; Bachelery, Patrick

    2016-04-01

    reconstruction, gravimetric data (Gailler & Lénat, 2012) and submarine sedimentation (Lebas, 2012). It would have been built prior to 2 Ma and subsequently experienced a large north-directed destabilization. The PdN volcano later reconstructed south of the initial magmatic centre. Chevallier, L., & Vatin-Perignon, N. (1982). Volcano-structural evolution of Piton des Neiges, Reunion Island, Indian Ocean. Bulletin of Volcanology, 45(4), 285-298. Gailler, L.-S., & Lénat, J.-F. (2012). Internal architecture of La Réunion (Indian Ocean) inferred from geophysical data. Journal of Volcanology and Geothermal Research, 221-222(C), 83-98. http://doi.org/10.1016/j.jvolgeores.2012.01.015 Lebas, E. (2012). Processus de démantèlement des édifices volcaniques au cours de leur évolution : Application à La Réunion et Montserrat et comparaison avec d'autres édifices. Unpublished PhD Thesis, 1-379. Upton, B. G. J., & Wadsworth, W. (1972). Peridotitic and gabbroic rocks associated with the shield-forming lavas of Réunion. Contributions to Mineralogy and Petrology, 35, 139-158.

  16. Rock fall photogrammetric monitoring in the active crater of Piton de la Fournaise volcano, La Reunion Island

    NASA Astrophysics Data System (ADS)

    Hibert, Clément; Dewez, Thomas; Mangeney, Anne; Grandjean, Gilles; Boissier, Patrice; Catherine, Philippe; Kowalski, Philippe

    2010-05-01

    The collapse of the active crater at Piton de la Fournaise volcano, La Reunion Island, 5th April 2007, offers a rare opportunity to observe frequent rock fall and granular landslides, and test new monitoring techniques. Events concern volumes ranging from single blocks to more massive cliff collapse. The purpose of the presentation is two fold: first, we present a comparison between a Digital Terrain Model (DTM) obtained prior to crater collapse and a DTM extracted from aerial photographs shot in October 2010 (before the eruptive crisis of November 2009 and January 2010). This provides an assessment of morphological changes at the scale of the crater. The second purpose is to describe slope instabilities on the south-western flank of the crater observed since October 2009. These ground-based observations were obtained from a pair of photogrammetric stations deployed along the northern and eastern edges of the crater. These works were conducted within UNDERVOLC project. With this monitoring system we mapped zones affected by rockfalls (departure and accumulation areas) and propose a first estimate of volumes of lava produced by the eruption affecting the inside of the crater since January 2.

  17. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  18. Seasonal and distributional patterns of seabirds along the Aleutian Archipelago

    USGS Publications Warehouse

    Renner, M.; Hunt, G.L., Jr.; Piatt, J.F.; Byrd, G.V.

    2008-01-01

    The Aleutian Archipelago is of global importance to seabirds during the northern summer, but little is known about seabird use of these waters during winter. We compare summer and winter abundances of seabirds around 3 islands: Buldir in the western, Kasatochi in the central, and Aiktak in the eastern Aleutians. The density of combined seabird biomass in nearshore marine waters was higher in summer than in winter at Buldir and Kasatochi, but was higher in winter at Aiktak, despite the departure of abundant migratory species. Comparing foraging guilds, we found that only piscivores increased at the western and central sites in winter, whereas at the eastern site several planktivorous species increased as well. The only planktivore remaining in winter at the central and western sites in densities comparable to summer densities was whiskered auklet Aethia pygmaea. Crested auklet Aethia cristatella and thick-billed murre Uria lomvia showed the greatest proportional winter increase at the eastern site. The seasonal patterns of the seabird communities suggest a winter breakdown of the copepod-based food web in the central and western parts of the archipelago, and a system that remains rich in euphausiids in the eastern Aleutians. We suggest that in winter crested auklets take the trophic role that short-tailed shearwaters Puffinus tenuirostris occupy during summer. We hypothesize that advection of euphausiids in the Aleutian North Slope Current is important for supporting the high biomass of planktivores that occupy the Unimak Pass region on a year-round basis. ?? Inter-Research 2008.

  19. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i

    USGS Publications Warehouse

    Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.

    1998-01-01

    From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.

  20. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Cronin, Shane J.; Smith, Ian E. M.; Sohn, Young Kwan; Maas, Roland

    2012-09-01

    Jeju Island is the emergent portion of a basaltic volcanic field developed over the last c. 1.8 Ma on continental crust. Initial volcanism comprised dispersed, small-volume (< 0.01 km3) alkali basaltic eruptions that incrementally constructed a tuff pile. Lavas and scoria from continuing small-scaled monogenetic volcanism capped this foundation. From c. 0.4 Ma large-volume (> 1 km3) eruptions began, with lavas building a composite shield. Three magma suites can be recognized: Early Pleistocene high-Al alkali (HAA), and Late Pleistocene to Holocene low-Al alkali (LAA) and subalkali (SA). The chemical similarity between small-volume and primitive large-volume eruptions suggests analogous parent magmas and fractionation histories that are independent of erupted volumes. The large-volume magmas evolved to trachyte, which erupted in two distinct episodes: the HAA Sanbangsan suite at c. 750 ka and the LAA Hallasan suite at c. 25 ka. Sr and Nd isotopes indicate that the early trachytes were contaminated by upper crustal material, whereas the later magmas were not. Both suites bear a Nd isotope signature indicative of lower crustal interaction. Sub-suites transitional between HAA and LAA, and between LAA and SA, indicate that melting occurred in discrete, but adjacent, mantle domains. Throughout the evolution of this volcano, each magma batch erupted separately, and a centralized plumbing system was never created. The Island's central peak (Mt. Halla 1950 m a.s.l.) is therefore not a sensu stricto stratovolcano, but marks the point of peak magma output in a distributed magmatic system. Jeju's shape and topography thus represent the spatial variation of fertility of the mantle below it. An increase in melt production in the Late Pleistocene was related to a deepening of the melting zone due to regional tectonic rearrangements. Temporal coincidences between magmatic pulses on Jeju and large-scale caldera eruptive events along the nearest subduction system in Kyushu, Japan

  1. Volcano seismicity in Alaska

    NASA Astrophysics Data System (ADS)

    Buurman, Helena

    I examine the many facets of volcano seismicity in Alaska: from the short-lived eruption seismicity that is limited to only the few weeks during which a volcano is active, to the seismicity that occurs in the months following an eruption, and finally to the long-term volcano seismicity that occurs in the years in which volcanoes are dormant. I use the rich seismic dataset that was recorded during the 2009 eruption of Redoubt Volcano to examine eruptive volcano seismicity. I show that the progression of magma through the conduit system at Redoubt could be readily tracked by the seismicity. Many of my interpretations benefited greatly from the numerous other datasets collected during the eruption. Rarely was there volcanic activity that did not manifest itself in some way seismically, however, resulting in a remarkably complete chronology within the seismic record of the 2009 eruption. I also use the Redoubt seismic dataset to study post-eruptive seismicity. During the year following the eruption there were a number of unexplained bursts of shallow seismicity that did not culminate in eruptive activity despite closely mirroring seismic signals that had preceded explosions less than a year prior. I show that these episodes of shallow seismicity were in fact related to volcanic processes much deeper in the volcanic edifice by demonstrating that earthquakes that were related to magmatic activity during the eruption were also present during the renewed shallow unrest. These results show that magmatic processes can continue for many months after eruptions end, suggesting that volcanoes can stay active for much longer than previously thought. In the final chapter I characterize volcanic earthquakes on a much broader scale by analyzing a decade of continuous seismic data across 46 volcanoes in the Aleutian arc to search for regional-scale trends in volcano seismicity. I find that volcanic earthquakes below 20 km depth are much more common in the central region of the arc

  2. Transient volcano deformation sources imaged with interferometric synthetic aperture radar: Application to Seguam Island, Alaska

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhong

    2004-01-01

    Thirty interferometric synthetic aperture radar (InSAR) images, spanning various intervals during 1992–2000, document coeruptive and posteruptive deformation of the 1992–1993 eruption on Seguam Island, Alaska. A procedure that combines standard damped least squares inverse methods and collective surfaces, identifies three dominant amorphous clusters of deformation point sources. Predictions generated from these three point source clusters account for both the spatial and temporal complexity of the deformation patterns of the InSAR data. Regularized time series of source strength attribute a distinctive transient behavior to each of the three source clusters. A model that combines magma influx, thermoelastic relaxation, poroelastic effects, and petrologic data accounts for the transient, interrelated behavior of the source clusters and the observed deformation. Basaltic magma pulses, which flow into a storage chamber residing in the lower crust, drive this deformational system. A portion of a magma pulse is injected into the upper crust and remains in storage during both coeruption and posteruption intervals. This injected magma degasses and the volatile products accumulate in a shallow poroelastic storage chamber. During the eruption, another portion of the magma pulse is transported directly to the surface via a conduit roughly centered beneath Pyre Peak on the west side of the island. A small amount of this magma remains in storage during the eruption, and posteruption thermoelastic contraction ensues. This model, made possible by the excellent spatial and temporal coverage of the InSAR data, reveals a relatively simple system of interrelated predictable processes driven by magma dynamics.

  3. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  4. Rapid time scales of basalt to andesite differentiation at Anatahan volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Reagan, Mark; Tepley, Frank J.; Gill, James B.; Wortel, Matthew; Hartman, Brian

    2005-08-01

    We present comprehensive U-series data ( 238U- 234U- 230Th- 226Ra- 210Pb- 210Po and ( 230Th)/( 232Th)) for an andesite from an oceanic arc. The juvenile Anatahan andesite has U-Th systematics colinear with other historical Mariana volcanic rocks, and is most similar to those of the other volcano in the Mariana arc with a significant proportion of silicic andesite: Uracas. Like Uracas, the parental basalt for the Anatahan andesite was generated by relatively low degrees of flux melting from a source previously enriched in a sediment component from the subducting slab. However, the Anatahan andesite is much more strongly enriched in 226Ra over 230Th than Uracas lavas, and has one of the highest ( 226Ra)/( 232Th) ratios of siliceous andesites globally. The long-lived disequilibria between 238U- 230Th- 226Ra in the Anatahan andesite are inherited from basalt genesis, not created during differentiation or eruption. Thus, the time between genesis of the parental basalt and eruption of andesite at Anatahan is shorter than for Uracas. Moreover, the near-equilibrium ( 210Pb)/( 226Ra) value indicates that the magma body did not persistently lose or gain 222Rn for more than 2 years before eruption. This permits differentiation of the parental basalt to form andesite within this 2-year time period, although a differentiation time period between 100 and a few thousand years also is possible. The relative activities between 210Po and 210Pb suggest erupted scoria degassed Po less than most lavas despite eruption plume heights of ˜10 km, which further suggests an unusually rapid ascent before eruption. These data also show that juvenile material was ejected from the first day of the eruption. Phreatomagmatic ejecta overlying the main Anatahan scoria is strongly enriched in 210Po over 210Pb, indicating that a significant proportion of the Po degassed from rising magmas sublimes in its shallow fumarolic conduit system.

  5. Geochemical Characteristics of the Lavas from the "Adventive Cones" of Piton de La Fournaise Volcano (La Reunion Island)

    NASA Astrophysics Data System (ADS)

    Valer, M.; Bachelery, P.; Schiano, P.; Upton, B. G. J.

    2015-12-01

    Piton de la Fournaise, the youngest volcano of La Réunion Island, is renowned for being frequently active. Whereas the current activity is mainly located within the "Enclos Fouqué" caldera, ~100 strombolian cones lie on the volcano's flanks, thought to date from ~300 years to a few thousand years. Our study focuses on these "adventive cones", by studying bulk-rock major and trace element compositions, mineral phase compositions and olivine-hosted melt inclusions. The Piton de la Fournaise lavas (younger than ~450 ka) have been subdivided into three compositional groups (see attached figure, and Lénat et al. 2012). Almost all recent and historical lavas belong to two of these groups: "cotectic basalts" and "olivine-rich basalts", marked by a constant CaO/Al2O3 ratio of ~0.8, and MgO content ranging from 5 to 30 wt % reflecting different degrees of olivine accumulation. The third group, called here "mid-alkaline basalts", corresponds to compositions commonly encountered for the "adventive cones". It mainly consists of magnesian basalts at 7.55 - 10.24 wt% MgO and CaO/Al2O3 values down to 0.55. At constant MgO content, this group shows higher alkali content and a relative deficiency in Ca compared to the historic basalts. The "adventive cones" lavas usually contain magnesian olivines (Fo > 86). Such crystals are not at the equilibrium with their host lava, raising thus the question of the recycling processes. According to Bureau et al. (1998; 1999), magnesian olivines come from deep storage levels. The specific geochemistry of the "adventive cones" lavas is attributed either to a high-pressure fractionation of a clinopyroxene-rich assemblage (Albarède et al. 1997), or to an assimilation process involving wehrlite-gabbro cumulates (e.g. Salaün et al. 2010). Our new data show that the source of these magmas is chemically homogeneous to that of current magmas. However, their ascent clearly bypasses the current lava reservoirs, especially the shallow magma chamber.

  6. Zn isotope compositions of the thermal spring waters of La Soufrière volcano, Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Chen, Jiu-Bin; Gaillardet, Jérôme; Dessert, Céline; Villemant, Benoit; Louvat, Pascale; Crispi, Olivier; Birck, Jean-Louis; Wang, Yi-Na

    2014-02-01

    To trace the sources and pathways of Zn in hydrothermal systems, the Zn isotope compositions of seventeen water samples from eight thermal springs and six gas samples from two fumaroles from La Soufrière, an active volcano on Guadeloupe Island (French West Indies, FWI), were analyzed using a method adapted for purifying Zn from Fe- and SO4-enriched thermal solutions. The fumaroles are enriched in Zn 100 to 8000 times compared to the local bedrock and have isotopic compositions (δ66Zn values from +0.21‰ to +0.35‰) similar to or slightly higher than fresh andesite (+0.21‰). The enrichment of Zn in the thermal springs compared with the surface waters shows that Zn behaves as a soluble element during hydrothermal alteration but is significantly less mobile than Na. The δ66Zn values of most of the spring waters are relatively constant (approximately 0.70‰), indicating that the thermal springs from La Soufrière are enriched in heavy isotopes (i.e., 66Zn) compared to the host rocks (from -0.14‰ to +0.42‰). Only three thermal springs have lower δ66Zn values (as low as -0.43%). While the Zn in the fumaroles is essentially derived from magma degassing, which is consistent with a previous study on Merapi volcano (Toutain et al., 2008), we show that the Zn in the thermal springs is mainly derived from water-rock interactions. The 66Zn-enriched isotopic signature in most of the spring waters can be explained qualitatively by the precipitation at depth of sulfide minerals that preferentially incorporate the light isotopes. This agrees with the isotopic fractionation that was recently calculated for aqueous complexes of Zn. The few thermal springs with lower δ66Zn values also have low Zn concentrations, indicating the preferential scavenging of heavy Zn isotopes in the hydrothermal conduits. This study shows that unlike chemical weathering under surface conditions, hydrothermal alteration at high temperatures significantly fractionates Zn isotopes and enriches

  7. Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island.

    PubMed

    Meintanis, Christos; Chalkou, Kalliopi I; Kormas, Konstantinos Ar; Karagouni, Amalia D

    2006-03-01

    One-hundred and fifty different thermophilic bacteria isolated from a volcanic island were screened for detection of an alkane hydroxylase gene using degenerated primers developed to amplify genes related to the Pseudomonas putida and Pseudomonas oleovorans alkane hydroxylases. Ten isolates carrying the alkJ gene were further characterized by 16s rDNA gene sequencing. Nine out of ten isolates were phylogenetically affiliated with Geobacillus species and one isolate with Bacillus species. These isolates were able to grow in liquid cultures with crude oil as the sole carbon source and were found to degrade long chain crude oil alkanes in a range between 46.64% and 87.68%. Results indicated that indigenous thermophilic hydrocarbon degraders of Bacillus and Geobacillus species are of special significance as they could be efficiently used for bioremediation of oil-polluted soil and composting processes. PMID:16456612

  8. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  9. Environmental contaminants in bald eagle eggs from the Aleutian archipelago.

    PubMed

    Anthony, Robert G; Miles, A Keith; Ricca, Mark A; Estes, James A

    2007-09-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (delta13C) and nitrogen (delta15N). Concentrations of polychlorinated biphenyls (SigmaPCBs), p,p'-dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of SigmaPCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (delta13C) or nitrogen (delta15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. PMID:17702538

  10. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    USGS Publications Warehouse

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  11. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  12. Chronic exposure to volcanic air pollution and DNA damage in Furnas Volcano (São Miguel Island, Azores, Portugal) inhabitants

    NASA Astrophysics Data System (ADS)

    Linhares, Diana; Garcia, Patricia; Silva, Catarina; Ferreira, Teresa; Barroso, Joana; Camarinho, Ricardo; Rodrigues, Armindo

    2015-04-01

    Many studies in volcanic air pollution only have in consideration the acute toxic effects of gas or ash releases however the impact of chronic exposure to ground gas emissions in human health is yet poorly known. In the Azores archipelago (Portugal), São Miguel island has one of the most active and dangerous volcanoes: Furnas Volcano. Highly active fumarolic fields, hot springs and soil diffuse degassing phenomena are the main secondary volcanic phenomena that can be seen at the volcano surroundings. One of the main gases released in these diffuse degassing areas is radon (222Rn), which decay results in solid particles that readily settle within the airways. These decay particles emit alpha radiation that is capable of causing severe DNA damage that cumulatively can eventually cause cancer. Previous studies have established that chronic exposure to chromosome-damaging agents can lead to the formation of nuclear anomalies, such as micronuclei that is used for monitoring DNA damage in human populations. The present study was designed to evaluate whether chronic exposure to volcanic air pollution, associated to 222Rn, might result in DNA damage in human oral epithelial cells. A cross sectional study was performed in a study group of 142 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area), and a reference group of 368 individuals inhabiting an area without these secondary manifestations of volcanism (non-hydrothermal area). For each individual, 1000 buccal epithelial cells were analyzed for the frequency of micronucleated cells (MNc) and the frequency of cells with other nuclear anomalies (ONA: pyknosis, karyolysis and karyorrhexis), by using the micronucleus assay. Information on lifestyle factors and an informed consent were obtained from each participant. Assessment of indoor radon was performed with the use of radon detectors. Data were analyzed with logistic regression models, adjusted

  13. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    The volcanic activity of Anatahan that began in 2003 has declined such as faint emission of volcanic gas from the crater and scarcity of volcanic tremor in 2009. Our team carried out geological, geodetic and seismological observation repeatedly till mid-2009 from the beginning of the eruption. The early phase of the eruption (2003-2004) can be characterized by magmatic and phreatomagmatic explosions, contrasting to mainly phreatic nature in the later phase (2005-2008). The active crater (Eastern Crater) was widened and deepened (much below the sea level) as the eruption progressed. Dominant products of phreatic explosions comprise of thick accumulation of thin layers of fine ash. A rough estimate of the total volume during these 5 years is as much as 1 km3, close to the volume of materials lost by enlargement of the active crater. Seismic observation was carried out during mid-2008 and mid-2009 by settling 5 temporary stations covering the whole of the island, each of which includes a 3 components short-period seismometer with corner frequency of 1Hz and a low-power consumption digital data recorder with 24-bits AD resolutions. GPS campaign observation was repeated in the same station during this period. VT and LP event were observed, though very low in occurrence in this period. Hypocenters of VT and LP events show all events occurred at the depth of less than 8km around the eastern crater. Among them, LP events occurred in the shallower (less than 3km) region. The error in the depth may be not more than a few kilometers, but that in the epicenter should be smaller than 1km because the most events are located inside of the seismic network. Moreover, the tremors observed in the 2008 summer continued for about 3 weeks. The amplitude increased gradually, kept at the maximum, and stopped abruptly. During the maximum amplitude period, ash emission was observed by VAAC. Estimated reduced displacement at the maximum is about 1 cm2, typical of a hydro-magmatic eruption

  14. The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Roult, Geneviève; Michon, Laurent; Barruol, Guilhem; Muro, Andrea Di

    2014-04-01

    Seismic records from La Réunion Island very broadband Geoscope station are investigated to constrain the link between the 2007 eruptive sequence and the related caldera collapse of the Piton de la Fournaise volcano. Tilt estimated from seismic records reveals that the three 2007 eruptions belong to a single inflation-deflation cycle. Tilt trend indicates that the small-volume summit eruption of 18 February occurred during a phase of continuous inflation that started in January 2007. Inflation decelerated 24 days before a second short-lived, small-volume eruption on 30 March, almost simultaneous with a sudden, large-scale deflation of the volcano. Deflation rate, which had stabilized at relatively low level, increased anew on 1 April while no magma was erupted, followed on 2 April by a major distal eruption and on 5 April by a summit caldera collapse. Long-term tilt variation suggests that the 2007 eruptive succession was triggered by a deep magma input.

  15. Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: implications for the origin of island arc melts

    NASA Astrophysics Data System (ADS)

    Lin, P. N.; Stern, R. J.; Morris, J.; Bloomer, S. H.

    1990-09-01

    Nd- and Sr-isotopic data are reported for lavas from 23 submarine and 3 subaerial volcanoes in the northern Mariana and southern Volcano arcs. Values of ɛNd range from +2.4 to +9.5 whereas 87Sr/86Sr ranges from 0.70319 to 0.70392; these vary systematically between and sometimes within arc segments. The Nd-and Sr-isotopic compositions fall in the field of ocean island basalt (OIB) and extend along the mantle array. Lavas from the Volcano arc, Mariana Central Island Province and the southern part of the Northern Seamount Province have ɛNd to +10 and 87Sr/86Sr=0.7032 to 0.7039. These are often slightly displaced toward higher 87Sr/86Sr at similar ɛNd. In contrast, those lavas from the northern part of the Mariana Northern Seamount Province as far north as Iwo Jima show OIB isotopic characteristics, with ɛNd and 87Sr/86Sr=0.7035 to 0.7039. Plots of 87Sr/86Sr and ɛNd versus Ba/La and (La/Yb)n support a model in which melts from the Mariana and Volcano arcs are derived by mixing of OIB-type mantle (or melts therefrom) and a metasomatized MORB-type mantle (or melts therefrom). An alternate interpretation is that anomalous trends on the plots of Nd- and Sr-isotopic composition versus incompatible-element ratios, found in some S-NSP lavas, suggest that the addition of a sedimentary component may be locally superimposed on the two-component mixing of mantle end-members.

  16. Lava Textures, Magma Crystallization History, and the Dynamics of Merapi and Aleutian Mush Columns

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.; Del Marmol, M. A.

    2014-12-01

    The subsurface dynamics of magma in mush columns beneath arc volcanoes is recorded in the textures of the basic lavas. A detailed comparison of lava textures from large mature volcanoes in Indonesia (Merapi) and the Aleutian Islands (Adak and Atka), shows remarkably similar, often indistinguishable, textures of high alumina basalts (HAB) and basaltic andesites (BA). We suggest a systematic characterization of these distinctive textures into a few simple categories reflecting the subsurface history of crystallization within solidification fronts (SFs) and subsequent transport dynamics. The HABs are strongly plagioclase-phyric and of two main groups: A1 consists of large, idiomorphic, mildly zoned, plagioclase (20-30 vol.%) with small amounts of olivine (2-8%) set in a finely crystalline groundmass of these same phases; A2 is similar, but contains an additional pervasive population of large 'old' plagioclase, rounded, often highly zoned, and sometimes broken; A1+ is a subclass of A1 where traces of 'old' plagioclase are present. Similar categories exist in the BA lavas except overall crystallinity is higher and olivine is replaced by large clinopyroxenes containing or mantled with magnetite. In a temporal stratigraphic sense, the early lavas are generally HAB A1 types and transition into, sometimes alternating, HAB A2 types followed by BA types. The initial establishment of the mush column is by hot, highly mobile primary magmas, followed by increasingly more thermally mature magmas containing debris from disrupted SFs. The detailed nature of this debris, its variation in time, and the volumes give important insights on the size and vigor of the mush column staging chambers.

  17. At-sea observations of marine birds and their habitats before and after the 2008 eruption of Kasatochi volcano, Alaska

    USGS Publications Warehouse

    Drew, G.S.; Dragoo, D.E.; Renner, M.; Piatt, J.F.

    2010-01-01

    Kasatochi volcano, an island volcano in the Aleutian chain, erupted on 7-8 August 2008. The resulting ash and pyroclastic flows blanketed the island, covering terrestrial habitats. We surveyed the marine environment surrounding Kasatochi Island in June and July of 2009 to document changes in abundance or distribution of nutrients, fish, and marine birds near the island when compared to patterns observed on earlier surveys conducted in 1996 and 2003. Analysis of SeaWiFS satellite imagery indicated that a large chlorophyll-a anomaly may have been the result of ash fertilization during the eruption. We found no evidence of continuing marine fertilization from terrestrial runoff 10 months after the eruption. At-sea surveys in June 2009 established that the most common species of seabirds at Kasatochi prior to the eruption, namely crested auklets (Aethia cristatella) and least auklets (Aethia pusilla) had returned to Kasatochi in relatively high numbers. Densities from more extensive surveys in July 2009 were compared with pre-eruption densities around Kasatochi and neighboring Ulak and Koniuji islands, but we found no evidence of an eruption effect. Crested and least auklet populations were not significantly reduced by the initial explosion and they returned to attempt breeding in 2009, even though nesting habitat had been rendered unusable. Maps of pre- and post-eruption seabird distribution anomalies indicated considerable variation, but we found no evidence that observed distributions were affected by the 2008 eruption. ?? 2010 Regents of the University of Colorado.

  18. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. Evaluation of noise level and site response at Mt. Etna volcano and Aeolian Islands

    NASA Astrophysics Data System (ADS)

    D Amico, S.; Giampiccolo, E.; Maiolino, V.; Patanè, D.; Ursino, A.

    2003-04-01

    The aim of this work was to test the quality of the sites where the stations of the INGV-CT seismic network are installed. This because most of the installations will be soon improved with new broad-band sensors, which require a low level of background noise. Therefore, we investigated the noise level and estimated the site response at the seismic stations deployed at Mt. Etna and at Aeolian Islands, in order to evidence possible disturbs which can be related to anthropic activity, environmental factors and/or to the local soil conditions. Noise measurements were carried out using a portable digital seismic station equipped with a 3-component, 20 s sensor. The acquisition was performed both inside the vault structures where the remote stations are located and in proximity of them, on the outcropping terrain. The noise spectra were compared with the NLNM (New Low Noise Model) and NHNM (New High Noise Model) models described by Peterson (1993). A preliminary estimate of site response at each station, by applying the Nakamura (1989) technique, was also performed. The obtained results show, for some stations, higher noise levels mainly due to volcanic tremor and/or bad soil conditions. Moreover, in several cases, vault design need to be deeply reviewed and for some installations the substitution of the sites is required. References Nakamura, Y., (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly R of Report RTRI, 30, 25-33. Peterson, J., (1993). Observations and modelling of background seismic noise. Open File Report 93-322, U. S. Geological Survey, Albuquerque, NM.

  1. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  2. Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska

    USGS Publications Warehouse

    Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.

    1970-01-01

    Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.

  3. An investigation of the distribution of eruptive products on the shield volcanoes of the western Galapagos Islands using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Munro, Duncan C.; Rowland, Scott K.; Mouginis-Mark, Peter J.; Wilson, Lionel; Oviedo-Perez, Victor-Hugo

    1991-01-01

    Recent volcanic activity in the Galapagos Islands is concentrated on the two westernmost islands, Isla Isabela and Isla Fernandina. Difficult access has thus far prevented comprehensive geological field studies, so we examine the potential of remotely sensed data as a means of studying volcanic processes in the region. Volcan Wolf is used as an example of the analysis of SPOT HRV-1 data undertaken for each volcano. Landsat TM data are analyzed in an attempt to construct a relative age sequence for the recent eruptive activity on Isla Fernandina. No systematic variation in the surface reflectance of lava flows as a function of age could be detected with these data. Thus it was not possible to complete a study of the temporal distribution of volcanic activity.

  4. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. Aleutian Ancorinidae (Porifera, Astrophorida): Description of three new species from the genera Stelletta and Ancorina.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2014-01-01

    Two new species of the genus Stelletta and one new species of Ancorina are described from the Aleutian Islands of Alaska and compared to congeners of the region. This is the first record of the genus Ancorina in the North Pacific Ocean. Stelletta ovalae Tanita 1965 is also reported for the first time from the Bering Sea and Alaska.  PMID:24990051

  6. The Variability of Refractivity in the Atmospheric Boundary Layer of a Tropical Island Volcano Measured by Ground-Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Costa, A.; Pascal, K.; Werner, C.; Webb, T.

    2016-06-01

    For 24 h we measured continuously the variability of atmospheric refractivity over a volcano on the tropical island of Montserrat using a ground-based radar interferometer. We observed variations in phase that we interpret as due to changing water vapour on the propagation path between the radar and the volcano and we present them here in the context of the behaviour of the atmospheric boundary layer over the island. The water vapour behaviour was forced by diurnal processes, the passage of a synoptic-scale system and the presence of a plume of volcanic gas. The interferometer collected images of amplitude and phase every minute. From pairs of phase images, interferograms were calculated and analyzed every minute and averaged hourly, together with contemporaneous measurements of zenith delays estimated from a network of 14 GPS receivers. The standard deviation of phase at two sites on the volcano surface spanned a range of about 1-5 radians, the lowest values occurring at night on the lower slopes and the highest values during the day on the upper slopes. This was also reflected in spatial patterns of variability. Two-dimensional profiles of radar-measured delays were modelled using an atmosphere with water vapour content decreasing upwards and water vapour variability increasing upwards. Estimates of the effect of changing water vapour flux from the volcanic plume indicate that it should contribute only a few percent to this atmospheric variability. A diurnal cycle within the lower boundary layer producing a turbulence-dominated mixed layer during the day and stable layers at night is consistent with the observed refractivity.

  7. Volcanic Unrest of Fogo Volcano in 2011-2012, S.Miguel Island, Azores, Observed by Continuous and Campaign GPS Analysis

    NASA Astrophysics Data System (ADS)

    Okada, Jun; Sigmundsson, Freysteinn; Ofeigsson, Benedikt; Ferreira, Teresa; Gaspar, Joao; Lorenzo, Maria; Araujo, Joao; Rodriques, Rita

    2014-05-01

    Volcanic eruptions can occur after long time of dormancy as has been seen from the recent examples: Mount St. Helens 1980, Pinatubo 1991, Unzen 1991, Soufrière Hills volcano 1995, Chaitén 2008, and Eyjafjallajökull 2010. By utilizing space geodesy techniques, namely GNSS and InSAR, it has been reported that the inflation-deflation processes exist at several dormant volcanoes in the world, but the mechanism responsible for this phenomena is still controversial. Fundamental questions such as magma vs. hydrothermal fluids and volcanic vs. tectonic process remain unanswered in many cases. In this study, we analyze both continuous and campaign GPS data from Fogo volcano, S. Miguel Island, Azores. Although no geochemical and hydrothermal evidences for a magmatic intrusion were reported during the past seismic swarm episodes (1989, 2003-2006, and 2011-2012), geophysical data, both seismic and ground deformation, indicate possible volcanic sources. GPS time series spanned 2008-2013 period characterize tectonic plate divergence between Eurasian and Nubian, and reveal two different types of ground deformation associated with the 2011-2012 volcanic unrest of Fogo. One is the permanent edifice-scale inflation centered at NE summit which corresponds to the increase of volcano-tectonic events. Another is the subsequent minor-scale inflation-deflation reversals between Congro, a trachyte maar, east of Fogo and Furnas volcano. Calculated strain rates and GPS campaign results indicate that the 2011-2012 deformation is one order smaller than the previous unrest episode. A strong similarity exists to Matsushiro earthquake swarm (1965-1966) and Campi Flegrei volcanic unrests (1969-1972 and 1982-1984), which is the coexistence of an edifice-scale main inflation associated with intense volcano-tectonic earthquakes with inflation to deflation reversal that coincided with a sharp drop of seismicity. High recovery rate of inflation-deflation may be an indicator for the existence of

  8. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  9. Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Day, S.; Fonseca, J. F.

    2013-12-01

    Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1island due to the 1995 eruption. Brava experiences frequent swarms of VT events. These are located mostly offshore, with a small proportion of on-shore events. The positions of offshore events are strongly correlated with seamounts and hence are interpreted as due to submarine volcanic processes. Onshore events (0.7island that has been indicated by previous geological studies, and may be due to inflation of a magma reservoir in the edifice. S. Antão is characterized by frequent seismic swarms composed of VT earthquakes (0.1

  10. Tephra Studies by the Alaska Volcano Observatory: Present and Future Research

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Tephra from Aleutian arc volcanoes constitutes an important volcanic hazard for Alaska, western Canada, and some parts of the conterminous U.S. where even small amounts of airborne ash may have dire consequences for jet aircraft traversing North Pacific and western U.S. air routes. Motivated by the need to address volcanic ash hazards on a regional scale, we have initiated a program of tephra studies within the auspices of the Alaska Volcano Observatory (AVO) of the U.S. Geological Survey. A concentrated focus on tephra problems and a new laboratory facility within AVO will help facilitate studies of Quaternary age tephra at Alaskan volcanoes by providing a regional center for laboratory analyses of volcanic ash and standardized web-based reporting and archiving of tephra data. In its first year of operation, the laboratory has been engaged in research at Veniaminof, Mt. Spurr, and Augustine volcanoes, has sponsored research on Holocene tephra deposits of upper Cook Inlet, and has initiated analytical studies of tephra deposits on Adak and Kanaga Islands in the western Aleutians. The objective of these studies is to develop multiparameter techniques for characterization and correlation of tephra deposits, establish radiocarbon-controlled tephrostratigraphic frameworks, and to evaluate the magnitude and frequency of tephra-producing eruptions. In the upper Cook Inlet region of Alaska, we and our colleagues have begun developing a comprehensive record of ash fall by systematically selecting and coring shallow lakes and evaluating the tephra preserved in the lacustrine sediment. Sediment cores from these lakes contain numerous tephra deposits of Holocene age in datable context that can be correlated with proximal tephra deposits on the flanks of their source volcanoes. By combining tephra data from lacustrine deposits and natural exposures we hope to develop a robust geologic catalog of tephra deposits that will enable long-distance correlation of tephras, provide

  11. Subsurface hydrographic structures and the temporal variations of Aleutian eddies

    NASA Astrophysics Data System (ADS)

    Saito, Rui; Yasuda, Ichiro; Komatsu, Kosei; Ishiyama, Hiromu; Ueno, Hiromichi; Onishi, Hiroji; Setou, Takeshi; Shimizu, Manabu

    2016-05-01

    Aleutian eddies are mesoscale anticyclonic eddies formed within the Alaskan Stream region between 180° meridian and 170° E south of the Aleutian Islands. They propagate southwestward after the isolation from the Alaskan Stream and pass through the Western Subarctic Gyre. We compared hydrographic structures of three Aleutian eddies observed during summer, west of 170° E (Eddy A) and east of 170° E (Eddies B and C). In each eddy, a subsurface dichothermal water (3.0-4.0 °C) was observed above a subsurface mesothermal water (4.0-4.5 °C). The minimum temperature in the dichothermal water at around a depth of 100 m was colder in Eddy A (2.8 °C) than in Eddies B and C (3.0-3.2 °C). This difference could be ascribed to wintertime cooling and influence of surrounding waters during spring warming period. The wintertime cooling makes the dichothermal water colder for eddies isolated from the Alaskan Stream region for a longer time. Particle-tracking experiments using re-analysis products from a data-assimilative eddy resolving ocean model suggested that the dichothermal water within Eddy A was cooled by the entrainment of surrounding colder water even during the spring warming period. The mesothermal waters at depth around 250 m demonstrated similarity among the observed eddies, and the maximum temperature in the mesothermal water within Eddy A (4.3 °C) was close to that of Eddies B and C (4.2 °C) in the in situ observations. These results indicated that the dichothermal water of Aleutian eddies modifies over time, whereas the mesothermal water maintains the original feature as they propagate southwestward from the Alaskan Stream region to the Western Subarctic Gyre.

  12. Monitoring for volcano-hydrothermal activity using continuous gravity and local ground acceleration measurements: New deployments at Inferno Crater, Waimangu and White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Fournier, Nico; Cole-Baker, Jeremy; Miller, Craig

    2010-05-01

    have co-located a broadband seismometer (100 Hz sample rate). Of particular interest in this analysis is the separation of any microgravity changes from the hydrothermal tremor signature. Future modelling of the Inferno Crater lake will incorporate gravity, lake level and temperature changes into a multi-phase spatio-temporal model of the subsurface. We anticipate that separation of the gravity and seismic signals may allow future constraint of the sub-surface hydrothermal processes which control cyclic behaviour. We also will show results of a planned deployment of the new gravity meter to White Island volcano, New Zealand which will occur in March 2010. Lessons learned from the Waimangu deployment will be incorporated to understand the long-term variations of White Islands' hydrothermal and magmatic system.

  13. Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes

    NASA Astrophysics Data System (ADS)

    Finizola, A.; Ricci, T.; Deiana, R.; Cabusson, S. Barde; Rossi, M.; Praticelli, N.; Giocoli, A.; Romano, G.; Delcher, E.; Suski, B.; Revil, A.; Menny, P.; Di Gangi, F.; Letort, J.; Peltier, A.; Villasante-Marcos, V.; Douillet, G.; Avard, G.; Lelli, M.

    2010-09-01

    On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the explosion, a new vapour emission was discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called "Nel Cannestrà". This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO 2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10-15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow, with a temperature close to the water boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~ 500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO 2 soil diffuse degassing measurements suggest in this sector at slightly lower elevation from the block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary down to the block impact crater displayed a flank fluid flow apparently connected to a

  14. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Landès, Matthieu; Shapiro, Nikolaï M.

    2015-01-01

    We cross correlate 4 years of seismic noise from the seismic network of Piton de la Fournaise Volcano (La Réunion Island) to measure the group velocity dispersion curves of Rayleigh and Love waves. We average measurements from vertical and radial components to obtain 577 Rayleigh wave dispersion curves. The transverse components provided 395 Love wave dispersion curves. We regionalize the group velocities measurements into 2-D velocity maps between 0.4 and 8 s. Finally, we locally inverted these maps for a pseudo 3-D anisotropic shear-velocity model down to 3 km below the sea level using a Neighborhood Algorithm. The 3-D isotropic shear-wave model shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The anomaly located below the present "Plaine des Sables" could be related to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body located below the summit of the volcano likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly located below the "Grandes Pentes" and the "Grand Brûlé" areas and is an imprint of the solidified magma chamber of the dismantled "Les Alizés" Volcano. Radial anisotropy shows two main anomalies: positive anisotropy above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of horizontal lava flows and the second one below the sea level with a negative anisotropy corresponding to the ancient edifice of Piton de la Fournaise dominated by intrusions of vertical dykes.

  15. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  16. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  17. A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Galápagos Islands

    USGS Publications Warehouse

    Bagnardi, Marco; Amelung, Falk; Poland, Michael P.

    2013-01-01

    Space-geodetic measurements of surface deformation produced by the most recent eruptions at Fernandina – the most frequently erupting volcano in the Galápagos Archipelago – reveal that all have initiated with the intrusion of subhorizontal sills from a shallow magma reservoir. This includes eruptions from fissures that are oriented both radially and circumferentially with respect to the summit caldera. A Synthetic Aperture Radar (SAR) image acquired 1–2 h before the start of a radial fissure eruption in 2009 captures one of these sills in the midst of its propagation toward the surface. Galápagos eruptive fissures of all orientations have previously been presumed to be fed by vertical dikes, and this assumption has guided models of the origin of the eruptive fissure geometry and overall development of the volcanoes. Our findings allow us to reinterpret the internal structure and evolution of Galápagos volcanoes and of similar basaltic shields. Furthermore, we note that stress changes generated by the emplacement of subhorizontal sills feeding one type of eruption may control the geometry of subsequent eruptive fissures. Specifically, circumferential fissures tend to open within areas uplifted by sill intrusions that initiated previous radial fissure eruptions. This mechanism provides a possible explanation for the pattern of eruptive fissures that characterizes all the western Galápagos volcanoes, as well as the alternation between radial and circumferential fissure eruptions at Fernandina. The same model suggests that the next eruption of Fernandina will be from a circumferential fissure in the area uplifted by the 2009 sill intrusion, just southwest of the caldera rim.

  18. New K-Ar ages for calculating end-of-shield extrusion rates at West Maui volcano, Hawaiian island chain

    USGS Publications Warehouse

    Sherrod, D.R.; Murai, T.; Tagami, Takahiro

    2007-01-01

    Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.

  19. Post-2008 Inflation of Okmok Volcano, Alaska, from InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Z.; QU, F.; Dzurisin, D.; Kim, J.

    2014-12-01

    Okmok Volcano, a dominantly basaltic volcanic complex that occupies most of the northeastern end of Umnak Island, is among the most active volcanoes in the Aleutian arc (Lu and Dzurisin, 2014). Minor ash eruptions were reported a dozen times since the 1930s. Blocky basalt flows were extruded during dominantly effusive eruptions in 1945, 1958, and 1997, together with minor amounts of ash. From the 1930s to 1997, all of Okmok's eruptions originated from Cone A within the summit caldera. The most recent eruption at Okmok during July-August 2008 was by far the largest and most explosive eruption since at least the early 19th century. The eruption issued from a new vent in the northeast part of the caldera near Cone D, about 5 km northeast of Cone A. The eruption was strongly hydrovolcanic in nature and produced a new tuff cone roughly 240 m high, dramatically altering the landscape inside the caldera. Interferometric synthetic aperture radar (InSAR) observations suggest that a magma reservoir, probably an interconnected network of magma bodies of varying sizes located beneath the caldera and centered ~3 km BSL, was responsible for volcano-wide deformation during 1992-2008, including the 1997 and 2008 eruptions (Lu and Dzurisin, 2014). The reservoir inflated at a variable rate before the 1997 and 2008 eruptions, and withdrawal of magma during both eruptions depressurized the reservoir, causing rapid volcano-wide subsidence. In this study, we report re-inflation of the Okmok reservoir from 2008 to 2014. InSAR imagery from X-band TerraSAR-X, C-band Envisat and L-band ALOS PALSAR satellites indicate that Okmok started inflating soon after the end of 2008 eruption at a rate of 5-10 cm/year, which is confirmed by GPS measurements. Deformation modeling suggests the inflation source is located beneath the center of Okmok caldera at ~3 km BSL, which is essentially the same location responsible for uplift and subsidence during 1992-2008. Lu, Z., and Dzurisin, D., 2014. "In

  20. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  1. The Eruptive Behavior of Klyuchevskoy Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Rose, S.; Ramsey, M.

    2008-12-01

    Klyuchevskoy volcano, one of the most active volcanoes in the northern Pacific, is located on the Kamchatka Peninsula in eastern Russia at the junction between the Kurile-Kamchatka and Aleutian Island Arcs. Its remote location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor was launched in December 1999 on the NASA Terra satellite and has proven effective for the detection and monitoring of volcanic eruptions and their associated products. The goal of this investigation is to determine how well data from a broad spectral range at spatial resolutions under 100m/pixel can be used to characterize the 2005 and 2007 eruptions of a remote volcano during the harsh northern Pacific winter. The ASTER data presented here are supplemented by hand samples collected from the 2005 basaltic lava flows as well as high-spatial resolution thermal infrared data collected by a Forward Looking Infrared (FLIR) camera during field campaigns in August 2005 and 2007. Collectively, these data provide details regarding the composition, eruption rate, and eruptive mechanisms. Analysis of the data from all three ASTER subsystems reveals four main eruptive phases: a precursory, explosive, explosive-effusive, and cooling phase. These phases correlate to a gradual increase in maximum brightness temperatures followed by a rapid decrease. Close examination of FLIR data and digital photographs reveal the presence of a breakout point approximately 90 m below the rim of the nested summit crater, indicating a flow had breached the nested crater and traveled down the Krestovsky channel during both eruptions. Laboratory- derived TIR spectral data of the 2005 hand samples indicate good agreement with those obtained by ASTER after being reduced to the same spectral resolution. However, inherent errors of the spectra at longer wavelength indicate the

  2. Preliminary Results on the 2015 Eruption of Wolf Volcano, Isabela Island, Galápagos: Chronology, Dispersion of the Volcanic Products, and Insight into the Eruptive Dynamics

    NASA Astrophysics Data System (ADS)

    Wright, H. M. N.; Bernard, B.; Ramon, P.; Guevara, A.; Hidalgo, S.; Pacheco, D. A.; Narváez, D.; Vásconez, F.

    2015-12-01

    After 33 years of quiescence, Wolf volcano, located in the northernmost tip of Isabela Island (Galápagos Islands, Ecuador), started a new eruption on May 25, 2015. The first signs of activity were recorded at 5:50 UTC (23:50 on May 24, Local Time in Galápagos) by a seismic station installed on Fernandina island. The first visual observation was reported at 7:38 UTC (1:38 LT). Based on amateur film footage, the vent was a >800 m-long circumferential fissure that produced a >100 m-high lava curtain. The eruption also released a 15 km-high gas plume with a large amount of SO2 and minimal ash content. Lightning was observed in the plume but not near the vent. Due to complex wind directions at high altitude, the gas cloud drifted in all directions eventually coming toward the continent and producing an extremely small ashfall in Quito that was detected only through the use of homemade ashmeters. The ash sample included lava droplets, scoria, and one small fragment of reticulite, indicating high lava fountaining during the first days of the eruption. The active vents on the circumferential fissure, initially located on the SE side of the caldera outer rim, moved progressively northward, eventually extending for a total of 2 km. One week later on June 02, satellite imagery (OMI, GOME, MODIS) documented decreased volcanic activity, leaving two new lava fields covering over 17 km2 on the SE (10 km-long and up to 2 km-wide) and E (7 km-long and up to 1 km-wide, reaching the sea) flanks of the volcano. Volcanic activity resumed on June 11, and on June 13 it shifted into the caldera, apparently emerging from a fissure close to the vent from the 1982 eruption, about 4 km W of the circumferential fissure. This new lava flow covered approximately 3.5 km2 of the caldera floor. Finally, volcanic activity waned at the end of June and appeared to have ended by July 11, accounting for one of the largest eruptions in the Galápagos since 1968 based on remote sensing.

  3. New Insights into the Influence of Structural Controls Affecting Groundwater Flow and Storage Within an Ocean Island Volcano, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Haskins, E.; Wallin, E.; Pierce, H. A.

    2015-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within Saddle region between Mauna Loa and Mauna Kea volcanoes. In 2013, the project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl near the center of the Saddle, and has now completed a second borehole at an elevation of 1645 m on the western edge of the Saddle. Although the stratigraphy of the rocks is similar, dominantly pahoehoe lava flows with somewhat fewer a'a lavas and occasional dike rock intervals, the hydrologic character of the formation in the latter is distinctly different from the former. Whereas the former test hole encountered a few high elevation perched aquifers that were underlain by an inferred regional, dike-impounded, water table at an elevation of 1390 m amsl, the latter bore encountered a sequence of confined aquifers with heads substantially higher than depth of entry. The shallowest of the confined aquifers was encountered at an elevation of 1340 m and showed a hydrostatic head of >160 m when the capping formation was breached. Deeper confined aquifers showed initial heads of > 400 m although none had heads sufficient to discharge at the surface. Most of the confined aquifers were associated with clay-rich ash beds that mantled the more permeable lavas however one of the deeper confined zones, that showed the highest head, was associated with a highly compacted breccia zone that has tentatively been ascribed to an explosive deposit. Chemical analysis of the clasts within this layer is underway to determine whether this deposit is associated with explosive activity of Mauna Kea or with another volcano on the island. Previous geophysical surveys have suggested that these confined aquifers may extend well down the leeward slopes of Mauna Kea. Evidence of multiple confining layers within the flanks of Mauna Kea suggest that its

  4. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements

    NASA Astrophysics Data System (ADS)

    Revil, A.; Finizola, A.; Ricci, T.; Delcher, E.; Peltier, A.; Barde-Cabusson, S.; Avard, G.; Bailly, T.; Bennati, L.; Byrdina, S.; Colonge, J.; di Gangi, F.; Douillet, G.; Lupi, M.; Letort, J.; Tsang Hin Sun, E.

    2011-09-01

    To gain a better insight of the hydrogeology and the location of the main tectonic faults of Stromboli volcano in Italy, we collected electrical resistivity measurements, soil CO2 concentrations, temperature and self-potential measurements along two profiles. These two profiles started at the village of Ginostra in the southwest part of the island. The first profile (4.8 km in length) ended up at the village of Scari in the north east part of the volcano and the second one (3.5 km in length) at Forgia Vecchia beach, in the eastern part of the island. These data were used to provide insights regarding the position of shallow aquifers and the extension of the hydrothermal system. This large-scale study is complemented by two high-resolution studies, one at the Pizzo area (near the active vents) and one at Rina Grande where flank collapse areas can be observed. The Pizzo corresponds to one of the main degassing structure of the hydrothermal system. The main degassing area is localized along a higher permeability area corresponding to the head of the gliding plane of the Rina Grande sector collapse. We found that the self-potential data reveal the position of an aquifer above the villages of Scari and San Vincenzo. We provide an estimate of the depth of this aquifer from these data. The lateral extension of the hydrothermal system (resistivity ˜15-60 ohm m) is broader than anticipated extending in the direction of the villages of Scari and San Vincenzo (in agreement with temperature data recorded in shallow wells). The lateral extension of the hydrothermal system reaches the lower third of the Rina Grande sector collapse area in the eastern part of the island. The hydrothermal body in this area is blocked by an old collapse boundary. This position of the hydrothermal body is consistent with low values of the magnetization (<2.5 A m-1) from previously published work. The presence of the hydrothermal body below Rina Grande raises questions about the mechanical stability

  5. Co-variation in Magma Compositions, Effusion rates and Seismic Tremor During the 2014-15 Eruption of Fogo volcano, Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Day, S. J.

    2015-12-01

    Magma compositions vary widely within many eruptions of ocean island volcanoes, particularly those in the Canaries and Cape Verde Islands. The 23 November 2014 to 7 February 2015 eruption of Fogo in the Cape Verde Islands was the first eruption in either the Canaries or the Cape Verdes to be monitored by multiple satellite instruments that measured infrared emissions of the eruption and so enabled continuous quantitative estimation of magma effusion rates and their variation through time. It is also the first eruption in the Cape Verdes for which seismic tremor intensity, indicative of magma ascent dynamics, was continuously recorded. Effusion rates were highest, peaking at about 20 m3/s, in the first five days of eruption but later asymptotic decay in effusion rate was interrupted around 9 and 16 December by pulses of increased effusion. Activity was mainly mildly explosive from December 31, accompanied by intensified seismic tremor. A final pulse of low-rate lava effusion occurred from 17 to 22 January. These data provide a new framework within which to relate compositional variations in the eruption to variations in magma ascent and effusion. We collected a suite of samples whose dates of emplacement have been determined from the date of incandescence of each sample site in high-resolution thermal infrared emissivity maps collected by satellite during the eruption. The samples are highly porphyritic and strongly alkaline in composition, as is typical of Fogo magmas. The first- (November 23/24) and last- (January) erupted magma batches show evidence for hybridization with more evolved magma batches, and the 9 and 16 December magma pulses may be distinct from the magma erupted during the main phase of the eruption. We present data on the samples that allow us to examine the hypothesis that the effusion rate variations were controlled by tapping of different parts of the magma reservoir or reservoirs during the eruption.

  6. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/ 39Ar, U-Th and field constraints

    NASA Astrophysics Data System (ADS)

    Madeira, José; Mata, João; Mourão, Cyntia; Brum da Silveira, António; Martins, Sofia; Ramalho, Ricardo; Hoffmann, Dirk L.

    2010-10-01

    Three volcano-stratigraphic units were identified at Brava Island in the Cape Verde Archipelago on the basis of field relationships, geologic mapping and 40Ar/ 39Ar and U-Th ages. The Lower Unit comprises a 2-to-3 Ma-old submarine volcanic sequence that represents the seamount stage. It is composed of nephelinitic/ankaramitic hyaloclastites and pillow lavas, which are cut by abundant co-genetic dikes. Plutonic rocks of an alkaline-carbonatite complex, which intruded the submarine sequence 1.8 to 1.3 Ma ago, constitute the Middle Unit. A major erosional surface developed between 1.3 and ~ 0.25 Ma. The post-erosional volcanism recorded in the Upper Unit started 0.25 Ma ago and is dominated by phonolitic magmatism. This phase is characterised by explosive phreato-magmatic and magmatic activity that produced block and ash flow, surge, and pyroclastic fall deposits and numerous phreato-magmatic craters. Effusive events are represented by lava domes and coulées. One peculiarity of Brava is the occurrence of carbonatites in both the plutonic complex and the post-erosional phase as extrusive volcanics. The intrusive carbonatites are younger than those occurring on Fogo, Santiago and Maio islands. Young (Upper Pleistocene to Holocene) extrusive carbonatites occurring in the late stages of volcanism are unknown in other Cape Verde islands. The occurrence of pillow lavas and hyaloclastites above the present sea level (up to 400 m) and raised Upper Pleistocene beaches indicates continuous uplift of Brava since the seamount stage. By dating raised marine markers, uplift rates were estimated at between 0.2 and 0.4 mm/a. The evolution of Brava was controlled by faults with directions similar to those described for Fogo, suggesting a common stress field. A detailed geological map (1/25,000) of Brava is presented.

  7. Space-geodetic evidence for multiple magma reservoirs and subvolcanic lateral intrusions at Fernandina Volcano, Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; Amelung, Falk

    2012-10-01

    Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface deformation at Fernandina Volcano, Galápagos (Ecuador), acquired between January 2003 and September 2010, we study the structure and the dynamics of the shallow magmatic system of the volcano. Through the analysis of spatial and temporal variations of the measured line-of-sight displacement we identify multiple sources of deformation beneath the summit and the southern flank. At least two sources are considered to represent permanent zones of magma storage given their persistent or recurrent activity. Elastic deformation models indicate the presence of a flat-topped magma reservoir at ˜1.1 km below sea level and an oblate-spheroid cavity at ˜4.9 km b.s.l. The two reservoirs are hydraulically connected. This inferred structure of the shallow storage system is in agreement with previous geodetic studies and previous petrological analysis of both subaerial and submarine lavas. The almost eight-year-long observation interval provides for the first time geodetic evidence for two subvolcanic lateral intrusions from the central storage system (in December 2006 and August 2007). Subvolcanic lateral intrusions could provide the explanation for enigmatic volcanic events at Fernandina such as the rapid uplift at Punta Espinoza in 1927 and the 1968 caldera collapse without significant eruption.

  8. How changes in pore pressure affect fluid circulation in volcanoes: three examples from Vulcano Island, Mt. Etna and Mt Vesuvius (Italy)

    NASA Astrophysics Data System (ADS)

    Federico, C.; Madonia, P.; Capasso, G.; D'Alessandro, W.; Bellomo, S.; Brusca, L.; Cusano, P.; Longo, M.; Paonita, A.; Petrosino, S.

    2013-05-01

    Fluids circulating in volcanic edifices are attracting increasing interest from scientists, mostly because their role in triggering flank instability, phreatic explosions, and eruptions has been documented in several cases worldwide [Newhall et al. 2001, Thomas et al. 2004]. Fluid pore pressure can change as an effect of either external (meteoric recharge, variation of the stress field), or endogenous causes (e.g. internal pressurization of magmatic volatiles and hydrothermal systems). The reciprocal roles of tectonics and magmatic/hydrothermal activity are still under investigation [Gottsman et al. 2007, Roeloffs et al. 2003]. We discuss the results of decennial data records collected in the aquifers of Mt Etna, Vulcano Island and Mt Vesuvius, and get insights on the role of tectonics and volcanic activity on the observed variations of water level and chemical composition. In Vulcano Island, the shallow thermal aquifer is deeply concerned by deep volcanic fluids. The most significant variations were observed during the 1988-96 crisis, due to the large input of steam and acidic gases from depth. In addition, the record of the water table elevation provided remarkable insights on the pressure of the volcano-hydrothermal system, which can be envisaged as the cause for the onset of the phase of higher vapor output in the fumarolic field in late 2004. On Mt. Vesuvius, the geochemical behavior of the aquifer appears strictly controlled by the input of volcanic gases and variations in the stress field. These latter, which were responsible for the seismic crisis of 1999, and the almost simultaneous increased input of CO2-rich vapor, significantly affected water chemistry and temperature, until 2006. The recent observations of low salinity, temperature, and dissolved carbon contents in groundwater provide strong evidence for reduced pressure in the volcano-hydrothermal system. The record of water chemistry available on Mt. Etna since 1994 shows coeval changes in almost all

  9. Mount St. Helens and Kilauea volcanoes

    SciTech Connect

    Barrat, J. )

    1989-01-01

    Mount St. Helens' eruption has taught geologists invaluable lessons about how volcanoes work. Such information will be crucial in saving lives and property when other dormant volcanoes in the northwestern United States--and around the world--reawaken, as geologists predict they someday will. Since 1912, scientists at the U.S. Geological Survey's Hawaiian Volcano Observatory have pioneered the study of volcanoes through work on Mauna Loa and Kilauea volcanoes on the island of Hawaii. In Vancouver, Wash., scientists at the Survey's Cascades Volcano Observatory are studying the after-effects of Mount St. Helens' catalysmic eruption as well as monitoring a number of other now-dormant volcanoes in the western United States. This paper briefly reviews the similarities and differences between the Hawaiian and Washington volcanoes and what these volcanoes are teaching the volcanologists.

  10. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006

    USGS Publications Warehouse

    Werner, C.; Hurst, T.; Scott, B.; Sherburn, S.; Christenson, B.W.; Britten, K.; Cole-Baker, J.; Mullan, B.

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbig processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d-1 and demonstrated clear annual cycling that was consistent with numbers of earthquake detections and annual changes in sea level. The annual variability was found to be most likely related to increases in the strain on the volcano during sea level highs, temporarily causing fractures to reduce in size in the upper conduit. SO2 emissions varied from 0 to >400 t d-1 and were clearly affected by scrubbing processes within the first year of take development. Scrubbing caused increases of SO42- and Cl- in lake waters, and the ratio of carbon to total sulphur suggested that elemental sulphur deposition was also significant in the lake during the first year. Careful measurements of the lake level and chemistry allowed estimates of the rate of H2O(g) and HCl(g) input into the lake and suggested that the molar abundances of major gas species (H2O, CO2, SO2, and HCl) during this quiescent phase were similar to fumarolic ratios observed between earlier eruptive periods. The volume of magma estimated from CO2 emissions (0.0 15-0.04 km3) was validated by Cl- increases in the lake, suggesting that the gas and magma are transported from deep to shallow depths as a closed system and likely become open in the upper conduit region. The absence of surface deformation further leads to a necessity of magma convection to supply and remove magma from the degassing depths. Two models of convection configurations are discussed. Copyright 2008 by the American Geophysical Union.

  11. 75 FR 69597 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 2011 harvest specifications for groundfish in the BSAI (75 FR 11778, March 12, 2010). In accordance... Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of Pacific cod in the Bering...

  12. 75 FR 792 - Fisheries of the Economic Exclusive Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    .../processors using hook-and-line in the BSAI under Sec. 679.20(d)(1)(iii) on November 16, 2009 (74 FR 59918... catcher Pacific cod by catcher/processors using hook-and-line gear in the Bering Sea and Aleutian Islands.../processors using hook-and-line gear in the BSAI. Classification This action responds to the best...

  13. 78 FR 35771 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Regional Administrator... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  14. 75 FR 14498 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... groundfish in the BSAI (75 FR 11778, March 12, 2010). In accordance with Sec. 679.20(d)(1)(i), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  15. 78 FR 64891 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... the BSAI (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  16. 78 FR 64892 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... by the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  17. 77 FR 26212 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... the final 2012 and 2013 harvest specifications for groundfish in the BSAI (77 FR 10669, February 23... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  18. 76 FR 65975 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... by the final 2011 and 2012 harvest specifications for groundfish in the BSAI (76 FR 11139, March 1... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  19. 77 FR 39441 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... the BSAI (77 FR 10669, February 23, 2012). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  20. 75 FR 6129 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... BSAI (74 FR 7359, February 17, 2009). In accordance with Sec. 679.20(d)(1)(iii), the Regional... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. ] SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  1. 76 FR 10780 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... specifications for groundfish in the BSAI (75 FR 11778, March 12, 2010) and inseason adjustment (76 FR 1539... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  2. 78 FR 25878 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... the final 2013 and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  3. 76 FR 59924 - Fisheries of the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... GOA (76 FR 11139, March 1, 2011) and apportionment of non-specified reserves (76 FR 53840, August 30... Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian Islands Management Area AGENCY: National...: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of sharks in the Bering Sea and...

  4. Case of correlation between Rn anomalies and seismic activity on a volcano (Vulcano Island, Southern Tyrrhenian Sea)

    SciTech Connect

    Del Pezzo, E.; Gasparini, P.; Mantovani, M.S.M.; Martini, M.; Capaldi, G.; Gomes, Y.T.; Pece, R.

    1981-09-01

    A factor of 10 increase in the Rn concentration in a shallow aquifer forefunning a shallow seismic swarm was observed at the island of Vulcano (Aeolian island arc). The peak of Rn anomaly preceded by about one month the seismic swarm, which had a cumulative magnitude of 2.1. The time lag between the two phenomena is much longer than expected, given the small energy released by the swarm. The observed phenomena may not have a direct cause-effect relationship, but they both can be a consequence of volcanic phenomena.

  5. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  6. Volcanoes, Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The island of Java (8.0S, 112.0E), perhaps better than any other, illustrates the volcanic origin of Pacific Island groups. Seen in this single view are at least a dozen once active volcano craters. Alignment of the craters even defines the linear fault line of Java as well as the other some 1500 islands of the Indonesian Archipelago. Deep blue water of the Indian Ocean to the south contrasts to the sediment laden waters of the Java Sea to the north.

  7. Repeating coupled earthquakes at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Caplan-Auerbach, J.; Petersen, T.

    2005-01-01

    Since it last erupted in 1999, Shishaldin Volcano, Aleutian Islands, Alaska, has produced hundreds to thousands of long-period (1-2 Hz; LP) earthquakes every day with no other sign of volcanic unrest. In 2002, the earthquakes also exhibited a short-period (4-7 Hz; SP) signal occurring between 3 and 15 s before the LP phase. Although the SP phase contains higher frequencies than the LP phase, its spectral content is still well below that expected of brittle failure events. The SP phase was never observed without the LP phase, although LP events continued to occur in the absence of the precursory signal. The two-phased events are termed "coupled events", reflecting a triggered relationship between two discrete event types. Both phases are highly repetitive in time series, suggestive of stable, non-destructive sources. Waveform cross-correlation and spectral coherence are used to extract waveforms from the continuous record and determine precise P-wave arrivals for the SP phase. Although depths are poorly constrained, the SP phase is believed to lie at shallow (<4 km) depths just west of Shishaldin's summit. The variable timing between the SP and LP arrivals indicates that the trigger mechanism between the phases itself moves at variable speeds. A model is proposed in which the SP phase results from fluid moving within the conduit, possibly around an obstruction and the LP phase results from the coalescence of a shallow gas bubble. The variable timing is attributed to changes in gas content within the conduit. The destruction of the conduit obstacle on November 21, 2002 resulted in the abrupt disappearance of the SP phase.

  8. The EarthScope Plate Boundary Observatory Akutan Alaskan Volcano Tiltmeter Installation

    NASA Astrophysics Data System (ADS)

    Pauk, B. A.; Gallaher, W.; Dittmann, T.; Smith, S.

    2007-12-01

    During August of 2007, the Plate Boundary Observatory (PBO) successfully installed four Applied Geomechanics Lily Self Leveling Borehole Tiltmeters on Akutan Volcano, in the central Aleutian islands of Alaska. All four stations were collocated with existing PBO Global Positioning Systems (GPS) stations installed on the volcano in 2005. The tiltmeters will aid researchers in detecting and measuring flank deformation associated with future magmatic intrusions of the volcano. All four of the tiltmeters were installed by PBO field crews with helicopter support provided by JL Aviation and logistical support from the Trident Seafood Corporation, the City of Akutan, and the Akutan Corporation. Lack of roads and drivable trails on the remote volcanic island required that all drilling equipment be transported to each site from the village of Akutan by slinging gear beneath the helicopter and with internal loads. Each tiltmeter hole was drilled to a depth of approximately 30 feet with a portable hydraulic/pneumatic drill rig. The hole was then cased with splined 2.75 inch PVC. The PVC casing was cemented in place with grout and the tiltmeters were installed and packed with fine grain sand to stabilize the tiltmeters inside the casing. The existing PBO NetRS GPS receivers were configured to collect the tiltmeter data through a spare receiver serial port at one sample per minute and 1 hour files. Data from the GPS receivers and tiltmeters is telemetered directly or through a repeater radio to a base station located in the village of Akutan that transmits the data using satellite based communications to connect to the internet and to the UNAVCO Facility data archive where it is made freely available to the public.

  9. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  10. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  11. Microearthquake activity around Kueishantao island, offshore northeastern Taiwan: Insights into the volcano-tectonic interactions at the tip of the southern Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.; Pan, C.-Y.; Lin, C.-H.

    2013-05-01

    Kueishantao is a volcanic island located offshore the northeastern coast of Taiwan and lies at the tip of the southern Okinawa Trough which is the back-arc basin of the Ryukyu subduction zone. Its last eruption occurred during the Holocene (~ 7 ka), hence Kueishantao can be considered as an active volcano. In an effort to better understand how magmatic processes may interact with the regional tectonics, a seismic network was installed in the area during early January 2008. This network consisted of 16 three-component seismometers located both on Kueishantao and the coast of northeastern Taiwan. One year of data was analyzed yielding 425 earthquakes whose P and S arrival times were manually picked and each event was located using a nonlinear probabilistic location method. In order to improve the location accuracy, the minimum 1-D velocity model for this dataset was derived and all earthquakes were relocated using this model. The results show a tight cluster of events near Kueishantao while the remaining earthquakes are scattered between the island and mainland Taiwan. The majority of hypocentral depths range between 2.5 and 10 km where the former depth coincides with the bottom of the shallow sedimentary layer and the latter with the ductile lower crust. Waveforms of the three largest events were also inverted for the determination of their deviatoric and full moment tensor. No statistically significant isotropic component was found, while two of the events can be explained by a double-couple source. The third event exhibited a low frequency content (< 10 Hz) and a large non-double-couple component suggesting fluid involvement at its source. A stress inversion of all available focal mechanisms in the area shows that fluid circulation in the upper crust generates a local stress field around Kueishantao facilitating the opening of cracks along the NW-SE direction of regional extension.

  12. Detection of microwave emission due to rock fracture as a new tool for geophysics: A field test at a volcano in Miyake Island, Japan

    NASA Astrophysics Data System (ADS)

    Takano, Tadashi; Maeda, Takashi; Miki, Yoji; Akatsuka, Sayo; Hattori, Katsumi; Nishihashi, Masahide; Kaida, Daishi; Hirano, Takuya

    2013-07-01

    This paper describes a field test to verify a newly discovered phenomenon of microwave emission due to rock fracture in a volcano. The field test was carried out on Miyake Island, 150 km south of Tokyo. The main objective of the test was to investigate the applicability of the phenomenon to the study of geophysics, volcanology, and seismology by extending observations of this phenomenological occurrence from the laboratory to the natural field. We installed measuring systems for 300 MHz, 2 GHz, and 18 GHz-bands on the mountain top and mountain foot in order to discriminate local events from regional and global events. The systems include deliberate data subsystems that store slowly sampled data in the long term, and fast sampled data when triggered. We successfully obtained data from January to February 2008. During this period, characteristic microwave pulses were intermittently detected at 300 MHz. Two photographs taken before and after this period revealed that a considerably large-scale collapse occurred on the crater cliff. Moreover, seismograms obtained by nearby observatories strongly suggest that the crater subsidence occurred simultaneously with microwave signals on the same day during the observation period. For confirmation of the microwave emission caused by rock fracture, these microwave signals must be clearly discriminated from noise, interferences, and other disturbances. We carefully discriminated the microwave data taken at the mountaintop and foot, checked the lightning strike data around the island, and consequently concluded that these microwave signals could not be attributed to lightning. Artificial interferences were discriminated by the nature of their waveforms. Thus, we inferred that the signals detected at 300 MHz were due to rock fractures during cliff collapses. This result may provide a useful new tool for geoscientists and for the mitigation of natural hazards.

  13. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    USGS Publications Warehouse

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  14. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Stihler, S.D.; Power, J.A.

    2002-01-01

    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  15. Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hurst, Tony; Jolly, Arthur D.; Sherburn, Steven

    2014-10-01

    The 6 August 2012 eruption from the Upper Te Maari crater of Tongariro volcano followed approximately three weeks of precursory seismic activity. Earthquake relocations including data from extra temporary stations indicated that nearly all events were in a small area very close to Upper Te Maari. Most of these relocated events were very shallow, with nearly all events being between 1000 and 1500 m below the ground surface. The pre-eruption seismicity occurred in three main swarms. During the first swarm on 12-13 July 2012, all the earthquakes had consistent inter-event times of 71 ± 8 min, while in the later swarms (17-20 and 29-30 July) many events had a similar pattern of consistent inter-event times. The stationary quasi-periodic ("clockwork") earthquake process suggests that a single fracture point was excited by a nearly constant rate flux process. The dominant type of earthquake observed in these swarms had a sharp onset and a broad spectrum, with strong energy from 2 to 10 Hz. Most events seen had a local magnitude of 1.5 to 2.5, with virtually no smaller events. Most of these earthquakes appeared to belong to a main earthquake family whose characteristics included a strong spectral component at about 2 Hz and three bursts of energy spaced at intervals of about 1.5 s. Of the 116 located earthquakes, 75 had a correlation coefficient greater than 0.70 with a master event. The spectra of these events did not change with size, with matching frequency peaks for all the events with a high correlation. The last event of this type was the day before the 6 August 2012 eruption, none have been seen since and there has been very little seismicity under Tongariro. This seismicity alerted GNS Science and other organisations to the unrest of Tongariro, and the Volcanic Alert Level and Aviation Colour Code were raised to publicise this. GNS Science also increased its monitoring of Tongariro, and discovered that the magmatic gas concentrations had increased compared to

  16. Are arc-type rocks the products of magma crystallisation? Observations from a simple oceanic arc volcano: Raoul Island, Kermadec Arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Stewart, Robert B.; Price, Richard C.; Worthington, Timothy J.

    2010-02-01

    Raoul Island is the emergent summit of a large intra-oceanic strato-volcano in what is globally one of the simplest of subduction settings. In this simple setting erupted magmas span the compositional range from basalt to dacite but none have the high Mg-numbers and high Ni and Cr expected of primitive mantle-derived melts. The lavas range from aphyric to highly porphyritic and are characterised by phenocryst assemblages dominated by plagioclase accompanied by clinopyroxene, olivine, orthopyroxene and spinel. Phenocryst core compositions and zoning profiles are remarkably uniform irrespective of total phenocryst content or geochemical composition, indicating a decoupling of melt and crystal components in the system. A consistent model for the Raoul magmatic system is that primitive high-Mg magma generated in a melt column within the underlying mantle wedge is transformed into a series of derivative low-Mg magmas by fractional crystallisation within the lower crust. Low-Mg magma accumulates variable quantities of crystal cargo as it ascends toward the surface through a crystal mush zone. These processes are essentially those that characterise continental subduction-related magmatic systems but differ only in the absence of an evolved crustal component.

  17. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  18. Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): Integration of GB-InSAR and geomorphological observations

    NASA Astrophysics Data System (ADS)

    Intrieri, Emanuele; Di Traglia, Federico; Del Ventisette, Chiara; Gigli, Giovanni; Mugnai, Francesco; Luzi, Guido; Casagli, Nicola

    2013-11-01

    Stromboli is characterized by frequent explosions of variable energy and periodically interrupted by more energetic blasts emitting large volumes of material. The pressurization of a volatile-poor, high-porphyritic magma column that is gas-recharged by the deep-seated, volatile-rich, low-porphyritic magma precedes such events and produces deformations on the NW flank of the volcano, Sciara del Fuoco. By integrating geomorphological observations with long-term displacements from ground-based interferometric radar since December 2007, we identified two landslides whose movements are strongly related with volcanic activity. Movement patterns obtained through a novel long-term analysis of GB-InSAR data permitted us to hypothesize the type of movement and depth for both landslides. Furthermore their position allowed us to affirm that the effusive vent formed in 2007 at 400 m a.s.l., was the result of the deflection of a feeder dike caused by landslide fractures, thus showing the important role of geomorphological discontinuities in volcanic environments.

  19. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain.

    PubMed

    Cruz-Fuentes, Tatiana; Cabrera, María del Carmen; Heredia, Javier; Custodio, Emilio

    2014-06-15

    The origin of the groundwater salinity and hydrochemical conditions of a 44km(2) volcano-sedimentary aquifer in the semi-arid to arid La Aldea Valley (western Gran Canaria, Spain) has been studied, using major physical and chemical components. Current aquifer recharge is mainly the result of irrigation return flows and secondarily that of rainfall infiltration. Graphical, multivariate statistical and modeling tools have been applied in order to improve the hydrogeological conceptual model and identify the natural and anthropogenic factors controlling groundwater salinity. Groundwater ranges from Na-Cl-HCO3 type for moderate salinity water to Na-Mg-Cl-SO4 type for high salinity water. This is mainly the result of atmospheric airborne salt deposition; silicate weathering, and recharge incorporating irrigation return flows. High evapotranspiration produces significant evapo-concentration leading to relative high groundwater salinity in the area. Under average conditions, about 70% of the water used for intensive agricultural exploitation in the valley comes from three low salinity water runoff storage reservoirs upstream, out of the area, while the remaining 30% derives from groundwater. The main alluvial aquifer behaves as a short turnover time reservoir that adds to the surface waters to complement irrigation water supply in dry periods, when it reaches 70% of irrigation water requirements. The high seasonality and intra-annual variability of water demand for irrigation press on decision making on aquifer use by a large number of aquifer users acting on their own. PMID:24698802

  20. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  1. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  2. Investigation of the Volcano-tectonic dynamics of Vulcano Island by long-term (40 years) geophysical data

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Alparone, Salvatore; Gambino, Salvatore; Guglielmino, Francesco; Obrizzo, Francesco; Velardita, Rosanna

    2015-04-01

    Vulcano island is a composite volcanic edifice located in the south-central sector of the Aeolian Archipelago (Tyrrhenian Sea, Italy). It is the southernmost tip of the southern branch of the Y-shaped archipelago; in particular, it is part of the bigger Lipari-Vulcano volcanic complex that comprises the two southernmost islands of the archipelago. This branch of the archipelago is NNW-SSE oriented and represent the off-shore prolongation of the Tindari-Letojanni tectonic lineament in the NE Sicily, splitting the Appennine chain on the west, from the Calabrian arc on the East. N-S compression seems to affect the western side of this NNW-SSE lineament, while extension affects the eastern one, with active volcanism and a NW dipping Benioff plane. Historic activity at Vulcano has been characterized by frequent transitions from phereatomagmatic to minor magmatic activity. The last eruption in 1888-90 was characterized by energetic explosive pulses and defines the so-called "vulcanian" type of activity. Since then, volcanic activity has taken the form of fumarolic emanations of variable intensity and temperature, mainly concentrated at "La Fossa" crater, with maximum temperatures ranging between 200° and 300° C; temperature increases and changes in the gas chemistry, were often observed. The most recent episode began in the 80's when fumarole temperature progressively increased to 690°C in May 1993. Vulcano is active and this favoured monitoring and research studies, in particular focussed on the most recent structures. In the frame of DPC-INGV "V3" project, we investigate the dynamics of the island through ca. 40 years of ground deformation and seismicity data collected by the discrete and continuous INGV monitoring networks. We considered levelling, GPS, EDM, seismic and tilt data. EDM and levelling measurements began in the middle 1970s and since the late 1990s the same EDM network has been surveyed by GPS. By combining and comparing geodetic data and seismicity we

  3. Craniometric variation in the Aleutians: integrating morphological, molecular, spatial, and temporal data.

    PubMed

    Ousley, Stephen D; Jones, Erica B

    2010-12-01

    Several hypotheses have been put forward about the origins and evolution of the inhabitants of the Aleutian Islands. Both Hrdlička [The Aleutian and Commander Islands and Their Inhabitants (Philadelphia: Wistar Institute of Anatomy and Biology, 1945)] and Laughlin ["The Alaska gateway viewed from the Aleutian Islands," in Papers on the Physical Anthropology of the American Indian, W. S. Laughlin, ed. (New York: Viking Fund, 1951), 98-126] analyzed cranial morphology and came to somewhat different conclusions using a typological approach and limited analytical methods. Subsequent investigations using morphological data have not significantly improved our understanding of Aleut prehistory. More recently, radiocarbon dating and mitochondrial DNA analyses have shed light on Aleut genetic variation and changes over time, but better morphological methods using multivariate statistical analysis have not yet been used. We analyzed craniometric data using multivariate procedures and found that Aleuts demonstrate significant changes in cranial morphology over time, and these changes correspond to Hrdlička's observations but may not necessarily reflect in-migration. The morphological changes were concentrated in the very aspects of morphology that are easily observable and that Hrdlička most often measured, namely, cranial length, breadth, and height, but they were obscured when craniometric variation as a whole was analyzed. Also, we found that the morphological changes over time were not related to the changes in haplogroup frequencies over time, suggesting that migration into the Aleutians did not play a significant role in producing the morphological changes. However, craniometric variability apparently increases over time, suggesting in-migration, localized selection, and/or greater environmental heterogeneity. Our results contradict Laughlin's observations but may be more in line with his hypothesis of in situ evolutionary changes absent gene flow. In addition to

  4. Geochemical characteristics of the "Mid-Alkaline Basalts" from the "adventive cones" of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Valer, Marina; Bachèlery, Patrick; Schiano, Pierre; Upton, Brian G. J.

    2016-04-01

    Piton de la Fournaise, the youngest volcano of La Réunion Island, is renowned for being frequently active. Its lavas (younger than ~450 ka) have been subdivided into three compositional groups (see Lénat et al. 2012 for a review). Almost all recent and historical lavas belong to two of these groups: "cotectic basalts" and "olivine-rich basalts", marked by a constant CaO/Al2O3 ratio of ~0.8, and MgO content ranging from 5 to 30 wt % reflecting different degrees of olivine accumulation. Whereas that current activity is mainly located within the "Enclos Fouqué" caldera, ~100 strombolian cones lie on the volcano's flanks, thought to date from ~300 years to a few thousand years. Our study focuses on these "adventive cones", by studying bulk-rock major and trace element compositions, isotopic compositions, mineral phases and olivine-hosted melt inclusions. The bulk-rock compositions correspond to the third group of the Piton de la Fournaise lavas (see above), called the "mid-alkaline basalts". They mainly consist of magnesian basalts at 7.55 - 10.24 wt% MgO and CaO/Al2O3 values down to 0.55. At constant MgO content, this group shows higher alkali content and a relative deficiency in Ca compared to the historic basalts. The "adventive cones" lavas usually contain magnesian olivine crystals (Fo > 86). Such crystals are not at the equilibrium with their host lava, raising thus the question of the recycling processes. The volatile contents of these olivine-hosted melt inclusions (work in progress) will allow to determine if such magnesian olivine crystals come from deep storage levels, as previously proposed by Bureau et al. (1998; 1999). The specific geochemistry the "adventive cones" lavas is attributed either to a high-pressure fractionation of a clinopyroxene-rich assemblage (Albarède et al. 1997), or to an assimilation process involving wehrlite-gabbro cumulates (e.g. Salaün et al. 2010). Although the trace element data show that the source of these magmas is

  5. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  6. The Pathogenesis of Aleutian Disease of Mink

    PubMed Central

    Porter, David D.; Larsen, Austen E.; Porter, Helen G.

    1973-01-01

    Mink chronically infected with Aleutian disease virus develop a severe necrotizing arteritis affecting muscular arteries. Acute, subacute and healing lesions may be found. Extracellular deposits of host immunoglobulin and complement and, after acid elution, viral antigen can be shown by immunofluorescence technics in areas of fibrinoid necrosis and between proliferating endothelial cells. No intracellular viral antigen was found, indicating that the virus probably does not replicate in vascular structures. The arteritis of Aleutian disease appears to be the result of immune complex deposits in vessel walls. Imagesp[341]-aFig 4p[343]-aFig 1Fig 2Fig 3 PMID:4576760

  7. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  8. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Carver, Gary A.; Briggs, Richard W.; Gelfenbaum, Guy; Koehler, Richard D.; La Selle, SeanPaul; Bender, Adrian M.; Engelhart, Simon E.; Hemphill-Haley, Eileen; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300-340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet and modern drift logs found as far as 800 m inland and >18 m elevation likely record the 1957 tsunami. Previously unrecognized tsunami sources coexist with a presently creeping megathrust along this part of the Aleutian Subduction Zone.

  9. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    USGS Publications Warehouse

    Witter, Robert C.; Carver, G.A.; Briggs, Richard; Gelfenbaum, Guy R.; Koehler, R.D.; La selle, Seanpaul M.; Bender, Adrian M.; Engelhart, S.E.; Hemphill-Haley, E.; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300–340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet, and modern drift logs found as far as 800 m inland and >18 m elevation, likely record the 1957 tsunami. Modern creep on the megathrust coexists with previously unrecognized tsunami sources along this part of the Aleutian Subduction Zone.

  10. Distribution, 14C chronology, and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakala volcano, Island of Maui, Hawai'i: a revision of lava flow hazard zones

    USGS Publications Warehouse

    Sherrod, David R.; Hagstrum, Jonathan T.; McGeehin, John P.; Champion, Duane E.; Trusdell, Frank A.

    2006-01-01

    New mapping and 60 new radiocarbon ages define the age and distribution of latest Pleistocene and Holocene (past 13,000 years) lava flows at Haleakalā volcano, Island of Maui. Paleomagnetic directions were determined for 118 sites, of which 89 are in lava flows younger than 13,000 years. The paleomagnetic data, in conjunction with a reference paleosecular variation (PSV) curve for the Hawaiian Islands, are combined with our knowledge of age limitations based on stratigraphic control to refine age estimates for some of the undated lava flows. The resulting volumetric rate calculations indicate that within analytical error, the extrusion rate has remained nearly constant during the past 13,000 years, in the range 0.05–0.15 km3/kyr, only about half the long-term rate required to produce the postshield strata emplaced in the past ∼1 Myr. Haleakalā's eruptive frequency is similar to that of Hualālai volcano on the Island of Hawai‘i, but its lava flows cover substantially less area per unit time. The reduced rates of lava coverage indicate a lower volcanic hazard than in similar zones at Hualālai.

  11. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes

    NASA Astrophysics Data System (ADS)

    Nielsen, Sune G.; Yogodzinski, Gene; Prytulak, Julie; Plank, Terry; Kay, Suzanne M.; Kay, Robert W.; Blusztajn, Jerzy; Owens, Jeremy D.; Auro, Maureen; Kading, Tristan

    2016-05-01

    Sediment transport from the subducted slab to the mantle wedge is an important process in understanding the chemical and physical conditions of arc magma generation. The Aleutian arc offers an excellent opportunity to study sediment transport processes because the subducted sediment flux varies systematically along strike (Kelemen et al., 2003) and many lavas exhibit unambiguous signatures of sediment addition to the sub-arc mantle (Morris et al., 1990). However, the exact sediment contribution to Aleutian lavas and how these sediments are transported from the slab to the surface are still debated. Thallium (Tl) isotope ratios have great potential to distinguish sediment fluxes in subduction zones because pelagic sediments and low-temperature altered oceanic crust are highly enriched in Tl and display heavy and light Tl isotope compositions, respectively, compared with the upper mantle and continental crust. Here, we investigate the Tl isotope composition of lavas covering almost the entire Aleutian arc a well as sediments outboard of both the eastern (DSDP Sites 178 and 183) and central (ODP Hole 886C) portions of the arc. Sediment Tl isotope compositions change systematically from lighter in the Eastern to heavier in the Central Aleutians reflecting a larger proportion of pelagic sediments when distal from the North American continent. Lavas in the Eastern and Central Aleutians mirror this systematic change to heavier Tl isotope compositions to the west, which shows that the subducted sediment composition is directly translated to the arc east of Kanaga Island. Moreover, quantitative mixing models of Tl and Pb, Sr and Nd isotopes reveal that bulk sediment transfer of ∼0.6-1.0% by weight in the Eastern Aleutians and ∼0.2-0.6% by weight in the Central Aleutians can account for all four isotope systems. Bulk mixing models, however, require that fractionation of trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd in the Central and Eastern Aleutians occurs after

  12. Mingling processes at Panarea Volcano (Aeolian Islands, Italy): results from M73/2 cruise drilled cores

    NASA Astrophysics Data System (ADS)

    De Benedetti, A. A.; De Astis, G.; Raffaele, V.; Esposito, A.; Giordano, G.; Petersen, S.; Monecke, T.

    2012-04-01

    The last Meteor 73/2 cruise drilled several lava cores in the southern Tyrrhenian Sea, close to Panarea Island and surrounding islets (Aeolian archipelago, Italy), at depths comprised between 50 and 70 m bsl. These rocks - unconformably covered by unconsolidated lapilli tuffs - revealed different lithologies and mineralogical assemblages corresponding to different compositions (hereafter A & B), as then evidenced by ICP-MS analyses (major and trace elements) performed on selected rock-samples. The cores also displayed several, cm-sized, rounded enclaves of the A-type dispersed in the B-type. The petrographic study on textures and microprobe analyses on glass shards and mineral phases finally concurred in identifying two magmas with different history and quite complex interaction. Rock A is a holocrystalline shoshonite (SHO) - showing plagioclase (pl - An%=62-74) and clinopyroxene (cpx) as main phases, plus subordinate amphibole and biotite phenocrysts, rare and small olivines (Fo≈89%) - which represents the first magma, usually in form of enclaves. Notably, the SHO shows intersertal vesicularity and scarce glass. Rock B is a porphyritic rhyodacite (RD) characterized by pl (An%=32-52), and biotite phenocrysts, with minor cpx phenocrysts and microphenocrysts. Pl and cpx show both alternate and normal zoning, and the former have frequent K-rich reaction rims. Similar mineral phases and frequent sanidine microlites characterize the alkali-trachyte glassy groundmass of rock B. This rock hosts the SHO and represent the most voluminous magma. Overall, these features indicate a quite complex history of magma interaction(s) as well as a polybaric crystallization, which lead the volatiles abundance and behaviour. From the study of the highly irregular edges observed along their contacts, we argue intrusive and visco-plastic relationships between A and B. Moreover, the presence of irregular vesicles and vugs bounded by pl microlites suggest an emplacement at shallow level

  13. Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island

    PubMed Central

    Dolezal, Jiri; Altman, Jan; Kopecky, Martin; Cerny, Tomas; Janecek, Stepan; Bartos, Michael; Petrik, Petr; Srutek, Miroslav; Leps, Jan; Song, Jong-Suk

    2012-01-01

    Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo. PMID:22438890

  14. Revealing the Eruptive History of Volcanoes from Massive Cross-Correlation of Seismic Signal at Global Scale

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gaillard, P.; Grenouille, A.; Bui-Quang, P.; Guilhem, A.; Bobrov, D.; Kitov, I. O.; Rozhkov, M.

    2015-12-01

    We propose here a massive cross-correlation technique applied to seismic events located around volcanoes and recorded at teleseismic distance. Multichannel cross-correlations are performed between 2002 to 2012 using seismic templates occurring at the time of moderate to large volcanic eruptions. The volcanic periods are reported from the Global Volcanism Program database while the waveform data are obtained from the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The temporal distribution of new seismic events, built from the association of teleseismic detections reveals acceleration patterns, which are highly correlated to the past eruptive activities. These newly detected events are relocated using Bayesian approach and leads to preliminary interpretation of the volcanic plumbing system. Two examples are presented. First, the large 2008 eruption (Volcanic Explosivity Index, VEI4) of Kasatochi (Aleutian Islands, 52.10°N/175.31°W) is used to demonstrate that only few seismic templates (~3) help to reveal the time scale of the eruption. Results are compared to hydroacoustic signal, which is highly correlated to the distribution of new seismic events prior and during eruption. We also show that after the peaked seismic activity (i.e., ~ 100 seismic events in 1 hour) the infrasound signal starts and signs the volcanic plume activity. The second case example reveals with success seven past volcanic eruptions of lower magnitude (VEI1 to VEI2) of the Karangetang volcano (Siau Island in Indonesia, 2.46°N/125.24°E). We show the potential of this method to detect volcanic eruptions in isolated areas. This is of special interest especially when there is no volcano observatory to monitor the volcanic activity, or when the last eruptive period is unknown.

  15. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  16. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Neal, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analyzed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analyzed using data from the European Remote Sensing Satellites (ERS), Japanese Earth Resources Satellite (JERS) and the U. S. Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  17. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Drew, G. S.

    2011-12-01

    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  18. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    ERIC Educational Resources Information Center

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  19. Lithium Isotopic Composition of Aleutian Arc Magmas

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Park, Y.; Liu, X.; Kay, S. M.; Kay, R. W.

    2012-12-01

    The lithium isotopic compositions of inputs to subduction zones can be highly variable. For example, altered oceanic crust is isotopically heavy (δ7Li = 4 to 22, Chan et al., 1996; Bouman et al., 2004) due to uptake of seawater Li (32). Sea floor sediments can have highly variable compositions, ranging from isotopically heavy pelagic sediments (6 to 14) to isotopically light terrigneous clays (-1.5 to 5), derived from highly weathered continental crust (Chan et al., 2006). Despite this variability in inputs, arc outputs (magmatic rocks) typically have mantle-like δ7Li (e.g., 2 to 6; Tomascak et al., 2002; Walker et al., 2009). To explore the behavior of lithium and its isotopes in arcs, we have analyzed [Li] and δ7Li in 48 lavas and plutons from the Aleutian island arc, which span the temporal (0 to 38 Ma), geographical (165-184oW) and compositional variations (SiO2 = 46-70 wt.%) seen in this arc. Previous studies have indicated a systematic geographic change in lava chemistry related to changing sediment composition along the arc (terrigneous in the east, pelagic in the west, e.g., Kay and Kay, 1994; Yogodinski et al., 2010), as well as temporal changes that may also reflect changes in sedimentary input (Kay and Kay, 1994), and we wished to determine if Li isotopes also reflect such changes. Lithium concentration [Li] shows a generally positive correlation with SiO2, consistent with the expected incompatible behavior of Li during magmatic differentiation. Intrusive rocks (all from the Adak region) show more scatter than lavas on this plot, suggesting the influence of cumulate processes. The δ7Li of the rocks span an immense range from -1 to +29, well outside the values considered typical for the MORB-source mantle (e.g., 2-6). However, the majority of the samples (28 out of 48) have δ7Li falling within the range of typical mantle values. There is a general tendency for the lavas (all but one are <2 Ma) to have slightly lower δ7Li than intrusions (which range

  20. Evidence of flank failure deposit reactivation in a shield volcano. A favorable context for deep-seated landslide activation (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Belle, Pierre; Aunay, Bertrand; Famin, Vincent; Join, Jean-Lambert

    2014-05-01

    Giant flank failures are recurrent features of shield volcanoes, and their deposits (i.e. breccia), constitute a significant volume in a volcanic edifice. On La Réunion Island, the growth and development of Piton des Neiges volcano has been punctuated by several flank failure episodes. One of these failures is a deep-seated landslide (>200 Mm3) occurring nowadays in Grand Ilet, a plateau inhabited by 1 000 people in the cirque of Salazie, on the northern flank of Piton des Neiges. Here we present the results of a multidisciplinary study (structural geology and field mapping, GNSS monitoring, borehole logging) performed to characterize the geological structure the Grand Ilet landslide, and identify the instability factors that control this category of destabilization. Basic breccia deposits, up to 160 meters thick, constitute the main geological formation of the unstable mass. This breccia are cut by the headwall scar of the landslide, and covered by lava flows, indicating a minimum age of 200 kyr for the destabilization that produced the deposits. The breccia is consolidated out of the landslide area. The NE toe of the landslide is evidenced by an important compressional deformation of the base of the breccia, and striated surfaces in this deformed volume indicate a NE-direction of transport. In this deformed bulge, a clay-rich layer at the base of the breccia has been identified as the main slip plane. Using a video inspection of drill casings on three exploration boreholes, we reconstructed the 3D geometry of the slip plane at the base of the breccia. This reconstruction shows that the landslide plane has an average dip of 6° toward the NE. The displacement monitoring network shows that the unstable mass has a 5.5 km2 extension, with a variable azimuth of movement direction (N140° for the SW sector, and N45° for the NE sector). The planimetric displacements velocities range between 2 cm/year in the inner part of the unstable mass to 52 cm/year at the

  1. Soil microbial structure and function post-volcanic eruption on Kasatochi Island and regional controls on microbial heterogeneity

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; Rainey, F.; Wang, B.; Waythomas, C.; Talbot, S. L.

    2013-12-01

    Microorganisms are abundant and diverse in soil and their integrated activity drives nutrient cycling on the ecosystem scale. Organic matter (OM) inputs from plant production support microbial heterotrophic life, and soil geochemistry constrains microbial activity and diversity. As vegetation and soil develops over time, these factors change, modifying the controls on microbial heterogeneity. Following a volcanic eruption, ash deposition creates new surfaces where both organismal growth and weathering processes are effectively reset. The trajectory of microbial community development following this disturbance depends on both organic matter accumulation and geochemical constraints. Also, dispersal of microbial cells to the sterile ash surface may determine microbial community succession. The Aleutian Islands (Alaska, USA) are a dynamic volcanic region, with active and dormant volcanoes distributed across the volcanic arc. One of these volcanoes, Kasatochi, erupted violently in August 2008, burying a small lush island in pryoclastic flows and fine ash. Since, plants and birds are beginning to re-establish on developing surfaces, including legacy soils exposed by rapid erosion of pyroclastic deposits, suggesting that recovery of microbial life is also proceeding. However, soil microbial diversity and function has not been examined on Kasatochi Island or across the greater Aleutian region. The project goal is to address these questions: How is soil microbial community structure and function developing following the Kasatochi eruption? What is the relative importance of dispersal, soil OM and geochemistry to microbial community heterogeneity across the Aleutians? Surface mineral soil (20-cm depth) samples were collected from Kasatochi Island in summer 2013, five years after the 2008 eruption, and from eight additional Aleutian islands. On Kasatochi, pryoclastic deposits, exposed legacy soils supporting regrowth of remnant dune wild-rye (Leymus mollis) and mesic meadow

  2. A spatial-seasonal analysis of the oiling risk from shipping traffic to seabirds in the Aleutian Archipelago.

    PubMed

    Renner, Martin; Kuletz, Kathy J

    2015-12-15

    Some of the largest seabird concentrations in the northern hemisphere are intersected by major shipping routes in the Aleutian Archipelago. Risk is the product of the probability and the severity incidents in an area. We build a seasonally explicit model of seabird distribution and combine the densities of seabirds with an oil vulnerability index. We use shipping density, as a proxy for the probability of oil spills from shipping accident (or the intensity chronic oil pollution). We find high-risk (above-average seabird and vessel density) areas around Unimak Pass, south of the Alaska Peninsula, near Buldir Island, and north of Attu Island. Risk to seabirds is greater during summer than during winter, but the month of peak risk (May/July) varies depending on how data is analyzed. The area around Unimak Pass stands out for being at high-risk year-round, whereas passes in the western Aleutians are at high risk mostly during summer. PMID:26602441

  3. New Field Surveys of The Great 1946 Aleutian Tsunami

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Synolakis, C. E.; Plafker, G.

    We seek to reopen the case of the 1946 Aleutian tsunami, which was the most destruc- tive transpacific event in the past century, despite the relatively moderate size of its parent earthquake. As a result, the exact nature of its source, and in particular whether it requires a submarine landslide, remains controversial. In 1999, we started a system- atic effort to build a modern database of runup and inundation values for the 1946 event throughout the Pacific Basin. At teleseismic distances, we rely on interviews from elderly witnesses whose testimony is then quantified using standard surveying techniques. As of early 2002, we were able to gather about 60 such measurements in the Marquesas, Society and Austral Islands, French Polynesia; and at Easter and Juan Fernandez Islands. They point out to the concentration of high runup values (8 m or more) in a narrow band of epicentral azimuths including Hawaii, the Marque- sas and Easter, but excluding Juan Fernandez. In the near field, we surveyed in 2001 the islands of Unimak and Sanak, based on available Coast Guard reports at Scotch Cap, and on subsisting watermarks such as large logs of driftwood deposited on these unforrested islands. We obtain a maximum runup height of 42 m on the Southern coast of Unimak and of 22 m at Sanak. These preliminary results suggest the combi- nation of a slow earthquake dislocation responsible for the strong far-field directivity of the tsunami, and of a co-seismic underwater landslide necessary to account for the exceptional near-field amplitudes, which are many times larger than the seismic dis- placement at the source for any acceptable seismological model of the dislocation. The existence of a large landslide is also suggested by anectodal reports of post-quake changes in local bathymetry and diminished fisheries productivity, and a preliminary confirmation is found on post-1946 bathymetric charts of the continental slope around 53.75 deg.N and 163.75 deg.W.

  4. Strain Accommodation Along an Oblique Subduction Zone: Integrating Paleomagnetic Data and Stress Patterns in the Central Aleutian Forearc

    NASA Astrophysics Data System (ADS)

    Krutikov, L.; Reynolds, J. R.; Stone, D. B.

    2005-12-01

    Present day motion of the Pacific plate relative to the North American plate shifts along the Aleutian arc from normal convergence in the east to transform motion in the west. Oblique subduction, partitioned into an arc-normal component and an arc-parallel component, creates a spatially complex pattern of deformation in the overriding plate. Strain partitioning results in tectonic segmentation of the forearc region, caused by increasing obliquity of plate convergence and apparently characterized by clockwise rotation and westward translation of discrete blocks in the central and western Aleutian arc [e.g., Geist et al., Tectonics 7, 327-341, 1988]. Archived cores collected from islands in the central Aleutian arc for previous paleomagnetic studies are being remeasured and reanalyzed using modern thermal demagnetization techniques that were not available at the time of collection. These new measurements indicate counterclockwise rotation or less significant clockwise rotations than those predicted by the block rotation model. Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Adak and Amchitka Islands in the central Aleutians. Results range from no statistically significant rotation in young intrusives, to a number of paleomagnetic vectors in the Finger Bay volcanics (~55 Ma) that suggest clockwise rotation since the time of original magnetization. Paleomagnetic results are combined with analyses of seafloor lineations in high-resolution multibeam sonar data collected in 2003 and 2004 of representative sites between 173W and 179E along the central Aleutian arc. Major fault lineations and joint patterns observed in the bathymetry data are analyzed to estimate the direction of maximum horizontal stress. Lineations in rocks of different stratigraphic ages and paleomagnetic results are being compared with 0-5Ma regional stress patterns [Scholl et al., 1989] to constrain the style and timing of deformation.

  5. Evidence for fractionation of Quaternary basalts on St. Paul Island, Alaska, with implications for the development of shallow magma chambers beneath Bering Sea volcanoes

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Winer, G. S.

    1999-04-01

    St. Paul Island is the youngest volcanic center in the Bearing Sea basalt province. We have undertaken a field, petrographic, and geochemical study of select St. Paul volcanic rocks in order to better understand their differentiation; specifically, to test the hypothesis that magmas erupted from individual Bering Sea basaltic volcanoes are not related by shallow-level processes such as crystal fractionation. Petrographically, all of the St. Paul volcanic rocks are olivine-, plagioclase-, and clinopyroxene-phyric. Textural features and modal contents of olivine phenocrysts, however, vary widely throughout the spectrum of basalt compositions. Although differing in size and abundance, olivine phenocrysts in all rock compositions are euhedral and commonly skeletal, suggesting rapid growth during ascent or eruptive quenching. None, however, display reaction textures with surrounding groundmass liquid. Compositionally, the St. Paul volcanic rocks are basalts and tephritic basalts and all have high contents of normative nepheline (8% to 16%). Concentrations of many major and incompatible trace elements display no clear correlations with bulk-rock SiO 2 and MgO contents or modal abundances of phenocrysts, suggesting that much of the compositional diversity of these magmas reflects variable mantle sources and degrees of partial melting. Similarly, chondrite-normalized REE patterns show variable degrees of light REE enrichment (La n=70-90) that do not correlate with bulk-rock mg-numbers. In contrast, concentrations of compatible trace elements (Ni, Cr, and Co) are positively correlated with MgO contents and modal percentages of olivine phenocrysts. Maximum forsterite contents of olivine phenocryst cores in most St. Paul rocks decrease with decreasing bulk-rock mg-number and are similar to the calculated equilibrium range. This is evidence that the high mg-numbers are magmatic and do not result from olivine accumulation. Instead, major and compatible trace element mass

  6. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  7. GLORIA imagery links sedimentation in Aleutian Trench to Yakutat margin via surveyor channel

    SciTech Connect

    Carlson, P.R.; Bruns, T.R.; Mann, D.M.; Stevenson, A.J. ); Huggett, Q.J. )

    1990-06-01

    GLORIA side-scan sonar imagery shows that the continental slope developing along the active margin of the Gulf of Alaska is devoid of large submarine canyons, in spite of the presence of large glacially formed sea valleys that cross the continental shelf. In the western and northern Gulf, discontinuous, actively growing deformation structures disrupt or divert the downslope transport of sediment into the Aleutian Trench. To the east of Middleton Island, the slope is intensively gullied and incised only by relatively small canyons. At the base of the gullied slope between Pamplona Spur and Alsek Valley, numerous small slope gullies coalesce into three turbidity current channels that merge to form the Surveyor deep-sea channel. About 350 km from the margin, the channel crosses the structural barrier formed by the Kodiak-Bowie Seamount chain and heads south for another 150 km where it bends northerly, perhaps influenced by the oceanic basement relief of the Patton Seamounts. The channel, now up to 5 km wide and deeply entrenched to 450 m, continues northerly for 200 km where it intercepts the Aleutian Trench, some 700 km from the Yakutat margin. South of Surveyor Channel, GLORIA imagery revealed evidence of another older channel. The older channel meanders through a gap in the seamount chain and eventually bends northwesterly. This now inactive, largely buried channel may have carried turbidity currents to the Aleutian Trench concurrent with the active Surveyor Channel.

  8. Volcano spacing and plate rigidity

    SciTech Connect

    Brink, U. )

    1991-04-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  9. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  10. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  11. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Zhiming

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995-1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993-2003 time interval. All interferograms lack coherence within ???5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5-15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ???14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1-2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from >10 km depth, and that the intrusion-eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  12. Evolution of elastic properties and acoustic emission, during uniaxial loading of rocks, from the Fogo Volcano in the island of Sao Miguel, Azores; Preliminary results.

    NASA Astrophysics Data System (ADS)

    Moreira, M.; Wallenstein, N.

    2012-04-01

    A Computerized Uniaxial Press working up to 250 kN was installed in the middle 2011 in the Laboratory of Microseismic Monitoring of ISEL. The system is able to record continuous time, pressure and axial strain (1 µm resolution) at 1s sampling rate. The loading platens were designed to integrate acoustic emission (AE) transducers. Signals are acquired and processed through an 8-channel ESG Hyperion Ultrasonic Monitoring System (10 MSPS, 14/16-bit ADC). The first experiments, presented here, were applied to a set of rock samples from the Fogo, an active central volcano in the island of Sao Miguel. Two different volcanic rock types were studied: a fine grained alkali basaltic rock with a porphyritic texture, a porosity of 4.5% and bulk density of 2700 kg m-3 (sample #3); and a benmoreitic rock with a trachytic texture, a porosity of 8.1 %, and bulk density of 2400 kg m-3 (sample #4). Cores from sample #3 were subjected to continuous increasing pressure, until failure. They show a uniaxial compressive strength (UCS) spanning from 60 to 85 MPa and a stress-strain curve with two phases: a first one with relative low Young's Module (YM) followed by a second phase were the YM increases roughly 3 times. The stress transition value occurs broadly in a stress level 50% of the UCS. The AE produced in the process is almost negligible until the YM transition stress level and increases after that. Important pulses of high AE rate occur, (> 100 s-1), associated with the occurrence and propagation of fractures, which are always parallel to the principal stress, showing an evident pattern of tensile fractures. About 20s before the failure, very important deformation rate is observed, the YM strongly decrease, and continuous AE events, with low rate, usually <50 s-1. The failure is accompanied with a sudden rise of AE events with rate > 200 s-1. Cycling stress experiences were also performed showing reversible stress-strain relation for axial pressure below the YM transition level

  13. Twenty years of Alaska Volcano Observatory's contributions to seismology

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; McNutt, S. R.; Power, J. A.; West, M.

    2008-12-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys observed its 20th anniversary in 2008. The AVO seismic network, inherited from AVO partners in 1988, consisted of three small-aperture subnetworks on Mount Spurr, Redoubt Volcano and Augustine Volcano and regional stations for a total of 23 short-period instruments (two with three-components). Twenty years later, the AVO network has expanded to 192 stations (23 three-component short-period, and 15 broadband) on 33 volcanoes spanning 2500 km across the Aleutian arc in one of the most remote and challenging environments in the world. The AVO seismic network provides for a unique data set. Within the seismically active Aleutian Arc, there are instrumented volcanoes which exhibit a variety of chemical compositions and eruptive styles. With each individual volcanic center similarly instrumented and all data analyzed in a consistent manner AVO has produced a data set suitable for making seismic comparisons across a wide suite of volcanoes. In twenty years, the AVO has captured data sets for eruptions at Augustine, Kasatochi, Okmok, Pavlof, Redoubt, Shishaldin, Spurr, and Venianinof. AVO data set also includes several volcanic-tectonic swarms, most notably at Akutan, Iliamna, Mageik, Martin, Shishaldin, and Tanaga. This broad approach to volcano seismology has led to a better understanding of precursory earthquake swarms, variations in background rates, triggered seismicity, the structure of volcanoes, volcanic tremor and deep long period earthquakes, among numerous other topics. The AVO also incorporates data from seismic stations operated by both the Alaska Earthquake Information Center and West Coast and Alaska Tsunami Warning Center to help locate some of the 70,000 earthquakes in the AVO catalog. In exchange AVO provides dense seismic data from the

  14. Mahukona: The missing Hawaiian volcano

    SciTech Connect

    Garcia, M.O.; Muenow, D.W. ); Kurz, M.D. )

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  15. Spreading Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Delaney, Paul T.; Denlinger, Roger P.

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  16. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  17. Far-field simulation of the 1946 Aleutian tsunami

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Hébert, Hélène

    2007-06-01

    We present hydrodynamic far-field simulations of the Aleutian tsunami of 1946 April 1, using both a dislocation source representing a slow earthquake and a dipolar one modelling a large landslide. The earthquake source is derived from the recent seismological study by López and Okal, while the landslide source was previously used to explain the exceptional run-up at Scotch Cap in the near field. The simulations are compared to a field data set previously compiled from testimonies of elderly witnesses at 27 far-field locations principally in the Austral and Marquesas Islands, with additional sites at Pitcairn, Easter and Juan Fernández. We find that the data set is modelled satisfactorily by the dislocation source, while the landslide fails to match the measured amplitudes, and to give a proper rendition of the physical interaction of the wavefield with the shore, in particular at Nuku Hiva, Marquesas. The emerging picture is that the event involved both a very slow earthquake, responsible for the far-field tsunami, and a major landslide explaining the near-field run-up, but with a negligible contribution in the far field.

  18. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  19. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  20. Deciphering Okmok Volcano's restless years (2002-2005)

    NASA Astrophysics Data System (ADS)

    Reyes, Celso Guillermo

    Okmok Volcano is an active island-arc shield volcano located in the central Aleutian islands of Alaska. It is defined by a 10-km-diameter caldera that formed in two cataclysmic eruptions, the most recent being ˜2050 years ago. Subsequent eruptions created several cinder cones within the caldera. The youngest of these, Cone A, was the active vent from 1815 through its 1997 eruption. On July 12 2008 Okmok erupted from new vents located northwest of Cone D. Between 2001 and 2004, geodetic measurements showed caldera inflation. These studies suggested that new magma might be entering the system. In 2002, a newly installed seismic network recorded quasi-periodic ("banded") seismic tremor signals occurring at the rate of two or more episodes per hour. This tremor was a near-continuous signal from the day the seismic network was installed. Although the volcano was not erupting, it was clearly in a state of unrest. This unrest garnered considerable attention because the volcano had erupted just six years prior. The seismic tremor potentially held insight as to whether the unrest was a remnant of the 1997 eruption, or whether it signaled a possible rejuvenation of activity and the potential for eruption. To determine the root cause and implications of this remarkable seismic tremor sequence, I created a catalog of over ˜17,000 tremor events recorded between 2003 and mid-2005. Tremor patterns evolved on the scale of days, but remained the dominant seismic signal. In order to facilitate the analysis of several years of data I created a MATLAB toolbox, known as "The Waveform Suite". This toolbox made it feasible for me to work with several years of digital data and forego my introductory analyses that were based on paper "helicorder" records. I first attempted to locate the tremor using the relative amplitudes of the seismograms to determine where the tremor was being created. Candidate tremor locations were constrained to a few locations along a corridor between Cone A and

  1. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  2. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week

  3. Chilean Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the border between Chile and the Catamarca province of Argentina lies a vast field of currently dormant volcanoes. Over time, these volcanoes have laid down a crust of magma roughly 2 miles (3.5 km) thick. It is tinged with a patina of various colors that can indicate both the age and mineral content of the original lava flows. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 15, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  4. Rock magnetic and petrographical-mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc

    NASA Astrophysics Data System (ADS)

    Rashidov, V. A.; Pilipenko, O. V.; Petrova, V. V.

    2016-07-01

    The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.

  5. Sustained long-period seismicity at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Petersen, T.; Caplan-Auerbach, J.; McNutt, S.R.

    2006-01-01

    From September 1999 through April 2004, Shishaldin Volcano, Aleutian Islands, Alaska, exhibited a continuous and extremely high level of background seismicity. This activity consisted of many hundreds to thousands of long-period (LP; 1-2 Hz) earthquakes per day, recorded by a 6-station monitoring network around Shishaldin. The LP events originate beneath the summit at shallow depths (0-3 km). Volcano tectonic events and tremor have rarely been observed in the summit region. Such a high rate of LP events with no eruption suggests that a steady state process has been occurring ever since Shishaldin last erupted in April-May 1999. Following the eruption, the only other signs of volcanic unrest have been occasional weak thermal anomalies and an omnipresent puffing volcanic plume. The LP waveforms are nearly identical for time spans of days to months, but vary over longer time scales. The observations imply that the spatially close source processes are repeating, stable and non-destructive. Event sizes vary, but the rate of occurrence remains roughly constant. The events range from magnitude ???0.1 to 1.8, with most events having magnitudes <1.0. The observations suggest that the conduit system is open and capable of releasing a large amount of energy, approximately equivalent to at least one magnitude 1.8-2.6 earthquake per day. The rate of observed puffs (1 per minute) in the steam plume is similar to the typical seismic rates, suggesting that the LP events are directly related to degassing processes. However, the source mechanism, capable of producing one LP event about every 0.5-5 min, is still poorly understood. Shishaldin's seismicity is unusual in its sustained high rate of LP events without accompanying eruptive activity. Every indication is that the high rate of seismicity will continue without reflecting a hazardous state. Sealing of the conduit and/or change in gas flux, however, would be expected to change Shishaldin's behavior. ?? 2005 Elsevier B.V. All

  6. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    ... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

  7. Retrieving 65 years of volcano summit deformation from multitemporal structure from motion: The case of Piton de la Fournaise (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Derrien, Allan; Villeneuve, Nicolas; Peltier, Aline; Beauducel, François

    2015-09-01

    The structure from motion photogrammetry technique enables use of historical airborne photography to achieve high-resolution 3-D terrain models. We apply this method on Piton de la Fournaise volcano (La Réunion), which allows a unique opportunity to retrieve high-resolution (1.5-0.11 m) digital elevation models and precise deformation maps of the volcano since 1950. Our results provide evidence that the summit volume increased throughout the study period, at a stable rate of 2.2 Mm3/yr between 1950 and 2015, with an acceleration up to 8.0 Mm3/yr prior to the major 2007 eruption that was accompanied by summit caldera collapse. At the same time, summit deformation was asymmetric, with 9.2 ± 2.5 m of eastward seaward displacement and 1.3 ± 2.5 m to the west during 1950-2015. Our results reveal a temporal evolution in the volcano magma influx rate and deformation. Tracking these fluxes and the long-lived preferential eastern motion is crucial to mitigate risks associated to flank destabilization.

  8. Mantle and Crustal Sources of Carbon, Nitrogen, and Noble gases in Cascade-Range and Aleutian-Arc Volcanic gases

    USGS Publications Warehouse

    Symonds, Robert B.; Poreda, Robert J.; Evans, William C.; Janik, Cathy J.; Ritchie, Beatrice E.

    2003-01-01

    Here we report anhydrous chemical (CO2, H2S, N2, H2, CH4, O2, Ar, He, Ne) and isotopic (3He/4He, 40Ar/36Ar, δ13C of CO2, δ13C of CH4, δ15N) compositions of virtually airfree gas samples collected between 1994 and 1998 from 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA). Sample sites include ≤173°C fumaroles and springs at Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. The chemical and isotopic data generally point to magmatic (CO2, Ar, He), shallow crustal sedimentary (hereafter, SCS) (CO2, N2, CH4), crustal (He), and meteoric (N2, Ar) sources of volatiles. CH4 clearly comes from SCS rocks in the subvolcanic systems because CH4 cannot survive the higher temperatures of deeper potential sources. Further evidence for a SCS source for CH4 as well as for non-mantle CO2 and non-meteoric N2 comes from isotopic data that show wide variations between volcanoes that are spatially very close and similar isotopic signatures from volcanoes from very disparate areas. Our results are in direct opposition to many recent studies on other volcanic arcs (Kita and others, 1993; Sano and Marty, 1995; Fischer and others, 1998), in that they point to a dearth of subducted components of CO2 and N2 in the CRAA discharges. Either the CRAA volcanoes are fundamentally different from volcanoes in other arcs or we need to reevaluate the significance of subducted C and N recycling in convergent-plate volcanoes.

  9. Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano

    NASA Astrophysics Data System (ADS)

    Almendros, Javier; Ibáñez, Jesús M.; Carmona, Enrique; Zandomeneghi, Daria

    2007-02-01

    We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May-July 2004. The period selected for the analysis (May 12-31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1-6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S-P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma

  10. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  11. Roles of magmatic oxygen fugacity and water content in generating signatures of continental crust in the Alaska-Aleutian arc

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.; Brounce, M. N.; Gentes, Z.

    2014-12-01

    Early depletion of Fe during magmatic differentiation is a characteristic of many arc magmas, and this may drive them towards the bulk composition of continental crust. In the Alaska-Aleutian arc, magmas are strongly Fe-depleted both in the east, where the arc sits atop pre-existing continental crust, and in the west, where the system is oceanic but convergence is highly oblique. Primary basaltic arc magmas may achieve early Fe depletion through a combination of high magmatic H2O, which delays silicate saturation, and high oxygen fugacity (fO2), which promotes early onset of Fe-oxide crystallization. Alternatively, low-Fe, high Mg# magmas may emerge directly from the arc mantle, possibly due to slab melting, driving mixing with Fe-rich basaltic magmas. Yet, the relative importance of H2O, fO2, and magmatic bulk composition in generating Fe-depletion is not clearly resolved. Here, we present new measurements of the oxidation state of Fe (Fe3+/∑Fe ratio; a proxy for magmatic fO2), in combination with major element and volatile data, of olivine-hosted melt inclusions from four Alaska-Aleutian arc volcanoes (Okmok, Seguam, Korovin, Augustine), acquired using XANES spectroscopy. We use the Tholeiitic Index (THI) of Zimmer et al., 2010 to quantify the behavior of Fe in each volcano magma series (<1 is Fe-depleted, >1 is Fe-enriched). These volcanoes span a range of THI, from 0.9-0.65. The Fe3+/∑Fe ratios of Aleutian basalts, corrected for fractional crystallization to 6 wt.% MgO (i.e., Fe3+/∑Fe6.0) range from 0.22-0.31 and correlate strongly with THI (r2>0.99), such that more Fe-depleted magmas contain a greater proportion of oxidized Fe. The maximum dissolved H2O contents of basaltic melt inclusions from these volcanoes also strongly correlate with THI (r2>0.96), and with measured Fe3+/∑Fe ratios (although H2O is not the direct cause of oxidation). These links point to a slab-derived origin of both H2O and oxidation and thus relate slab fluxes to the Fe

  12. Re-colonization by common eiders Somateria mollissima in the Aleutian Archipelago following removal of introduced arctic foxes Vulpes lagopus

    USGS Publications Warehouse

    Petersen, Margaret R.; Sonsthagen, Sarah A.; Sexson, Matthew G.

    2015-01-01

    Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island-dwelling organisms. When predators are removed, re-colonization for some species occurs naturally, and inter-island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re-colonization of common eiders Somateria mollissima following removal of introduced arctic foxes Vulpes lagopus in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re-colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near-by remnant populations of common eiders contributed substantially to population expansion, without which re-colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re-colonization suggests reduced movement of eiders among islands and little movement between island groups after

  13. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  14. Indirect food web interactions: Sea otters and kelp forest fishes in the Aleutian archipelago

    USGS Publications Warehouse

    Reisewitz, S.E.; Estes, J.A.; Simenstad, C.A.

    2006-01-01

    Although trophic cascades - the effect of apex predators on progressively lower trophic level species through top-down forcing - have been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and how the abundance and diet of kelp forest fishes are influenced by a trophic cascade linking sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass density), kelp (numerical density) and fish (Catch per unit effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all four islands). Our fish studies focused on rock greenling (Hexagrammos lagocephalus), the numerically dominant species in this region. In the mid-1980s, the two islands with high-density otter populations supported dense kelp forests, relatively few urchins, and abundant rock greenling whereas the opposite pattern (abundant urchins, sparse kelp forests, and relatively few rock greenling) occurred at islands where otters were rare. In the 2000, the abundances of urchins, kelp and greenling were grossly unchanged at islands where otters were initially rare but had shifted to the characteristic pattern of otter-free systems at islands where otters were initially abundant. Significant changes in greenling diet occurred between the mid-1980s and the 2000 although the reasons for these changes were difficult to assess because of strong island-specific effects. Whereas urchin-dominated communities supported more diverse fish assemblages than kelp-dominated communities, this was not a simple effect of the otter-induced trophic cascade because all islands supported more diverse fish assemblages in 2000 than in the mid-1980s

  15. Mud Volcanoes Formation And Occurrence

    NASA Astrophysics Data System (ADS)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  16. Orographic Flow over an Active Volcano

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  17. Explosive activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): A historical and geological review

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Di Muro, Andrea; Villeneuve, Nicolas; Saint-Marc, Cécile; Fadda, Pierluigi; Manta, Fabio

    2013-08-01

    Summit explosive activity and collapses that form pit craters and calderas represent major volcanic hazards on a dominantly effusive, frequently active volcano like Piton de la Fournaise. Only three summit collapse events (1986, 2002, 2007) have been recorded since the foundation of the Piton de la Fournaise volcano observatory (OVPF) in 1979, and two of them (1986 and 2007) were associated with weak phreatic activity. At Piton de la Fournaise, the normal explosive activity consists of short-lived and mild (< 20 m-high) lava fountains, which quickly evolve into strombolian activity during the eruptions. Based on comprehensive literature review and high-resolution image analysis of surface outcrops and summit caldera walls, we reconstructed the time distribution of recent explosive events (phreatomagmatic; phreatic) and their link with summit collapses and lateral (flank) effusive eruptions. In historical time (post-1640 CE), we recognise two main clusters of explosive events. Frequent and violent phreatomagmatic to phreatic explosions occurred during the oldest cluster (1708-1878) and alternated with long-lasting periods (years to decades) of summit effusive activity. In contrast, scarce, and on average, weak explosions occurred during the youngest cluster (1897-2012), when discrete and short-lived (< 6 months) effusive eruptions represent the main eruptive dynamics. Historical summit collapses (pit craters and caldera), all localised at the top of the summit cone, were related to voluminous lateral eruptions and were followed by a significant decrease in eruptive rate. However, magma draining during lateral eruptions was not systematically associated with summit collapses or explosions. The long-lasting occurrence of magma at very shallow depth below the volcano summit, followed by a rapid lateral drainage, apparently represents a critical condition favouring magma-groundwater interaction to produce explosive activity. The prehistoric growth of the Piton de la

  18. The Aleutian Tsunami of 1946: the Compound Earthquake-Landslide Source and Near-Field Modeling

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Yamazaki, Y.; McMurtry, G. M.

    2015-12-01

    The tsunami of April 1, 1946, spread death and destruction throughout the Pacific from the Aleutians to Antarctica, and produced exceptional runup, 42 m, at Scotch Cap on Unimak Island in the near field. López & Okal (2006) showed that the triggering earthquake was at least MW = 8.6, large enough to explain the far-field tsunami but still requiring a landslide or other secondary source to achieve the local runup. No convincing landslide was found until von Huene, et al (2014) merged all available multibeam data and reprocessed a old multichannel line to show that a feature on the Aleutian Terrace they call Lone Knoll (LK) is the displaced block of a translational slide. From 210Pb dating of push cores taken near the summit of LK, we find that a disruption in sedimentation occurred in 1946 at one site, but sedimentation was not disrupted at another site nearby. We infer that the slide block moved coherently at a speed close to the threshold for erosion of the hemipelagic clays. From GLORIA sidescan, Fryer, et al (2004) had earlier tentatively identified LK as a landslide deposit, but if the tsunami crossed the shallow Aleutian Shelf at the long-wave speed, that landslide had to extend up to the shelf edge to satisfy the known 48-min travel time to Scotch Cap. The resulting landslide was enormous, and a multibeam survey later in 2004 showed that it could not exist. The slide imaged by von Huene, et al is far smaller, with a headwall 30 km downslope at a depth of 3 km. The greater distance demands that the tsunami travel much faster across the shelf. The huge runup, however, suggests that wave height was a significant fraction of the water depth (only 80 m), so the tsunami probably crossed the Aleutian Shelf as a bore. From modeling the landslide-generated tsunami with a shock-capturing dispersive code we infer that it did indeed cross the shelf as a bore traveling at roughly twice the long-wave speed. We are still exploring the dependence of the tsunami on slide

  19. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cai, Yue; Rioux, Matthew; Kelemen, Peter B.; Goldstein, Steven L.; Bolge, Louise; Kylander-Clark, Andrew R. C.

    2015-12-01

    Cenozoic calc-alkaline plutons that comprise the middle crust of the central and eastern Aleutians have distinct isotopic and elemental compositions compared to Holocene tholeiitic lavas in the same region, including those from the same islands. Therefore the Holocene lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Compared to the lavas, the Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks show higher SiO2 at a given Fe/Mg ratio, and have higher εNd-εHf values and lower Pb-Sr isotope ratios. However, the plutonic rocks strongly resemble calc-alkaline Holocene volcanics with more "depleted" isotope ratios in the western Aleutians, whose composition has been attributed to significant contributions from partial melting of subducted basaltic oceanic crust. These data could reflect a temporal variation of central and eastern Aleutian magma source compositions, from predominantly calc-alkaline compositions with more "depleted" isotope ratios in the Paleogene, to tholeiitic compositions with more "enriched" isotopes more recently. Alternatively, the differences between central Aleutian plutonic and volcanic rocks may reflect different transport and emplacement processes for the magmas that form plutons versus lavas. Calc-alkaline parental magmas, with higher SiO2 and high viscosity, are likely to form plutons after extensive mid-crustal degassing of initially high water contents. This conclusion has overarching importance because the plutonic rocks are chemically similar to bulk continental crust. Formation of similar plutonic rocks worldwide may play a key role in the genesis and evolution of continental crust.

  20. Transpressional Strain Partitioning and the Compatibility of GPS Velocities and Earthquakes Focal Mechanisms in the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Apel, E. V.; Oldow, J. S.; Lewis, D. S.; Hans, A.

    2002-12-01

    Oblique plate convergence is commonly partitioned into boundary normal and parallel components resulting in displacement of the frontal portion of the overriding plate with respect to the backarc region along arc-parallel strike-slip faults. In the Aleutian Islands, the east to west increase in relative plate motion between the North American and Pacific plates from 65 mm/yr to 75 mm/yr is accompanied by a change from normal convergence to boundary parallel displacement. The convergence obliquity increases from near zero to ~80 degrees along strike together with an observed increase in velocities based on GPS measurements from 1996, 1998, 1999, and 2000. GPS velocities have a strong arc-parallel orientation and systematically increase around the curved arc from 4 mm/yr in the east (Unalaska), to 7-10 mm/yr in the center (Atka and Adak), and 25-31 mm/yr in the west (Shemya and Attu). In all cases, GPS velocities record a small arc-normal component of displacement. The orientation of the incremental shortening axis derived from earthquake focal mechanisms on the Aleutian megathrust has an obliquity that varies systematically from zero (normal to the plate boundary) in the east to ~35 degrees in the west. The variation in incremental shortening axes, however, does not document displacement field partitioning but rather is a consequence of transpressional nonplane strain. Existence of displacement partitioning can only be assessed by direct measurement. Unfortunately, GPS velocities record permanent and recoverable strain, necessitating determination of the elastic strain component in the velocity field. The incremental shortening axis related to megathrust deformation constrains the azimuth of the elastic component of the GPS velocity field and yields minimum arc-parallel displacement components of 4 mm/yr in the east, 5-6 mm/yr in the central Aleutian chain, and 22-27 mm/yr in the west. GPS velocities along the Aleutian chain record a lateral variation in

  1. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  2. "Canary Islands, a volcanic window in the Atlantic Ocean": a 7 year effort of public awareness on volcano hazards and risk management

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Calvo, David; Pérez, Nemesio M.; Padrón, Eleazar; Melián, Gladys; Padilla, Germán; Barrancos, José; Hernández, Pedro A.; Asensio-Ramos, María; Alonso, Mar

    2016-04-01

    "Canary Islands: A volcanic window in the Atlantic Ocean" is an educational program born from the need to inform and educate citizens residing in the Canary Islands on the various hazards associated to volcanic phenomena. The Canary Islands is the only territory of Spain that hosts active volcanism, as is shown by the 16 historical eruptions that have occurred throughout this territory, being the last one a submarine eruption taking place on October 12, 2011, offshore El Hierro Island. In the last 7 years, ITER as well as INVOLCAN have been performing an educative program focused on educating to the population about the benefits of a volcanic territory, volcanic hazards, how to reduce volcanic risk and the management of volcanic risk in the Canary Islands. "Canary Islands: A volcanic window in the Atlantic Ocean" consists of three units, the first two dedicated to the IAVCEI/UNESCO videos "Understanding Volcanic Hazards" and "Reducing Volcanic Risk" and the third one dedicated to the management of volcanic risk in the Canary Islands, as well as some other aspects of the volcanic phenomena. Generally the three units are shown consecutively on Tuesday, Wednesday and Thursday. This educative program has been roaming all around the 88 municipalities of the archipelago since this initiative started in 2008. The total number of attendees since then amounts to 18,911 people. The increase of assistance was constant until 2011, with annual percentages of 7.8, 17.1 and 20.9 respectively, regarding to ratio assistant/municipality. Despite the heterogeneity of the audience, the main audience is related to aged people of 45 years and older. This could be related to the memories of the recent eruptions occurred at La Palma Island in 1949 and 1971. It is important to point out that many of those people attending the educative program are representatives of local government (i.e. civil protection). Regarding the interest of the audience, the educational program attendees have

  3. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  4. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  5. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  6. Soufriere Hills Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

    This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is

  7. A scale for ranking volcanoes by risk

    NASA Astrophysics Data System (ADS)

    Scandone, Roberto; Bartolini, Stefania; Martí, Joan

    2016-01-01

    We propose a simple volcanic risk coefficient (VRC) useful for comparing the degree of risk arising from different volcanoes, which may be used by civil protection agencies and volcano observatories to rapidly allocate limited resources even without a detailed knowledge of each volcano. Volcanic risk coefficient is given by the sum of the volcanic explosivity index (VEI) of the maximum expected eruption from the volcano, the logarithm of the eruption rate, and the logarithm of the population that may be affected by the maximum expected eruption. We show how to apply the method to rank the risk using as examples the volcanoes of Italy and in the Canary Islands. Moreover, we demonstrate that the maximum theoretical volcanic risk coefficient is 17 and pertains to the large caldera-forming volcanoes like Toba or Yellowstone that may affect the life of the entire planet. We develop also a simple plugin for a dedicated Quantum Geographic Information System (QGIS) software to graphically display the VRC of different volcanoes in a region.

  8. Characterization of Aleutian disease virus as a parvovirus.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1980-01-01

    We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus. Images PMID:6252342

  9. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involvin