Sample records for volcano aleutian islands

  1. Perspective View of Okmok Volcano, Aleutian Islands, Alaska (#1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This perspective view shows the caldera of the Okmok volcano in Alaska's Aleutian Islands.

    The shaded relief was generated from and draped over an Airsar-derived digital elevation mosaic.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  2. Perspective View of Okmok Volcano, Aleutian Islands, Alaska (#2)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This perspective view shows the caldera of the Okmok volcano in Alaska's Aleutian Islands.

    The shaded relief was generated from and draped over an Airsar-derived digital elevation mosaic.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  3. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  4. Stratigraphic framework of Holocene volcaniclastic deposits, Akutan Volcano, east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1999-01-01

    Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the 'Akutan tephra,' is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity.

  5. Geology and 40Ar/39Ar Geochronology of Akutan Volcano, Eastern Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Jicha, B. R.

    2013-12-01

    40Ar/39Ar dating and new whole-rock geochemical analyses are used to establish an eruptive chronology for Akutan volcano, Akutan Island, in the eastern Aleutian island arc. Akutan Island (166° W, 54.1° N) is the site of long-lived volcanism and the entire island comprises volcanic rocks as old as 3.3 Ma (Richter et al., 1998, USGS Open-File 98-135). Our current focus is on the 225 km2 western half of the island, which is home to the Holocene active cone, Holocene to latest Pleistocene satellite vents, and underlying middle Pleistocene volcanic basement rocks. Eruptive products span the tholeiitic-calc-alkaline boundary, are medium-K, and range from basalt to dacite. Furnace incremental heating experiments on groundmass separates of 38 samples resulted in 29 40Ar/39Ar ages. The remainder did not yield radiogenic 40Ar contents and are likely Holocene in age. The oldest ages (1251×10 and 1385×12 ka) are from a wedge of flat-lying dissected lavas north of the Holocene cone; these likely represent the upper part of the volcanic basement that underlies the entire island. Above a major unconformity lie basaltic andesite to dacite lavas that range from 765× 4 to 522×8 ka. The eroded remnants of the source volcano for these flows appears to crop out as a series of variably hydrothermally altered breccias and domes 5 km east-northeast of the current summit. A 625 m-tall eroded basaltic center, Lava Peak, sits 6 km northwest of the summit; its deeply incised western flank exposes lava flows and a plug. Two flows are dated at 598×16 and 602×15 ka. A high ridge 1.5 km south of the summit is made of oxidized, mostly andesitic lavas 284-249 ka old; these are presumably the remnants of an eruptive center located near the current cone. Flat Top Peak, 3.5 km southwest of the summit, produced almost exclusively basalts and six dated lavas range from 155×8 to 98×18 ka. Lavas from Flat Top (1065 m asl) are deeply eroded suggesting extensive ice cover during marine isotope stages 4-2. Cascade Bight, an eruptive center 4.5 km southeast of the caldera, has apparently been active in the Holocene as two experiments on basaltic andesite lavas yielded no radiogenic argon. Holocene lavas are also exposed along the upper walls of the ~1,600 yr old summit caldera (Waythomas, 1999, Bull Volc, v. 61, p. 141-161), including dissected 1296 m-tall Akutan Peak (the current summit), as well as low on the north and west flanks of the Akutan edifice. Holocene lavas, including those from Cascade Bight as well as Lava Point satellite vent on the NW coast, all fall along a single tholeiitic, basalt-to-dacite evolutionary trend that has lower K than Pleistocene lavas. Our results show that the focus of volcanism has shifted within the western half of Akutan Island over the last ~600 ka, and that on occasion multiple volcanic centers have been active over the same time period, including within the Holocene.

  6. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    The significant explosive eruptions of Okmok and Kasatochi volcanoes in 2008 tested the hazard communication systems at the Alaska Volcano Observatory (AVO) including a rigorous test of the new format for written notices of volcanic activity. AVO's Anchorage-based Operations facility (Ops) at the USGS Alaska Science Center serves as the hub of AVO's eruption response. From July 12 through August 28, 2008 Ops was staffed around the clock (24/7). Among other duties, Ops staff engaged in communicating with the public, media, and other responding federal and state agencies and issued Volcanic Activity Notices (VAN) and Volcano Observatory Notifications for Aviation (VONA), recently established and standardized products to announce eruptions, significant activity, and alert level and color code changes. In addition to routine phone communications with local, national and international media, on July 22, AVO held a local press conference in Ops to share observations and distribute video footage collected by AVO staff on board a U.S. Coast Guard flight over Okmok. On July 27, AVO staff gave a public presentation on the Okmok eruption in Unalaska, AK, 65 miles northeast of Okmok volcano and also spoke with local public safety and industry officials, observers and volunteer ash collectors. AVO's activity statements, photographs, and selected data streams were posted in near real time on the AVO public website. Over the six-week 24/7 period, AVO staff logged and answered approximately 300 phone calls in Ops and approximately 120 emails to the webmaster. Roughly half the logged calls were received from interagency cooperators including NOAA National Weather Service's Alaska Aviation Weather Unit and the Center Weather Service Unit, both in Anchorage. A significant number of the public contacts were from mariners reporting near real-time observations and photos of both eruptions, as well as the eruption of nearby Cleveland Volcano on July 21. As during the 2006 eruption of Augustine volcano in Cook Inlet, Alaska, the number of calls to Ops, emails to the webmaster, and the amount of data served via the AVO website greatly increased during elevated volcanic activity designated by the USGS aviation color code and volcano alert level. Lessons learned include, Ops staffing requirements during periods of high call volume, the need for ash fall hazard information in multiple languages, and the value of real-time observations of remote Aleutian eruptions made by local mariners. An important theme of public inquiries concerned the amount and potential climate impacts of the significant sulfur dioxide gas and ash plumes emitted by Okmok and Kasatochi, including specific questions on the amount of sulfur dioxide discharged during each eruption. The significant plumes produced at the onset of the Okmok and Kasatochi eruptions also had lengthy national and international aviation impacts and yet-to-be resolved hemispherical or possible global, climactic effects.

  7. Perspective View of Umnak Island, Aleutian Islands, Alaska (#2)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a perspective view of Umnak Island, one of Alaska's Aleutian Islands. The active Okmok volcano appears in the center of the island.

    The image was created by draping a Landsat 7 Thematic Mapper image over a digital elevation mosaic derived from Airsar data.

    This work was conducted as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  8. Perspective View of Umnak Island, Aleutian Islands, Alaska (#1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a perspective view of Umnak Island, one of Alaska's Aleutian Islands. The active Okmok volcano appears in the center of the island.

    The image was created by draping a Landsat 7 Thematic Mapper image over a digital elevation mosaic derived from Airsar data.

    This work was conducted as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  9. Surface Deformation Caused by a Shallow Magmatic Source at Okmok Volcano, Aleutian Arc

    Microsoft Academic Search

    Y. Miyagi; J. T. Freymueller; F. Kimata; T. Sato; D. Mann; M. Kasahara

    2001-01-01

    Okmok Volcano, located on Umnak Island in the eastern Aleutian arc, last erupted in 1997. Okmok consists of a 10 km wide caldera with several cones located inside. Significant surface deformation before, during and after the eruption has been measured using InSAR. However, the area of coherent data has been limited to the northern part of the caldera, with some

  10. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine

    Microsoft Academic Search

    Brad S. Singer; Brian R. Jicha; William P. Leeman; Nick W. Rogers; Matthew F. Thirlwall; Jeff Ryan; Kirsten E. Nicolaysen

    2007-01-01

    Trace element and Sr-Nd-Pb isotope compositions of basaltic lavas from 11 volcanoes spanning 1300 km of the Aleutian Island arc provide new constraints on the recycling of elements in melts and fluids derived from subducted oceanic crust and sediment. Despite a nearly twofold variation in the flux of sediment subducted along the Aleutians, proxies indicating the presence of sediment melt

  11. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Microsoft Academic Search

    Bruce A. Wright

    2012-01-01

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education

  12. 75 FR 38430 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea...the initial total allowable catch of Greenland turbot in the Aleutian Islands subarea...initial total allowable catch (ITAC) of Greenland turbot in the Aleutian Islands...

  13. 78 FR 28523 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY...Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). These regulations amend the Bering Sea/Aleutian Islands Crab Rationalization Program (CR...

  14. 76 FR 8700 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY...Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). If approved...would amend the Bering Sea/ Aleutian Islands Crab Rationalization Program by...

  15. 76 FR 68358 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY...Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). Amendment 30 amends the Bering Sea/Aleutian Islands Crab Rationalization Program (CR...

  16. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  17. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  18. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  19. Vegetation of eastern Unalaska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Talbot, Stephen S.; Schofield, Wilfred B.; Talbot, Sandra L.; Daniëls, Fred J. A.

    2010-01-01

    Plant communities of Unalaska Island in the eastern Aleutian Islands of western Alaska, and their relationship to environmental variables, were studied using a combined Braun-Blanquet and multivariate approach. Seventy relevés represented the range of structural and compositional variation in the matrix of vegetation and landform zonation. Eleven major community types were distinguished within six physiognomic–ecological groups: I. Dry coastal meadows: Honckenya peploides beach meadow, Leymus mollis dune meadow. II. Mesic meadows: Athyrium filix-femina – Aconitum maximum meadow, Athyrium filix-femina – Calamagrostis nutkaensis meadow, Erigeron peregrinus – Thelypteris quelpaertensis meadow. III. Wet snowbed meadow: Carex nigricans snowbed meadow. IV. Heath: Linnaea borealis – Empetrum nigrum heath, Phyllodoce aleutica heath, Vaccinium uliginosum – Thamnolia vermicularis fellfield. V. Mire: Carex pluriflora – Plantago macrocarpa mire. VI. Deciduous shrub thicket: Salix barclayi – Athyrium filix-femina thicket. These were interpreted as a complex gradient primarily influenced by soil moisture, elevation, and pH. Phytogeographical and syntaxonomical analysis of the plant communities indicated that the dry coastal meadows, most of the heaths, and the mire vegetation belonged, respectively, to the widespread classes Honckenyo–Elymetea, Loiseleurio–Vaccinietea, and Scheuchzerio–Caricetea, characterized by their circumpolar and widespread species. Amphi-Beringian species were likely diagnostic of amphi-Beringian syntaxa, many of these yet to be described.

  20. 75 FR 38940 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ...Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea...NMFS is prohibiting directed fishing for Greenland turbot in the Aleutian Islands subarea...necessary to prevent exceeding the 2010 Greenland turbot total allowable catch...

  1. 78 FR 24362 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...Exclusive Economic Zone Off Alaska; Greenland Turbot in the Aleutian Islands Subarea...NMFS is prohibiting directed fishing for Greenland turbot in the Aleutian Islands subarea...necessary to prevent exceeding the 2013 Greenland turbot initial total allowable...

  2. 76 FR 49423 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY...Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). This proposed...would amend the Bering Sea/Aleutian Islands Crab Rationalization Program (CR...

  3. 76 FR 11139 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2011 and 2012 Harvest Specifications...fishery of the Bering Sea and Aleutian Islands management area (BSAI). This action...to the BSAI Atka mackerel and Aleutian Islands subarea Pacific cod fisheries to...

  4. 75 FR 76372 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ...Zone Off Alaska; Bering Sea and Aleutian Islands; Proposed 2011 and 2012 Harvest Specifications...fisheries of the Bering Sea and Aleutian Islands (BSAI) management area. This action...Groundfish of the Bering Sea and Aleutian Islands Management Area. The intended...

  5. 78 FR 68390 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Management Area; Amendment 102 AGENCY...Groundfish of the Bering Sea and Aleutian Islands Management Area (BSAI FMP), and amend...Area 4B) and the sablefish Aleutian Islands regulatory area that is similar to...

  6. 78 FR 6279 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY...Management Plan for Bering Sea/Aleutian Islands King and Tanner Crabs (FMP). If approved...regulations will amend the Bering Sea/ Aleutian Islands Crab Rationalization Program (CR...

  7. 77 FR 10669 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2012...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...Zone Off Alaska; Bering Sea and Aleutian Islands; Final 2012 and 2013 Harvest Specifications...fishery of the Bering Sea and Aleutian Islands management area (BSAI). This action...the Bering Sea subarea and the Aleutian Island subarea. This split depends on NMFS...

  8. 78 FR 65602 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...Zone Off Alaska; Bering Sea and Aleutian Islands Management Area; Amendment 102 AGENCY...Groundfish of the Bering Sea and Aleutian Islands Management Area (BSAI FMP) for review...Program for sablefish in the Aleutian Islands regulatory area. The proposed CQE...

  9. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  10. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries...Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area ER30AU10.000 [75 FR 53069, Aug. 30,...

  11. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries...Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area ER30AU10.000 [75 FR 53069, Aug. 30,...

  12. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries...Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area ER30AU10.000 [75 FR 53069, Aug. 30,...

  13. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries...Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area ER30AU10.000 [75 FR 53069, Aug. 30,...

  14. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries...Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area ER30AU10.000 [75 FR 53069, Aug. 30,...

  15. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and...Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection Areas Area No. Name Latitude...

  16. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and...Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection Areas Area No. Name Latitude...

  17. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and...Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection Areas Area No. Name Latitude...

  18. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and...Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection Areas Area No. Name Latitude...

  19. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and...Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection Areas Area No. Name Latitude...

  20. Enormous Tsunamis in Hawaii from Great Earthquakes in the Aleutians Islands

    E-print Network

    Frandsen, Jannette B.

    Enormous Tsunamis in Hawaii from Great Earthquakes in the Aleutians Islands Rhett Butler Hawaii Institute of Geophysics & Planetology University of Hawaii at Manoa Abstract The magnitude Mw 9.1 Tohoku the eastern coast of Japan. The largest tsunamis historically affecting Hawaii came from the Aleutians Islands

  1. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    Microsoft Academic Search

    M. O. Giblin; D. C. Stahl; J. A. Bechtel

    2002-01-01

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the

  2. A burial cave in the western Aleutian Islands, Alaska.

    PubMed

    West, Dixie; Lefèvre, Christine; Corbett, Debra; Crockford, Susan

    2003-01-01

    During the 1998 field season, the Western Aleutians Archaeological and Paleobiological Project (WAAPP) team located a cave in the Near Islands, Alaska. Near the entrance of the cave, the team identified work areas and sleeping/sitting areas surrounded by cultural debris and animal bones. Human burials were found in the cave interior. In 2000, with permission from The Aleut Corporation, archaeologists revisited the site. Current research suggests three distinct occupations or uses for this cave. Aleuts buried their dead in shallow graves at the rear of the cave circa 1,200 to 800 years ago. Aleuts used the front of the cave as a temporary hunting camp as early as 390 years ago. Finally, Japanese and American military debris and graffiti reveal that the cave was visited during and after World War II. Russian trappers may have also taken shelter there 150 to 200 years ago. This is the first report of Aleut cave burials west of the Delarof Islands in the central Aleutians. PMID:21755641

  3. Revisions to the Steller Sea Lion Protection Measures for the Aleutian Islands Atka Mackerel

    E-print Network

    Revisions to the Steller Sea Lion Protection Measures for the Aleutian Islands Atka Mackerel mackerel and Pacific cod fisheries. The western distinct population segment (WDPS) of Steller sea lion is declining. Atka mackerel and Pacific cod are principal prey species for Steller sea lions in the Aleutian

  4. 76 FR 68161 - Proposed Information Collection; Comment Request; Aleutian Islands Pollock Fishery Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ...of this law allocates the Aleutian Islands (AI) directed pollock fishery to the Aleut Corporation...for activities necessary for conducting the AI directed pollock fishery. Management provisions for the AI directed pollock fishery include:...

  5. Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska

    E-print Network

    Segall, Paul

    volcano and Fisher caldera. Westdahl is inflating, with the best fit point source located at 7.2À1.2 +2 from the last eruption in 1991­1992. Fisher caldera shows subsidence and contraction across the caldera of the Earth: Plate boundary--general (3040); KEYWORDS: volcanic deformation, caldera deformation, Aleutian Arc

  6. Paleogene geology and chronology of southwestern Umnak Island, Aleutian Islands, Alaska ( USA).

    USGS Publications Warehouse

    McLean, H.; Hein, J.R.

    1984-01-01

    A slightly deformed marine sedimentary sequence reflecting volcanic arc sedimentation from late Eocene to early Oligocene is intruded by hypabyssal quartz diorite sills and small plutons with apparent ages of about 30 Ma, ie, middle Oligocene. Chemical data from igneous rocks exhibit calc-alkaline and tholeiitic volcanic arc differentiation trends. The fossil ages and radiometric dates from SW Umnak Island are similar to those reported from other central and E Aleutian islands, and indicate uniformity in the chronology and tectonic development of the archipelago during the Paleogene. Paleomagnetic data suggest possible northward movement but remain equivocal and more work is indicated. -after Authors

  7. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing... Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC...Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl...

  8. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing... Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC...Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl...

  9. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table...679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing...

  10. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table...679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing...

  11. Steller Sea Lion Protection Measures for Groundfish Fisheries in the Bering Sea and Aleutian Islands

    E-print Network

    Islands Management Area Draft Environmental Impact Statement/Regulatory Impact Review/Initial Regulatory in the Bering Sea and Aleutian Islands Management Area Draft Environmental Impact Statement/Regulatory Impact. Fish and Wildlife Service Alaska Department of Fish and Game Abstract: This environmental impact

  12. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife...of Part 300—Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas ER04NO09.012 [74 FR...

  13. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife...of Part 300—Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas ER04NO09.012 [74 FR...

  14. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife...of Part 300—Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas ER04NO09.012 [74 FR...

  15. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife...of Part 300—Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas ER04NO09.012 [74 FR...

  16. 50 CFR Figure 6 to Subpart E of... - Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas 6 Figure 6 to Subpart E of Part 300 Wildlife...of Part 300—Alaska Peninsula and Aleutian Islands Rural and Non-Rural Areas ER04NO09.012 [74 FR...

  17. 76 FR 55276 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands...SUMMARY: NMFS is prohibiting retention of octopus in the Bering Sea and Aleutian Islands...because the 2011 total allowable catch of octopus in the BSAI has been reached....

  18. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  19. Muria Volcano, Island of Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of the north coast of central Java, Indonesia centers on the currently inactive Muria Volcano (6.5S, 111.0E). Muria is 5,330 ft. tall and lies just north of Java's main volcanic belt which runs east - west down the spine of the island attesting to the volcanic origin of the more than 1,500 Indonesian Islands.

  20. 60 FR 57545 - Groundfish of the Bering Sea and Aleutian Islands Area; Pacific Cod by Vessels Using Hook-and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1995-11-16

    ...Pacific Cod by Vessels Using Hook-and-Line Gear in the Bering Sea and Aleutian Islands AGENCY...specified for the Pacific cod hook-and-line gear fishery and the other non-trawl gear fishery in the Bering Sea and Aleutian...

  1. Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1982

    SciTech Connect

    Bakkala, R.G.; Low, L.; Ito, D.H.; Narita, R.E.; Ronholt, L.L.

    1983-03-01

    This report contains an assessment of the condition of groundfish and squid in the eastern Bering Sea and Aleutian Islands region through 1982. The assessments are based on species-by-species analyses of the data collected from the commercial fishery and research vessel surveys. Most of the resources in the Bering Sea-Aleutians management region are in good condition, including walleye pollock, Pacific cod, the flatfishes, and Atka mackerel. Pacific cod and yellowfin sole are in excellent condition and at historic high levels of abundance.

  2. 77 FR 72791 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ...other flatfish,'' Alaska plaice, northern rockfish, ``other rockfish,'' squids, sharks, skates, sculpins, and octopuses. Section 679.20(a)(5)(iii)(B)(1) requires the Aleutian Islands (AI) pollock TAC to be set at...

  3. Displacement partitioning and arc-parallel extension in the Aleutian volcanic island arc

    NASA Astrophysics Data System (ADS)

    Lallemant, Hans G. Avé

    1996-05-01

    Convergence between the Pacific and North American plates along the Aleutian volcanic island arc is generally right-oblique; the obliquity increases from 0° in the east to nearly 90° in the west where the plate boundary becomes a transform fault zone. Preliminary results of a structural geology study of Attu Island (the most westerly U.S. island in the Aleutian chain and part of the Near Islands group) shows that the deformational structures are not directly related to the relative plate-convergence-rate vector, but to the plate-boundary-normal and -parallel components of this vector. The plate-boundary-(sub)normal component is responsible for conjugate sets of arc-(sub)parallel thrust faults and the plate-boundary-parallel component resulted in arc-parallel dextral strike-slip faults and their conjugates. However, the most penetrative structures measured in outcrop are conjugate sets of strike-slip faults and arc-perpendicular normal faults and fractures (veins and dikes) which have formed by arc-parallel extension. This extension is most likely the result of the increase of obliquity from east to west and thus the increase of the arc-parallel component of the convergence-rate vector along the Aleutian arc. These structures require that Attu Island migrated westward, possibly for as many as 1150 km.

  4. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  5. A new population of Aleutian shield fern (Polystichum aleuticum C. Christens.) on Adak Island, Alaska

    USGS Publications Warehouse

    Talbot, S.L.; Talbot, S. S.

    2002-01-01

    We report and describe a new population of the endangered Aleutian shield fern (Polystichum aleuticum C. Christens.) discovered on Mount Reed, Adak Island, Alaska. The new population is located at a lower elevation than the other known populations, placing the species' known elevational range between 338 m and 525 m. The discovery of this population is significant because it increases the total number of known populations and individuals for the species.

  6. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  7. Deep, Carbon Dioxide-Rich Degassing of Pavlof Volcano, Aleutian arc

    NASA Astrophysics Data System (ADS)

    Mangan, M.; Sisson, T.; Hankins, B.

    2006-12-01

    Pavlof is the most active volcanic center in the Aleutian arc with more than 40 eruptions in the last 250 years. Lava fountains and strombolian-to-vulcanian activity since the late Pleistocene built a steep-sided basaltic- andesite stratovolcano rising 2733 m a.s.l. Seismic monitoring (in place since the 1970's) shows the tendency of Pavlof to erupt without extensive precursors. Of the 22 monitored eruptions between 1973 and 1996, 18 occurred with < 24 hours of above-background seismicity (McNutt, 1989; Neal and McGimsey, 1997). Upper mantle to lower crustal long-period (LP) earthquakes are a notable geophysical feature of Pavlof (and other Aleutian volcanoes) during repose periods (Power et al, 2004). LP earthquakes, with their emergent onsets, extended codas and narrow frequency spectra (1-3 Hz), are widely attributed to the motions of fluid (melt, gas, or aqueous) in fractures or reservoirs. At Pavlof, LPs are detected as sporadic single events at depths of 18-36 km or as clusters with co-located volcano-tectonic earthquakes (VTs) typical of brittle fracture. Rapid injection (VT) and degassing (LP) of CO2-H2O saturated Pavlof magmas may account for deep LP-VT clusters. We are in the early stages of an experimental study of CO2-rich degassing of Pavlof magma with the aim of quantifying the physiochemical mechanisms of deep, fluid-driven seismicity in active volcanic regions. We use newly developed methods for conducting controlled decompressions (1200 to 400 MPa) of volatile-added silicate melts in piston-cylinder presses. At 1200 MPa and 1125°C, a vapor-saturated Pavlof basaltic- andesite melt with 2 wt% dissolved H2O has 8500 ppm dissolved CO2 (FTIR). Rapid decompression of these mixed-volatile melts to 400 MPa triggers nucleation and growth of bubbles containing nearly pure CO2 vapor. Equilibrium between melt and vapor is re-established after ~ 1 hr at the final pressure with dissolved volatile concentrations of 2 wt% H2O and 2000 ppm CO2, and 5 vol% coexisting bubbles. The experiments are visually compelling with an initially homogeneous bubble suspension (7E6-2E7 bubbles/cm3melt) that rapidly becomes unstable. The instability is two-stage (bubble wave feeds secondary plumes), and results in a foam layer at the top of the capsule. We are struck by the speed at which this process occurs (< 1 hr). The hydrodynamics of bubble wave and secondary plume instabilities was modeled numerically in the context of vesicle layers observed in lava flows (Manga, 1996). It may also have application to the rapid-fire magma injection and gas expulsion scenario needed to explain VT-LP clustering.

  8. MERCURY CONCENTRATIONS OF A RESIDENT FRESHWATER FORAGE FISH AT ADAK ISLAND, ALEUTIAN ARCHIPELAGO, ALASKA

    PubMed Central

    Kenney, Leah A.; von Hippel, Frank A.; Willacker, James J.; O’Hara, Todd M.

    2015-01-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The ?13C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. PMID:22912068

  9. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  10. Dispersal and behavior of pacific halibut hippoglossus stenolepis in the bering sea and Aleutian islands region

    USGS Publications Warehouse

    Seitz, A.C.; Loher, T.; Norcross, B.L.; Nielsen, J.L.

    2011-01-01

    Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.

  11. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early seasonal timing of surveys, strip transects).

  12. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Carr, M. J.; Herzberg, C. T.; Ozerov, A.

    2013-12-01

    Kamchatka peninsula (Russia) is an island-arc with a complex geological history and structure. It has three distinct volcanic fronts, whose origins are still debated. Moreover, a junction with the Aleutian Arc (at ~56oN) complicates the understanding of geodynamics at the region. The process of magma generation in Kamchatka involves several components: N-MORB mantle wedge (variably depleted), slab fluids and melts, and enriched mantle [Churikova et al. 2001, 2007; Yogodzinsky et al. 2001; Volynets et al. 2010]. Two of these end members (mantle wedge, slab fluids) are well studied [Portnyagin et al. 2007; Duggen et al. 2007]. However, the nature/genesis of the enriched magmas is unclear. In the standard model of arc volcanism depleted mantle peridotite in the mantle wedge partially melts to form parental basalts. However, evidence for pyroxenite melting in the arc environment was reported for the Mexican Volcanic Belt [Straub et al, 2008; Straub et al, 2013] and for Kamchatka [Portnyagin, 2009; Portnyagin, 2011; Bryant et al., 2011; Gavrilenko, 2012]. High precision Ni, Ca, and Mn contents of olivines from Gorely volcano confirm the existence of pyroxenite source in the mantle wedge [Gavrilenko, 2013]. Our forward modeling using Arc Basalt Simulator 4.0 (ABS) by [Kimura et al. 2011]) shows that we have primitive mantle as a source for Gorely volcano, a mantle more enriched than the DMM in the standard model for arc magmatism) REE inverse modeling [after Feigenson et al, 1983] agrees with the ABS forward model, returning the same REE pattern for the source. In contrast, ABS modeling for Mutnovsky volcano (next to Gorely, but closer to the trench) shows standard DMM as the source for the volcano. We conclude that DMM is the composition for the mantle wedge rocks beneath Gorely volcano, but the enrichment of the parental melts at Gorely volcano is caused by reaction of DMM peridotite with slab melts/fluids to produce pyroxenite.

  13. Toothpaste lava from the Barren Island volcano (Andaman Sea)

    Microsoft Academic Search

    Hetu C. Sheth; Jyotiranjan S. Ray; Alok Kumar; Rajneesh Bhutani; Neeraj Awasthi

    2011-01-01

    Toothpaste lava is a basaltic lava flow type transitional between pahoehoe and aa and has been described from Paricutin, Kilauea and Etna volcanoes. Here we describe a spectacular example of toothpaste lava, forming part of a recent (possibly 1994–95) aa flow on the active volcano of Barren Island (Andaman Sea). This flow of subalkalic basalt shows abundant squeeze-ups of viscous

  14. 60 FR 56001 - Groundfish of the Bering Sea and Aleutian Islands Area; Pacific Cod by Vessels Using Hook-and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1995-11-06

    ...Cod by Vessels Using Hook-and-Line or Pot Gear in the Bering Sea and Aleutian Islands AGENCY...allowable catch (TAC) from vessels using trawl gear to vessels using hook-and-line or pot gear and is opening [[Page 56002

  15. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  16. Mafic basement xenoliths from Kanaga Island and their implications for Aleutian arc initiation and evolution

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Romick, J.; Jicha, B. R.; Kay, R. W.

    2013-12-01

    We currently have an understanding of the origin and evolution of the Izu Bonin-Mariana intra-oceanic arc system as decades of work have revealed the timing and compositional evolution of magmatism and provided an arc initiation model, which also serves as an analog for the Tonga Kermadec system. However, it is unclear that this model is applicable to the Central Aleutian arc where mid- to lower-crustal velocities are higher (6.5-7.3 km/s) and the crust is more continental-like. As part of understanding the evolution of the Central Aleutian arc lower crust, we have studied and dated gabbroic xenoliths from our collection of ~200 samples from two Kanaga Island localities, which are interpreted as lower crustal cumulates of basaltic to mafic andesitic arc magmas. The variable textures, mineral chemistries and isotopic ratios in these xenoliths show they experienced a complex history before being incorporated into the ~7 Ma Mg-rich arc basalt host lava. Overall, the suite includes amphibole-free, plagioclase-clinopyroxene ×orthopyroxene-titanomagnetite-bearing xenoliths with rare olivine that variously are gabbros with adcumulate textures, mafic 1 or 2 pyroxene granulites with granoblastic textures that yield temperatures of ~800-1050°C, and K and Ba enriched recrystallized and deformed granulites that yield temperatures up to 1150°C. All are characterized by cumulate REE patterns with positive Eu anomalies, arc-like Hf/La ratios, and Sr (0.7033-0.7035) and Nd (Epsilon Nd = 6.9-9) isotopic ratios that are close to those in central Aleutian plutonic rocks. Salitic clinopyroxene compositions suggest they crystallized from magmas with water contents similar to other Aleutian magmas. Extremely challenging 40Ar/39Ar incremental heating experiments due to small volume Ar releases per heating step (5-20 times above background) from low K2O (0.07 to 0.23 wt.%) plagioclases in two xenoliths provide new age constraints for their evolution. In detail, a plagioclase from a two pyroxene granulite gives a complicated Ar/Ar spectrum allowing an age of 48×4 Ma that could reflect the time of metamorphic and deformation related recrystallization of pre-existing cumulates as later mafic arc magmas intruded the lower crust. A plagioclase age near 20 Ma from another xenolith with secondary recrystallization is considered to reflect the age of high temperature recrystallization of pyroxene along fractures, deformation and partial recrystallization of plagioclase, and lowering of K/Ba ratios through interaction with hydrothermal fluids from dewatering oceanic cumulates trapped in the Aleutian crust. The absence of similar recrystallization and deformation features in all xenoliths is consistent with these events predating the incorporation of the xenoliths into the ~ 7 Ma host basalts. Overall, the features of these xenoliths support their crystallization from central Aleutian arc magmas that do not resemble Marianas-like low K arc tholeiites, boninites or depleted backarc magmas.

  17. Status, behavior and demography of Whiskered Auklets (Aethia pygmaea) at Egg Island, Aleutian Islands, Alaska

    E-print Network

    Jones, Ian L.

    representative Whiskered Auklet breeding habitat present. These were: Area A (53º 51.920' N 166º 03.288' W), Area B (53º 51.924' N 166º 03.217' W), Area C (53º 51.929' N 166º 03.324' W), and Area D (53º 51.924' N). Whiskered Auklet colonies in the Unimak pass area of the eastern Aleutians represent the eastern edge

  18. Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska

    USGS Publications Warehouse

    Witter, Robert C.; Briggs, Richard W.; Engelhart, Simon E.; Gelfenbaum, Guy R.; Koehler, Richard D.; Barnhart, William D.

    2014-01-01

    Can a predominantly creeping segment of a subduction zone generate a great (M?>?8) earthquake? Despite Russian accounts of strong shaking and high tsunamis in 1788, geodetic observations above the Aleutian megathrust indicate creeping subduction across the Shumagin Islands segment, a well-known seismic gap. Seeking evidence for prehistoric great earthquakes, we investigated Simeonof Island, the archipelago's easternmost island, and found no evidence for uplifted marine terraces or subsided shorelines. Instead, we found freshwater peat blanketing lowlands, and organic-rich silt and tephra draping higher glacially smoothed bedrock. Basal peat ages place glacier retreat prior to 10.4?ka and imply slowly rising (<0.2?m/ka) relative sea level since ~3.4?ka. Storms rather than tsunamis probably deposited thin, discontinuous deposits in coastal sites. If rupture of the megathrust beneath Simeonof Island produced great earthquakes in the late Holocene, then coseismic uplift or subsidence was too small (?0.3?m) to perturb the onshore geologic record.

  19. Preliminary Seismic Tomography of Deception Island Volcano, South Shetland Islands (Antarctica)

    Microsoft Academic Search

    D. Zandomeneghi; A. H. Barclay; T. Ben Zvi; W. Wilcock; J. M. Ibáñez; J. Almendros

    2005-01-01

    Deception Island, 62°59' S, 60°41' W, is an active volcano located in Bransfield Strait between the Antarctic Peninsula and the main South Shetland Islands. The volcano has a basal diameter of ~30 km and rises ~1500 m from the seafloor to a maximum height of over 500 m above sea level. The 15-km-diameter emerged island is horseshoe-shaped with a flooded

  20. The Decline of Steller Sea Lions (Eumetopias jubatus) and the Development of Commercial Fisheries in the Gulf of Alaska and Aleutian Islands from 1950 to 19901

    Microsoft Academic Search

    Andrew W. Trites; Jonathan Money; Peter A. Larkin

    Biomass removed from the Gulf of Alaska and Aleutian Islands rose from 100,000 tons in the early 1950s to a high of 700,000 tons in 1985. Average landings through the 1980s were 550,000 tons. Major growth in domestic fisheries in the Gulf of Alaska and Aleutian Islands occurred after the declaration of 200-mile zones in 1976. The traditional fisheries for

  1. Living on Active Volcanoes - The Island of Hawaii

    NSDL National Science Digital Library

    Christina Heliker

    This United States Geological Survey (USGS) on-line publication highlights the volcanic hazards facing the people living on the Island of Hawaii. These hazards include lava flows, explosive eruptions, volcanic smog, earthquakes and tsunamis. This report discusses these hazards, the volcanoes of Mauna Loa and Kilauea, and the work of the Hawaiian Volcano Observatory to monitor and issue warnings to the people affected by these hazards.

  2. Rapid Inflation Caused by Shallow Magmatic Activities at Okmok Volcano, Alaska, Detected by GPS Campaigns 2000-2003

    Microsoft Academic Search

    Y. Miyagi; J. Freymueller; F. Kimata; T. Sato; D. Mann

    2006-01-01

    Okmok volcano is located on Umnak Island in the Aleutian Arc, Alaska. This volcano consists of a large caldera, and there are several post-caldera cones within the caldera. It has erupted more than 10 times during the last century, with the latest eruption occurring in February 1997. Annual GPS campaigns during 2000-2003 have revealed a rapid inflation at Okmok volcano.

  3. Surface Deformation Caused by Shallow Magmatic Activity at Okmok Volcano Detected by GPS Campapigns 2000-2002

    Microsoft Academic Search

    Y. Miyagi; J. Freymueller; F. Kimata; T. Sato; D. Mann; N. Fujii; M. Kasahara

    2002-01-01

    Okmok volcano is located on Umnak Island in the eastern part of Aleutian Arc. This volcano consists of a large caldera, and there are cones within the caldera. Okmok volcano has erupted more than 10 times during the last century, with the latest eruption occurring in February 1997. Significant surface deformation before, during and after the eruption has been detected

  4. Bering Sea and Aleutian Islands Management Area Pollock Seasons, 1991-2013 Updated 4/10/14

    E-print Network

    Page 1 Bering Sea and Aleutian Islands Management Area Pollock Seasons, 1991-2013 Updated 4/10/14 Area and 1991 1992 1993 1994 1995 Sector Season Open Close Days Open Close Days Open Close Days Open Close Days Open Close Days Inshore BS A Season 20-Jan 6-Mar 46 20-Jan 24-Mar 63 20-Jan 2-Mar 41 20-Jan 1

  5. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource trustees (U S Fish and Wildlife Service), representatives of the Aleut and Pribilof Island communities, and other stakeholders was essential for plan development and approval, although this created tensions because of the different objectives of each group. The complicated process of developing a Science Plan involved iterations and interactions with multiple agencies and organizations, scientists in several disciplines, regulators, and the participation of Aleut people in their home communities, as well as the general public. The importance of including all parties in all phases of the development of the Science Plan was critical to its acceptance by a broad range of regulators, agencies, resource trustees, Aleutian/Pribilof communities, and other stakeholders. PMID:15886955

  6. Adakitic volcanism in the eastern Aleutian arc: Petrology and geochemistry of Hayes volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    McHugh, K.; Hart, W. K.; Coombs, M. L.

    2012-12-01

    Located in south-central Alaska, 135 km northwest of Anchorage, Hayes volcano is responsible for the most widespread tephra fall deposit in the regional Holocene record (~3,500 BP). Hayes is bounded to the west by the Cook Inlet volcanoes (CIV; Mt. Spurr, Redoubt, Iliamna, and Augustine) and separated from the nearest volcanism to the east, Mount Drum of the Wrangell Volcanic Field (WVF), by a 400 km-wide volcanic gap. We report initial results of the first systematic geochemical and petrologic study of Hayes volcano. Hayes eruptive products are calc-alkaline dacites and rhyolites that have anomalous characteristics within the region. Major and trace element analyses reveal that the Hayes rhyolites are more silicic (~74 wt. % SiO2) than compositions observed in other CIV, and its dacitic products possess the distinctive geochemical signatures of adakitic magmas. Key aspects of the Hayes dacite geochemistry include: 16.03 - 17.54 wt. % Al2O3, 0.97 - 2.25 wt. % MgO, Sr/Y = 60 - 78, Yb = 0.9 - 1.2 ppm, Ba/La = 31 - 79. Such signatures are consistent with melting of a metamorphosed basaltic source that leaves behind a residue of garnet ± amphibole ± pyroxene via processes such as melting of a subducting oceanic slab or underplated mafic lower crust, rather than flux melting of the mantle wedge by dehydration of the down-going slab. Additionally, Hayes tephras display a distinctive mineralogy of biotite with amphibole in greater abundance than pyroxene, a characteristic not observed at other CIV. Furthermore, Hayes rhyolites and dacites exhibit little isotopic heterogeneity (87Sr/86Sr = 0.70384 - 0.70395, 206Pb/204Pb = 18.866 - 18.889) suggesting these lavas originate from the same source. Hayes volcano is approximately situated above the western margin of the subducting Yakutat terrane and where the dip of the Pacific slab beneath Cook Inlet shallows northward. Due to its position along the margin of the subducting Yakutat terrane, it is plausible that Hayes magmas are the result of partial melting of this slab where thermal erosion and weakening of the crust occurs along the Pacific plate-Yakutat terrane transition. Additionally, flat slab subduction may be responsible for producing adakitic magmas by equilibration of the hydrous slab with ambient mantle temperatures. In contrast, it is possible that the adakitic signature at Hayes is from underplated mafic lower crust that melted as the result of pooling mantle melt at depth. Two volcanoes within the WVF, Mt. Drum and Mt. Churchill, are adakitic with an abundance of biotite and amphibole similar to Hayes volcano and have been suggested to have slab melt origins. Mt. Drum lavas have less radiogenic 87Sr/86Sr but overlapping 206Pb/204Pb signatures while Mt. Churchill, which approximately overlies the eastern edge of the Yakutat terrane, has similar 87Sr/86Sr compositions, but more radiogenic 206Pb/204Pb than Hayes. Mt. Spurr, the nearest CIV to Hayes volcano (90 km south), does not share its adakitic signature but exhibits overlapping, more heterogeneous isotopic compositions. Thus, understanding the petrogenetic history of Hayes volcano is essential not only to explain the development of an adakitic volcanic system but how this relates to regional, arc-wide volcanism.

  7. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska.

    PubMed

    Kaler, Robb S A; Kenney, Leah A; Bond, Alexander L; Eagles-Smith, Collin A

    2014-05-15

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz's murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands. PMID:24656750

  8. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.

    2014-01-01

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.

  9. Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands

    USGS Publications Warehouse

    Okal, E.A.; Plafker, G.; Synolakis, C.E.; Borrero, J.C.

    2003-01-01

    The 1946 Aleutian earthquake stands out among tsunamigenic events because it generated both very high run-up near the earthquake source region and a destructive trans-Pacific tsunami. We obtained new data on the distribution of its tsunami in the near field along south-facing coasts between Unimak Pass on the west and Sanak Island on the east by measuring the height of driftwood and beach materials that were deposited by the tsunami above the extreme storm tide level. Our data indicate that (1) the highest measured run-up, which is at the Scotch Cap lighthouse, was 42 m above tide level or about 37 m above present storm tide elevation; (2) run-up along the rugged coast from Scotch Cap for 12 km northwest to Sennett Point is 12-18 m, and for 30 km east of Scotch Cap to Cape Lutke it is 24-42 m; (3) run-up along the broad lowlands bordering Unimak Bight is 10-20 m, and in-undation is locally more than 2 km; (5) run-up diminishes to 8 m or less at the southeast corner of Unimak Island; (6) no evidence was found for run-up above present storm tides (about 4-5 m above MLLW) on the Ikatan Peninsula or areas along the coast to the west; and (7) run-up above storm tide level in the Sanak Island group is restricted to southwest-facing coasts of Sanak, Long, and Clifford Islands, where it is continuous and locally up to 24 m high. Generation of the tsunami by one or more major earthquake-triggered submarine landslides near the shelf edge south of Unimak Island seems to be the only viable mechanism to account for the data on wave arrival time, run-up heights, and distribution, as well as for unconfirmed anecdotal reports of local postquake increases in water depth and diminished bottom-fisheries productivity. A preliminary hydrodynamic simulation of the local tsunami propagation and run-up using a dipolar model of a possible landslide off Davidson Bank provides an acceptable fit to the characteristics of the distribution of local run-up, with a value at 34 m at the Scotch Cap lighthouse.

  10. High prevalence of Aleutian mink disease virus in free-ranging mink on a remote Danish island.

    PubMed

    Jensen, Trine H; Christensen, Laurids S; Chriél, Mariann; Harslund, Jakob; Salomonsen, Charlotte M; Hammer, Anne Sofie

    2012-04-01

    Aleutian mink disease virus (AMDV) causes severe disease in farmed mink (Neovison vison) worldwide. In Denmark, AMDV in farmed mink has been confined to the northern part of the mainland since 2002. From 1998 to 2009, samples from 396 free-ranging mink were collected from mainland Denmark, and a low AMDV antibody prevalence (3% of 296) was found using countercurrent immune electrophoresis. However, on the island of Bornholm in the Baltic Sea, a high prevalence (45% of 142 mink) was detected in the free-ranging mink. Aleutian mink disease virus was detected by polymerase chain reaction in 32 of 49 antibody-positive free-ranging mink on Bornholm, but not in mink collected from other parts of Denmark. Sequence analysis of 370 base pairs of the nonstructural gene of the AMDV of 17 samples revealed two clusters with closest similarity to Swedish AMDV strains. PMID:22493130

  11. Phase relations of a high-Mg basalt from the Aleutian Island Arc: Implications for primary island arc basalts and high-Al basalts

    Microsoft Academic Search

    D. A. Gust; M. R. Perfit

    1987-01-01

    Many volcanic centers in the Aleutian Islands have erupted lavas that range in composition from high-Mg basalt (MgO>9 wt%) to more fractionated and voluminous high-Al basalts and basaltic andesites. The petrogenetic relationships between these rock types and the composition of primary magmas has been vigorously debated. The phase relations of a typical high-Mg basalt from the Makushin volcanic field on

  12. Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability?

    Microsoft Academic Search

    S. J. Day; J. C. Carracedo; H. Guillou; P. Gravestock

    1999-01-01

    The Cumbre Vieja volcano is the youngest component of the island of La Palma. It is a very steep-sided oceanic island volcano, of a type which may undergo large-scale lateral collapse with little precursory deformation. Reconfiguration of the volcanic rift zones and underlying dyke swarms of the volcano is used to determine the present degree of instability of the volcano.

  13. Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman volcano, Socorro Island, Mexico

    Microsoft Academic Search

    Y. A. Taran; T. P. Fischer; E. Cienfuegos; P. Morales

    2002-01-01

    Socorro Island, Mexico, still volcanically active, is an alkaline and peralkaline volcanic island in the eastern Pacific Ocean located on a mid-ocean ridge spreading center that was abandoned at ?3.5 Ma. Gas and water samples collected on the island in 1999 from the dome fumaroles and hot springs of Everman volcano have been analyzed for major components, H-O-C-S, He and

  14. Surname distributions and Y-chromosome markers in the Aleutian Islands

    E-print Network

    Graf, Orion Mark; Zlojutro, Mark; Rubicz, Rohina C.; Crawford, Michael H.

    2010-01-01

    We examine surname distribution, origin, and association with Y-chromosome haplogroups in native communities from the Aleutian archipelago. The underlying hypothesis is that surnames and Y-chromosome haplogroups should be associated because both...

  15. 75 FR 69597 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...Off Alaska; Pacific Cod in the Bering...and Aleutian Islands Management Area...retention of Pacific cod in the Bering...and Aleutian Islands Management Area...and Aleutian Islands Management Area...by the North Pacific Fishery...

  16. Radionuclide concentrations in benthic invertebrates from Amchitka and Kiska Islands in the Aleutian Chain, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jewett, Stephen C

    2007-05-01

    Concentrations of 13 radionuclides (137Cs, 129I, 60Co, 152Eu, 90Sr, 99Tc, 241Am, 238Pu, 239,249Pu, 234U, 235U, 236U, 238U) were examined in seven species of invertebrates from Amchitka and Kiska Islands, in the Aleutian Chain of Alaska, using gamma spectroscopy, inductively coupled plasma mass spectroscopy, and alpha spectroscopy. Amchitka Island was the site of three underground nuclear test (1965-1971), and we tested the null hypotheses that there were no differences in radionuclide concentrations between Amchitka and the reference site (Kiska) and there were no differences among species. The only radionuclides where composite samples were above the Minimum Detectable Activity (MDA) were 137Cs, 241Am, 239,249Pu, 234U, 235U, 236U, and 238U. Green sea urchin (Strongylocentrotus polyacanthus), giant chiton (Cryptochiton stelleri), plate limpets (Tectura scutum) and giant Pacific octopus (Enteroctopus dofleini) were only tested for 137Cs; octopus was the only species with detectable levels of 137Cs (0.262 +/- 0.029 Bq/kg, wet weight). Only rock jingle (Pododesmus macroschisma), blue mussel (Mytilus trossulus) and horse mussel (Modiolus modiolus) were analyzed for the actinides. There were no interspecific differences in 241Am and 239,240Pu, and almost no samples above the MDA for 238Pu and 236U. Horse mussels had significantly higher concentrations of 234U (0.844 +/- 0.804 Bq/kg) and 238U (0.730 +/- 0.646) than the other species (both isotopes are naturally occurring). There were no differences in actinide concentrations between Amchitka and Kiska. In general, radionuclides in invertebrates from Amchitka were similar to those from uncontaminated sites in the Northern Hemisphere, and below those from the contaminated Irish Sea. There is a clear research need for authors to report the concentrations of radionuclides by species, rather than simply as 'shellfish', for comparative purposes in determining geographical patterns, understanding possible effects, and for estimating risk to humans from consuming different biota. PMID:17057992

  17. Characterization of the seismogenic process in the Aleutian island arc: II. The large earthquakes of February 4, 1965, and November 17, 2003, in the Rat Islands

    NASA Astrophysics Data System (ADS)

    Balakina, L. M.; Moskvina, A. G.

    2009-03-01

    An interpretation of the parameters of earthquake sources is proposed for the two large earthquakes in the Rat Islands of February 4, 1965 ( M W = 8.7), and November 17, 2003 ( M W = 7.7-7.8), based on the analysis of focal mechanisms, the manifestation of aftershocks, and the specific features of the geological structure of the island slope of the Rat Islands. The source of the earthquake of 1965 is a reverse fault of longitudinal strike, with a length of ˜350 km. It is located in the lower part of the Aleutian Terrace and probably is genetically connected with the development of the Rat submarine ridge. The westward boundary of the earthquake source is determined by the Heck Canyon structures, and the eastward boundary is determined by the end of Rat Ridge in the region of ? ˜ 179°E-179.5°E. The source of the earthquake of 2003 is a steep E-W reverse fault extending for about 100 km. It is located in the eastern part of the Rat Islands, higher on the slope than the source of the earthquake of 1965. The westward end of the earthquake source is determined by Rat Canyon structures, and the eastward end is an abrupt change in isobaths in the region of ? ˜ 179°E. According to the aftershock hypocenters, the depth of occurrence of the reverse fault could reach ˜60 km. According to our interpretation, on the southern slope of the Rat and Near islands, there is a complex system of seismogenic faults that is caused by tectonic development of different structural elements. The dominant types of faults here are reverse faults, as in other island arcs. During earthquakes, reverse faults oriented along the island arc and also faults that intersect it exhibit themselves. The reverse faults of northeastern strike that intersect the arc characterize the type of tectonic motions in a series of canyons of the western part of the Aleutian Islands.

  18. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  19. Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand

    USGS Publications Warehouse

    Houghton, B.F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.

    1992-01-01

    Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.

  20. Scotch Cap Light Station on Unimak Island in the Alaskan Aleutian chain after destruction by the Tsunami of April1, 1946. The Tsunami claimed the lives of

    E-print Network

    on Unimak Island in the Alaskan Aleutian chain after destruction by the Tsunami of April1, 1946. The Tsunami.) #12;TSUNAMI RESEARCH OPPORTUNITIES An Assessment and Comprehensive Guide National Science Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1 -Tsunami Data (1876-1976) .. . . . . .. .. .. .. .. . .. . .. 3 Table I - Major Tsunami

  1. The recent seismo-volcanic activity at Deception Island volcano

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Almendros, Javier; Carmona, Enrique; Martínez-Arévalo, Carmen; Abril, Miguel

    2003-06-01

    This paper reviews the recent seismic studies carried out at Deception Island, South Shetland Islands, Antarctica, which was monitored by the Argentinean and Spanish Antarctic Programs since 1986. Several types of seismic network have been deployed temporarily during each Antarctic summer. These networks have consisted of a variety of instruments, including radio-telemetered stations, autonomous digital seismic stations, broadband seismometers, and seismic arrays. We have identified two main types of seismic signals generated by the volcano, namely pure seismo-volcanic signals, such as volcanic tremor and long-period (LP) events, and volcano-tectonic (VT) earthquakes. Their temporal distributions are far from homogeneous. Volcanic tremors and LP events usually occur in seismic swarms lasting from a few hours to some days. The number of LP events in these swarms is highly variable, from a background level of less than 30/day to a peak activity of about 100 events/h. The occurrence of VT earthquakes is even more irregular. Most VT earthquakes at Deception Island have been recorded during two intense seismic crises, in 1992 and 1999, respectively. Some of these VT earthquakes were large enough to be felt by researchers working on the island. Analyses of both types of seismic events have allowed us to derive source locations, establish seismic source models, analyze seismic attenuation, calculate the energy and stress drop of the seismic sources, and relate the occurrence of seismicity to the volcanic activity. Pure seismo-volcanic signals are modelled as the consequence of hydrothermal interactions between a shallow aquifer and deeper hot materials, resulting in the resonance of fluid-filled fractures. VT earthquakes constitute the brittle response to changes in the distribution of stress in the volcanic edifice. The two VT seismic series are probably related to uplift episodes due to deep injections of magma that did not reach the surface. This evidence, however, indicates the high potential for future volcanic eruptions at Deception Island.

  2. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  3. First Recorded Eruption of Mount Belinda Volcano, South Sandwich Islands

    NASA Astrophysics Data System (ADS)

    Smellie, J.; Patrick, M.; Harris, A.; Garbeil, H.; Pilger, E.

    2003-12-01

    The MODVOLC satellite monitoring system at the University of Hawaii Manoa has revealed the first recorded eruption of Mount Belinda volcano, on Montagu Island in the remote South Sandwich Islands. Here we present some initial qualitative observations gleaned from the relatively limited amount of satellite imagery available throughout the eruption, including MODIS, Landsat 7 ETM+ and ASTER data. The eruption started some time between September 12 and October 20, 2001, with low-level ash effusion. In January 2002 a Landsat 7 ETM+ image indicated possible collapse structures in the surface of the continuous ice cover within the caldera, suggesting some degree of subglacial volcanism. By May 2002, a broad area of lava or ash was observed close to the subaerial erupting centre, and activity subsequently increased to its highest observed levels in August 2002. Observations in February and March 2003, from a British Antarctic Survey ship and an aircraft of the British Royal Navy, provided the first visual confirmation of the eruption. Minor thermal anomalies continued to be observed in MODIS imagery throughout August 2003, indicating a prolonged low-level eruption or the establishment of a persistent summit lake possibly similar to that believed to occupy the summit crater (Mount Michael) on nearby Saunders Island. A dynamic lava lake on Saunders Island was first reported in 2001 and remains active.

  4. Energy released at Teide Volcano,Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Lopez, D. L.; Perez, N. M.; Marrero, R.

    2003-12-01

    Teide volcano (3715 m high) is located at the northern scarp of the Las Ca¤adas caldera, a large depression at the center of Tenerife Island. Las Ca¤adas has been produced by multiple episodes of caldera collapse and giant landslides. The basanite-phonolite magmatic system associated with Teide volcano is emitting gases that reach the summit producing weak fumaroles. The chemical composition of these fumaroles and the flux of diffuse soil CO2 degassing at the summit cone (0.5 km2) has been used to determine the energy released as passive degassing in this volcano. Previous investigations show that Teide's summit is emitting 400 tons m2 day-1 of CO2 to the atmosphere. The composition of CH4, CO2, CO, and H2O indicate a chemical equilibrium temperature of 234° C and 75% condensation of water vapor within the volcanic edifice (Chiodini and Marini, 1998). The composition of the gases before condensation was restored and assumed to represent the composition at the equilibrium zone. The energy stored by the gases at the equilibration zone is assumed to be released as the gases move towards the discharge zone. The following processes are considered: change in pressure and temperature for water from the equilibration zone to the zone of condensation, latent heat released during the water condensation process, cooling of the condensed water from the condensation temperature to ambient temperature, and change of pressure and temperature for CO2 from the equilibrium to the discharge zone. Thermodynamic calculations of the energy released in each one of these processes indicate that 144 MW are released at Teide. Energy flux is 288 MW m-2. Most of this energy is released during the condensation process. This energy output compares with other hydrothermal systems of the world. These results show that during periods of passive degassing, fumarolic activity is limited by the geometry and elevation of the volcanic structure and the internal thermodynamic conditions.

  5. A submarine canyon as the cause of a mud volcano Liuchieuyu Island in Taiwan

    E-print Network

    Lin, Andrew Tien-Shun

    A submarine canyon as the cause of a mud volcano Ð Liuchieuyu Island in Taiwan J. Chowa,*, J, we also discuss the relationship between a nearby submarine canyon (Kaoping Submarine Canyon¯ection; Submarine canyon; Mud volcano 1. Introduction In the early Pliocene, the paleoenvironment of the offshore

  6. First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Smellie, John L.; Harris, Andrew J. L.; Wright, Robert; Dean, Ken; Izbekov, Pavel; Garbeil, Harold; Pilger, Eric

    2005-06-01

    The MODVOLC satellite monitoring system has revealed the first recorded eruption of Mount Belinda volcano, on Montagu Island in the remote South Sandwich Islands. Here we present some initial qualitative observations gleaned from a collection of satellite imagery covering the eruption, including MODIS, Landsat 7 ETM+, ASTER, and RADARSAT-1 data. MODVOLC thermal alerts indicate that the eruption started sometime between 12 September and 20 October 2001, with low-intensity subaerial explosive activity from the island’s summit peak, Mount Belinda. By January 2002 a small lava flow had been emplaced near the summit, and activity subsequently increased to some of the highest observed levels in August 2002. Observations from passing ships in February and March 2003 provided the first visual confirmation of the eruption. ASTER images obtained in August 2003 show that the eruption at Mount Belinda entered a new phase around this time, with fresh lava effusion into the surrounding icefield. MODIS radiance trends also suggest that the overall activity level increased significantly after July 2003. Thermal anomalies continued to be observed in MODIS imagery in early 2004, indicating a prolonged low-intensity eruption and the likely establishment of a persistent summit lava lake, similar to that observed on neighboring Saunders Island in 2001. Our new observations also indicate that lava lake activity continues on Saunders Island.

  7. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux at the Island of Hawaii, and longer-term growth of the Hawaiian chain as discrete islands rather than a continuous ridge, may record pulsed magma flow in the hotspot/plume source.

  8. Toothpaste lava from the Barren Island volcano (Andaman Sea)

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Kumar, Alok; Bhutani, Rajneesh; Awasthi, Neeraj

    2011-04-01

    Toothpaste lava is a basaltic lava flow type transitional between pahoehoe and aa and has been described from Paricutin, Kilauea and Etna volcanoes. Here we describe a spectacular example of toothpaste lava, forming part of a recent (possibly 1994-95) aa flow on the active volcano of Barren Island (Andaman Sea). This flow of subalkalic basalt shows abundant squeeze-ups of viscous toothpasate lava near its entry into the sea. The squeeze-ups are sheets and slabs, up to several meters across and tens of centimeters thick, extruded from boccas. They are often prominently curved, have striated upper surfaces with close-spaced, en echelon linear ridges and grooves, broad wave-like undulations perpendicular to the striations, and sometimes, clefts. Textural, geochemical, and Sr-Nd isotopic data on the squeeze-ups and the exposed aa flow core indicate very crystal-rich, viscous, and isotopically very homogeneous lava. We envisage that a greatly reduced speed of this viscous flow at the coastline, possibly aided by a shallowing of the basal slope, led to lateral spreading of the flow, which caused tension in its upper parts. This, with continued (albeit dwindling) lava supply at the back, led to widespread tearing of the flow surface and extrusion of the squeeze-ups. The larger slabs, while extruding in a plastic condition, curved under their own weight, whereas their surfaces experienced brittle deformation, forming the en echelon grooves. The extruded, detached, and rotated sheets and slabs were carried forward for some distance atop the very slowly advancing aa core, before the flow solidified.

  9. A Summary of Geothermal Exploration and Data from Stratigraphic Test Well No. 1 Makushin Volcano, Unalaska Island

    SciTech Connect

    Campbell, Don A.; Economides, Michael J.

    1983-12-15

    Geothermal resource investigations have been conducted for the past four years on Unalaska Island in the Aleutian Chain. The focus of the work has been Makushin Volcano, about 12 miles from the cities of Unalaska and Dutch Harbor. In the summer of 1982, three widely spaced deep temperature gradient holes were drilled which encountered high temperatures. During the summer of 1983, a three inch diameter "slim hole" well, ST-1, was drilled to 1,949 feet. A shallow, low pressure, steam zone and a relatively productive hot water zone at total depth were encountered. The lower zone produced 47,000 lb/hr, limited by reaching critical mass velocity at the orifice. The static bottomhole pressure and temperature were 478 psig and 379{degrees}F, respectively. Analysis of transient pressure and flow data yielded a productivity inex of 3,470 lb/hr/psi and a permeability-thickness of 50,900 md-ft for the three-foot (at the wellbore) lower zone fracture. A preliminary reservoir/wellbore flow evaluation for a possible power plant indicates two commercial-size wells could fuel a 10 megawatt facility.

  10. Steller Sea Lion Protection Measures for Groundfish Fisheries in the Bering Sea and Aleutian Islands

    E-print Network

    Islands Management Area Draft Environmental Impact Statement/Regulatory Impact Review/Initial Regulatory Islands Management Area Draft Environmental Impact Statement/Regulatory Impact Review/Initial Regulatory Department of Fish and Game Abstract: This environmental impact statement/regulatory impact review

  11. Amendment 107 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands

    E-print Network

    Management Area 1. Insert section 3.5.3.1 to read as indicated below: 3.5.3.1 Walrus Islands Protection are permitted to transit through an open area in the Round Island walrus protection area, northeast of a line with Federal Fisheries Permits are permitted to transit through an open area in the Cape Peirce walrus

  12. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect

    Bruce Wright

    2011-08-30

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  13. The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano

    NASA Astrophysics Data System (ADS)

    Wade, Jennifer A.; Plank, Terry; Stern, Robert J.; Tollstrup, Darren L.; Gill, James B.; O'Leary, Julie C.; Eiler, John M.; Moore, Richard B.; Woodhead, Jon D.; Trusdell, Frank; Fischer, Tobias P.; Hilton, David R.

    2005-08-01

    The first historical eruption of Anatahan volcano began on May 10, 2003. Samples of tephra from early in the eruption were analyzed for major and trace elements, and Sr, Nd, Pb, Hf, and O isotopic compositions. The compositions of these tephras are compared with those of prehistoric samples of basalt and andesite, also newly reported here. The May 2003 eruptives are medium-K andesites with 59-63 wt.% SiO 2, and are otherwise homogeneous (varying less than 3% 2 ? about the mean for 45 elements). Small, but systematic, chemical differences exist between dark (scoria) and light (pumice) fragments, which indicate fewer mafic and oxide phenocrysts in, and less degassing for, the pumice than scoria. The May 2003 magmas are nearly identical to other prehistoric eruptives from Anatahan. Nonetheless, Anatahan has erupted a wide range of compositions in the past, from basalt to dacite (49-66 wt.% SiO 2). The large proportion of lavas with silicic compositions at Anatahan (> 59 wt.% SiO 2) is unique within the active Mariana Islands, which otherwise erupt a narrow range of basalts and basaltic andesites. The silicic compositions raise the question of whether they formed via crystal fractionation or crustal assimilation. The lack of 87Sr/ 86Sr variation with silica content, the MORB-like ?18O, and the incompatible behavior of Zr rule out assimilation of old crust, altered crust, or zircon-saturated crustal melts, respectively. Instead, the constancy of isotopic and trace element ratios, and the systematic variations in REE patterns are consistent with evolution by crystal fractionation of similar parental magmas. Thus, Anatahan is a type example of an island-arc volcano that erupts comagmatic basalts to dacites, with no evidence for crustal assimilation. The parental magmas to Anatahan lie at the low 143Nd/ 144Nd, Ba/La, and Sm/La end of the spectrum of magmas erupted in the Marianas arc, consistent with 1-3 wt.% addition of subducted sediment to the mantle source, or roughly one third of the sedimentary column. The high Th/La in Anatahan magmas is consistent with shallow loss of the top ˜ 50 m of the sedimentary column during subduction.

  14. The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano

    USGS Publications Warehouse

    Wade, J.A.; Plank, T.; Stern, R.J.; Tollstrup, D.L.; Gill, J.B.; O'Leary, J. C.; Eiler, J.M.; Moore, R.B.; Woodhead, J.D.; Trusdell, F.; Fischer, T.P.; Hilton, David R.

    2005-01-01

    The first historical eruption of Anatahan volcano began on May 10, 2003. Samples of tephra from early in the eruption were analyzed for major and trace elements, and Sr, Nd, Pb, Hf, and O isotopic compositions. The compositions of these tephras are compared with those of prehistoric samples of basalt and andesite, also newly reported here. The May 2003 eruptives are medium-K andesites with 59-63 wt.% SiO2, and are otherwise homogeneous (varying less than 3% 2?? about the mean for 45 elements). Small, but systematic, chemical differences exist between dark (scoria) and light (pumice) fragments, which indicate fewer mafic and oxide phenocrysts in, and less degassing for, the pumice than scoria. The May 2003 magmas are nearly identical to other prehistoric eruptives from Anatahan. Nonetheless, Anatahan has erupted a wide range of compositions in the past, from basalt to dacite (49-66 wt.% SiO2). The large proportion of lavas with silicic compositions at Anatahan (> 59 wt.% SiO2) is unique within the active Mariana Islands, which otherwise erupt a narrow range of basalts and basaltic andesites. The silicic compositions raise the question of whether they formed via crystal fractionation or crustal assimilation. The lack of 87Sr/86Sr variation with silica content, the MORB-like ??18O, and the incompatible behavior of Zr rule out assimilation of old crust, altered crust, or zircon-saturated crustal melts, respectively. Instead, the constancy of isotopic and trace element ratios, and the systematic variations in REE patterns are consistent with evolution by crystal fractionation of similar parental magmas. Thus, Anatahan is a type example of an island-arc volcano that erupts comagmatic basalts to dacites, with no evidence for crustal assimilation. The parental magmas to Anatahan lie at the low 143Nd/144Nd, Ba/La, and Sm/La end of the spectrum of magmas erupted in the Marianas arc, consistent with 1-3 wt.% addition of subducted sediment to the mantle source, or roughly one third of the sedimentary column. The high Th/La in Anatahan magmas is consistent with shallow loss of the top 50 m of the sedimentary column during subduction. ?? 2005 Elsevier B.V. All rights reserved.

  15. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Islands Statistical and Reporting Areas ...Description 300 Russian waters. Those waters inside the Russian 200 mile limit as...Southern Part) and NOAA chart INT 814...the limits of the EEZ and Russian economic...

  16. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Islands Statistical and Reporting Areas ...Description 300 Russian waters. Those waters inside the Russian 200 mile limit as...Southern Part) and NOAA chart INT 814...the limits of the EEZ and Russian economic...

  17. 50 CFR Figure 1 to Part 679 - Bering Sea and Aleutian Islands Statistical and Reporting Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Islands Statistical and Reporting Areas ...Description 300 Russian waters. Those waters inside the Russian 200 mile limit as...Southern Part) and NOAA chart INT 814...the limits of the EEZ and Russian economic...

  18. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to the easternmost extremity of Castle Cape at Chignik Bay. (b) A line drawn from Second Priest Rock to Ulakta Head Light at Iliuliuk Bay entrance....

  19. Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island,

    E-print Network

    , in its caldera lake. VI. The pioneer arthropod community of Motmot John S. Edwards1 and Ian W. B Wisdom which occupies the caldera of Long Island, Papua New Guinea. Methods Arthropod sampling by means studies on the pioneer biota of an emergent island, Motmot, in Long Island's freshwater caldera lake, Lake

  20. Inflation Rate of Shishaldin Volcano Inferred from Two-Way Stress Coupling

    Microsoft Academic Search

    T. Masterlark; Z. Lu; S. C. Moran; C. W. Wicks

    2001-01-01

    An explosive eruption of Shishaldin volcano, located on Unimak Island in the Aleutian Arc, occurred on April 19, 1999. The eruption was preceded by an earthquake swarm of over 900 events centered about 13 km west of the volcano. The swarm was initiated by a ML=5.2 strike-slip earthquake on March 4, 1999. Precursory phenomena, including low frequency seismicity beneath the

  1. Steller Sea Lion Protection Measures for Groundfish Fisheries in the Bering Sea and Aleutian Islands

    E-print Network

    Islands Management Area Draft Environmental Impact Statement/Regulatory Impact Review/Initial Regulatory Area Draft Environmental Impact Statement/Regulatory Impact Review/Initial Regulatory Flexibility of Fish and Game Abstract: This environmental impact statement/regulatory impact review/initial regulatory

  2. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  3. Hydroacoustic Records of the First Historical Eruption of Anatahan Volcano, Mariana Islands

    Microsoft Academic Search

    R. Dziak; H. Matsumoto; C. Fox; S. Byun; M. Fowler; J. Haxel; R. Embley

    2003-01-01

    For the past decade, NOAA\\/Pacific Marine Environmental Laboratory has monitored volcano-seismic activity from western Pacific island-arc volcanoes using an array of U.S. Navy hydrophones (called SOSUS) deployed at fixed locations throughout the North Pacific Ocean. SOSUS hydrophones are mounted within the SOFAR channel and record the hydroacoustic tertiary phase or T-wave of oceanic earthquakes from throughout the Pacific basin. Since

  4. Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska

    PubMed Central

    Hardell, Sara; Tilander, Hanna; Welfinger-Smith, Gretchen; Burger, Joanna; Carpenter, David O.

    2010-01-01

    Background Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate. Methods and Findings This study examined the levels of PCBs and three pesticides [p, p?-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p?-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits. Conclusion The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health and cultural benefits from eating fish. PMID:20811633

  5. Magma Differentiation in the Plumbing System of an Alkaline Ocean Island Volcano (Fuerteventura, Canary Island).

    NASA Astrophysics Data System (ADS)

    Tornare, E.; Bussy, F.; Pilet, S.

    2014-12-01

    Magma differentiation and mixing are generally regarded as taking place in magma chambers, sills or reservoirs, while magma stagnates before continuing to ascent or erupt. Here we consider differentiation to occur during magma rise in vertical dykes, as documented in the PX1 pluton, Fuerteventura, which is part of the root-zone of an eroded ocean island volcano. PX1 is a vertically layered cumulative body composed of meter to decameter-wide bands of clinopyroxenites and gabbros, surrounded by a very high-grade contact aureole (ca. 1000°C, Hobson et al., 1998). Many clinopyroxenites are characterized by a coarse-grained texture and complexly zoned clinopyroxene crystals. Resorption features and reverse zoning observed in rims are evidence for successive pulses. Percolation of high temperature basaltic melts through the accumulating crystal-rich mush would generate the complexly zoned clinopyroxenes and lead to crystal coarsening. We interpret these coarse-grained clinopyroxenites as crystal-rich magma channels, through which sustained magma fluxes travelled to the surface over a long period of time, thus generating the contact aureole. On the other hand, gabbro bands are interpreted as sluggish magma pulses emplaced in a cooler environment during the waning stages of magmatic activity. We thus propose a model of magma differentiation by dynamic fractionation in dykes throughout magma ascent in the plumbing system of basaltic volcanoes. This model assumes fractional crystallization of continuously rising magmas in vertical channels all along their way to the surface through phenocryst accumulation and crystal-melt interaction processes.

  6. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska

    USGS Publications Warehouse

    Stewart, Nathan L.; Konar, Brenda; Tinker, M. Tim

    2015-01-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.

  7. Cumbre Vieja Volcano-Potential collapse and tsunami at La Palma, Canary Islands

    Microsoft Academic Search

    Steven N. Ward; Simon Day

    2001-01-01

    Geological evidence suggests that during a future eruption, Cumbre Vieja Volcano on the Island of La Palma may experience a catastrophic failure of its west flank, dropping 150 to 500 km3 of rock into the sea. Using a geologically reasonable estimate of landslide motion, we model tsunami waves produced by such a collapse. Waves generated by the run-out of a

  8. 78 FR 13813 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...species and species groups in Table 10 as zero. Therefore, in accordance with Sec...are limited to harvesting no more than zero in the Eastern Aleutian District and Bering...species. Alternative 5: Set TAC at zero. Alternative 2 is the preferred...

  9. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  10. Sheared sheet intrusions as a mechanism for lateral flank displacement on basaltic volcanoes: Applications to Réunion Island volcanoes

    NASA Astrophysics Data System (ADS)

    Cayol, V.; Catry, T.; Michon, L.; Chaput, M.; Famin, V.; Bodart, O.; Froger, J. L.; Romagnoli, C.

    2014-12-01

    Field work carried out on the Piton des Neiges volcano (Réunion Island) suggests that the injection of magma along detachments could trigger flank failure by conjugate opening and shear displacement [Famin and Michon, 2010]. We use 3D numerical models to compare the ability of purely opened sheet intrusions, sheared sheet intrusions, and normal faults to induce flank displacement on basaltic volcanoes (Figure). We assume that shear stress change on fractures which are not normal to a principal stress results from stress anisotropy of the host rock under gravity. Exploring a large range of stress anisotropies, fracture dips, and fracture depth over length ratios, we determine that the amount of shear displacement is independent of the proximity to the ground surface. Sheared sheet intrusions are the most efficient slip medium on volcanoes. Using our model in a forward way, we provide shear and normal displacements for buried fractures. Applying the model to a pile of sills at the Piton des Neiges volcano, we determine that the mean shear displacement caused by each intrusion was 3.7 m, leading to a total of a 180-260 m of lateral displacement for the 50 m high pile of sills. Using our model in an inverse way, we formulate a decision tree to determine some fracture characteristics and the host rock stress anisotropy from ratios of maximum surface displacements. This procedure provides a priori models, thus limits to the parameter space which can be further explored through a formal inversion. Applying this procedure to the 1.4 m co-eruptive flank displacement recorded at Piton de la Fournaise in 2007, we find that it probably originated from a shallow eastward-dipping sub-horizontal normal fault.

  11. The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Runion Island) from tilt

    E-print Network

    Barruol, Guilhem

    The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island caldera collapse of the Piton de la Fournaise volcano. Tilt estimated from seismic records reveals by a major distal eruption and on 5 April by a summit caldera collapse. Long-term tilt variation suggests

  12. 75 FR 792 - Fisheries of the Economic Exclusive Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands AGENCY: National...Pacific cod by catcher Pacific cod by catcher...Sea and Aleutian Islands management area...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  13. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...Zone Off Alaska; Pacific Ocean Perch in the...Sea and Aleutian Islands Management Area...directed fishing for Pacific ocean perch in the...Sea and Aleutian Islands management area...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  14. 77 FR 39440 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ...Zone Off Alaska; Pacific Ocean Perch in the...Sea and Aleutian Islands Management Area...directed fishing for Pacific ocean perch in the...Sea and Aleutian Islands management area...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  15. 75 FR 19561 - Fisheries of the Economic Exclusive Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands AGENCY: National...Sea and Aleutian Islands management area...catch (TAC) of Pacific cod specified for...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  16. 76 FR 24404 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area...Sea and Aleutian Islands Management Area...allowable catch of Pacific cod allocated to...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  17. 77 FR 55735 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area...Sea and Aleutian Islands Management Area...allowable catch of Pacific cod allocated to...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  18. 78 FR 53369 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands Management Area...Sea and Aleutian Islands Management Area...allowable catch of Pacific cod allocated to...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  19. 75 FR 52478 - Fisheries of the Economic Exclusive Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...Zone Off Alaska; Pacific Cod in the Bering Sea and Aleutian Islands AGENCY: National...Sea and Aleutian Islands management area...catch (TAC) of Pacific cod specified for...Sea and Aleutian Islands Management Area...prepared by the North Pacific Fishery...

  20. Identifying rift zones on volcanoes: an example from La Réunion island, Indian Ocean

    Microsoft Academic Search

    Fabio Luca Bonali; Claudia Corazzato; Alessandro Tibaldi

    2011-01-01

    We describe a methodology for identifying complex rift zones on recent or active volcanoes, where structures hidden by recent\\u000a deposits and logistical conditions might prevent carrying out detailed fieldwork. La Réunion island was chosen as a test-site.\\u000a We used georeferenced topographic maps, aerial photos and digital terrain models to perform a statistical analysis of several\\u000a morphometric parameters of pyroclastic cones.

  1. Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii

    USGS Publications Warehouse

    Holcomb, R.T.; Reiners, P.W.; Nelson, B.K.; Sawyer, N.-L.E.

    1997-01-01

    The island of Kauai has always been interpreted as a single shield volcano, but lavas of previously correlated reversed-to-normal magnetic-polarity transitions on opposite sides of the island differ significantly in isotopic composition. Samples from west Kauai have 87Sr/86Sr 18.25; samples from east Kauai have 87Sr/86Sr > 0.7037, ??Nd ??? 6.14, and 206Pb/204Pb < 18.25. Available data suggest that a younger eastern shield grew on the collapsed flank of an older western one.

  2. Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica

    Microsoft Academic Search

    Alan F. Cooper; Lotte J. Adam; Roseanne F. Coulter; G. Nelson Eby; William C. McIntosh

    2007-01-01

    White Island, Ross Sea, Antarctica is a Plio-Pleistocene basanite to tephriphonolite shield volcano, forming part of the Erebus Province, McMurdo Volcanic Group. Four new 40Ar\\/39Ar dates extend the age of surface volcanism from a previously determined 0.17 Ma to 5.05±0.31 Ma. A U\\/Pb age on zircon in an anorthoclasite nodule extends White Island magmatism back to 7.65±0.69 Ma.Volcanism was predominantly subaerial with eruption

  3. Evolution of the Aleutian arc

    NASA Astrophysics Data System (ADS)

    Jicha, B. R.; Kay, S. M.; Schaen, A. J.; Tibbetts, A. K.; Singer, B. S.

    2014-12-01

    Recently published and ongoing research at several of the circum-Pacific oceanic arcs (Izu-Bonin-Marianas, Tonga) has led to the development of tectonic models for how these subduction zones have formed and evolved since the Eocene. An outstanding question that has yet to be answered is how the timing of initiation and evolution of the Aleutian arc is linked to these current tectonic models. More than 70 new 40Ar/39Ar ages and over 100 major and trace element analyses of lavas and plutons exposed on numerous central and western Aleutian islands have been determined as part of a reconnaissance effort to address this question. Exposures of > 42 Ma rocks remain elusive, and likely require a concerted sampling campaign in the submarine forearc. The new geochemical and geochronologic data support the suggestion that initial growth of the Aleutian arc was rapid and subsequent growth occurred in three distinct pulses (37-29, 17-11, 6-0 Ma) (e.g., Jicha et al., 2006), a trend also observed in other circum-Pacific arcs. Eocene-Oligocene lavas and gabbroic plutons of the western Aleutians are tholeiitic with island arc-like trace element patterns that can be light rare earth element (LREE) depleted. These compositions are distinctly different from the calc-alkaline, light rare earth element (REE) enriched and variably heavy REE depleted, Pleistocene to Holocene primitive andesites and dacites found atop the thinner, faulted crust of the western Aleutians. Widespread calc-alkaline magmatism does not appear to commence until the Miocene, although some Oligocene calc-alkaline lavas and plutons have been found throughout the arc and along the Bowers Ridge (Wanke et al., 2012). A major transition in post-Pliocene arc chemistry occurs as a sediment melt component, which was not available early in the development of the Aleutian Arc becomes important in the Pleistocene (e.g., Kay and Kay 1994; Schaen, 2014).

  4. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  5. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks, especially when considering the high potential energy stored as fluids in these porous rocks. Recent unrest at Whakaari has resulted in the near sudden generation of phreatomagmatic activity. Here, we complete our experimental description of these rocks by discussing the result of rapid decompression experiments on the rocks stoked with supercritical fluids. The results constrain the violence of these steam-driven events and highlight the predisposition of thermally unstable rocks in hydrothermal system to undergo sudden phreatic eruptions.

  6. Hydrogeochemical, Stable Isotopes and Hydrology of Fogo Volcano Perched Aquifers: São Miguel Island, Azores (Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, P. C.; Boutt, D. F.; Martini, A. M.; Ferstad, J.; Rodrigues, F. C.

    2012-12-01

    Fogo Volcano is located at central part of São Miguel Island and corresponds to a polygenetic volcano with a caldera made by an intercalated accumulation of volcaniclastic deposits and lava flows. São Miguel Island is one of the nine volcanic islands that form the Azores Archipelago. The volcano is 950 meters high, with a caldera diameter of 3.2 Km, which holds a lake inside. The last eruption occurred in 1563-1564, as one of a group of seven traquitic eruptions occurring within the last 5000 years. The volcanic activity is related to hydrothermal activity in a geothermal field located in the volcanoes North flank. The hydrology of Fogo Volcano is characterized by a series of perched-water bodies drained by a large number of springs grouped at different altitudes on the volcano flanks. It is possible to identify three types of water (1) Fresh water, cold temperature (12 - 17 C) with low dissolved solids contents (average conductivity of 179 ?S/cm), pH range between 6.60 and 7.82, dominated by the major ions Na, K, HCO3, and Cl, and correspond mainly to sodium bicarbonate type water. (2) Mineral water, cold temperature (12.5 - 19.4 C) with low dissolved solids contents (average conductivity of 261 ?S/cm), acid pH range between 4.62 and 6.79, and correspond mainly to sodium bicarbonate type water. (3) Thermal water, with temperature of 32 C, high dissolved solids content (4.62 mS/cm), with a pH around 4.50 and belongs to sodium sulfate type water. South Fogo volcano have only fresh water springs and at high elevation, springs drained from pumice fall deposits near 700 m of altitude. Water dissolved solids contents increased slightly with springs at lower altitude due to water-rock interaction. Springs sampled around 700 m high have a conductivity average of 85 ?S/cm, at 520 m an average of 129 ?S/cm, at 430 m an average of 182 ?S/cm, at 200 m an average of 192 ?S/cm and at 12 m high sea level and average of 472 ?S/cm. This trend is observed at North Fogo volcano flank for fresh water springs. Mineral and thermal waters show an influence of magmatic input, a natural water pollution source in areas with volcanic activity. Rainwater isotopic composition showed elevation effect variation with lighter ?18O and ?D values and recharge appear to be at highest altitudes with influence of sea salt from atmospheric contamination. Evaporation is clearly associated with mineral and thermal waters. Hydrogeochemistry differentiates the low altitude springs at South volcano flank where they are separated by ultramafic intrusions supporting the existence of dike impounded aquifers as Peterson (1972) proposed with the Hawaiian conceptual model for volcanic islands.

  7. Preliminary Volcano-Hazard Assessment for the Tanaga Volcanic Cluster, Tanaga Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2007-01-01

    Summary of Volcano Hazards at Tanaga Volcanic Cluster The Tanaga volcanic cluster lies on the northwest part of Tanaga Island, about 100 kilometers west of Adak, Alaska, and 2,025 kilometers southwest of Anchorage, Alaska. The cluster consists of three volcanoes-from west to east, they are Sajaka, Tanaga, and Takawangha. All three volcanoes have erupted in the last 1,000 years, producing lava flows and tephra (ash) deposits. A much less frequent, but potentially more hazardous phenomenon, is volcanic edifice collapse into the sea, which likely happens only on a timescale of every few thousands of years, at most. Parts of the volcanic bedrock near Takawangha have been altered by hydrothermal activity and are prone to slope failure, but such events only present a local hazard. Given the volcanic cluster's remote location, the primary hazard from the Tanaga volcanoes is airborne ash that could affect aircraft. In this report, we summarize the major volcanic hazards associated with the Tanaga volcanic cluster.

  8. Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Pérez, Nemesio M.; Rodríguez, Fátima; Melián, Gladys V.; Hernández, Pedro A.; Sumino, Hirochika; Padilla, Germán; Barrancos, José; Dionis, Samara; Notsu, Kenji; Calvo, David

    2015-04-01

    La Palma Island, the fifth longest (706 km2) and the second in elevation (2,423 m asl) of the Canary Islands, is located at the northwestern extreme of the archipelago. Volcanic activity in the last 123 ka has taken place exclusively at the southern part of the island, where Cumbre Vieja volcano, the most active basaltic volcano in the Canaries, has been constructed. Cumbre Vieja includes a main north-south rift zone 20 km long up to 1,950 m in elevation, and covers 220 km2 with vents located also at the northwest and northeast. Nowadays there are no visible gas emission from fumaroles or hot springs at Cumbre Vieja. For this reason, diffuse CO2 degassing studies may provide important information about subsurface magma movement. Since diffuse CO2 emission rate may increase extraordinarily before a volcanic eruption, it is very important to map surface CO2 efflux anomalies and determine the total output of this gas prior to volcanic activity, in order to have a better understanding during future volcanic events. This study report the results of 13 soil CO2 efflux surveys at Cumbre Vieja volcano. The CO2 efflux measurements were undertaken using the accumulation chamber method between 2001 and 2013 to constrain the total CO2 output from the studied area and to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for Cumbre Vieja. Soil CO2 efflux values ranged from non-detectable up to 2,442 g m-2 d-1, with the highest values observed in the south, where the last volcanic eruption took place (Teneguía, 1971). Isotopic analyses of soil gas carbon dioxide suggest an organic origin as the main contribution to the CO2 efflux, with a very slight magmatic degassing being observed at the southern part of the volcano. Total CO2 emission rates showed a high temporal variability, ranging between 320 and 1,544 t d-1 and averaging 1,147 t d-1 over the 220 km2 region. Two significant increases in the CO2 emission observed in 2011 and 2013, were likely caused by an enhanced magmatic endogenous contribution revealed by significant changes in the 3He/4He ratio in a CO2-rich cold spring. The similarity observed in the estimates rates of diffuse CO2 emission make them an effective surveillance tool for Cumbre Vieja volcano like it has been observed at other volcanic areas.

  9. Soil gas geochemistry in relation to eruptive fissures on Timanfaya volcano, Lanzarote Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Padilla, Germán; Hernández, Pedro A.; Pérez, Nemesio M.; Calvo, David; Nolasco, Dácil; Barrancos, José; Melián, Gladys V.; Dionis, Samara; Rodríguez, Fátima

    2013-01-01

    We report herein the first results of an extensive soil gas survey performed on Timanfaya volcano on May 2011. Soil gas composition at Timanfaya volcano indicates a main atmospheric source, slightly enriched in CO2 and He. Soil CO2 concentration showed a very slight deep contribution of the Timanfaya volcanic system, with no clear relation to the main eruptive fissures of the studied area. The existence of soil helium enrichments in Timanfaya indicates a shallow degassing of crustal helium and other possible deeper sources probably form cooling magma bodies at depth. The main soil helium enrichments were observed in good agreement with the main eruptive fissures of the 1730-36 eruption, with the highest values located at those areas with a higher density of recent eruptive centers, indicating an important structural control for the leakage of helium at Timanfaya volcano. Atmospheric air slightly polluted by deep-seated helium emissions, CO2 degassed from a cooling magma body, and biogenic CO2, might be the most plausible explanation for the existence of soil gas. Helium is a deep-seated gas, exhibiting important emission rates along the main eruptive fissure of the 1730-36 eruption of Timanfaya volcano.

  10. Hydrothermal history of Piton des Neiges volcano (Reunion Island, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Rançon, J. Ph.

    1985-12-01

    The Piton des Neiges volcano on Reunion Island represents a unique example of an oceanic volcano where the extreme development of amphitheatre-headed valley erosion has led to the formation of three large cirques. They are so large that the island's volcano-structural and petrological history can be traced from its emergence to the latest stages of its sub-aerial evolution (> 2.1 m.y. to 22,000 years ago). The various magmatic series of the Piton des Neiges are, moreover, abundantly invaded by hydrothermal mineralization. It is this post-magmatic feature, represented by the hydrothermal alteration of the series, which is examined here. Mineralogical studies (X-ray, microprobe, scanning electron microscope) reveal a large number of hydrothermal species. Of these, zeolites are the most common and five are described here for the first time in Reunion (gonnardite, levynite, erionite, garronite, herschelite). Six hydrothermal facies characteristic of weak metamorphism are defined: chabazitephillipsite, natrolite-thomsonite, analcime-thomsonite, laumontite-thomsonite, albiteprehnite and prehnite-pumpellyite. The paleo-temperatures covered by these facies range from 0 to 380°C. On the basis of these data and supporting field observations, three main hydrothermal phases were determined and fitted into the known chronostratigraphy. These three phases have succeeded one another over the last two million years in the Piton des Neiges massif. The extent and mineralogical facies of each phase can be related to the volcanotectonic structures. This sequence has been directly linked to the geological evolution of the massif. The progressive restriction with time of the hydrothermal manifestations to the present Piton des Neiges occurred alongside the focusing of volcanism centralized on this same relief. An attempt is made to reconstruct the island's hydrothermal history.

  11. Man against volcano: The eruption on Heimaey, Vestmann Islands, Iceland

    USGS Publications Warehouse

    Williams, R.S., Jr.; Moore, J.G.

    1976-01-01

    The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 states, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth science phenomena throughout the world. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated but, more importantly, the potential damage had been reduced markedly by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town. The Survey's interest and involvement in the Heimaey eruption in Iceland was occasioned by the possibility that the procedures used to control the course of the flowing lava and to reduce the damage in a modern town may some day be needed in Hawaii and possibly even in the continental United States. This publication is based on the observations of two USGS geologists, Richard S. Williams, Jr. and James G. Moore, as well as on information from the Icelandic Ministry for Foreign Affairs, Icelandic scientists' reports through the Center for Short-Lived Phenomena, and other published scientific reports. A number of Icelandic scientists studied the scientific aspects of the eruption and the engineering aspects of the control of lava flows, in particular, Professors Thorbjb'rn Sigurgeirsson and Sigurdur Thorarinsson of the University of Iceland Science Institute. Also, Icelandic governmental officials provided logistical and other support, in particular, Mr. Steingnmur Hermannsson, Director, Icelandic National Research Council and Professor Magnus Magnusson, Director, University of Iceland Science Institute.

  12. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  13. 75 FR 3873 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Eastern Aleutian District and...total allowable catch (TAC) of Atka mackerel in these areas for vessels...

  14. 75 FR 53606 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Eastern Aleutian District and...total allowable catch (TAC) of Atka mackerel in these areas by vessels...

  15. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H.

    2002-05-01

    Significant anomalous changes in the ultra low frequency range (0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals.

  16. CO2 degassing at Papandayan and Kelud volcanoes, Java island, Indonesia

    NASA Astrophysics Data System (ADS)

    Mazot, A.; Bernard, A.

    2003-04-01

    Papandayan volcano (2665 m a.s.l) is located in the western part of the island of Java. The last magmatic eruption of this volcano occurred in 1772. At that time, the NE sector of the volcano collapsed, producing a large avalanche of debris and creating a horseshoe shaped crater. The most recent activity of Papandayan occurred in November 2002 when the volcano erupted ash clouds to altitudes of about 5 km. Before this event, the volcano was in a state of passive degassing with solfatara, sulfur-pools and hot springs. Since 1994, the geochemistry of these hot springs is monitored. These springs are acid sulfate-chloride waters with pH between 1.5 and 2.5. Sulfur isotopic composition (delta 34: 8-14.5 per mil) clearly suggest the injection of magmatic volatiles (SO2) to the hydrothermal system present at depth.A survey of diffuse CO2 degassing using the accumulation chamber method was performed in August 2001. 420 uniformly distributed points were measured in the main crater (Kawah Emas) covering an area of 58,000 m2. At least, two distinct populations of values are present. Diffuse CO2 degassing show a wide range of values from background values up to fluxes as high as 6,190 g/m2/day. The total degassing flux of CO2 estimated for this area is 7,410 t/year. This survey was completed in September 2002 with measurements of soil CO2 concentrations (at 50 cm depth). Concentrations as high as 30 vol. % were measured in some areas and clearly revealed the position of active faults on the crater floor. Kelud volcano (1650 m a.s.l.) is located in the eastern part of Java island and contains a crater lake. The Kelud historical eruption consisted mainly of pyroclastic flow and surges. Kelud volcano is known for its devastating lahars and a system of drainage was build in 1920 in order to keep the volume of the lake to 2 million m3.The last magmatic eruption occurred in 1990. Periodical geochemical surveys were carried out at the lake waters since 1993 to understand the hydrothermal system of this volcano. The lake contains near neutral waters with a pH of 6. In July 2001, we conducted a preliminary CO2 survey on the lake to measure the quantities of CO2 released from the lake surface to the atmosphere. The total flux of CO2 emitted by the lake surface is estimated at 28,400 t/year. A second survey was carried out in September 2002 and showed a significant decrease in CO2 flux to 19,700 t/year. This decrease in CO2 follow a net decrease in the input of hot fluids in the crater lake where the measured temperatures dropped from 42 °C in July 2001 to 33 °C in September 2002.

  17. 76 FR 5556 - Fisheries of the Exclusive Economic Zone Off Alaska; Allocating Bering Sea and Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ...Islands King and Tanner Crab Fishery Resources AGENCY: National Marine Fisheries Service...Program (Program) allocates BSAI crab resources among harvesters, processors, and coastal...threshold for eligibility because the inclusion of share holders with less economic...

  18. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  19. Debris avalanche triggered by sill intrusions in basaltic volcanoes (Piton des Neiges, La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.

    2014-12-01

    Debris avalanches derived from the flanks of volcanic islands are among the largest on Earth. Debris avalanches are rare, catastrophic destabilizations that still keep geologists debating about the mechanisms that initiate them and make them travel huge runout distances. To shed light on the trigger of such destabilizations, we studied the inland scar of a debris avalanche deposit cropping out at Piton des Neiges, a dormant and eroded basaltic volcano of La Réunion Island. The avalanche deposit rests on a pile of 50-70 sill intrusions with a shallow northward dip, i.e. toward the sea. We measured the anisotropy of magnetic susceptibility in a transect across the uppermost sill of the pile in contact with the avalanche deposit. This transect reveals a strongly asymmetric magnetic fabric, consistent with a north-directed shear movement of the upper intrusion wall. This suggests that the upper sill induced a co-intrusive shear displacement of the volcano flank toward the sea. The upper sill margin in contact with the avalanche is striated, showing that this intrusion is older than the avalanche. Striae indicate a northward direction of avalanche runout. The upper sill margin also displays a magmatic lineation consistent with a magma flow in the intrusion toward the north. There is thus a striking kinematic consistency between the directions of intrusion propagation and avalanche runout, both oriented toward the sea. From the above results, we propose that repeated sill intrusions, such as observed on Piton des Neiges, increase the instability of a volcanic edifice. Each injection induces an incremental slip of the overlying rock mass, which may eventually end up into a landslide. Sill intrusions associated with seaward displacements of volcano flank, such as inferred for the April 2007 eruption of Piton de la Fournaise (also in La Réunion), should therefore be considered as a potential trigger of debris avalanches.

  20. Physical volcanology and structural development of Cerro Azul Volcano, Isabela Island, Galápagos: implications for the development of Galápagos-type shield volcanoes

    Microsoft Academic Search

    Terry Naumann; Dennis Geist

    2000-01-01

    Cerro Azul is an active basaltic shield volcano forming the southwestern end of Isabela Island in the western Galápagos Archipelago. Ten eruptions have been witnessed between 1932 and 1998, an average of one eruption every 6.6years. Although Cerro Azul has been constructed primarily by effusive Hawaiian-style eruptions, explosive hydrovolcanic eruptions have occurred intermittently from vents on the caldera floor and

  1. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    Sakurajima volcano is the Quaternary post-caldera volcano of Aira caldera, which was caused by the eruption of huge amount of silicic pyroclastics, situated on Ryukyu arc, southern Kyushu Island, Japan. This volcano is quite active, so it can be considered that the preparation of next caldera-forming eruption with huge amount of silicic magma is proceeding. It is, therefore, expected that the investigation of magma genesis of Sakurajima volcano give us information for the mechanism generating huge amount of silicic magma, which cause the caldera formation. We analyzed major and trace elements with Sr, Nd and Pb isotopic compositions of volcanic rocks from Sakurajima volcano. We sampled (ol) - opx - cpx - pl andesite and dacite from almost all the volcanic units defined by Fukuyama and Ono (1981). In addition to Sakurajima samples, we also studied basaltic rocks erupted at pre-caldera stage of the Aira caldera to estimate the primary magma of Sakurajima volcano. Major and trace element variations generally show linear trends on the Harker diagrams, with the exception of P2O5 and TiO2. Based on the trend of P2O5 vs.SiO2, we divided studied samples low-P (P2O5 < 0.15 wt. %) and high-P (P2O5 > 0.15 wt. %) groups and these groups also display two distinct trends on TiO2-SiO2 diagram. The composition of trace elements shows typical island arc character as depletion of Nb and enrichments of Rb, K and Pb, suggesting addition of aqueous fluids to the mantle wedge. The Zr and Nb concentrations make a liner trend (Zr/Nb = 27) and this trend across from tend of MORB (Zr/Nb = 35) to that of crustal materials (Zr/Nb=17). The Sr, Nd and Pb isotopic compositions broadly plot to on the mixing curve connecting MORB-type mantle and sediments of the Philippine Sea Plate, indicating that the primary magma was generated by partial melting of MORB-type mantle wedge, which was hydrated with fluids derived from the subducted Philippine Sea sediments. But we found that our data plot apart from the mixing curve to the direction of being more radiogenic when we observe in more detail. This observation supports our conclusion that the crustal materials contribute the magma genesis of Sakurajima volcano emphasized from Zr/Nb ratios. Low-P and high-P groups show different trends of SiO2, P2O5, TiO2 concentrations and 87Sr/86Sr ratios relative to plagioclase modal abundances. The high-P group samples show continuous trends, and their 87Sr/86Sr ratios increase with decreasing plagioclase, representing simple AFC process. The SiO2 content of low-P group rapidly increases from 63 to 66 wt. % at the modal abundance of pl is nearly 20 vol. %. The Sr isotope ratios of low-P group with < 20 vol. % of pl are obviously high (87Sr/86Sr = 0.70556 to 0.70569) compared to those of high-P group (87Sr/86Sr = 0.705136 to 0.705285). From these observations, we conclude that the rapid increase of SiO2 with high 87Sr/87Sr ratio infer involvement of crustal materials to the magma chamber, in which the ACF process is proceeding.

  2. Geothermal resource assessment in the Aleutian Islands and Alaska peninsula: Quarterly progress report, January 1--March 30, 1989

    SciTech Connect

    Turner, D.L.; Nye, C.J.

    1989-03-30

    In this report the authors have now completed dating work on 20 rock samples. Analytical results for the dated samples are given in the enclosed table. The results are generally in good agreement with observed stratigraphic relationships and provide a well-constrained time framework for the eruptive history of this volcanic area. The argon extraction and potassium analyses are completed and the argon sample is awaiting mass spectrometry. In addition to documenting the eruptive history of Umnak volcanoes, the K-Ar ages will provide a time framework for the chemical evolution of the magmatic system, when combined with the rock chemistry analyses presently in progress at U.C., Santa Cruz. 1 tab.

  3. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people.

    This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features.

    The ASTER instrument is a cooperative project between NASA, JPL, and the Japanese Ministry of International Trade and Industry.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: Island is approximately 8 kilometers (5 miles) in diameter Location: 34.1 deg. North lat., 139.5 deg. East lon. Orientation: View toward the west-southwest. Image Data: ASTER visible and near infrared Date Acquired: February 20, 2000 (SRTM), July 17, 2000 (ASTER)

  4. Experimental constraints on steam-driven eruptions at White Island volcano (New Zealand)

    NASA Astrophysics Data System (ADS)

    Scheu, Bettina; Mayer, Klaus; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    The recent activity at White Island volcano is primarily characterized by strong hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions, down to micro-eruptions through a mud-rich crater lake. We analyzed the response of various sample types to rapid decompression caused by steam-flashing and/or gas expansion, mimicking steam-driven (phreatic) eruptions. The samples investigated comprise unconsolidated ash/lapilli as well as consolidated ash tuffs with different degree of alteration. All sample sets underwent, where possible, microstructural, geochemical and petrophysical characterization (as porosity, permeability and uniaxial compressive strength (UCS)). This allowed us to assess the role of following factors for phreatic eruptions: (1) PT-conditions leading to either steam-flashing or steam expansion (2) the behavior of loose versus consolidated material, as the influence of fragmentation, ejection velocity, grain size reduction (3) the porosity and its changes, (4) the alteration of the samples, leading to changes in UCS, porosity, and permeability. Besides their role during the short moment of a phreatic eruption itself, the strength and the permeability of rocks of the entire White Island volcanic complex and in detail above the hydrothermal system in the crater area are key factors for the recent activity at White Island. They crucially influence the distribution of fluids and gases; strong and low-permeable layers can act as pressure seals, defining the area and overpressure of a steam-driven eruption.

  5. Soil CO2 emissions at Furnas volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application

    NASA Astrophysics Data System (ADS)

    Viveiros, FáTima; Cardellini, Carlo; Ferreira, Teresa; Caliro, Stefano; Chiodini, Giovanni; Silva, Catarina

    2010-12-01

    Carbon dioxide (CO2) diffuse degassing structures (DDS) at Furnas volcano (São Miguel Island, Azores) are mostly associated with the main fumarolic fields, evidence that CO2 soil degassing is the surface expression of rising steam from the hydrothermal system. Locations with anomalous CO2 flux are mainly controlled by tectonic structures oriented WNW-ESE and NW-SE and by the geomorphology of the volcano, as evidenced by several DDS located in depressed areas associated with crater margins. Hydrothermal soil CO2 emissions in Furnas volcano are estimated to be ˜968 t d-1. Discrimination between biogenic and hydrothermal CO2 was determined using a statistical approach and the carbon isotope composition of the CO2 efflux. Different sampling densities were used to evaluate uncertainty in the estimation of the total CO2 flux and showed that a low density of points may not be adequate to quantify soil emanations from a relatively small DDS. Thermal energy release associated with diffuse degassing at Furnas caldera is about 118 MW (from an area of ˜4.8 km2) based on the H2O/CO2 ratio in fumarolic gas. The DDS also affect Furnas and Ribeira Quente villages, which are located inside the caldera and in the south flank of the volcano, respectively. At these sites, 58% and 98% of the houses are built over hydrothermal CO2 emanations, and the populations are at risk due to potential high concentrations of CO2 accumulating inside the dwellings.

  6. Using numerical modeling to explore the origin of intrusion patterns on Fernandina volcano, Galapagos Islands, Ecuador

    NASA Astrophysics Data System (ADS)

    Chestler, Shelley R.; Grosfils, Eric B.

    2013-09-01

    Using parameterized finite element models, we investigate the emplacement of both radial and circumferential intrusions in the configuration observed at Fernandina volcano in the Galapagos Islands. When situated within the edifice at depths consistent with petrological and surface displacement data, inflation of a mildly oblate magma reservoir to the point of rupture can initiate either radial or circumferential intrusions in response to minor, volcanologically plausible variations in reservoir geometry (i.e., aspect ratio). In addition, more oblate reservoirs inject lateral sills into an inflation-derived stress field consistent with rotation about their propagation axis to form gently dipping radial dikes, a mode of behavior recently inferred from InSAR data at Fernandina. All three styles of intrusion occur in near-surface configurations consistent with field observations.

  7. Dismantling processes of basaltic shield volcanoes - origin of the Piton des Neiges breccias - Reunion Island

    NASA Astrophysics Data System (ADS)

    Arnaud, A.; Bachèlery, B.; Cruchet, C.

    2003-04-01

    Reunion Island is mainly composed by two volcanic massifs: the active Piton de la Fournaise to the southeast and the Piton des Neiges to the northwest that has been inactive for about 12000 years. The latter corresponds to a dismantled volcanic massif, deeply cut by valleys and by three vast depressions, called “cirques” around the centre of the volcano. They offer the opportunity to observe the inside of a basaltic shield volcano. The first work dealing with the origin of the “cirques” very quickly showed the existence of a significant cover of breccia deposits. These breccias were often interpreted as the result of a major stage of erosion considered as partly at the origin of the “cirques” formation. Geological campaigns mainly achieved in the “cirque de Salazie” (eastern of the Piton des Neiges), allow to establish a first typology based on morphological, phenomenological and sedimentary features of the deposits. Two main complexes of breccias have been distinguished. An old complex outcropping in the internal parts of the cirque and an upper complex generally overlaying the lower complex. The old complex comprises two main units of breccias. These units show a strong alteration marked by the presence of clays, chlorites, serpentines and zeolites. In the inner part of the cirque, these breccias are closely related to the old lava formations from which they come. These units show frequent jigsaw-cracks, a chaotic stratigraphy, as well as large amounts of chlorite. The upper complex is constituted by four main units which are more or less geographically separated in the cirque of Salazie. Their limits are not yet well identified because of the significant relief and a strong vegetable cover. Several units display a very strong fracturation, jigsaw-cracks and a chaotic stratigraphy whereas many lava flows are pulverised and locally injected in scoria levels. Recent work on Saint-Gilles breccias (Fèvre et al., this meeting) allowed to identify several sub-aerials deposits of debris avalanches. These new data, the analysis of geology and sedimentary figures observed within the breccia units in the “cirque de Salazie”, evidence several major gravitational collapse affecting the northeast flank of Piton des Neiges volcano. Considering that, the “cirque de Salazie” appears as partly bounded by gravitational collapse affecting the flanks of the volcano.

  8. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    Microsoft Academic Search

    Jaewoo Park; Julia K. Morgan; Colin A. Zelt; Paul G. Okubo

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano

  9. Lithospheric normal faulting beneath the Aleutian trench

    Microsoft Academic Search

    Katsuyuki Abe

    1972-01-01

    The focal process of the Rat Island earthquake of March 30, 1965, which occurred beneath the Aleutian trench, is studied on the basis of the long-period surface-wave data and the spatial distribution of the aftershocks. The Rat Island earthquake is represented by a normal faulting with some left-lateral strike-slip component. The spatial distribution of the aftershocks shows a remarkable plane-like

  10. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles

    NASA Astrophysics Data System (ADS)

    Rybin, Alexander; Chibisova, Marina; Webley, Peter; Steensen, Torge; Izbekov, Pavel; Neal, Christina; Realmuto, Vince

    2011-11-01

    After 33 years of repose, one of the most active volcanoes of the Kurile island arc—Sarychev Peak on Matua Island in the Central Kuriles—erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0.4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano.

  11. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.

  12. Construction and destruction rates of volcanoes within tropical environment: Examples from the Basse-Terre Island (Guadeloupe, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Ricci, Julia; Lahitte, Pierre; Quidelleur, Xavier

    2015-01-01

    In order to better constrain the construction and the erosion rate affecting the volcanic island of Basse-Terre Island (Guadeloupe, F.W.I.), an enlarged K-Ar age dataset has been combined with reconstruction of the paleo-topography. Two different methods of interpolation of the present topography have been cross-checked to better support the erosion rates obtained and their associated uncertainties. The present study focusses on the Monts-Caraïbes volcanoes and on the main geomorphic feature of the Piton de Bouillante volcano, the Beaugendre Valley. The Monts-Caraïbes volcanoes were constructed in 83 kyr at a rate of 0.12 ± 0.04 km3/kyr. During the last 450 kyr, they have experienced an erosion rate of 610 ± 550 t/km2/yr. In the Piton de Bouillante volcano eleven new K-Ar ages have been obtained, constraining the duration of its volcanic activity between 880 ± 14 and 712 ± 12 ka, and involving a construction rate of 0.70 ± 0.20 km3/kyr. For this volcano, an erosion rate of 1220 ± 700 t/km2/yr has been obtained for the last 700 kyr. Our study also shows, based on the contemporaneity of the ages in the entire Beaugendre Valley added to the mean erosion rate of 1350 ± 550 t/km2/yr, that the flank collapse hypothesis cannot explain the formation of this valley. Finally, the similarity of the erosion rates computed for different locations of the Basse-Terre Island shows that the time-integrated erosion appears independent to the trade wind effect and suggests that the barrier effect due to the relief is not present here.

  13. Locational differences in heavy metals and metalloids in Pacific Blue Mussels Mytilus [edulis] trossulus from Adak Island in the Aleutian Chain, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2006-09-15

    Increasingly there is a need to implement biomonitoring plans that can be sustained cost-effectively, focusing on single widespread (or closely-related species) in different parts of the world to detect exposure, potential damage to the organisms themselves, and risk to their consumers, including humans. Blue Mussels (Mytilus edulis and its relatives) have been widely used for environmental monitoring. One successful program that has achieved great coverage in time and space is "Mussel Watch", and related programs exist in several regions. In this paper we use the Pacific Blue Mussel Mytilus [edulis] trossulus collected from five locations on Adak Island in the Aleutian Chain to examine five heavy metals and two metalloids, to test for locational differences as a function of anthropogenic activities, and to consider potential human health risks. Until the late 1990s Adak hosted a large U.S. military base, with multiple areas of contamination, some of which have been remediated. In June 2004 we identified four presumably human-impacted sites and a presumed unimpacted reference site, the latter on Clam Lagoon Beach, about 3 km from former military activity. No single site had the highest level of more than two metals, and the reference site had the highest levels of chromium and manganese. We subsequently found historic records of a former landfill within 1 km of the reference site. All of the locational differences were less than an order of magnitude, the greatest difference between the highest and lowest values being 4.5 times for lead. The highest correlations were between mercury and arsenic, mercury and lead, arsenic and lead, and chromium and manganese. Shell length was a better indicator of metals' levels than soft body weight, but the relationships were weak. There was no significant correlation between body size or weight with arsenic, lead, or selenium levels. There is substantial comparative data on these metals in mussels. Our results from Adak are generally within the range of mean values reported in the literature, except for the consistently elevated levels of chromium. PMID:16828845

  14. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  15. Two Decades of Degassing at Kilauea Volcano, Hawai`i: Perspectives on Island Impacts

    NASA Astrophysics Data System (ADS)

    Elias, T.; Sutton, A. J.

    2003-12-01

    The ongoing eruption of Kilauea provides an opportunity to examine how volcanic emissions impact the natural and human environment of the island of Hawai`i. Kilauea has released ˜ 13 megatons of SO2 gas into the troposphere since the current eruption began in 1983, more than any single anthropogenic source in the U.S. During prevailing trade wind conditions, measurements of SO2 gas, aerosol mass, and aerosol acidity downwind of Kilauea document the conversion of SO2 to acid aerosol as the plume propagates to the leeward side of the island. Lidar measurements suggest a gas-to-particle conversion rate (t1/2) of 6 hours. When trade winds are disrupted, ambient SO2 and particle measurements in Hawai`i Volcanoes National Park have shown episodes of particle concentrations of ˜ 100 ? g/m3 and SO2 concentrations in excess of 4000 ppb. Federal health standards and WHO guidelines for SO2 have been exceeded repeatedly at this near-source location. Documented effects from volcanic emissions on the island of Hawai`i include the rapid corrosion of metal objects, degradation of domestic water quality, agricultural crop damage, and adverse impacts on human respiratory and pulmonary function. Other impacts may include decreases in local rainfall and increased mortality of asthmatics. For the period 1986 to 1993, after the eruption became continuous, deaths from asthma on the island of Hawai`i increased by a factor of ten. Three current health studies seek to investigate the relationship between exposure to volcanic pollution and health effects. In addition to measuring gas and particle exposures, these studies examine lung development in children around the island, disease prevalence in adults residing in communities downwind of volcanic degassing sources, and acute effects in asthmatic children and healthy children and adults. In the absence of conclusive evidence linking exposure and health effects, the USGS, in collaboration with the National Park Service, has developed a real-time advisory for heavily visited park areas known to exceed U.S. Air Quality Standards. This color-coded system informs and advises park visitors and employees when ambient SO2 concentrations exceed predetermined levels.

  16. Petrologic observations and multiphase dynamics in highly-crystalline magmatic mushes sourcing Galápagos Island volcanoes

    NASA Astrophysics Data System (ADS)

    Schleicher, J.; Bergantz, G. W.; Geist, D.

    2013-12-01

    The inability to directly observe magma chambers makes it difficult to understand their dynamics. Yet conditions within the chamber determines whether an eruption will occur, or if the magma is allowed to cool to complete crystallization. Eruption styles are also conditioned by these dynamics, as the amount of overpressure within the chamber regulates effusive or explosive eruptions. Plutons and volcanoes appear to share similar states: magma reservoirs that are temporally and spatially dominated by crystal-rich states, known as magmatic mushes. To explore the dynamics of mushes, we turn to the relatively simple ocean island end-member of magmatic systems. Ocean island porphyritic basalt flows provide a snapshot of the mush conditions prior to eruption. The Galápagos Islands are a system of ocean islands displaying spatial and temporal variation in their eruption styles and deposits. We have collected porphyritic basalt samples from Rábida Island of the Galápagos Archipelago which contains deposits ranging in ages from 0.7-1.0 Ma. Chemical zoning within phenocrysts indicates intermittent efficient mixing occurs within the mush, despite high viscosities and corresponding low-Reynolds number conditions. To further explore the dynamics of mixing, we present preliminary Eulerian-Lagrangian multiphase models using the fluids modeling software MFIX (Multiphase Flow with Interphase eXchanges). This computational fluid dynamics-discrete element method (CFD-DEM) allows for individual crystal tracking within the system and monitors interactions between the fluid and solid phases. Of special interest is the open-system dynamical response of a mush to a reintrusion event. Unlike high-Reynolds number flows, such as air or water systems, magmatic mushes have high viscosities, indicating that turbulent motion is not the primary mixing mechanism. Instead, mixing appears to be caused by mechanical unlocking from an increase in pore pressure as additional magma is injected. The crystal pile inflates and the injected melt creates crystal-poor fingers through the mush. These regions are unstable and eventually lead to mush collapse. Repetition of this cycle can drive efficient mixing of the magma chamber. We quantify the ability of the mush to mix using the Lacey statistical mixing index. We compare this value for the results of various open-system reintrusion events within the mush as a means to explore the dynamics that occur.

  17. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan

    PubMed Central

    Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H.

    2002-01-01

    Significant anomalous changes in the ultra low frequency range (?0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals. PMID:12032286

  18. Petroleum potential of volcanogenic and volcano-sedimentary rocks in ancient and recent island arcs: Caucasus, Komandorskie, and Kuril islands, eastern Kamchatka

    SciTech Connect

    Levin, L.E. (VNIIZarubezhgeologia, Moscow (Russian Federation))

    1993-09-01

    In the Late Cretaceous-Eocene, subduction of the Tethys oceanic plate under the island arc of the lesser Caucasus contributed to the appearance of the special conditions favorable for petroleum occurrence: (1) tectono-magmatic destruction of the crust of the Transcaucasus median massif and formation of hydrocarbon traps of different types and origins, and (2) high heat flow lasting until the recent epoch. These led flow-intensive generation of hydrocarbons in the shallow-water sediments of the paleoshelf of the Transcaucasus massif and accumulation of hydrocarbons not only in the sedimentary but also in the volcanogenic and volcano-sedimentary reservoirs (Samgori-Patardzeuli, Muradhanly fields, etc.). At the end of the Oligocene, the geodynamic setting in the northwestern margins of the Pacific Ocean was mainly similar to that within the Transcaucasus median massif. At the end of Oligocene-Miocene, such conditions determined the tectono-magmatic destruction of the continental crust and formation of the series of interarc rifts. The main fields of Japan, with accumulations in the volcanogenic and volcano-sedimentary rocks, are concentrated here. Its analog is the rift located in the southern part of a single east Kuril basin, where petroleum occurrence is only inferred. In the separate troughs, the thickness of the volcano-sedimentary cover is 4-6 km. The stratigraphic section of the cover contains the volcanic and volcano-sedimentary sediments of the Neogene-Pleistocene. The studies of the sections of the Komandorskie islands, eastern Kamchatka, Kuril Islands, and western Sakhalin indicate that distribution of reservoirs depends on the stage of evolution of the rifts and adjacent island arcs.

  19. 3-D Anisotropic Ambient Noise Tomography of Piton De La Fournaise Volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Rivet, D. N.; Landes, M.; Shapiro, N.

    2014-12-01

    We cross-correlate four years of seismic noise continuously recorded by the seismic monitoring network of the Piton de la Fournaise volcano (La Réunion Island). The network is composed of 40 stations 27 of which have 3-component sensors. We use Vertical-to-Vertical (ZZ) cross-correlation components from all stations and Radial-to-Radial (RR) and Transverse-to-Transverse (TT) cross-correlations computed from 3-component records. The group velocity dispersion curves for Rayleigh and Love waves are measured using a Frequency-Time Analysis. We average measurements from ZZ and RR components to finally obtain 577 Rayleigh-wave dispersion curves. 395 Love-wave dispersion curves are obtained from the TT cross-correlations. We then regionalize the group velocities measurements to construct 2D dispersion maps at a set of periods between 0.4 and 8 s. Finally, we construct a 3D shear-velocity model down to 3 km below the sea level by jointly inverting the Rayleigh and Love wave group velocity maps with a Neighborhood Algorithm and with taking into account the radial anisotropy. The distribution of 3-D Voigt averaged S-wave velocities shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The most western high-velocity anomaly is located below the actual "Plaine des Sables" and could be attributed to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body is located below the summit of the volcano and likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly is located below the "Grandes Pentes" and the "Grand Brûlé" areas and is thought to be an imprint of the solidified magma chamber of the ancient dismantled "Les Alizé" volcano. The distribution of the radial anisotropy shows two main anomalies: a positive anisotropy (Vsh>Vsv) above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of mostly horizontal lava flows, and the second one below the sea level with a negative anisotropy (Vsv>Vsh) showing the ancient edifice of the Piton de la Fournaise dominated by intrusions of vertical dykes.

  20. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, P. A.; Tanaka, H.; Miyamoto, S.; Perez, N.; Barrancos, J.; Padron, E.; Hernandez, I.

    2012-12-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great interest in the scientific community and society due to their volcanic features and specific hazards associated with volcanic activity.

  1. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernández, Iñigo; Hernández, Pedro; Pérez, Nemesio; Tanaka, Hiroyuki; Miyamoto, Seygo; Barrancos, José; Padrón, Eleazar

    2013-04-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great interest in the scientific community and society due to their volcanic features and specific hazards associated with volcanic activity.

  2. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and K?lauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  3. Magnitude scales for very local earthquakes. Application for Deception Island Volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Havskov, Jens; Peña, José A.; Ibáñez, Jesús M.; Ottemöller, Lars; Martínez-Arévalo, Carmen

    2003-11-01

    Different magnitude scales are calculated for a set of volcano-tectonic earthquakes recorded in Deception Island Volcano (Antarctica). The data set includes earthquakes recorded during an intense seismic series that occurred in January-February 1999, with hypocentral distances that range between 0.5 and 15 km. This data set is enlarged to include some regional earthquakes with hypocentral distances up to 200 km. The local magnitude scale, ML, fixed at a hypocentral distance of 17 km, is used as the reference for the other magnitude scales studied in the present work. ML is determined on a standard Wood-Anderson simulated trace assuming a gain of 2080. Maximum peak-to-peak amplitudes are measured on the vertical components of a short-period sensor. The Mw scale is calculated, in the vertical component, both for P and S waves. The attenuation correction of the ground motion displacement spectra is introduced using data from coda waves studied in the area. The comparison between ML values and Mw estimations indicates severe discrepancies between both values. A magnitude-duration scale is calibrated from the comparison between coda durations of the recorded events and their assigned local magnitude scales. In order to investigate the causes of the discrepancy between the ML and Mw values we analyze two possible error sources: a wrong coda Q value, or the effects of the near-surface attenuation that initially are not taken into account in the correction of the ground displacement spectra. The analysis reveals that the main cause of this discrepancy is the effect of the near-surface attenuation. The near-surface attenuation is also the cause of the determination of an anomalous spectral decay slope, after the corner frequency, and the determination of this corner frequency value. This near-surface attenuation, represented by ?, is estimated over the data set, obtaining an average value of 0.025. With this ? value, the Mw scale is recalculated using an automatic algorithm. The new Mw values are more consistent with the ML values, obtaining a relationship of Mw=0.78 ML-0.02.

  4. Magnitude Scales For Very Local Earthquakes. Application For Deception Island Volcano (antarctica)

    NASA Astrophysics Data System (ADS)

    Havskov, J.; Peña, J. A.; Ibáñez, J. M.; Ottemöller, L.; Martínez-Arévalo, C.

    Different magnitude scales are calculated for a set of volcano-tectonic earthquakes recorded in Deception Island volcano (Antarctica). The data set corresponds to earth- quakes recording during an intense seismic series occurred in January-February 1999, with hypocentral distances that ranges between 0.5 and 15 km. This data set is en- larged including some regional earthquakes with hypocentral distances up to 200 km. The local magnitude scale, ML, fixed at a hypocentral distance of 17 km, is used as the reference for the remain magnitude scales. ML is determined on a standard Wood- Anderson simulated trace assuming a gain of 2080. Maximum peak-to-peak ampli- tudes are measured on the vertical components of a short-period sensor. The Mw scale is calculated, in the vertical component, both for P and S-waves. The attenuation cor- rection of the ground motion displacement spectra is introduced using data from coda waves studies in the area. The comparison between ML values and Mw estimations indicates severe discrepancies between both values.. A magnitude-duration scale is calibrate from the comparison between coda duration of the recorded events and their assigned local magnitude scale. In order to investigate the causes of the discrepancy between the ML and Mw values we analyze two possible error sources: a wrong coda- Q value, or the effects of the near surface attenuation that initially are not take into account in the correction of the ground displacement spectra. The analysis reveals that the main cause of this discrepancy is the effects of the near surface attenuation. The near surface attenuation is also the cause of the determination of a anomalous spectral decay slope, after the corner frequency, and the determination of this corner frequency value. This near surface attenuation, represented by k, is estimated over the data set, obtaining an average value of 0.025. With this k value, the Mw scale is recalculated using an automatic algorithm. The new Mw values are more consistent with the ML values obtaining a relationship of: Mw = 0.78 u° ML - 0.02.

  5. Sar interferometry time series analysis of surface deformation for Piton de la Fournaise volcano, Reunion Island

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Remy, Dominique; Froger, Jean-Luc; Darrozes, José; Bonvalot, Sylvain

    2015-04-01

    Piton de la Fournaise, located on the south-eastern side of Réunion Island in the Indian Ocean, is a hotspot oceanic basaltic shield volcano whose activity began more than 500,000 years ago. It is one of the most active volcanoes in the world with a high eruptive frequency on average one eruption every 9 months since 1998. In April 2007, Piton de la Fournaise experienced an exceptional eruption which is considered as the largest historical eruption ever observed during the 20th and 21th centuries, characterized by an effusion of 210 ×106 m3 volume of lava with a 340 m consequent collapse of the Dolomieu crater and the onset of a landslide on the eastern flank. ENVISAT and ALOS data analysis showed that the subsidence of central cone and landslide of eastern flank continued deforming after this eruption at least until June 2008, but no clear ground deformation has been detected after this date from Band-C or Band-L radar images. We so perform a detailed spatio-temporal analysis of ground motions on Piton de la Fournaise using X-band InSAR time series acquired from 2009 to 2014. X-Band was chosen because it provides high spatial resolution (up to 1 m), short revisit period (minimum 11 days) and a highest sensibility to ground deformation. Our large dataset of X-band radar images is composed of 106 COSMO-SkyMed and 96 TerraSAR-X Single-Look Complex images acquired in ascending and descending orbits. The interferograms were generated using DORIS. A high resolution reference Digital Elevation Model (DEM) (5m x 5m Lidar DEM) was used to model and remove the topographic contribution from the interferograms. We employed next StaMPS/MTI (Hooper et al., 2012) to generate the displacement time series and we analyzed the time-dependant behavior of surface displacement using a principal component analysis (PCA) decomposition. This analysis clearly reveals that the large eastward motion affecting the eastern flank of Piton de la Fournaise remained active (LOS velocity of about 25 mm.y-1) at least until July 2012. Another important result is that the displacement maps show evidence of time-dependant processes acting at the central cone.

  6. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  7. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  8. 76 FR 17360 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ...the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands...to the initial total allowable catch of octopus in the Bering Sea and Aleutian Islands...initial total allowable catch (ITAC) of octopus in the BSAI was [[Page 17361

  9. 78 FR 57097 - Fisheries of the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ...the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian Islands...SUMMARY: NMFS is prohibiting retention of sharks in the Bering Sea and Aleutian Islands...2013 total allowable catch (TAC) of sharks in the BSAI has been reached....

  10. 76 FR 59924 - Fisheries of the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ...the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian Islands...SUMMARY: NMFS is prohibiting retention of sharks in the Bering Sea and Aleutian Islands...2011 total allowable catch (TAC) of sharks in the BSAI has been reached....

  11. Triggering at an Alaska-Aleutian Arc Tremor Sweet Spot

    NASA Astrophysics Data System (ADS)

    Gomberg, J. S.; Prejean, S. G.

    2012-12-01

    Relative to other regions of the Alaska-Aleutian arc, daily routine visual scanning done for volcano monitoring notes signals with characteristics indicative of tectonic tremor most commonly at stations in the vicinity of Akutan Island. Brown et al. (2012, in press) found ambient tremor in four regions along the Alaska-Aleutian arc, and a total tremor duration in the vicinity of Akutan almost double that in any of the other regions examined. We further tested the inference that the vicinity of Akutan Island is a 'sweet spot' for tremor generation, by examining the tremor response to the nine largest amplitude seismic wavefields recorded across the region since 2006. The three largest of these posited triggering dynamic deformations originated from a M7.2 regional, the 2007 M8.1 Kuril and the M9.0 Tohoku, Japan earthquakes. Clear triggered tremor, bursts of 2-10 Hz energy in sync with passing lower-frequency surface waves, is observed only at seismic stations on Akutan and adjacent islands for the latter two earthquakes. While high frequencies from the triggering waves of the regional earthquake prevent detection of possible triggered signals at Akutan and its neighbors, no triggering is observed at any more distant stations. The only other clear triggered tremor - also at Akutan and its nearest neighbor - is associated with the 2012 M8.6 Sumatra earthquake wavefield, which curiously has smaller amplitudes than other wavefields that did not trigger tremor anywhere within the study region. Since tremor may be a proxy for slow slip on the plate-interface, we hypothesize that this observation suggests slow slip was underway at the time of the Sumatra earthquake and are testing this using GPS data. We also explore other possible explanations, such as differences in the posited triggering wavefields. We conclude that the Akutan region is indeed a sweet spot for tremor, perhaps consistent with its location above a frictionally transitional plate-interface, modeled as almost fully decoupled to the west and down-dip and coupled to the east and up-dip (bounding the down-dip edge the M8.9 1957 rupture). Curiously the Akutan region also straddles the transition between continental and oceanic crust within the overriding plate.

  12. Fluxes of magmatic chlorine and sulfur from volcano-hydrothermal systems. Examples for Northern Kuril Islands Paramushir and Shiashkotan.

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri

    2015-04-01

    The total flux of components degassed from the magma through persistently degassing volcanoes comprises of the volcanic vapor flux from fumaroles to the atmosphere, diffuse flux through volcanic slopes and the hydrothermal flux to the local hydrologic network. The hydrothermal flux may be provided by the discharge of fluids formed at depth over the magma body and/or by acid waters which are formed by the absorption of the ascending volcanic vapor by shallow ground. The anion composition (Cl and SO4) of the discharging thermal waters from a volcano-hydrothermal system originates from the volcanic vapor and should be taken into account in estimations of the magmatic volatile output and volatile recycling in subduction zones. Here we report the chemical (major and trace elements) and isotopic composition of acidic and neutral thermal waters, chemical and isotopic composition of volcanic vapors and solute fluxes from the northern Kurilian islands Paramushir (Ebeko volcanic center) and Shiashkotan (volcanoes Sinarka and Kuntomintar). The total measured outputs of chloride and sulfur from the system in 2006-2014 were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are one order of magnitude higher than the fumarolic output of Cl and S from the low-temperature fumarolic field of Ebeko (<120°C). The estimated discharge rate of hot (85°C) water from the system with ~ 3500 ppm of chloride is about 0.3 m3s-1 which is among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. The total hydrothermal discharge of Cl and S from Shiashkotan island to the Sea of Okhotsk associated with magmatic activity of two volcanoes is estimated as ca. 20 t/d and 40 t/d, respectively, which is close to the fumarolic output from both volcanoes (Sinarka and Kuntomintar) estimated using the chemistry and flow rates of fumaroles those measured temperature is close to 500°C.

  13. Time-space variation of volcano-seismic events at La Fossa (Vulcano, Aeolian Islands, Italy): new insights into seismic sources in a hydrothermal system

    Microsoft Academic Search

    Salvatore Alparone; Andrea Cannata; Salvatore Gambino; Stefano Gresta; Vincenzo Milluzzo; Placido Montalto

    2010-01-01

    We investigated the relationship between volcano-seismic events, recorded at La Fossa crater of Vulcano (Aeolian Islands,\\u000a Italy) during 2004-2006, and the dynamics of the hydrothermal system. During the period of study, three episodes of increasing\\u000a numbers of volcano-seismic events took place at the same time as geothermal and geochemical anomalies were observed. These\\u000a geothermal and geochemical anomalies have been interpreted

  14. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    NASA Astrophysics Data System (ADS)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2?) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2?) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr < 0.7040; ?Nd > 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  15. Enhancement of sub-daily positioning solutions for surface deformation monitoring at Deception volcano (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Prates, G.; Berrocoso, M.; Fernández-Ros, A.; García, A.

    2013-02-01

    Deception Island is one of the most visited places in Antarctica. There are biological, geological, and archeological features that are major attractions within Port Foster, its horse shoe-shaped natural inner bay, and two scientific bases that are occupied during austral summers. Deception Island is an active volcano, however, and needs to be monitored in order to reduce risk to people on the island. Surface deformation in response to fluid pressure is one of the main volcanic activities to observe. Automated data acquisition and processing using the global navigation satellite systems allow measurements of surface deformation in near real time. Nevertheless, the positioning repeatability in sub-daily solutions is affected by geophysical influences such as ocean tidal loading, among others. Such periodic influences must be accurately modeled to achieve similar repeatability as daily solutions that average them. However, a single solution each 24 h will average out the deformation suffered during that period, and the position update waiting time can be a limitation for near real-time purposes. Throughout the last five austral summer campaigns in Deception, using simultaneous wireless communications between benchmarks, a processing strategy was developed to achieve millimeter-level half-hourly positioning solutions that have similar repeatability as those given by 24-h solutions. For these half-hourly solutions, a tidal analysis was performed to assess any mismodeling of ocean tide loading, and a discrete Kalman filter was designed and implemented to enhance the sub-daily positioning repeatability. With these solutions, the volcano-dynamic activity resulting in localized surface deformation for the last five austral summer campaigns is addressed. Although based on only three carefully located benchmarks, it is shown that Deception has been shortening and subsiding during these last 4 years. The method's accuracy in baselines up to a few hundred kilometers assures its applicability to other volcanoes worldwide.

  16. Shallow seismic attenuation and shear-wave splitting in the short period range of Deception Island volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Martínez-Arévalo, Carmen; Bianco, Francesca; Ibáñez, Jesús M.; Del Pezzo, Edoardo

    2003-11-01

    The occurrence of a seismic series in Deception Island volcano (Antarctica), composed of hundreds of local volcano-tectonic earthquakes, has permitted us to study the seismic attenuation of such a volcanic environment in the short-distance and high-frequency range. This study has been performed using P-waves, S-waves and coda-waves and applying different, frequency dependent and independent, techniques. The methods used for this analysis have been: spectral and broadening-of-the-pulse, for direct P- and S-waves, coda normalization for S-waves, and single back-scattering model for coda-waves. The results show that, in general, Q values are significantly smaller for the entire frequency range used (6-30 Hz) than those found in other volcanic and tectonic areas. The attenuation for P-waves is greater than for S-waves in the frequency independent methods, with a Q ?/ QP ratio that ranges between 1.9 and 3.2. Comparing the Q-factor obtained for S-waves we have observed clear differences as a function of the method used; the coda normalization method has supplied significantly higher Q values ( Q d) than the other two methods ( Q ?). We have interpreted this discrepancy as an effect of the methods: coda normalization and single back-scattering methods eliminate the contribution of the near-surface attenuation in their Q values. Comparing both Q ? and Q d we have estimated the near-surface attenuation under the recording site, named Q ?. On the other hand, we have observed that Q d has anomalous frequency dependence, with a minimum value at 21 Hz. This pattern is interpreted as an effect of strong scattering of the seismic waves in the source area of the earthquakes. Q c values depend clearly with frequency and lapse time and the lapse time dependence could be interpreted as a depth dependence of the seismic attenuation in Deception Island volcano, Antarctica. The obtained Q values have allowed us to separate the contribution of intrinsic and scattering attenuation, deriving that the scattering attenuation is predominant over the intrinsic effects. Finally, in order to investigate how the heterogeneous medium of the volcanic island could produce other effects, we have checked whether it produces polarization of the shear-waves. The preliminary results of the polarization direction indicate a main E-W strain direction. All these evidences reveal the strongly heterogeneous structure of Deception Island volcano.

  17. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Power, J.A.; Dzurisin, D.

    2000-01-01

    In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.

  18. The 1998-1999 Seismic Series At Deception Island Volcano, Antarctica.

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; Carmona, E.; Almendros, J.; Saccorotti, G.; del Pezzo, E.; Abril, M.; Ortiz, R.; Martínez-Arévalo, C.

    During the 1998-1999 Antarctic summer, the pattern of seismic activity at Deception Island volcano suffered a significant change with respect to the previous years. This change was characterized by the occurrence of an intense swarm of local earthquakes. More than 2000 local earthquakes with S-P time smaller than 4 s were recorded in the period January-February 1999. Pure volcanic events have been also detected, spe- cially long period (LP) events and volcanic tremor, and some hybrid events. Seismic monitoring was performed using two short-period small-aperture arrays, among other instruments. We selected for the analysis 863 local earthquakes, 350 LP events and tremor episodes, and 9 hybrid events, based on their signal-to-noise ratios. Propaga- tion parameters (apparent slowness and back-azimuth) for all events were estimated using the zero lag cross-correlation (ZLCC) array technique. Combining this infor- mation with measures of S-P times and other indirect evidences, two different source regions have been identified. LP seismicity is located southwestward from the Fuma- role array site at distances smaller than 1-1.5 km. In this region we find the presence of glaciers, important fractures, and thermal anomalies, which supports the hypothesis of a hydrothermal origin. Local earthquakes and hybrid events are located in a region beneath Port Foster, the inner Bay of Deception Island. This region extends from the array site to the Northeast, between depths of 0.3 and 10 km. The epicentral distances range between 0.5 and 12 km. Most hypocenters are clustered in a small volume of around 8 km3 centered at 1.5 km depth and 1.5 km Northeast of the Fumarole ar- ray. The sources of the LP seismicity and the local earthquakes are spatially distinct, which indicates that they are not produced by the same mechanisms. Moment mag- nitude analyses of the local earthquakes show an energetic uniformity in the seismic series, with average magnitude of 0.5 and very low average stress drop, around 1 bar. The study of the spatial distribution of the first motion of the P-waves suggests that dif- ferent source mechanisms acted in a very small volume. The complexity of the source region is also evidenced by the identification of distinct families of events with the same waveforms inside the main source region. The occurrence of repeatable fracture processes with low stress drop and small fault dimensions can be explained by the lu- brication of pre-existing zones of weakness by pressurized fluids. Three mechanisms could be invoked to explain the generation of the recorded seismic series at Decep- 1 tion Island: 1) a classical tectonic seismic swarm caused by a regional stress field; 2) a seismic swarm produced directly by the actual movement of magma through the source region; and 3) a seismic series caused by the stress generated by the uplift of the source area due to a magmatic injection in depth. We favor the last hypothesis since it is compatible with the majority of the characteristics of the seismicicty and explains the spatial and temporal behavior of the series. 2

  19. Argon geochronology of late Pleistocene to Holocene Westdahl volcano, Unimak Island, Alaska

    USGS Publications Warehouse

    Calvert, Andrew T.; Moore, Richard B.; McGimsey, Robert G.

    2005-01-01

    High-precision 40Ar/39Ar geochronology of selected lavas from Westdahl Volcano places time constraints on several key prehistoric eruptive phases of this large active volcano. A dike cutting old pyroclastic-flow and associated lahar deposits from a precursor volcano yields an age of 1,654+/-11 k.y., dating this precursor volcano as older than early Pleistocene. A total of 11 geographically distributed lavas with ages ranging from 47+/-14 to 127+/-2 k.y. date construction of the Westdahl volcanic center. Lava flows cut by an apparent caldera-rim structure yielded ages of 81+/-5 and 121+/-8 k.y., placing a maximum date of 81 ka on caldera formation. Late Pleistocene and Holocene lavas fill the caldera, but most of them are obscured by the large summit icecap.

  20. Transient volcano deformation sources imaged with interferometric synthetic aperture radar: Application to Seguam Island, Alaska

    E-print Network

    Transient volcano deformation sources imaged with interferometric synthetic aperture radar time series of source strength attribute a distinctive transient behavior to each of the three source data accounts for the transient, interrelated behavior of the source clusters and the observed

  1. Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain 

    E-print Network

    Lamarche, Amy J.

    2004-09-30

    of low spaces on flanks by landslides. The subsurface geology, including magma plumbing, hydrothermally altered zones, and lithology of the volcano, creates areas of highly variable magnetizations (Gee et al., 1988; 1989). In this study, I combine...

  2. Controlled-source seismic investigations of the crustal structure beneath Erebus volcano and Ross Island, Antarctica: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maraj, S.; Kyle, P. R.; Zandomeneghi, D.; Knox, H. A.; Aster, R. C.; Snelson, C. M.; Miller, P. E.; Kaip, G. M.

    2009-12-01

    During the 2008-09 Austral summer field season we undertook a controlled-source seismic experiment (Tomo-Erebus, TE) to examine the shallow magmatic system beneath the active Erebus volcano (TE-3D) and the crustal structure beneath Ross Island. Here we report on the TE-2D component, which was designed to produce a two-dimensional P-wave velocity model along an east-west profile across Ross Island. Marine geophysical observations near Ross Island have identified the north-south trending Terror Rift within the older and broader Victoria Land Basin, which are a component of the intraplate West Antarctic Rift System. Mount Erebus and Ross Island are circumstantially associated with the Terror Rift and its thin (~20 km) crust. The nature, extent and role of the Terror Rift in controlling the evolution of Ross Island volcanism and the on-going eruptive activity of Erebus volcano are unknown. In TE-2D, we deployed 21 seismic recorders (Ref Tek 130) with three-component 4.5 Hz geophones (Sercel L-28-3D) along a 90-km east-west line between Capes Royds and Crozier. These were supplemented by 79 similar instruments deployed for the high-resolution TE-3D experiment within a 3 x 3 km grid around the summit crater of Erebus, an array of 8 permanent short period and broadband sensors used to monitor the activity of Erebus and 23 three-component sensors (Guralp CMG-40T, 30s-100 Hz) positioned around the flanks and summit of Erebus. Fifteen chemical sources were loaded in holes drilled about 15 m deep in the snow and ice. The size of these shots ranged from 75 to 600 kg of ANFO with the largest shots at the ends of the profile. An additional shot was detonated in the sea (McMurdo Sound) using 200 kg of dynamite. Due to the rugged terrain, short field seasons and large area to be covered, the seismometer spacing along the TE-2D profile is quite large (~ 5 km spacing), resulting in poor near-surface data resolution. However, the data have a high signal to noise ratio with clear first arrivals and wide-angle reflections across the array. We will present a preliminary P-wave velocity model of the TE-2D data to constrain the middle to lower crust and upper mantle beneath Ross Island.

  3. A new SO2 emissions budget for Anatahan volcano (Mariana Islands) based on ten years of satellite observations

    NASA Astrophysics Data System (ADS)

    McCormick, Brendan; Popp, Christoph; Andrews, Benjamin; Cottrell, Elizabeth

    2015-04-01

    Satellite remote sensing offers great potential for the study of sulphur dioxide (SO2) gas emissions from volcanoes worldwide. Anatahan is a remote volcano in the Mariana Islands, SW Pacific. Existing SO2 emissions data from Anatahan, from ground-based UV spectrometer measurements, place the volcano among the largest natural SO2 sources worldwide. However, these measurements are limited in number and only available from intervals of eruptive activity. Activity varies widely at Anatahan: over the past decade, records held in the Smithsonian Institution Global Volcanism Program Volcanoes of the World database describe the alternation of intense eruptions with long intervals of quiescence, where much lower intensity activity took place. We present ten years of satellite-based measurements of SO2 in the atmosphere over Anatahan, using data from the UV spectrometers OMI, GOME-2, and SCIAMACHY, and the IR spectrometer AIRS. We find Anatahan's emissions to be highly variable both within and between intervals of eruption and quiescence. We demonstrate a close agreement between trends in SO2 emission evident from our remote sensing data and records of activity compiled from a range of other sources and instruments, across daily to annual temporal scales. Mean eruptive SO2 emissions at Anatahan are ~6400 t/d, and range from <1000 to >18000 t/d. Quiescent emissions are below our instrument detection limits and are therefore unlikely to exceed 150-300 t/d. Overall, accounting for both eruptive and quiescent emissions, we calculate a revised decadal mean SO2 emission rate of 1060-1200 t/d. We further calculate a total decadal SO2 yield from Anatahan of 4-5 Mt, significantly lower than the 17-34 Mt calculated if ground-based campaign data are used in isolation. The use of isolated measurements to extrapolate longer term emissions budgets is subject to clear uncertainty, and we argue that our satellite observations, covering a longer interval of Anatahan's history, are better suited to such calculations, and do not require widespread extrapolation. We propose that the use of multi-year satellite datasets, ideally in conjunction with key ground-based data and longterm records of activity, can make major improvements to existing emissions budgets at Anatahan and other volcanoes worldwide.

  4. Unravelling the Geometry of Unstable Flanks of Submarine Volcanoes by Magnetic Investigation: the Case of the "sciara del Fuoco" Scar (stromboli Volcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Muccini, F.; Cocchi, L.; Carmisciano, C.; Speranza, F.; Marziani, F.

    2012-12-01

    Stromboli is the easternmost island of the Aeolian Archipelago (Tyrrhenian Sea) and one of the most active Mediterranean volcanoes. The volcanic edifice rises over 3000 m above the surrounding seafloor, from a depth of about 2000 m b.s.l. to 924 m a.s.l. The north-western flank of volcano is deeply scarred by a destructive collapse event occurred ca. 5000 years ago, and forming a big horseshoe-shaped depression, known as "Sciara del Fuoco" (SdF). This depression, 3 Km long and 2 Km wide, is supposed to extend into the sea down to 700 m b.s.l., while further basinward it turns into a fan-shaped mounted deposit down to about 2600 m b.s.l., where it merges the so-called "Stromboli Canyon". Since its formation, emerged and submerged portions of the SdF have been progressively filled by the volcanic products of the persistent activity of the Stromboli Volcano. In the last 10 years, two paroxysmal eruptions occurred in the Stromboli Volcano, during 2002-2003 and February-April 2007. During both events, the SdF has been partially covered by lava flows and affected by slope failures, also causing (for the 2002-2003 event) a local tsunami. Since the 1990's, and especially after the last two paroxysms, the submerged extension of the SdF has been intensively investigated by using swath bathymetry data. We focused principally on the magnetic anomaly pattern of the submerged SdF since the chaotic depositional system virtually cancels magnetic remanence (which at Stromboli can reach 5-10 A/m values), thus lowering magnetic residual intensity. On July 2012 we acquired new detailed sea-surface magnetic data of the SdF from the shoreline to about 7 km offshore, where the depth is more than 1800 m b.s.l. We collected data thanks to the Italian Navy ship "Nave Aretusa" and by using the Marine Magnetics SeaSPY magnetometer. At the same time, new bathymetric data were acquired in the same area by using a Kongsberg Marine multibeam systems. Although the morphologic features of the submarine prosecution of the SdF system were already studied and unveiled, the complete description of the in-depth extension of the system and the overall volume estimation is still poorly known. This has important implications for the hazard assessment of the landslide structure and most generally of the entire volcanic edifice. The application of a classical geomagnetic prospection to describe a landslide feature is an uncommon procedure yet it can be considered as innovative approach, having the advantages of effectiveness, low cost and expedition typical of the geomagnetic survey. Here we present the interpretation of the newly acquired high-resolution magnetic dataset, thanks to susceptibility and magnetic remanence values gathered from on-land rock samples at Stromboli. A 3D inverse model is here proposed, allowing a full definition of the submerged SdF structure geometry.

  5. INVASION NOTE Range expansion of nonindigenous caribou in the Aleutian

    E-print Network

    Aspbury, Andrea S. - Department of Biology, Texas State University

    ) 2012 Abstract Caribou (Rangifer tarandus) are nonin- digenous to all but the eastern-most island are devoid of indigenous land mammals. However, introductions of caribou (Rangifer taran- dusINVASION NOTE Range expansion of nonindigenous caribou in the Aleutian archipelago of Alaska Mark A

  6. Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogos volcano

    NASA Astrophysics Data System (ADS)

    Paris, Raphaël; Giachetti, Thomas; Chevalier, Joël; Guillou, Hervé; Frank, Norbert

    2011-08-01

    Massive flank failures of volcanic edifices generate tsunami waves. These low-frequency but high magnitude hazards remain poorly documented because of the scarcity of observations. Offshore deposits are studied only by geophysical surveys and the failure rheologies are poorly constrained. Marine conglomerates found at unusually high elevations in Hawaii and in the Canary Islands were previously interpreted as being the result of giant tsunami waves generated by massive flank failures. This study focuses on the search for, and interpretation of, sedimentary evidence of a tsunami around the coastline of Santiago Island, which is located 55 km east of the active Fogo volcano. The Bordeira caldera in Fogo Island, which opens to the east, was formed by the Monte Amarelo flank collapse, and the active edifice is now nested in the failure's scar. The only evidence of a tsunami was found north of Tarrafal Bay. The deposits display many similarities with the tsunami conglomerate described in Hawaii and the Canary Islands: erosive contact with the substratum; rip-up clasts of paleo-soil; marine bioclasts never found in growth or live position; internal organisation into different facies with distinct characteristics of clast-size (up to boulders), sorting (from moderately to very poorly sorted) and clast-fabrics (landward or seaward orientations). This organisation suggests that the tsunami consisted of two main waves. The absence of tsunami deposits elsewhere on Santiago Island, coupled with the relatively low elevation of the conglomerate in Tarrafal (< 15 m), indicate retrogressive failures, rather than a single massive failure. The marine fauna in the tsunami conglomerate is not typical of warm fauna such as the Senegalese fauna (interglacial stages). The age of the tsunami is bracketed by the ages of a coral branch in the conglomerate (123.6 ± 3.9 ka U-Th age) and a post-collapse lava along the Bordeira caldera in Fogo (86 ± 3 ka K-Ar age).

  7. Variations in Seismic Anisotropy with time on Volcanoes in Kyushu Island, Southern Japan

    Microsoft Academic Search

    M. K. Savage; T. Ohkura; K. Umakoshi; H. Shimizu; Y. Kohno; M. Iguchi; A. Wessel; J. Mori

    2008-01-01

    Using a newly developed automatic processing technique, we have calculated shear wave splitting on and near three active volcanoes in Kyushu, southern Japan (Aso, Unzen and Sakurajima). Shear wave splitting is considered to be caused by aligned cracks and microcracks. The polarisation of the first arriving phase, phi, gives a measure of the crack orientation, which is expected to align

  8. ACTIVE VOLCANOES OF THE KURILE ISLANDS --A Quick Reference Stratovolcano with summit crater

    E-print Network

    the early 20 century, it is likely thatmanyeruptionswentundocumented. The Sakhalin Volcanic Eruption provided by colleagues at the Sakhalin Department of the Geophysical Surveyofthe Sakhalin Is. Km ak achta KEY Number on map - VOLCANO (1 - 6 ­ monitored by KVERT, 7 - 36 ­ monitored

  9. Lead isotopes behavior in the fumarolic environment of the Piton de la Fournaise volcano (Reunion Island)

    E-print Network

    rest not only on instrumental performance but also on high-yield chemistry, as Pb isotopes drasticallyLead isotopes behavior in the fumarolic environment of the Piton de la Fournaise volcano (Re the issue of Pb isotope behav- ior in volcanic fumaroles, as the composition of the degassing source

  10. Imaging rapidly deforming ocean island volcanoes in the western Galápagos archipelago, Ecuador

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Ruiz, Mario; Belachew, Manahloh

    2014-01-01

    Using local body wave arrival-time tomography methods to determine 3-D seismic velocity structure, we imaged the plumbing system of Sierra Negra Volcano, Galápagos. This hot spot volcanic chain includes some of the fastest deforming volcanoes in the world, making this an ideal location to study shield volcano plumbing systems. We inverted P and S wave arrivals recorded on a 15-station temporary array between July 2009 and June 2011 using an a priori 1-D velocity model constrained by offshore refraction studies. With local seismicity from nearby volcanoes as well as the ring fault system, the model resolution is good between depths of 3 and 15.5 km. The propagation of S waves throughout this volume argues against any large high-melt accumulations, although a shallow melt sill may exist above 5 km. We image a broad low-velocity region (>25 km laterally) below Sierra Negra at depths ~8-15 km. No large, regional velocity increase is found within the limits of good resolution, suggesting that crust is thicker than 15 km beneath the western Galápagos archipelago. Our results are consistent with crustal accretion of mafic cumulates from a large-volume magma chamber that may span the boundary between preplume and accreted crust. The similarity between our results and those of Hawaii leave open the possibility that the crust has also been thickened by under-plating.

  11. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Landès, Matthieu; Shapiro, Nikolaï M.

    2015-01-01

    We cross correlate 4 years of seismic noise from the seismic network of Piton de la Fournaise Volcano (La Réunion Island) to measure the group velocity dispersion curves of Rayleigh and Love waves. We average measurements from vertical and radial components to obtain 577 Rayleigh wave dispersion curves. The transverse components provided 395 Love wave dispersion curves. We regionalize the group velocities measurements into 2-D velocity maps between 0.4 and 8 s. Finally, we locally inverted these maps for a pseudo 3-D anisotropic shear-velocity model down to 3 km below the sea level using a Neighborhood Algorithm. The 3-D isotropic shear-wave model shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The anomaly located below the present "Plaine des Sables" could be related to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body located below the summit of the volcano likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly located below the "Grandes Pentes" and the "Grand Brûlé" areas and is an imprint of the solidified magma chamber of the dismantled "Les Alizés" Volcano. Radial anisotropy shows two main anomalies: positive anisotropy above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of horizontal lava flows and the second one below the sea level with a negative anisotropy corresponding to the ancient edifice of Piton de la Fournaise dominated by intrusions of vertical dykes.

  12. Role of the structural inheritance of the oceanic lithosphere in the magmato-tectonic evolution of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Saint-Ange, Francky; Bachelery, Patrick; Villeneuve, Nicolas; Staudacher, Thomas

    2007-04-01

    La Réunion Island is located east of Madagascar, on the eastern rim of the tectonically inactive Mascarene Basin. This island is composed of three shield volcanoes of which only Piton de la Fournaise is currently active. Although the magmatic activity is restricted to Piton de la Fournaise, a scattered seismicity occurs on the whole 200 km wide volcanic edifice and in the underlying oceanic crust. We carried out a multiscale analysis to understand (1) the origin of the seismicity in the geodynamic context and (2) the role of the oceanic lithosphere in the deformation of Piton de la Fournaise and La Réunion Island. Analysis of the magmatic system suggests that the magma ascent is controlled by large N25-30 and N125-130 fracture zones located below the Enclos depression. We also show that the orientation difference between the eruptive fissures and the related dykes result from a rotation of the main principal stress ?1 from vertical to downslope through the surface. Combining a Digital Elevation Model (DEM) analysis, field observations and the geophysical data reveals that the volcano is affected by large fault zones. The fault distribution indicates the predominance of a main N70-80 trend. Magnetic data show the same N80 orientation characterizing the remnant part of the Alizés volcano. Such parallel alignment suggests a control exerted by the underlying Alizés volcano on Piton de la Fournaise. Furthermore, the alignment between the crustal orientations and the structures determined on the island suggests a control of the crustal structures in La Réunion's volcano-tectonic activity. Contrary to several volcanic islands such as Hawaii and Tenerife, La Réunion volcanoes lie on an upbending crust. Then, we interpret the reactivation of the crustal faults as resulting from a crustal uplift related to the thermal erosion of the base of the lithosphere and/or to strong underplating. The upward deformation may prevent the spreading of the volcanoes, as no evidence of such a mechanism is observed in the bathymetry and the seismic data around the island.

  13. Shallow Seismic Attenuation and Shear Waves Splitting In The Short Period Range of Deception Island Volcano (antarctica)

    NASA Astrophysics Data System (ADS)

    Martínez-Arévalo, C.; Bianco, F.; Ibáñez, J. M.; del Pezzo, E.

    The occurrence of a seismic series in Deception Island volcano (Antarctica), com- posed by hundreds of local volcano-tectonic earthquakes, has permitted us to study the seismic attenuation of such a volcanic environment in the short-distance and high- frequency range. This study has been performed using P, S and coda waves and ap- plying different, frequency dependent and independent, techniques. The methods used for this analysis have been: Spectral and Broadening of the Pulse, for direct P and S waves, Coda Normalization for S-waves and Single Back-Scattering model for coda waves. The results show that, in general, Q values are significantly smaller, for all the frequency range used (6-30 Hz), than those found in other volcanic and tectonic areas. The attenuation for P-waves is greater than for S-waves in the frequency in- dependent methods, with a Qb/QP ratio that ranges between 1.9 and 3.2. Comparing the Q factor obtained for S-waves we have observed clear differences as a function of the method used; the Coda Normalization Method has supplied significantly higher Q values (Qd) than the other two methods (Qb). These Qd values are similar to the Q factor for coda waves (Qc). We have interpreted this discrepancy as an effect of the methods: Coda Normalization and Single Back-Scattering methods eliminate the con- tribution of the near surface attenuation in their Q values. Comparing both Qb and Qd we have estimated the near surface attenuation under the recording site, named Qk. On the other hand, we have observed that Qd has an anomalous frequency dependence, with a minimum value at 21 Hz. This pattern is interpreted as an effect of strong scat- tering of the seismic waves in the source area of the earthquakes. Qc values depend clearly with frequency and lapse time, and the lapse time dependence is interpreted as a depth dependence of the seismic attenuation in Deception Island volcano. The de- rived Q values have allowed us to separate the contribution of intrinsic and scattering attenuation, deriving that the scattering attenuation is predominant over the intrinsic effects. Finally, in order to investigate how the heterogeneous medium of the volcanic island could produce other effects, we have measured the splitting of the shear waves of the same data set. The observations reveal that the arrival delay of the shear waves horizontal components varies between 0.02 and 0.14 seconds, a big amount if we take into account the short hypocentral distances (less than 5 km). The study of the polar- 1 ization direction indicates a main E-W direction. All these evidences reveal the strong heterogeneous structure of Deception Island volcano. 2

  14. 77 FR 39441 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian district (CAI...total allowable catch (TAC) of Atka mackerel in this area allocated to vessels...

  15. 78 FR 35771 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian district (CAI...total allowable catch (TAC) of Atka mackerel in this area allocated to vessels...

  16. 75 FR 6129 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Eastern Aleutian District and...the 2010 A season allocation of Atka mackerel in these areas allocated to vessels...

  17. 78 FR 64891 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian district (CAI...total allowable catch (TAC) of Atka mackerel in this area allocated to vessels...

  18. 77 FR 26212 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian district (CAI...the A season allowance of the 2012 Atka mackerel total allowable catch (TAC) in...

  19. 75 FR 4491 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...is opening directed fishing for Atka mackerel in the Eastern Aleutian District and...total allowable catch (TAC) of Atka mackerel in these areas specified for...

  20. 78 FR 25878 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian district (CAI...the A season allowance of the 2013 Atka mackerel total allowable catch (TAC) in...

  1. 75 FR 64957 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...is opening directed fishing for Atka mackerel in the Eastern Aleutian District and...total allowable catch (TAC) of Atka mackerel in these areas specified for...

  2. 75 FR 14498 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Central Aleutian District of the...the 2010 A season allocation of Atka mackerel in this area allocated to vessels...

  3. Movement of shallow magmatic sources inferred from volcano-tectonic faults: An example from Shinjima Island nearby Sakurajima volcano, Kyushu, Japan

    Microsoft Academic Search

    Y. Yoshinaga; T. Haraguchi; S. Toda; D. Miki; R. Imura

    2006-01-01

    Uplift and subsidence due to magma movement involve complex fault system at the surface of a volcano. Conversely, mapping volcano-tectonic faults and surface deformation allows us to infer the feeding system of magma and eruption process in the past. Here we represent a case study of such deformation and a complex fault system associated with prehistoric and historic volcanic uplifts

  4. Enhancement of sub-daily positioning solutions for surface deformation surveillance at El Hierro volcano (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Prates, G.; García, A.; Fernández-Ros, A.; Marrero, J. M.; Ortiz, R.; Berrocoso, M.

    2013-06-01

    El Hierro Island in the Canary Archipelago recently experienced a submerged eruption a few kilometers off its southern shore, detected 2011 October 10 on the island's south-rift alignment. The seismic activity suddenly increased around mid 2011 July, and ground deformation was then detected on the only geodetic benchmark that is continuously observed by global navigation satellite systems techniques and provides public data access. Based on that information, several other global navigation satellite system signal receivers were deployed on the island to provide continuous observation. For data collected by these receivers, a processing strategy was applied to achieve millimeter-level half-hourly positioning solutions. Position updates every 24 h are satisfactory to determine tectonic-plates' velocities. Updates near 1 s or less are required to characterize seismic waves. In between, minute-level updates are well suited for monitoring active volcano's inflation or deflation, providing an optimal time resolution of the local ground deformation. In half-hourly positioning solutions, the heterogeneous satellites' distribution in their orbital planes gives different constraints during satellite-constellation revolution, which can bias the solutions. Also, several geophysical influences can bias the solutions, including those related to gravitational movements. These influences have mostly semi-diurnal periodicities and may be considered Gaussian colored noise on the position's time series. Daily solutions that average out these influences can be applied in active volcanoes, but they can impose some limitations because they average the daily deformation, and the update waiting time is not suitable when near real-time surveillance is mandatory. These semi-diurnal biases do need to be removed or minimized to achieve millimeter-level sub-daily positioning solutions, however, and to do so, a discrete Kalman filter was applied to enhance the half-hourly positioning solutions required during El Hierro's 2011-2012 unrest and eruption. Throughout El Hierro's volcanic activity, there were correlations between ground deformation and seismic activity. Many times the deformation preceded the earthquakes, though at other times the seismic activity was followed by the ground deformation response. This correlation is the outcome of ground deformation taking place as the result of energy accommodation, whereas seismic events correspond to energy release. Hence, those observed correlations indicate that the Kalman filter-enhanced half-hourly positioning solutions measured local ground deformation accurately; they were not a mathematical "trick" producing a spurious precision.

  5. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin, Ricca, Mark A.

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  6. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater foundering. Interestingly, this final stage compares well with the formation of pit craters on Kilauea volcano, Hawaii. Reoccurring of similar activity on the NW rift represents a major source of risk, for this now densely populated region (more than 150,000 people living in the affected area).

  7. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002–2006

    Microsoft Academic Search

    C. Werner; T. Hurst; B. Scott; S. Sherburn; B. W. Christenson; K. Britten; J. Cole-Baker; B. Mullan

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbing processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d?1 and demonstrated clear annual cycling that

  8. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy)

    Microsoft Academic Search

    Marta Della Seta; Enrica Marotta; Giovanni Orsi; Sandro de Vita; Fabio Sansivero; Paola Fredi

    2011-01-01

    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca.\\u000a 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka.\\u000a The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements\\u000a triggered by volcano-tectonic events

  9. Towards a Proactive Risk Mitigation Strategy at La Fossa Volcano, Vulcano Island

    NASA Astrophysics Data System (ADS)

    Biass, S.; Gregg, C. E.; Frischknecht, C.; Falcone, J. L.; Lestuzzi, P.; di Traglia, F.; Rosi, M.; Bonadonna, C.

    2014-12-01

    A comprehensive risk assessment framework was built to develop proactive risk reduction measures for Vulcano Island, Italy. This framework includes identification of eruption scenarios; probabilistic hazard assessment, quantification of hazard impacts on the built environment, accessibility assessment on the island and risk perception study. Vulcano, a 21 km2 island with two primary communities host to 900 permanent residents and up to 10,000 visitors during summer, shows a strong dependency on the mainland for basic needs (water, energy) and relies on a ~2 month tourism season for its economy. The recent stratigraphy reveals a dominance of vulcanian and subplinian eruptions, producing a range of hazards acting at different time scales. We developed new methods to probabilistically quantify the hazard related to ballistics, lahars and tephra for all eruption styles. We also elaborated field- and GIS- based methods to assess the physical vulnerability of the built environment and created dynamic models of accessibility. Results outline the difference of hazard between short and long-lasting eruptions. A subplinian eruption has a 50% probability of impacting ~30% of the buildings within days after the eruption, but the year-long damage resulting from a long-lasting vulcanian eruption is similar if tephra is not removed from rooftops. Similarly, a subplinian eruption results in a volume of 7x105 m3 of material potentially remobilized into lahars soon after the eruption. Similar volumes are expected for a vulcanian activity over years, increasing the hazard of small lahars. Preferential lahar paths affect critical infrastructures lacking redundancy, such as the road network, communications systems, the island's only gas station, and access to the island's two evacuation ports. Such results from hazard, physical and systemic vulnerability help establish proactive volcanic risk mitigation strategies and may be applicable in other island settings.

  10. Long- and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Padilla, G.; Calvo, D.; Padrón, E.; Melian, G.; Dionis, S.; Nolasco, D.; Barrancos, J.; Rodríguez, F.; Pérez, N.

    2012-04-01

    Lanzarote Island is an emergent part of the East Canary Ridge and it is situated approximately 100 km from the NW coast of Morocco, covering an area of about 795km2. The largest historical eruption of the Canary Islands, Timanfaya, took place during 1730-36 in this island when long-term eruptions from a NE-SW-trending fissure formed the Montañas del Fuego. The last eruption at Lanzarote Island occurred during 1824, Tinguaton volcano, and produced a much smaller lava flow that reached the SW coast. At present, one of the most prominent phenomena at Timanfaya volcanic field is the high maintained superficial temperatures occurring in the area since the 1730 volcanic eruption. The maximum temperatures recorded in this zone are 605°C, taken in a slightly inclined well 13 m deep. Since fumarolic activity is absent at the surface environment of Lanzarote, to study the diffuse CO2 emission becomes an ideal geochemical tool for monitoring its volcanic activity. Soil CO2 efflux surveys were conducted throughout Timanfaya volcanic field and surrounding areas during the summer periods of 2006, 2007, 2008, 2009, fall period of 2010 and winter, spring and summer periods of 2011 to investigate long and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano. Soil CO2 efflux surveys were undertaken at Timanfaya volcanic field always under stable weather conditions to minimize effects of meteorological conditions on the CO2 at the soil atmosphere. Approximately 370-430 sampling sites were selected at the surface environment of Timanfaya to obtain an even distribution of the sampling points over the study area. The accumulation chamber method (Parkinson et al., 1981) was used to perform soil CO2 efflux measurements in-situ by means of a portable non dispersive infrared (NDIR) CO2 analyzer, which was interfaced to a hand size computer that runs data acquisition software. At each sampling site, soil temperature at 15 and 40cm depth was also measured by means of a thermocouple together with soil gas samples collected during the campaign of 2010 to evaluate the chemical and isotopic composition of soil gases. Diffuse CO2 emission values have ranged between non detectable values to 34 g m-2 d-1, and most of the study area have shown relatively low values, around the detection limit of the instrument (~0,5 g m-2 d-1). Higher soil CO2 diffuse emission values were observed where thermal anomalies occur, indicating a convective mechanism transport of gas from depth at these areas. Total CO2 outputs of the study area have been estimated in the range 41-518 t d-1 during the study period. Long-term temporal variation on total CO2 diffuse emission shows a peak recorded on winter 2011, suggesting a seasonal control on the CO2 emission. As part of the volcanic surveillance program and to understand the dynamics of CO2 diffuse emission at Timanfaya volcanic zone, an automatic geochemical station was installed in July 2010 to monitor the CO2 emission and investigate the short-term temporal variation. Time series of soil CO2 efflux shows also a close relationship with seasonal changes mainly due to rainfall.

  11. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  12. BALD EAGLES AND SEA OTTERS IN THE ALEUTIAN ARCHIPELAGO: INDIRECT EFFECTS OF TROPHIC CASCADES

    Microsoft Academic Search

    Robert G. Anthony; James A. Estes; Mark A. Ricca; A. Keith Miles; Eric D. Forsman

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994

  13. PRODUCTIVITY, DIETS, AND ENVIRONMENTAL CONTAMINANTS IN NESTING BALD EAGLES FROM THE ALEUTIAN ARCHIPELAGO

    Microsoft Academic Search

    Robert G. Anthony; A. Keith Miles; James A. Estes; Frank B. Isaacs

    1999-01-01

    We studied productivity, diets, and environmental contaminants in nesting bald eagles from the western Aleutian Islands, Alaska, USA, during the summers of 1993 and 1994. Productivity on Adak, Tanaga, and Amchitka Islands ranged from 0.88 to 1.24 young produced per occupied site and was comparable to that of healthy populations in the lower 48 United States. However, productivity on Kiska

  14. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i

    USGS Publications Warehouse

    Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.

    1998-01-01

    From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.

  15. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  16. Chronic exposure to volcanic air pollution and DNA damage in Furnas Volcano (São Miguel Island, Azores, Portugal) inhabitants

    NASA Astrophysics Data System (ADS)

    Linhares, Diana; Garcia, Patricia; Silva, Catarina; Ferreira, Teresa; Barroso, Joana; Camarinho, Ricardo; Rodrigues, Armindo

    2015-04-01

    Many studies in volcanic air pollution only have in consideration the acute toxic effects of gas or ash releases however the impact of chronic exposure to ground gas emissions in human health is yet poorly known. In the Azores archipelago (Portugal), São Miguel island has one of the most active and dangerous volcanoes: Furnas Volcano. Highly active fumarolic fields, hot springs and soil diffuse degassing phenomena are the main secondary volcanic phenomena that can be seen at the volcano surroundings. One of the main gases released in these diffuse degassing areas is radon (222Rn), which decay results in solid particles that readily settle within the airways. These decay particles emit alpha radiation that is capable of causing severe DNA damage that cumulatively can eventually cause cancer. Previous studies have established that chronic exposure to chromosome-damaging agents can lead to the formation of nuclear anomalies, such as micronuclei that is used for monitoring DNA damage in human populations. The present study was designed to evaluate whether chronic exposure to volcanic air pollution, associated to 222Rn, might result in DNA damage in human oral epithelial cells. A cross sectional study was performed in a study group of 142 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area), and a reference group of 368 individuals inhabiting an area without these secondary manifestations of volcanism (non-hydrothermal area). For each individual, 1000 buccal epithelial cells were analyzed for the frequency of micronucleated cells (MNc) and the frequency of cells with other nuclear anomalies (ONA: pyknosis, karyolysis and karyorrhexis), by using the micronucleus assay. Information on lifestyle factors and an informed consent were obtained from each participant. Assessment of indoor radon was performed with the use of radon detectors. Data were analyzed with logistic regression models, adjusted for confounding factors (age, gender, smoking and drinking status, and number of cigarettes smoked per day). Results demonstrated that levels of radon in the environment were significantly different in study and reference groups (115 Bq/m3 vs. 47 Bq/m3, respectively; p<0.001); in winter, radon measurements reached the highest values both in the study and the reference groups (809 Bq/m3 vs. 56 Bq/m3, respectively). The frequency of MNc in the study group was significantly higher than in the reference group (2.93‰ vs. 2.58‰, respectively; p=0.002). The OR for formation of MNc in the hydrothermal area was 1.5 (95% CI 1.07-2.02). A moderate and positive correlation was found between the frequency of MNc and 222Rn (rs = 0.459, p<0.001). To our knowledge this is the first study that clearly associates the exposure of volcanogenic indoor radon in inhabitants of hydrothermal areas and the DNA damage in human oral epithelial cells, evidencing that volcanic air pollution is a risk factor of carcinogenesis. Although the present findings require confirmation in larger studies, bio-monitoring for DNA damage is recommended for inhabitants of localities with active volcanism and mitigation measures such as restriction of building in certain areas should be taken into consideration in these volcanically active areas.

  17. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  18. Polycyclic aromatic hydrocarbon exposure in Steller's eiders (Polysticta stelleri) and harlequin ducks (Histronicus histronicus) in the Eastern Aleutian Islands, Alaska, USA

    USGS Publications Warehouse

    Miles, A.K.; Flint, P.L.; Trust, K.A.; Ricca, M.A.; Spring, S.E.; Arrieta, D.E.; Hollmen, T.; Wilson, B.W.

    2007-01-01

    Seaducks may be affected by harmful levels of polycyclic aromatic hydrocarbons (PAHs) at seaports near the Arctic. As an indicator of exposure to PAHs, we measured hepatic enzyme 7-ethoxyresorufin-O-deethylase activity (EROD) to determine cytochrome P4501A induction in Steller's eiders (Polysticta stelleri) and Harlequin ducks (Histronicus histronicus) from Unalaska, Popof, and Unga Islands (AK, USA) in 2002 and 2003. We measured PAHs and organic contaminants in seaduck prey samples and polychlorinated biphenyl congeners in seaduck blood plasma to determine any relationship to EROD. Using Akaike's information criterion, species and site differences best explained EROD patterns: Activity was higher in Harlequin ducks than in Steller's eiders and higher at industrial than at nonindustrial sites. Site-specific concentrations of PAHs in blue mussels ([Mytilus trossilus] seaduck prey; PAH concentrations higher at Dutch Harbor, Unalaska, than at other sites) also was important in defining EROD patterns. Organochlorine compounds rarely were detected in prey samples. No relationship was found between polychlorinated biphenyl congeners in avian blood and EROD, which further supported inferences derived from Akaike's information criterion. Congeners were highest in seaducks from a nonindustrial or reference site, contrary to PAH patterns. To assist in interpreting the field study, 15 captive Steller's eiders were dosed with a PAH known to induce cytochrome P4501A. Dosed, captive Steller's eiders had definitive induction, but results indicated that wild Steller's eiders were exposed to PAHs or other inducing compounds at levels greater than those used in laboratory studies. Concentrations of PAHs in blue mussels at or near Dutch Harbor (???1,180-5,980 ng/g) approached those found at highly contaminated sites (???4,100-7,500 ng/g). ?? 2007 SETAC.

  19. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. Environmental contaminants in bald eagle eggs from the Aleutian archipelago.

    PubMed

    Anthony, Robert G; Miles, A Keith; Ricca, Mark A; Estes, James A

    2007-09-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (delta13C) and nitrogen (delta15N). Concentrations of polychlorinated biphenyls (SigmaPCBs), p,p'-dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of SigmaPCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (delta13C) or nitrogen (delta15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. PMID:17702538

  2. Compositions of melts coexisting with plagioclase, augite, and olivine,or low-calcium pyroxene, at anhydrous and hydrous conditions and pressures from 1 atm. to 8 kbar: application to the petrogenesis of Aleutian and Mariana Island arc rocks and Columbia River basalts

    SciTech Connect

    Baker, D.R.; Eggler, D.H.

    1985-01-01

    Anhydrous and hydrous, 2% water in the melt, experiments have been performed on a suite of high-alumina basalts and andesites from the Aleutian and Mariana island arcs. Compositions of experimentally produced melts coexisting with plagioclase (plag), augite (aug), and olivine (ol), or low-calcium pyroxene (lpx) have been used to construct liquid lines of multiple saturation (LLMS's) on pseudoternary diagrams. Anhydrous LLMS's at 1 atm. and 8 kbar and hydrous LLMS's at 2 and 5 kbar were determined. At 1 atm. and under hydrous conditions orthopyroxene (opx) is the stable lpx; at 8 kbar pigeonite (pig) is the stable lpx. Comparison of the plotted positions of the LLMS's and the compositions of rocks from the Aleutians suggest that basaltic andesites and andesites were produced by crystal fractionation of plag+aug+ol or plag+aug+opx from basaltic magmas with less than 2% water content at pressure between 2 and 5 kbar. Comparison of the LLMS's with the compositions of Columbia River Basalts indicates that crystal fractionation of plag+aug+ol (or lpx) in magma chambers at Moho depths cannot alone account for the observed compositional trend; instead the trend is probably due to some combination of polybaric fractionation, contamination, and possibly mixing of magmas between deep and shallow magma chambers.

  3. Lab7: Volcanoes I. --Their Geographic Distribution Introduction

    E-print Network

    Chen, Po

    . Pacuritin Volcano, Mexico Active Volcanoes of the World South Sandwich Islands. Also known as the Scotia arc islands stretching from Alaska to Russia. The chain contains 80 major volcanoes with numerous smaller ones in the arc. Iceland. Sits astride the Mid-Atlantic ridge. The island covers 50,000 km2 and is made almost

  4. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. Response of the shallow aquifer of the volcano-hydrothermal system during the recent crises at Vulcano Island (Aeolian Archipelago, Italy)

    NASA Astrophysics Data System (ADS)

    Capasso, Giorgio; Federico, Cinzia; Madonia, Paolo; Paonita, Antonio

    2014-03-01

    The shallow thermal aquifer at Vulcano Island is strongly affected by deep volcanic fluids. The most significant variations were observed during the 1989-1996 crisis due to a large input of steam and acidic gases from depth. Besides chemical variations related to the input of deep fluids, the record of the water-table elevation at monitored wells has provided remarkable insights into the pressure conditions of the volcano-hydrothermal system. After the pressure drop due to the extensive vaporization of the hydrothermal aquifer, occurred after 1993, the volcano-hydrothermal system has been re-pressurized since 2001, probably because of the contribution of volatiles from the hydrothermal-magmatic source. The increase in fluid pressure may have caused reopening of fractures (which had self-seated during the previous period of cooling) and the onset of a phase of higher vapor output in the fumarole field later in 2004. The fracture opening would have promoted further vapor separation from the deep fluid reservoir (hypothesized at 0.5-1.5 km depth) and finally the drainage of S-rich fluids into the shallow thermal aquifer (found out at few tens of meters of depth). The monitoring of both the water chemistry and the water-table elevation provides insights into the eventual pressurization of the volcano-hydrothermal system that precedes the fracture opening and the extensive drainage of deep fluids. The findings of this study could represent crucial information about the stability of the volcano edifice, and lead to reliable techniques for determining the risk of or even predicting phreatic explosions.

  6. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  7. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 2014-10-01 2014-10-01 false Hawaii-Aleutian zone. 71.12 Section 71...STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes...

  8. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 2011-10-01 2011-10-01 false Hawaii-Aleutian zone. 71.12 Section 71...STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes...

  9. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 2013-10-01 2013-10-01 false Hawaii-Aleutian zone. 71.12 Section 71...STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes...

  10. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 2012-10-01 2012-10-01 false Hawaii-Aleutian zone. 71.12 Section 71...STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes...

  11. 49 CFR 71.12 - Hawaii-Aleutian zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2010-10-01 2010-10-01 false Hawaii-Aleutian zone. 71.12 Section 71...STANDARD TIME ZONE BOUNDARIES § 71.12 Hawaii-Aleutian zone. The seventh zone, the Hawaii-Aleutian standard time zone, includes...

  12. Marine environment of the eastern and central Aleutian CAROL LADD,1

    E-print Network

    western stock of the Steller's sea lion (Eumetopias jub- atus), two interdisciplinary research cruises The Aleutian Islands and their nearby waters are home to important and varied fish stocks as well as to vast are Steller's sea lions (Eumetopias jubatus), the western stock of which has declined severely in recent

  13. Aleutian Ancorinidae (Porifera, Astrophorida): Description of three new species from the genera Stelletta and Ancorina.

    PubMed

    Lehnert, Helmut; Stone, Robert P

    2014-01-01

    Two new species of the genus Stelletta and one new species of Ancorina are described from the Aleutian Islands of Alaska and compared to congeners of the region. This is the first record of the genus Ancorina in the North Pacific Ocean. Stelletta ovalae Tanita 1965 is also reported for the first time from the Bering Sea and Alaska.  PMID:24990051

  14. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects

    NASA Astrophysics Data System (ADS)

    Abadie, S. M.; Harris, J. C.; Grilli, S. T.; Fabre, R.

    2012-05-01

    In this work, we study waves generated by the potential collapse of the west flank of the Cumbre Vieja Volcano (CVV; La Palma, Canary Island, Spain) through numerical simulations performed in two stages: (i) the initial slide motion and resulting free surface elevation are first calculated using a 3D Navier-Stokes model; (ii) generated waves are then input into a 2D (horizontal) Boussinesq model to further simulate propagation to the nearby islands. Unlike in earlier work on CVV, besides a similar extreme slide volume scenario of 450 km3, in our simulations: (i) we consider several slide scenarios featuring different volumes (i.e., 20, 40, 80 km3), which partly result from a geotechnical slope stability analysis; (ii) we use a more accurate bathymetry; and (iii) an incompressible version of a multiple-fluid/material Navier-Stokes model. We find wave trains for each scenario share common features in terms of wave directivity, frequency, and time evolution, but maximum elevations near CVV significantly differ, ranging from 600 to 1200 m (for increasing slide volume). Additionally, our computations show that significant energy transfer from slide to waves only lasts for a short duration (order 200 s), which justifies concentrating our best modeling efforts on the early slide motion phase. The anticipated consequences of such wave trains on La Palma and other Canary Islands are assessed in detail in the paper.

  15. Deformation and gravity changes at Izu islands, Japan, prior to, during, and after the 2000 caldera collapse at Miyake-jima volcano

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Okubo, S.; Kimata, F.

    2006-12-01

    Eruptive and caldera-forming activity at Miyakejima volcano, Japan, was accompanied by more than 40 days of seismic swarms, including more than five M6 (or greater) earthquakes, and significant crustal deformation in nearby islands. Here we review ground deformation and gravity changes at Miyakejima and other nearby islands prior to, during, and after the 2000 caldera collapse episode at Miyakejima. While ground displacements observed at Izu-islands can be basically predicted from the Philippine Sea Plate motion in a global perspective, Miyakejima was undergoing inflation if examined locally within the island before the 2000 unrest. It is also known that a couple of leveling benchmarks inside the previous caldera were secularly subsiding [Miyazaki, 1990]. Using JERS1's InSAR data, Furuya~[2004] also confirmed this. Was the localized subsidence before 2000 a precursor for the caldera collapse? We will argue that this is probably not the case. After the beginning of the earthquake swarm on 26 June 2000, significant ground displacements were recorded at Miyakejima both in the permanent GPS stations [e.g., Nishimura et al. 2001] and tiltmeters by the NIED [Ukawa et al. 2001]. Using both FG5 absolute gravimeter and LaCoste-Romberg G-type gravimeters, high precision gravity survey has been repeatedly carried out by ERI, University of Tokyo. Furuya et al~[2003a] showed spatial-temporal gravity changes from the beginning stage to early 2001. Notably, they detected a gravity decrease of as much as 145 ?gals (1 ?gal=10^{-8} m/s2) at the summit area 2 days prior to the collapse, and interpreted as reflecting the formation of a large void beneath the volcano. Correcting for the effect of topography change due to the collapse, subsequent gravity change data suggested an effective density decrease until the middle August 2000, followed by a significant density increase toward at least November 2000. Those spatial and temporal gravity changes were associated with the explosive eruptions, refilling of magma chamber, and the unprecedented amount of volcanic gas discharge. Kozushima is another volcano island located ~40 km NW to Miyakejima. Although it has been dormant for ~1200 years, it was revealing unexpected displacements that were inconsistent with the PHS motion before 2000 [Kimata et al 1994].Although it is certain that a large volume of dike laterally intruded from Miyakejima toward Kozushima in view of the hypocenter migration, it remained uncertain if the long-lasting earthquake swarm was completely maintained by magma from Miyakejima or if another magma source nearby Kozushima was involved. Using GPS and gravity change data, Furuya et al~[2003b] speculates that the latter hypothesis is more likely. As of September 2006, ground movements of all the GPS sites have significantly slowed down in comparison to those observed during 2000-2001.One notable deformation is the baseline length change between Kozushima and Niijima observed by GEONET, which still significantly exhibits entension at a rate of ~2cm/year; no other significant changes are observed among other islands. Since we did not observe such extension before 2000, we may hypothesize that some magma and/or fault system was activated, triggered by the 2000 dike intrusion episode. We will need clarify what sources are actually generating such a long-lasting anomalous displacement.

  16. The November 2002 eruption at Piton de la Fournaise volcano, La Réunion Island: ground deformation, seismicity, and pit crater collapse

    Microsoft Academic Search

    Marc-Antoine Longpré; Thomas Staudacher; John Stix

    2007-01-01

    An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence.\\u000a After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and\\u000a seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes\\u000a beneath the

  17. New K-Ar ages for calculating end-of-shield extrusion rates at West Maui volcano, Hawaiian island chain

    USGS Publications Warehouse

    Sherrod, D.R.; Murai, T.; Tagami, Takahiro

    2007-01-01

    Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.

  18. Tremor and plate coupling in the eastern Aleutians

    NASA Astrophysics Data System (ADS)

    Wech, A.; Freymueller, J. T.

    2013-12-01

    Tectonic tremor has been observed in numerous places along the 2500 km of the Alaska subduction zone. Though not as evidently ubiquitous as in other subduction zones, some tremor activity coincided with a large slow slip event on the mainland that occurred between 1998 and 2001 [Peterson and Christensen, 2009], and there are reports of several instances of tremor along the Aleutian arc [Peterson et al., 2011; Brown et al., 2013]. However, because these studies have focused on the characterization of manually detected tremors, the full extent of where, when and how much tremor activity occurs along the margin remains unknown, along with its role in subduction. Here we perform a systematic search for tectonic tremor activity along the margin. Starting in the eastern Aleutian Islands, a 'sweet spot' known for persistent tectonic tremor (ambient and triggered), we apply an automated method to detect and locate tremor and find a nearly daily occurrence of short-duration (<20 min) ambient tremor. In 18 months of data, we find the tremor to concentrate in 3 distinct zones of activity, occurring where the plate is 50-70 km deep. Constraints on tremor depths and along-dip locations are inhibited by the linear Aleutian station geometry, but epicenters lie trenchward of the islands and are resolved well enough to be distinguished from volcanic activity. We compare these results with geodetic observations. Time histories of each of the tremor patches show nearly daily activity in the region with an along strike change in tremor rate coincident with a change in updip coupling inferred from GPS. To the southwest, downdip of where the plate is locked, the total tremor activity is half that of the northeast-most patch where the plate is unlocked updip. We suggest that this updip transition in plate coupling is controlling the tremor behavior downdip, and that the most active tremor patch is experiencing more activity because of the additional loading from above.

  19. A major pulse of late Eocene/early Oligocene submarine and subaerial magmatism in the central and western Aleutian arc

    NASA Astrophysics Data System (ADS)

    Jicha, B. R.; Kay, S. M.; Kay, R. W.; Tibbetts, A. K.; Singer, B. S.

    2013-12-01

    Thirty four new 40Ar/39Ar and U/Pb zircon ages from eight Central and western Aleutian Islands supplement existing geochronologic data and provide new information on the history and evolution of the early central and western Aleutian arc. A clast from a volcanic sequence in southeastern Adak in the Finger Bay Volcanic Formation, interpreted to be the oldest unit on central Aleutian Islands, yields an age of 38.19 × 0.53 Ma. The 40Ar/39Ar ages of the Finger Bay Volcanics are virtually indistinguishable from new 40Ar/39Ar and U/Pb zircon ages from the Finger Bay pluton. This age is similar to previous ages from this unit and to new 38-39 Ma lavas on Kiska and Amchitka islands. It is important to note that the Finger Bay Volcanics on Adak are not related to the initiation of the central Aleutian arc as these rocks have meteoric not sea water alteration and thus the arc must have been built above sea level when these lavas erupted. In contrast, the 39-31 Ma lavas on Kiska, Ulak, Amatignak, and Attu islands in the west central Aleutians, west of Adak have elevated 87Sr/86Sr ratios (up to 0.7045) in association with Epsilon Nd values of +7.5 to 9. We interpret this to reflect hydrothermal alteration of lavas that were submarine eruptions as the western Aleutian arc had not yet reached sea level. Northeast of Adak Island, lavas previously mapped as the Finger Bay Volcanics group on southern Great Sitkin Island range from 10.2 to 3.2 Ma in accord with northward migration of the arc front with time. A new 40Ar/39Ar age of 34.35×0.05 Ma for a granodiorite in the calc-alkaline Hidden Bay pluton on Adak is in accord with new U/Pb zircon ages in this sample, which also importantly shows no evidence of older zircons. The central Adak Gannett Lake pluton, which was assumed to have an age like the ~14 Ma Kagalaska Island pluton to the east, yields an age of 31.68 × 0.06 Ma. Thus, the new age determinations indicate that calc-alkaline plutonism lasted for more than 3 Ma on Adak Island and is part of a 38-29 Ma arc-wide period of volcanism and plutonism. The presence of continental like calc-alkaline plutons dominated by granodiorite after ~35 Ma and a lack of low-K island arc tholeiites and boninites paints a very different picture for the evolution of the central Aleutian arc than for western Pacific arcs.

  20. The growth of Ritter Island volcano, Papua New Guinea, and the lateral collapse landslide and tsunami of 1888: new insights from eyewitness accounts

    NASA Astrophysics Data System (ADS)

    Ray, Melanie Jane; Day, Simon; Downes, Hilary

    2014-05-01

    We present a case study of the 1888 edifice lateral collapse landslide and tsunami event at Ritter Island volcano, using a more complete set of primary and secondary eyewitness accounts than has been used in previous studies. The collapse, early in the morning of March 13th, 1888, removed most of the island and its western submarine flank down to the base of the edifice some 900 m below sea level. The resulting tsunami is believed to have eradicated entire coastal communities on the surrounding islands and was recorded by German colonists in several locations around the Bismarck Sea and on adjacent coasts. Our analysis, based in particular upon new and complete translation of the German accounts, considers the evolution of the island over the previous two centuries and the events of March 1888, with the aim of clarifying the constraints that exist upon the cause, kinematics and mechanisms of the lateral collapse. Our analysis indicates that the pre-collapse Ritter edifice produced frequent strombolian eruptions and steam emissions, building an approximately 1700 m wide, notably steep-sided edifice with a N-S elongated oval shape in plan, by the late 1800s. Most activity was concentrated at a group of summit craters some 800 m above sea level, possibly also in a north-south line, with lesser flank fissure activity. The accounts of the tsunami indicate that the 1888 collapse involved a single large-scale catastrophic landslide, but descriptions of the island in the following days indicate a period in which there were many small landslides from the newly formed and unstable collapse scar. There is no evidence for a sequence of large landslides during this event and there is no clear evidence for a coincident or causal magmatic explosive eruption. One report suggests that there was activity (perhaps phreatic or phreatomagmatic explosions?) prior to the collapse that lead some of the resident local communities to seek higher ground, but evidence for precursory flank movements or changes in eruptive style have not been found in the historical accounts.

  1. Space-geodetic evidence for multiple magma reservoirs and subvolcanic lateral intrusions at Fernandina Volcano, Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; Amelung, Falk

    2012-10-01

    Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface deformation at Fernandina Volcano, Galápagos (Ecuador), acquired between January 2003 and September 2010, we study the structure and the dynamics of the shallow magmatic system of the volcano. Through the analysis of spatial and temporal variations of the measured line-of-sight displacement we identify multiple sources of deformation beneath the summit and the southern flank. At least two sources are considered to represent permanent zones of magma storage given their persistent or recurrent activity. Elastic deformation models indicate the presence of a flat-topped magma reservoir at ˜1.1 km below sea level and an oblate-spheroid cavity at ˜4.9 km b.s.l. The two reservoirs are hydraulically connected. This inferred structure of the shallow storage system is in agreement with previous geodetic studies and previous petrological analysis of both subaerial and submarine lavas. The almost eight-year-long observation interval provides for the first time geodetic evidence for two subvolcanic lateral intrusions from the central storage system (in December 2006 and August 2007). Subvolcanic lateral intrusions could provide the explanation for enigmatic volcanic events at Fernandina such as the rapid uplift at Punta Espinoza in 1927 and the 1968 caldera collapse without significant eruption.

  2. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006

    USGS Publications Warehouse

    Werner, C.; Hurst, T.; Scott, B.; Sherburn, S.; Christenson, B.W.; Britten, K.; Cole-Baker, J.; Mullan, B.

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbig processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d-1 and demonstrated clear annual cycling that was consistent with numbers of earthquake detections and annual changes in sea level. The annual variability was found to be most likely related to increases in the strain on the volcano during sea level highs, temporarily causing fractures to reduce in size in the upper conduit. SO2 emissions varied from 0 to >400 t d-1 and were clearly affected by scrubbing processes within the first year of take development. Scrubbing caused increases of SO42- and Cl- in lake waters, and the ratio of carbon to total sulphur suggested that elemental sulphur deposition was also significant in the lake during the first year. Careful measurements of the lake level and chemistry allowed estimates of the rate of H2O(g) and HCl(g) input into the lake and suggested that the molar abundances of major gas species (H2O, CO2, SO2, and HCl) during this quiescent phase were similar to fumarolic ratios observed between earlier eruptive periods. The volume of magma estimated from CO2 emissions (0.0 15-0.04 km3) was validated by Cl- increases in the lake, suggesting that the gas and magma are transported from deep to shallow depths as a closed system and likely become open in the upper conduit region. The absence of surface deformation further leads to a necessity of magma convection to supply and remove magma from the degassing depths. Two models of convection configurations are discussed. Copyright 2008 by the American Geophysical Union.

  3. Volcanoes, Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The island of Java (8.0S, 112.0E), perhaps better than any other, illustrates the volcanic origin of Pacific Island groups. Seen in this single view are at least a dozen once active volcano craters. Alignment of the craters even defines the linear fault line of Java as well as the other some 1500 islands of the Indonesian Archipelago. Deep blue water of the Indian Ocean to the south contrasts to the sediment laden waters of the Java Sea to the north.

  4. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground-based instruments are supplemented by remote sensing data sets. UNAVCO supports the acquisition of InSAR and LiDAR imaging data, with archiving and distribution of these data provided by UNAVCO and partner institutions. We provide descriptions and access information for geodetic data from the PBO volcano subnetworks and their applications to monitoring for scientific and public safety objectives. We also present notable examples of activity recorded by these instruments, including the 2004-2010 accelerated uplift episode at the Yellowstone caldera and the 2006 Augustine eruption.

  5. The EarthScope Plate Boundary Observatory Akutan Alaskan Volcano Tiltmeter Installation

    NASA Astrophysics Data System (ADS)

    Pauk, B. A.; Gallaher, W.; Dittmann, T.; Smith, S.

    2007-12-01

    During August of 2007, the Plate Boundary Observatory (PBO) successfully installed four Applied Geomechanics Lily Self Leveling Borehole Tiltmeters on Akutan Volcano, in the central Aleutian islands of Alaska. All four stations were collocated with existing PBO Global Positioning Systems (GPS) stations installed on the volcano in 2005. The tiltmeters will aid researchers in detecting and measuring flank deformation associated with future magmatic intrusions of the volcano. All four of the tiltmeters were installed by PBO field crews with helicopter support provided by JL Aviation and logistical support from the Trident Seafood Corporation, the City of Akutan, and the Akutan Corporation. Lack of roads and drivable trails on the remote volcanic island required that all drilling equipment be transported to each site from the village of Akutan by slinging gear beneath the helicopter and with internal loads. Each tiltmeter hole was drilled to a depth of approximately 30 feet with a portable hydraulic/pneumatic drill rig. The hole was then cased with splined 2.75 inch PVC. The PVC casing was cemented in place with grout and the tiltmeters were installed and packed with fine grain sand to stabilize the tiltmeters inside the casing. The existing PBO NetRS GPS receivers were configured to collect the tiltmeter data through a spare receiver serial port at one sample per minute and 1 hour files. Data from the GPS receivers and tiltmeters is telemetered directly or through a repeater radio to a base station located in the village of Akutan that transmits the data using satellite based communications to connect to the internet and to the UNAVCO Facility data archive where it is made freely available to the public.

  6. 78 FR 64892 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Bering Sea subarea and Eastern...total allowable catch (TAC) of Atka mackerel in this area allocated to vessels...

  7. 75 FR 8547 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...opening and closing dates of the Atka mackerel directed fisheries within the harvest...the 2010 A season HLA limits of Atka mackerel in areas 542 and 543 of the Bering...

  8. 76 FR 10780 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Bering Sea subarea and Eastern...the A season allowance of the 2011 Atka mackerel total allowable catch (TAC) in...

  9. 76 FR 65975 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands...prohibiting directed fishing for Atka mackerel in the Bering Sea subarea and Eastern...total allowable catch (TAC) of Atka mackerel in these areas allocated to vessels...

  10. Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hurst, Tony; Jolly, Arthur D.; Sherburn, Steven

    2014-10-01

    The 6 August 2012 eruption from the Upper Te Maari crater of Tongariro volcano followed approximately three weeks of precursory seismic activity. Earthquake relocations including data from extra temporary stations indicated that nearly all events were in a small area very close to Upper Te Maari. Most of these relocated events were very shallow, with nearly all events being between 1000 and 1500 m below the ground surface. The pre-eruption seismicity occurred in three main swarms. During the first swarm on 12-13 July 2012, all the earthquakes had consistent inter-event times of 71 ± 8 min, while in the later swarms (17-20 and 29-30 July) many events had a similar pattern of consistent inter-event times. The stationary quasi-periodic ("clockwork") earthquake process suggests that a single fracture point was excited by a nearly constant rate flux process. The dominant type of earthquake observed in these swarms had a sharp onset and a broad spectrum, with strong energy from 2 to 10 Hz. Most events seen had a local magnitude of 1.5 to 2.5, with virtually no smaller events. Most of these earthquakes appeared to belong to a main earthquake family whose characteristics included a strong spectral component at about 2 Hz and three bursts of energy spaced at intervals of about 1.5 s. Of the 116 located earthquakes, 75 had a correlation coefficient greater than 0.70 with a master event. The spectra of these events did not change with size, with matching frequency peaks for all the events with a high correlation. The last event of this type was the day before the 6 August 2012 eruption, none have been seen since and there has been very little seismicity under Tongariro. This seismicity alerted GNS Science and other organisations to the unrest of Tongariro, and the Volcanic Alert Level and Aviation Colour Code were raised to publicise this. GNS Science also increased its monitoring of Tongariro, and discovered that the magmatic gas concentrations had increased compared to previous measurements in May 2012. However, the seismicity did not show any accelerating trend that suggested an immediate eruption threat, indicating the difficulty of predicting small eruptions in Tongariro and similar volcanoes.

  11. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain.

    PubMed

    Cruz-Fuentes, Tatiana; Cabrera, María del Carmen; Heredia, Javier; Custodio, Emilio

    2014-06-15

    The origin of the groundwater salinity and hydrochemical conditions of a 44km(2) volcano-sedimentary aquifer in the semi-arid to arid La Aldea Valley (western Gran Canaria, Spain) has been studied, using major physical and chemical components. Current aquifer recharge is mainly the result of irrigation return flows and secondarily that of rainfall infiltration. Graphical, multivariate statistical and modeling tools have been applied in order to improve the hydrogeological conceptual model and identify the natural and anthropogenic factors controlling groundwater salinity. Groundwater ranges from Na-Cl-HCO3 type for moderate salinity water to Na-Mg-Cl-SO4 type for high salinity water. This is mainly the result of atmospheric airborne salt deposition; silicate weathering, and recharge incorporating irrigation return flows. High evapotranspiration produces significant evapo-concentration leading to relative high groundwater salinity in the area. Under average conditions, about 70% of the water used for intensive agricultural exploitation in the valley comes from three low salinity water runoff storage reservoirs upstream, out of the area, while the remaining 30% derives from groundwater. The main alluvial aquifer behaves as a short turnover time reservoir that adds to the surface waters to complement irrigation water supply in dry periods, when it reaches 70% of irrigation water requirements. The high seasonality and intra-annual variability of water demand for irrigation press on decision making on aquifer use by a large number of aquifer users acting on their own. PMID:24698802

  12. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  13. Investigation of the Volcano-tectonic dynamics of Vulcano Island by long-term (40 years) geophysical data

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Alparone, Salvatore; Gambino, Salvatore; Guglielmino, Francesco; Obrizzo, Francesco; Velardita, Rosanna

    2015-04-01

    Vulcano island is a composite volcanic edifice located in the south-central sector of the Aeolian Archipelago (Tyrrhenian Sea, Italy). It is the southernmost tip of the southern branch of the Y-shaped archipelago; in particular, it is part of the bigger Lipari-Vulcano volcanic complex that comprises the two southernmost islands of the archipelago. This branch of the archipelago is NNW-SSE oriented and represent the off-shore prolongation of the Tindari-Letojanni tectonic lineament in the NE Sicily, splitting the Appennine chain on the west, from the Calabrian arc on the East. N-S compression seems to affect the western side of this NNW-SSE lineament, while extension affects the eastern one, with active volcanism and a NW dipping Benioff plane. Historic activity at Vulcano has been characterized by frequent transitions from phereatomagmatic to minor magmatic activity. The last eruption in 1888-90 was characterized by energetic explosive pulses and defines the so-called "vulcanian" type of activity. Since then, volcanic activity has taken the form of fumarolic emanations of variable intensity and temperature, mainly concentrated at "La Fossa" crater, with maximum temperatures ranging between 200° and 300° C; temperature increases and changes in the gas chemistry, were often observed. The most recent episode began in the 80's when fumarole temperature progressively increased to 690°C in May 1993. Vulcano is active and this favoured monitoring and research studies, in particular focussed on the most recent structures. In the frame of DPC-INGV "V3" project, we investigate the dynamics of the island through ca. 40 years of ground deformation and seismicity data collected by the discrete and continuous INGV monitoring networks. We considered levelling, GPS, EDM, seismic and tilt data. EDM and levelling measurements began in the middle 1970s and since the late 1990s the same EDM network has been surveyed by GPS. By combining and comparing geodetic data and seismicity we are able to distinguish three different scales of phenomena: the first one seems to be linked to the regional tectonics, with a general transpressive kinematics; the second one affects the northern half of the island and could be related to the caldera dynamics; the third one affects only the cone of La Fossa. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of stability to a phase of unrest, inducing the heating and the expansion of shallow hydrothermal fluids. Current local ground deformation at Vulcano may be linked to the geothermal system rather than magmatic sources.

  14. Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes.

    PubMed

    Costello, Elizabeth K; Halloy, Stephan R P; Reed, Sasha C; Sowell, Preston; Schmidt, Steven K

    2009-02-01

    Fumarolic activity supports the growth of mat-like photoautotrophic communities near the summit (at 6,051 m) of Socompa Volcano in the arid core of the Andes mountains. These communities are isolated within a barren, high-elevation landscape where sparse vascular plants extend to only 4,600 m. Here, we combine biogeochemical and molecular-phylogenetic approaches to characterize the bacterial and eucaryotic assemblages associated with fumarolic and nonfumarolic grounds on Socompa. Small-subunit rRNA genes were PCR amplified, cloned, and sequenced from two fumarolic soil samples and two reference soil samples, including the volcanic debris that covers most of the mountain. The nonfumarolic, dry, volcanic soil was similar in nutrient status to the most extreme Antarctic Dry Valley or Atacama Desert soils, hosted relatively limited microbial communities dominated by Actinobacteria and Fungi, and contained no photoautotrophs. In contrast, modest fumarolic inputs were associated with elevated soil moisture and nutrient levels, the presence of chlorophyll a, and (13)C-rich soil organic carbon. Moreover, this soil hosted diverse photoautotroph-dominated assemblages that contained novel lineages and exhibited structure and composition comparable to those of a wetland near the base of Socompa (3,661-m elevation). Fumarole-associated eucaryotes were particularly diverse, with an abundance of green algal lineages and a novel clade of microarthropods. Our data suggest that volcanic degassing of water and (13)C-rich CO(2) sustains fumarole-associated primary producers, leading to a complex microbial ecosystem within this otherwise barren landscape. Finally, we found that human activities have likely impacted the fumarolic soils and that fumarole-supported photoautotrophic communities may be exceptionally sensitive to anthropogenic disturbance. PMID:19074608

  15. Virtual Volcano

    NSDL National Science Digital Library

    The Discovery Channel's website has several interactive features on volcanoes to complement its programs on Pompeii. At the homepage, visitors can explore a virtual volcano, by clicking on "Enter". The virtual volcano has several components. The first is a quickly revolving globe with red triangles and gray lines on it that represent active volcanoes and plate boundaries. Clicking on "Stop Rotation", located next to the globe, will enable a better look. Visitors can also click one of the topics below the globe, to see illustrations of "Tectonic Plates", "Ring of Fire" (no, not the Johnny Cash song), and "Layers Within". Visitors can click on "Build your Own Volcano and Watch it Erupt" on the menu on the left side of the page, where they will be given a brief explanation of two factors that affect the shape and explosiveness of volcanoes: viscosity and gas. Then they must choose, and set, the conditions of their volcano by using the arrows under the viscosity and gas headings, and clicking on "Set Conditions", underneath the arrows. Once done, a description of the type of volcano created will be given, and it's time to "Start Eruption". While the lava flows, and the noise of an eruption sounds, terms describing various features of the volcano are superimposed on the virtual volcano, and can be clicked on for explanations.

  16. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  17. Distribution, 14C chronology, and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakala volcano, Island of Maui, Hawai'i: a revision of lava flow hazard zones

    USGS Publications Warehouse

    Sherrod, David R.; Hagstrum, Jonathan T.; McGeehin, John P.; Champion, Duane E.; Trusdell, Frank A.

    2006-01-01

    New mapping and 60 new radiocarbon ages define the age and distribution of latest Pleistocene and Holocene (past 13,000 years) lava flows at Haleakal? volcano, Island of Maui. Paleomagnetic directions were determined for 118 sites, of which 89 are in lava flows younger than 13,000 years. The paleomagnetic data, in conjunction with a reference paleosecular variation (PSV) curve for the Hawaiian Islands, are combined with our knowledge of age limitations based on stratigraphic control to refine age estimates for some of the undated lava flows. The resulting volumetric rate calculations indicate that within analytical error, the extrusion rate has remained nearly constant during the past 13,000 years, in the range 0.05–0.15 km3/kyr, only about half the long-term rate required to produce the postshield strata emplaced in the past ?1 Myr. Haleakal?'s eruptive frequency is similar to that of Hual?lai volcano on the Island of Hawai‘i, but its lava flows cover substantially less area per unit time. The reduced rates of lava coverage indicate a lower volcanic hazard than in similar zones at Hual?lai.

  18. Distribution, 14C chronology, and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakal? volcano, Island of Maui, Hawai`i: A revision of lava flow hazard zones

    NASA Astrophysics Data System (ADS)

    Sherrod, David R.; Hagstrum, Jonathan T.; McGeehin, John P.; Champion, Duane E.; Trusdell, Frank A.

    2006-05-01

    New mapping and 60 new radiocarbon ages define the age and distribution of latest Pleistocene and Holocene (past 13,000 years) lava flows at Haleakal? volcano, Island of Maui. Paleomagnetic directions were determined for 118 sites, of which 89 are in lava flows younger than 13,000 years. The paleomagnetic data, in conjunction with a reference paleosecular variation (PSV) curve for the Hawaiian Islands, are combined with our knowledge of age limitations based on stratigraphic control to refine age estimates for some of the undated lava flows. The resulting volumetric rate calculations indicate that within analytical error, the extrusion rate has remained nearly constant during the past 13,000 years, in the range 0.05-0.15 km3/kyr, only about half the long-term rate required to produce the postshield strata emplaced in the past ˜1 Myr. Haleakal?'s eruptive frequency is similar to that of Hual?lai volcano on the Island of Hawai`i, but its lava flows cover substantially less area per unit time. The reduced rates of lava coverage indicate a lower volcanic hazard than in similar zones at Hual?lai.

  19. Groundwater Flow System of Unzen Volcano, Japan

    Microsoft Academic Search

    K. Kazahaya; M. Yasuhara; A. Inamura; T. Sumii; H. Hoshizumi; T. Kohno; S. Ohsawa; Y. Yusa; K. Kitaoka; K. Yamaguchi

    2001-01-01

    Unzen volcano (peak 1486 m) is developed on the western part of Beppu-Shimabara Graben (20 km NS wide and 200 km EW long) located at Kyushu island, SW Japan. We have been studied groundwater system of the volcano using geochemical and hydrological technique in order to estimate flux of magmatic volatiles through the groundwater. We have collected over 150 sample

  20. Correlations between earthquakes and large mud volcano eruptions

    Microsoft Academic Search

    R. Mellors; D. Kilb; A. Aliyev; A. Gasanov; G. Yetirmishli

    2007-01-01

    We examine the potential triggering relationship between large earthquakes and methane mud volcano eruptions. Our data set consists of a 191-year catalog (1810–2001) of eruptions from 77 volcanoes in Azerbaijan, central Asia, supplemented with reports from mud volcano eruptions in Japan, Romania, Pakistan, and the Andaman Islands. We compare the occurrence of historical regional earthquakes (M > 5) with the

  1. Correlations between earthquakes and large mud volcano eruptions

    Microsoft Academic Search

    R. Mellors; D. Kilb; A. Aliyev; A. Gasanov; G. Yetirmishli

    2007-01-01

    We examine the potential triggering relationship between large earthquakes and methane mud volcano eruptions. Our data set consists of a 191-year catalog (1810-2001) of eruptions from 77 volcanoes in Azerbaijan, central Asia, supplemented with reports from mud volcano eruptions in Japan, Romania, Pakistan, and the Andaman Islands. We compare the occurrence of historical regional earthquakes (M > 5) with the

  2. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while erosion incises deep river valleys, such as those on the Island of Kaua?i. The edges of the submarine terraces that ring the islands, thus, mark paleocoastlines that are now as much as 2,000 m underwater, many of which are capped by drowned coral reefs.

  3. Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island

    PubMed Central

    Dolezal, Jiri; Altman, Jan; Kopecky, Martin; Cerny, Tomas; Janecek, Stepan; Bartos, Michael; Petrik, Petr; Srutek, Miroslav; Leps, Jan; Song, Jong-Suk

    2012-01-01

    Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo. PMID:22438890

  4. Redoubt Volcano

    USGS Multimedia Gallery

    Ascending eruption cloud from Redoubt Volcano as viewed to the west from the Kenai Peninsula. The mushroom-shaped plume rose from avalanches of hot debris (pyroclastic flows) that cascaded down the north flank of the volcano. A smaller, white steam plume rises from the summit crater. ...

  5. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is accompanied by deformation.

  6. How Are Islands Formed?

    NSDL National Science Digital Library

    2001-01-01

    This lesson provides students with information about how islands are formed, including a basic knowledge of plate tectonics. Using the islands of Hawaii as an example, students learn about the earth processes that cause the formation of islands over time, including volcanoes and hot spots.

  7. Seismicity, topography, and free-air gravity of the Aleutian-Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Blakely, R. J.; Scholl, D. W.; Ryan, H. F.

    2011-12-01

    The Aleutian-Alaska subduction zone, extending 3400 km from the Queen Charlotte Fault to Kamchatka, has been the source of six great megathrust earthquakes in the 20th Century. Four earthquakes have ruptured the 2000-km-long Aleutian segment, where the Cenozoic Aleutian arc overlies the subducting Pacific plate. These include the 1946 M 8.6 earthquake off Unimak Is., the 1957 M 8.6 and 1986 M 8.0 earthquakes off the Andreanoff Is., and the 1965 M 8.7 Rat Is. earthquake. The source regions of these earthquakes inferred from waveform inversions underlie the well-defined Aleutian deep-sea terrace. The deep-sea terrace is about 4 km deep and is underlain by Eocene arc framework rocks, which extend nearly to the trench. It is bounded on its seaward and landward margins by strong topographic and fee-air gravity gradients. The main asperities (areas of largest slip) for the great earthquakes and nearly all of the Aleutian thrust CMT solutions lie beneath the Aleutian terrace, between the maximum gradients. Similar deep-sea terraces are characteristic of non-accretionary convergent margins globally (75% of subduction zones), and, where sampled by drilling (e.g., Japan, Peru, Tonga, Central America), are undergoing sustained subsidence. Sustained subsidence requires removal of arc crust beneath the terrace by basal subduction erosion (BSE). BSE is in part linked to the seismic cycle, as it occurs in the same location as the megathrust earthquakes. Along the eastern 1400 km of the Alaskan subduction zone, the Pacific plate subducts beneath the North American continent. The boundary between the Aleutian segment and the continent is well defined in free-air gravity, and the distinctive deep-sea terrace observed along the Aleutian segment is absent. Instead, the Alaskan margin consists of exhumed, underplated accretionary complexes forming outer arc gravity highs. Superimposed on them are broad topographic highs and lows forming forearc basins (Shumagin, Stevenson) and islands (Kodiak, Shumagin). Two great earthquakes ruptured much of this segment: the 1938 M 8.3 earthquake SW of Kodiak and the 1964 M 9.2 earthquake, which ruptured 800 km of the margin between Prince William Sound and Kodiak Island. Large slip during the 1938 event occurred under the Shumagin and Tugidak basins, but slip in 1964 is thought to have occurred on asperities under Prince William Sound and the outer arc highs off Kodiak. Seismic profiling and industry drilling indicates sustained subsidence has also occurred along the Alaska margin. BSE is probably occurring there, but the terrace structure is buried by the high sedimentation rate. At present, the inherited accretionary structures, the ongoing collision of the Yakutat terrane, and uncertainties in finite fault modeling obscure correlation of slip with topographic and gravity signatures in the 1964 source region.

  8. Active Monitoring for Active Volcanoes - A challenge at Sakurajima volcano

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Watanabe, T.; Michishita, T.; Miyamachi, H.; Iguchi, M.

    2011-12-01

    Quantitative monitoring of magma transport process is essentially important for understanding the volcanic process and prediction of volcanic eruptions. To realize this monitoring, a project, deployment of an active source called ACROSS in Sakurajima volcano, is being underway. In this study, we assessed the feasibility of the capability of monitoring using ACROSS vibrator system for Sakurajima volcano in terms of detectability of signal and its temporal variation due to reasonable change in volcanic structure. Sakurajima volcano is one of the most active volcanoes in the world, which erupts more than a thousand times in 2010, and has been intensively monitored by a research observatory. We chose Sakurajima volcano as a first test site for volcano monitoring with ACROSS because of its well-deployed seismic network and repeating volcanic eruptions. First we assess the signal-to-noise ratio (SNR) for the case in which we use the same source as deployed in the Tokai area. The detectability of temporal change in the signal from the source is simply dependent on the SNR at the receivers. As the SNR increases with the length of data-stacking, we estimate the reasonable stacking length and the distance range that ACROSS signal can be recorded with enough SNR. We use a general distance dependent attenuation model including geometrical spreading and internal energy dissipation to estimate the parameters describing source strength and internal energy dissipation. We use a attenuation relation that is estimated by existing ACROSS source in the Tokai area to estimate the source strength. As for the internal energy dissipation we use the data of explosion experiment that was carried out around Sakurajima volcano in 2008. The result shows that the signal of an ACROSS vibrator can be recorded with good SNR for the whole area of Sakurajima island for the staking length of 3 months. Next we assess the effect of attenuation (Q) on the detectability of structure change for the realistic volcano structure. We created a structure model of Sakurajima volcano with existing structure model and calculated the change in spectral signal by a small change of structure model. The result shows that the low-Q nature of volcano has little effect on the ACROSS signal in low frequency band (3.5-7.5Hz). These results will be compared with the actual observation experiment in the coming years. Acknowledgement: We use the data-set of the exploration experiment in Sakurajima volcano which is carried out by Volcano eruption prediction group in 2008.

  9. Plate Coupling and Strain of the Far Western Aleutian Arc Modeled from GPS Data

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Frolov, D. I.; Titkov, N. N.; Steblov, G. M.; Vasilenko, N. F.; Freymueller, J. T.; Prytkov, A. S.; Ekstrom, G.; Gabsatarov, Y. V.

    2014-12-01

    The Pacific plate (PACI) converges with the Bering plate (BERI) at the Aleutian arc, but the convergence becomes extremely oblique in the western Aleutians. The westernmost segment of the Aleutian arc near the cusp with the Kamchatka-Kuril arc is called the Komandorsky Islands (KOMA), with two islands, Bering and Medny. The strike-slip motion of PACI relative to BERI in the KOMA segment has a speed of ~80 mm/a, but the faulting of strike-slip motion is poorly understood. We analyze GPS velocities at three sites on both islands of KOMA and at two sites on the Pacific coast of Kamchatka. From several years of observations, trench-parallel velocities at all three sites on KOMA are similar: 51, 43, and 50 mm/a relative to BERI. Trench-normal velocities at both sites on Kamchatka are 14 and 21 mm/a relative to the North American plate (NOAM). The question arises: where are the faults that take up the strike-slip motion of PACI relative to BERI? We model elastic lithospheric rotation and strain of KOMA using the DEFNODE software of R. McCaffrey in three scenarios: (1) The active fault is at the Aleutian trench, (2) The active fault is in the backarc north of KOMA, (3) KOMA is a separate lithospheric block, with active faults on both sides. We set the fault locking depth at 20 km because strike-slip earthquakes in the region are not deeper. In Scenario 1, the motion of the Komandorsky Islands is explained by elastic strain at the transform plate boundary to the south. Scenario 1 requires the strike-slip fault to be shallowly dipping (12°) beneath KOMA. For a strike-slip fault nearly vertical in dip, Scenario 1 underpredicts the observed speed of KOMA and Scenario 2 overpredicts the speed. Scenario 3, with KOMA bounded by such faults on the north and on the south, predicts for KOMA a block motion of 58 mm/a, i.e., 120% of the mean observed speed. Velocities of sites on Kamchatka are well explained by elastic strain due to subduction of PACI beneath NOAM.

  10. Origin of anorthite and olivine megacrysts in island-arc tholeiites: petrological study of 1940 and 1962 ejecta from Miyake-jima volcano, Izu-Mariana arc

    Microsoft Academic Search

    Mizuho Amma-Miyasaka; Mitsuhiro Nakagawa

    2002-01-01

    Although aphyric tholeiites were discharged from nearly the same fissures during 1940 and 1962 eruptions of Miyake-jima volcano, some of the 1940 rocks are characterized by the presence of anorthite (to 3 cm) and olivine (to 4 mm) megacrysts. We focus on the assemblage and composition of crystal-clots to discuss magmatic processes, because minerals in the same type of clots

  11. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  12. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week in March there was a marked increase in extrusion, resulting in two short, steep lava flows dominantly composed of low-silica andesite. Effusion slowly waned through March and deformation ceased. Previous eruptions have had months-long repose followed be renewed effusion, but this has not yet happened during this eruption. Our ability to describe this eruption is based on a richness of data. The volcano was well instrumented with AVO seismometers and Earthscope/PBO continuous GPS instruments. Additional instruments were added as unrest increased, and substitutes for stations destroyed during initial explosions were deployed. As many as two-dozen AVHRR satellite passes were analyzed each day, providing thermal monitoring and ash-plume tracking. Overflights collected both visual and quantitative IR imagery on a regular basis. Georeferenced imagery acquired by satellite (ASTER) and repeated conventional aerial photography permitted detailed, accurate, mapping of many deposits as an aid to (but not substitute for) field mapping. Web cameras (both visual and near-IR) and conventional time-lapse cameras aided understanding of ongoing processes. Data sets less common to volcano monitoring (infrasound, lightning detection) extended our understanding.

  13. Volcano Baseball

    NSDL National Science Digital Library

    2012-07-12

    In this game, learners are volcanoes that must complete several steps to erupt. Starting at home plate, learners draw cards until they have enough points to move to first base. This process repeats for each learner at each base, and each base demonstrates a different process in a volcano's eruption. The first learner to make it back to home plate erupts and is the winner. This is a good introduction to volcanoes. When learners set up a free account at Kinetic City, they can answer bonus questions at the end of the activity as a quick assessment. As a larger assessment, learners can complete the Smart Attack game after they've completed several activities.

  14. SEA OTTER POPULATION DECLINES IN THE ALEUTIAN ARCHIPELAGO

    Microsoft Academic Search

    Angela M. Doroff; James A. Estes; M. Tim Tinker; Douglas M. Burn; Thomas J. Evans

    2003-01-01

    Sea otter (Enhydra lutris) populations were exploited to near extinction and began to re- cover after the cessation of commercial hunting in 1911. Remnant colonies of sea otters in the Aleutian archipelago were among the first to recover; they continued to increase through the 1980s but declined abruptly during the 1990s. We conducted an aerial survey of the Aleutian archipelago

  15. Mud Volcanoes

    Microsoft Academic Search

    Chi-Yuen Wang; Michael Manga

    \\u000a \\u000a Mud volcanoes\\u000a are surface structures formed by the eruption of mud from the subsurface. Figure 3.1 shows a typical examples. The erupted\\u000a materials are usually fine grained sediment, water, and gases, dominantly CO2 and methane. Fragments of country rock are also sometimes entrained. They range in size from <1 m, typical of mud volcanoes\\u000a formed by liquefaction\\u000a at shallow depths,

  16. Active submarine volcano sampled

    NASA Astrophysics Data System (ADS)

    Taylor, Brian

    On June 4, 1982, two full dredge hauls of fresh olivine basalt were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, from water depths of 400 and 900 m. The shallower dredge site was within one-half mile of the active submarine vent evidenced at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano located on the ‘trench-slope break’ or ‘outer-arc high’ of the New Georgia Group, approximately 35 km seaward of the main volcanic line and only 30 km landward of the base of the trench inner wall. The volcano has been observed to erupt every year or two for at least the last 30 years (see cover photographs). An island formed in 1952, 1961, 1965, and 1978, but in each case it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982.

  17. Lahar Hazards at Concepción volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.

    2001-01-01

    Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.

  18. Palaeomagnetic study of a subaerial volcanic ridge (São Jorge Island, Azores) for the past 1.3 Myr: evidence for the Cobb Mountain Subchron, volcano flank instability and tectonomagmatic implications

    NASA Astrophysics Data System (ADS)

    Silva, P. F.; Henry, B.; Marques, F. O.; Hildenbrand, A.; Madureira, P.; Mériaux, C. A.; Kratinová, Z.

    2012-03-01

    We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores Archipelago—North Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3°N, 160.7°E, K= 33 and A95= 3.4°) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 ± 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNW-SSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNW-SSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNW-ESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.

  19. Pyroclastic flows and lavas of the Mogan and Fataga formations, Tejeda Volcano, Gran Canaria, Canary Islands: mineral chemistry, intensive parameters, and magma chamber evolution

    Microsoft Academic Search

    Joy A. Crisp; Frank J. Spera

    1987-01-01

    The Mogan and Fataga formations on the island of Gran Canaria, Canary Islands, represent a sequence of approximately 30 intercalated pyroclastic and lava flows (total volume about 500 km3 dense-rock equivalent) including subalkaline rhyolitic, peralkaline rhyolitic and trachytic pyroclastic flows, nepheline trachyte lavas and a small volume of alkali basaltic lavas and tephra deposits. The eruption of the intermediate to

  20. Far-field simulation of the 1946 Aleutian tsunami

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Hébert, Hélène

    2007-06-01

    We present hydrodynamic far-field simulations of the Aleutian tsunami of 1946 April 1, using both a dislocation source representing a slow earthquake and a dipolar one modelling a large landslide. The earthquake source is derived from the recent seismological study by López and Okal, while the landslide source was previously used to explain the exceptional run-up at Scotch Cap in the near field. The simulations are compared to a field data set previously compiled from testimonies of elderly witnesses at 27 far-field locations principally in the Austral and Marquesas Islands, with additional sites at Pitcairn, Easter and Juan Fernández. We find that the data set is modelled satisfactorily by the dislocation source, while the landslide fails to match the measured amplitudes, and to give a proper rendition of the physical interaction of the wavefield with the shore, in particular at Nuku Hiva, Marquesas. The emerging picture is that the event involved both a very slow earthquake, responsible for the far-field tsunami, and a major landslide explaining the near-field run-up, but with a negligible contribution in the far field.

  1. Infrared science of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, William A.; Moxham, R.M.; Polcyn, R.C.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs is- suing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  2. Internet Geography: Volcanoes

    NSDL National Science Digital Library

    This site is part of GeoNet Internet Geography, a resource for pre-collegiate British geography students and their instructors. This page focuses on various aspects of volcanoes, including the main features of a volcano, types of volcanoes, the Ring of Fire, locations of volcanoes, volcanic flows, and case studies about specific volcanoes.

  3. Michigan Tech Volcanoes

    NSDL National Science Digital Library

    The Michigan Tech Volcanoes Page encourages collaborative, interdisciplinary work on active volcanos, and links to resources for the Santa Maria Decade Volcano in Guatemala and for Central America's most frequently active volcano, Fuego. Also includes images of Pinatubo Volcano [one nice one taken from the Space Shuttle Endeavor] and some movies of laharic activity.

  4. Mantle and Crustal Sources of Carbon, Nitrogen, and Noble gases in Cascade-Range and Aleutian-Arc Volcanic gases

    USGS Publications Warehouse

    Symonds, Robert B.; Poreda, Robert J.; Evans, William C.; Janik, Cathy J.; Ritchie, Beatrice E.

    2003-01-01

    Here we report anhydrous chemical (CO2, H2S, N2, H2, CH4, O2, Ar, He, Ne) and isotopic (3He/4He, 40Ar/36Ar, ?13C of CO2, ?13C of CH4, ?15N) compositions of virtually airfree gas samples collected between 1994 and 1998 from 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA). Sample sites include ?173°C fumaroles and springs at Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. The chemical and isotopic data generally point to magmatic (CO2, Ar, He), shallow crustal sedimentary (hereafter, SCS) (CO2, N2, CH4), crustal (He), and meteoric (N2, Ar) sources of volatiles. CH4 clearly comes from SCS rocks in the subvolcanic systems because CH4 cannot survive the higher temperatures of deeper potential sources. Further evidence for a SCS source for CH4 as well as for non-mantle CO2 and non-meteoric N2 comes from isotopic data that show wide variations between volcanoes that are spatially very close and similar isotopic signatures from volcanoes from very disparate areas. Our results are in direct opposition to many recent studies on other volcanic arcs (Kita and others, 1993; Sano and Marty, 1995; Fischer and others, 1998), in that they point to a dearth of subducted components of CO2 and N2 in the CRAA discharges. Either the CRAA volcanoes are fundamentally different from volcanoes in other arcs or we need to reevaluate the significance of subducted C and N recycling in convergent-plate volcanoes.

  5. Volcanoes in Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Indonesian island of Java (8.0S, 112.0) has over 35 active volcanoes, some of which are the most explosive in the world, and form an east/west line of peaks the length of the island. Five are in this image and at least one is thought to be currently active. The plume flowing north from Welirang (just east of the central cloud mass) is believed to be steam emissions. Also, the lack of vegetation at the peak indicates volcanic activity.

  6. Eruptions of Hawaiian Volcanoes: Past, Present, and Future

    NSDL National Science Digital Library

    Robert Tilling

    The origin of the Hawaiian Islands, recorded eruptions, and eruption patterns are discussed in this United States Geological Survey (USGS) publication. The on-line book also covers volcano monitoring and research, landforms and structures, hazards and benefits, and a discussion of Loihi, Hawaii's newest volcano.

  7. Bering Sea and Aleutian Islands Crab Rationalization Program Report

    E-print Network

    monitoring, safety, community protection measures, and other program features. The report was developed and data sources include (in alphabetic order): the Alaska Department of Fish and Game (ADF&G) staff

  8. Bering Sea and Aleutian Islands Crab Rationalization Report

    E-print Network

    30, 2007 Photograph courtesy of Forrest Bowers, BSAI Area Biologist, ADF&G NOAA Fisheries Service, and other Program features. The report was developed by staff of the NOAA Fisheries (NMFS), Restricted) the Alaska Department of Fish and Game (ADF&G) staff and reports; NMFS (Alaska Fisheries Science Center

  9. Active Volcanoes and Plate Tectonics, Hot Spots and the Ring of Fire

    NSDL National Science Digital Library

    This world map shows the major plates and plate boundaries, including such notables as the Mid-Atlantic Ridge, the San Andreas Fault, and the Java and Aleutian Trenches. The Pacific Ring of Fire is shown, including the Cascade Range. The location of major volcanoes is also depicted. A feature of this site is a black and white version that can be printed out for greater clarity.

  10. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  11. Cascades Volcano Observatory

    NSDL National Science Digital Library

    This United States Geological Survey (USGS) resource provides links to news and current events regarding volcanoes and current activities and a summary for the Cascade Range and its volcanoes. Other links connect to information about living with volcanoes, visiting a volcano, educational outreach, and hazards assessment reports and maps. There are also extensive menus for links to the USGS volcano hazards program, individual volcano information, and a FAQ site along with a menu of interests list and a miscellaneous list of sites.

  12. Indirect food web interactions: Sea otters and kelp forest fishes in the Aleutian archipelago

    USGS Publications Warehouse

    Reisewitz, S.E.; Estes, J.A.; Simenstad, C.A.

    2006-01-01

    Although trophic cascades - the effect of apex predators on progressively lower trophic level species through top-down forcing - have been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and how the abundance and diet of kelp forest fishes are influenced by a trophic cascade linking sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass density), kelp (numerical density) and fish (Catch per unit effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all four islands). Our fish studies focused on rock greenling (Hexagrammos lagocephalus), the numerically dominant species in this region. In the mid-1980s, the two islands with high-density otter populations supported dense kelp forests, relatively few urchins, and abundant rock greenling whereas the opposite pattern (abundant urchins, sparse kelp forests, and relatively few rock greenling) occurred at islands where otters were rare. In the 2000, the abundances of urchins, kelp and greenling were grossly unchanged at islands where otters were initially rare but had shifted to the characteristic pattern of otter-free systems at islands where otters were initially abundant. Significant changes in greenling diet occurred between the mid-1980s and the 2000 although the reasons for these changes were difficult to assess because of strong island-specific effects. Whereas urchin-dominated communities supported more diverse fish assemblages than kelp-dominated communities, this was not a simple effect of the otter-induced trophic cascade because all islands supported more diverse fish assemblages in 2000 than in the mid-1980s. ?? Springer-Verlag 2005.

  13. Strontium isotope variations in lower tertiary-quaternary volcanic rocks from the Kurile island arc

    NASA Astrophysics Data System (ADS)

    Bailey, J. C.; Larsen, O.; Frolova, T. I.

    1987-02-01

    Average 87Sr/86Sr ratios for lavas from Quaternary and Pleistocene volcanoes of the Kurile island arc, NW Pacific, decrease from 0.7035 in the south to 0.7032 in the north. The northern Kuriles are characterised by K2Oricher volcanics and by an older crust. Varying ratios show no simple relation to crustal thickness or geochemical indicators of crustal contamination. This is thought to reflect the immature character of the crust — its simatic composition, low Rb/Sr ratios and youthfulness. Older lavas from the Kuriles (Lower Tertiary, Miocene) have similar or slightly higher 87Sr/86Sr ratios; some have suffered slight alteration and possibly crustal contamination. Quaternary volcanics from the Kurile and Aleutian arcs have the lowest 87Sr/86Sr ratios of all circum-Pacific arcs and this may be ascribed to (a) the isotopic individuality of the landward North American plate and/or (b) the high degree of mechanical coupling between the Pacific and North American plates reducing the amount of subducted 87Sr-rich sediments and seawater. An isotopic boundary between island arcs is located in central Hokkaido. The primary basaltic magmas of the Kuriles were derived from mantle recently contaminated by radiogenic Sr. Subsequent fractionation to andesites and dacites occurred by closed-system fractional crystallization.

  14. Understanding Volcanoes

    NSDL National Science Digital Library

    Frank Weisel

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. It focuses on the three types of volcanoes: shield, cinder cone, and composite. Students research each type and then make models of each one to learn the distinctive properties of each type. Included are objectives, materials, procedures, discussion questions, evaluation ideas, suggested readings, and vocabulary. There are videos available to order which complement this lesson, an audio-enhanced vocabulary list, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  15. Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003

    E-print Network

    Jones, Ian L.

    Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska: (709) 737-3018 e-mail: x19hlm@mun.ca #12;Major and Jones Impacts of rats on auklets 2 "As with predator of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959

  16. The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia: Trace element and sup 87 Sr/ sup 86 Sr constraints

    SciTech Connect

    Vukadinovic, D.; Nicholls, I.A. (Monash Univ., Victoria (Australia))

    1989-09-01

    Selected major and trace elements, rare earth element (REE) and {sup 87}Sr/{sup 86}Sr data are presented for arc basalts from Gunung Slamet volcano, Java, Indonesia. On the basis of stratigraphy, trace element content, Zr/Nb, and {sup 87}Sr/{sup 86}Sr ratios, Slamet basalts can be broadly categorized into high abundance magma (HAM) and low abundance magma (LAM) types. Provided the quantities of immobile trace elements (in aqueous systems) such as Nb, Hf and Zr in the mantle wedge and ensuing magmas are unaffected by additions from subducted lithosphere or overlying arc crust, a model may be developed whereby LAM are generated by higher degrees of melting in the mantle wedge (13%) compared to HAM (7%). Hf/Nb or Zr/Nb ratio systematics indicate that prior to metasomatism by the underlying lithosphere, the Slamet mantle wedge was similar in chemical character to transitional-MORB source mantle.

  17. Interactions Between Separated Volcanoes

    NASA Astrophysics Data System (ADS)

    Linde, A. T.; Sacks, I. S.; Kamigaichi, O.

    2002-05-01

    The Japan Meteorological Agency installed and operates a network of borehole strainmeters in south-east Honshu. One of these instruments is on Izu-Oshima, a volcanic island at the northern end of the Izu-Bonin arc. That strainmeter recorded large strain changes associated with the 1986 eruption of Miharayama on the island. Miyake-jima, about 70 km south of Izu-Oshima, erupted in 1983. No deformation monitoring was available on Miyake-jima but several changes occurred in the strain record at Izu-Oshima. There was a clear change in the long-term strain rate 2 days before the Miyake eruption. Frequent short period events recorded by the strainmeter showed a marked change in their character. The Izu-Oshima strainmeter showed that, over the period from 1980 to the 1986 eruption, the amplitude of the solid earth tides increased by almost a factor of two. At the time of the Miyake eruption, the rate of increase of the tidal amplitude also changed. While all of these changes were observed on a single instrument, they are very different types of change. From a number of independent checks, we can be sure that the strainmeter did not experience any change in performance at that time. Thus it recorded a change in deformation behavior in three very different frequency bands: over very long term, at tidal periods ( ~ day) and at very short periods (minutes). It appears that the distant eruption in 1984 had an effect on the magmatic system under Izu-Oshima. More recent tomographic and seismic attenuation work in the Tohoku (northern Honshu) area has show the existence of a low velocity, high attenuation horizontally elongated structure under the volcanic front. If such a structure exists in the similar tectonic setting for these volcanoes, it could provide a mechanism for communication between the volcanoes.

  18. Soufriere Hills Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

    This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.

    Size: 40.5 x 40.5 km (25.1 x 25.1 miles) Location: 16.7 deg. North lat., 62.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: October 29, 2002

  19. First cross-correlated measurements of magma dynamics and degassing during a dyke eruption at Piton de la Fournaise hot spot volcano, Reunion island

    NASA Astrophysics Data System (ADS)

    Allard, P.; La Spina, A.; Tamburelllo, G.; Aiuppa, A.; Coquet, A.; Brenguier, F.; Coppola, D.; Di Muro, A.; Burton, M. R.; Staudacher, T.

    2011-12-01

    Piton de la Fournaise (PdF), in the western Indian Ocean, is a very active hot spot basaltic volcano whose eruptions (1-2 per year on average) are well anticipated by the local seismic-geodetic monitoring network. Here we report on the first cross-correlated measurements of seismic tremor, magmatic gas composition (OP-FTIR absorption spectroscopy and in situ MultiGas analysis plus filter-pack sampling), gas fluxes (DOAS) and magma extrusion rate (space-borne MODIS data) during a 2-weeks long dyke eruption at PDF in October 2010. Precursory seismic signals indicated dyke ascent in a few hours from a reservoir located at ~2.5 km beneath the summit crater. After an initial burst coinciding with eruptive fissure opening, both the tremor amplitude, lava extrusion rate and SO2 flux coherently decreased during the first week of eruption. The co-emitted magmatic gases, whose composition varied slightly over time, were found to have a high water content (95-98 mol %), high SO2/HCl and low CO2/SO2, HCl/HF and Cl/Br ratios, consistent with a hydrous hot spot mantle source. By comparing gas fluxes with the magma co-extrusion rate and available melt inclusion data, we infer an essentially syn-eruptive (closed system) degassing for sulfur, chlorine and fluorine during the first half of the eruption. In contrast, additions of CO2 (previously accumulated or/and bubbling differentially) and H2O (external contribution from the hydrothermal system?) are required to explain the gas composition. Differential CO2 bubbling is supported by high frequency correlations between the CO2/HCl ratio and seismic tremor. The second part of the eruption was marked by a spectacular decoupling between re-increasing seismic tremor and declining lava extrusion, indicating a key control of tremor and eruptive activity by differential (open system) gas bubbling across the feeder dyke. This was associated with an increasing contribution of the low-frequency (1-3 Hz) spectral band to the tremor amplitude. Finally, the end of the eruption was preceded by a new sharp tremor increase, with remarkable anti-correlated variations of the 1-3 Hz and 3-5 Hz spectral signals, which we tentatively attribute to an abrupt geometrical change prior to dyke closure. These results, and future ones, are expected to contribute to better understanding and forecasting of eruption processes at Piton de la Fournaise volcano.

  20. GlobVolcano: Earth Observation Services for global monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, L.; Ratti, R.; Borgström, S.; Seifert, F. M.; Solaro, G.

    2009-04-01

    The GlobVolcano project is part of the Data User Element (DUE) programme of the European Space Agency (ESA). The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcanological Observatories and other mandate users (Civil Protection, scientific communities of volcanoes) in their monitoring activities. The information service is assessed in close cooperation with the user organizations for different types of active volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site. The following EO-based information services have been defined, harmonising the user requirements provided by a worldwide selection of user organizations. - Deformation Mapping - Surface Thermal Anomalies - Volcanic Gas Emission (SO2) - Volcanic Ash Tracking During the first phase of the project (completed in June 2008) a pre-operational information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations (i.e. Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli, Volcano and Etna in Italy, Soufrière Hills in Montserrat Island, Colima in Mexico, Merapi in Indonesia). The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are regularly monitored and as many user organizations are involved and cooperating with the project team. Based on user requirements, the GlobVolcano Information System has been developed following system engineering rules and criteria, besides most recent interoperability standards for geospatial data. The GlobVolcano Information System includes two main elements: 1. The GlobVolcano Data Processing System, which consists of seven of EO data processing subsystems located at each respective service centre. 2. The GlobVolcano Information Service, which is the provision infrastructure, including three elements: - GlobVolcano Products Archives, including two main functionalities: WMS (Web Map Service) for products visualization through the GVUI and products delivery. - GlobVolcano Metadata Catalogue, offering CS-W (Catalogue Service for Web) functionality. - GlobVolcano User Interface (GVUI), based on the Virtual Earth platform. Whereas product downloading is allowed to committed user organisations only, the Metadata Catalogue can be publicly accessed, thus providing a powerful tool for scientific interchanges and cooperation among the user organizations and scientific communities of volcanoes.

  1. Seismic Structure Beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    You, S. H.; Gung, Y.; Konstantinou, K. I.; Lin, C. H.

    2014-12-01

    The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous "Decade Volcanoes" in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the northwestern shore of Taal Lake. Such magmatic signatures have never been reported in previous studies, suggesting that new eruption centers might be forming in places away from the historical craters on Taal Volcano Island.

  2. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    PubMed

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031

  3. Winning Posters Hawai`i Island 4th Grade Students

    E-print Network

    Winning Posters created by Hawai`i Island 4th Grade Students 2012 Hawaiian Volcano Observatory #12;Congratulations to the winners! Mahalo to all Hawai`i Island 4th grade students who created posters in celebration

  4. Types of Volcanoes

    NSDL National Science Digital Library

    This volcano resource introduces the six-type classification system and points out weaknesses of the classic three-type system. The six types of volcanoes are shield volcanoes, strato volcanoes, rhyolite caldera complexes, monogenetic fields, flood basalts, and mid-ocean ridges. For each type of volcano there is a description of both structure and dynamics along with examples of each. You can account for more than ninty percent of all volcanoes with these six types. Additionally, any system will be more useful if you use modifiers from the other potential classification schemes with the morphological types.

  5. The 2005-2006-eruption of the Barren Volcano, Andaman Sea: Evolution of basaltic magmatism in island arc setting of Andaman-Java subduction complex

    NASA Astrophysics Data System (ADS)

    Pal, Tapan; Raghav, Sanjeev; Bhattacharya, Anindya; Bandopadhyay, P. C.; Mitra, Sumit K.; Renjit, M. L.; Sankar, M. S.; Ghosh, Biswajit

    2010-07-01

    The Barren Volcano located in the volcanic chain of Burma-Java subduction complex became active during 2005-2006 initially as Strombolian and later on as sub-Plinian type ejecting out ash laden grey smoke and coarse pyroclasts. The pyroclasts are represented by vesiculated (20-30 vol.% vesicle) porphyritic basaltic rock where the phenocrysts constituting 20-25 vol.% of the total bulk are represented by plagioclase (18-25 vol.%), olivine (1-4%), clinopyroxene (0.5-2.5 vol.%) and few iron oxides. Olivine of the 2005-lava shows a variation in Fo content from core (Fo 81-85) to rim (Fo 73-75) but those in the 2006-lava show a uniform composition from core to rim (Fo 75-78). Feldspar grains of both the 2005 and 2006-eruptions are normally zoned, with a variation from core (An 93-80) to rim (An 76-55). The major oxides show basaltic composition for the 2005-lava and basaltic to basaltic andesite for the 2006-lava. Abundances of plagioclase phenocrysts, poorly hydrous glass inclusions in the phenocrysts, rarity of the mafic phase and high Zr content (69-75 ppm) are suggestive of the very poorly hydrous nature of magma. The calculated fractional crystallisation trend show the differences in the 2005-lava and 2006-lava where the former show accumulated nature and the latter indicates evolved path. The major oxides and trace elements patterns indicate that both the lava had a different parental composition and the 2006-lava was subjected to fractional crystallisation. The magmatic evolution is explained by the mantle diapir model where the almost anhydrous basaltic magma of the 2005-eruption was produced from hot rind of the diapir and feebly hydrous basaltic andesite magma of the 2006-eruption was formed from cool and wet core of the diapir.

  6. High resolution dating of moraines on Kodiak Island, Alaska links Atlantic and North Pacific climatic changes during the late glacial

    SciTech Connect

    Mann, D.H. (Univ. of Alaska, Fairbanks, AK (United States). Alaska Quaternary Center)

    1992-01-01

    Much less is known about the paleoclimate and paleoceanography of the North Pacific than the North Atlantic despite the North Pacific's important role in the global ocean-climate system. Kodiak Island lies in the northwestern Gulf of Alaska astride the eastern end of the Aleutian Low. On southwestern Kodiak Island, coastal bluffs section a series of moraines, kettle ponds, and bogs formed between 15 and 9 ka BP. Distinctive tephras from volcanoes on the Alaska Peninsula provide time-lines within the stratigraphy. Deformation events recorded in sediment stacks from basins within glaciotectonic landforms allows precise dating of glacial events. An ice cap occupied the Kodiak archipelago during the last glaciation. Three glacial advances of the southwestern margin of this ice cap occurred after 15 ka BP. At 13.4 ka, piedmont ice lobes formed large push moraines extending into Shelikof Strait during the Low Cape Advance. The less-extensive Tundra Advance culminated between 12 and 11.7 ka BP followed by glacier retreat then readvance to form the prominent Olga Moraine system between 11 and 10 ka BP. The timing of the Tundra and Olga Advances correlates closely with that of the Older and Younger Dryas cold episodes in northwestern Europe suggesting that these climatic oscillations were synchronous throughout the northern hemisphere.

  7. Seismicity and seismic structure at Okmok Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Summer J.; Thurber, Clifford H.; Pesicek, Jeremy D.; Prejean, Stephanie G.

    2014-05-01

    Okmok volcano is an active volcanic caldera located on the northeastern portion of Umnak Island in the Aleutian arc, with recent eruptions in 1997 and 2008. The Okmok area had ~900 locatable earthquakes between 2003 and June 2008, and an additional ~600 earthquakes from the beginning of the 2008 eruption to mid 2009, providing an adequate dataset for seismic tomography. To image the seismic velocity structure of Okmok, we apply waveform cross-correlation using bispectrum verification and double-difference tomography to a subset of these earthquakes. We also perform P-wave attenuation tomography using a spectral decay technique. We examine the spatio-temporal characteristics of seismicity in the opening sequence of the 2008 eruption to investigate the path of magma migration during the establishment of a new eruptive vent. We also incorporate the new earthquake relocations and three-dimensional (3D) velocity model with first-motion polarities to compute focal mechanisms for selected events in the 2008 pre-eruptive and eruptive periods. Through these techniques we obtain precise relocations, a well-constrained 3D P-wave velocity model, and a marginally resolved S-wave velocity model. We image a main low Vp and Vs anomaly directly under the caldera consisting of a shallow zone at 0-2 km depth connected to a larger deeper zone that extends to about 6 km depth. We find that areas of low Qp are concentrated in the central to southwestern portion of the caldera and correspond fairly well with areas of low Vp. We interpret the deeper part of the low velocity anomaly (4-6 km depth) beneath the caldera as a magma body. This is consistent with results from ambient noise tomography and suggests that previous estimates of depth to Okmok's magma chamber based only on geodetic data may be too shallow. The distribution of events preceding the 2008 eruption suggest that a combination of overpressure in the zone surrounding the magma chamber and the introduction of new material from below were jointly responsible for the explosive eruption. Magma escaping from the top of the main magma chamber likely reacted with both a smaller shallow pod of magma and groundwater on its way up below the Cone D area. The earthquakes in the 2008 pre-eruptive and eruptive periods are found to have a mixture of strike-slip, oblique normal, and oblique thrust mechanisms, with a dominant P-axis orientation that is nearly perpendicular to the regional tectonic stress. This may indicate that the stresses related to magmatic activity locally dominated regional tectonic forces during this time period.

  8. Episodes of Aleutian Ridge explosive volcanism

    USGS Publications Warehouse

    Hein, J.R.; Scholl, D. W.; Miller, J.

    1978-01-01

    Earlier workers have overlooked deep-sea bentonite beds when unraveling the Cenozoic volcanic history of an area. In the North Pacific, identification of Miocene and older volcanic episodes is possible only if both altered (bentonite) and unaltered ash beds are recognized. Our study, which includes bentonite beds, shows that volcanism on the Aleutian Ridge and Kamchatka Peninsula has been cyclic. Volcanic activity seems to have increased every 2.5 ?? 10 6 years for the past 10 ?? 106 years and every 5.0 ?? 106 years for the time span from 10 to 20 ?? 10 6 years ago. The middle and late Miocene and the Quaternary were times of greatly increased volcanic activity in the North Pacific and elsewhere around the Pacific Basin. The apparent absence of a volcanic record before the late Miocene at Deep Sea Drilling Project site 192 is the result not of plate motion, as suggested by Stewart and by Ninkovich and Donn, but rather of the diagenesis of ash layers. Major, apparently global volcanic episodes occurred at least twice in the last 20 ?? 106 years. Yet, only one major glacial epoch (the Pleistocene) has occurred. Therefore, even though glaciation coincided with an increase in Quaternary volcanism, the increased volcanism itself may not have been the primary cause of global cooling. Copyright ?? 1978 AAAS.

  9. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    USGS Publications Warehouse

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  10. FORAGE FISH ABUNDANCE AND DISTRIBUTION AT FORRESTER ISLAND, ALASKA

    E-print Network

    composition of forage fishes near sea lion and seabird rookeries in Southeast Alaska, East Aleutians1 FORAGE FISH ABUNDANCE AND DISTRIBUTION AT FORRESTER ISLAND, ALASKA Brenda L. Norcross Principal National Oceanic and Atmospheric Administration Award No. NA66FX0455 #12;2 FORAGE FISH ABUNDANCE

  11. Slopes of Martian Volcanoes

    NASA Astrophysics Data System (ADS)

    Kallianpur, K.; Mouginis-Mark, P. J.

    2001-03-01

    We use MOLA data to derive slope maps of 9 volcanoes on Mars. Tharsis volcanoes have the same shape as Galapagos volcanoes with deep calderas. Alba Patera is very similar to Tyrrhena Patera. Slopes greater than 7 degrees are common on Elysium Mons.

  12. Monitoring Active Volcanoes

    NSDL National Science Digital Library

    Robert Tilling

    This United States Geological Survey (USGS) publication discusses the historic and current monitoring of active volcanoes around the globe. Techniques to measure deviations in pressure and stress induced by subterranean magma movement, as well as other technologies, explain the ways in which researchers monitor and predict volcanoes. Case studies of volcanoes such as Mt. St. Helens, El Chichon, Mauna Loa, and others are discussed.

  13. How Volcanoes Work

    NSDL National Science Digital Library

    This educational resource describes the science behind volcanoes and volcanic processes. Topics include volcanic environments, volcano landforms, eruption dynamics, eruption products, eruption types, historical eruptions, and planetary volcanism. There are two animations, over 250 images, eight interactive tests, and a volcano crossword puzzle.

  14. USGS Hawaiian Volcano Observatory

    USGS Multimedia Gallery

    The USGS Hawaiian Volcano Observatory is perched on the rim of Kilauea Volcano's summit caldera (next to the Thomas A. Jaggar Museum in Hawai'i Volcanoes National Park), providing a spectacular view of the active vent in Halema‘uma‘u Crater....

  15. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  16. Cascades Volcano Observatory

    NSDL National Science Digital Library

    This is the homepage of the United States Geological Survey's (USGS) Cascades Volcano Observatory (CVO). The site features news and events, updates on current activity of Cascade Range volcanoes, and information summaries on each of the volcanoes in the range. There are also hazard assessment reports, maps, and a 'Living with Volcanoes' feature that provides general interest information. A set of menus provides access to more technical information, such as a glossary, information on volcano hydrology, monitoring information, a photo archive, and information on CVO research projects.

  17. Fraser Island Lady Elliot Island

    E-print Network

    Wang, Yan

    Hinchinbrook Island Lizard Island Double Island Green Island Fitzroy Island North and South Stradbroke Islands Moreton Island GOLD COAST Gulf of Carpenteria Thursday Island Torres Strait Horn Island Maroochydore

  18. Volcanic geology of Furnas Volcano, São Miguel, Azores

    Microsoft Academic Search

    J. E Guest; J. L Gaspar; P. D Cole; G Queiroz; A. M Duncan; N Wallenstein; T Ferreira; J.-M Pacheco

    1999-01-01

    Furnas is the easternmost of the three active central volcanoes on the island of São Miguel in the Azores. Unlike the other two central volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8×5 km across. It is built on the outer flanks of the Povoação\\/Nordeste lava complex that forms

  19. Life on the Edge: Holocene Tephra Stratigraphy of Tanginak Anchorage, Sitkalidak Island, Kodiak Archipelago, Alaska

    NASA Astrophysics Data System (ADS)

    Mahrt, E.; Bourgeois, J.; Fitzhugh, J. B.

    2004-12-01

    Geologic hazards associated with volcanism in the North Pacific have profound if usually temporary effects on the environment and human populations. Ash falls associated with these events are often preserved across large areas providing time specific markers. In the past century, volcanic activity and its effects in the North Pacific have been recorded, but much of the Holocene volcanic record in the Alaskan region is still being investigated. The Kodiak Archipelago, while not volcanic itself, is located near both Aleutian and Alaskan peninsula volcanoes. However, little has been published about the Holocene tephrochronology of the Kodiak region. This study focuses on the area around Tanginak Spring Site (KOD481). Located on Sitkalidak Island it is the earliest known human occupation in the Kodiak archipelago. We are documenting Holocene environmental changes on Sitkalidak Island and relating these changes to the archaeological record. As part of this work, we will establish a local tephrochronology using stratigraphy and geochemistry which will allow us to better correlate sedimentary changes across large areas as well as study human interaction with ashfall events. Herein we report a preliminary tephrochronology in peat excavations on Sitkalidak Island dating back to the earliest Holocene. Dates are radiocarbon years BP on peat directly below tephra. Marker tephra present in our reference sections are Katmai 1912, light gray (historic?), medium gray (3370), medium gray (3720), beige 1 (4340), apricot (5390), beige 3 (6790), black (9280), and white (11,520). Geochemical and petrographic analysis will help to determine with which volcanic events these tephra are associated. Establishing a local tephrochronology is important not only for local correlation but also to ascertain the tephra stratigraphy of the Kodiak Archipelago and beyond. The frequency of tephra in Tanginak Anchorage sections suggests that tephra will be a very useful stratigraphic tool in this region.

  20. ALEUTIAN MINK DISEASE PARVOVIRUS IN WILD RIPARIAN CARNIVORES IN SPAIN

    Microsoft Academic Search

    Sisco Manas; Juan Carlos Cena; Jordi Ruiz-Olmo; Santiago Palazon; Mariano Domingo; James B. Wolfinbarger; Marshall E. Bloom

    Serious declines in populations of native European mink (Mustela lutreola) have occurred in Europe. One responsible factor may be infectious diseases introduced by exotic American mink (Mustela vison). In order to investigate a possible role for Aleutian mink disease parvovirus (ADV), we surveyed native riparian carnivores and feral American mink. When serum samples from 12 free-ranging European and 16 feral

  1. Mink Farms Predict Aleutian Disease Exposure in Wild American Mink

    E-print Network

    Schulte-Hostedde, Albrecht

    Mink Farms Predict Aleutian Disease Exposure in Wild American Mink Larissa A. Nituch1 *, Jeff, is a particular threat. American mink (Neovison vison) populations across Canada appear to be declining, however, that domestic mink are escaping from mink farms and hybridizing with wild mink. Domestic mink may

  2. Penguin Bank: A Loa-Trend Hawaiian Volcano

    NASA Astrophysics Data System (ADS)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ?Nd-?Hf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes existed at ~2.2 Ma when the Molokai Island volcanoes formed and has persisted until the present. References: Abouchami et al., 2005 Nature, 434:851-856 Xu et al., 2005 G3, doi: 10.1029/2004GC000830 Xu et al., 2007 G3, doi: 10.1029/2006GC001554

  3. Temporal Variation in Fish Mercury Concentrations within Lakes from the Western Aleutian Archipelago, Alaska

    PubMed Central

    Kenney, Leah A.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; von Hippel, Frank A.

    2014-01-01

    We assessed temporal variation in mercury (Hg) concentrations of threespine stickleback (Gasterosteus aculeatus) from Agattu Island, Aleutian Archipelago, Alaska. Total Hg concentrations in whole-bodied stickleback were measured at two-week intervals from two sites in each of two lakes from June 1 to August 10, 2011 during the time period when lakes were ice-free. Across all sites and sampling events, stickleback Hg concentrations ranged from 0.37–1.07 µg/g dry weight (dw), with a mean (± SE) of 0.55±0.01 µg/g dw. Mean fish Hg concentrations declined by 9% during the study period, from 0.57±0.01 µg/g dw in early June to 0.52±0.01 µg/g dw in mid-August. Mean fish Hg concentrations were 6% higher in Loon Lake (0.56±0.01 µg/g dw) than in Lake 696 (0.53±0.01 µg/g dw), and 4% higher in males (0.56±0.01 µg/g dw) than in females (0.54±0.01 µg/g dw). Loon Lake was distinguished from Lake 696 by the presence of piscivorous waterbirds during the breeding season. Mercury concentrations in stickleback from Agattu Island were higher than would be expected for an area without known point sources of Hg pollution, and high enough to be of concern to the health of piscivorous wildlife. PMID:25029042

  4. Imaging active volcanes: High resolution 3D seismic tomography of Tenerife Island (Spain)

    Microsoft Academic Search

    A. Garcia-Yeguas; V. Sallarès; A. Rietbrock; J. M. Ibáñez

    2009-01-01

    Tenerife Island internal structure is not well-known. The 3D seismic tomography shows the internal structure of this active volcano with a high resolution. More than 6000 sources and 150 land stations deployed over the island have been used. Tenerife Island is an active volcanic island and it is located in Canary Island's archipelago (Spain). In January of 2007 an active

  5. Gravity and Geodetic Studies at Concepción volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Saballos, J. A.; Malservisi, R.; Connor, C.

    2010-12-01

    Four gravity surveys were conducted in an area of 18.0 x 12.4 km2 between 2007 and 2010 on and around Concepción volcano, Ometepe Island, Nicaragua. The amplitude of the anomaly ranges from -15 to 45 mGal. The bulk average density of the volcano was estimated by minimizing the cross-correlation, on a 2-dimensional grid, between the simple Bouguer anomaly and topography of the volcanic edifice, yielding a value of 1.764 ± 0.004 g cm-3. This has a meaningful impact on models such as gravitational spreading, and volcano loading. The resulting complete Bouguer anomaly map shows that the upper part of the volcanic edifice has a lower density than the lower part, consistent with the fact that the upper part is made of pyroclastic materials and built upon a more consolidated base left after a Plinian eruption not later than 2,720 ± 60 years B.P. The upper part of the cone is the major source for the generation of debris flows, which is a significant hazard for about 15,000 inhabitants. A low Bouguer anomaly trending NE and running from the southern side of the volcano to its western side is interpreted as an inactive fault that may be related to a recently discovered fault, within the lake, using seismic data 15 km south of the island. Dual-frequency geodetic global positioning data recorded in episodic campaigns have been collected on five stations around the volcano’s base. The two stations with more occupations, 2001-2010, located N and SE side of the volcano show a baseline change rate of -7 ± 2 mm/yr. While another pair of stations on the eastern and southern side of the volcano have a baseline change rate of -6 ± 6 mm/yr. These results suggest that the volcano is not currently spreading by the action of gravity.

  6. Alaska Volcano Observatory Monitoring Station

    USGS Multimedia Gallery

    An Alaska Volcano Observatory Monitoring station with Peulik Volcano behind. This is the main repeater for the Peulik monitoring network located on Whale Mountain, Beecharaof National Wildlife Refuge....

  7. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40/39Ar age determinations, Fuerteventura, Canary Islands

    USGS Publications Warehouse

    Allibon, James; Ovtcharova, Maria; Bussy, Francois; Cosca, Michael; Schaltegger, Urs; Bussien, Denise; Lewin, Eric

    2011-01-01

    High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520,000 to 800,000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope ?18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

  8. A photographic guide to some vascular plants of Kiska Island, Aleutian Islands, Alaska

    E-print Network

    Jones, Ian L.

    to hike through. Common grasses are Calamagrostis and Poa spp., patches of Anemone narcissiflora and Geum occidentalis, and Geranium erianthum. #12;Empetrum-Loiseleuria low elevation hummock tundra Occurs

  9. History of earthquakes and tsunamis along the eastern Aleutian-Alaska megathrust, with implications for tsunami hazards in the California Continental Borderland

    USGS Publications Warehouse

    Ryan, Holly F.; von Huene, Roland; Wells, Ray E.; Scholl, David W.; Kirby, Stephen; Draut, Amy E.

    2012-01-01

    During the past several years, devastating tsunamis were generated along subduction zones in Indonesia, Chile, and most recently Japan. Both the Chile and Japan tsunamis traveled across the Pacific Ocean and caused localized damage at several coastal areas in California. The question remains as to whether coastal California, in particular the California Continental Borderland, is vulnerable to more extensive damage from a far-field tsunami sourced along a Pacific subduction zone. Assuming that the coast of California is at risk from a far-field tsunami, its coastline is most exposed to a trans-Pacific tsunami generated along the eastern Aleutian-Alaska subduction zone. We present the background geologic constraints that could control a possible giant (Mw ~9) earthquake sourced along the eastern Aleutian-Alaska megathrust. Previous great earthquakes (Mw ~8) in 1788, 1938, and 1946 ruptured single segments of the eastern Aleutian-Alaska megathrust. However, in order to generate a giant earthquake, it is necessary to rupture through multiple segments of the megathrust. Potential barriers to a throughgoing rupture, such as high-relief fracture zones or ridges, are absent on the subducting Pacific Plate between the Fox and Semidi Islands. Possible asperities (areas on the megathrust that are locked and therefore subject to infrequent but large slip) are identified by patches of high moment release observed in the historical earthquake record, geodetic studies, and the location of forearc basin gravity lows. Global Positioning System (GPS) data indicate that some areas of the eastern Aleutian-Alaska megathrust, such as that beneath Sanak Island, are weakly coupled. We suggest that although these areas will have reduced slip during a giant earthquake, they are not really large enough to form a barrier to rupture. A key aspect in defining an earthquake source for tsunami generation is determining the possibility of significant slip on the updip end of the megathrust near the trench. Large slip on the updip part of the eastern Aleutian-Alaska megathrust is a viable possibility owing to the small frontal accretionary prism and the presence of arc basement relatively close to the trench along most of the megathrust.

  10. 77 FR 34262 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ...Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...prohibiting directed fishing for Pacific ocean perch in the Western Aleutian...exceeding the 2012 allocation of Pacific ocean perch in this area allocated...

  11. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...prohibiting directed fishing for Pacific ocean perch in the Western Aleutian...exceeding the 2010 allocation of Pacific ocean perch in this area allocated...

  12. 75 FR 69600 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...prohibiting directed fishing for Pacific ocean perch in the Eastern Aleutian...exceeding the 2010 allocation of Pacific ocean perch in this area allocated...

  13. 76 FR 65972 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...prohibiting directed fishing for Pacific ocean perch in the Eastern Aleutian...exceeding the 2011 allocation of Pacific ocean perch in this area allocated...

  14. 76 FR 43933 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...prohibiting directed fishing for Pacific ocean perch in the Western Aleutian...exceeding the 2011 allocation of Pacific ocean perch in this area allocated...

  15. Volcano Resources for Educators

    NSDL National Science Digital Library

    This site provides an up-to-date list of textual and video educational materials pertaining to volcanoes. The online pamphlets and books, hardcopy books, rental films and videos cover all levels of interest regarding volcanoes. The site furnishes the information or links to information needed to obtain these materials.

  16. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  17. Geochemical Source Components in Seafloor Lavas in the Aleutian Back-Arc

    NASA Astrophysics Data System (ADS)

    Siegrist, M. T.; Brown, S. T.; Yogodzinski, G. M.; Vervoort, J. D.

    2013-12-01

    Aleutian seafloor lavas dredged from small volcanic cones located between the emergent volcanoes and in the back-arc up to 60 km from the volcanic front, vary from basalt to dacite, with 48-70 % SiO2 and 4-13 % MgO. Nearly 30% of the samples are primitive, with Mg/Mg+Fe >0.60. Most primitive samples are basalts, which fall into two groups, based on minor and trace element abundances. Low/med-K basalts are similar to primitive basalts throughout the arc with <1 % K2O and <0.2 % P2O5. Most of these contain <500 ppm Sr, <14 ppm Rb, 4-7 ppm La and La/Yb=3-5. Medium/high-K basalts have higher K2O and P2O5 as well as higher abundances of most incompatible trace elements except Pb. Enrichments are stronger in the large ion lithophile elements compared to less strongly incompatible elements, resulting in more fractionated trace element patterns in med/high-K basalts (La/Yb=5-10, Sr/Y=21-39), but without an affect from residual or cumulate garnet (normalized Dy/Yb=1-2). Strontium and Pb isotopes are generally less radiogenic in med/high-K basalts (87Sr/86Sr=0.7028-0.7031, 207Pb/204Pb=15.49-15.55) compared to low/med-K basalts (87Sr/86Sr=0.7030-0.7035, 207Pb/204Pb=15.53-15.59). The pattern is one of less radiogenic Pb and Sr in samples that are more strongly enriched in incompatible elements such as K, Ce and Hf relative to Pb. Medium/high-K basalts with the least radiogenic Sr and Pb have incompatible trace element ratios that approach those of ocean ridge basalts (Ce/Pb=12, Zr/Sm=28, La/Ta=17). The broad isotopic patterns of all Aleutian lavas, and the unradiogenic Sr in med/high-K basalts, appear inconsistent with the involvement of an enriched mantle component in the Aleutian back-arc. Paired isotope-incompatible element systematics suggest a stronger influence from depleted mantle in the source that produced the med/high-K basalts. Mixing relationships based on 207Pb/204Pb and Ce/Pb indicate a reduced role for subducted sediment, and an increased role for depleted mantle in the source. Higher abundances of K2O and other incompatible elements in med/high-K basalts appear to require a separate explanation. One possibility is that med/high-K basalts are also produced by significantly lower degrees of partial melting in the mantle, compared to low/med-K basalts.

  18. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  19. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    PubMed

    Anthony, Robert G; Estes, James A; Ricca, Mark A; Miles, A Keith; Forsman, Eric D

    2008-10-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator to another. PMID:18959310

  20. Replication of Aleutian Mink Disease Parvovirus In Vivo Is Influenced by Residues in the VP2 Protein

    Microsoft Academic Search

    JAMES M. FOX; MARY A. MCCRACKIN STEVENSON; MARSHALL E. BLOOM

    1999-01-01

    Aleutian mink disease parvovirus (ADV) is the etiological agent of Aleutian disease of mink. Several ADV isolates have been identified which vary in the severity of the disease they elicit. The isolate ADV-Utah repli- cates to high levels in mink, causing severe Aleutian disease that results in death within 6 to 8 weeks, but does not replicate in Crandell feline

  1. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    USGS Publications Warehouse

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawai?i is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawai?i (Island of Hawai?i) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  2. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  3. Mapping tremor at K?lauea volcano

    NASA Astrophysics Data System (ADS)

    Wech, A.; Thelen, W. A.

    2014-12-01

    Mapping the magma pathway geometry beneath active volcanoes is vital to providing an understanding of how each system works, what drives its dynamics and what eventually controls the surface expression of volcanism. Seismicity can provide clues about the subsurface plumbing, but the seismic catalog is often incomplete. The broad spectrum of seismic phenomena at volcanoes, from discrete earthquakes to the continuous hum of tremor, hampers event identification, and there are no standard seismological tools to resolve this problem. Even at K?lauea, one of the best-instrumented and most studied volcanoes in the world, a detailed source geometry remains elusive. Here we present the first map of a volcano's deep plumbing system by taking a new approach to seismic monitoring. Using envelope cross-correlation, we systematically scan through 2.5 years of continuous seismic data to identify and locate thousands of undocumented volcanic sources, which we interpret to map the path of magma ascent from the deep mantle, offshore south of the Big Island, to the lava lake in K?lauea's crater. The results offer a fundamental insight into the source of K?lauea volcanism and generate a baseline understanding that increases our ability to interpret pre- and co-eruptive observations.

  4. ISLAND SUBSIDENCE, HOT SPOTS, AND LITHOSPHERIC THINNING

    Microsoft Academic Search

    Robert S. Detrick; S. Thomas Crough

    1978-01-01

    Drilling r%sults from several western Pacific atolls indicate the long-term subsidence of these islands is much more than would be expected from the cooling and thick- ening of the underlying lithosphere. This excess subsidence cannot be satisfactorily explained by isostatic adjustments to the weight of the volcano or the coral reef cap. It appears to be related to island formation

  5. Imaging magma storage reservoirs beneath Sierra Negra volcano, Galápagos, Ecuador

    NASA Astrophysics Data System (ADS)

    Tepp, G.; Belachew, M.; Ebinger, C. J.; Seats, K.; Ruiz, M. C.; Lawrence, J. F.

    2012-12-01

    Ocean island volcanoes initiate and grow through repeated eruptions and intrusions of primarily basaltic magma that thicken the oceanic crust above melt production zones within the mantle. The movement of oceanic plates over the hot, melt-rich upwellings produces chains of progressively younger basaltic volcanoes, as in the Galapagos Islands. Rates of surface deformation along the chain of 7 active volcanoes in the western Galápagos are some of the most rapid in the world, yet little is known of the subsurface structure of the active volcanic systems. The 16-station SIGNET array deployed between July 2009 and June 2011 provides new insights into the time-averaged structure beneath Sierra Negra, Cerro Azul, and Alcedo volcanoes, and the ocean platform. We use wavespeed tomography to image volcanic island structure, with focus on the magmatic plumbing system beneath Sierra Negra volcano, which has a deep, ~10 km-wide caldera and last erupted in 2005. We compare our results to those of ambient noise tomography. Our 120 x 100 km grid has a variable mesh of 2.5 - 10 km. We have good resolution at depths between 3 and 15 km, with poorer resolution beneath Cerro Azul volcano. Events from Alcedo volcano, which is just outside our array, cause some N-S smearing. Results from wavespeed tomography provide insights into the major island building processes: accretion through extrusive magmatism, magma chamber geometry and depth, radial dike intrusions, and magmatic underplating/sill emplacement. The wide caldera of Sierra Negra is underlain by high velocity (~7 %) material from depths of 5 - 15, and the flanks correspond to low velocity material at all depths. A high velocity zone corresponds to Cerro Azul (~3%). Aligned chains of eruptive centers correlate with elongate high velocity zones, suggesting that radial dikes are the sites of repeated dike intrusions. These chains are preferentially located along ridges linking nearby volcanoes. A comparison of well-resolved zones with ambient noise tomography shows a close correlation between the shapes and depth distributions. An exception is Cerro Azul volcano, where ambient noise tomography images a low velocity zone at frequencies corresponding to shallow depths, whereas wavespeed tomography in the mid to lower crust shows a moderate high velocity zone. We suggest that the differences can be explained by poor resolution from the wavespeed tomography in the location of Cerro Azul and bias toward the shallow depths with slower velocities in the ambient noise tomography. The high-velocity zone beneath Sierra Negra is consistent with a large volume olivine-gabbro cumulate mush zone proposed from petrological studies.

  6. Vent of Sand Volcano

    USGS Multimedia Gallery

    Vent of sand volcano produced by liquefaction is about 4 ft across in strawberry field near Watsonville. Strip spanning vent is conduit for drip irrigation system. Furrow spacing is about 1.2 m (4 ft) on center....

  7. Geologic implications of great interplate earthquakes along the Aleutian arc

    SciTech Connect

    Ryan, H.F.; Scholl, D.W. [Geological Survey, Menlo Park, CA (United States)

    1993-12-01

    We present new marine geophysical observations and synthesize previous geologic interpretations of the Aleutian arc to show that the epicenters of these great thrust-type earthquakes coincide with upper plate segments of the arc characterized by a coherent forearc structural fabric. We propose that variations in upper plate structural strength and mobility affect the mechanical properties of the interplate thrust zone and need to be considered in localizing interplate asperities. Forearc tectonic segmentaion associated with the partitioning of strike-slip and thrust motions may exert long-term controls on the rates of seismic moment release.

  8. Low pressure fractionation in arc volcanoes: an example from Augustine Volcano, Alaska

    SciTech Connect

    Daley, E.E.; Swanson, S.E.

    1985-01-01

    Augustine Volcano, situated between the Cook and Katmai segments of the Eastern Aleutian Volcanic Arc, has erupted 5 times since its discovery in 1778. Eruptions are characterized by early vent-clearing eruptions with accompanying pyroclastic flows followed by dome-building and more pyroclastic flows. Bulk rock chemistry of historic and prehistoric lavas shows little variability. The lavas are calc-alkaline, low to medium K, porphyritic acid andesites, rare basalt, and minor dacite pumice. FeO*/MgO averages 1.6 over this silica range. Plagioclase phenocrysts show complicated zoning patterns, but olivine, orthopyroxene, and clinopyroxene phenocrysts show little compositional variation. Hornblende, where present, is ubiquitously oxidized and was clearly out of equilibrium during the last stages of fractionation. Evolved liquid compositions of vitriophyric domes are rhyolitic, and of pumices are slightly less evolved suggesting that individual eruptions become more fractionated with time. Comparison of glass compositions with experimental results is consistent with low pressure fractionation of a relatively dry silicate melt. Disequilibrium of amphiboles and the evolved nature of glasses indicate that shallow level fractionation plays a significant role in the evolution of Augustine magmas. This model is consistent with a shallow magma chamber inferred from geophysical models of the Augustine system and also with its simple, predictable eruption pattern.

  9. Progressive deformation of a tertiary trench slope, Kodiak Islands, Alaska

    Microsoft Academic Search

    J. Casey Moore; Alan Allwardt

    1980-01-01

    The Eocene Sitkalidak Formation comprises the youngest and seaward-most deep-sea sequence exposed in the Kodiak Islands, which border the eastern Aleutian Trench. Fold orientation, structural style, and stereographic projections of poles to bedding define two structural units in the Sitkalidak Formation, which are geometrically distinct from overlying non-marine and marine shelf rocks of Oligocene and Miocene age. Landward vergence, intense

  10. Geothermal activity supports islands of biodiversity in a hyper-arid, high-elevation landscape, Socompa Volcano, Puna de Atacama, Andes: A cultivation-independent molecular-phylogenetic view of soil microbial communities from an extreme

    Microsoft Academic Search

    E. Costello; S. Reed; P. Sowell; S. Halloy; S. Schmidt

    2006-01-01

    Socompa Volcano is a relatively young, unglaciated, 6051 m (19,852`) elevation stratovolcano that lies at the Chilean-Argentine border (24° 25`S, 68° 15`W) at the eastern edge of the Atacama Basin in the Arid Core of the Andes. A 1984 exploration revealed isolated mats of moss, liverwort, algae and lichen- dominated autotrophic communities associated with geothermal vents or warmspots near Socompa`s

  11. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    Microsoft Academic Search

    Hetu C. Sheth; Jyotiranjan S. Ray; Rajneesh Bhutani; Alok Kumar; R. S. Smitha

    2009-01-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges),

  12. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    SciTech Connect

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.; Karl, H.A.; Marlow, M.S.; Stevenson, A.J.; Huggett, Q.; Kenyon, N.; Parson, L.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slides and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.

  13. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10

    NASA Astrophysics Data System (ADS)

    Kim, K. J.; Baskaran, M.; Jweda, J.; Feyzullayev, A. A.; Aliyev, C.; Matsuzaki, H.; Jull, A. J. T.

    2013-01-01

    We collected and analyzed five sediments from three mud volcano (MV) vents and six suspended and bottom sediment samples from the adjoining river near the Dashgil mud volcano in Azerbaijan for 10Be. These three MV are found among the 190 onshore and >150 offshore MV in this region which correspond to the western flank of the South Caspian depression. These MVs overlie the faulted and petroleum-bearing anticlines. The 10Be concentrations and 10Be/9Be ratios are comparable to the values reported for mud volcanoes in Trinidad Island. It appears that the stable Be concentrations in Azerbaijan rivers are not perturbed by anthropogenic effects and are comparable to the much older sediments (mud volcano samples). The 10Be and 9Be concentrations in our river sediments are compared to the global data set and show that the 10Be values found for Kura River are among the lowest of any river for which data exist. We attribute this low 10Be concentration to the nature of surface minerals which are affected by the residual hydrocarbon compounds that occur commonly in the study area in particular and Azerbaijan at large. The concentrations of 40K and U-Th-series radionuclides (234Th, 210Pb, 226Ra, and 228Ra) indicate overall homogeneity of the mud volcano samples from the three different sites. Based on the 10Be concentrations of the mud volcano samples, the age of the mud sediments could be at least as old as 4 myr.

  14. The duration, magnitude, and frequency of subaerial volcano deformation events: New InSAR results from Latin America and a global synthesis

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Fournier, T.; Riddick, S.; Jay, J.; Henderson, S. T.

    2009-12-01

    We combine new observations of volcano deformation in Latin America with more than 100 previous deformation studies in other areas of the world to constrain the frequency, magnitude, and duration of subaerial volcano deformation events. We discuss implications for eruptive hazards from a given deformation event and the optimum repeat interval for proposed InSAR satellite missions. We use L-band (23.6 cm wavelength) satellite-based interferometric synthetic aperture radar (InSAR) to make the first systematic search for deformation in all volcanic arcs of Latin America (including Mexico, Central America, the Caribbean, and the northern and southern Andes), spanning 2006-2008. We combine L- and C-band (5.6 cm wavelength) InSAR observations over the southern Andes volcanoes to extend the time series from 2002-2008 and assess the capabilities of the different radars -- L-band gives superior results in highly vegetated areas. Our observations reveal 11 areas of volcano deformation, some of them in areas that were thought to be dormant. There is a lack of deformation at several erupting volcanoes, probably due to temporal aliasing. The total number of deforming volcanoes in the central and southern Andes now totals 15, comparable to the Alaska/Aleutian arc. Globally, volcanoes deform across a variety of timescales (from seconds to centuries) often without eruption, and with no apparent critical observation timescale, although observations made every minute are sometimes necessary to see precursors to eruption.

  15. Petrology and geochemistry of Easter Island

    Microsoft Academic Search

    P. E. Baker; F. Buckley; J. G. Holland

    1974-01-01

    Easter Island has developed around three volcanoes—Poike, an older (3 m.y.) strato-volcano, Rano Kau, a caldera, and the fissure complex of Terevaka and its associated cones. The lavas show a wide compositional spread from tholeiites and olivine tholeiites to hawaiites, mugearites, benmoreites, trachytes and rhyolites (comendites). Hawaiite is by far the most abundant rock type and trachytes and rhyolites are

  16. Aleutian mink disease parvovirus in wild riparian carnivores in Spain.

    PubMed

    Mañas, S; Ceña, J C; Ruiz-Olmo, J; Palazón, S; Domingo, M; Wolfinbarger, J B; Bloom, M E

    2001-01-01

    Serious declines in populations of native European mink (Mustela lutreola) have occurred in Europe. One responsible factor may be infectious diseases introduced by exotic American mink (Mustela vison). In order to investigate a possible role for Aleutian mink disease parvovirus (ADV), we surveyed native riparian carnivores and feral American mink. When serum samples from 12 free-ranging European and 16 feral American mink were tested, antibodies to ADV were detected from three of nine European mink. ADV DNA was detected by polymerase chain reaction in whole cell DNA from four of seven carcasses; two American mink, one European mink and a Eurasian otter (Lutra lutra). Lesions typical of Aleutian disease were present in one of the American mink. A portion of the ADV VP2 capsid gene was sequenced and the results suggested that two sequence types of ADV were circulating in Spain, and that the Spanish ADVs differed from other described isolates from North America and Europe. Future conservation and restoration efforts should include measures to avoid introduction or spread of ADV infection to native animals. PMID:11272488

  17. Living With Volcanoes: The USGS Volcano Hazards Program

    NSDL National Science Digital Library

    This report summarizes the Volcano Hazards Program of the United States Geological Survey (USGS). Topics include its goals and activities, some key accomplishments, and a plan for future operations. There are also discussions of active and potentially active volcanoes in the U.S., the role of the USGS volcano observatories, prediction of eruptions, and potential danger to aircraft from volcanic plumes.

  18. Active monitoring at an active volcano: amplitude-distance dependence of ACROSS at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Michishita, Tsuyoshi; Ikuta, Ryoya; Iguchi, Masato

    2014-12-01

    First testing of volcanic activity monitoring with a system of continuously operatable seismic sources, named ACROSS, was started at Sakurajima Volcano, Japan. Two vibrators were deployed on the northwestern flank of the volcano, with a distance of 3.6 km from the main crater. We successfully completed the testing of continuous operation from 12 June to 18 September 2012, with a single frequency at 10.01 Hz and frequency modulation from 10 to 15 Hz. The signal was detected even at a station that is 28 km from the source, establishing the amplitude decay relation as a function of distance in the region in and around Sakurajima Volcano. We compare the observed amplitude decay with the prediction that was made before the deployment as a feasible study. In the prediction, we used the existing datasets by an explosion experiment in Sakurajima and the distance-dependent amplitude decay model that was established for the ACROSS source in the Tokai region. The predicted amplitude in Sakurajima is systematically smaller than that actually observed, but the dependence on distance is consistent with the observation. On the basis of the comparison of the noise level in Sakurajima Volcano, only 1-day stacking of data is necessary to reduce the noise to the level that is comparable to the signal level at the stations in the island.

  19. ConcepTest: Oldest Volcano

    NSDL National Science Digital Library

    Examine the diagram below. The lettered objects represent volcanoes formed on an oceanic plate above a hot spot. The arrow illustrates the direction of plate motion. Which volcano is the oldest? a. b. c. d.

  20. EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth

    SciTech Connect

    Moore, J.C. (Univ. of California, Santa Cruz (USA)); Sample, J. (Univ. of California, Los Angeles (USA)); Diebold, J. (Columbia Univ., Palisades, NY (USA)); Fisher, M.A.; Brocher, T.; Stevens, C. (Geological Survey, Menlo Park, CA (USA)); Talwani, M.; Ewing, J. (Houston Research Center, Woodlands, TX (USA)); von Huene, R. (Geomar, Keil (West Germany)); Rowe, C.; Stone, D. (Univ. of Alaska, Fairbanks (USA)); Sawyer, D. (Rice Univ., Houston, TX (USA))

    1991-05-01

    An EDGE deep crustal seismic reflection transect of the eastern Aleutian arc-trench traces oceanic crust and Moho more than 200 km beneath the accretionary prism to depths of more than 30 km. These horizons project beneath a prominent sequence of layered reflectors that extends from about 9 to 35 km beneath the Mesozoic core of the prism. Earthquake hypocenters imply continuity of the downgoing lithosphere from the base of the layered reflectors to beneath and beyond the active Augustine volcano. Rapid lateral growth of the prism in eocene-Oligocene time coincided with uplift of the Mesozoic core of the prism. During lateral growth, maintenance of critical taper requires thickening, either by internal deformation or underplating. Because exposed rocks show only modest postemplacement shortening, thickening most likely occurred by underplating, probably of the layered reflectors. The overall geometry of the layered reflectors is reminiscent of nappe structures, and their emplacement may represent crustal-scale duplexing associated with underplating. The EDGE reflection data and borehole results indicate that the self edge is marked by an active out-of-sequence thrust that separates the Paleogene and Neogene prisms. This thrust apparently developed in response to the prism's need to maintain critical taper and demonstrates that contrasts in lithology can result from mechanisms other than terrane emplacement.

  1. Michigan Technological University Volcanoes Page

    NSDL National Science Digital Library

    This site offers links to current volcanic activity reports, volcanic hazards mitigation, information on Central American volcanoes, remote sensing of volcanoes, volcanologic research in online journals, and more. There are also links to a site with information on becoming a volcanologist, and a comics page of volcano humor.

  2. View of Island of Kyushu, Japan from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An oblique view of the Island of Kyushu, Japan (32.5N, 131.0E), as seen from the Skylab space station in Earth orbit. The plume from the volcano Sakurajima is clearly seen in this photograph. The volcano and its plume were observed several times by the Skylab crew. The plume was seen to stream out to the south or southeast and become increasingly diffuse away from the volcano. In this photograph, it extends about 80 kilometers (50 miles) east from the volcano. As the plume reached the open ocean east of Kyushu it changed direction, sometimes abruptly, and fanned out to the northeast.

  3. View of Island of Kyushu, Japan from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An oblique view of the Island of Kyushu, Japan (32.0N, 132.0E), as seen from the Skylab space station in Earth orbit. The plume from the volcano Sakurajima is clearly seen in this photograph. The volcano and its plume were observed several times by the Skylab crew. The plume was seen to stream out to the south or southeast and become increasingly diffuse away from the volcano. In this photograph, it extends about 80 kilometers (50 miles) east from the volcano. As the plume reached the open ocean east of Kyushu it changed direction, sometimes abruptly, and fanned out to the northeast.

  4. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10.8 and IR 12.0. The GlobVolcano information system and its current experimentation represent a

  5. A volcano bursting at the seams: Inflation, faulting, and eruption at Sierra Negra volcano, Galápagos

    USGS Publications Warehouse

    Chadwick, William W.; Geist, Dennis J.; Jonsson, Sigurjon; Poland, Michael P.; Johnson, Daniel J.; Meertens, Charles M.

    2006-01-01

    The results of geodetic monitoring since 2002 at Sierra Negra volcano in the Galápagos Islands show that the filling and pressurization of an ?2-km-deep sill eventually led to an eruption that began on 22 October 2005. Continuous global positioning system (CGPS) monitoring measured >2 m of accelerating inflation leading up to the eruption and contributed to nearly 5 m of total uplift since 1992, the largest precursory inflation ever recorded at a basaltic caldera. This extraordinary uplift was accommodated in part by repeated trapdoor faulting, and coseismic CGPS data provide strong constraints for improved deformation models. These results highlight the feedbacks between inflation, faulting, and eruption at a basaltic volcano, and demonstrate that faulting above an intruding magma body can relieve accumulated strain and effectively postpone eruption.

  6. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    USGS Publications Warehouse

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  7. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  8. Numerical simulation of tsunami generation by pryoclastic flow at Aniakchak Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.

    2003-01-01

    Pyroclastic flows entering the sea are plausible mechanisms for tsunami generation at volcanic island arcs worldwide. We evaluate tsunami generation by pyroclastic flow using an example from Aniakchak volcano in Alaska where evidence for tsunami inundation coincident with a major, caldera-forming eruption of the volcano ca. 3.5 ka has been described. Using a numerical model, we simulate the tsunami and compare the results to field estimates of tsunami run up.

  9. Augustine Volcano Sampling

    USGS Multimedia Gallery

    Students climb out of ravine on north flank of Augustine Volcano during descent from sampling the 2006 lava flow during 2010 summer field campaign. From left: Laurel Morrow (junior geology major at CSUF), Matthew Bidwell (Science teacher at South Junior High School in Anaheim, CA), Ashley Melendez (...

  10. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  11. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Eyjafjallajökull Volcano Plume Heights     View Larger ... among the best constraints for aerosol plume evolution modeling. These data are being used in continuing studies of the ... data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image credit: ...

  12. Persistent volcanic signature observed around Barren Island, Andaman Sea, India

    NASA Astrophysics Data System (ADS)

    Laluraj, C. M.; Balachandran, K. K.; Sabu, P.; Panampunnayil, S. U.

    2006-12-01

    This study delineates the formation of a warm pool (>34°C) of air to the west (downwind) of the active volcano of the Barren Island during October November 2005. Barren Island is located in the Sumatra Andaman region, about 135 km east of Port Blair, and lies within the Burma microplate, the southern tip of which experienced a submarine earthquake ( M w 9.3) causing a tsunami in December 2004. Barren Island is the only volcano, which has shown sustained eruptive activity since shortly after the Great Sumatran Earthquake of December 2004. Our observations require further corroboration to relate how submarine earthquakes activate volcanoes and how far these thermal emissions influence climate changes. Because it links global warming and climate changes to the frequent emissions from a volcano activated by submarine earthquakes, this case study is of special interest to the earth-ocean-atmosphere sciences community.

  13. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  14. Modern salt-marsh and tidal-flat foraminifera from Sitkinak and Simeonof Islands, southwestern Alaska

    USGS Publications Warehouse

    Kemp, Andrew C.; Engelhart, Simon E.; Culver, Stephen J.; Nelson, Alan R.; Briggs, Richard W.; Haeussler, Peter J.

    2013-01-01

    We describe the modern distribution of salt-marsh and tidal-flat foraminifera from Sitkinak Island (Trinity Islands) and Simeonof Island (Shumagin Islands), Alaska, to begin development of a dataset for later use in reconstructing relative sea-level changes caused by great earthquakes along the Alaska-Aleutian subduction zone. Dead foraminifera were enumerated from a total of 58 surface-sediment samples collected along three intertidal transects around a coastal lagoon on Sitkinak Island and two intertidal transects on Simeonof Island. Two distinctive assemblages of salt-marsh foraminifera were recognized on Sitkinak Island. Miliammina fusca dominated low-marsh settings and Balticammina pseudomacrescens dominated the high marsh. These two species make up >98% of individuals. On Simeonof Island, 93% of individuals in high-marsh settings above mean high water were B. pseudomacrescens. The tidal flat on Simeonof Island was dominated by Cibicides lobatulus (60% of individuals), but the lower limit of this species is subtidal and was not sampled. These results indicate that uplift or subsidence caused by repeated earthquakes along the Alaska-Aleutian subduction zone could be reconstructed in coastal sediments using alternating assemblages of near monospecific B. pseudomacrescens and low-marsh or tidal-flat foraminifera.

  15. Analysis and interpretation of volcano deformation in Alaska: Studies from Okmok and Mt. Veniaminof volcanoes

    NASA Astrophysics Data System (ADS)

    Fournier, Thomas J.

    Four studies focus on the deformation at Okmok Volcano, the Alaska Peninsula and Mt. Veniaminof. The main focus of the thesis is the volcano deformation at Okmok Volcano and Mt. Veniaminof, but also includes an investigation of the tectonic related compression of the Alaska Peninsula. The complete data set of GPS observations at Okmok Volcano are investigated with the Unscented Kalman Filter time series analysis method. The technique is shown to be useful for inverting geodetic data for time dependent non-linear model parameters. The GPS record at Okmok from 2000 to mid 2007 shows distinct inflation pulses which have several months duration. The inflation is interpreted as magma accumulation in a shallow reservoir under the caldera center and approximately 2.51cm below sea level. The location determined for the magma reservoir agrees with estimates determined by other geodetic techniques. Smaller deflation signals in the Okmok record appear following the inflation pulses. A degassing model is proposed to explain the deflation. Petrologic observations from lava erupted in 1997 provide an estimate for the volatile content of the magma. The solution model VolatileCalc is used to determine the amount of volatiles in the gas phase. Degassing can explain the deflation, but only under certain circumstances. The magma chamber must have a radius between ˜1 and 21cm and the intruding magma must have less than approximately 500ppm CO2 . At Mt. Veniaminof the deformation signal is dominated by compression caused by the convergence of the Pacific and North American Plates. A subduction model is created to account for the site velocities. A network of GPS benchmarks along the Alaska Peninsula is used to infer the amount of coupling along the mega-thrust. A transition from high to low coupling near the Shumagin Islands has important implications for the seismogenic potential of this section of the fault. The Shumagin segment likely raptures in more frequent smaller magnitude quakes. The tectonic study provides a useful backdrop to examine the volcano deformation at Mt. Veniaminof. After being corrected for tectonic motion the sites velocities indicate inflation at the volcano. The deformation is interpreted as pressurization occurring beneath the volcano associated with eruptive activity in 2005.

  16. Space Radar Image of Sakura-Jima Volcano, Japan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.

  17. Automatic fuzzy-logic recognition of anomalous activity on long geophysical records: Application to electric signals associated with the volcanic activity of La Fournaise volcano (Reunion Island) [rapid communication

    NASA Astrophysics Data System (ADS)

    Zlotnicki, Jacques; Le Mouël, Jean-Louis; Gvishiani, Alexei; Agayan, Sergei; Mikhailov, Valentin; Bogoutdinov, Shamil; Kanwar, Rahul; Yvetot, Paul

    2005-05-01

    For the mitigation of natural hazards, geophysicists install more and more sensors in the field to enlarge the monitoring networks. In volcanic and seismogenic areas unambiguous results can be obtained only if many parameters are continuously recorded and processed over very long time series (several years) overlapping an eruption or an earthquake. On the other hand recent research has led to a sharp increase in the sampling rate of the data acquisition systems. Therefore, manual data processing with a first-step visual expertise becomes more and more difficult, time consuming and at the same time less objective. This paper introduces an alternative to manual signal recognition. It includes the development of a specific anomaly recognition algorithm called Difference Recognition Algorithm for Signals (DRAS) and its application to self-potential (SP) records obtained on the 10 channels of the electric stations located on La Fournaise volcano before, during and after the eruption of March 9, 1998. The algorithm starts with the construction of "rectification functionals" (examples are energy, length, zero crossing rate) from the data over a running characteristic time-window. Application of fuzzy set measures over the calculated functionals allows DRAS to identify, in particular, well spaced and time-organised SP oscillations observed on the volcano up to 2 weeks before the March 9, 1998 eruption. Based on the results obtained one can conclude that electric signals in the ULF band (frequency < 10 Hz) can be generated by the volcanic activity. The morphology and the distribution with time before the eruption can give some information on the location of the future vents.

  18. Amchitka Island, Alaska, special sampling project 1997

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-28

    This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

  19. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  20. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  1. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003. The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.

  2. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals and current monitoring level; associated hazards; and detailed descriptions of possible eruption scenarios. Where data allows, the likelihood of different eruption scenarios will also be depicted by probabilistic event trees. The chapters are illustrated with a number of figures, interactive maps and photographs.

  3. Multiparameter Volcano Surveillance of Villarrica Volcano (South-Central Chile)

    NASA Astrophysics Data System (ADS)

    Garofalo, Kristin; Peña, Paola; Dzierma, Yvonne; Hansteen, Thor; Rabbel, Wolfgang; Gil, Fernando

    2010-05-01

    Villarrica is one of the most active volcanoes in Chile and one of the few in the world known to have an active lava lake within its crater. This snow-covered volcano generates frequent strombolian eruptions and lava flows and, at times, the melting of snow can cause massive lahars. Besides this, continuous degassing and high-level seismicity are the most common types of activity recorded at the volcano. In order to investigate the mechanisms driving the persistent degassing and seismic activity at the volcano, we use a multiparameter approach based on the combined study of high time-resolved gas and seismic data. These data are respectively acquired by means of 3 stationary NOVAC-type scanning Mini-DOAS and 7 additional seismometers (short period and broad bands), installed at the volcano since March 2009, that complement the existing OVDAS (Observatorio Volcanológico de los Andes del Sur) volcano monitoring network. On the basis of the combination of gas and seismological measurements we aim at gaining insight into volcano-magmatic processes, and factors playing a role on onset of volcanic unrest and eruptive activity. Since the gas monitoring network has been installed at the volcano a correlation between SO2 emissions and seismic activity (LP events) has been recognized. A possible role played by regional tectonics on detected changes in volcano degassing and seismicity, and consequently on the volcanic activity, is also investigated.

  4. The Big Island of Hawaii

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Boasting snow-covered mountain peaks and tropical forest, the Island of Hawaii, the largest of the Hawaiian Islands, is stunning at any altitude. This false-color composite (processed to simulate true color) image of Hawaii was constructed from data gathered between 1999 and 2001 by the Enhanced Thematic Mapper plus (ETM+) instrument, flying aboard the Landsat 7 satellite. The Landsat data were processed by the National Oceanographic and Atmospheric Administration (NOAA) to develop a landcover map. This map will be used as a baseline to chart changes in land use on the islands. Types of change include the construction of resorts along the coastal areas, and the conversion of sugar plantations to other crop types. Hawaii was created by a 'hotspot' beneath the ocean floor. Hotspots form in areas where superheated magma in the Earth's mantle breaks through the Earth's crust. Over the course of millions of years, the Pacific Tectonic Plate has slowly moved over this hotspot to form the entire Hawaiian Island archipelago. The black areas on the island (in this scene) that resemble a pair of sun-baked palm fronds are hardened lava flows formed by the active Mauna Loa Volcano. Just to the north of Mauna Loa is the dormant grayish Mauna Kea Volcano, which hasn't erupted in an estimated 3,500 years. A thin greyish plume of smoke is visible near the island's southeastern shore, rising from Kilauea-the most active volcano on Earth. Heavy rainfall and fertile volcanic soil have given rise to Hawaii's lush tropical forests, which appear as solid dark green areas in the image. The light green, patchy areas near the coasts are likely sugar cane plantations, pineapple farms, and human settlements. Courtesy of the NOAA Coastal Services Center Hawaii Land Cover Analysis project

  5. Microscopic analysis of feather and hair fragments associated with human mummified remains from Kagamil Island, Alaska

    USGS Publications Warehouse

    Dove, C.J.; Peurach, S.C.

    2002-01-01

    Human mummified remains of 34 different infant and adult individuals from Kagamil Island, Alaska, are accessioned in the Department of Anthropology, National Museum of Natural History, Smithsonian Institution. Kagamil Island is one of the small islands in the Island of Four Mountains group of the Aleutian Islands, Alaska and is well known for the mummy caves located on the southwest coast of the island. The Kagamil mummy holdings at the Smithsonian represent one of the largest, best documented and preserved collections of this type. Although these specimens are stored in ideal conditions, many small feather and hair fragments have become loose or disassociated from the actual mummies over the years. This preliminary investigation of fragmentary fiber material retrieved from these artifacts is the first attempt to identify bird and mammal species associated with the mummified remains of the Kagamil Island, Alaska collection and is part of the ongoing research connected with these artifacts.

  6. Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1987-01-01

    Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2-5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins. Two groups of normal faults occur: major boundary faults common to both basins and 'intra-basin' faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates. Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive to hydrocarbon generation has prevailed during the past 6-5 my. The possibility for source rocks existing in the lower sections of the basins is suggested by exposures of middle and upper Miocene carbonaceous mudstone on nearby Atka Island and the implication that euxinic conditions may have prevailed during the initial formation of the basins. Large structures have evolved to trap migrating hydrocarbons, but questions remain concerning the preservation of primary porosity in a sedimentary section rich in reactive volcaniclastic debris. ?? 1987.

  7. Yellowstone Volcano Observatory

    NSDL National Science Digital Library

    This is the homepage of the United States Geological Survey's (USGS) Yellowstone Volcano Observatory. It features news articles, monitoring information, status reports and information releases, and information on the volcanic history of the Yellowstone Plateau Volcanic Field. Users can access monthly updates with alert levels and aviation warning codes and real-time data on ground deformation, earthquakes, and hydrology. There is also a list of online products and publications, and an image gallery

  8. Gelatin Volcanoes: Student Page

    NSDL National Science Digital Library

    This is the Student Page of an activity that teaches students how and why magma moves inside volcanoes by injecting colored water into a clear gelatin cast. The Student Page contains the activity preparation instructions and materials list, key words, and a photograph of the experimental setup. There is also an extension activity question that has students predict what will happen when the experiment is run using an elongated model. This activity is part of Exploring Planets in the Classroom's Volcanology section.

  9. Earthquakes and Volcanoes

    NSDL National Science Digital Library

    Medina, Philip

    This unit provides an introduction for younger students on earthquakes, volcanoes, and how they are related. Topics include evidence of continental drift, types of plate boundaries, types of seismic waves, and how to calculate the distance to the epicenter of an earthquake. There is also information on how earthquake magnitude and intensity are measured, and how seismic waves can reveal the Earth's internal structure. A vocabulary list and downloadable, printable student worksheets are provided.

  10. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. (National Geophysical Data Center, Boulder, CO (USA))

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  11. Constructing a reference tephrochronology for Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Coombs, M. L.

    2013-12-01

    Augustine Volcano is the most historically active volcano in Alaska's populous Cook Inlet region. Past on-island work on pre-historic tephra deposits mainly focused on using tephra layers as markers to help distinguish among prevalent debris-avalanche deposits on the island (Waitt and Beget, 2009, USGS Prof Paper 1762), or as source material for petrogenetic studies. No comprehensive reference study of tephra fall from Augustine Volcano previously existed. Numerous workers have identified Holocene-age tephra layers in the region surrounding Augustine Island, but without well-characterized reference deposits, correlation back to the source volcano is difficult. The purpose of this detailed tephra study is to provide a record of eruption frequency and magnitude, as well as to elucidate physical and chemical characteristics for use as reference standards for comparison with regionally distributed Augustine tephra layers. Whole rock major- and trace-element geochemistry, deposit componentry, and field context are used to correlate tephra units on the island where deposits are coarse grained. Major-element glass geochemistry was collected for use in correlating to unknown regional tephra. Due to the small size of the volcanic island (9 by 11 km in diameter) and frequent eruptive activity, on-island exposures of tephra deposits older than a couple thousand years are sparse, and the lettered Tephras B, M, C, H, I, and G of Waitt and Beget (2009) range in age from 370-2200 yrs B.P. There are, however, a few exposures on the south side of the volcano, within about 2 km of the vent, where stratigraphic sections that extend back to the late Pleistocene glaciation include coarse pumice-fall deposits. We have linked the letter-named tephras from the coast to these higher exposures on the south side using physical and chemical characteristics of the deposits. In addition, these exposures preserve at least 5 older major post-glacial eruptions of Augustine. These ultra-proximal sites, along with an off-island section 20 km to the west, provide the first continuous tephrochronology for Augustine that extends from the earliest to latest Holocene. Because examined pumice-fall exposures are limited to a narrow azimuth on the south side of the volcano, the on-island record is likely an incomplete catalog of major eruptions. It is possible however, that the coarse-grained near vent exposures (within 2 km) represent large eruptions that blanketed the entire island in tephra and are representative of the entire Holocene record. The major Holocene tephra units exposed on-island are composed of coarse-grained (cm-scale) pumice ranging in color from white to cream (variably oxidized), and light to medium gray as well as banded varieties. Accidental lithic assembles are highly variable and often unique for individual eruptions. Pumices range from 60-66 wt % SiO2 in whole-rock composition and are distinguishable using trace and minor element abundances and field context. Glass geochemistry is often distinguishable between tephras, but more overlap exists among deposits and presents challenges for correlating to regional tephras.

  12. The implementation of a volcano seismic monitoring network in Sete Cidades Volcano, São Miguel, Açores

    NASA Astrophysics Data System (ADS)

    Wallenstein, N.; Montalvo, A.; Barata, U.; Ortiz, R.

    2003-04-01

    Sete Cidades is one of the three active central volcanoes of S. Miguel Island, in the Azores archipelago. With a 5 kilometres wide caldera, it has the highest eruptive record in the last 5000 years with 17 intracaldera explosive events (Queiroz, 1997). Only submarine volcanic eruptions occurred in Sete Cidades volcano-tectonic system since the settlement of the island, in the 15th century. Small seismic swarms, some of which were interpreted as being related with magmatic and/or deep hydrothermal origin, characterize the most recent seismo-volcanic activity of Sete Cidades volcano. To complement the regional seismic network, operating since the early 80's, a new local seismic network was designed and installed at Sete Cidades Volcano. It includes 5 digital stations being one 5-seconds three-component station located inside the caldera and four 10-seconds one-component stations placed on the caldera rim. The solution found for the digital telemetry is based on UHF 19,2 Kbps radio modems linking four of the seismic stations to a central point, where the fifth station is installed. At this site, signals are synchronised with a GPS receiver, stored in a PC and re-transmitted to the Azores University Volcanological Observatory by an 115,2 Kbps Spread Spectrum 2.4 Ghz Radio Modem Network. Seismic signal tests carried out in all the area showed that cultural and sea noise, as well as some scattering effects due to the geological nature of the terrain (composed by thick pumice and ash deposits) and the topographic effects are factors that can not be avoidable and will be present in future records. This low cost network with locally developed and assembled components, based on short-period sensors without signal filtering in the field and digital telemetry, will improve the detection and location of low magnitude events in the Sete Cidades volcano area. Future developments of this program will include the installation of a seismic array inside the caldera to identify and characterize LP events and volcanic tremor signals.

  13. Synthesizing knowledge of ocean islands

    NASA Astrophysics Data System (ADS)

    Jefferson, Anne J.; Lees, Jonathan M.; McClinton, Tim

    2011-11-01

    AGU Chapman Conference on the Galápagos as a Laboratory for the Earth Sciences; Puerto Ayora, Galápagos, Ecuador, 25-30 July 2011 An inspiration for Darwin's theory of evolution, the Galápagos Islands and surrounding waters are a natural laboratory for a wide range of Earth science topics. The Galápagos are perfectly situated for geophysical and geochemical investigations of deep-Earth processes at a hot spot, and proximity to a spreading center allows exploration of hot spot-ridge interactions. Several highly active volcanoes show rapid deformation facilitating investigation of melt transport paths and volcanic structure. The islands exhibit a range of ages, eruptive styles, and climatic zones that allow analysis of hydrogeologic and geomorphic processes. The Galápagos Islands are a World Heritage Site and are an ideal setting for developing an integrated biological and geological understanding of ocean island evolution.

  14. Hybrid Hibiscadelphus (Malvaceae) in the Hawaiian Islands

    Microsoft Academic Search

    JAMES K. BAKER; SUZY ALLEN

    First- and second-generation hybrids of Hibiscadelphus giffardianus Rock and H. hualalaiensis Rock have been found in Hawaii Volcanoes National Park, and elsewhere in the Hawaiian Islands. They are under cultivation from interspecifically cross-fertilized seed which occurred on parent trees within the park. A history of parent and hybrid species is given, and floral characteristics are analyzed. Hybrid occurrence and the

  15. Origin of alkaline basalts at Kamchatka-Aleutian junction by decompressional melting of garnet-pyroxenite-bearing peridotite

    NASA Astrophysics Data System (ADS)

    Portnyagin, M.; Hoernle, K.; Avdeiko, G.

    2003-04-01

    Occurrence of primitive volcanic rocks of diverse geochemistry is a characteristic feature of the Kamchatka-Aleutian arc junction. Both mantle and subducted crustal materials appear to variably contribute to the deep sources of the rocks which range from calc-alkaline basalts and adakites (TiO2<1.5%, Nb/Zr=0.02-0.1) to Ti-rich alkaline basalts (TiO2>1.5 wt%, Nb/Zr=0.15-0.17). Here we report data on melt inclusions from alkaline basalts of Nachikinsky volcano - the northernmost Quaternary volcano in the Kamchatka arc. The samples studied are alkaline basalts of uniform composition (SiO2=52.5 wt%, Na2O+K2O=6.5 wt. %), containing 5 % large olivine phenocrysts (Fo84-86) with chromite (Cr/(Cr+Al)=0.1-0.6), primary fluid and melt inclusions. Large (>50 microns) melt inclusions were re-heated to obtain homogeneous glasses, which were analyzed by electron and ion probe and finally corrected for re-equilibration with host olivine to attain initial FeO~10.5 wt% (see accompanying abstract in this volume). Despite the uniformity of the host basalts and olivines, compositions of the melt inclusions were found to vary broadly. Al, Ti, K, P, LREE, B, U, Th, Zr, Sr and Cl show excellent negative correlations when plotted against SiO2. The incompatible element enriched end-member of the compositional array has K2O=3 wt. %, TiO2=3 wt. %, La=35 ppm, Nb=60 ppm, B=4.5 ppm, Th=3 ppm and [La/Sm]n=4.8 at SiO2=46 wt. %, whereas the depleted end-member has K2O=0.4 wt%, TiO2=1.5 wt. %, La=5 ppm, Nb=7 ppm, B=0.6 ppm, Th=0.4 ppm and [La/Sm]n=1 at SiO2=51 wt. %. Ratios of [Sm/Yb]n (2.6) and [Dy/Yb]n (1.5) are uniform in all inclusions, and their elevated values imply presence of garnet in the melt source. Low ratios of B/La (0.15), La/Nb (0.5), low Cl/K (0.01) and H2O/K2O (<0.2) preclude involvement of slab-derived fluids in the origin of the melts. Contribution of adakite-like melts can also be excluded as the melts are expected to show coherent enrichment in silica and incompatible elements, which does not occur with our data. More likely, the inclusions in olivines of the alkaline basalts represent instantaneous decompressional melts from a mantle source containing up to 20% garnet pyroxenite melted between 1-2 GPa. These results appear to confirm the existence of a “slab-window” suggested at the Kamchatka-Aleutian junction, which allows production of the mantle melts with no contribution from subducted Pacific crust.

  16. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability of coverage by future lava flows.

  17. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  18. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    NASA Astrophysics Data System (ADS)

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-06-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72-84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57-78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  19. Teleseismically recorded seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake

    USGS Publications Warehouse

    Engdahl, E.R.; Billington, S.; Kisslinger, C.

    1989-01-01

    The Andreanof Islands earthquake (Mw 8.0) is the largest event to have occurred in that section of the Aleutian arc since the March 9, 1957, Aleutian Islands earthquake (Mw 8.6). Teleseismically well-recorded earthquakes in the region of the 1986 earthquake are relocated with a plate model and with careful attention to the focal depths. The data set is nearly complete for mb???4.7 between longitudes 172??W and 179??W for the period 1964 through April 1987 and provides a detailed description of the space-time history of moderate-size earthquakes in the region for that period. Additional insight is provided by source parameters which have been systematically determined for Mw???5 earthquakes that occurred in the region since 1977 and by a modeling study of the spatial distribution of moment release on the mainshock fault plane. -from Authors

  20. Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Aster, R. C.; Kyle, P. R.

    2010-12-01

    Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.

  1. Investigating the potential for volcano flank instability triggered by recent dike intrusions at Fogo volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; González, Pablo; Hooper, Andrew; Wright, Tim

    2015-04-01

    Gravitational flank-collapses at volcanoes are rare but catastrophic events that have rarely been witnessed by humans (e.g., Mount St. Helens in 1980). It has been proposed that gravitationally unstable volcanic flanks can be classified in two different types based on the flanks slope: volcanoes characterized by gentle slopes (Hawaiian-like) and that have very dynamic flanks exhibiting high rates of deformation and, conversely, steep-sided volcanoes (Macaronesian-like) showing minimal ground deformation. The two types of volcanoes could therefore reach the stable-state through different mechanisms and experience different mass-wasting processes. Numerous giant debris-avalanche deposits have been identified offshore the volcanoes of the Canary Islands and Cape Verde. Given the steep slopes of these volcanoes, the mass-wasting events may have occurred suddenly and with minimal precursory signals. Several mechanisms have been proposed as potential triggers and among these the intrusion of shallow dikes feeding fissure eruptions is one of the best candidates. In this work, we investigate this hypothesis in the light of new and revised results derived from the analysis of geodetic observations at Fogo volcano (Cape Verde). Fogo has erupted twice in the last 20 years (1995 and 2014-2015) and in both occasions the volcano erupted along fissures that seem to be fed by dykes intruding the shallow crust and the volcanic edifice. We re-process radar data from the ERS satellite to obtain state-of-the-art deformation maps spanning the 1995 eruption and revisit previously proposed models of the magmatic system. Our results indicate that both eruptions were fed by sub-vertical dikes, steeply dipping to the SE, and radiating from the Pico do Fogo volcanic cone to the SW. We also study the effect of such magmatic intrusions in terms of the stress regime that they generate and analyze whether the 1995 and 2014 intrusions could potentially destabilize the structures along which a previous volcano flank-collapse has occurred. Finally, we briefly investigate potential mechanisms that could control the propagation of magma along pre-existing fracture systems.

  2. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  3. Volcano Monitoring Using Google Earth

    Microsoft Academic Search

    W. Cameron; J. Dehn; J. E. Bailey; P. Webley

    2009-01-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO's remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration's (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration's

  4. Earthquakes, Volcanoes, and Plate Tectonics

    NSDL National Science Digital Library

    This page consists of two maps of the world, showing how earthquakes define the boundaries of tectonic plates. Volcanoes are also distributed at plate boundaries (the "Ring of Fire" in the Pacific) and at oceanic ridges. It is part of the U.S. Geological Survey's Cascades Volcano Observatory website, which features written material, images, maps, and links to related topics.

  5. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 'Decade Volcanoes' that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Ruiz Volcano: Preliminary report

    NASA Astrophysics Data System (ADS)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  7. Gelatin Volcanoes: Teacher Page

    NSDL National Science Digital Library

    This is the Teacher Page of an activity that teaches students how and why magma moves inside volcanoes by injecting colored water into a clear gelatin cast. Activity preparation instructions are on the Student Page, while the Teacher Page has background, preparation, and in-class information. An extension activity has the students repeat the experiment using a square bread pan to simulate the original research that was done using elongate models with triangular cross-sections. This activity is part of Exploring Planets in the Classroom's Volcanology section.

  8. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models

    USGS Publications Warehouse

    Kauahikaua, J.; Hildenbrand, T.; Webring, M.

    2000-01-01

    A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.

  9. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  10. Morne aux Diables. a potentially active volcano in northern Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Rheubottom, A. N.; Smith, A. L.; Roobol, M. J.

    2005-12-01

    The island of Dominica, which is located near the center of the Lesser Antilles island arc, comprises at least 8 potentially active volcanoes. One of these is Morne aux Diables, an isolated composite cone situated at the extreme northern end of the island. Age dating suggests that the main cone building activity occurred between 1.5 and 1.0 million years ago. Exposed on the volcano's flanks however are a number of unconsolidated valley-fill block and ash flow deposits suggesting more recent activity. One of these deposits, on the north-east flank of the volcano, has been recently dated at > 46,000 years B.P. Other evidence of potential activity from this center includes the presence of warm (27°C), acidic (pH 1.6), sulfate-rich springs on the summit of the volcano, hot springs on the coast, and the occurrence in 2002 and 2003 of shallow earthquake swarms partially located beneath the volcano. Morne aux Diables is dominantly composed of deposits of block and ash flows and associated domes from Pelean-style activity, however, semi-vesicular andesite block and ash flows and surges (Asama-style activity) and pumiceous lapilli falls (Plinian-style activity) are locally abundant. The Pelean domes are located both in the summit region and along the southern flanks of the volcano. Petrologically, the volcano is composed of a monotonous series of porphyritic andesites and dacites containing phenocrysts of plagioclase+augite-hypersthene with very sparse crystals of hornblende and quartz. Petrological models suggest the Morne aux Diables andesites and dacites can be produced by fractional crystallization of basaltic magma (such as those erupted from centers such as Morne Anglais and Morne Plat Pays in the south). Minor variations within this suite of andesites and dacites can be related to upper crustal fractionation of phenocryst phases.

  11. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...from bid crab. A reduction/history vessel's bid crab may not include, to the extent that NMFS has knowledge: (i) Triangle tanner crab, grooved tanner crab, and any other crab not involved in the various area/species endorsements, (ii)...

  12. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...from bid crab. A reduction/history vessel's bid crab may not include, to the extent that NMFS has knowledge: (i) Triangle tanner crab, grooved tanner crab, and any other crab not involved in the various area/species endorsements, (ii)...

  13. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...decides in what order to accept bids in the reverse auction this section specifies. Co-bidder...warranted. (p) Acceptance —(1) Reverse auction. NMFS will determine which responsive bids NMFS accepts by using a reverse auction in which NMFS first...

  14. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...decides in what order to accept bids in the reverse auction this section specifies. Co-bidder...warranted. (p) Acceptance —(1) Reverse auction. NMFS will determine which responsive bids NMFS accepts by using a reverse auction in which NMFS first...

  15. 50 CFR 600.1103 - Bering Sea and Aleutian Islands (BSAI) Crab species program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...National Vessel Documentation Center located in Falling Waters...vessel's: (i) Fisheries trade endorsement under the...ever fish anywhere in the world; (4) Crab reduction...vessel anywhere in the world for any species under...privilege vessels' fisheries trade endorsements and...

  16. O tephra from a compositionally zoned magma body: Fisher Caldera, Unimak Island, Aleutians

    E-print Network

    Bindeman, Ilya N.

    in pumice clasts and ash layers produced by the 9100 yr BP composite dacite-basaltic andesite climactic to equilibrium at magmatic temperatures. Dacitic and overlying basaltic±andesitic tephra of the climactic eruption, subsequent intracaldera basaltic to andesitic lavas, and a cumulate inclusion, are similarly low

  17. North Pacific Fishery Management Plans 1. Bering Sea/Aleutian Islands (BSAI) Groundfish

    E-print Network

    mackerel, walleye pollock, rockfish, sablefish, and salmon. #12; Commercial Fish Facts Landings revenue the 10 year period was 51% for Atka mackerel (1997-1998); from 2000- 2001, prices jumped 122% for Atka mackerel, the largest annual increase during this period. Landings - On average, the key species or species

  18. EXAMINING PATTERNS IN NOCTURNAL SEABIRD ACTIVITY AND RECOVERY ACROSS THE WESTERN ALEUTIAN ISLANDS, ALASKA, USING AUTOMATED

    E-print Network

    Jones, Ian L.

    -Petrels (Oceanodroma leucorhoa), Fork-tailed Storm-Petrels (O. furcata), and Ancient Murrelets (Synthliboramphus antiquus). Specifically, we conclude that although recovery of nocturnal burrow-nesting seabird populations

  19. FOUNTAIN GRASS CONTROL IN Hawaii VOLCANOES NATIONAL PARK: MANAGEMENT CONSIDERATIONS AND STRATEGIES

    Microsoft Academic Search

    J. Timothy Tunison

    Fountain grass (Pennisetum setaceum), perceived as one of the most disruptive alien species in Hawaii, has threatened native ecosystems below 3,940 ft (1,200 m) elevation in Hawaii Volcanoes National Park for about 30 years. Because this species has spread rapidly to high densities on the leeward side of Hawaii Island, invaded bare lava flows (which results in disruption of primary

  20. Lava Flow From Fissure Eruption on Kilauea Volcano's East Rift Zone

    USGS Multimedia Gallery

    A new fissure eruption in September 2011 on the east flank of Pu‘u ‘?‘? on K?lauea Volcano's east rift zone reminds us of the need to be aware of our ever-changing volcanic environment on Hawai‘i Island. The fissure—the source of the lava flow—is sh...

  1. An Electromagnetic Sounding Survey of the Summit of Kilauea Volcano, Hawaii

    Microsoft Academic Search

    Dallas B. Jackson; George V. Keller

    1972-01-01

    A time domain electromagnetic sounding technique was used to study variations in ground conductivity in the summit area of Kilauea volcano on the Island of Hawaii. The survey indicated the presence of a boundary between two zones with different resistivities at depths ranging from 900 to 2000 meters. In the upper zone the observed resistivity was 10-30 ohm m, whereas

  2. Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii

    Microsoft Academic Search

    Alexander Malahoff; Gary M. McMurtry; John C. Wiltshire; Hsueh-Wen Yeh

    1982-01-01

    High-resolution bathymetric surveys, bottom photography and sample analyses show that Loihi Seamount at the southernmost extent of the Hawaiian `hotspot' is an active, young submarine volcano that is probably the site of an emerging Hawaiian island. Hydrothermal deposits sampled from the active summit rift system were probably formed by precipitation from cooling vent fluids or during cooling and oxidation of

  3. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  4. Elysium Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On July 4, 1998--the first anniversary of the Mars Pathfinder landing--Mars Global Surveyor's latest images were radioed to Earth with little fanfare. The images received on July 4, 1998, however, were very exciting because they included a rare crossing of the summit caldera of a major martian volcano. Elysium Mons is located at 25oN, 213oW, in the martian eastern hemisphere. Elysium Mons is one of three large volcanoes that occur on the Elysium Rise-- the others are Hecates Tholus (northeast of Elysium Mons) and Albor Tholus (southeast of Elysium Mons). The volcano rises about 12.5 kilometers (7.8 miles) above the surrounding plain, or about 16 kilometers (9.9 miles) above the martian datum-- the 'zero' elevation defined by average martian atmospheric pressure and the planet's radius.

    Elysium Mons was discovered by Mariner 9 in 1972. It differs in a number of ways from the familiar Olympus Mons and other large volcanoes in the Tharsis region. In particular, there are no obvious lava flows visible on the volcano's flanks. The lack of lava flows was apparent from the Mariner 9 images, but the new MOC high resolution image--obtained at 5.24 meters (17.2 feet) per pixel--illustrates that this is true even when viewed at higher spatial resolution.

    Elysium Mons has many craters on its surface. Some of these probably formed by meteor impact, but many show no ejecta pattern characteristic of meteor impact. Some of the craters are aligned in linear patterns that are radial to the summit caldera--these most likely formed by collapse as lava was withdrawn from beneath the surface, rather than by meteor impact. Other craters may have formed by explosive volcanism. Evidence for explosive volcanism on Mars has been very difficult to identify from previous Mars spacecraft images. This and other MOC data are being examined closely to better understand the nature and origin of volcanic features on Mars.

    The three MOC images, 40301 (red wide angle), 40302 (blue wide angle), and 40303 (high resolution, narrow angle) were obtained on Mars Global Surveyor's 403rd orbit around the planet around 9:58 - 10:05 p.m. PDT on July 2, 1998. The images were received and processed at Malin Space Science Systems (MSSS) around 4:00 p.m. PDT on July 4, 1998.

    This image: MOC image 40303, shown at 25% of its original size. North is approximately up, illumination is from the right. Resolution of picture shown here is 21 meters (69 feet) per pixel. Image was received with bright slopes saturated at DN=255.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-print Network

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  6. Groundwater Flow System of Unzen Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Kazahaya, K.; Yasuhara, M.; Inamura, A.; Sumii, T.; Hoshizumi, H.; Kohno, T.; Ohsawa, S.; Yusa, Y.; Kitaoka, K.; Yamaguchi, K.

    2001-12-01

    Unzen volcano (peak 1486 m) is developed on the western part of Beppu-Shimabara Graben (20 km NS wide and 200 km EW long) located at Kyushu island, SW Japan. We have been studied groundwater system of the volcano using geochemical and hydrological technique in order to estimate flux of magmatic volatiles through the groundwater. We have collected over 150 sample waters from springs, rivers, and wells, and they are analyzed for major chemistry and stable isotope ratios. Over 50 pore waters were extracted from 100-1200m-deep drilled cores at the eastern flank of the volcano by a centrifugal separator. The results are summarized as follows: 1) Flow rates of springs and rivers indicate that most of the groundwater recharged at Unzen volcano flew down the slope directed to the east, which is restricted by graben structure. 2) All the groundwaters and spring waters collected inside the graben area are isotopically homogeneous, i. e., -48~-45 permil for hydrogen isotope ratio, indicating that the groundwater is well mixed during flowing. 3) In spite of the isotopic homogeneity, the groundwaters are chemically different from each other. In particular, bicarbonate concentration ranged from 20 to 180 mg/l, and it is inconsistent with the isotopic results. There are some active faults parallel to the graben, and bicarbonate anomalies are found close to the faults. Therefore, the chemical variation is likely to be made due to the addition of deep-seated CO2 ascending through the faults. 4) Linear relation between 1/DIC and carbon isotope ratio of DIC indicates that the DIC in groundwater is explained by simple mixing with two source, magmatic and organic matters. Combining the flow rate data, DIC concentrations and carbon isotope ratios, we estimated the magmatic CO2 flux as 30 t/d through the fault system. 5) Pore waters at 100-300m deep have similar isotopic composition to the present shallow groundwater and river waters, suggesting that those pore waters occupy a part of the shallowest aquifer. On the other hand, pore waters collected from the drilled core at greater than 500m show isotopic discontinuity in the vertical variation, indicating that stagnant aquifers formed at deeper levels.

  7. Genetic characterization of Aleutian mink disease viruses isolated in China.

    PubMed

    Li, Yanwu; Huang, Juan; Jia, Yun; Du, Yijun; Jiang, Ping; Zhang, Rui

    2012-08-01

    Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complex mediated disease in minks. To understand the genetic characterization of AMDV in China, the genomic sequences of three isolates, ADV-LN1, ADV-LN2, and ADV-LN3, from different farms in the Northern China were analyzed. The results showed that the lengths of genomic sequences of three isolates were 4,543, 4,566, and 4,566 bp, respectively. They shared only 95.5-96.3 % nucleotide identity with each other. The nucleotide and amino acid homology of genome sequence between the Chinese isolates and European or American strains (ADV-G, ADV-Utah1, and ADV-SL3) were 92.4-95.0 % and 92.1-93.8 %, respectively. The amino acid substitutions randomly distributed in the genome, especially NS gene. ADV-LN1 strain had a 9-amino-acid deletion at amino acid positions 70 and 72-79 in the VP1 gene, comparing with ADV-G strain; ADV-LN2 and ADV-LN3 strains had 1-amino-acid deletion at amino acid positions 70 in the VP1. Some potential glycosylation site mutations in VP and NS genes were also observed. Phylogenetic analysis results showed that the three strains belonged to two different branches based on the complete coding sequence of VP2 gene. However, they all were in the same group together with the strains from United States based on the NS1 sequence. It indicated that Chinese AMDV isolates had genetic diversity. The origin of the ancestors of the Chinese AMDV strains might be associated with the American strains. PMID:22415541

  8. Mink Farms Predict Aleutian Disease Exposure in Wild American Mink

    PubMed Central

    Nituch, Larissa A.; Bowman, Jeff; Beauclerc, Kaela B.; Schulte-Hostedde, Albrecht I.

    2011-01-01

    Background Infectious diseases can often be of conservation importance for wildlife. Spillover, when infectious disease is transmitted from a reservoir population to sympatric wildlife, is a particular threat. American mink (Neovison vison) populations across Canada appear to be declining, but factors thus far explored have not fully explained this population trend. Recent research has shown, however, that domestic mink are escaping from mink farms and hybridizing with wild mink. Domestic mink may also be spreading Aleutian disease (AD), a highly pathogenic parvovirus prevalent in mink farms, to wild mink populations. AD could reduce fitness in wild mink by reducing both the productivity of adult females and survivorship of juveniles and adults. Methods To assess the seroprevalence and geographic distribution of AD infection in free-ranging mink in relation to the presence of mink farms, we conducted both a large-scale serological survey, across the province of Ontario, and a smaller-scale survey, at the interface between a mink farm and wild mink. Conclusions/Significance Antibodies to AD were detected in 29% of mink (60 of 208 mink sampled); however, seroprevalence was significantly higher in areas closer to mink farms than in areas farther from farms, at both large and small spatial scales. Our results indicate that mink farms act as sources of AD transmission to the wild. As such, it is likely that wild mink across North America may be experiencing increased exposure to AD, via disease transmission from mink farms, which may be affecting wild mink demographics across their range. In light of declining mink populations, high AD seroprevalence within some mink farms, and the large number of mink farms situated across North America, improved biosecurity measures on farms are warranted to prevent continued disease transmission at the interface between mink farms and wild mink populations. PMID:21789177

  9. Types and Effects of Volcano Hazards

    NSDL National Science Digital Library

    This United States Geological Survey (USGS) website discusses volcano hazards by type (gas, lahars, landslides, lava flows, pyroclastic flows, and tephra) and by the effect volcanoes have on people and land. This site gives an overview of volcano hazards and links to selected case studies listed by country, volcano, year, and type of hazard. Links to more USGS information about volcanoes, such as a photo glossary, a site index, observatories, and an educator's page are also provided.

  10. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  11. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians

    PubMed Central

    Gochfeld, Michael; Jeitner, Christian; Burke, Sean; Volz, Conrad D.; Snigaroff, Ronald; Snigaroff, Daniel; Shukla, Tara; Shukla, Sheila

    2014-01-01

    Levels of mercury and other contaminants should be lower in birds nesting on isolated oceanic islands and at high latitudes without any local or regional sources of contamination, compared to more urban and industrialized temperate regions. We examined concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in the eggs, and the feathers of fledgling and adult glaucous-winged gulls (Larus glaucescens) nesting in breeding colonies on Adak, Amchitka, and Kiska Islands in the Aleutian Chain of Alaska in the Bering Sea/North Pacific. We tested the following null hypotheses: 1) There were no differences in metal levels among eggs and feathers of adult and fledgling glaucous-winged gulls, 2) There were no differences in metal levels among gulls nesting near the three underground nuclear test sites (Long Shot 1965, Milrow 1969, Cannikin 1971) on Amchitka, 3) There were no differences in metal levels among the three islands, and 4) There were no gender-related differences in metal levels. All four null hypotheses were rejected at the 0.05 level, although there were few differences among the three test sites on Amchitka. Eggs had the lowest levels of cadmium, lead, and mercury, and the feathers of adults had the lowest levels of selenium. Comparing only adults and fledglings, adults had higher levels of cadmium, chromium, lead and mercury, and fledglings had higher levels of arsenic, manganese and selenium. There were few consistent interisland differences, although levels were generally lower for eggs and feathers from gulls on Amchitka compared to the other islands. Arsenic was higher in both adult feathers and eggs from Amchitka compared to Adak, and chromium and lead were higher in adult feathers and eggs from Adak compared to Amchitka. Mercury and arsenic, and chromium and manganese levels were significantly correlated in the feathers of both adult and fledgling gulls. The feathers of males had significantly higher levels of chromium and manganese than did females. The levels of most metals in feathers are below those known to be associated with adverse effects in the gulls or their predators. However, levels of mercury in some gull eggs are within a range suggesting that several eggs should not be eaten in one day by sensitive humans. PMID:18626778

  12. K?lauea-an Explosive Volcano in Hawai‘i

    USGS Publications Warehouse

    Swanson, Donald A.; Fiske, Dick; Rose, Tim; Houghton, Bruce; Mastin, Larry

    2011-01-01

    K?lauea Volcano on the Island of Hawai‘i, though best known for its frequent quiet eruptions of lava flows, has erupted explosively many times in its history - most recently in 2011. At least six such eruptions in the past 1,500 years sent ash into the jet stream, at the cruising altitudes for today's aircraft. The eruption of 1790 remains the most lethal eruption known from a U.S. volcano. However, the tendency of K?lauea's 2 million annual visitors is to forget this dangerous potential. Cooperative research by scientists of the U.S. Geological Survey, Smithsonian Institution, and University of Hawai‘i is improving our understanding of K?lauea's explosive past and its potential for future violent eruptions.

  13. WILDLIFE DISEASES Testing for Aleutian Mink Disease Virus in the River Otter

    E-print Network

    Schulte-Hostedde, Albrecht

    canadensis) in Sympatry with Infected American Mink (Neovison vison) Jeff Bowman,1,3 Anne G. Kidd,1 Larissa A Virus in the River Otter (Lontra canadensis) in Sympatry with Infected American Mink (Neovison vison.bowman@ontario.ca) ABSTRACT: Aleutian mink disease virus (AMDV) occurs in the American mink (Neovi- son vison) in wild

  14. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities and observations on active volcanoes. The issue to facilitate the access to this valued source of information is to reshape this fragmented community into a unique infrastructure concerning common technical solutions and data policies. Some of the key actions include the implementation of virtual accesses to geophysical, geochemical, volcanological and environmental raw data and metadata, multidisciplinary volcanic and hazard products, tools for modelling volcanic processes, and transnational access to facilities of volcano observatories. Indeed this implementation will start from the outcomes of the two EC-FP7 projects, Futurevolc and MED-SUV, relevant to three out of four global volcanic Supersites, which are located in Europe and managed by European institutions. This approach will ease the exchange and collaboration among the European volcano community, thus allowing better understanding of the volcanic processes occurring at European volcanoes considered worldwide as natural laboratories.

  15. Monitoring Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Swanson, Don

    Monitoring volcanoes is a surprisingly controversial enterprise. Some volcanologists argue that monitoring promises too much and delivers too little for risk mitigation. They trust only strict land-use measures (and accompanying high insurance premiums in risky zones) and urge that funds be used for public education and awareness rather than for instrumental monitoring. Others claim that monitoring is more akin to Brownian motion than to science: lots of action but little net progress. Still other volcanologists acknowledge the potential value of monitoring for prediction and warning but despair at the difficulty of it all. And, finally, some shy from surveillance, fearing the legal consequences of a failed monitoring effort during these litigious times. They wonder, “Will I be sued if an eruption is not foreseen or if an instrument fails at a critical time?”

  16. Cascades Volcano Observatory: Educational Outreach

    NSDL National Science Digital Library

    This portal provides access to educational materials produced by the Cascades Volcano Observatory. The items include news and current events, information on current activity of the Cascades volcanoes, and emergency information in the event of an eruption. There are also frequently-asked-questions features, a glossary, and links to reading materials such as fact sheets and reports of the United States Geological Survey (USGS). For educators and students, there are activities, special features, posters, videos, and slide shows.

  17. Kizimen Volcano: An Unzen-like Magma System in Kamchatka

    NASA Astrophysics Data System (ADS)

    Churikova, T.; Churikova, T.; Ivanov, B.; Eichelberger, J.; Trusov, S.; Gardner, J.; Belousov, A.; Belousov, A.; Browne, B.; Izbekov, P.; Werner, G.

    2001-12-01

    Kizimen Volcano is a Holocene lava and dome complex from basaltic andesite to dacite composition situated on the eastern edge of the Central Kamchatka Depression (CKD) and midway between volcanoes of the eastern front (EVF) and of CKD. All lavas are horblende-bearing mid-potassic of the calcalkaline series. They differ from two-pyroxene basalts and andesites of ancestral, Pleistocene, Kizimenok Volcano in showing greater geochemical and petrological evidence of modification by crustal processes. Prominent characteristics of the rocks are large phenocrysts of plagioclase and hornblende co-existing with olivine and orthopyroxene as well as abundant cognate mafic enclaves of more primitive (basaltic to basaltic andesitic) composition. Trace element geochemistry is typical of island arc volcanism (IAB). Sr, Nd, Pb isotope systematics lie well within normal Kamchatka Volcanoes and close to MORB. Phenocrysts show extreme disequilibrium in terms of magnesium number of mafic phases (olivine, pyroxene), presence of quartz, and coexistence of apatite and sulfide. Enclaves are both fractionated compared to primary mantle melt and are contaminated by incorporation of more acidic material from the host. Similarly, the host is contaminated by basic debris from enclaves. This interaction likely occurs by frequent recharge of mantle magma to a mid to upper crustal chamber. Despite pervasive evidence of magma mingling, the fundamental geochemical signature of subduction origin remains clear. Thus, the apparently crustal admixed silicic component is likely of cogenetic plutonic origin. Kizimen exhibits some remarkable similarities to Unzen Volcano in Japan. 1. Repeated extrusion of hybrid dacite domes and more basic lavas from the summit region. 2. Thick block-and-ash aprons to domes but relative paucity of tephras, despite apparent high water content of the magma. 3. Close association with an active graben structure. 4. Nearly identical petrologic characteristics indicative of shallow interaction of contrasting magmas. An age of less than 1,000 years for the youngest flows (from lichenometry) and presence of vigorous superheated fumaroles indicate the likelihood of future, Unzen-like eruptions.

  18. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    Microsoft Academic Search

    Hetu C. Sheth; Jyotiranjan S. Ray; Rajneesh Bhutani; Alok Kumar; R. S. Smitha

    2009-01-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost\\u000a active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly\\u000a basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds\\u000a deposited by pyroclastic falls and surges),

  19. ENVIRONMENTAL CONTAMINANTS IN BALD EAGLE EGGS FROM THE ALEUTIAN ARCHIPELAGO

    Microsoft Academic Search

    Robert G. Anthony; A. Keith Miles; Mark A. Ricca; James A. Estes

    2007-01-01

    N). Concentrations of polychlorinated biphenyls (PCBs), p,p-dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archi- pelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on

  20. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    USGS Publications Warehouse

    Lu, Zhiming; Masterlark, T.; Dzurisin, D.

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr-1 during 1992-1993 to 2 ??? 3 cm yr-1 during 1993-1995 and then to about -1 ??? -2 cm yr-1 during 1995-1996. The posteruption inflation rate generally decreased with time during 1997-2001, but increased significantly during 2001-2003. By the summer of 2003, 30 ??? 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  1. US Geological Survey Volcano Hazards Program

    NSDL National Science Digital Library

    The US Geological Survey Volcano Hazards Program website presents its objectives "to advance the scientific understanding of volcanic processes and to lessen the harmful impacts of volcanic activity." The public can explore information on volcano monitoring, warning schemes, and emergency planning. Students and educators can find out about the types, effects, location, and history of volcano hazards. The website offers recent online volcano reports and maps, volcano factsheets, videos, and a photo glossary. Teachers can find online versions of many educational volcano-related books and videos. The website features the volcanic observatories in Alaska, the Cascades, Hawaii, Long Valley, and Yellowstone.

  2. Elemental and organochlorine residues in bald eagles from Adak Island, Alaska.

    PubMed

    Stout, Jordan H; Trust, Kimberly A

    2002-07-01

    Adak Island is a remote island in the Aleutian Island archipelago of Alaska (USA) and home to various military activities since World War II. To assess the contaminant burden of one of Adak Island's top predators, livers and kidneys were collected from 26 bald eagle (Haliaeetus leucocephalus) carcasses between 1993 and 1998 for elemental and organochlorine analyses. Mean cadmium, chromium, mercury, and selenium concentrations were consistent with levels observed in other avian studies and were below toxic thresholds. However, elevated concentrations of chromium and mercury in some individuals may warrant concern. Furthermore, although mean polychlorinated biphenyl and pp'-dichlorodiphenyldichloroethylene concentrations were below acute toxic thresholds, they were surprisingly high given Adak Island's remote location. PMID:12238368

  3. Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery

    USGS Publications Warehouse

    Lu, Zhiming; Rykhus, R.; Masterlark, T.; Dean, K.G.

    2004-01-01

    Field mapping of young lava flows at Aleutian volcanoes is logistically difficult, and the utility of optical images from aircraft or satellites for this purpose is greatly reduced by persistent cloud cover. These factors have hampered earlier estimates of the areas and volumes of three young lava flows at Westdahl Volcano, including its most recent (1991-1992) flow. We combined information from synthetic aperture radar (SAR) images with multispectral Landsat-7 data to differentiate the 1991-1992 flow from the 1964 flow and a pre-1964 flow, and to calculate the flow areas (8.4, 9.2, and 7.3 km 2, respectively). By differencing a digital elevation model (DEM) from the 1970-1980s with a DEM from the Shuttle Radar Topography Mission (SRTM) in February 2000, we estimated the average thickness of the 1991-1992 flow to be 13 m, which reasonably agrees with field observations (5-10 m). Lava-flow maps produced in this way can be used to facilitate field mapping and flow-hazards assessment, and to study magma-supply dynamics and thus to anticipate future eruptive activity. Based on the recurrence interval of recent eruptions and the results of this study, the next eruption at Westdahl may occur before the end of this decade. ?? 2004 Elsevier Inc. All rights reserved.

  4. Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000

    USGS Publications Warehouse

    Lu, Zhiming; Power, J.A.; McConnell, V.S.; Wicks, C., Jr.; Dzurisin, D.

    2002-01-01

    Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.

  5. Magma ascent and contamination beneath one intraplate volcano: evidence from S and O isotopes in glass inclusions and their host clinopyroxenes from Miocene basaltic hyaloclastites southwest of Gran Canaria (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Gurenko, Andrey A.; Chaussidon, Marc; Schmincke, Hans-Ulrich

    2001-12-01

    We report ion microprobe analyses of S and O isotopes in glass inclusions and their host clinopyroxenes (Cpx) from Miocene basaltic hyaloclastites drilled during Ocean Drilling Program (ODP) Leg 157. This is the first study where high-precision in situ ? 34S and ? 18O measurements were applied in order to constrain the isotopic variability of intraplate magmas and to have insights into establishment of isotopic equilibrium between the melt and crystallizing phenocrysts. Glass inclusions range from tholeiitic to alkali basaltic composition and contain varying to very high proportions of sulfur dissolved as sulfate (S 6+/S total = 0.40 to 0.87) at S contents of 800 to 2100 ppm. The ? 34S values varying from -1.0 to +8.5 ± 1.5‰, exceed significantly the range reported for fresh submarine midocean ridge basalt (MORB) and oceanic island basalt (OIB) glasses, and positively correlate with Cl concentrations and S 6+/S total ratios. The ? 18O values in glass inclusions and their host Cpx crystals analyzed within 50 ?m distance away from inclusions are also strongly variable (inclusions: +5.0 to +8.2 ± 0.7‰; Cpx: +5.7 to +8 ± 0.7‰) and are in agreement with O-isotope equilibrium between Cpx and basaltic melt. A broad ? 18O range (+5.6 to +7.3‰) decoupled from that of the melt inclusions was also found in the Cpx crystals measured >500 ?m away from inclusions. The variations of ? 34S and ? 18O in glass inclusions are interpreted as resulting from a combination of degassing and assimilation processes. Hydrothermally altered basaltic crust (? 34S = +4.0 to +9.6‰, ? 18O = +9.0‰) mixed with oceanic sediments (? 18O ? 25‰) and containing up to 5 wt.% of seawater sulfate (? 34S = +21‰, ? 18O = +9.5‰) represents the most probable contaminating end-member. The oxygen isotope heterogeneity found in most Cpx crystals and their glass inclusions implies that magma contamination and inclusion-trapping occurred during a few years only, i.e., too short for O isotopic homogeneity to be reestablished in the entire crystals.

  6. Long-period seismicity at Shishaldin volcano (Alaska) in 2003-2004: Indications of an upward migration of the source before a minor eruption

    NASA Astrophysics Data System (ADS)

    Cusano, P.; Palo, M.; West, M. E.

    2015-01-01

    We have analyzed the long-period (LP) seismic activity at Shishaldin volcano (Aleutians Islands, Alaska) in the period October 2003-July 2004, during which a minor eruption took place in May 2004, with ash and steam emissions, thermal anomalies, volcanic tremor and small explosions. We have focused the attention on the time evolution of LP rate, size, spectra and polarization dip angle along the dataset. We find an evolution toward more shallow dip angles in the polarization of the waveforms during the sequence. The dip angle is a manifestation of the source location. Because the LP seismic sources are presumed to reflect the aggregation of gas slug or pockets within the melt, we use the polarization dip at the LP onset as a proxy for the nucleation depth of the seismic events within the conduit. We refer to this parameter as the nucleation dip and the position along the conduit of the gas aggregation as nucleation depth. The nucleation dip changes throughout the dataset. It shows a sharp decrease between the end of December 2003 and the end of January 2004, followed by a gradual increase until the onset of the eruption. At the same time, a general increase of the LP rate occurs. We have associated the dip evolution with a sinking and a subsequent decrease of the nucleation depth, which would quickly migrate up to about 8 km below the crater rim, followed by a slow depth decrease which culminates in the eruption. The change in the nucleation depth reflects either a pressure variation within the plumbing system, which would affect the confining pressure experienced by the gas aggregations. We have imputed such a pressure change to the intrusion of batches of magma from a deeper magma chamber (< 10 km) toward a shallower one (> 5 km). For a cylindric conduit with rigid walls, this leads to a volume of the injected new magma of 105-107 m3, compatible with estimates in other areas, suggesting that the LP process can be considered a good proxy of the thermodynamical conditions of the shallow plumbing system.

  7. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years. Simple avalanche flow modeling was able to reasonably replicate Iliamna avalanches and can thus be applied for hazard assessments. Hazards at Iliamna Volcano are low due to its remote location; however, we emphasize the transfer potential of the methods presented here to other ice-capped volcanoes with much higher hazards such as those in the Cascades or the Andes. ?? 2007 Elsevier B.V. All rights reserved.

  8. Alien invasions from space observations: detecting feral goat impacts on Isla Isabela, Galapagos Islands with the AVHRR

    Microsoft Academic Search

    S. Henderson; T. P. Dawson

    2009-01-01

    One of the greatest threats to native biodiversity is attributable to the invasion of habitats by alien species. In particular, feral animals can be some of the most aggressive and damaging introduced species in the natural environment, especially on isolated islands. Rapid growth of the feral goat population on Alcedo volcano, one of six volcanoes on the largest of the

  9. SYLLABUS FOR GEOS 293 Volcanism and Active Geology of the island of Hawai'i (2 credits)

    E-print Network

    Hartman, Chris

    'i, and by extension, other oceanic islands. Topics include physical features of the volcanoes, plate tectonics Kilauea and Mauna Loa volcanoes, and we can also make basic features of plate tectonics and a physical understanding of plate tectonics, erosion, the age and development of the ocean basins, and a host of other

  10. SYLLABUS FOR GEOS 393 Volcanism and Active Geology of the island of Hawai'i (2 credits)

    E-print Network

    Hartman, Chris

    'i, and by extension, other oceanic islands. Topics include physical features of the volcanoes, plate tectonics Kilauea and Mauna Loa volcanoes, and we can also make basic features of plate tectonics and a physical understanding of plate tectonics, erosion, the age and development of the ocean basins, and a host of other

  11. Ejecta and Landslides from Augustine Volcano Before 2006

    USGS Publications Warehouse

    Waitt, Richard B.

    2010-01-01

    A late Wisconsin volcano erupted onto the Jurassic-Cretaceous sedimentary bedrock of Augustine Island in lower Cook Inlet in Alaska. Olivine basalt interacting with water erupted explosively. Rhyolitic eruptive debris then swept down the south volcano flank while late Wisconsin glaciers from mountians on western mainland surrounded the island. Early to middle Holocene deposits probably erupted onto the island but are now largely buried. About 5,200, 3,750, 3,500 and 2,275 yr B.P. Augustine ash fell 70 to 110 km away. Since about 2,300 yr B.P. several large eruptions deposited coarse-pumice fall beds on the volcano flanks; many smaller eruptions dropped sand and silt ash. The steep summit erupting viscous andesite domes has repeatedly collapsed into rocky avalanches that flowed into the sea. After a collapse, new domes rebuilt the summit. One to three avalanches shed east before about 2,100 yr B.P., two large ones swept east and southeast between about 2,100 and 1,700 yr B.P., and one shed east and east-northeast between 1,700 and 1,450 yr B.P. Others swept into the sea on the volcano's south, southwest, and north-northwest between about 1,450 and 1,100 yr B.P., and pyroclastic fans spread southeast and southwest. Pyroclastic flows and surges poured down the west and south flanks and a debris avalanche plowed into the western sea between about 1,000 and 750 yr B.P. A small debris avalanche shed south-southeast between about 750 and 390 yr B.P., and large lithic pyroclastic flows went southeast. From about 390 to 200 yr B.P., three rocky avalanches swept down the west-northwest, north-northwest, and north flanks. The large West Island avalanche reached far beyond a former sea cliff and initiated a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. In October 1883 a debris avalanche plowed into the sea to form Burr Point on the north-northeast; then came ashfall, pyroclastic surge, and pyroclastic flows. Eruptions in 1935 and 1963-64 grew summit lava domes that shed coarse rubbly lithic pyroclastic flows down the southwest and south flanks. Eruptions in 1976 and 1986 grew domes that shed large pyroclastic flows northeast, north, and north-northwest. The largest debris avalanches off Augustine sweep into

  12. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge

    USGS Publications Warehouse

    Robinson, J.E.; Eakins, B.W.

    2006-01-01

    High-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands are used to calculate the volumes of individual shield volcanoes and island complexes (Niihau, Kauai, Oahu, the Maui Nui complex, and Hawaii), taking into account subsidence of the Pacific plate under the load of the Hawaiian Ridge. Our calculated volume for the Island of Hawaii and its submarine extent (213 ?? 103 km3) is nearly twice the previous estimate (113 ?? 103 km3), due primarily to crustal subsidence that had not been accounted for in the earlier work. The volcanoes that make up the Island of Hawaii (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea and Loihi) are generally considered to have been formed within the past million years, and our revised volume for the island indicates that magma supply rates are greater than previously estimated, 0.21 km3/yr as opposed to ???0.1 km3/yr. This result also shows that compared with rates calculated for the Hawaiian Islands (0-6 Ma, 0.095 km3/yr), the Hawaiian Ridge (0-45 Ma, 0.017 km3/yr), and the Emperor Seamounts (45-80 Ma, 0.010 km3/yr), magma supply rates have increased dramatically to build the Island of Hawaii.

  13. East Sakhalin island arc paleosystem of the Sea of Okhotsk region

    NASA Astrophysics Data System (ADS)

    Grannik, V. M.

    2012-08-01

    It has been established that volcanic rocks of the Schmidt, Rymnik, and Terpeniya terranes are fragments of the compound Early to Late Cretaceous-Paleogene East Sakhalin island arc system of the Sea of Okhotsk region. This island arc paleosystem was composed of back-arc volcano-plutonic belt, frontal volcanic island arc, fore-arc, inter-arc, and back-arc basins, and the Sakhalin marginal paleobasin. The continental volcanic rocks dominate in the back-arc volcano-plutonic belt and frontal volcanic island arc. The petrochemical composition of basalts, basaltic andesites, andesites, and trachytes from the frontal island arc formed in submarine conditions are typical of oceanic island arc or marginal sea rocks (IAB). The petrochemical composition of volcanic rocks from the island arc structures indicates its formation on the heterogeneous basement including the continental and oceanic blocks.

  14. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: October 21, 2003

  15. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    Summary: The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005. The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005. Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.

  16. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  17. Ash and Steam, Soufriere Hills Volcano, Monserrat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  18. Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury, and selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Snigaroff, Daniel; Snigaroff, Ronald; Stamm, Timothy; Volz, Conrad

    2014-01-01

    Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium were examined in the down feathers and eggs of female common eiders (Somateria mollissima) from Amchitka and Kiska Islands in the Aleutian Chain of Alaska to determine whether there were (1) differences between levels in feathers and eggs, (2) differences between the two islands, (3) positive correlations between metal levels in females and their eggs, and (4) whether there was more variation within or among clutches. Mean levels in eggs (dry weight) were as follows: arsenic (769 ppb, ng/g), cadmium (1.49 ppb), chromium (414 ppb), lead (306 ppb), manganese (1,470 ppb), mercury (431 ppb) and selenium (1,730 ppb). Levels of arsenic were higher in eggs, while chromium, lead, manganese, and mercury were higher in feathers; there were no differences for selenium. There were no significant interisland differences in female feather levels, except for manganese (eider feathers from Amchitka were four times higher than feathers from Kiska). Levels of manganese in eggs were also higher from Amchitka than Kiska, and eider eggs from Kiska had significantly higher levels of arsenic, but lower levels of selenium. There were no significant correlations between the levels of any metals in down feathers of females and in their eggs. The levels of mercury in eggs were below ecological benchmark levels, and were below human health risk levels. However, Aleuts can seasonally consume several meals of bird eggs a week, suggesting cause for concern for sensitive (pregnant) women. PMID:17934788

  19. Island Biogeography

    NSDL National Science Digital Library

    John Jungck (BioQUEST Curriculum Consortium; Biology)

    2005-12-16

    This excel workbook demonstrates the principles of the MacArthur-Wilson theory of Island Biogeography. It allows the user to define the mainland species pool, area of the island, and distance of the island from the mainland. Graphical output included species richness equilibrium at varying island size and distance. The workbook also allows the user to calculate a species-area function for data entered into the data input page. Several datasets on island area and species richness are included for various types of islands and species. Variables and formulas are defined in the accompanying tutorial.

  20. Chaiten Volcano, Chile

    NASA Technical Reports Server (NTRS)

    2008-01-01

    On May 2, 2008 Chile's Chaiten Volcano erupted after 9,000 years of inactivity. Now, 4 weeks later, the eruption continues, with ash-, water-, and sulfur-laden plumes blowing hundreds of kilometers to the east and north over Chile and Argentina. On May 24, ASTER captured a day-night pair of thermal infrared images of the eruption, displayed here in enhanced, false colors. At the time of the daytime acquisition (left image) most of the plume appears dark blue because it is too thick for upwelling ground radiation to penetrate. At the edges it appears orange, indicating the presence of ash and sulfur dioxide. In the nighttime image (right), the plume is orange and red near the source, and becomes more yellow-orange further away from the vent. The possible cause is that ash is settling out of the plume further downwind, revealing the dominant presence of sulfur dioxide.

    The images were acquired May 24, 2008, cover an area of 37 x 26.5 km, and are located near 42.7 degrees south latitude, 72.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  1. Magnetotelluric Investigations of the Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hoversten, G.; Newman, G. A.; Gasperikova, E.; Kauahikaua, J. P.

    2002-12-01

    A collaborative effort between Lawrence Berkeley National Laboratory, Sandia National Laboratories, Electromagnetic Instruments and the USGS Hawaiian Volcano Observatory has undertaken a three-dimensional (3D) magnetotelluric (MT) study of the Kilauea volcano in Hawaii. The survey objectives are 1): to produce a high quality 3D MT data set over the central caldera and the eastern and southwestern rift zones, 2) to use this data set to drive the continued development of new 3D MT inversion algorithms and 3) to integrate existing gravity, seismic and electrical data with the new MT data to provide an improved understanding of the internal structure of the volcano. Data acquired over the currently active eastern rift zone are compared to that from the now dormant southwest rift zone. The first phase of data collection acquired 6 sites in February 2002 with a second phase acquiring 30 sites in August 2002. The survey was designed to make use of multiple remote reference sites and multi-station robust processing techniques with as many as eight acquisition systems operating simultaneously. Excellent quality data was obtained even in the harshest conditions, such as those encountered on the fresh lava flows of the eastern rift zone, where electrical contact resistances were extremely high. Most sites, which required helicopter access, were recorded with only electric (E) fields to reduce weight and setup time. Certain helicopter sites had magnetic (H) data and were processed with and without local H data demonstrating the validity of using remote H fields with local E fields for impedance calculations. 3-D inversion of the data assuming the data to be local impedance is compared to 3D inversion that explicitly models the locations of the measured E and H fields. Selected two-dimensional (2D) lines of sites are inverted with 2D algorithms and compared to previously obtained electrical structure from transient EM soundings. Early one-dimensional inversion of a site located near the caldera shows a conductor at 5km depth, which is consistent with the depth to magma as shown by seismic monitoring experiments. In addition, a shallower conductor at about 1km depth is indicated and is being investigated as a possible indicator of shallow magma. The site near the caldera was occupied in February and again in August 2002, giving a time-lapse view of the resistivity structure. Three dimensional modeling of the entire island of Hawaii shows that the costal effects of the sea-land interface on the MT data is greatly reduced compared to the effects observed at continental boundaries where the interface is more 2D in nature.

  2. Redoubt Volcano Summit Crater During Eruption

    USGS Multimedia Gallery

    Redoubt Volcano summit crater during eruption. This was taken just after explosive activity at redoubt ceased. There were still significant gas and steam emissions occurring. Iliamna Volcano to the south of Redoubt is visible in the background....

  3. Proceedings of the North Aleutian Basin information status and research planning meeting.

    SciTech Connect

    LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

    2007-10-26

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

  4. The Geyser Bight geothermal area, Umnak Island, Alaska

    SciTech Connect

    Motyka, R.J. (Alaska Div. of Geological and Geophysical Surveys, Juneau, AK (United States)); Nye, C.J. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States) Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Turner, D.L. (Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Liss, S.A. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States))

    1993-08-01

    The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO[sub 2] rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165 and 200 C, respectively, as estimated by geothermometry. Sulfate-water isotope geothermometers suggest a deeper reservoir with a temperature of 265 C. The thermal spring waters have relatively low concentrations of Cl (600 ppm) but are rich in B (60 ppm) and As (6 ppm). The As/Cl ratio is among the highest reported for geothermal waters. 41 refs., 12 figs., 8 tabs.

  5. Seismic signals from Lascar Volcano

    NASA Astrophysics Data System (ADS)

    Hellweg, M.

    1999-03-01

    Lascar, the most active volcano in northern Chile, lies near the center of the region studied during the Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO '94). Its largest historical eruption occurred on 19 April 1993. By the time of the PISCO '94 deployment, its activity consisted mainly of a plume of water vapor and SO 2. In April and May 1994, three short-period, three-component seismometers were placed on the flanks of the volcano, augmenting the broadband seismometer located on the NW flank of the volcano during the entire deployment. In addition to the usual seismic signals recorded at volcanoes, Lascar produced two unique tremor types: Rapid-fire tremor and harmonic tremor. Rapid-fire tremor appears to be a sequence of very similar, but independent, "impulsive" events with a large range of amplitudes. Harmonic tremor, on the other hand, is a continuous, cyclic signal lasting several hours. It is characterized by a spectrum with peaks at a fundamental frequency and its integer multiples. Both types of tremor seem to be generated by movement of fluids in the volcano, most probably water, steam or gas.

  6. Submarine landslides in French Polynesia SUBMARINE LANDSLIDES IN SOCIETY AND AUSTRAL ISLANDS,

    E-print Network

    Clouard, Valerie

    Submarine landslides in French Polynesia 1 SUBMARINE LANDSLIDES IN SOCIETY AND AUSTRAL ISLANDS of numerous submarine landslides in French Polynesia. This inventory shows an evolution of the landslide type with the age of oceanic islands. Submarine active volcanoes are subject to superficial landslides of fragmental

  7. Upper-montane plant invasions in the Hawaiian Islands: Patterns and opportunities

    Microsoft Academic Search

    Curtis C. Daehler

    2005-01-01

    In the Hawaiian Islands, massive volcanoes have created extreme elevation gradients, resulting in environments ranging from nearly tropical to alpine, spread across a distance of only a few dozen kilometers. Although the Hawaiian Islands are widely recognized for opportunities to study lowland tropical forest invasions, less attention has been paid to invasions of Hawaii's upper-montane forest, sub-alpine and alpine environments.

  8. Thomas A. Jaggar, Hawaiian Volcano Observatory

    USGS Multimedia Gallery

    Thomas A. Jaggar founded the Hawaiian Volcano Observatory in 1912 and served as its Director until 1940.  Shown here in 1925, Jaggar is at work in HVO's first building, which, at the time, was located on the northeast rim of K?lauea Volcano’s summit caldera, near the present-day Volc...

  9. Venus small volcano classification and description

    Microsoft Academic Search

    J. C. Aubele

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described

  10. Communication Between Volcanoes: a Possible Path

    NASA Astrophysics Data System (ADS)

    Linde, A. T.; Sacks, I. S.

    2002-12-01

    The Japan Meteorological Agency installed and operates a network of Sacks-Evertson type borehole strainmeters in south-east Honshu. One of these instruments is on Izu-Oshima, a volcanic island at the northern end of the Izu-Bonin arc. That strainmeter recorded large strain changes associated with the 1986 eruption of Miharayama on the island and, over the period from 1980 to the 1986 eruption, the amplitude of the solid earth tides changed by almost a factor of two. Miyake-jima, about 75 km south of Izu-Oshima, erupted in October 1983. No deformation monitoring was available on Miyake but several changes occurred in the strain record at Izu-Oshima. There was a clear decrease in amplitude of the long-term strain rate. Short period (~hour) events recorded by the strainmeter became much more frequent about 6 months before the Miyake eruption and ceased following the eruption. At the time of the Miyake eruption, the rate of increase of the tidal amplitude also decreased. While all of these changes were observed on a single instrument, they are very different types of change. From a number of independent checks, we can be sure that the strainmeter did not experience any change in performance at that time. Thus it recorded a change in deformation behavior in three very different frequency bands: over very long term, at tidal periods (~day) and at very short periods (~hour). It appears that the distant eruption in 1983 had an effect on the magmatic system under Izu-Oshima. It is likely that these changes were enhanced to the observed level because Izu-Oshima was itself close to eruption failure. More recent tomographic and seismic attenuation work in the Tohoku (northern Honshu) area has shown the existence of a low velocity, high attenuation horizontally elongated structure under the volcanic front. This zone, likely to contain partial melt, is horizontally continuous along the front. If such a structure exists in the similar tectonic setting for these volcanoes, it could provide a mechanism for communication between the volcanoes.

  11. Multiphase modelling of mud volcanoes

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  12. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  13. Surfing for Earthquakes and Volcanoes

    NSDL National Science Digital Library

    Patty Coe

    This resource is part of the Science Education Gateway (SEGway) project, funded by NASA, which is a national consortium of scientists, museums, and educators working together to bring the latest science to students, teachers, and the general public. In this lesson, students use the Internet to research data on earthquakes and volcanoes and plot locations to determine plate boundaries. Extensions include interpretation of interaction between plate boundaries, causes of earthquakes and volcanoes, and the comparison of the formation of Olympus Mons on Mars and the Hawaiian volcanic chain. There are worksheets, references, assessment ideas, and vocabulary available for educators.

  14. Modelling of depth phases and source processes of some central Aleutian earthquakes

    Microsoft Academic Search

    Tai-Lin Hong; Kazuya Fujita

    1981-01-01

    Short-period synthetic seismograms are computed to determine the relative amplitudes and arrival times of P, pP, pwP (water surface reflection), and sP phases. Except along nodal planes of upgoing p, pwP is of greater amplitude than sP. For central Aleutian earthquakes, pwP dominates over sP and pP at North American stations for thrust mechanisms and modelled crustal structures. The pwP

  15. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago

    Microsoft Academic Search

    Shauna E. Reisewitz; James A. Estes; Charles A. Simenstad

    2006-01-01

    Although trophic cascades—the effect of apex predators on progressively lower trophic level species through top-down forcing—have\\u000a been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem\\u000a processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and

  16. Geological and operational summary, North Aleutian Shelf Coast No. 1 well, Bering Sea, Alaska. Final report

    SciTech Connect

    Turner, R.F.

    1988-11-01

    Discusses the first continental offshore stratigraphic test well drilled in the North Aleutian Basin Planning Area, Bering Sea, Alaska. The well was drilled to determine the hydrocarbon potential of the area. The report covers drilling operations; lithology and core data; velocity analysis; geologic setting and tectonic framework; seismic stratigraphy; well-log interpretation and lithostratigraphy; paleontology and biostratigraphy; geothermal gradient; organic geochemistry; abnormal formation pressure; geologic hazards and shallow geology; and environmental considerations.

  17. Mount St. Helens VolcanoCam

    NSDL National Science Digital Library

    This webcam shows a static image of Mount St. Helens taken from the Johnston Ridge Observatory. The Observatory and VolcanoCam are located at an elevation of approximately 4,500 feet, about five miles from the volcano. The observer is looking approximately south-southeast across the North Fork Toutle River Valley. The VolcanoCam image automatically updates approximately every five minutes. Other features include current conditions reports, weather updates, an image achive, and eruption movies. In addition, there are frequently asked questions, and information about using the VolcanoCam image and funding for the VolcanoCam.

  18. PREVALENCE OF POX-LIKE LESIONS AND MALARIA IN FOREST BIRD COMMUNITIES ON LEEWARD MAUNA LOA VOLCANO, HAWAII

    Microsoft Academic Search

    CARTER T. A TKINSON; J ULIE; K. LEASE; R OBERT J. DUSEK; MICHAEL D. SAMUEL

    2005-01-01

    Introduced avian pox virus and malaria have had devastating impacts on native Hawaiian forest birds, yet little has been published about their prevalence and distribution in forest bird communities outside of windward Hawaii Island. We surveyed native and non- native forest birds for these two diseases at three different elevations on leeward Mauna Loa Volcano at the Kona Forest Unit

  19. Volcanic history of Macauley Island, Kermadec Ridge, New Zealand

    Microsoft Academic Search

    E. F. Lloyd; Simon Nathan; I. E. M. Smith; R. B. Stewart

    1996-01-01

    Macauley Island (3 km) is the tiny emergent part of the large submarine Macauley volcano (c. 380 kmat the 900 m isobath) on the Kermadec Ridge. It is composed mainly of arc tholeiite basalts, with a single interbedded dacite tephra.The oldest rocks seen are subaerial aa flows (North Cliff Lavas), overlain by basaltic tephra deposits (Boulder Beach Formation). Continued eruption

  20. Neuropathologic features of Aleutian disease in farmed mink in Ireland and molecular characterization of Aleutian mink disease virus detected in brain tissues.

    PubMed

    Jahns, Hanne; Daly, Paul; McElroy, Maire C; Sammin, Donal J; Bassett, Hugh F; Callanan, John J

    2010-01-01

    A neuropathologic survey was conducted on mink brains from the 5 licensed mink farms in Ireland. The survey was part of a transmissible spongiform encephalopathy surveillance study. Aleutian disease (AD) was present on 4 of the 5 farms (80%). Neuropathologic features of nonsuppurative meningoencephalitis were common in mink from the 4 affected farms but were absent in the mink from the fifth farm, which was free of AD. The meningoencephalitis was characterized by infiltrates of lymphocytes and plasma cells, which were present in meninges, perivascular spaces, and the brain parenchyma. Fibrinoid necrotizing arteritis was seen in 11 mink brains, all of which were obtained from a single farm. Aleutian mink disease virus (AMDV) sequences for the capsid protein VP2 were obtained from brain samples from all affected farms. Although containing previously unreported amino acid residues, similarities with European and North American isolates were observed in the hypervariable regions within VP2, suggesting Irish AMDV is related to those isolates. The predicted amino acid residues, suspected of conferring pathogenicity at certain positions of the VP2 sequence, were present in the viral nucleic acid sequences. PMID:20093694