These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters  

Microsoft Academic Search

This paper presents the analysis and design of a multiple feedback loop control scheme for single-phase voltage-source uninterruptible power supply (UPS) inverters with an L-C filter. The control scheme is based on sensing the current in the capacitor of the load filter and using it in an inner feedback loop. An outer voltage feedback loop is also incorporated to ensure

Naser M. Abdel-Rahim; John E. Quaicoe

1996-01-01

2

Climate Feedback Loops  

NSDL National Science Digital Library

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

Researchers, King'S C.

3

Current vs. Voltage Feedback Amplifiers  

E-print Network

Current vs. Voltage Feedback Amplifiers One question continuously troubles the analog design engi- neer: 'Which amplifier topology is better for my application, current feedback or voltage feedback) are not apparent. Today's CFB and VFB amplifiers have comparable performance, but there are cer- tain unique

Lanterman, Aaron

4

Monitoring Digital Closed-Loop Feedback Systems  

NASA Technical Reports Server (NTRS)

A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.

Katz, Richard; Kleyner, Igor

2011-01-01

5

UWB communication receiver feedback loop  

DOEpatents

A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

2007-12-04

6

Feedback loop conception methodology for step-down continuous switching DC\\/DC converter  

Microsoft Academic Search

The stability and the dimensioning of a step-down switching voltage regulator feedback loop remain a complex task. An analytical approach allows dimensioning of all the components, strongly facilitating this task. In this article, a mathematical analysis is developed in order to determine the values of the passive component of the feedback loop, taking into account the tolerances of the various

S. Michelis; M. Kayal

2008-01-01

7

Feedback Loops Shape Cellular Signals in Space and Time  

NSDL National Science Digital Library

This article discusses the study of feedback loops in biological systems. Positive and negative feedback loops are common regulatory elements in biological signaling systems. We discuss core feedback motifs that have distinct roles in shaping signaling responses in space and time. We also discuss approaches to experimentally investigate feedback loops in signaling systems.

Onn Brandman (University of California-San Francisco and Howard Hughes Medical Institute;Department of Cellular and Molecular Pharmacology); Tobias Meyer (Stanford University Medical Center;Department of Chemical and Systems Biology)

2008-10-17

8

Analysing the stability of series-shunt circuits based on voltage- and current- feedback OpAmps through SPICE AC simulations  

Microsoft Academic Search

Two methods for determining the loop gain of OpAmp-based circuits with series-shunt feedback through simulations are analyzed and compared: the standard method — that involves breaking the feedback loop by inserting an independent voltage source with DC=0 and AC=1 — and a more precise method, based on the Rosenstark theorem. Only the cases for the traditional (voltage-feedback) and the current-feedback

Marius Neag; Raul Onet; Robert Groza; Marina Topa

2010-01-01

9

Cytokinesis through biochemical-mechanical feedback loops  

PubMed Central

Cytokinesis is emerging as a control system defined by interacting biochemical and mechanical modules, which form a system of feedback loops. This integrated system accounts for the regulation and kinetics of cytokinesis furrowing and demonstrates that cytokinesis is a whole-cell process in which the global and equatorial cortices and cytoplasm are active players in the system. Though originally defined in Dictyostelium, features of the control system are recognizable in other organisms, suggesting a universal mechanism for cytokinesis regulation and contractility. PMID:20709619

Surcel, Alexandra; Kee, Yee-Seir; Luo, Tianzhi; Robinson, Douglas N.

2010-01-01

10

Loop-voltage tomography in tokamaks using transient synchrotron radiation  

SciTech Connect

The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

Fisch, N.J.; Kritz, A.H. (Princeton Univ., NJ (USA). Plasma Physics Lab.; Hunter Coll., New York, NY (USA). Dept. of Physics)

1989-07-01

11

Feedback loop process to control acoustic cavitation.  

PubMed

Applications involving acoustic cavitation mechanisms, such as sonoporation, are often poorly reproducible because of the unstationary behavior of cavitation. For this purpose, this study proposes to work at a fixed cavitation level instead of a fixed acoustic intensity. A regulated cavitation generator has been developed in an in vitro configuration of standing wave field. This system implements the regulation of the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop based on acoustic measurements. The experimental setup consists of a plane piezoelectric transducer for sonication (continuous wave, frequency 445 kHz) and a hydrophone pointing to the sonicated medium. The cavitation level is quantified every 5 ms from a spectral analysis of the acoustic signal. The results show that the regulation device generates reproducible mean cavitation levels with a standard deviation lower than 1.6% in the applied intensity range (from 0.12 to 3.44 W/cm(2)), while this standard deviation can reach 76% without regulation. The feedback loop process imposes precise cavitation level even in low applied acoustic intensity. PMID:20843725

Sabraoui, Abbas; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe; Mestas, Jean-Louis

2011-03-01

12

Closing the Feedback Loop Is Not Enough: The Assessment Spiral  

ERIC Educational Resources Information Center

For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…

Wehlburg, Catherine M.

2007-01-01

13

Noise in transcription negative feedback loops: simulation and experimental analysis  

Microsoft Academic Search

Negative feedback loops have been invoked as a way to control and decrease transcriptional noise. Here, we have built three circuits to test the effect of negative feedback loops on transcriptional noise of an autoregulated gene encoding a transcription factor (TF) and a downstream gene (DG), regulated by this TF. Experimental analysis shows that self-repression decreases noise compared to expression

Yann Dublanche; Konstantinos Michalodimitrakis; Nico Kümmerer; Mathilde Foglierini; Luis Serrano

2006-01-01

14

Analysis and Design of a 60 GHz Wideband Voltage-Voltage Transformer Feedback LNA  

Microsoft Academic Search

To cope with the problem of instability and imperfect reverse isolation, a millimeter-wave voltage-voltage transformer feedback low noise amplifier has been analyzed, designed, and measured in CMOS 65 nm technology. Analytical formulae are derived for describing the stability, gain, and noise in this circuit topology. An analogy with the classic concept of Masons's invariant is used to illustrate how the

Pooyan Sakian; Erwin Janssen; Arthur H. M. van Roermund; Reza Mahmoudi

2012-01-01

15

Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback  

PubMed Central

Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control. PMID:24516504

Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J.; Krajoski, Goran; Farina, Dario

2014-01-01

16

A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response  

NASA Astrophysics Data System (ADS)

This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-?m CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and IQ of 113 ?A. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 ?V/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 ?s respectively.

Han, Wang; Maomao, Sun

2014-04-01

17

Power system Automatic Voltage Regulator design based on Static Output Feedback PID using iterative linear matrix inequality  

Microsoft Academic Search

This paper describes the design and simulation of a static output feedback (SOF) PID automatic voltage regulator (AVR) for a synchronous-machine infinite-bus power system. The design of the regulator guarantees the stability of the closed loop system and ensures the output voltage is maintained within an acceptable threshold. In addition, it damps out local-mode oscillations of the synchronous generator to

A. M. Abdel Ghany

2008-01-01

18

Active vibroacoustic control with multiple local feedback loops  

NASA Astrophysics Data System (ADS)

The active control of a structure in order to reduce its vibration or sound radiation, which may be termed active vibro-acoustic control, has previously been achieved with multiple actuators and sensors and fully-coupled feedforward or feedback controllers. In this paper local velocity feedback using multiple miniature accelerometers will be investigated, together with either collocated force actuators or piezoceramic actuators placed under each sensor. With ideal force actuators, the plant response is passive for such an arrangement of collocated actuator/sensor pairs and so decentralized (local) feedback is guaranteed stable. This property is shown to extend to collocated velocity sensors and piezoceramic actuators over the bandwidth of interest and so multiple local feedback loops are also predicted to be stable. The performance of such a system is simulated in controlling the vibration and sound transmission through a thin plate, excited by an acoustic plane wave, with a 4 x 4 array of such actuator/sensor pairs, which are connected together with 16 local feedback control loops. Using force actuators, significant frequency-averaged reductions up to 1kHz in both the kinetic energy (28dB) and transmitted sound power (18dB) can be obtained with an appropriate feedback gain in each loop. These reductions are not so great with piezoelectric actuators (12dB and 9dB respectively) but their use allows the controller to be fully integrated in the structure.

Elliott, Stephen J.; Gardonio, Paolo; Sors, Thomas J.; Brennan, Michael J.

2001-08-01

19

Overcoming Software Fragility with Interacting Feedback Loops and  

E-print Network

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions Louvain-la-Neuve, Belgium peter.vanroy@uclouvain.be Abstract Programs are fragile for many reasons. INTRODUCTION How can we build software systems that are not fragile? For example, we can exploit concurrency

Bonaventure, Olivier

20

Desert dust suppressing precipitation: A possible desertification feedback loop  

E-print Network

Desert dust suppressing precipitation: A possible desertification feedback loop Daniel Rosenfeld (received for review October 11, 2000) The effect of desert dust on cloud properties and precipitation has. Here we present obser- vations showing the contrary; the effect of dust on cloud proper- ties

Daniel, Rosenfeld

21

Feedback Control Systems Loop Shaping Design with Practical Considerations  

NASA Technical Reports Server (NTRS)

This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

Kopsakis, George

2007-01-01

22

The Effect of Insulin Feedback on Closed Loop Glucose Control  

PubMed Central

Context: Initial studies of closed-loop proportional integral derivative control in individuals with type 1 diabetes showed good overnight performance, but with breakfast meal being the hardest to control and requiring supplemental carbohydrate to prevent hypoglycemia. Objective: The aim of this study was to assess the ability of insulin feedback to improve the breakfast-meal profile. Design and Setting: We performed a single center study with closed-loop control over approximately 30 h at an inpatient clinical research facility. Patients: Eight adult subjects with previously diagnosed type 1 diabetes participated. Intervention: Subjects received closed-loop insulin delivery with supplemental carbohydrate as needed. Main Outcome Measures: Outcome measures were plasma insulin concentration, model-predicted plasma insulin concentration, 2-h postprandial and 3- to 4-h glucose rate-of-change following breakfast after 1 d of closed-loop control, and the need for supplemental carbohydrate in response to nadir hypoglycemia. Results: Plasma insulin levels during closed loop were well correlated with model predictions (R = 0.86). Fasting glucose after 1 d of closed loop was not different from nighttime target (118 ± 9 vs. 110 mg/dl; P = 0.38). Two-hour postbreakfast glucose was 132 ± 16 mg/dl with stable values 3–4 h after the meal (0.03792 ± 0.0884 mg/dl · min, not different from 0; P = 0.68) and at target (97 ± 6 mg/dl, not different from 90; P = 0.28). Three subjects required supplemental carbohydrates after breakfast on d 2 of closed loop. Conclusions/Interpretation: Insulin feedback can be implemented using a model estimate of concentration. Proportional integral derivative control with insulin feedback can achieve a desired breakfast response but still requires supplemental carbohydrate to be delivered in some instances. Studies assessing more optimal control configurations and safeguards need to be conducted. PMID:21367930

Palerm, Cesar C.; Kurtz, Natalie; Voskanyan, Gayane; Roy, Anirban; Paz, Sachiko; Kandeel, Fouad R.

2011-01-01

23

MHD phenomena with AC loop voltages in RFP plasmas  

NASA Astrophysics Data System (ADS)

The plasma's MHD response is an important aspect of experiments with applied AC loop voltages. For example, when oscillating-field current drive (OFCD), a type of helicity injection entailing phased AC poloidal and toroidal loop voltages, is applied to RFPs in the MST device with an empirically optimum phase of ˜?/8 between the two voltages, there is a decrease in magnetic-fluctuation amplitudes. By contrast, for ?/2, which is the phase of maximum helicity injection, additional bursts of magnetic fluctuations are induced, which internal measurements suggest are a linear MHD tearing response to the applied fields. Meanwhile, the AC loop voltages can entrain the normally quasiperiodic background sawtooth cycle in the RFP, triggering these discrete relaxation events to occur only at characteristic times within the OFCD cycle. This effect may involve criteria on the core safety factor and is investigated by equilibrium reconstructions of experiments in which AC fields of different frequencies and amplitudes are applied with a new programmable power supply. Finally, using internal probes, we plan to study the radial penetration of broadband AC fields from the switching of the solid-state programmable supply for possible effects on relaxation and current-profile control.

McCollam, K. J.; Almagri, A. F.; Holly, D. J.; Sarff, J. S.; Stone, D. R.; Triana, J. C.

2011-11-01

24

The p53 pathway: positive and negative feedback loops.  

PubMed

The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes produces proteins that interact with a large number of other signal transduction pathways in the cell and a number of positive and negative autoregulatory feedback loops act upon the p53 response. There are at least seven negative and three positive feedback loops described here, and of these, six act through the MDM-2 protein to regulate p53 activity. The p53 circuit communicates with the Wnt-beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF pathways and the cyclin G-PP2A, and p73 gene products. There are at least three different ubiquitin ligases that can regulate p53 in an autoregulatory manner: MDM-2, Cop-1 and Pirh-2. The meaning of this redundancy and the relative activity of each of these feedback loops in different cell types or stages of development remains to be elucidated. The interconnections between signal transduction pathways will play a central role in our understanding of cancer. PMID:15838523

Harris, Sandra L; Levine, Arnold J

2005-04-18

25

Control of breathing by interacting pontine and pulmonary feedback loops  

PubMed Central

The medullary respiratory network generates respiratory rhythm via sequential phase switching, which in turn is controlled by multiple feedbacks including those from the pons and nucleus tractus solitarii; the latter mediates pulmonary afferent feedback to the medullary circuits. It is hypothesized that both pontine and pulmonary feedback pathways operate via activation of medullary respiratory neurons that are critically involved in phase switching. Moreover, the pontine and pulmonary control loops interact, so that pulmonary afferents control the gain of pontine influence of the respiratory pattern. We used an established computational model of the respiratory network (Smith et al., 2007) and extended it by incorporating pontine circuits and pulmonary feedback. In the extended model, the pontine neurons receive phasic excitatory activation from, and provide feedback to, medullary respiratory neurons responsible for the onset and termination of inspiration. The model was used to study the effects of: (1) “vagotomy” (removal of pulmonary feedback), (2) suppression of pontine activity attenuating pontine feedback, and (3) these perturbations applied together on the respiratory pattern and durations of inspiration (TI) and expiration (TE). In our model: (a) the simulated vagotomy resulted in increases of both TI and TE, (b) the suppression of pontine-medullary interactions led to the prolongation of TI at relatively constant, but variable TE, and (c) these perturbations applied together resulted in “apneusis,” characterized by a significantly prolonged TI. The results of modeling were compared with, and provided a reasonable explanation for, multiple experimental data. The characteristic changes in TI and TE demonstrated with the model may represent characteristic changes in the balance between the pontine and pulmonary feedback control mechanisms that may reflect specific cardio-respiratory disorders and diseases. PMID:23408512

Molkov, Yaroslav I.; Bacak, Bartholomew J.; Dick, Thomas E.; Rybak, Ilya A.

2013-01-01

26

AC loop voltages and MHD stability in RFP plasmas  

NASA Astrophysics Data System (ADS)

Applied AC loop voltages provide a means to study and control the dynamics of MHD activity in RFP plasmas. In MST experiments with a new programmable power supply, applying a poloidal loop voltage oscillation of sufficient amplitude is observed to tightly entrain the ambient quasiperiodic sawtooth magnetic-relaxation cycle in the RFP, making it almost strictly periodic. The RFP's limit-cycle trajectory in (F, ?) space, where F and ? are the equilibrium reversal and pinch parameters, is drastically modified and suggests a fundamentally different relaxation regime. Applying both poloidal and toroidal AC loop voltages, as in oscillating-field current drive (OFCD), changes the limit cycle and can reduce MHD fluctuation amplitudes. The MHD response in OFCD experiments with varying source amplitudes and phase lags is examined in terms of linear stability and nonlinear mode coupling. Linear stability for MHD current-driven modes is calculated in cylindrical geometry, including the effect of conducting-wall proximity, and preliminary results indicate the presence of a stable region in (F, ?) space, consistent with past results for the RFP. By using OFCD to control the RFP's positioning in (F, ?) space, it might be possible to control or suppress MHD activity while driving steady-state plasma current.

McCollam, K. J.; Holly, D. J.; Mirnov, V. V.; Sarff, J. S.; Stone, D. R.

2012-10-01

27

Feedback-Based Closed-Loop Carrier Synchronization: A Sharp Asymptotic  

E-print Network

consumption and processing capabilities of simple sensor nodes. Other solutions proposed are open-loopFeedback-Based Closed-Loop Carrier Synchronization: A Sharp Asymptotic Bound, an Asymptotically of a randomized black box optimization technique for closed-loop feedback-based distributed adaptive beamforming

Beigl, Michael

28

Feedback loop design and experimental testing for integrated optics with micro-mechanical tuning  

E-print Network

I designed a capacitive sensor with feedback control for precision tuning of a MEMS controlled wavelength-selective switch. The implementation is based upon a customized feedback loop with a PID controller. The positional ...

Waller, Laura A. (Laura Ann)

2005-01-01

29

Practical Loop-Shaping Design of Feedback Control Systems  

NASA Technical Reports Server (NTRS)

An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.

Kopasakis, George

2010-01-01

30

High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop  

E-print Network

High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop amplifier module using AlGaN/GaN high electron mobility transistor (HEMT) has been developed that covers radars and communications systems. GaN-based HEMT's for high power applications at microwave frequencies

Itoh, Tatsuo

31

Feedback regulation of EGFR signalling: decision making by early and delayed loops  

Microsoft Academic Search

Human-made information relay systems invariably incorporate central regulatory components, which are mirrored in biological systems by dense feedback and feedforward loops. This type of system control is exemplified by positive and negative feedback loops (for example, receptor endocytosis and dephosphorylation) that enable growth factors and receptor Tyr kinases of the epidermal growth factor receptor (EGFR)\\/ERBB family to regulate cellular function.

Roi Avraham; Yosef Yarden

2011-01-01

32

KAYAK-? modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons.  

PubMed

Circadian rhythms are generated by well-conserved interlocked transcriptional feedback loops in animals. In Drosophila, the dimeric transcription factor CLOCK/CYCLE (CLK/CYC) promotes period (per), timeless (tim), vrille (vri), and PAR-domain protein 1 (Pdp1) transcription. PER and TIM negatively feed back on CLK/CYC transcriptional activity, whereas VRI and PDP1 negatively and positively regulate Clk transcription, respectively. Here, we show that the ? isoform of the Drosophila FOS homolog KAYAK (KAY) is required for normal circadian behavior. KAY-? downregulation in circadian pacemaker neurons increases period length by 1.5 h. This behavioral phenotype is correlated with decreased expression of several circadian proteins. The strongest effects are on CLK and the neuropeptide PIGMENT DISPERSING FACTOR, which are both under VRI and PDP1 control. Consistently, KAY-? can bind to VRI and inhibit its interaction with the Clk promoter. Interestingly, KAY-? can also repress CLK activity. Hence, in flies with low KAY-? levels, CLK derepression would partially compensate for increased VRI repression, thus attenuating the consequences of KAY-? downregulation on CLK targets. We propose that the double role of KAY-? in the two transcriptional loops controlling Drosophila circadian behavior brings precision and stability to their oscillations. PMID:23175847

Ling, Jinli; Dubruille, Raphaëlle; Emery, Patrick

2012-11-21

33

Design of PID controllers in double feedback loops for SISO systems with set-point filters.  

PubMed

A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (?) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes. PMID:22494496

Vijayan, V; Panda, Rames C

2012-07-01

34

Oscillating holograms recorded in photorefractive crystals by a frequency detuned feedback loop  

NASA Astrophysics Data System (ADS)

We report an optoelectronic feedback loop suitable for generating noise-free interference patterns oscillating at arbitrary waveforms. The technique allows controlling the frequency detuning between the interfering beams through a phase modulator in a closed-loop interferometer. We use the dither signal method and propose a quasisynchronous demodulation scheme to create a phase modulated error signal for driving the loop. The dynamics of the interference fringes is easily controlled by a voltage waveform from a function generator, which is used in association with a time delay circuit for shifting the frequency of the reference signal used for lock-in demodulation. The technique is specially suited for applications involving low-frequency phase oscillations, such as those frequently encountered in the generation of space-charge waves in highly resistive photorefractive materials. The processing scheme allows real time monitoring of the hologram strength, and absolute values for the diffraction efficiency and the holographic phase shift can be obtained. Photorefractive wave oscillations ranging from approximately 100 mHz to 10 Hz were produced in a nominally undoped Bi12TiO20 sample. The technique can be readily applied to other fields of optical interferometry, such as for testing optical surfaces, optimizing adaptive holographic devices, measuring physical quantities, among other applications.

Freschi, A. A.; Telles, A. C. C.; Frejlich, J.; Donatti, D. A.

2009-01-01

35

Possible precursors of ball lightning. Observation of closed loops in high voltage discharges  

SciTech Connect

Several hundred photographs of ultrahigh voltage discharges have been obtained that show closed current loops. These closed current loops may be precursors of ball lightning. One feature of these discharges may explain why observations of ball lightning may be infrequent; that is, there is a distinct threshold in voltage and/or current below which the closed loops do not occur. This threshold current fits other experimental data but is well above the usually observed currents in natural lightning. 10 refs., 3 figs.

Alexeff, I.; Rader, M. [Univ. of Tennessee, Knoxville, TN (United States)

1995-05-01

36

Voltage-drop increase in an injection laser under the influence of external optical feedback  

NASA Astrophysics Data System (ADS)

Several results are presented from the study of the influence of external optical feedback on the voltage drop in Ga-Al-As injection lasers. It is found that for these lasers there is typically a voltage decrease of the order of 1 mV with the introduction of external feedback. However, for lasers emitting in the spectral region of 0.76 micron, an unusually large increase of the voltage drop up to 25 mV is observed. This effect is explained by the presence of a large leakage current of electrons from the active region of the laser.

Dedushenko, K. B.; Zverkov, M. V.; Mamaev, A. N.

1988-06-01

37

Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops  

PubMed Central

Feedback controls are central to cellular regulation. Negative-feedback mechanisms are well known to underline oscillatory dynamics. However, the presence of multiple negative-feedback mechanisms is common in oscillatory cellular systems, raising intriguing questions of how they cooperate to regulate oscillations. In this work, we studied the dynamical properties of a set of general biochemical motifs with dual, nested negative-feedback structures. We showed analytically and then confirmed numerically that, in these motifs, each negative-feedback loop exhibits distinctly different oscillation-controlling functions. The longer, outer feedback loop was found to promote oscillations, whereas the short, inner loop suppresses and can even eliminate oscillations. We found that the position of the inner loop within the coupled motifs affects its repression strength towards oscillatory dynamics. Bifurcation analysis indicated that emergence of oscillations may be a strict parametric requirement and thus evolutionarily tricky. Investigation of the quantitative features of oscillations (i.e. frequency, amplitude and mean value) revealed that coupling negative feedback provides robust tuning of the oscillation dynamics. Finally, we demonstrated that the mitogen-activated protein kinase (MAPK) cascades also display properties seen in the general nested feedback motifs. The findings and implications in this study provide novel understanding of biochemical negative-feedback regulation in a mixed wiring context. PMID:22417908

Nguyen, Lan K.

2012-01-01

38

Inherent directionality explains the lack of feedback loops in empirical networks  

NASA Astrophysics Data System (ADS)

We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks.

Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

2014-12-01

39

Inherent directionality explains the lack of feedback loops in empirical networks.  

PubMed

We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A

2014-01-01

40

Inherent directionality explains the lack of feedback loops in empirical networks  

PubMed Central

We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

2014-01-01

41

A Non-invasive Technique for Configuring Low Level RF Feedback Loops in PEP-II  

SciTech Connect

The RF system of the PEP-II collider uses two fast feedback loops around each klystron and set of cavities. These loops reduce the impedance of the fundamental mode of the accelerating cavities seen by the beam, and are necessary to reduce the growth rates of longitudinal modes within the RF system bandwidth. Operation of the accelerator at high beam currents is very sensitive to the configuration of the low-level RF feedback loops. There are 7 loop control parameters that strongly influence the stability of the feedback loops and the achieved level of longitudinal impedance reduction. Diagnostic techniques for the analysis of the RF feedback via closed-loop system transfer function measurements will be presented. The model is fit to the measured closed-loop transfer function data and the extracted parameters are then used to calculate optimal tuning and corrections to the loop control elements in the physical channel. These techniques allow fine-tuning of RF feedback with stored beam as well as diagnosis of misconfigured or malfunctioning elements of the system. Results from PEP-II operation will be presented to illustrate the techniques and their applications.

Teytelman, D; /SLAC

2005-06-22

42

Double-Loop Feedback-Based Scheduling Approach for Distributed Real-Time Systems  

Microsoft Academic Search

The use of feedback control techniques has been gaining importance in real-time scheduling as a means to provide predictable performance in the face of uncertain workload. In this paper, we propose and analyze a feedback schedul- ing algorithm, called double-loop feedback scheduler, for distributed real-time systems, whose objective is to keep the deadline miss ratio near the desired value and

Suzhen Lin; G. Manimaran

2003-01-01

43

On the periodic coordination of linear stochastic systems. [open-loop and closed-loop feedback optimal control  

NASA Technical Reports Server (NTRS)

The decentralized stochastic control of a linear dynamic system consisting of several subsystems is considered. A two-level approach is used by the introduction of a coordinator who collects measurements from the local controllers periodically and in return transmits coordinating parameters. Two types of coordination are considered: open-loop feedback and closed loop. The resulting control laws are found to be intuitively attractive.

Chong, C.-Y.; Athans, M.

1975-01-01

44

Voltage Regulation and Line Loss Minimization of Loop Distribution Systems Using UPFC  

NASA Astrophysics Data System (ADS)

This paper presents a new method for achieving line loss minimization and voltage regulation in the loop distribution systems, simultaneously. First, mathematical analysis of the line loss minimum conditions in the loop distribution systems is presented. Then, load voltage regulation is applied in the loop distribution system under line loss minimum condition. Reference angle of the desired load voltage is the main factor that can be used to minimize total line loss during load voltage control. In order to achieve these two objectives simultaneously, the UPFC (unified power flow controller), a typical FACTS (flexible AC transmission systems) device, that is capable of instantaneous control of transmission and distribution power flow, is used. Also, the UPFC control scheme to regulate the load voltage under line loss minimization is presented. The effectiveness of the proposed control scheme has been verified experimentally using laboratory prototype in a 200V, 6kVA system.

Sayed, Mahmoud A.; Takeshita, Takaharu

45

Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems  

E-print Network

Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems John Milton1,2 , Sue Ann´eal, Montr´eal, Canada Abstract A closed-loop drug delivery system is constructed in which external negative. The advantage of this paradigm for drug delivery is that both the steady states and stability of the multiple

Campbell, Sue Ann

46

Uninterruptible power supply multi-loop control employing digital predictive voltage and current regulators  

Microsoft Academic Search

A digital control technique for the inverter stage of uninterruptible power supplies (UPSs) is described, which is based on voltage and current predictive regulators. Its aim is to achieve a dead-beat dynamic response for the controlled variables (output voltage and inverter current). The controller maintains the advantageous conventional multi-loop structure and is capable of guaranteeing a high quality dynamic performance.

S. Buso; S. Fasolo; P. Mattavelli

2001-01-01

47

Active vibroacoustic control with multiple local feedback loops  

Microsoft Academic Search

The active control of a structure in order to reduce its vibration or sound radiation, which may be termed active vibro-acoustic control, has previously been achieved with multiple actuators and sensors and fully-coupled feedforward or feedback controllers. In this paper local velocity feedback using multiple miniature accelerometers will be investigated, together with either collocated force actuators or piezoceramic actuators placed

Stephen J. Elliott; Paolo Gardonio; Thomas J. Sors; Michael J. Brennan

2001-01-01

48

Closing the Feedback Loop? Iterative Feedback between Tutor and Student in Coursework Assessments  

ERIC Educational Resources Information Center

We evaluate the case for using feedback iteratively, to improve student engagement and learning. In this model, students were invited to respond to tutor feedback with students' own responses. Among the three courses/modules (three tutors) studied, differences in feedback styles were evident from: (a) thematic analysis of tutor comments and,…

Barker, Martin; Pinard, Michelle

2014-01-01

49

Dinosaur Extinction: Causal Loop Diagram of Earth Feedback System  

NSDL National Science Digital Library

This site features a causal loop diagram from system dynamics methodology showing the solar-earth-space energy flow system (the dominant flow system driving earth's surficial systems, including the biosphere) and interactive natural earthly processes that influence it. Also included is a discussion of the diagram, and a link to a page that explains how to read causal loop diagrams.

Mclean, Dewey M.; Tech, Virginia

50

Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis  

NASA Technical Reports Server (NTRS)

Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

Thompson, P. M.

1979-01-01

51

Optimal open-loop and feedback control using single gimbal control moment gyroscopes  

NASA Technical Reports Server (NTRS)

Methods for control of spacecraft maneuvers through the use of single gimbal control moment gyroscopes are developed. The development employs an integrated model of the spacecraft dynamics with the control moment gyroscope dynamics. Smooth and continuous open-loop control profiles are obtained which minimize a weighted function of maneuver time, magnitude of control effort, and proximity to singular gimbal configurations. Closed-loop state feedback control laws are derived by invoking Lyapunov stability theory. The schemes are presented for implementing the commanded state feedback: gimbal rate control and gimbal acceleration control. The appropriate handling of singular gimbal configurations is also discussed.

Hoelscher, Brian R.; Vadali, Srinvas R.

1993-01-01

52

FALCON: Feedback Adaptive Loop for Content-Based Retrieval  

Microsoft Academic Search

Several methods currently exist that canperform relatively simple queries drivenby relevance feedback on large multimediadatabases. However, all these methods workonly for vector spaces; that is, they requirethat objects be represented as vectors withinfeature spaces. Moreover, their implied queryregions are typically convex. This research paperexplains our solution.We propose a novel method that is designedto handle disjunctive queries within metricspaces. The user...

Leejay Wu; Christos Faloutsos; Katia P. Sycara; Terry R. Payne

2000-01-01

53

MICROBE SENSING, POSITIVE FEEDBACK LOOPS, AND THE PATHOGENESIS OF INFLAMMATORY DISEASES  

PubMed Central

Summary The molecular apparatus that protects us against infection can also injure us by causing autoimmune or autoinflammatory disease. It now seems that at times, defects within the sensing arm of innate immunity contribute to diseases of this type. The initiation of an immune response is often microbe dependent and, in many cases, Toll-like receptor (TLR) dependent. Positive feedback loops triggering immune activation may occur when TLR signaling pathways stimulate host cells in an unchecked manner. Or, immune activation may persist because of failure to eradicate an inciting infection. Or on occasion, endogenous DNA may trigger specific immune responses that beget further responses in a TLR-dependent autoamplification loop. Specific biochemical defects that cause loop-related autoimmunity have been revealed by random germline mutagenesis and by gene targeting. We have also developed some insight into critical points at which feedback loops can be interrupted. PMID:19120489

Beutler, Bruce

2009-01-01

54

An affinity-effect relationship for microbial communities in plant-soil feedback loops.  

PubMed

Feedback loops involving soil microorganisms can regulate plant populations. Here, we hypothesize that microorganisms are most likely to play a role in plant-soil feedback loops when they possess an affinity for a particular plant and the capacity to consistently affect the growth of that plant for good or ill. We characterized microbial communities using whole-community DNA fingerprinting from multiple "home-and-away" experiments involving giant ragweed (Ambrosia trifida L.) and common sunflower (Helianthus annuus L.), and we looked for affinity-effect relationships in these microbial communities. Using canonical ordination and partial least squares regression, we developed indices expressing each microorganism's affinity for ragweed or sunflower and its putative effect on plant biomass, and we used linear regression to analyze the relationship between microbial affinity and effect. Significant linear affinity-effect relationships were found in 75 % of cases. Affinity-effect relationships were stronger for ragweed than for sunflower, and ragweed affinity-effect relationships showed consistent potential for negative feedback loops. The ragweed feedback relationships indicated the potential involvement of multiple microbial taxa, resulting in strong, consistent affinity-effect relationships in spite of large-scale microbial variability between trials. In contrast, sunflower plant-soil feedback may involve just a few key players, making it more sensitive to underlying microbial variation. We propose that affinity-effect relationship can be used to determine key microbial players in plant-soil feedback against a low "signal-to-noise" background of complex microbial datasets. PMID:24402363

Lou, Yi; Clay, Sharon A; Davis, Adam S; Dille, Anita; Felix, Joel; Ramirez, Analiza H M; Sprague, Christy L; Yannarell, Anthony C

2014-05-01

55

Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage  

NASA Astrophysics Data System (ADS)

To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

2014-12-01

56

Involvement of aberrant miR-139/Jun feedback loop in human gastric cancer.  

PubMed

Accumulating evidence indicates that some miRNAs could form feedback loops with their targets to fine-tune tissue homeostasis, while disruption of these loops constitutes an essential step towards human tumorigenesis. In this study, we report the identification of a novel negative feedback loop formed between miR-139 and its oncogenic target Jun. In this loop, miR-139 could inhibit Jun expression by targeting a conserved site on its 3'-UTR, whereas Jun could induce miR-139 expression in a dose dependent manner through a distant upstream regulatory element. Interestingly, aberration in this loop was found in human gastric cancer, where miR-139 was down-regulated and inversely correlated with Jun expression. Further functional analysis showed that restored expression of miR-139 in gastric cancer cells significantly induces apoptosis, and inhibits cell migration and proliferation as well as tumour growth through targeting Jun. Thus, our data strongly suggests a role of aberrant miR-139/Jun negative feedback loop in the development of human gastric cancer and miR-139 as a potential therapeutic target for gastric cancer. Given that miR-139 and Jun are deregulated in many cancers, our findings here might have broader implication in other types of human cancers. PMID:25499265

Zhang, Yan; Shen, Wen-Long; Shi, Ming-Lei; Zhang, Le-Zhi; Zhang, Zhang; Li, Ping; Xing, Ling-Yue; Luo, Feng-Yan; Sun, Qiang; Zheng, Xiao-Fei; Yang, Xiao; Zhao, Zhi-Hu

2015-02-01

57

Baylor College of Medicine researchers determine that feedback loop maintains basal cell population  

Cancer.gov

Notch -- the protein that can help determine cell fate -- maintains a stable population of basal cells in the prostate through a positive feedback loop system with another key protein TGF beta (transforming growth factor beta), said Baylor College of Medicine researchers in the journal Cell Stem Cell.

58

A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?  

Microsoft Academic Search

It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with

B. J. Huebert

2004-01-01

59

A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning.  

PubMed

Embryogenesis depends on self-regulatory interactions between spatially separated signaling centers, but few of these are well understood. Limb development is regulated by epithelial-mesenchymal (e-m) feedback loops between sonic hedgehog (SHH) and fibroblast growth factor (FGF) signaling involving the bone morphogenetic protein (BMP) antagonist Gremlin1 (GREM1). By combining mouse molecular genetics with mathematical modeling, we showed that BMP4 first initiates and SHH then propagates e-m feedback signaling through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to the slower SHH/GREM1/FGF e-m feedback loop. This self-regulatory signaling network results in robust regulation of distal limb development that is able to compensate for variations by interconnectivity among the three signaling pathways. PMID:19229034

Bénazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonçalves, Alexandre; Martin, James F; Zuniga, Aimée; Naef, Felix; Zeller, Rolf

2009-02-20

60

Pulsed phase locked loop strain monitor. [voltage controlled oscillators  

NASA Technical Reports Server (NTRS)

The RF output of a voltage controlled oscillator (VCO) is periodically gated to a transducer which produces acoustic waves in a bolt. The reflected acoustic waves are converted to electrical signals by the transducer and gated to a mixer which also receives the output from the VCO and produces an output which is filtered by a low pass filter. The output of filter is a dc signal proportional to the phase difference change from a fixed phase difference between the two input signals to the mixer. This dc signal is sampled at an instant and held by circuit in response to the "P" signal. The output of the circuit is integrated and then applied to the VCO to change the frequency of the VCO such that the phase difference between the two inputs to the mixer remains at the fixed phase difference. The frequency of the VCO is a measure of the change in strain of the bolt.

Heyman, J. S. (inventor)

1982-01-01

61

On the self-noise in QASK decision-feedback carrier tracking loops  

NASA Technical Reports Server (NTRS)

Quadrature amplitude-shift keying (QASK) is often used for transmitting two digital data streams in bandwidth-constrained communication systems. Previous analyses of the tracking performance of a decision-feedback carrier tracking loop, which can be used to provide a carrier reference for a QASK signal set, have neglected the effects of the self-noise in the derivation of the loop resonance. The authors incorporate the effects of the self-noise into the analysis of decision-feedback carrier tracking loops. It is demonstrated that failure to account for the self-noise will only result in a conservative assessment of the system's performance, contrary to what might be expected. All results obtained are in closed form and can easily be evaluated numerically for performance prediction purposes.

Hinedi, Sami; Lindsey, William C.

1989-01-01

62

Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop  

NASA Astrophysics Data System (ADS)

This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

2013-08-01

63

Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops  

NASA Astrophysics Data System (ADS)

In this study the role of acoustic feedback instabilities in the tonal airfoil self-noise phenomenon is investigated. First, direct numerical simulations are conducted of the flow around a NACA-0012 airfoil at Re=1×105 and four angles of attack. At the two lowest angles of attack considered the airfoil self-noise exhibits a clear tonal contribution, whereas at the two higher angles of attack the tonal contribution becomes less significant in comparison to the broadband noise. Classical linear stability analysis of time-averaged boundary layer profiles shows that the tonal noise occurs at a frequency significantly lower than that of the most convectively amplified instability wave. Two-dimensional linear stability analysis of the time-averaged flowfield is then performed, illustrating the presence of an acoustic feedback loop involving the airfoil trailing edge. The feedback loop is found to be unstable only for the cases where tonal self-noise is prominent, and is found to self-select a frequency almost identical to that of the tonal self-noise. The constituent mechanisms of the acoustic feedback loop are considered, which appear to explain why the preferred frequency is lower than that of the most convectively amplified instability wave.

Jones, Lloyd E.; Sandberg, Richard D.

2011-12-01

64

Sensory Feedback in Prosthetics: A Standardized Test Bench for Closed-Loop Control.  

PubMed

Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial vs. intensity coding) during a pendulum stabilization task and feedforward methods (joystick vs. myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback. PMID:25420268

Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

2014-11-20

65

Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery  

Microsoft Academic Search

Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor

Manuel Gomez-Rodriguez; Jan Peters; J. Hill; Bernhard Schölkopf; Alireza Gharabaghi; Moritz Grosse-Wentrup

2010-01-01

66

A Social Feedback Loop for Speech Development and Its Reduction in Autism.  

PubMed

We analyzed the microstructure of child-adult interaction during naturalistic, daylong, automatically labeled audio recordings (13,836 hr total) of children (8- to 48-month-olds) with and without autism. We found that an adult was more likely to respond when the child's vocalization was speech related rather than not speech related. In turn, a child's vocalization was more likely to be speech related if the child's previous speech-related vocalization had received an immediate adult response rather than no response. Taken together, these results are consistent with the idea that there is a social feedback loop between child and caregiver that promotes speech development. Although this feedback loop applies in both typical development and autism, children with autism produced proportionally fewer speech-related vocalizations, and the responses they received were less contingent on whether their vocalizations were speech related. We argue that such differences will diminish the strength of the social feedback loop and have cascading effects on speech development over time. Differences related to socioeconomic status are also reported. PMID:24840717

Warlaumont, Anne S; Richards, Jeffrey A; Gilkerson, Jill; Oller, D Kimbrough

2014-05-19

67

Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses  

PubMed Central

Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-?B and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype. PMID:20585546

Kriete, Andres; Bosl, William J.; Booker, Glenn

2010-01-01

68

A model for improving microbial biofuel production using a synthetic feedback loop.  

PubMed

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates. PMID:20805930

Dunlop, Mary J; Keasling, Jay D; Mukhopadhyay, Aindrila

2010-06-01

69

FALCON: Feedback Adaptive Loop for ContentBased Leejay Wu Christos Faloutsos Katia Sycara Terry R. Payne  

E-print Network

FALCON: Feedback Adaptive Loop for Content­Based Retrieval Leejay Wu Christos Faloutsos Katia completely. This paper presents a novel approach, FALCON, which allows easy specification of complex queries

70

Record of thin dynamic holographic grating with asymmetrical fringe profile in optical feedback loop with TV-closure  

NASA Astrophysics Data System (ADS)

In this paper we present results of theoretical and experimental research of dynamic holographic system based on optically-addressed liquid crystal light modulator inside optical feedback loop, which provides asymmetrization of grating's profile. We use computer-based signal loop instead of pure optical link. This approach gives us solution for hysteresis problems and significantly reduces optical scheme complexity.

Venediktov, V. Yu.; Freygang, N. N.; Laskin, V. A.

2009-05-01

71

Optical frequency stabilization in infrared region using improved dual feed-back loop  

NASA Astrophysics Data System (ADS)

Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

Ruži?ka, B.; ?íp, O.; Lazar, J.

2007-03-01

72

Functional characteristics of a double positive feedback loop coupled with autorepression  

NASA Astrophysics Data System (ADS)

We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic ?-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the ?-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the ?-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON ? OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

Banerjee, Subhasis; Bose, Indrani

2008-12-01

73

A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning  

NASA Astrophysics Data System (ADS)

Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from our ongoing research on developmental patterning.

Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

74

Stochastic Gene Expression in a Lentiviral Positive Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity  

E-print Network

Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, Weinberger et al. (2005) take an integrated computational-experimental approach to study the Tat transactivation feedback loop in HIV-1 and show that fluctuations in a key regulator, Tat, can result in a phenotypic bifurcation. This phenomenon is observed in an isogenic population where individual cells display two distinct expression states corresponding to latent and productive infection by HIV-1. These findings demonstrate the importance of stochastic gene expression in molecular "decision-making."

Leor S. Weinberger; John C. Burnett; Jared E. Toettcher; Adam P. Arkin; David V. Schaffer

2006-08-01

75

Spatial-temporal dissipative structures arising in open reactive systems with a negative feedback loop.  

PubMed

A systematic way of finding the possible spatial-temporal structures that may emerge in open reactive systems coupled with diffusive transport and containing one inhibitory (negative feedback) loop is presented. The method is illustrated on two kinetic models, one used by L. Glass, another by Higgins et al. which we coupled with diffusion. The ranges of cooperativity index and Fick transport coefficients we find for the occurrence of a spatially non-uniform time periodicity are consistent with in vitro experiments. PMID:6743791

Fernández, A; Sinano?lu, O

1984-01-01

76

Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring  

NASA Technical Reports Server (NTRS)

The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

2002-01-01

77

Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation  

PubMed Central

Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between ?0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of ?0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application. PMID:24116724

Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

2014-01-01

78

Balanced bridge feedback control system  

NASA Technical Reports Server (NTRS)

In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

Lurie, Boris J. (inventor)

1990-01-01

79

Analysis of a dc SQUID readout scheme with voltage feedback circuit and low-noise preamplifier  

NASA Astrophysics Data System (ADS)

We analyzed the dc SQUID with voltage feedback circuit (VFC) and a low-noise room-temperature preamplifier to evaluate the feasibility of a low-noise SQUID direct-coupled readout scheme (DRS), possibly eliminating the need for a two-stage scheme employing a SQUID preamplifier. The passive VFC, connected in parallel to the SQUID, consists of a resistor Rs in series with an inductor L s. This inductor is coupled to the SQUID by a mutual inductance Ms. The purpose of the VFC is to increase the SQUID’s flux-to-voltage transfer coefficient ?V/??, thus reducing the preamplifier noise contribution ??preamp. However, at the same time, VFC introduces the thermal noise of Rs, ??R, which may not be negligible. Generally, the noise of the readout scheme, ??readout, may thus include both ??preamp and ??R, i.e., ??readout2 = ??preamp2 + ??R2. To characterize the SQUID operation with VFC we introduced two dimensionless parameters, r = Rs/Rd and ? = (M s/Mdyn) - (Rs/R d), where Rd and Mdyn = 1/(?i/??) are dynamic properties of the SQUID itself. For assumed intrinsic SQUID parameters, we then numerically analyzed the dependence of ??readout noise components on r and ? to determine their suitable ranges and the minimum of ??readout. To verify our analysis, we experimentally characterized, in liquid helium, three niobium SQUIDs with VFC, having suitably chosen r and ?. The measured SQUID system flux noise was on the order of 1 ??0/?Hz, comparable to the intrinsic noise of the SQUID itself. The deduced equivalent voltage noise was comparable to that of a SQUID preamplifier in the two-stage readout. Simple single-stage ultra-low-noise SQUID DRS readout was thus demonstrated.

Zeng, Jia; Zhang, Yi; Schmelz, Matthias; Mück, Michael; Krause, Hans-Joachim; Braginski, Alex I.; Lee, Yong-Ho; Stolz, Ronny; Kong, Xiangyan; Xie, Xiaoming; Meyer, Hans-Georg; Offenhäusser, Andreas; Jiang, Mianheng

2014-08-01

80

Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.  

PubMed

Owing to the complex behavior of ultrasound-induced bubble clouds (nucleation, linear and nonlinear oscillations, collapse), acoustic cavitation remains a hardly controllable phenomenon, leading to poorly reproducible ultrasound-based therapies. A better control of the various aspects of cavitation phenomena for in vivo applications is a key requirement to improve emerging ultrasound therapies. Previous publications have reported on systems performing regulation of acoustic cavitation in continuous sonication when applied in vitro, but the main challenge today is to achieve real-time control of cavitation activity in pulsed sonication when used in vivo. The present work aims at developing a system to control acoustic cavitation in a pulsed wave condition using a real-time feedback loop. The experimental setup consists of a water bath in which is submerged a focused transducer (pulsed waves, frequency 550?kHz) used for sonication and a hydrophone used to listen to inertial cavitation. The designed regulation process allows the cavitation activity to be controlled through a 300??s feedback loop. Without regulation, cavitation exhibits numerous bursts of intense activity and large variations of inertial cavitation level over time. In a regulated regime, the control of inertial cavitation activity within a pulse leads to consistent cavitation levels over time with an enhancement of the reproducibility. PMID:23927204

Desjouy, Cyril; Poizat, Adrien; Gilles, Bruno; Inserra, Claude; Bera, Jean-Christophe

2013-08-01

81

A Regulatory Feedback Loop between HIF-1? and PIM2 in HepG2 Cells  

PubMed Central

To survive under hypoxic conditions, cancer cells remodel glucose metabolism to support tumor progression. HIF transcription factor is essential for cellular response to hypoxia. The underlying mechanism how HIF is constitutively activated in cancer cells remains elusive. In the present study, we characterized a regulatory feedback loop between HIF-1? and PIM2 in HepG2 cells. Serine/threonine kinase proto-oncogene PIM2 level was induced upon hypoxia in a HIF-1?-mediated manner in cancer cells. HIF-1? induced PIM2 expression via binding to the hypoxia-responsive elements (HREs) of the PIM2 promoter. In turn, PIM2 interacted with HIF-1?, especially a transactivation domain of HIF-1?. PIM2 as a co-factor but not an upstream kinase of HIF-1?, enhanced HIF-1? effect in response to hypoxia. The positive feedback loop between PIM2 and HIF-1? was correlated with glucose metabolism as well as cell survival in HepG2 cells. Such a regulatory mode may be important for the adaptive responses of cancer cells in antagonizing hypoxia during cancer progression. PMID:24505470

Yu, Zhenhai; Zhao, Xiaoping; Ge, Yingying; Zhang, Teng; Huang, Liangqian; Zhou, Xiang; Xie, Lei; Liu, Jianjun; Huang, Gang

2014-01-01

82

Better Bet-Hedging with coupled positive and negative feedback loops  

NASA Astrophysics Data System (ADS)

Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.

Narula, Jatin; Igoshin, Oleg

2011-03-01

83

Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report  

NASA Technical Reports Server (NTRS)

Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

Thompson, P. M.

1980-01-01

84

Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop  

NASA Astrophysics Data System (ADS)

An all-electrical velocity feedback control to enhance the quality factor of piezoelectric aluminium nitride (AlN)-based microcantilevers and microbridges was implemented. Two alternatives to obtain a velocity-proportional signal were demonstrated depending on the top electrode configuration. For a straightforward electrode design in one-port configuration (i.e. self-actuation and self-sensing), a velocity signal, proportional to the piezoelectric current, was used in the feedback loop by cancelling out the dielectric current electronically. For top electrodes allowing a two-port configuration (i.e. one for actuation and one for sensing), the piezoelectric current is directly extracted and its relationship with velocity is analysed taking the symmetry of the modal shape into account. Standard operational amplifier-based configurations for the feedback circuits were implemented on a printed circuit board. Quality factors were determined from the transient electrical response of the devices. Comparable results were obtained from the displacement spectrum applying a laser Doppler vibrometer. Quality factors as high as 2 × 105, corresponding to an enhancement factor of about 200, were achieved in air for the lowest gain margin achievable before the circuit becomes unstable, making this kind of device more competitive for mass sensor applications due to enhanced spectral resolution.

Manzaneque, T.; Hernando-García, J.; Ababneh, A.; Schwarz, P.; Seidel, H.; Schmid, U.; Sánchez-Rojas, J. L.

2011-02-01

85

Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources  

NASA Astrophysics Data System (ADS)

The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

86

All-fiber wavelength-tunable passive phasing of eight channels of fiber amplifiers using optical feedback loop  

NASA Astrophysics Data System (ADS)

We present an all-fiber wavelength-tunable passive coherent combining configuration using an optical feedback loop and demonstrate the passive phasing of eight channels of fiber amplifiers experimentally. The stability of the all-fiber architecture and the simplicity of passive phasing are integrated in the configuration. The power combining efficiency is 96.7%, the residual phase error is below ?/15, and phase noises below 100 Hz are compensated efficiently. By inserting a spectral tunable filter in the feedback loop, the passive coherent combining configuration is afforded a wavelength-tuning ability.

Yang, Baolai; Wang, Xiaolin; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun

2015-02-01

87

Performance of the load-in-the-loop single Op-Amp voltage Controlled current source from the Op-Amp Parameters  

NASA Astrophysics Data System (ADS)

In recent years, Electrical Bioimpedance (EBI) methods have gained importance. These methods are often based on obtaining impedance spectrum in the range of ?-dispersion, i.e. from a few kHz up to some MHz. To measure EBI a constant current is often injected and the voltage across the tissue under study is recorded. Due to the performance of the current source influences the performance of the entire system, in terms of frequency range, several designs have been implemented and studied. In this paper the basic structure of a Voltage-Controlled Current Source based on a single Op-Amp in inverter configuration with a floating load, known as load-in-the-loop current source, is revisited and studied deeply. We focus on the dependence of the output impedance with the circuit parameters, i.e. the feedback resistor and the inverter-input resistor, and the Op-Amp main parameters, i.e. open loop gain, CMRR and input impedance. After obtaining the experimental results, using modern Op-Amps, and comparing to the theoretical and simulated ones, they confirm the design under study can be a good solution for multi-frequency wideband EBI applications because of higher values of the output impedance than 100k? at 1MHz are obtained. Furthermore, an enhancement of the basic design, using a current conveyor as a first stage, is proposed, studied and implemented.

Macías, R.; Seoane, F.; Bragós, R.

2010-04-01

88

Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons  

PubMed Central

We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887

Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas

2012-01-01

89

Changes in Adolescents' Risk Factors Following Peer Sexual Coercion: Evidence for a Feedback Loop  

PubMed Central

Investigators have identified a number of factors that increase the risk for experiencing sexual coercion, but as yet little is known about how sexual coercion in turn affects these risk factors. Using a sample of 110 adolescents, the current study examined the hypothesis that, after an incident of sexual coercion, adolescents would exhibit increases in several behaviors known to increase risk for victimization. As predicted, after experiencing sexual coercion, adolescents reported increased externalizing symptoms, more frequent sexual intercourse and a greater total number of intercourse partners. Finally, alcohol use, drug use, and problems related to substance use increased. These findings suggest the presence of a feedback loop, in which the experience of sexual coercion leads to an intensification of the factors that initially contributed risk for coercion. PMID:22559131

Young, Brennan J.; Furman, Wyndol; Jones, Meredith C.

2012-01-01

90

Computer program for single input-output, single-loop feedback systems  

NASA Technical Reports Server (NTRS)

Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

1976-01-01

91

Evidence for a novel feedback loop in the Hedgehog pathway involving the seven transmembrane-domain protein Smoothened and the kinase Fused.  

E-print Network

1 Evidence for a novel feedback loop in the Hedgehog pathway involving the seven transmembrane: Hedgehog, Smoothened, Fused, signalling, traffic, imaginal disc, feedback loop, Drosophila. * Manuscript manuscript, published in "Current Biology Sous presse, ? (2007) ?" #12;2 SUMMARY Hedgehog (HH) is a major

Paris-Sud XI, Université de

92

A Novel DDB2-ATM Feedback Loop Regulates Human Cytomegalovirus Replication  

PubMed Central

Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication. PMID:24335308

E, Xiaofei; Savidis, George; Chin, Christopher R.; Wang, Shixia; Lu, Shan; Brass, Abraham L.

2014-01-01

93

A novel DDB2-ATM feedback loop regulates human cytomegalovirus replication.  

PubMed

Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication. PMID:24335308

E, Xiaofei; Savidis, George; Chin, Christopher R; Wang, Shixia; Lu, Shan; Brass, Abraham L; Kowalik, Timothy F

2014-02-01

94

Feedback loops and temporal misalignment in component-based hydrologic modeling  

NASA Astrophysics Data System (ADS)

In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

2011-12-01

95

Bistability, Probability Transition Rate and First-Passage Time in an Autoactivating Positive-Feedback Loop  

PubMed Central

A hallmark of positive-feedback regulation is bistability, which gives rise to distinct cellular states with high and low expression levels, and that stochasticity in gene expression can cause random transitions between two states, yielding bimodal population distribution (Kaern et al., 2005, Nat Rev Genet 6: 451-464). In this paper, the probability transition rate and first-passage time in an autoactivating positive-feedback loop with bistability are investigated, where the gene expression is assumed to be disturbed by both additive and multiplicative external noises, the bimodality in the stochastic gene expression is due to the bistability, and the bistability determines that the potential of the Fokker-Planck equation has two potential wells. Our main goal is to illustrate how the probability transition rate and first-passage time are affected by the maximum transcriptional rate, the intensities of additive and multiplicative noises, and the correlation of additive and multiplicative noises. Our main results show that (i) the increase of the maximum transcription rate will be useful for maintaining a high gene expression level; (ii) the probability transition rate from one potential well to the other one will increase with the increase of the intensity of additive noise; (iii) the increase of multiplicative noise strength will increase the amount of probability in the left potential well; and (iv) positive (or negative) cross-correlation between additive and multiplicative noises will increase the amount of probability in the left (or right) potential well. PMID:21445288

Zheng, Xiu-Deng; Yang, Xiao-Qian; Tao, Yi

2011-01-01

96

Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem.  

PubMed

Polyamines are small polycationic amines that are widespread in living organisms. Thermospermine, synthesized by thermospermine synthase ACAULIS5 (ACL5), was recently shown to be an endogenous plant polyamine. Thermospermine is critical for proper vascular development and xylem cell specification, but it is not known how thermospermine homeostasis is controlled in the xylem. We present data in the Populus model system supporting the existence of a negative feedback control of thermospermine levels in stem xylem tissues, the main site of thermospermine biosynthesis. While over-expression of the ACL5 homologue in Populus, POPACAULIS5, resulted in strong up-regulation of ACL5 expression and thermospermine accumulation in leaves, the corresponding levels in the secondary xylem tissues of the stem were similar or lower than those in the wild-type. POPACAULIS5 over-expression had a negative effect on accumulation of indole-3-acetic acid, while exogenous auxin had a positive effect on POPACAULIS5 expression, thus promoting thermospermine accumulation. Further, over-expression of POPACAULIS5 negatively affected expression of the class III homeodomain leucine zipper (HD-Zip III) transcription factor gene PttHB8, a homologue of AtHB8, while up-regulation of PttHB8 positively affected POPACAULIS5 expression. These results indicate that excessive accumulation of thermospermine is prevented by a negative feedback control of POPACAULIS5 transcript levels through suppression of indole-3-acetic acid levels, and that PttHB8 is involved in the control of POPACAULIS5 expression. We propose that this negative feedback loop functions to maintain steady-state levels of thermospermine, which is required for proper xylem development, and that it is dependent on the presence of high concentrations of endogenous indole-3-acetic acid, such as those present in the secondary xylem tissues. PMID:23647338

Milhinhos, Ana; Prestele, Jakob; Bollhöner, Benjamin; Matos, Andreia; Vera-Sirera, Francisco; Rambla, José L; Ljung, Karin; Carbonell, Juan; Blázquez, Miguel A; Tuominen, Hannele; Miguel, Célia M

2013-08-01

97

PPAR and liver circadian clock Reciprocal regulation of BMAL1 and PPAR defines a novel positive feedback loop in  

E-print Network

PPAR and liver circadian clock Reciprocal regulation of BMAL1 and PPAR defines a novel positive feedback loop in the rodent liver circadian clock. Laurence Canaple*¶ , Juliette Rambaud*, Ouria Dkhissi.laudet@ens-lyon.fr The authors have nothing to declare. Running Title: PPAR and liver circadian clock Key words: PPAR, BMAL1

Boyer, Edmond

98

Construction and Modelling of an Inducible Positive Feedback Loop Stably Integrated in a Mammalian Cell-Line  

Microsoft Academic Search

Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists

Velia Siciliano; Filippo Menolascina; Lucia Marucci; Chiara Fracassi; Immacolata Garzilli; Maria Nicoletta Moretti; Diego di Bernardo

2011-01-01

99

Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback  

NASA Technical Reports Server (NTRS)

In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

1995-01-01

100

ASDTIC: A feedback control innovation  

NASA Technical Reports Server (NTRS)

The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

Lalli, V. R.; Schoenfeld, A. D.

1972-01-01

101

ASDTIC - A feedback control innovation.  

NASA Technical Reports Server (NTRS)

The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

Lalli, V. R.; Schoenfeld, A. D.

1972-01-01

102

Low overshoot, low dropout voltage regulator with level detector  

Microsoft Academic Search

An ultra-small, low power, low dropout (LDO) voltage regulator is presented which tracks the output voltage with threshold voltages of the underlying process technology. The topology of the regulator is extremely simple because it does not use an error amplifier. Instead a common-gate stage feedback loop is used, reducing the number of active transistors to only 10. This results in

Ralph Oberhuber; Rahul Prakash

2010-01-01

103

Analysis, Design, and Optimization of Matched-Impedance Wide-Band Amplifiers With Multiple Feedback Loops Using 0.18 ?m Complementary Metal Oxide Semiconductor Technology  

NASA Astrophysics Data System (ADS)

The realization of matched-impedance wide-band amplifier fabricated by 0.18 ?m complementary metal oxide semiconductor (CMOS) process is reported. The technique of multiple feedback loops was used in the amplifier for terminal impedance matching and wide bandwidth simultaneously. The experimental results show that 3-dB bandwidth of 3 GHz and a gain of 10.7 dB with in-band input/output return loss more than 10 dB are obtained. These values agree well with those predicted from the analytic expressions derived for voltage gain, trans-impedance gain, bandwidth, and input/output return loss and impedance. In addition, the use of source capacitive peaking technique can improve the intrinsic over-damped characteristic of this amplifier.

Lin, Yo-Sheng; Lee, Tai-Hsing

2004-10-01

104

A negative feedback loop involving small RNAs accelerates Vibrio cholerae’s transition out of quorum-sensing mode  

PubMed Central

Quorum sensing is a cell-to-cell communication process that allows bacteria to measure their population numbers and to synchronously alter gene expression in response to changes in cell population density. At the core of the Vibrio cholerae quorum-sensing signal transduction pathway lie four redundant small RNAs (sRNAs), named the Quorum Regulatory RNAs (Qrr1–4). Expression of qrr1–4 is cell population density-dependent due to a requirement for the quorum-sensing controlled phosphorylated response regulator LuxO-P, which is abundant only at low cell population density. When expressed, Qrr1–4 repress translation of HapR, the “master” quorum-sensing transcription factor. Here we show a negative feedback loop in which HapR activates transcription of the qrr genes, which indirectly leads to hapR repression. Efficient feedback activation of the qrr genes requires the simultaneous presence of LuxO-P (present only at low cell population density) and HapR (present only at high cell population density). For this reason, the feedback loop does not influence quorum sensing at steady-state low or high cell population density. However, LuxO-P and HapR are simultaneously present immediately following the switch from high to low cell density conditions. In this state, the HapR feedback loop dramatically accelerates V. cholerae’s transition from the high to the low cell density mode. PMID:18198339

Svenningsen, Sine L.; Waters, Christopher M.; Bassler, Bonnie L.

2008-01-01

105

Neural approximation of open-loop feedback rate control in satellite networks.  

PubMed

A resource allocation problem for a satellite network is considered, where variations of fading conditions are added to those of traffic load. Since the capacity of the system is finite and divided in finite discrete portions, the resource allocation problem reveals to be a discrete stochastic programming one, which is typically NP-Hard. In practice, a good approximation of the optimal solution could be obtained through the adoption of a closed-form expression of the performance measure in steady-state conditions. Once we have summarized the drawbacks of such optimization strategy, we address two novel optimization approaches. The first one derives from Gokbayrak and Cassandras and is based on the minimization over the discrete constraint set using an estimate of the gradient, obtained through a "relaxed continuous extension" of the performance measure. The computation of the gradient estimation is based on infinitesimal perturbation analysis (IPA). Neither closed forms of the performance measures, nor additional feedbacks concerning the state of the system and very mild assumptions about the stochastic environment are requested. The second one is the main contribution of the present work, and is based on an open-loop feedback control (OLFC) strategy, aimed at providing optimal reallocation strategies as functions of the state of the network. The optimization approach leads us to a functional optimization problem, and we investigate the adoption of a neural network-based technique, in order to approximate its solution. As is shown in the simulation results, we obtain near-optimal reallocation strategies with a small real time computational effort and avoid the suboptimal transient periods introduced by the IPA gradient descent algorithm. PMID:16252826

Baglietto, Marco; Davoli, Franco; Marchese, Mario; Mongelli, Maurizio

2005-09-01

106

Fast half-loop maneuvers for a high alpha fighter aircraft using a singular perturbation feedback control law  

NASA Technical Reports Server (NTRS)

Singular perturbation analysis is used to derive an outer layer feedback control law for a high alpha fighter aircraft to perform the half-loop maneuver. Pitch rate and angle of attack are treated as fast variables in the derivation. Bang-bang controls are derived to transfer the aircraft state from trim to the outer layer and from the outer layer to specified final half-loop values. The pitch rate is treated as a varibale faster than the angle of attack in the transfer of the state to and from the outer layer. A simulation of the derived control law is conducted at Mach 0.6 and 15,000 feet altitude. The half-loop was performed in 13.12 seconds. It is compared with a NASA pilot simulated half-loop maneuver which took 22.42 seconds for the same initial conditions.

Garrett, Frederick E., Jr.; Stalford, Harold L.

1989-01-01

107

Propofol detection and quantification in human blood: the promise of feedback controlled, closed-loop anesthesia.  

PubMed

The performance of a membrane-coated voltammetric sensor for propofol (2,6-diisopropylphenol) has been characterized in long term monitoring experiments using an automated flow analytical system (AFAS) and by analyzing human serum and whole blood samples by standard addition. It is shown that the signal of the membrane-coated electrochemical sensor for propofol is not influenced by the components of the pharmaceutical formulation of propofol (propofol injectable emulsion). The current values recorded with the electrochemical propofol sensor in buffer solutions and human serum samples spiked with propofol injectable emulsion showed excellent correlation with the peak heights recorded with an UV-Vis detector during the HPLC analysis of these samples (R(2) = 0.997 in PBS and R(2) = 0.975 in human serum). However, the determination of propofol using the electrochemical method is simpler, faster and has a better detection limit (0.08 ± 0.05 ?M) than the HPLC method (0.4 ± 0.2 ?M). As a first step towards feedback controlled closed-loop anesthesia, the membrane-coated electrochemical sensor has been implemented onto surface of an intravenous catheter. The response characteristics of the membrane-coated carbon fiber electrode on the catheter surface were very similar to those seen using a macroelectrode. PMID:25327876

Kivlehan, Francine; Chaum, Edward; Lindner, Ern?

2015-01-01

108

Messenger RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback loop  

NASA Astrophysics Data System (ADS)

Single-cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear damped in the population average. In this paper we investigate the role of RNA stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single-cell level. As opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be amplified during translation and produce sustained pulses of protein expression. Motivated by the recent appreciation of the importance of noncoding regulatory RNAs in post-transcription regulation, we also consider the possibility that a regulatory RNA transcript could bind to the messenger RNA and repress translation. Our findings show that the regulatory transcript helps reducing gene expression variability both at the single-cell level and at the cell population level.

Rodríguez Martínez, María; Soriano, Jordi; Tlusty, Tsvi; Pilpel, Yitzhak; Furman, Itay

2010-03-01

109

Controlling thread formation during tipstreaming through an active feedback control loop.  

PubMed

Microscale tipstreaming is a hydrodynamic phenomenon capable of producing submicron sized droplets within a microfluidic device. The tipstreaming process results in the drawing of a thin thread from a highly curved interface and occurs as a result of interfacial surfactant concentration gradients that develop due to elongational flows generated within flow focusing geometries. However, in conventional microfluidic devices, the thread formation is periodically interrupted by the formation of larger primary droplets. This study presents an active feedback control loop capable of eliminating the production of primary droplets and producing a continuous thread, and therefore a continuous droplet stream. A proportional controller is used to successfully control the position of the interface and generate a continuous thread. A derivative component is incorporated in an attempt to increase controller stability, but this component is found to be ineffective. Analysis of the tip position as a function of time is performed to determine the optimal proportional gain constant and set point value for the proportional controller that minimize fluctuations in the produced droplet sizes. The generation of a continuous thread facilitates the use of tipstreaming in several applications, including nanoparticle synthesis, chemical detection, and enzyme activity studies. PMID:24100760

Moyle, Todd M; Walker, Lynn M; Anna, Shelley L

2013-12-01

110

A Positive Feedback Loop Between Prolactin and STAT5 Promotes Angiogenesis.  

PubMed

The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention. PMID:25472543

Yang, Xinhai; Friedl, Andreas

2015-01-01

111

iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia.  

PubMed

iASPP, an inhibitory member of the ASPP (apoptosis stimulating protein of p53) family, is an evolutionarily conserved inhibitor of p53 which is frequently upregulated in human cancers. However, little is known about the role of iASPP under physiological conditions. Here, we report that iASPP is a critical regulator of epithelial development. We demonstrate a novel autoregulatory feedback loop which controls crucial physiological activities by linking iASPP to p63, via two previously unreported microRNAs, miR-574-3p and miR-720. By investigating its function in stratified epithelia, we show that iASPP participates in the p63-mediated epithelial integrity program by regulating the expression of genes essential for cell adhesion. Silencing of iASPP in keratinocytes by RNA interference promotes and accelerates a differentiation pathway, which also affects and slowdown cellular proliferation. Taken together, these data reveal iASPP as a key regulator of epithelial homeostasis. PMID:21897369

Chikh, Anissa; Matin, Rubeta N H; Senatore, Valentina; Hufbauer, Martin; Lavery, Danielle; Raimondi, Claudio; Ostano, Paola; Mello-Grand, Maurizia; Ghimenti, Chiara; Bahta, Adiam; Khalaf, Sahira; Akgül, Baki; Braun, Kristin M; Chiorino, Giovanna; Philpott, Michael P; Harwood, Catherine A; Bergamaschi, Daniele

2011-10-19

112

iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia  

PubMed Central

iASPP, an inhibitory member of the ASPP (apoptosis stimulating protein of p53) family, is an evolutionarily conserved inhibitor of p53 which is frequently upregulated in human cancers. However, little is known about the role of iASPP under physiological conditions. Here, we report that iASPP is a critical regulator of epithelial development. We demonstrate a novel autoregulatory feedback loop which controls crucial physiological activities by linking iASPP to p63, via two previously unreported microRNAs, miR-574-3p and miR-720. By investigating its function in stratified epithelia, we show that iASPP participates in the p63-mediated epithelial integrity program by regulating the expression of genes essential for cell adhesion. Silencing of iASPP in keratinocytes by RNA interference promotes and accelerates a differentiation pathway, which also affects and slowdown cellular proliferation. Taken together, these data reveal iASPP as a key regulator of epithelial homeostasis. PMID:21897369

Chikh, Anissa; Matin, Rubeta N H; Senatore, Valentina; Hufbauer, Martin; Lavery, Danielle; Raimondi, Claudio; Ostano, Paola; Mello-Grand, Maurizia; Ghimenti, Chiara; Bahta, Adiam; Khalaf, Sahira; Akgül, Baki; Braun, Kristin M; Chiorino, Giovanna; Philpott, Michael P; Harwood, Catherine A; Bergamaschi, Daniele

2011-01-01

113

Comment on "Steady-state fluctuations of a genetic feedback loop: An exact solution" [J. Chem. Phys. 137, 035104 (2012)  

NASA Astrophysics Data System (ADS)

The comment presents the complete steady state solution of the model introduced on "Steady-state fluctuations of a genetic feedback loop: An exact solution" [Grima et al. J. Chem. Phys. 137, 035104 (2012)]. A closed form for the normalization constant is obtained and hence the explicit calculation of the moments as functions of the parameters is possible. We discuss the meaning of an exact solution to a differential equation and the construction of a model to the understanding of a phenomenon.

Innocentini, Guilherme C. P.; Ramos, Alexandre F.; Hornos, José Eduardo M.

2015-01-01

114

Towards Understanding the Star Formation-Feedback Loop in Galaxy Formation and Evolution  

NASA Astrophysics Data System (ADS)

We propose to carry out a comprehensive study of how star formation and feedback loop influences evolution of galaxies using a suite of ultra-high resolution cosmological simulations of galaxy formation using the Adaptive Mesh Refinement (AMR) approach implemented in the Adaptive Refinement Tree (ART) code. The simulations will result in the numerical models of galaxy evolution of unprecedented resolution and sophistication of the processes included. Our code includes treatment of a wide spectrum of processes critical for realistic modeling of galaxy formation from the primordial chemistry of hydrogen and helium species, radiative transfer of ionizing radiation, to the metallicity- dependent cooling, chemistry of molecular hydrogen on dust and treatment of radiative transfer of dissociating far ultraviolet radiation. The latter allows us to tie star formation with dense, molecular regions capable of self-shielding from heating radiation and avoid adopting arbitrary density and temperature thresholds for star formation. Simulations will also employ a new model for momentum injection due to radiation pressure exerted by young massive stars onto surrounding dust and gas. This early, pre-supernova feedback is critical to prompt dispersal of natal molecular clouds and regulating star formation efficiency and increasing efficiency of energy release by supernovae. The simulations proposed in this project will therefore treat the most important process to understanding the efficiency of baryon conversion to stars - the star formation - in the way most closely resembling the actual star formation observed in galaxies and stellar feedback model that is firmly rooted in observational evidence on how feedback operates in real molecular clouds. The simulations we propose will provide models of galaxy evolution during three important epochs in the history of the universe: (1) early evolution prior to and during the reionization of the universe (the first billion years of evolution, z>5), (2) the epoch of the peak star formation activity in the universe (~1-3 billion years since the Big Bang, z~2- 4), and (3) the late evolution of the universe down to the present time (z=0). The petascale cosmological simulations resulting from this work should lead to major breakthroughs in our understanding of galaxy formation. In particular, they should shed light on the origin of inefficiency of star formation in galaxies, and the processes that shape the observed properties of galaxies like the Milky Way and the ultra-faint dwarf galaxies surrounding them. Our proposed simulations of the high-redshift universe will provide models that can be used for theoretical interpretation of the ongoing breakthrough observations with the Hubble Space Telescope and future discoveries with the James Webb Space Telescope. Simulation results, such as density and velocity maps, will be made publicly available to researchers to be used in comparisons with observations, as well as for forecasting and developing observational strategies. Work on this project will educate and train future researches with skills required for the era of petascale simulations.

Kravtsov, Andrey

115

Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.  

PubMed

In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. PMID:22713856

Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

2012-10-01

116

A model for improving microbial biofuel production using a synthetic feedback loop  

Microsoft Academic Search

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to

Mary Dunlop; Jay Keasling; Aindrila Mukhopadhyay

2011-01-01

117

Comparison of Double Loop, Direct-Output-Voltage and Fuzzy-PI Control Strategies for D-STATCOM  

Microsoft Academic Search

This paper describes conventional and advanced methods for the control of D-STATCOM. The mathematical model of conventional double loop control, Direct-Output-Voltage (DOV) control, Decoupled DOV, Fuzzy-PI and Decoupled Fuzzy-PI based control is studied. The control scheme for the above approaches is implemented using Matlab Simulink platform. The dynamic response of the models are presented and compared.

Suchismita A. Chatterjee; K. D. Joshi

2010-01-01

118

A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?  

NASA Astrophysics Data System (ADS)

It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated the need for them. Achieving IGBP's goals requires new observational and organizational strategies. Some relatively modest changes in the ways that facilities and grants are awarded could make it possible to do multidisciplinary experiments of the type described in the SOLAS Science Plan and Implementation Strategy.

Huebert, B. J.

2004-12-01

119

Investigating the functional implications of reinforcing feedback loops in transcriptional regulatory networks.  

PubMed

Transcription factors (TFs) and microRNAs (miRNAs) can jointly regulate transcriptional networks in the form of recurrent circuits or motifs. A motif can be divided into a feedforward loop (FFL) and a feedback loop (FBL). Incoherent FFLs have been the recent focus due to their potential to dampen gene expression noise in maintaining physiological norms. However, a cell is not only able to manage noise but also able to exploit it during development or tumorigenesis to initiate radical transformation such as cell differentiation or metastasis. A plausible mechanism may involve reinforcing FBLs (rFBLs), which amplify changes to a sufficient level in order to complete the state transition. To study the behaviour of rFBLs, we developed a novel theoretical framework based on biochemical kinetics. The proposed rFBL follows a parsimonious design, involving two TFs and two miRNAs. A simulation study based on our model suggested that a system with rFBLs is robust to only a certain level of fluctuation but prone to a complete paradigm shift when the change exceeds a threshold level. To investigate the natural occurrence of rFBLs, we performed a rigorous network motif analysis using a recently available TF/miRNA regulatory network from the Encyclopedia of DNA Elements (ENCODE). Our analysis suggested that the rFBL is significantly depleted in the observed network. Nonetheless, we identified 9 rFBL instances. Among them, we found a double-rFBL involving three TFs SUZ12/BCLAF1/ZBTB33 and three miRNAs miR-9/19a/129-5p, which together serve as an intriguing toggle switch between nerve development and telomere maintenance. Additionally, we investigated the interactions implicated in the rFBLs using expression profiles of cancer patients from The Cancer Genome Atlas (TCGA). Together, we provided a novel and comprehensive view of the profound impacts of rFBLs and highlighted several TFs and miRNAs as the leverage points for potential therapeutic targets in cancers due to their eminent roles in the identified rFBLs. PMID:25286350

Li, Yue; Liang, Cheng; Easterbrook, Steve; Luo, Jiawei; Zhang, Zhaolei

2014-12-01

120

On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model  

NASA Astrophysics Data System (ADS)

In this study, we discuss the role of the nonlinear terms and linear (heating) term in the energy cycle of the three-dimensional (X-Y-Z) non-dissipative Lorenz model (3D-NLM). (X, Y, Z) represent the solutions in the phase space. We first present the closed-form solution to the nonlinear equation d2 X/d?2+ (X2/2)X = 0, ? is a non-dimensional time, which was never documented in the literature. As the solution is oscillatory (wave-like) and the nonlinear term (X2) is associated with the nonlinear feedback loop, it is suggested that the nonlinear feedback loop may act as a restoring force. We then show that the competing impact of nonlinear restoring force and linear (heating) force determines the partitions of the averaged available potential energy from Y and Z modes, respectively, denoted as APEY and APEZ. Based on the energy analysis, an energy cycle with four different regimes is identified with the following four points: A(X, Y) = (0,0), B = (Xt, Yt), C = (Xm, Ym), and D = (Xt, -Yt). Point A is a saddle point. The initial perturbation (X, Y, Z) = (0, 1, 0) gives (Xt, Yt) = ( 2?r , r) and (Xm, Ym) = (2 ?r , 0). ? is the Prandtl number, and r is the normalized Rayleigh number. The energy cycle starts at (near) point A, A+ = (0, 0+) to be specific, goes through B, C, and D, and returns back to A, i.e., A- = (0,0-). From point A to point B, denoted as Leg A-B, where the linear (heating) force dominates, the solution X grows gradually with { KE↑, APEY↓, APEZ↓}. KE is the averaged kinetic energy. We use the upper arrow (↑) and down arrow (↓) to indicate an increase and decrease, respectively. In Leg B-C (or C-D) where nonlinear restoring force becomes dominant, the solution X increases (or decreases) rapidly with KE↑, APEY↑, APEZ↓ (or KE↓, APEY↓, APEZ↑). In Leg D-A, the solution X decreases slowly with {KE↓, APEY↑, APEZ↑ }. As point A is a saddle point, the aforementioned cycle may be only half of a "big" cycle, displaying the wing pattern of a glasswinged butterfly, and the other half cycle is antisymmetric with respect to the origin, namely B = (-Xt, -Yt), C = (-Xm, 0), and D = (-Xt, Yt).

Shen, B.-W.

2014-04-01

121

Design and Implementation of Voltage Based Human Inspired Feedback Control of a Planar Bipedal Robot AMBER  

E-print Network

-world robotic platform - AMBER. To implement the human-inspired control techniques experimentally on a physical bipedal robot AMBER, a simple voltage based control law is presented which utilizes only the human outputs and canonical walking function...

Pasupuleti, Murali Krishna

2012-10-19

122

Positive Feedback-Loop of Telomerase Reverse Transcriptase and 15-Lipoxygenase-2 Promotes Pulmonary Hypertension  

PubMed Central

Objective Pulmonary hypertension (PH) is characterized with pulmonary vasoconstriction and vascular remodeling mediated by 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) according to our previous studies. Meanwhile, telomerase reverse transcriptase (TERT) activity is highly correlated with vascular injury and remodeling, suggesting that TERT may be an essential determinant in the development of PH. The aim of this study was to determine the contribution and molecular mechanisms of TERT in the pathogenesis of PH. Approach and Results We measured the right ventricular systolic pressure (RVSP) and ventricular weight, analyzed morphometric change of the pulmonary vessels in the hypoxia or monocrotaline treated rats. Bromodeoxyuridine incorporation, transwell assay and flow cytometry in pulmonary smooth muscle cells were performed to investigate the roles and relationship of TERT and 15-LO/15-HETE in PH. We revealed that the expression of TERT was increased in pulmonary vasculature of patients with PH and in the monocrotaline or hypoxia rat model of PH. The up-regulation of TERT was associated with experimental elevated RVSP and pulmonary vascular remodeling. Coimmunoprecipitation experiments identified TERT as a novel interacting partner of 15-LO-2. TERT and 15-LO-2 augmented protein expression of each other. In addition, the proliferation, migration and cell-cycle transition from G0/G1 phase to S phase induced by hypoxia were inhibited by TERT knockdown, which were rescued by 15-HETE addition. Conclusions These results demonstrate that TERT regulates pulmonary vascular remodeling. TERT and 15-LO-2 form a positive feedback loop and together promote proliferation and migration of pulmonary artery smooth muscle cells, creating a self-amplifying circuit which propels pulmonary hypertension. PMID:24376652

Shen, Tingting; Ma, Jun; Zhang, Lei; Yu, Xiufeng; Liu, Mengmeng; Hou, Yunlong; Wang, Yanyan; Ma, Cui; Li, Shuzhen; Zhu, Daling

2013-01-01

123

Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1?  

PubMed Central

Glyoxalase 1 (GlxI) is the key enzyme that converts the highly reactive ?-oxo-aldehydes into the corresponding ?-hydroxy acids using l-glutathione as a cofactor. In our preliminary data, GlxI was identified as a substrate of transglutaminase 2 (TG2), a ubiquitous enzyme with multiple functions. According to the catalytic properties of TG2, protein cross-linking, polyamine conjugation, and/or deamidation are potential post-translational modifications. In this article, we have demonstrated that TG2 catalyzes either polyamine conjugation or deamidation to GlxI depending on the presence of polyamines or not. Deamidation leads to activation of GlxI while polyamine conjugation results in activation of GlxI as well as stabilization of GlxI against denaturation treatment. In cultured HeLa cells, methylglyoxal challenge causes increase in intracellular levels of reactive oxygen species (ROS) and calcium leading to TG2 activation and subsequent transamidation and activation of GlxI. The inhibition of TG2 significantly weakens the cell resistance to the methylglyoxal challenge. Thus, GlxI is a novel substrate of TG2 and is activated by TG2 in vitro and in cellulo. Exposure to methylglyoxal elicits a negative feedback loop entailing ROS, calcium, TG2 and GlxI, thus leading to attenuation of the increase in the methylglyoxal level. The results imply that cancer cells highly express TG2 or GlxI can endure the oxidative stress derived from higher glycolytic flux and may gain extra growth advantage from the aerobic glycolysis. PMID:24494193

Lee, Der-Yen; Chang, Geen-Dong

2014-01-01

124

Effect of Insulin Feedback on Closed-Loop Glucose Control: A Crossover Study  

PubMed Central

Background Closed-loop (CL) insulin delivery systems utilizing proportional-integral-derivative (PID) controllers have demonstrated susceptibility to late postprandial hypoglycemia because of delays between insulin delivery and blood glucose (BG) response. An insulin feedback (IFB) modification to the PID algorithm has been introduced to mitigate this risk. We examined the effect of IFB on CL BG control. Methods Using the Medtronic ePID CL system, four subjects were studied for 24 h on PID control and 24 h during a separate admission with the IFB modification (PID + IFB). Target glucose was 120 mg/dl; meals were served at 8:00 AM, 1:00 PM, and 6:00 PM and were identical for both admissions. No premeal manual boluses were given. Reference BG excursions, defined as incremental glucose rise from premeal to peak, and postprandial BG area under the curve (AUC; 0–5 h) were compared. Results are reported as mean ± standard deviation. Results The PID + IFB control resulted in higher mean BG levels compared with PID alone (153 ± 54 versus 133 ± 56 mg/dl; p < .0001). Postmeal BG excursions (114 ± 28 versus 114 ± 47 mg/dl) and AUCs (285 ± 102 versus 255 ± 129 mg/dl/h) were similar under both conditions. Total insulin delivery averaged 57 ± 20 U with PID versus 45 ± 13 U with PID + IFB (p = .18). Notably, eight hypoglycemic events (BG < 60 mg/dl) occurred during PID control versus none during PID + IFB. Conclusions Addition of IFB to the PID controller markedly reduced the occurrence of hypoglycemia without increasing meal-related glucose excursions. Higher average BG levels may be attributable to differences in the determination of system gain (Kp) in this study. The prevention of postprandial hypoglycemia suggests that the PID + IFB algorithm may allow for lower target glucose selection and improved overall glycemic control. PMID:23063039

Ruiz, Jessica L.; Sherr, Jennifer L.; Cengiz, Eda; Carria, Lori; Roy, Anirban; Voskanyan, Gayane; Tamborlane, William V.; Weinzimer, Stuart A.

2012-01-01

125

Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.  

PubMed

Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell-cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root-shoot communication to control the number of root nodules, root lateral organs that harbor symbiotic nitrogen-fixing bacteria known as rhizobia. This feedback system, known as autoregulation of nodulation (AON), consists of two long-distance mobile signals: root-derived and shoot-derived signals. Two Lotus japonicus CLAVATA3/endosperm surrounding region (CLE)-related small peptides, CLE root signal1 (CLE-RS1) and CLE-RS2, function as root-derived signals and are perceived by a shoot-acting AON factor, the hypernodulation aberrant root formation1 (HAR1) receptor protein, an ortholog of Arabidopsis CLAVATA1, which is responsible for shoot apical meristem homeostasis. This peptide-receptor interaction is necessary for systemic suppression of nodulation. How the onset of nodulation activates AON and how optimal nodule numbers are maintained remain unknown, however. Here we show that an RWP-RK-containing transcription factor, nodule inception (NIN), which induces nodule-like structures without rhizobial infection when expressed ectopically, directly targets CLE-RS1 and CLE-RS2. Roots constitutively expressing NIN systemically repress activation of endogenous NIN expression in untransformed roots of the same plant in a HAR1-dependent manner, leading to systemic suppression of nodulation and down-regulation of CLE expression. Our findings provide, to our knowledge, the first molecular evidence of a long-distance autoregulatory negative-feedback loop that homeostatically regulates nodule organ formation. PMID:25246578

Soyano, Takashi; Hirakawa, Hideki; Sato, Shusei; Hayashi, Makoto; Kawaguchi, Masayoshi

2014-10-01

126

A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces  

PubMed Central

Neural prosthetic systems seek to improve the lives of severely disabled people by decoding neural activity into useful behavioral commands. These systems and their decoding algorithms are typically developed “offline,” using neural activity previously gathered from a healthy animal, and the decoded movement is then compared with the true movement that accompanied the recorded neural activity. However, this offline design and testing may neglect important features of a real prosthesis, most notably the critical role of feedback control, which enables the user to adjust neural activity while using the prosthesis. We hypothesize that understanding and optimally designing high-performance decoders require an experimental platform where humans are in closed-loop with the various candidate decode systems and algorithms. It remains unexplored the extent to which the subject can, for a particular decode system, algorithm, or parameter, engage feedback and other strategies to improve decode performance. Closed-loop testing may suggest different choices than offline analyses. Here we ask if a healthy human subject, using a closed-loop neural prosthesis driven by synthetic neural activity, can inform system design. We use this online prosthesis simulator (OPS) to optimize “online” decode performance based on a key parameter of a current state-of-the-art decode algorithm, the bin width of a Kalman filter. First, we show that offline and online analyses indeed suggest different parameter choices. Previous literature and our offline analyses agree that neural activity should be analyzed in bins of 100- to 300-ms width. OPS analysis, which incorporates feedback control, suggests that much shorter bin widths (25–50 ms) yield higher decode performance. Second, we confirm this surprising finding using a closed-loop rhesus monkey prosthetic system. These findings illustrate the type of discovery made possible by the OPS, and so we hypothesize that this novel testing approach will help in the design of prosthetic systems that will translate well to human patients. PMID:20943945

Cunningham, John P.; Nuyujukian, Paul; Gilja, Vikash; Chestek, Cindy A.; Ryu, Stephen I.

2011-01-01

127

Chaos control of voltage fluctuations in DC Arc Furnaces using time-delay feedback control  

Microsoft Academic Search

The goal is to control a chaotic behavior of DC arc furnaces. The time-delay feedback control (TDFC) technique of such chaos will be presented. The system is found exponentially stable under the novel proposed control whilst the fast transient response is maintained. Such a physical restriction is also satisfied when the control signal has to be constructed. The performance is

F. Abdous; A. Ranjbar N; S. H. Hosein Nia; A. Sheikhol Eslami

2008-01-01

128

A model for improving microbial biofuel production using a synthetic feedback loop  

Microsoft Academic Search

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield\\u000a insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation,\\u000a and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic\\u000a control system is used to

Mary J. Dunlop; Jay D. Keasling; Aindrila Mukhopadhyay

2010-01-01

129

Boosting the voltage gain of graphene FETs through a differential amplifier scheme with positive feedback  

NASA Astrophysics Data System (ADS)

We study a possible circuit solution to overcome the problem of low voltage gain of short-channel graphene FETs. The circuit consists of a fully differential amplifier with a load made of a cross-coupled transistor pair. Starting from the device characteristics obtained from self-consistent ballistic quantum transport simulations, we explore the circuit parameter space and evaluate the amplifier performance in terms of dc voltage gain and voltage gain bandwidth. We show that the dc gain can be effectively improved by the negative differential resistance provided by the cross-coupled pair. Contact resistance is the main obstacle to achieving gain bandwidth products in the terahertz range. Limitations of the proposed amplifier are identified with its poor linearity and relatively large Miller capacitance.

Grassi, R.; Gnudi, A.; Di Lecce, V.; Gnani, E.; Reggiani, S.; Baccarani, G.

2014-10-01

130

Identification of a negative feedback loop in biological oxidant formation fegulated by 4-hydroxy-2-(E)-nonenal  

PubMed Central

4-Hydroxy-2-(E)-nonenal (4-HNE) is one of the major lipid peroxidation product formed during oxidative stress. At high concentrations, 4-HNE is cytotoxic and exerts deleterious effects that are often associated with the pathology of oxidative stress-driven disease. Alternatively, at low concentrations it functions as a signaling molecule that can activate protective pathways including the antioxidant Nrf2-Keap1 pathway. Although these biphasic signaling properties have been enumerated in many diseases and pathways, it has yet to be addressed whether 4-HNE has the capacity to modulate oxidative stress-driven lipid peroxidation. Here we report an auto-regulatory mechanism of 4-HNE via modulation of the biological oxidant nitric oxide (NO). Utilizing LPS-activated macrophages to induce biological oxidant production, we demonstrate that 4-HNE modulates NO levels via inhibition of iNOS expression. We illustrate a proposed model of control of NO formation whereby at low concentrations of 4-HNE a negative feedback loop maintains a constant level of NO production with an observed inflection at approximately 1 µM, while at higher 4-HNE concentrations positive feedback is observed. Further, we demonstrate that this negative feedback loop of NO production control is dependent on the Nrf2-Keap1 signaling pathway. Taken together, the careful regulation of NO production by 4-HNE argues for a more fundamental role of this lipid peroxidation product in normal physiology. PMID:25009777

Gatbonton-Schwager, Tonibelle N.; Sadhukhan, Sushabhan; Zhang, Guo-Fang; Letterio, John J.; Tochtrop, Gregory P.

2014-01-01

131

A novel VRM control with direct load current feedback  

Microsoft Academic Search

General AVP (adaptive voltage position) design approach by close loop output impedance analysis is discussed. Based on the analysis, a novel VRM control scheme with direct load current feedback instead of traditional inductor current feedback is introduced. Simulation results and hardware testing demonstrate the good performance of the proposed VRM control.

Xin Zhang; Gary Yao; Alex Q. Huang

2004-01-01

132

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine  

E-print Network

role and the importance of the rotor angle stability as a key criterion in power system stability/reactive power balance and subsequently participation in frequency/voltage regulation is assigned to VSWTs [2 energy stored in spinning rotor proportional to grid frequency gradient for primary frequency control

Silva, Filipe Faria Da

133

A novel analog mirror type DLL suitable for low voltage operation with self-calibration method  

Microsoft Academic Search

A new architecture of the analog mirror type DLL has been developed. A dynamic comparator and self-calibration feedback loop are employed. The operation error of less than 50ps is confirmed under the condition of 1.6V supply voltage and 1.4V internal voltage. The proposed circuit is suitable for low-voltage and high-speed applications

Hironobu Akita; Satoshi Eto; Katsuaki Isobe; Kenji Tsuchida; H. Toda; Teruo Seki

2000-01-01

134

In-vivo argon laser vascular welding using thermal feedback: open- and closed-loop patency and collagen crosslinking  

NASA Astrophysics Data System (ADS)

An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 micrometer optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 degrees Celsius using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

Small, Ward, IV; Celliers, Peter M.; Kopchok, George E.; Reiser, Karen M.; Heredia, Nicholas J.; Maitland, Duncan J.; Eder, David C.; London, Richard A.; Heilbron, Mauricio; Hussain, Farabi; White, Rodney A.; Da Silva, Luiz B.; Matthews, Dennis L.

1997-05-01

135

In vivo argon laser vascular welding using thermal feedback: open and closed loop patency and collagen crosslinking  

SciTech Connect

An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 {micro}m optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 C using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

Small, W., LLNL

1997-02-28

136

Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation  

NASA Technical Reports Server (NTRS)

This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

Broussard, J. R.; Halyo, N.

1984-01-01

137

Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates.  

PubMed

In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination. PMID:23933491

Kozmikova, Iryna; Candiani, Simona; Fabian, Peter; Gurska, Daniela; Kozmik, Zbynek

2013-10-15

138

REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock  

PubMed Central

Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE–binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE–containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms. PMID:21483796

Rawat, Reetika; Jones, Matthew A.; Schwartz, Jacob; Salemi, Michelle R.; Phinney, Brett S.; Harmer, Stacey L.

2011-01-01

139

The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes.  

PubMed

The endocrine feedback loop between vitamin D3(1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10(-8) M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1?- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. PMID:24777663

Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

2014-12-01

140

Comment on "Steady-state fluctuations of a genetic feedback loop: An exact solution" [J. Chem. Phys. 137, 035104 (2012)].  

PubMed

The comment presents the complete steady state solution of the model introduced on "Steady-state fluctuations of a genetic feedback loop: An exact solution" [Grima et al. J. Chem. Phys. 137, 035104 (2012)]. A closed form for the normalization constant is obtained and hence the explicit calculation of the moments as functions of the parameters is possible. We discuss the meaning of an exact solution to a differential equation and the construction of a model to the understanding of a phenomenon. PMID:25591388

Innocentini, Guilherme C P; Ramos, Alexandre F; Hornos, José Eduardo M

2015-01-14

141

I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels.  

PubMed

The intracellular loops that interlink the four transmembrane domains of Ca(2+)- and Na(+)-channels (Ca(v), Na(v)) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I-II loop) in high voltage-activated (HVA) Ca(2+) channels possesses the binding site for Ca(v)beta subunits and plays significant roles in channel function, including trafficking the alpha(1) subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I-II loop of Ca(v)1/Ca(v)2 HVA channels and Ca(v)3 LVA/T-type channels, evidence for a regulatory role of the I-II loop in T-channel function has recently emerged for Ca(v)3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Ca(v)3 channels, we have performed a structure-function analysis of the I-II loop in Ca(v)3.1 and Ca(v)3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Ca(v)3.1 and Ca(v)3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Ca(v)3 channels. In contrast to findings in Ca(v)3.2, deletion of the central region of the I-II loop in Ca(v)3.1 and Ca(v)3.3 yielded a modest increase (+30%) and a reduction (-30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Ca(v)3 function by highlighting the unique role played by the intracellular I-II loop in Ca(v)3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Ca(v)3.3. PMID:18714336

Baumgart, Joel P; Vitko, Iuliia; Bidaud, Isabelle; Kondratskyi, Artem; Lory, Philippe; Perez-Reyes, Edward

2008-01-01

142

I–II Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels  

PubMed Central

The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cav? subunits and plays significant roles in channel function, including trafficking the ?1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (?30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3. PMID:18714336

Baumgart, Joel P.; Vitko, Iuliia; Bidaud, Isabelle; Kondratskyi, Artem; Lory, Philippe; Perez-Reyes, Edward

2008-01-01

143

Development of a fast voltage control method for electrostatic accelerators  

NASA Astrophysics Data System (ADS)

The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

2014-12-01

144

Closing a Second Feedback Loop in a DC–DC Converter Based on a Piezoelectric Transformer  

Microsoft Academic Search

Nowadays, piezoelectric transformers (PT) are a good alternative to substitute magnetic materials in AC\\/DC and DC-DC converters. They have high isolation voltage and operate at higher frequencies than magnetics, with lower losses. However, their optimum operating frequency exhibits a strong dependence on different parameters, such as temperature, load, or even voltage level applied. This is usually an inconvenience, because this

Juan Diaz; Fernando Nuno; Miguel J. Prieto; Juan A. Martin-Ramos; Pedro JosÉ Villegas Saiz

2007-01-01

145

Stabilization of polymer electrolyte fuel cell voltage with reduced-order Lyapunov exponent feedback and corrective pressure perturbations  

NASA Astrophysics Data System (ADS)

Polymer electrolyte fuel cell (PEFC) system efficiency can be decreased by instabilities resulting from the accumulation of water in the cathode as well as by excessive air delivery parasitic loads used to prevent liquid water accumulation. In this work, we present a new instability detection diagnostic tailored for the nonlinear and chaotic dynamics of PEFC operation with multi-phase flow in the gas channels. The instability statistic, the Lyapunov exponent of the reduced-order voltage return map, ?, is a measure of the exponential rate of divergence in the dynamic voltage signal measured from the fuel cell. A key advantage of this statistic for embedded control is that it is a self-referencing measure of the system stability for feedback and is not based on an a priori performance threshold. Our experiments demonstrate that the Lyapunov exponent statistic provides a warning typically 100 s in advance of significant power loss. Using this statistic as a control diagnostic, a new control scheme that detects PEFC instability in real time and mitigates it with pressure perturbations was applied experimentally to several fuel cell systems, including one that simulates stack operation. Our control scheme resulted in increased PEFC power, decreased cathode flooding leading to a lower parasitic load for air delivery, and stable PEFC performance.

Burkholder, Michael B.; Litster, Shawn

2015-02-01

146

Low Power, High Voltage Power Supply with Fast Rise/Fall Time  

NASA Technical Reports Server (NTRS)

A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

Bearden, Douglas B. (Inventor)

2007-01-01

147

Low power, high voltage power supply with fast rise/fall time  

NASA Technical Reports Server (NTRS)

A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

Bearden, Douglas B. (Inventor)

2007-01-01

148

A low cost stator flux oriented voltage source variable speed drive  

Microsoft Academic Search

A new control strategy for variable-speed drives is presented. It is aimed at improving or even replacing existing volts-per-hertz (V \\/f) open-loop variable-speed drives. This strategy generates d-q voltage commands in the stator-flux-oriented reference frame by closing a torque loop and a flux loop. Stator flux and electromagnetic torque feedback signals are derived from DC voltage, DC current, and inverter

Y. Xue; X. Xu; T. G. Habetler; D. M. Divan

1990-01-01

149

Density-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae.  

PubMed

Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation. PMID:25505057

Farkas, Timothy E; Montejo-Kovacevich, Gabriela

2014-12-01

150

Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop.  

PubMed

New therapies are urgently needed for hematologic malignancies, especially in patients with relapsed acute myelogenous leukemia (AML) and multiple myeloma. We and others have previously shown that FDA-approved statins, which are used to control hypercholesterolemia and target the mevalonate pathway (MVA), can trigger tumor-selective apoptosis. Our goal was to identify other FDA-approved drugs that synergize with statins to further enhance the anticancer activity of statins in vivo. Using a screen composed of other FDA approved drugs, we identified dipyridamole, used for the prevention of cerebral ischemia, as a potentiator of statin anticancer activity. The statin-dipyridamole combination was synergistic and induced apoptosis in multiple myeloma and AML cell lines and primary patient samples, whereas normal peripheral blood mononuclear cells were not affected. This novel combination also decreased tumor growth in vivo. Statins block HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the MVA pathway. Dipyridamole blunted the feedback response, which upregulates HMGCR and HMG-CoA synthase 1 (HMGCS1) following statin treatment. We further show that dipyridamole inhibited the cleavage of the transcription factor required for this feedback regulation, sterol regulatory element-binding transcription factor 2 (SREBF2, SREBP2). Simultaneously targeting the MVA pathway and its restorative feedback loop is preclinically effective against hematologic malignancies. This work provides strong evidence for the immediate evaluation of this novel combination of FDA-approved drugs in clinical trials. PMID:24994712

Pandyra, Aleksandra; Mullen, Peter J; Kalkat, Manpreet; Yu, Rosemary; Pong, Janice T; Li, Zhihua; Trudel, Suzanne; Lang, Karl S; Minden, Mark D; Schimmer, Aaron D; Penn, Linda Z

2014-09-01

151

An NF-?B pathway–mediated positive feedback loop amplifies Ras activity to pathological levels in mice  

PubMed Central

Genetic mutations that give rise to active mutant forms of Ras are oncogenic and found in several types of tumor. However, such mutations are not clear biomarkers for disease, since they are frequently detected in healthy individuals. Instead, it has become clear that elevated levels of Ras activity are critical for Ras-induced tumorigenesis. However, the mechanisms underlying the production of pathological levels of Ras activity are unclear. Here, we show that in the presence of oncogenic Ras, inflammatory stimuli initiate a positive feedback loop involving NF-?B that further amplifies Ras activity to pathological levels. Stimulation of Ras signaling by typical inflammatory stimuli was transient and had no long-term sequelae in wild-type mice. In contrast, these stimuli generated prolonged Ras signaling and led to chronic inflammation and precancerous pancreatic lesions (PanINs) in mice expressing physiological levels of oncogenic K-Ras. These effects of inflammatory stimuli were disrupted by deletion of inhibitor of NF-?B kinase 2 (IKK2) or inhibition of Cox-2. Likewise, expression of active IKK2 or Cox-2 or treatment with LPS generated chronic inflammation and PanINs only in mice expressing oncogenic K-Ras. The data support the hypothesis that in the presence of oncogenic Ras, inflammatory stimuli trigger an NF-?B–mediated positive feedback mechanism involving Cox-2 that amplifies Ras activity to pathological levels. Because a large proportion of the adult human population possesses Ras mutations in tissues including colon, pancreas, and lung, disruption of this positive feedback loop may be an important strategy for cancer prevention. PMID:22406536

Daniluk, Jaroslaw; Liu, Yan; Deng, Defeng; Chu, Jun; Huang, Haojie; Gaiser, Sebastian; Cruz-Monserrate, Zobeida; Wang, Huamin; Ji, Baoan; Logsdon, Craig D.

2012-01-01

152

An NF-?B pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice.  

PubMed

Genetic mutations that give rise to active mutant forms of Ras are oncogenic and found in several types of tumor. However, such mutations are not clear biomarkers for disease, since they are frequently detected in healthy individuals. Instead, it has become clear that elevated levels of Ras activity are critical for Ras-induced tumorigenesis. However, the mechanisms underlying the production of pathological levels of Ras activity are unclear. Here, we show that in the presence of oncogenic Ras, inflammatory stimuli initiate a positive feedback loop involving NF-?B that further amplifies Ras activity to pathological levels. Stimulation of Ras signaling by typical inflammatory stimuli was transient and had no long-term sequelae in wild-type mice. In contrast, these stimuli generated prolonged Ras signaling and led to chronic inflammation and precancerous pancreatic lesions (PanINs) in mice expressing physiological levels of oncogenic K-Ras. These effects of inflammatory stimuli were disrupted by deletion of inhibitor of NF-?B kinase 2 (IKK2) or inhibition of Cox-2. Likewise, expression of active IKK2 or Cox-2 or treatment with LPS generated chronic inflammation and PanINs only in mice expressing oncogenic K-Ras. The data support the hypothesis that in the presence of oncogenic Ras, inflammatory stimuli trigger an NF-?B-mediated positive feedback mechanism involving Cox-2 that amplifies Ras activity to pathological levels. Because a large proportion of the adult human population possesses Ras mutations in tissues including colon, pancreas, and lung, disruption of this positive feedback loop may be an important strategy for cancer prevention. PMID:22406536

Daniluk, Jaroslaw; Liu, Yan; Deng, Defeng; Chu, Jun; Huang, Haojie; Gaiser, Sebastian; Cruz-Monserrate, Zobeida; Wang, Huamin; Ji, Baoan; Logsdon, Craig D

2012-04-01

153

RNA Homeostasis Governed by Cell Type-Specific and Branched Feedback Loops Acting on NMD  

PubMed Central

SUMMARY Nonsense-mediated mRNA decay (NMD) is a conserved RNA decay pathway that degrades aberrant mRNAs and directly regulates many normal mRNAs. This dual role for NMD raises the possibility that its magnitude is buffered to prevent the potentially catastrophic alterations in gene expression that would otherwise occur if NMD were perturbed by environmental or genetic insults. In support of this, here we report the existence of a negative feedback regulatory network that directly acts on seven NMD factors. Feedback regulation is conferred by different branches of the NMD pathway in a cell type-specific and developmentally regulated manner. We identify feedback-regulated NMD factors that are rate limiting for NMD and demonstrate that reversal of feedback regulation in response to NMD perturbation is crucial for maintaining NMD. Together, our results suggest the existence of an intricate feedback network that maintains both RNA surveillance and the homeostasis of normal gene expression in mammalian cells. PMID:21925383

Huang, Lulu; Lou, Chih-Hong; Chan, Waikin; Shum, Eleen Y.; Shao, Ada; Stone, Erica; Karam, Rachid; Song, Hye-Won; Wilkinson, Miles F.

2014-01-01

154

Statistics of resonance fluorescence of a pair of atoms in a feedback loop  

SciTech Connect

The statistics of photoemission events of a pair of closely spaced two-level atoms is calculated in a classical light field whose phase is changed by {pi} after the detection of each spontaneous photon. This statistics is compared with the statistics in the case when the feedback is missing. In both cases, one can observe noticeable antibunching of photons in the range of parameters where no antibunching is observed in a single-atom system. The feedback substantially increases the antibunching. This effect manifests itself more strongly in relatively weak fields and for considerable frequency detunings.

Tomilin, V. A., E-mail: 8342tomilin@mail.ru; Il'ichev, L. V. [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)

2013-02-15

155

Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease  

NASA Astrophysics Data System (ADS)

Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

Gorzelic, P.; Schiff, S. J.; Sinha, A.

2013-04-01

156

Control of saturated linear plants via output feedback containing an internal deadzone loop  

Microsoft Academic Search

In this paper we address a LMI-based optimization method for designing output feedback control laws to achieve regional performance and stability of linear control systems with input saturation. Algorithms are developed for minimizing the upper bound on the regional L2 gain for exogenous inputs with L2 norm bounded by a given value, and for minimizing this upper bound with a

Dan Dai; Tingshu Hu; Andrew R. Teel; Luca Zaccarian

2006-01-01

157

Closed-loop torque feedback for a universal field-oriented controller  

SciTech Connect

A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

1992-11-24

158

DEPENDENCE OF STEM CELL FATE IN ARABIDOPSIS ON A FEEDBACK LOOP REGULATED BY CLV3 ACTIVITY  

Technology Transfer Automated Retrieval System (TEKTRAN)

The fate of stem cells in plant meristems is governed by directional signalling systems that are regulated by negative feedback. In Arabidopsis, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell restricting pathway. We have used transgenic plants over-expressing CLV3 t...

159

Predictability is necessary for closed-loop visual feedback delay adaptation.  

PubMed

In case of delayed visual feedback during visuomotor tasks, like in some sluggish computer games, humans can modulate their behavior to compensate for the delay. However, opinions on the nature of this compensation diverge. Some studies suggest that humans adapt to feedback delays with lasting changes in motor behavior (aftereffects) and a recalibration of time perception. Other studies have shown little or no evidence for such semipermanent recalibration in the temporal domain. We hypothesize that predictability of the reference signal (target to be tracked) is necessary for semipermanent delay adaptation. To test this hypothesis, we trained participants with a 200 ms visual feedback delay in a visually guided manual tracking task, varying the predictability of the reference signal between conditions, but keeping reference motion and feedback delay constant. In Experiment 1, we focused on motor behavior. Only training in the predictable condition brings about all of the adaptive changes and aftereffects expected from delay adaptation. In Experiment 2, we used a synchronization task to investigate perceived simultaneity (perceptuomotor learning). Supporting the hypothesis, participants recalibrated subjective visuomotor simultaneity only when trained in the predictable condition. Such a shift in perceived simultaneity was also observed in Experiment 3, using an interval estimation task. These results show that delay adaptation in motor control can modulate the perceived temporal alignment of vision and kinesthetically sensed movement. The coadaptation of motor prediction and target prediction (reference extrapolation) seems necessary for such genuine delay adaptation. This offers an explanation for divergent results in the literature. PMID:24599942

Rohde, Marieke; van Dam, Loes C J; Ernst, Marc O

2014-01-01

160

Closed-loop torque feedback for a universal field-oriented controller  

DOEpatents

A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

De Doncker, Rik W. A. A. (Schenectady, NY); King, Robert D. (Schenectady, NY); Sanza, Peter C. (Clifton Park, NY); Haefner, Kenneth B. (Schenectady, NY)

1992-01-01

161

Cyclostationary Crosstalk Suppression by Decision Feedback Equalization on Digital Subscriber Loops  

Microsoft Academic Search

Interference from digital signals in multipair cables has been shown to be cyclostationary under some conditions. This work evaluates the performance of a decision feedback equalizer (DFE) in the presence of cyclostationary interference (CI), intersymbol interference (ISI), and additive white noise (AWN). A comparison between a DFE with CI and one with stationary interference (SI) shows the ability of the

Majeed Abdulrahman; David D. Falconer

1992-01-01

162

Effective Sensor Scheduling Schemes in a Sensor Network by Employing Feedback in the Communication Loop  

E-print Network

capa- bilities while simultaneously decreasing chip size and power consumption. The latter gave birth]. Many control applications now take advantage of sensor networks and the loops are closed via the network [3]. These types of control system are called a networked control systems (NCS). NCS provide many

Murray, Richard M.

163

Cascaded integrator comb filters with smoothly varying coefficients for reduced delay in synchrotron feedback loops  

NASA Astrophysics Data System (ADS)

The Rapid Cycling Synchrotron (RCS) of the J-PARC complex in Tokai, Japan, is designed to accelerate a high intensity proton beam from 181 MeV, and later 400 MeV to 3 GeV in 20 ms within the 40 ms machine cycle. The beam power up to 1 MW demands a stable beam control to avoid excessive losses and activation of the accelerator chain. The fully digital control system is based on quadrature modulation and demodulation. In the amplitude control loops standard FIR filters separate the harmonics (h=2) and (h=4) after down conversion. For the phase loops at (h=2) and (h=4), intended to damp synchrotron oscillations, the delay in a FIR filter would limit the loop stability. Cascaded integrator comb filters, also called CIC filters, provide a shorter delay because they filter the longitudinal beam signal only where it is necessary. The notches are located at multiples of the revolution frequency of the proton beam. For fixed frequency accelerator applications, digital comb filters with fixed clock frequency are widely used to improve loop stability. For variable frequency accelerator applications, as in a proton synchrotron, where the frequency swing is larger than the notch width, usually the clock frequency of the comb filter is variable and chosen to be an integer multiple of the particle revolution frequency. At J-PARC RCS, the clock frequency has to be fixed. Tracking the frequency would require a variable noninteger number of filter taps. Here we present a filter, based on the weighted output of 2 CIC filters with variable length, and one tap difference. The filter function looks like a CIC with smoothly varying coefficients, where the notches follow the revolution frequency of the proton beam. The delay of this filter is approximately half of the corresponding FIR filter, so that the phase loops have a higher stability margin.

Schnase, A.; Nomura, M.; Tamura, F.; Yamamoto, M.; Anami, S.; Ezura, E.; Hara, K.; Ohmori, C.; Takagi, A.; Yoshii, M.

2005-12-01

164

Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab  

SciTech Connect

The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs.

Crisp, J.

1990-10-25

165

Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop  

PubMed Central

SUMMARY Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels. PMID:21925320

Yang, Yunlei; Atasoy, Deniz; Su, Helen H.; Sternson, Scott M.

2011-01-01

166

PIV wave propagation investigation of non-linear losses through 90 degree bends in a thermoacoustic engine's feedback loop  

NASA Astrophysics Data System (ADS)

Thermoacoustic engine technology has recently been applied to renewable energy to convert heat energy into acoustic energy for the purpose of electricity generation. One of the vital components of the engine is its feedback loop which is sensitive to geometrical changes that can cause system losses. We previously postulated that a critical Acoustic Dean Number exist above which the Acoustic Power Transmission Loss increases drastically for a wave propagating though a bend. This paper investigates the wave propagation through the bend using Particle Image Velocimetry(PIV). This technique has not been used in this field of investigation and allows the flow visualization as well as the planar velocity field measurement of the system. The PIV results confirmed earlier pressure measurements that a critical Dean number does exist, and describes visualizations of the flows causing the losses.

Wee, S. T.; Hann, D. B.; Abakr, Yousif Abdalla; Riley, P.

2012-06-01

167

Repression of Essential Chloroplast Genes Reveals New Signaling Pathways and Regulatory Feedback Loops in Chlamydomonas[W  

PubMed Central

Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the ?-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry. PMID:23292734

Ramundo, Silvia; Rahire, Michèle; Schaad, Olivier; Rochaix, Jean-David

2013-01-01

168

Passive coherent beam combination of two nanosecond fiber amplifiers by using an all-optical feedback loop  

NASA Astrophysics Data System (ADS)

We demonstrate a passive coherent beam combination of two nanosecond amplifiers by using an all-optical feedback loop. An electro-optic amplitude modulator is utilized to tune the pulse width and the pulse repetition frequency of combined laser pulse. The positive correlation between the visibility of far-field coherent patterns and the pulse duty ratio is found. The range of tunable pulse repetition frequency is from 2.023 MHz to 6.069 MHz, and the range of tunable pulse width is from 10 ns to 50 ns. The maximum visibility is up to 85%. This approach presented here provides a promising way for power scaling of high power nanosecond fiber laser and maintaining beam quality simultaneously.

Liu, Houkang; Zhou, Jun; He, Bing; Lou, Qihong

2013-02-01

169

Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis.  

PubMed

Activation of the Wnt signaling pathway occurs frequently in human cancers, but an understanding of the targets and regulation of this important pathway remains incomplete. In this study, we report that phospholipase D (PLD), a cell survival mediator that is upregulated in cancer, is an important target of the Wnt signaling pathway that functions in a positive feedback loop to reinforce pathway output. PLD1 expression and activity was enhanced by treatment with Wnt3a and glycogen synthase kinase-3 inhibitors, and the Wnt pathway-regulated transcription factors beta-catenin and TCF-4 were required for this effect. Three functional TCF-4-binding sites were identified within the PLD1 promoter. Interestingly, suppressing PLD1 blocked the ability of beta-catenin to transcriptionally activate PLD1 and other Wnt target genes by preventing beta-catenin/TCF-4 complex formation. Conversely, tactics to elevate intracellular levels of phosphatidic acid, the product of PLD1 enzyme activity, enhanced beta-catenin/TCF-4 complex formation as well as beta-catenin-dependent TCF transcriptional activity. In cell-based assays, PLD1 was necessary for the anchorage-independent growth driven by Wnt/beta-catenin signaling, whereas beta-catenin/TCF-4 was necessary for the anchorage-independent growth driven by PLD1 activation. Taken together, our findings define a function for PLD1 in a positive feedback loop of Wnt/beta-catenin/TCF-4 signaling that provides new mechanistic insights into cancer, with implications of novel strategies to disrupt Wnt signaling in cancer. PMID:20442281

Kang, Dong Woo; Lee, Soung-Hoon; Yoon, Jeong Whan; Park, Won-Sang; Choi, Kang-Yell; Min, Do Sik

2010-05-15

170

Transglutaminase II/microRNA-218/-181a loop regulates positive feedback relationship between allergic inflammation and tumor metastasis.  

PubMed

The molecular mechanism of transglutaminase II (TGaseII)-mediated allergic inflammation remains largely unknown. TGaseII, induced by antigen stimulation, showed an interaction and co-localization with Fc?RI. TGaseII was necessary for in vivo allergic inflammation, such as triphasic cutaneous reaction, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. TGaseII was necessary for the enhanced metastatic potential of B16F1 melanoma cells by passive systemic anaphylaxis. TGaseII was shown to be a secreted protein. Recombinant TGaseII protein increased the histamine release and ?-hexosaminidase activity, and enhanced the metastatic potential of B16F1 mouse melanoma cells. Recombinant TGaseII protein induced the activation of EGF receptor and an interaction between EGF receptor and Fc?RI. Recombinant TGaseII protein displayed angiogenic potential accompanied by allergic inflammation. R2 peptide, an inhibitor of TGaseII, exerted negative effects on in vitro and in vivo allergic inflammation by regulating the expression of TGaseII and Fc?RI signaling. MicroRNA (miR)-218 and miR-181a, decreased during allergic inflammation, were predicted as negative regulators of TGaseII by microRNA array and TargetScan analysis. miR-218 and miR-181a formed a negative feedback loop with TGaseII and regulated the in vitro and in vivo allergic inflammation. TGaseII was necessary for the interaction between mast cells and macrophages during allergic inflammation. Mast cells and macrophages, activated during allergic inflammation, were responsible for the enhanced metastatic potential of tumor cells that are accompanied by allergic inflammation. In conclusion, the TGaseII/miR-218/-181a feedback loop can be employed for the development of anti-allergy therapeutics. PMID:25202021

Eom, Sangkyung; Kim, Youngmi; Kim, Misun; Park, Deokbum; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

2014-10-24

171

MKK4/SEK1 Is Negatively Regulated through a Feedback Loop Involving the E3 Ubiquitin Ligase Itch*  

PubMed Central

Cells exposed to environmental stress rapidly activate the MAPK cascade (MKKK/MKK/MAPK). The transient nature of stress signaling is a consequence of negative feedback signals that lead to kinase dephosphorylation, degradation, and sequestration, which have not been fully elucidated for MKK family members. Here, we investigated the signals that negatively regulate MKK4/SEK1, an upstream activator of the MAPKs JNK and p38/HOG1. Following exposure of cells to sorbitol, MKK4 underwent ubiquitination and degradation in a proteasome-dependent manner. MKK4 ubiquitination required JNK kinase activity. The JNK substrate Itch (a HECT domain-containing Nedd4-like ubiquitin protein ligase) bound to MKK4, ubiquitinated lysines 140 and 143, and promoted MKK4 degradation. Other E3 ligases within the MAPK modular complex did not ubiquitinate MKK4. These data suggest that MKK4 is negatively regulated through a feedback loop involving the E3 ubiquitin ligase Itch, which has a fundamental role in the mechanism that controls MKK4 protein levels. PMID:19737936

Ahn, Young-Ho; Kurie, Jonathan M.

2009-01-01

172

Phosphorylation of the transcription activator CLOCK regulates progression through a ? 24-h feedback loop to influence the circadian period in Drosophila.  

PubMed

Circadian (? 24 h) clocks control daily rhythms in metabolism, physiology, and behavior in animals, plants, and microbes. In Drosophila, these clocks keep circadian time via transcriptional feedback loops in which clock-cycle (CLK-CYC) initiates transcription of period (per) and timeless (tim), accumulating levels of PER and TIM proteins feed back to inhibit CLK-CYC, and degradation of PER and TIM allows CLK-CYC to initiate the next cycle of transcription. The timing of key events in this feedback loop are controlled by, or coincide with, rhythms in PER and CLK phosphorylation, where PER and CLK phosphorylation is high during transcriptional repression. PER phosphorylation at specific sites controls its subcellular localization, activity, and stability, but comparatively little is known about the identity and function of CLK phosphorylation sites. Here we identify eight CLK phosphorylation sites via mass spectrometry and determine how phosphorylation at these sites impacts behavioral and molecular rhythms by transgenic rescue of a new Clk null mutant. Eliminating phosphorylation at four of these sites accelerates the feedback loop to shorten the circadian period, whereas loss of CLK phosphorylation at serine 859 increases CLK activity, thereby increasing PER levels and accelerating transcriptional repression. These results demonstrate that CLK phosphorylation influences the circadian period by regulating CLK activity and progression through the feedback loop. PMID:24872414

Mahesh, Guruswamy; Jeong, EunHee; Ng, Fanny S; Liu, Yixiao; Gunawardhana, Kushan; Houl, Jerry H; Yildirim, Evrim; Amunugama, Ravi; Jones, Richard; Allen, David L; Edery, Isaac; Kim, Eun Young; Hardin, Paul E

2014-07-11

173

Gain control in a proprioceptive feedback loop as a prerequisite for working close to instability  

Microsoft Academic Search

In the artificially closed femur-tibia control system of stick insects oscillations were induced in 3 different ways: Increasing the phase-shift by introducing an electronic delay, afference sign reversal and coupling the tibia to an inert mass. In all 3 cases the oscillations stopped after some time. The gain of the open-loop system was significantly smaller after the oscillations. Afference sign

U. Bässler; U. Nothof

1994-01-01

174

New numerical methods for open-loop and feedback solutions to dynamic optimization problems  

NASA Astrophysics Data System (ADS)

The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

Ghosh, Pradipto

175

Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds  

NASA Technical Reports Server (NTRS)

This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

Connolly, Joseph W.; Kopasakis, George

2010-01-01

176

Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.  

PubMed

The fate of stem cells in plant meristems is governed by directional signaling systems that are regulated by negative feedback. In Arabidopsis thaliana, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell-restricting pathway. We used transgenic plants overexpressing CLV3 to show that meristem cell accumulation and fate depends directly on the level of CLV3 activity and that CLV3 signaling occurs exclusively through a CLV1/CLV2 receptor kinase complex. We also demonstrate that the CLV pathway acts by repressing the activity of the transcription factor WUSCHEL, an element of the positive, stem cell-promoting pathway. PMID:10915624

Brand, U; Fletcher, J C; Hobe, M; Meyerowitz, E M; Simon, R

2000-07-28

177

Feedback-induced voltage change of a Vertical-Cavity Surface-Emitting Laser as an active detection system for miniature optical scanning probe microscopes  

NASA Astrophysics Data System (ADS)

We propose a novel detection technique for scanning probe microscopy based on the measuring of the feedback-induced voltage change of 780-nm VCSEL operating at constant current in far-field regime when we modulate mechanically the length of a coupled-cavity generating the feedback conditions. The voltage change of the VCSEL is produced by light back reflected from the sample to the laser cavity. Two-dimensional image probing is successfully demonstrated with high temporal resolution, offering a viable solution for miniature parallel scanning probe optical microscopes, such as confocal microscope, where the use of a photodetector is avoided. This approach opens the possibility to perform imaging tasks in a low cost and hand-held miniature device with much improved effective-space.

Heinis, Dominique; Gorecki, Christophe; Bargiel, Sylwester; Cretin, Bernard

2006-04-01

178

Feedback-induced voltage change of a Vertical-Cavity Surface-Emitting Laser as an active detection system for miniature optical scanning probe microscopes.  

PubMed

We propose a novel detection technique for scanning probe microscopy based on the measuring of the feedback-induced voltage change of 780-nm VCSEL operating at constant current in far-field regime when we modulate mechanically the length of a coupled-cavity generating the feedback conditions. The voltage change of the VCSEL is produced by light back reflected from the sample to the laser cavity. Two-dimensional image probing is successfully demonstrated with high temporal resolution, offering a viable solution for miniature parallel scanning probe optical microscopes, such as confocal microscope, where the use of a photodetector is avoided. This approach opens the possibility to perform imaging tasks in a low cost and hand-held miniature device with much improved effective-space. PMID:19516484

Heinis, Dominique; Gorecki, Christophe; Bargiel, Sylwester; Cretin, Bernard

2006-04-17

179

Influence of the current control loops of DC arc furnaces on voltage fluctuations and harmonics in the HV power supply system  

Microsoft Academic Search

It is necessary, to an increasing extent, to take controllers and control loops into consideration in mathematical modelling and simulations for power quality studies. DC arc furnaces belong to those electric loads which network behaviour is essentially influenced by control processes. Rated at more than 100 MVA, these furnaces cause voltage fluctuations and harmonics in the HV power system. Based

D. Stade; H. Schau; St. Prinz

2000-01-01

180

Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem  

PubMed Central

A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro. PMID:19717465

Gordon, Sean P.; Chickarmane, Vijay S.; Ohno, Carolyn; Meyerowitz, Elliot M.

2009-01-01

181

A negative feedback loop mediated by the Bcl6–cullin 3 complex limits Tfh cell differentiation  

PubMed Central

Induction of Bcl6 (B cell lymphoma 6) is essential for T follicular helper (Tfh) cell differentiation of antigen-stimulated CD4+ T cells. Intriguingly, we found that Bcl6 was also highly and transiently expressed during the CD4+CD8+ (double positive [DP]) stage of T cell development, in association with the E3 ligase cullin 3 (Cul3), a novel binding partner of Bcl6 which ubiquitinates histone proteins. DP stage–specific deletion of the E3 ligase Cul3, or of Bcl6, induced the derepression of the Bcl6 target genes Batf (basic leucine zipper transcription factor, ATF-like) and Bcl6, in part through epigenetic modifications of CD4+ single-positive thymocytes. Although they maintained an apparently normal phenotype after emigration, they expressed increased amounts of Batf and Bcl6 at basal state and produced explosive and prolonged Tfh responses upon subsequent antigen encounter. Ablation of Cul3 in mature CD4+ splenocytes also resulted in dramatically exaggerated Tfh responses. Thus, although previous studies have emphasized the essential role of Bcl6 in inducing Tfh responses, our findings reveal that Bcl6–Cul3 complexes also provide essential negative feedback regulation during both thymocyte development and T cell activation to restrain excessive Tfh responses. PMID:24863065

Mathew, Rebecca; Mao, Ai-ping; Chiang, Andrew H.; Bertozzi-Villa, Clara; Bunker, Jeffrey J.; Scanlon, Seth T.; McDonald, Benjamin D.; Constantinides, Michael G.; Hollister, Kristin; Singer, Jeffrey D.; Dent, Alexander L.; Dinner, Aaron R.

2014-01-01

182

Mitigation of interferometric crosstalk by using a single mode laser with optical feedback in a loop-back WDM-PON based on RSOA  

NASA Astrophysics Data System (ADS)

To alleviate the back-reflection induced interferometric crosstalk in a loop-back WDM-PON based on RSOA, we propose the use of off-the-shelf single mode operated laser with intentional optical feedback as a seeding source. For adjusting the external optical feedback quantity, we could effectively broaden the spectral linewidth of single mode operated laser output. We also experimentally demonstrated that our proposed method could enhance the up- and down-stream transmission performances under relatively lower signal to crosstalk ratio.

Cho, Seung-Hyun; Lee, Han Hyub; Lee, Jie Hyun; Lee, Jong Hyun; Myung, Seung Il; Lee, Sang Soo

2012-12-01

183

UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop.  

PubMed

The tumour suppressor p53 plays an important role in tumourigenesis. Besides inducing apoptosis, it regulates cellular senescence, which constitutes an important barrier to tumourigenesis. The mechanism of regulation of cellular senescence by p53 and its downstream pathway are poorly understood. Here, we report that the ubiquitin domain-containing 1 (UBTD1) gene, a new downstream target of p53, induces cellular senescence and acts as a novel tumour suppressor by a mechanism that depends on p53. Expression of UBTD1 increased upon cellular senescence induced by serial passageing of cultures, as well as by exposure to DNA-damageing drugs that induce premature senescence. Over-expression of UBTD1 induces senescence in human fibroblasts and cancer cells and attenuation of the transformed phenotype in cancer cells. UBTD1 is down-regulated in gastric and colorectal cancer tissues, and its lower expression correlates with a more aggressive phenotype and worse prognosis. Multivariate analysis revealed that UBTD1 expression was an independent prognostic factor for gastric cancer patients. Furthermore, UBTD1 increased the stability of p53 protein, by promoting the degradation of Mdm2 protein. Importantly, UBTD1 and p53 function mutually depend on each other in regulating cellular senescence and proliferation. Thus, our data suggest that, upon DNA damage, p53 induction by UBTD1 creates a positive feedback mechanism to further increase p53 expression. Our results establish UBTD1 as a regulator of cellular senescence that mediates p53 function, and provide insights into the mechanism of Mdm2 inhibition that impacts p53 dynamics during cellular senescence and tumourigenesis. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:25382750

Zhang, Xiao-Wei; Wang, Xiao-Feng; Ni, Su-Jie; Qin, Wei; Zhao, Li-Qin; Hua, Rui-Xi; Lu, You-Wei; Li, Jin; Dimri, Goberdhan P; Guo, Wei-Jian

2015-03-01

184

Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.  

PubMed

With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. PMID:25047099

Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

2014-12-01

185

The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells.  

PubMed

The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells. PMID:25399420

Gao, Yuan; Wu, Fuju; Zhou, Jichun; Yan, Lei; Jurczak, Michael J; Lee, Hui-Young; Yang, Lihua; Mueller, Martin; Zhou, Xiao-Bo; Dandolo, Luisa; Szendroedi, Julia; Roden, Michael; Flannery, Clare; Taylor, Hugh; Carmichael, Gordon G; Shulman, Gerald I; Huang, Yingqun

2014-12-16

186

Demonstration and biological significance of a gastrin?P21?activated kinase 1 feedback loop in colorectal cancer cells  

PubMed Central

Abstract Gastrins, including amidated gastrin17 and glycine?extended gastrin17, are important growth factors in colorectal cancer (CRC). The p21?activated kinase 1 (PAK1) plays key roles in cellular processes including proliferation, survival, and motility, and in cell transformation and tumor progression. PAK1 expression increases with the progression of CRC, and knockdown of PAK1 blocks CRC cell growth and metastasis both in vitro and in vivo. The aim of this study was to determine the interaction between PAK1 and gastrins in CRC cells. PAK1 expression and activation were assayed by Western blots, and concentrations of gastrin mRNA and peptides by real?time PCR and radioimmunoassay, respectively. Proliferation of CRC cells was measured by 3H?thymidine incorporation, and vascular endothelial growth factor (VEGF) secretion was measured by ELISA. Gastrins activated PAK1 via PI3K?dependent pathways. Activated PAK1 in turn mediated gastrin?stimulated activation of ??catenin and VEGF secretion in CRC cells, as knockdown of PAK1 blocked stimulation of these cellular processes by gastrins. Downregulation of gastrin reduced the expression and activity of PAK1, but in contrast there was a compensatory increase in gastrins either when PAK1 was downregulated, or after treatment with a PAK inhibitor. Our results indicate that PAK1 is required for the stimulation of CRC cells by gastrins, and suggest the existence of an inhibitory feedback loop by which PAK1 downregulates gastrin production in CRC cells. PMID:24963032

Huynh, Nhi; Liu, Kevin H.; Yim, Mildred; Shulkes, Arthur; Baldwin, Graham S.; He, Hong

2014-01-01

187

PPAR{gamma} ligands suppress the feedback loop between E2F2 and cyclin-E1  

SciTech Connect

PPAR{gamma} is a nuclear hormone receptor that plays a key role in the induction of peroxisome proliferation. A number of studies showed that PPAR{gamma} ligands suppress cell cycle progression; however, the mechanism remains to be determined. Here, we showed that PPAR{gamma} ligand troglitazone inhibited G1/S transition in colon cancer cells, LS174T. Troglitazone did not affect on either expression of CDK inhibitor (p18) or Wnt signaling pathway, indicating that these pathways were not involved in the troglitazone-dependent cell cycle arrest. GeneChip and RT-PCR analyses revealed that troglitazone decreased mRNA levels of cell cycle regulatory factors E2F2 and cyclin-E1 whose expression is activated by E2F2. Down-regulation of E2F2 by troglitazone results in decrease of cyclin-E1 transcription, which could inhibit phosphorylation of Rb protein, and consequently evoke the suppression of E2F2 transcriptional activity. Thus, we propose that troglitazone suppresses the feedback loop containing E2F2, cyclin-E1, and Rb protein.

Komatsu, Yoko; Ito, Ichiaki; Wayama, Mitsutoshi; Fujimura, Akiko; Akaogi, Kensuke; Machida, Hikaru; Nakajima, Yuka; Kuroda, Takao; Ohmori, Kazuji; Murayama, Akiko; Kimura, Keiji [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572 (Japan); Yanagisawa, Junn [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572 (Japan)], E-mail: junny@agbi.tsukuba.ac.jp

2008-05-23

188

The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells  

PubMed Central

The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells. PMID:25399420

Gao, Yuan; Wu, Fuju; Zhou, Jichun; Yan, Lei; Jurczak, Michael J.; Lee, Hui-Young; Yang, Lihua; Mueller, Martin; Zhou, Xiao-Bo; Dandolo, Luisa; Szendroedi, Julia; Roden, Michael; Flannery, Clare; Taylor, Hugh; Carmichael, Gordon G.; Shulman, Gerald I.; Huang, Yingqun

2014-01-01

189

miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6  

PubMed Central

Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-?B-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop. PMID:25277211

Li, Fei; Li, Xin-ji; Qiao, Li; Shi, Fei; Liu, Wen; Li, You; Dang, Yu-ping; Gu, Wei-jie; Wang, Xiao-gang; Liu, Wei

2014-01-01

190

Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop  

SciTech Connect

The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the enzyme telomerase which is responsible for telomeric maintenance and extension. Using RNA interference to knock down hTERT mRNA expression, we provide evidence that hTERT exerts extra-telomeric effects on the cell cycle and on its own regulatory proteins, specifically: p53 and p21. We tested our hypothesis that hTERT regulates its own expression through effects on upstream regulatory genes using transformed human embryonic kidney (HEK 293) cells, p53 and p16 {sup INK4a} null human ovarian cancer SKOV-3 cells, and p53-null MDA-MB-157 human mammary cancer cells. In HEK 293 cells, hTERT knockdown resulted in elevated p53 and p21 transcription and a decrease in cellular proliferation. Similar results were observed in the MDA-MB-157 cell line where p21 was upregulated, correlating with cell growth inhibition. In contrast, we observed a decrease in expression of p21 in SKOV-3 cells with hTERT knockdown and cell growth appeared to be unaffected. These findings suggest that hTERT may be involved in a feedback loop system, thereby playing a role in its own regulation.

Lai, Serene R. [Department of Biology, University of Alabama at Birmingham, AL 35294 (United States); Cunningham, Amanda P. [Department of Biology, University of Alabama at Birmingham, AL 35294 (United States); Huynh, Vu Q.; Andrews, Lucy G. [Department of Biology, University of Alabama at Birmingham, AL 35294 (United States); Tollefsbol, Trygve O. [Department of Biology, University of Alabama at Birmingham, AL 35294 (United States) and Center for Aging, University of Alabama at Birmingham, AL 35294 (United States) and Comprehensive Cancer Center, University of Alabama at Birmingham, AL 25294 (United States)]. E-mail: trygve@uab.edu

2007-01-15

191

A 3-SYNAPSE POSITIVE FEEDBACK LOOP REGULATES THE EXCITABILITY OF AN INTERNEURON CRITICAL FOR SENSITIZATION IN THE LEECH  

PubMed Central

Sensitization of reflexive shortening in the leech has been linked to serotonin (5-HT)-induced changes in the excitability of a single interneuron, the S cell. This neuron is necessary for sensitization and complete dishabituation of reflexive shortening, during which it contributes to the sensory-motor reflex. The S cell does not contain 5-HT, which is released primarily from the Retzius (R) cells, whose firing enhances S-cell excitability. Here we show that the S cell excites the R cells, mainly via a fast disynaptic pathway in which the first synapse is the electrical junction between the S cell and the coupling interneurons, and the second synapse is a glutamatergic synapse of the coupling interneurons onto the R cells. The S cell-triggered excitatory postsynaptic potential in the R cell diminishes and nearly disappears in elevated concentrations of divalent cations because the coupling interneurons become inexcitable under these conditions. Serotonin released from the R cells feeds back upon the S cell and increases its excitability by activating a 5-HT7-like receptor; 5-methoxytryptamine (5-MeOT; 10 ?M) mimics the effects of 5-HT on S cell excitability, and effects of both 5-HT and 5-MeOT are blocked by pimozide (10 ?M) and SB-269970 (5 ?M). This feedback loop may be critical for the full expression of sensitization of reflexive shortening. PMID:16571760

Crisp, Kevin M.; Muller, Kenneth J.

2007-01-01

192

Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling.  

PubMed

Elastin breakdown in the walls of uterine spiral arteries during early pregnancy facilitates their transformation into dilated, high-flow, low-resistance channels. Elastin-derived peptides (EDP) can influence cell migration, invasion and protease activity, and so we hypothesized that EDP released during elastolysis promote extravillous trophoblast (EVT) invasion and further elastin breakdown. Treatment of the trophoblast cell line SGHPL4 with the elastin-derived matrikine VGVAPG (1 ?g/ml) significantly increased total elastase activity, promoted migration in a wound healing assay and increased invasion through Matrigel-coated transwells compared with vehicle control (0.1% DMSO) or the scrambled sequence VVGPGA. Furthermore, treatment of first-trimester placental villous explants with this EDP significantly increased both the area of trophoblast outgrowth and distance of migration away from the villous tips. Primary first-trimester cytotrophoblast exposed to VGVAPG (1 ?g/ml) for 30 min showed increased phosphorylation of endothelial nitric oxide synthase and activation of the mitogen activated protein kinase pathway, events also associated with tumour cell migration and invasion. These in vitro observations suggest liberation of bioactive EDP during induction of elastolysis in the uterine spiral arteries may orchestrate a positive feedback loop that promotes EVT invasion and further elastin breakdown, contributing to the process of vascular remodelling. PMID:25245255

Desforges, Michelle; Harris, Lynda K; Aplin, John D

2015-01-01

193

Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.  

PubMed

Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing. PMID:23365151

Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

2013-04-23

194

A Regulatory Feedback Loop between RpoS and SpoT Supports the Survival of Legionella pneumophila in Water.  

PubMed

Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation. PMID:25416763

Trigui, Hana; Dudyk, Paulina; Oh, Jinrok; Hong, Jong-In; Faucher, Sebastien P

2015-02-01

195

Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition.  

PubMed

Epithelial-mesenchymal transition (EMT) is a key event in the generation of invasive tumor cells. A hallmark of EMT is the repression of E-cadherin expression, which is regulated by various signal transduction pathways including extracellular signal-regulated kinase (ERK) and Wnt. These pathways are highly interconnected via multiple coupled feedback loops (CFL). As the function of such coupled feedback regulations is difficult to analyze experimentally, we used a systems biology approach where computational models were designed to predict biological effects that result from the complex interplay of CFLs. Using epidermal growth factor (EGF) and Wnt as input and E-cadherin transcriptional regulation as output, we established an ordinary differential equation model of the ERK and Wnt signaling network containing six feedback links and used extensive computer simulations to analyze the effects of these feedback links in isolation and different combinations. The results show that the feedbacks can generate a rich dynamic behavior leading to various dose-response patterns and have a decisive role in determining network responses to EGF and Wnt. In particular, we made two important findings: first, that coupled positive feedback loops composed of phosphorylation of Raf kinase inhibitor RKIP by ERK and transcriptional repression of RKIP by Snail have an essential role in causing a switch-like behavior of E-cadherin expression; and second, that RKIP expression inhibits EMT progression by preventing E-cadherin suppression. Taken together, our findings provide us with a system-level understanding of how RKIP can regulate EMT progression and may explain why RKIP is downregulated in so many metastatic cancer cells. PMID:20736375

Shin, Sung-Young; Rath, Oliver; Zebisch, Armin; Choo, Sang-Mok; Kolch, Walter; Cho, Kwang-Hyun

2010-09-01

196

Coupling of a Core Post-Translational Pacemaker to a Slave Transcription/Translation Feedback Loop in a Circadian System  

PubMed Central

Cyanobacteria are the only model circadian clock system in which a circadian oscillator can be reconstituted in vitro. The underlying circadian mechanism appears to comprise two subcomponents: a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO and TTFL have been hypothesized to operate as dual oscillator systems in cyanobacteria. However, we find that they have a definite hierarchical interdependency—the PTO is the core pacemaker while the TTFL is a slave oscillator that quickly damps when the PTO stops. By analysis of overexpression experiments and mutant clock proteins, we find that the circadian system is dependent upon the PTO and that suppression of the PTO leads to damped TTFL-based oscillations whose temperature compensation is not stable under different metabolic conditions. Mathematical modeling indicates that the experimental data are compatible with a core PTO driving the TTFL; the combined PTO/TTFL system is resilient to noise. Moreover, the modeling indicates a mechanism by which the TTFL can feed into the PTO such that new synthesis of clock proteins can phase-shift or entrain the core PTO pacemaker. This prediction was experimentally tested and confirmed by entraining the in vivo circadian system with cycles of new clock protein synthesis that modulate the phosphorylation status of the clock proteins in the PTO. In cyanobacteria, the PTO is the self-sustained core pacemaker that can operate independently of the TTFL, but the TTFL damps when the phosphorylation status of the PTO is clamped. However, the TTFL can provide entraining input into the PTO. This study is the first to our knowledge to experimentally and theoretically investigate the dynamics of a circadian clock in which a PTO is coupled to a TTFL. These results have important implications for eukaryotic clock systems in that they can explain how a TTFL could appear to be a core circadian clockwork when in fact the true pacemaker is an embedded biochemical oscillator. PMID:20563306

Xu, Yao; Mori, Tetsuya; Johnson, Carl Hirschie

2010-01-01

197

Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage  

NASA Astrophysics Data System (ADS)

Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

Che, Y. X.; Ong, H. S.; Lai, L. C.; Karuppiah, S.; Ong, X. J.; Do, N. Q.

2013-06-01

198

Abstract A new charge drive circuit is proposed that utilizes a low frequency voltage feedback loop to linearize  

E-print Network

results demonstrate that the proposed charge amplifier can effectively reduce piezoelectric hysteresis manipulation [4]. Although piezoelectric actuators have a number of desirable characteristics, a major stabilization technique is then examined experimentally by driving a standard piezoelectric stack actuator

Fleming, Andrew J.

199

Optical fiber feedback SQUID magnetometer  

SciTech Connect

This paper describes an optical fiber feedback superconducting quantum interference device (SQUID) magnetometer which was developed to improve electromagnetic interference characteristics. The SQUID consists of an RF SQUID probe, an RF amplifier, two multimode fibers, and a SQUID control unit. Phase-locked pulse width modulation (PWM) was used to construct a flux locked loop (FLL) circuit in the SQUID control unit. The operation of the optical fiber feedback SQUID is stable when a common mode voltage of ac 100 V/50 Hz is applied. It has an energy resolution of 1 x 10/sup -28/ J/Hz. This paper also describes the measurement of an auditory evoked field from the human brain in a magnetically shielded room using the fiber feedback SQUID with a gradiometer type pickup coil.

Naito, S.; Sampei, Y.; Takahashi, T. (Yokogawa Electric Corp., 2-9-32, Nakacho, Musashino-shi, Tokyo 180 (JP))

1989-04-01

200

Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages  

PubMed Central

In migrating eukaryotic cells, phosphatidylinositol 3-kinase (PI3K), filamentous actin (F-actin), and monomeric Rho GTPases are key components of a complex positive-feedback system that maintains and amplifies a phosphatidylinositol-3,4,5-trisphosphate signal at the leading edge of the cell. This lipid signal is required for cell polarization and movement. In leukocytes and Dictyostelium, activation or inhibition of any one of these components leads to the activation or inhibition, respectively, of the others via undefined feedback interactions. The role of Ca2+ signals in migrating leukocytes is controversial, and there has been no indication that Ca2+ participates in positive feedback. Here, we demonstrate that an extracellular Ca2+ influx is required for positive feedback at the leading edge of spontaneously polarized macrophages. Inhibition of extracellular Ca2+ influx leads to loss of leading-edge PI3K activity, disassembly of F-actin, cessation of ruffling, and decay of chemoattractant signals. Conversely, increasing cytosolic Ca2+ enhances membrane ruffling, PI3K activity, and F-actin accumulation. Overall, these findings demonstrate that an extracellular Ca2+ influx is an essential component, together with PI3K and F-actin, of the positive-feedback cycle that maintains leading-edge structure and ruffling activity and that supports the chemoattractant response. Strikingly, the Ca2+-sensitive enzyme protein kinase C? (PKC?) is enriched at the leading edge, and its enrichment is sensitive to blockade of Ca2+ influx, to inhibition of PI3K activity, and to F-actin depolymerization. These findings support the working hypothesis that a local, leading-edge Ca2+ signal recruits PKC? as a central player in the positive-feedback loop. PMID:17911247

Evans, John H.; Falke, Joseph J.

2007-01-01

201

82 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, PART 1, VOL. 47, NO. 1, JANUARY 2000 Fig. 5. Output voltage waveform in the closed-loop dc-ac power inverter.  

E-print Network

devices from dc sources, such as cars or recreational vehicles, or in uninterruptible power supplies voltage waveform in the closed-loop dc-ac power inverter. Horizontal scale: 5 ms/div.; vertical scale: 0.2 V/div. Fig. 6. Bode plots of the closed-loop power inverter . Packard 4194A Network Analyzer, Bode

Leuciuc, Adrian

202

High voltage DC power supply  

DOEpatents

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19

203

High voltage DC power supply  

DOEpatents

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

Droege, Thomas F. (Batavia, IL)

1989-01-01

204

Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells.  

PubMed

The invasion and metastasis of tumors are triggered by an epithelial to mesenchymal transition (EMT), which is regulated by microRNAs (miRNAs). EMT also promotes malignant tumor progression and the maintenance of the stem cell property, which endows cancer cells with the capabilities of self-renewal and immortalized proliferation. The transcriptional repressor zinc-finger E-box binding homeobox 2 (ZEB2), as an EMT activator, might be an important promoter of metastasis in some tumors. Here, we report that ZEB2 directly represses the transcription of miR-145, which is a strong repressor of EMT. In turn, ZEB2 is also a direct target of miR-145. Further, our findings show that the downregulation of ZEB2 not only represses invasion, migration, EMT, and the stemness of prostate cancer (PCa) cells, but also suppresses the capability of PC-3 cells to invade bone in vivo. Importantly, the expression level of ZEB2 as revealed by immunohistochemical analysis is positively correlated to bone metastasis, the serum free PSA level, the total PSA level, and the Gleason score in PCa patients and is negatively correlated with miR-145 expression in primary PCa specimens. Thus, our findings demonstrate a double-negative feedback loop between ZEB2 and miR-145 and indicate that the ZEB2/miR-145 double-negative feedback loop plays a significant role in the control of EMT and stem cell properties during the bone metastasis of PCa cells. These results suggest that the double-negative feedback loop between ZEB2 and miR-145 contributes to PCa progression and metastasis and might have therapeutic relevance for the bone metastasis of PCa. PMID:25296715

Ren, Dong; Wang, Min; Guo, Wei; Huang, Shuai; Wang, Zeyu; Zhao, Xiaohui; Du, Hong; Song, Libing; Peng, Xinsheng

2014-12-01

205

PANET: A GPU-Based Tool for Fast Parallel Analysis of Robustness Dynamics and Feed-Forward/Feedback Loop Structures in Large-Scale Biological Networks  

PubMed Central

It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/. PMID:25058310

Trinh, Hung-Cuong; Le, Duc-Hau; Kwon, Yung-Keun

2014-01-01

206

The Paracrine Feedback Loop Between Vitamin D3 (1,25(OH)2D3) and PTHrP in Prehypertrophic Chondrocytes  

PubMed Central

The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10?8?M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1?- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. PMID:24777663

Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

2014-01-01

207

Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security  

E-print Network

It is shown that the original Kirchhoff-loop-Johnson(-like)-noise (KLJN) cipher is naturally protected against the man-in-the-middle (MITM) attack, if the eavesdropper is using resistors and noise voltage generators just like the sender and the receiver. The eavesdropper can extract zero bit of information before she is discovered. However, when the eavesdropper is using noise current generators, though the cipher is protected, the eavesdropper may still be able to extract one bit of information while she is discovered. For enhanced security, we expand the KLJN cipher with the comparison of the instantaneous voltages via the public channel. In this way, the sender and receiver has a full control over the security of measurable physical quantities in the Kirchhoff-loop. We show that when the sender and receiver compare not only their instantaneous current data but also their instantaneous voltage data then the zero-bit security holds even for the noise current generator case. We show that the original KLJN scheme is also zero-bit protected against that type of MITM attack when the eavesdropper uses voltage noise generators, only. In conclusion, within the idealized model scheme, the man-in-the-middle-attack does not provide any advantage compared to the regular attack considered earlier. The remaining possibility is the attack by a short, large current pulse, which described in the original paper as the only efficient type of regular attacks, and that yields the one bit security. In conclusion, the KLJN cipher is superior to known quantum communication schemes in every respect, including speed, robustness, maintenance need, price and its natural immunity against the man-in-the-middle attack.

Laszlo B. Kish

2005-12-19

208

A neural mass model with direct and indirect excitatory feedback loops: identification of bifurcations and temporal dynamics.  

PubMed

Neural mass modeling is a part of computational neuroscience that was developed to study the general behavior of a neuronal population. This type of mesoscopic model is able to generate output signals that are comparable to experimental data, such as electroencephalograms. Classically, neural mass models consider two interconnected populations: excitatory pyramidal cells and inhibitory interneurons. However, many authors have included an excitatory feedback on the pyramidal cell population. Two distinct approaches have been developed: a direct feedback on the main pyramidal cell population and an indirect feedback via a secondary pyramidal cell population. In this letter, we propose a new neural mass model that couples these two approaches. We perform a detailed bifurcation analysis and present a glossary of dynamical behaviors and associated time series. Our study reveals that the model is able to generate particular realistic time series that were never pointed out in either simulated or experimental data. Finally, we aim to evaluate the effect of balance between both excitatory feedbacks on the dynamical behavior of the model. For this purpose, we compute the codimension 2 bifurcation diagrams of the system to establish a map of the repartition of dynamical behaviors in a direct versus indirect feedback parameter space. A perspective of this work is, from a given temporal series, to estimate the parameter value range, especially in terms of direct versus indirect excitatory feedback. PMID:25514111

Garnier, Aurélie; Vidal, Alexandre; Huneau, Clément; Benali, Habib

2015-02-01

209

Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer  

PubMed Central

Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule–dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers. PMID:18725988

Carracedo, Arkaitz; Ma, Li; Teruya-Feldstein, Julie; Rojo, Federico; Salmena, Leonardo; Alimonti, Andrea; Egia, Ainara; Sasaki, Atsuo T.; Thomas, George; Kozma, Sara C.; Papa, Antonella; Nardella, Caterina; Cantley, Lewis C.; Baselga, Jose; Pandolfi, Pier Paolo

2008-01-01

210

Regulatory effects of a Mnk2-eIF4E feedback loop during mTORC1 targeting of human medulloblastoma cells  

PubMed Central

The mTOR pathway controls mRNA translation of mitogenic proteins and is a central regulator of metabolism in malignant cells. Development of malignant cell resistance is a limiting factor to the effects of mTOR inhibitors, but the mechanisms accounting for such resistance are not well understood. We provide evidence that mTORC1 inhibition by rapamycin results in engagement of a negative feedback regulatory loop in malignant medulloblastoma cells, involving phosphorylation of the eukaryotic translation-initiation factor eIF4E. This eIF4E phosphorylation is Mnk2- mediated, but Mnk1-independent, and acts as a survival mechanism for medulloblastoma cells. Pharmacological targeting of Mnk1/2 or siRNA-mediated knockdown of Mnk2 sensitizes medulloblastoma cells to mTOR inhibition and promotes suppression of malignant cell proliferation and anchorage-independent growth. Altogether, these findings provide evidence for the existence of a Mnk2-controlled feedback loop in medulloblastoma cells that accounts for resistance to mTOR inhibitors, and raise the potential for combination treatments of mTOR and Mnk inhibitors for the treatment of medulloblastoma. PMID:25193863

Eckerdt, Frank; Beauchamp, Elspeth; Bell, Jonathan; Iqbal, Asneha; Su, Bing; Fukunaga, Rikiro; Lulla, Rishi R.; Goldman, Stewart; Platanias, Leonidas C.

2014-01-01

211

Multiple high voltage output DC-to-DC power converter  

NASA Technical Reports Server (NTRS)

Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

1977-01-01

212

Microgyroscope with closed loop output  

NASA Technical Reports Server (NTRS)

A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

2002-01-01

213

A Cost-effective Sub-terahertz Continuous Wave Generation Scheme Using a Broadband Optical Source and An Optical Feedback Loop  

NASA Astrophysics Data System (ADS)

We have proposed a cost-effective sub-terahertz (THz) continuous wave (CW) generation scheme based on a usual double sideband-suppressed carrier (DSB-SC) scheme. The usual DSB-SC scheme, which consists of a discrete optical source, an optical intensity modulator (OIM), a local oscillator (LO), an optical notch filter, and an erbium doped fiber amplifier (EDFA), is one of well-known photonic-based sub-THz CW generation schemes. As the discrete optical source of the usual DSB-SC scheme is eliminated and an optical feedback loop is incorporated with the usual DSB-SC scheme, our proposed scheme is constructed to decrease implementation costs. Without an optical input, the output of the pump laser of the DC-biased EDFA is inserted to the optical notch filter. Reflected lightwaves with fiber bragg grating wavelengths of the optical notch filter is fed back to the input of the OIM through the optical feedback loop, which is composed of a circulator and a 90:10-coupler. DSB-SC lightwaves have been made by modulating feedbacked lightwaves on the OIM with the frequency of the LO. A sub-THz CW is generated by photomixing them. To verify feasibility of our proposed scheme, we generated and characterized a 120 GHz CW. The measurement results were also compared to those of the usual DSB-SC scheme. Based on our measurement results, we found that characteristics of the generated 120 GHz CW using our proposed scheme are comparable to those using the usual DSB-SC scheme. Consequently, our proposed scheme can be helpful to make a cost-effective sub-THz CW generator based on photonics.

Kim, Sungil; Ahn, Seung-Ho

2013-02-01

214

Robust Voltage Stabilization in an Isolated Wind-Diesel Power System using PSO based-Fixed Structure H? Loop Shaping Control  

NASA Astrophysics Data System (ADS)

It is well known that the power system controller designed by H? control is complicated, high order and impractical. In power system applications, practical structures such as proportional integral derivative (PID) etc., are widely used, because of their simple structure, less number of tuning parameters and low-order. However, tuning of controller parameters to achieve a good performance and robustness is based on designer's experiences. To overcome this problem, this paper proposes a fixed structure robust H? loop shaping control to design Static Var Compensator (SVC) and Automatic Voltage Regulator (AVR) for robust stabilization of voltage fluctuation in an isolated wind-diesel hybrid power system. The structure of the robust controller of SVC and AVR is specified by a PID controller. In the system modeling, a normalized coprime factorization is applied to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions etc. Based on the H? loop shaping, the performance and robust stability conditions are formulated as the optimization problem. The particle swarm optimization is applied to solve for PID control parameters of SVC and AVR simultaneously. Simulation studies confirm the control effect and robustness of the proposed control.

Vachirasricirikul, Sitthidet; Ngamroo, Issarachai; Kaitwanidvilai, Somyot

215

IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis  

PubMed Central

Members of the miR-34 family are induced by the tumor suppressor p53 and are known to inhibit epithelial-to-mesenchymal transition (EMT) and therefore presumably suppress the early phases of metastasis. Here, we determined that exposure of human colorectal cancer (CRC) cells to the cytokine IL-6 activates the oncogenic STAT3 transcription factor, which directly represses the MIR34A gene via a conserved STAT3-binding site in the first intron. Repression of MIR34A was required for IL-6–induced EMT and invasion. Furthermore, we identified the IL-6 receptor (IL-6R), which mediates IL-6–dependent STAT3 activation, as a conserved, direct miR-34a target. The resulting IL-6R/STAT3/miR-34a feedback loop was present in primary colorectal tumors as well as CRC, breast, and prostate cancer cell lines and associated with a mesenchymal phenotype. An active IL-6R/STAT3/miR-34a loop was necessary for EMT, invasion, and metastasis of CRC cell lines and was associated with nodal and distant metastasis in CRC patient samples. p53 activation in CRC cells interfered with IL-6–induced invasion and migration via miR-34a–dependent downregulation of IL6R expression. In Mir34a-deficient mice, colitis-associated intestinal tumors displayed upregulation of p-STAT3, IL-6R, and SNAIL and progressed to invasive carcinomas, which was not observed in WT animals. Collectively, our data indicate that p53-dependent expression of miR-34a suppresses tumor progression by inhibiting a IL-6R/STAT3/miR-34a feedback loop. PMID:24642471

Rokavec, Matjaz; Öner, Meryem Gülfem; Li, Huihui; Jackstadt, Rene; Jiang, Longchang; Lodygin, Dmitri; Kaller, Markus; Horst, David; Ziegler, Paul K.; Schwitalla, Sarah; Slotta-Huspenina, Julia; Bader, Franz G.; Greten, Florian R.; Hermeking, Heiko

2014-01-01

216

IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis.  

PubMed

Members of the miR-34 family are induced by the tumor suppressor p53 and are known to inhibit epithelial-to-mesenchymal transition (EMT) and therefore presumably suppress the early phases of metastasis. Here, we determined that exposure of human colorectal cancer (CRC) cells to the cytokine IL-6 activates the oncogenic STAT3 transcription factor, which directly represses the MIR34A gene via a conserved STAT3-binding site in the first intron. Repression of MIR34A was required for IL-6-induced EMT and invasion. Furthermore, we identified the IL-6 receptor (IL-6R), which mediates IL-6-dependent STAT3 activation, as a conserved, direct miR-34a target. The resulting IL-6R/STAT3/miR-34a feedback loop was present in primary colorectal tumors as well as CRC, breast, and prostate cancer cell lines and associated with a mesenchymal phenotype. An active IL-6R/STAT3/miR-34a loop was necessary for EMT, invasion, and metastasis of CRC cell lines and was associated with nodal and distant metastasis in CRC patient samples. p53 activation in CRC cells interfered with IL-6-induced invasion and migration via miR-34a-dependent downregulation of IL6R expression. In Mir34a-deficient mice, colitis-associated intestinal tumors displayed upregulation of p-STAT3, IL-6R, and SNAIL and progressed to invasive carcinomas, which was not observed in WT animals. Collectively, our data indicate that p53-dependent expression of miR-34a suppresses tumor progression by inhibiting a IL-6R/STAT3/miR-34a feedback loop. PMID:24642471

Rokavec, Matjaz; Öner, Meryem Gülfem; Li, Huihui; Jackstadt, Rene; Jiang, Longchang; Lodygin, Dmitri; Kaller, Markus; Horst, David; Ziegler, Paul K; Schwitalla, Sarah; Slotta-Huspenina, Julia; Bader, Franz G; Greten, Florian R; Hermeking, Heiko

2014-04-01

217

Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells.  

PubMed

A relatively rare aldehyde dehydrogenase 1 (ALDH1)-positive "stem cell-like" subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover, it is highly resistant to chemotherapy and significantly associated with poor clinical outcomes. The development of more effective therapies for cancer requires targeting of this cell population. Using cDNA microarray analysis, we identified that the expression of the Caenorhabditis elegans lin-28 homologue (LIN28) was positively correlated with the percentage of ALDH1+ tumor cells; this was further validated in an independent set of tissue arrays (n=197). Both loss-of-function and gain-of-function studies showed that LIN28 plays a critical role in the maintenance of ALDH1+ tumor cells. In addition, we found that there is a double-negative feedback loop between LIN28 and let-7 in tumor cells, and that let-7 negatively regulates ALDH1+ tumor cells. Finally, we report that a LIN28/let-7 loop modulates self-renewal and differentiation of mammary gland epithelial progenitor cells. Our data provide evidence that cancer stem cells may arise through a "reprogramming-like" mechanism. A rebalancing of the LIN28/let-7 regulatory loop could be a novel therapeutic strategy to target ALDH1+ cancer stem cells. PMID:21045151

Yang, Xiaojun; Lin, Xiaojuan; Zhong, Xiaomin; Kaur, Sippy; Li, Ning; Liang, Shun; Lassus, Heini; Wang, Liping; Katsaros, Dionyssios; Montone, Kathleen; Zhao, Xia; Zhang, Youcheng; Bützow, Ralf; Coukos, George; Zhang, Lin

2010-11-15

218

Double negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells  

PubMed Central

A relatively rare aldehyde dehydrogenase 1 (ALDH1) positive “stem cell-like” subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover it is highly resistant to chemotherapy and significantly associated with poor clinical outcomes. The development of more effective therapies for cancer requires targeting of this cell population. Using cDNA microarray analysis, we identified that the expression of the C. elegans lin-28 homolog (LIN28) was positively correlated with the percentage of ALDH1+ tumor cells; this was further validated in an independent set of tissue arrays (n=197). Both lose-of-function and gain-of-function studies demonstrated that LIN28 plays a critical role in the maintenance of ALDH1+ tumor cells. In addition, we found that there is a double negative feedback loop between LIN28 and let-7 in tumor cells, and that let-7 negatively regulates ALDH1+ tumor cells. Finally, we report that a LIN28/let-7 loop modulates self renewal and differentiation of mammary gland epithelial progenitor cells. Our data provide evidence that cancer stem cells may arise through a “reprogramming-like” mechanism. A rebalancing of the LIN28/let-7 regulatory loop could be a novel therapeutic strategy to target ALDH1+ cancer stem cells. PMID:21045151

Yang, Xiaojun; Lin, Xiaojuan; Zhong, Xiaomin; Kaur, Sippy; Li, Ning; Liang, Shun; Lassus, Heini; Wang, Liping; Katsaros, Dionyssios; Montone, Kathleen; Zhao, Xia; Zhang, Youcheng; Bützow, Ralf; Coukos, George; Zhang, Lin

2010-01-01

219

Case Studies on the Control of Input-Constrained Linear Plants Via Output Feedback Containing an Internal Deadzone Loop  

Microsoft Academic Search

In this chapter we address several case studies using LMI optimization methods for designing output feedback control laws\\u000a to achieve regional performance and stability of linear control systems with input saturation. Algorithms are developed for\\u000a minimizing the upper bound on the regional L2 gain for exogenous inputs with L2 norm bounded by a given value, and for minimizing this upper

Dan Dai; Tingshu Hu; Andrew R. Teel; Luca Zaccarian

220

Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control  

SciTech Connect

This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

Vuckovic, V.; Vukosavic, S. (Electrical Engineering Inst. Nikola Tesla, Viktora Igoa 3, Belgrade, 11000 (Yugoslavia))

1992-01-01

221

The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions.  

PubMed

Programmed cell death (PCD) is an integral component of plant development and adaptation under adverse environmental conditions. Reactive oxygen species (ROS) are one of the most important players that trigger PCD in plants, and ROS-generating machinery is activated in plant cells undergoing PCD. The membrane-bound NAC transcription factor NTL4 has recently been proven to facilitate ROS production in response to drought stress in Arabidopsis. In this work, we show that NTL4 participates in a positive feedback loop that bursts ROS accumulation to modulate PCD under heat stress conditions. Heat stress induces NTL4 gene transcription and NTL4 protein processing. The level of hydrogen peroxide (H2O2) was elevated in 35S:4?C transgenic plants that overexpress a transcriptionally active nuclear NTL4 form but significantly reduced in NTL4-deficient ntl4 mutants under heat stress conditions. In addition, heat stress-induced cell death was accelerated in the 35S:4?C transgenic plants but decreased in the ntl4 mutants. Notably, H2O2 triggers NTL4 gene transcription and NTL4 protein processing under heat stress conditions. On the basis of these findings, we conclude that NTL4 modulates PCD through a ROS-mediated positive feedback control under heat stress conditions, possibly providing an adaptation strategy by which plants ensure their survival under extreme heat stress conditions. PMID:25219309

Lee, Sangmin; Lee, Hyo-Jun; Huh, Sung Un; Paek, Kyung-Hee; Ha, Jun-Ho; Park, Chung-Mo

2014-10-01

222

A novel bidirectional positive-feedback loop between Wnt–?-catenin and EGFR–ERK plays a role in context-specific modulation of epithelial tissue regeneration  

PubMed Central

ABSTRACT By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, ?-catenin acts as the lynchpin between cell–cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with ?-catenin signalling has been observed in cancer-derived cells, yet the existence of pathway crosstalk in normal cells is unknown. Using a highly regenerative normal human epithelial culture system that displays contact inhibition, we demonstrate that the receptor tyrosine kinase (RTK)-driven MAPK and Wnt–?-catenin signalling axes form a bidirectional positive-feedback loop to drive cellular proliferation. We show that ?-catenin both drives and is regulated by proliferative signalling cues, and its downregulation coincides with the switch from proliferation to contact-inhibited quiescence. We reveal a novel contextual interrelationship whereby positive and negative feedback between three major signalling pathways – EGFR–ERK, PI3K–AKT and Wnt–?-catenin – enable autocrine-regulated tissue homeostasis as an emergent property of physical interactions between cells. Our work has direct implications for normal epithelial tissue homeostasis and provides insight as to how dysregulation of these pathways could drive excessive and sustained cellular growth in disease. PMID:24816560

Georgopoulos, Nikolaos T.; Kirkwood, Lisa A.; Southgate, Jennifer

2014-01-01

223

Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1  

PubMed Central

Senescence induction contributes to cancer therapy responses and is crucial for p53-mediated tumor suppression. However, whether p53 inactivation actively suppresses senescence induction has been unclear. Here we demonstrate that E2F1 overexpression, due to p53 or p21 inactivation, promotes expression of human oncoprotein CIP2A, which in turn, by inhibiting PP2A activity, increases stabilizing serine 364 phosphorylation of E2F1. Several lines of evidence demonstrate that increased activity of E2F1-CIP2A feedback renders breast cancer cells resistant to senescence induction. Importantly, mammary tumorigenesis is impaired in a CIP2A deficient mouse model, and CIP2A deficient tumors display markers of senescence induction. Moreover, high CIP2A expression predicts for poor prognosis in a subgroup of breast cancer patients treated with senescence-inducing chemotherapy. Together these results implicate E2F1-CIP2A feedback loop as a key determinant of breast cancer cell sensitivity to senescence induction. It also constitutes a promising pro-senescence target for therapy of cancers with inactivated p53-p21 pathway. PMID:23306062

Laine, Anni; Sihto, Harri; Come, Christophe; Rosenfeldt, Mathias T.; Zwolinska, Aleksandra; Niemelä, Minna; Khanna, Anchit; Chan, Edward K.; Kähäri, Veli-Matti; Kellokumpu-Lehtinen, Pirkko-Liisa; Sansom, Owen J.; Evan, Gerard I.; Junttila, Melissa R.; Ryan, Kevin M.; Marine, Jean-Christophe; Joensuu, Heikki; Westermarck, Jukka

2013-01-01

224

Static inverter with synchronous output waveform synthesized by time-optimal-response feedback  

NASA Technical Reports Server (NTRS)

Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

1976-01-01

225

Fast flux locked loop  

DOEpatents

A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-09-10

226

Magnetohydrodynamic Computation of Feedback Stabilization of Resistive-Shell Instabilities in the Reversed Field Pinch  

NASA Astrophysics Data System (ADS)

MHD computations demonstrate that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. In the absence of a close-fitting conducting shell, feedback with conducting coils on ~2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes. Feedback with resistive coils yields information on requirements for more physically realistic feedback systems and on the potentiality of improvement of resistive-shell plasma parameters beyond the conducting -shell case. Plasma response to shell rotation is investigated, and issues relevant to mode locking and feedback rotation of individual modes are discussed.

Zita, Elizabeth Jean

1993-12-01

227

Magnetohydrodynamic computation of feedback stabilization of resistive-shell instabilities in the reversed field pinch  

NASA Astrophysics Data System (ADS)

MHD computations demonstrate that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. In the absence of a close-fitting conducting shell, feedback with conducting coils on approximately 2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes. Feedback with resistive coils yields information on requirements for more physically realistic feedback systems and on the potentiality of improvement of resistive-shell plasma parameters beyond the conducting-shell case. Plasma response to shell rotation is investigated, and issues relevant to mode locking and feedback rotation of individual modes are discussed.

Zita, E. J.

228

A KLF4–miRNA-206 Autoregulatory Feedback Loop Can Promote or Inhibit Protein Translation Depending upon Cell Context ?  

PubMed Central

Krüppel-like factor 4 (KLF4), a transcription factor that regulates cell fate in a context-dependent fashion, is normally induced upon growth arrest or differentiation. In many cancer cells there is dysregulation, with increased expression in proliferating cells. To identify sequence elements that mediate KLF4 suppression in normal epithelial cells, we utilized a luciferase reporter and RK3E cells, which undergo a proliferation-differentiation switch to form an epithelial sheet. A translational control element (TCE) within the KLF4 3?-untranslated region interacted with microRNAs (miRs) 206 and 344-1 to promote or inhibit KLF4 expression, respectively, in proliferating epithelial cells. Overall, the TCE suppressed expression in proliferating primary human mammary epithelial cells, but this suppressive effect was attenuated in immortalized mammary epithelial MCF10A cells, in which Dicer1 and miR-206 promoted KLF4 expression and TCE reporter activity. In contrast to MCF10A cells, in breast cancer cells the activity of miR-206 was switched, and it repressed KLF4 expression and TCE reporter activity. As miR-206 levels were KLF4 dependent, the results identify a KLF4–miR-206 feedback pathway that oppositely affects protein translation in normal cells and cancer cells. In addition, the results indicate that two distinct miRs can have opposite and competing effects on translation in proliferating cells. PMID:21518959

Lin, Chen-Chung; Liu, Ling-Zhi; Addison, Joseph B.; Wonderlin, William F.; Ivanov, Alexey V.; Ruppert, J. Michael

2011-01-01

229

Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer  

PubMed Central

The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca2+ via Ca2+/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment. PMID:24625973

Yang, F; Deng, R; Qian, X-J; Chang, S-H; Wu, X-Q; Qin, J; Feng, G-K; Ding, K; Zhu, X-F

2014-01-01

230

AKT/eNOS signaling module functions as a potential feedback loop in the growth hormone signaling pathway  

PubMed Central

Background While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear. Results Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors. Conclusion The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions. PMID:19320971

Li, Cong-Jun; Elsasser, Theodore H; Kahl, Stanislaw

2009-01-01

231

A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.  

PubMed

Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway. PMID:23602565

Yu, Keshun; Soares, Juliana Moreira; Mandal, Mihir Kumar; Wang, Caixia; Chanda, Bidisha; Gifford, Andrew N; Fowler, Joanna S; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

2013-04-25

232

Fas-associated factor (Faf1) is a novel CD40 interactor that regulates CD40-induced NF-?B activation via a negative feedback loop  

PubMed Central

CD40-induced signalling through ligation with its natural ligand (CD40L/CD154) is dependent on recruitment of TRAF molecules to the cytoplasmic domain of the receptor. Here, we applied the yeast two-hybrid system to examine whether other proteins can interact with CD40. Fas-Associated Factor 1(FAF1) was isolated from a HeLa cDNA library using the CD40 cytoplasmic tail (216–278 aa) as a bait construct. FAF1 was able to interact with CD40 both in vitro and in vivo. The FAF1 N-terminal domain was sufficient to bind CD40 and required the TRAF6-binding domain within the cytoplasmic tail of CD40 for binding. CD40 ligation induced FAF1 expression in an NF?B-dependent manner. Knockdown of FAF1 prolonged CD40-induced NF?B, whereas overexpression of FAF1 suppressed CD40-induced NF?B activity and this required interaction of FAF1 with the CD40 receptor via its FID domain. Thus, we report a novel role for FAF1in regulating CD40-induced NF?B activation via a negative feedback loop. Loss of FAF1 function in certain human malignancies may contribute to oncogenesis through unchecked NF?B activation, and further understanding of this process may provide a biomarker of NF?B-targeted therapies for such malignancies. PMID:24810049

Elmetwali, T; Young, L S; Palmer, D H

2014-01-01

233

STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters  

PubMed Central

Retinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage. Furthermore, target genes of STAT3 including BCL2, BCL2L1, BIRC5, and MMP9 are up-regulated in retinoblastoma cells compared to other retinal constituent cells. Interestingly, STAT3 inhibition by targeted siRNA suppresses the proliferation of retinoblastoma cells and the formation of in vivo orthotopic tumors. In line with these results, STAT3 siRNA effectively induces down-regulation of target genes of STAT3. In addition, miRNA microarray analysis and further real-time PCR experiments with STAT3 siRNA treatment show that STAT3 activation is related to the up-regulation of miR-17-92 clusters in retinoblastoma cells via positive feedback loop between them. In conclusion, we suggest that STAT3 inhibition could be a potential therapeutic approach in retinoblastoma through the suppression of tumor proliferation. PMID:25359779

Jo, Dong Hyun; Kim, Jin Hyoung; Cho, Chang Sik; Cho, Young-Lai; Jun, Hyoung Oh; Yu, Young Suk; Min, Jeong-Ki; Kim, Jeong Hun

2014-01-01

234

Ontogeny of specific prolactin binding sites in the rat choroid plexus and their temporal relation to the prolactin short-loop feedback system  

SciTech Connect

The development of prolactin receptors in the choroid plexus of the rat was examined using the in vivo autoradiographic approach employing the principle of competitive binding. Animals aged 0, 10, 14, and 18 days postnatal were perfusion fixed following hormone injection and prepared for light microscopic autoradiography. The choroid plexus first demonstrated specific binding of prolactin at 14 days postnatal. The lactogen specificity of these binding sites was further defined by the ability of I/sup 125/-prolactin to be displaced by unlabelled human growth hormone, which is lactogenic in rats, and not by unlabelled insulin, which is structurally dissimilar to prolactin. Morphometric analysis was performed on electron micrographs of choroid plexus from 10 and 14 day postnatal rats. The volume densities of constituents known to be involved in the synthesis and/or function of polypeptide hormone receptors were measured and differences tested for statistical significance. A semi-quantitative histo-fluorescence technique was used to evaluate the ability of prolactin to stimulate secretion of its inhibiting factor, dopamine, in 10 day postnatal rats. The present findings indicate that the ontogenesis of specific prolactin binding sites is not temporally connected with the establishment of the prolactin short-loop feedback system since activation of the system occurs prior to the establishment of specific prolactin binding at choroid plexus.

Silverman, .F.

1985-01-01

235

STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters.  

PubMed

Retinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage. Furthermore, target genes of STAT3 including BCL2, BCL2L1, BIRC5, and MMP9 are up-regulated in retinoblastoma cells compared to other retinal constituent cells. Interestingly, STAT3 inhibition by targeted siRNA suppresses the proliferation of retinoblastoma cells and the formation of in vivo orthotopic tumors. In line with these results, STAT3 siRNA effectively induces down-regulation of target genes of STAT3. In addition, miRNA microarray analysis and further real-time PCR experiments with STAT3 siRNA treatment show that STAT3 activation is related to the up-regulation of miR-17-92 clusters in retinoblastoma cells via positive feedback loop between them. In conclusion, we suggest that STAT3 inhibition could be a potential therapeutic approach in retinoblastoma through the suppression of tumor proliferation. PMID:25359779

Jo, Dong Hyun; Kim, Jin Hyoung; Cho, Chang Sik; Cho, Young-Lai; Jun, Hyoung Oh; Yu, Young Suk; Min, Jeong-Ki; Kim, Jeong Hun

2014-11-30

236

Evolution of Double Positive Autoregulatory Feedback Loops in CYCLOIDEA2 Clade Genes Is Associated with the Origin of Floral Zygomorphy[W  

PubMed Central

Members of the CYCLOIDEA2 (CYC2) clade of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF transcription factor genes are widely involved in controlling floral zygomorphy, a key innovation in angiosperm evolution, depending on their persistently asymmetric expression in the corresponding floral domains. However, it is unclear how this asymmetric expression is maintained throughout floral development. Selecting Primulina heterotricha as a model, we examined the expression and function of two CYC2 genes, CYC1C and CYC1D. We analyzed the role of their promoters in protein–DNA interactions and transcription activation using electrophoresis mobility shift assays, chromatin immunoprecipitation, and transient gene expression assays. We find that CYC1C and CYC1D positively autoregulate themselves and cross-regulate each other. Our results reveal a double positive autoregulatory feedback loop, evolved for a pair of CYC2 genes to maintain their expression in developing flowers. Further comparative genome analyses, together with the available expression and function data of CYC2 genes in the core eudicots, suggest that this mechanism might have led to the independent origins of floral zygomorphy, which are associated with plant–insect coevolution and the adaptive radiation of angiosperms. PMID:22649271

Yang, Xia; Pang, Hong-Bo; Liu, Bo-Ling; Qiu, Zhi-Jing; Gao, Qiu; Wei, Lai; Dong, Yang; Wang, Yin-Zheng

2012-01-01

237

Gestational length affects a change in the transepithelial voltage and the rNKCC2 expression pattern in the ascending thin limb of Henle's loop.  

PubMed

To examine whether the functional and morphologic conversion of the neonatal ascending thin limb (ATL) of Henle's loop is related to gestational length, we evaluated the transepithelial voltages (Vts) of ATLs in perinatal mouse, hamster, rabbit, and rat kidneys. In isolated microperfused tubule preparations, Vts of neonatal ATLs were 23.8 +/- 1.4 in mouse, 25.7 +/- 2.2 in hamster, and 18.2 +/- 1.6 mV in rabbit. The influence of gestational length on the Vts and rat Na-K-Cl cotransporter (rNKCC2) expression pattern was also examined in perinatal rats subjected to a prolonged gestation due to either a daily s.c. injection of 5 mg progesterone or ligation of the extremities of the uterine horn. Vts of d 3 neonates were 2.9 +/- 1.0 (p < 0.0001 versus d 0); Vts of d 23 fetuses subjected to ligation were 4.9 +/- 0.8 (p < 0.005 versus d 0); and Vts of d 23 fetuses given progesterone were 3.4 +/- 1.7 mV (p < 0.001 versus d 0). rNKCC2 expression tended to disappear in the renal papillae of d 23 fetuses. Our data demonstrate that the perinatal conversion of the ATL is a phenomenon commonly observed among rodents; furthermore, it is dependent on the gestational length, but unrelated to the birth process. PMID:17237717

Nishino, Minako; Morimoto, Tetsuji; Nishio, Toshiyuki; Aslanova, Ulviyya F; Farajov, Elnur I; Kumagai, Naonori; Sugawara, Noriko; Takahashi, Shori; Ohsaga, Atsushi; Maruyama, Yoshio; Tsuchiya, Shigeru; Kondo, Yoshiaki

2007-02-01

238

Feedback Augmented Sub-Ranging (FASR) Quantizer  

NASA Technical Reports Server (NTRS)

This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

Guilligan, Gerard

2012-01-01

239

Optical voltage reference  

DOEpatents

An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

Rankin, Richard (Ammon, ID); Kotter, Dale (Bingham County, ID)

1994-01-01

240

Optical voltage reference  

DOEpatents

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26

241

Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers  

PubMed Central

A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450

Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.

2010-01-01

242

IL-18 levels and the outcome of innate immune response to lipopolysaccharide: importance of a positive feedback loop with caspase-1 in IL-18 expression.  

PubMed

LPS enhanced antibacterial host defenses (ABHD) when given at low (75 micro g) doses (16 of 19 mice survived 3x LD(50) Escherichia coli vs 3 of 19 LPS-naive mice; p = 0.0001), but induced lethal inflammation at high (500 micro g) doses (5 of 5 died). Differences in the cytokine profiles induced by these LPS doses may provide insight into the mechanism(s) of transition from beneficial to lethal LPS responses. The 75 micro g LPS induced 5.9 +/- 0.9 ng/ml serum IL-18 at 8 h, which decreased to 2.3 +/- 0.4 ng/ml by 24 h, whereas 500 micro g LPS induced 11.1 +/- 1.6 ng/ml serum IL-18 levels at 8 h, which increased until death. Compared with 75 micro g, higher but sublethal (150 micro g) doses of LPS induced greater serum IL-18 levels and less effectively induced ABHD (3 of 8 survived). Reduction of serum IL-18 with neutralizing Ab improved the ABHD induced by 150 micro g, but reduced that produced by 75 micro g LPS, suggesting an optimal range of serum IL-18 level was essential for efficient ABHD. Increased expression of caspase-1 mRNA in response to the higher IL-18 levels induced at the 150 and 500 micro g, but not at the 75 micro g doses of LPS may represent a positive feedback regulatory loop leading to sustained serum IL-18 levels. We conclude that the regulation of serum IL-18 expression is critical to the outcome of innate immune responses to LPS. PMID:12193723

Joshi, Vishwas D; Kalvakolanu, Dhananjaya V; Hasday, Jeffrey D; Hebel, Richard J; Cross, Alan S

2002-09-01

243

IFN-?-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1.  

PubMed

To investigate the clinicopathological significance and underlying mechanism of microRNA-29b (miR-29b) in colorectal cancer (CRC), the role of miR-29b was investigated using in vivo and in vitro assays. Luciferase reporter assays were conducted to determine the association between miR-29b and the insulin-like growth factor 1 (IGF1) 3' untranslated region (3'UTR). Chromatin immunoprecipitation (ChIP) assays were employed to assess the direct binding of interferon regulatory factor 1 (IRF1) to miR-29b. We found that interferon (IFN)-? could induce miR-29b by recruiting IRF1 to binding sites in the miR-29b promoter. A low level of miR-29b was significantly associated with an aggressive phenotype. MiR-29b inhibited CRC cell growth and invasion. IGF1, an activator of PI3K/Akt signaling, was confirmed as a novel target of miR-29b. Moreover, miR-29b increased IRF1 expression, and the inhibition of miR-29b suppressed IFN-?-induced apoptosis. We elucidated the potential signaling pathway, IFN-?/IRF1/miR-29b/IGF1, and its implication for CRC tumorigenesis. A positive feedback loop between IRF1 and miR-29b may contribute to the sensitivity of CRC cells to IFN-?. Targeting miR-29b may provide a strategy for blocking CRC growth and metastasis. PMID:25592039

Yuan, Li; Zhou, Chang; Lu, Yanxia; Hong, Min; Zhang, Zuoyang; Zhang, Zheying; Chang, Yaya; Zhang, Chao; Li, Xuenong

2015-04-01

244

A detection of Milankovitch frequencies in tephra records of arc volcanism: Shedding light on a feedback loop between climate and volcanism. (Invited)  

NASA Astrophysics Data System (ADS)

Although it is well understood that volcanism can impact global climate or tectonics can influence volcanism, it is less well appreciated that climate can influence volcanism. In this regard, both regional and global studies have provided compelling evidence that ice age loading processes modulate the frequency of volcanic eruption. However, a rigorous detection of Milankovitch periodicities in global volcanic output across the Pleistocene-Holocene ice age, which would firmly establish a connection between ice age climate and eruption frequency, has remained elusive. To this end, we report on a spectral analysis of a large number of well-preserved ash plume deposits recorded in marine sediments along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive. We analyze the Pleistocene-to-Recent marine records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite, origin since they provide a well-preserved record of how eruption frequencies varied with depth (and, hence time). Our analysis yields a statistically significant detection of spectral peaks at the obliquity period. We propose that the variability in volcanic activity results from crustal stress changes associated with ice age mass redistribution. In particular, increased volcanism lags behind the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 × 3.6 kyr and correlates well with numerical predictions of stress changes at volcanically active sites. Our results strongly support the presence of a coupling between ice age climate, volcanism and the continental stress field. In future work we will incorporate longer tephra time series and more accurate age controls in order to improve - and widen - our detection of Milankovitch periodicities thus further elucidating the feedback loop between climate and volcanism as well as tectonics.

Kutterolf, S.; Jegen, M.; Schindlbeck, J. C.; Mitrovica, J. X.; Kwasnitschka, T.; Freundt, A.; Huybers, P. J.

2013-12-01

245

Mesenteric lymph node cells from neonates present a prominent IL-12 response to CpG oligodeoxynucleotide via an IL-15 feedback loop of amplification  

PubMed Central

At birth, the immune system is still in development making neonates more susceptible to infections. The recognition of microbial ligands is a key step in the initiation of immune responses. It can be mimicked to stimulate the immune system by the use of synthetic ligands recognising pattern recognition receptors. In human and mouse, it has been found that neonatal cytokine responses to toll-like receptor (TLR) ligands differ in many ways from those of adults but the relevant studies have been limited to cord blood and spleen cells. In this study, we compared the responses in neonate and adult sheep to CpG oligodeoxynucleotides (ODN), a TLR9 ligand, in both a mucosal and a systemic organ. We observed that in response to CpG-ODN more IL-12 was produced by neonatal than adult sheep cells from mesenteric lymph nodes (MLN) and spleen. This higher IL-12 response was limited to the first 20 days after birth for MLN cells but persisted for a longer period for spleen cells. The major IL-12-producing cells were identified as CD14+CD11b+. These cells were poor producers of IL-12 in response to direct stimulation with CpG-ODN and required the cooperation of other MLN cells. The difference in response to CpG-ODN between neonates and adults can be attributed to both a higher proportion of CD14+CD11b+ cells in neonate lambs and their higher capacity to produce IL-15. The IL-15 increases IL-12 production by an amplifying feedback loop involving CD40. PMID:21314903

2011-01-01

246

A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide.  

PubMed

Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori and shown to contribute to the progression of gastric cancer. However, the mechanisms of these processes remain poorly understood. The aim of this study was to investigate the mechanisms by which lipopolysaccharide (LPS), a virulence factor of H. pylori, regulates miR-375 and miR-106b expression in gastric epithelial cells. The results show that LPS from H. pylori 26695 downregulated the expression of miR-375 and miR-106b in gastric epithelial cells, and low levels of Dicer were also observed. Downregulation of miR-375 was found to increase expression of MDM2 with SP1 activation. Overexpression of MDM2 inhibited Dicer by repressing p63 to create a positive-feedback loop involving SP1/MDM2/p63/Dicer that leads to inhibition of miR-375 and miR-106b expression. In addition, we demonstrated that JAK1 and STAT3 were downstream target genes of miR-106b. H. pylori LPS also enhanced the tyrosine phosphorylation of JAK1, JAK2 and STAT3. Together, these results provide insight into the regulatory mechanisms of MDM2 on H. pylori LPS-induced specific miRNAs, and furthermore, suggest that gastric epithelial cells treated with H. pylori LPS may be susceptible to JAK/STAT3 signal pathway activation via inhibition of miR-375 and miR-106b. PMID:25307786

Ye, Feng; Tang, Chunli; Shi, Weijia; Qian, Juan; Xiao, Shuping; Gu, Min; Dang, Yini; Liu, Jianping; Chen, Yan; Shi, Ruihua; Zhang, Guoxin

2015-05-01

247

Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2  

PubMed Central

Epithelial-mesenchymal transition (EMT) in carcinoma cells enhances malignant progression by promoting invasion and survival. EMT is induced by microenvironmental factors including TGF-? and Wnt agonists, and by the E-box-binding transcription factors Twist, Snail and ZEB. Grainyhead-like-2 (GRHL2), a member of the mammalian Grainyhead family of wound healing regulatory transcription factors, suppresses EMT and restores sensitivity to anoikis by repressing ZEB1 expression and inhibiting TGF-? signaling. In this study, we elucidate the functional relationship between GRHL2 and ZEB1 in EMT/MET and tumor biology. At least three homeodomain proteins, Six1, LBX1, and HoxA5, transactivated the ZEB1 promoter, in the case of Six1, through direct protein-promoter interaction. GRHL2 altered the Six1-DNA complex, inhibiting this transactivation. Correspondingly, GRHL2 expression prevented tumor initiation in xenograft assays, sensitized breast cancer cells to paclitaxel and suppressed the emergence of CD44highCD24low cells (defining the cancer stem cell phenotype in the cell type studied). GRHL2 was down-regulated in recurrent mouse tumors that had evolved to an oncogene-independent, EMT-like state, supporting a role for GRHL2 down-regulation in this phenotypic transition, modeling disease recurrence. The combination of TGF-? and Wnt activation repressed GRHL2 expression by direct interaction of ZEB1 with the GRHL2 promoter, inducing EMT. Together, our observations indicate that a reciprocal feedback loop between GRHL2 and ZEB1 controls epithelial vs. mesenchymal phenotypes and EMT-driven tumor progression. PMID:23943797

Cieply, Benjamin; Farris, Joshua; Denvir, James; Ford, Heide; Frisch, Steven M.

2013-01-01

248

DISTURBANCE FEEDBACK TECHNIQUES FOR HYDROFOIL CRAFT USING ACCELERATION MEASUREMENTS  

E-print Network

DISTURBANCE FEEDBACK TECHNIQUES FOR HYDROFOIL CRAFT USING ACCELERATION MEASUREMENTS Sergey, and the overall controller explicitly exhibits an algebraic disturbance feedback loop. A simplified hydrofoil rejection, marine systems, ship control 1. INTRODUCTION In hydrofoil control, acceleration feedback (AF

Ghulchak, Andrey

249

A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling  

PubMed Central

Background High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NF?B and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NF?B and Hh signaling. Here we investigate the interaction of MID1 and AR. Methods AR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively. Results The microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner. Conclusion Promotion of AR, in addition to enhancement of the Akt-, NF?B-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer. PMID:24913494

2014-01-01

250

Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop.  

PubMed Central

In vitro as well as in vivo observations have shown that IL6 plays a key role in the pathogenesis of multiple myeloma. Therefore we started a phase I/II dose escalating study with chimeric monoclonal anti-IL6 antibodies (cMab) in multiple myeloma (MM) patients resistant to second-line chemotherapy. Here we describe the pharmacological data as well as a new method for calculating the endogenous IL6 production. The cMab (CLB IL6/8; Kd: 6.25 x 10(-12) M) was given in two cycles of 14 daily infusions, starting on day 1 and day 28. Daily dose: 5 mg in patients 1-3, 10 mg in patients 4-6, and 20 mg in patients 7-9 (total dose 140, 280, and 560 mg of anti-IL6, respectively). Using the pharmacokinetic data of free IL6 and the binding characteristics of the cMab, the endogenous IL6 production could be calculated from day to day using a one-compartment open model. The median half-life time of this antibody was 17.6 d. No human antichimeric antibodies were induced. Pre-treatment median endogenous IL6 production in the MM patients was 60 micrograms/d (range 13.8-230; normal controls < 7 micrograms/d). During treatment with anti-IL6 cMabs, the endogenous IL6 production immediately decreased in all patients to below 3 micrograms/d and never reached the pre-treatment value during the treatment period, except in two patients who developed an active infection, resulting in an IL6 production of 128 and 1,208 micrograms/d, respectively. We concluded that in MM patients endogenous IL6 production is 2-30 times higher than in healthy individuals. The anti-IL6 cMab strongly suppress this endogenous IL6 production, probably by blocking a positive feed-back loop, but this cMab does not prevent infection-induced IL6 production. The chimeric anti-IL6 Mabs have a long half-life time, a low immunogenicity, and are able to block IL6-dependent processes in vivo. PMID:8823310

van Zaanen, H C; Koopmans, R P; Aarden, L A; Rensink, H J; Stouthard, J M; Warnaar, S O; Lokhorst, H M; van Oers, M H

1996-01-01

251

553ACTUATOR 2006, 10th International Conference on New Actuators, 14 16 June 2006, Bremen, Germany THE DESIGN OF A HIGH-VOLTAGE CHARGE-FEEDBACK  

E-print Network

-feedback amplifier for controlling the displacement of piezoelectric devices to account for hysteresis. In particular microscopy, micropumps, and actuators for nanomanipulation. The amplifier's effectiveness is demonstrated by applying it to actuate a composite piezoelectric device and results show reduction of hysteresis by over 80

Mossi, Karla

252

Voltage Divider  

NSDL National Science Digital Library

This voltage divider produces an output voltage, Vo, that is proportional to the input voltage, Vs. The output voltage is measured using a voltmeter. The input voltage is the voltage of the voltage source. The constant of proportionality is called the gain of the voltage divider. The value of the gain of the voltage divider is determined by the resistances, R1 and R2, of the two resistors that comprise the voltage divider.

253

Acetylcholine Promotes Ca2+and NO-Oscillations in Adipocytes Implicating Ca2+?NO?cGMP?cADP-ribose?Ca2+ Positive Feedback Loop - Modulatory Effects of Norepinephrine and Atrial Natriuretic Peptide  

PubMed Central

Purpose This study investigated possible mechanisms of autoregulation of Ca2+ signalling pathways in adipocytes responsible for Ca2+ and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). Methods Fluorescent microscopy was used to detect changes in Ca2+ and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca2+-channels in Ca2+ signalling pathways. Results ACh activating M3-muscarinic receptors and G?? protein dependent phosphatidylinositol 3 kinase induces Ca2+ and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or ?1, ?2-adrenergic agonists act by amplifying the effect of ACh to promote Ca2+ oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca2+? NO?cGMP?cADPR?Ca2+, which determines periodic or steady operation of a short PFL based on Ca2+-induced Ca2+ release via RyR by generating cADPR, a coagonist of Ca2+ at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca2+-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca2+-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. Conclusions This study presents a kinetic model of Ca2+-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback. PMID:23696827

Turovsky, Egor A.; Turovskaya, Mariya V.; Dolgacheva, Ludmila P.; Zinchenko, Valery P.; Dynnik, Vladimir V.

2013-01-01

254

Audio Feedback -- Better Feedback?  

ERIC Educational Resources Information Center

National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

Voelkel, Susanne; Mello, Luciane V.

2014-01-01

255

Regenerative feedback resonant circuit  

DOEpatents

A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

2014-09-02

256

Feedback: A Systems Approach to Evaluation and Course Design. Working Papers No. 21.  

ERIC Educational Resources Information Center

Two types of feedback are examined, and their use in controlling the processes of instructional development and improvement are discussed. Closed-loop feedback, the most direct, uses immediate feedback about a process or product to make immediate adjustments in it. Open-loop feedback, in which input cannot be changed immediately, uses feedback to…

Holmes, John

257

Voltage spikes in superconducting Cable-In-Conduit Conductor under ramped magnetic fields. Part 2: Analysis of loop inductances and current variations associated with the spikes  

NASA Astrophysics Data System (ADS)

A 27 strand hybrid superconducting Cable-In-Conduit Conductor (CICC) sample (so-called TPX-PF model sample) has been fabricated and tested in quickly ramped background magnetic fields. The voltage spikes that appeared in the sample's terminal voltages during magnetic field sweeps at DC transport current are analyzed using a model that calculates the magnitude of individual strand current drops and the strand to strand/cable inductances associated with each voltage spike. Dependencies of the strand inductances and current variations with consecutive voltage spike numbers, total transport current in the cable and background magnetic field are analyzed and discussed. The analysis confirms previously reported suggestions that voltage spikes and the corresponding rapid variations, or jumps, observed in the conductor's local magnetic field are indications of rapid redistribution of current from one of the cable's strands in which the current reached its critical level. It is shown that rapid current redistributions which are too small to initiate total cable quench lead to more uniform distribution of current among the strands in the CICC. Therefore, it may be possible to apply small disturbances to a CICC to improve its strand to strand current distribution in a cable and to stabilize its Ramp Rate Limitation behavior.

Vysotsky, Vitaly S.; Takayasu, Makoto; Jeong, Sangkwon; Michael, Philip C.; Vysotskaia, Valentine V.

258

Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5-S6 loop of domain I  

PubMed Central

The isoform specific role of sialic acid in human voltage-gated sodium channel gating was investigated through expression and chimeric analysis of two human isoforms, Nav1.4 (hSkM1), and Nav1.5 (hH1) in Chinese hamster ovary (CHO) cell lines. Immunoblot analyses indicate that both hSkM1 and hH1 are glycosylated and that hSkM1 is more glycosylated than hH1. Four sets of voltage-dependent parameters, the voltage of half-activation (Va), the voltage of half-inactivation (Vi), the time constants for fast inactivation (?h), and the time constants for recovery from inactivation (?rec), were measured for hSkM1 and hH1 expressed in two CHO cell lines, Pro5 and Lec2, to determine the effect of changing sialylation on channel gating under conditions of full (Pro5) or reduced (Lec2) sialylation. For all parameters measured, hSkM1 gating showed a consistent 11–15 mV depolarizing shift under conditions of reduced sialylation, while hH1 showed no significant change in any gating parameter. Shifts in channel Va with changing external [Ca2+] indicated that sialylation of hSkM1, but not hH1, directly contributes to a negative surface potential. Functional analysis of two chimeras, hSkM1P1 and hH1P1, indicated that the responsible sialic acids are localized to the hSkM1 S5-S6 loop of domain I. When hSkM1 IS5-S6 was replaced by the analogous hH1 loop (hSkM1P1), changing sialylation had no significant effect on any voltage-dependent parameter. Conversely, when hSkM1 IS5-S6 was added to hH1 (hH1P1), all four parameters shifted by 6–7 mV in the depolarized direction under conditions of reduced sialylation. In summary, the gating of two human sodium channel isoforms show very different dependencies on sialic acid, with hSkM1 gating uniformly altered by sialic acid levels through an apparent electrostatic mechanism, while hH1 gating is unaffected by changing sialylation. Sialic acid-dependent gating can be removed or created by replacing or inserting hSkM1 IS5-S6, respectively, indicating that the functionally relevant sialic acid residues are localized to the first domain of the channel. PMID:11826157

Bennett, Eric S

2002-01-01

259

Instantaneous feedback control of a single-phase PWM inverter with nonlinear loads by sine wave tracking  

Microsoft Academic Search

The authors propose a novel method for the instantaneous digital control of a PWM (pulse-width modulated) inverter used in an uninterruptible power supply. The output voltage is compared to a sinusoidal reference at each sampling instant to compute in real time through a digital controller the pulse width of the same interval. The closed-loop digital feedback eliminates the steady-state error

Pascal Maussion; Marcel Grandpierre; Jean Faucher; Jean Claude Hapiot

1989-01-01

260

Voltage correction power flow  

SciTech Connect

A method for power flow solution of weakly meshed distribution and transmission networks is presented. It is based on oriented ordering of network elements. That allows an efficient construction of the loop impedance matrix and rational organization of the processes such as: power summation (backward sweep), current summation (backward sweep) and node voltage calculation (forward sweep). The first step of the algorithm is calculation of node voltages on the radial part of the network. The second step is calculation of the breakpoint currents. Then, the procedure continues with the first step, which is preceded by voltage correction. It is illustrated that using voltage correction approach, the iterative process of weakly meshed network voltage calculation is faster and more reliable.

Rajicic, D.; Ackovski, R.; Taleski, R. (Univ. Sv. Kiril i Metodij'', Skopje, Macedonia (Greece). Dept. of Electrical Engineering)

1994-04-01

261

Simple Optoelectronic Feedback in Microwave Oscillators  

NASA Technical Reports Server (NTRS)

A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

Maleki, Lute; Iltchenko, Vladimir

2009-01-01

262

Voltage-Controlled Oscillator  

NASA Technical Reports Server (NTRS)

Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

1995-01-01

263

System Design as a Three-Phase Dual-Loop (TPDL) Process: Types of Knowledge-Applied Sources of Feedback, and Student Development as Independent Learners  

ERIC Educational Resources Information Center

This study aimed at exploring how high school students deal with designing an information system, for example, for a small business or a medical clinic, the extent to which students develop as independent learners while working on their projects, and the factors that help or hinder fostering students' design skills. The three-phase dual-loop

Barak, Moshe

2010-01-01

264

NMR analysis of interaction of LqhalphaIT scorpion toxin with a peptide corresponding to the D4/S3-S4 loop of insect para voltage-gated sodium channel.  

PubMed

Voltage-gated sodium channels (Navs) are large transmembrane proteins that initiate action potential in electrically excitable cells. This central role in the nervous system has made them a primary target for a large number of neurotoxins. Scorpion alpha-neurotoxins bind to Navs with high affinity and slow their inactivation, causing a prolonged action potential. Despite the similarity in their mode of action and three-dimensional structure, alpha-toxins exhibit great variations in selectivity toward insect and mammalian Navs, suggesting differences in the binding surfaces of the toxins and the channels. The scorpion alpha-toxin binding site, termed neurotoxin receptor site 3, has been shown to involve the extracellular S3-S4 loop in domain 4 of the alpha-subunit of voltage-gated sodium channels (D4/S3-S4). In this study, the binding site for peptides corresponding to the D4/S3-S4 loop of the para insect Nav was mapped on the highly insecticidal alpha-neurotoxin, LqhalphaIT, from the scorpion Leiurus quinquestriatus hebraeus, by following changes in the toxin amide 1H and 15N chemical shifts upon binding. This analysis suggests that the five-residue turn (residues LqK8-LqC12) of LqhalphaIT and those residues in its vicinity interact with the D4/S3-S4 loop of Nav. Residues LqR18, LqW38, and LqA39 could also form a patch contributing to the interaction with D4/S3-S4. Moreover, a new bioactive residue, LqV13, was identified as being important for Nav binding and specifically for the interaction with the D4/S3-S4 loop. The contribution of LqV13 to NaV binding was further verified by mutagenesis. Future studies involving other extracellular regions of Navs are required for further characterization of the structure of the LqhalphaIT-Navs binding site. PMID:18154318

Schnur, Einat; Turkov, Michael; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Anglister, Jacob

2008-01-22

265

Open-loop band excitation Kelvin probe force microscopy  

NASA Astrophysics Data System (ADS)

A multidimensional scanning probe microscopy approach for quantitative, cross-talk free mapping of surface electrostatic properties is demonstrated. Open-loop band excitation Kelvin probe force microscopy (OL BE KPFM) probes the full response-frequency-potential surface at each pixel at standard imaging rates. The subsequent analysis reconstructs work function, tip-surface capacitance gradient and resonant frequency maps, obviating feedback-related artifacts. OL BE KPFM imaging is demonstrated for several materials systems with topographic, potential and combined contrast. This approach combines the features of both frequency and amplitude KPFM and allows complete decoupling of topographic and voltage contributions to the KPFM signal.

Guo, Senli; Kalinin, Sergei V.; Jesse, Stephen

2012-03-01

266

STABILITY OF HIGH VOLTAGE MODULATORS FOR NONLINEAR LOADS  

SciTech Connect

OAK-B135 Gyrotrons have a nonlinear voltage--current characteristic such that the small signal or ac impedance changes as operational voltage and currents are reached. The ac impedance determines the stability of a voltage or current control system. this can become particularly challenging when several gyrotron are connected in parallel to a single modulator. With all gyrotrons hooked to a common ground, large current loops can be generated as well as non-canceling currents in individual coaxial lines. These inequalities can provide the required feedback impulse to start an oscillation condition in the power system for the tubes. Recent operation of two CPI 110 GHz gyrotrons in the MN class from a single modulator on DIII-D has shown instability in the power system. An oscillation in the drive current occurs at various points in the ramp up and flat top portions of the 80 kV voltage pulse with each tube drawing 40 A at full voltage. Efforts to stabilize these instabilities are presented along with some modeling and examination of the issues for gyrotron modulators.

PAWLEY,J.C; TOOKER,J; PEAVY,J; CARY,W.P; NEREM,A; HOYT,D; LOHR,J

2003-10-01

267

A prototype framework for models of socio-hydrology: identification of key feedback loops with application to two Australian case-studies  

NASA Astrophysics Data System (ADS)

It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system-scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for a model of socio-hydrology that posits a novel construct, a composite Community Sensitivity state variable, as a key link to elucidate the drivers of behavioural response in a hydrological context. The framework provides for both macro-scale contextual parameters, which allow it to be applied across climate, socioeconomic and political gradients, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two different socio-hydrological case studies, taken from the Australian experience, are presented and discussed. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to participate in the growing field of social-ecological systems modelling.

Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

2014-01-01

268

Feedback sine wave driver design for ultrasonic transducers  

NASA Astrophysics Data System (ADS)

The optimal sinusoidal excitation of an ultrasonic transducer requests a knowledge of the frequency and the impedance of the used ceramic. These parameters, that vary during the application, depend on the characteristics of the transducer but also on the acoustic load of the propagation medium. In the search for an adaptive excitation, we propose the design of a digital generator assuring the functions of automatic tuning and impedance matching. The design uses the Butterworth-Van Dycke model of pizoelectric ceramics. The method of determination and identification of the model parameters is presented and applied on three different transducers. The negative feedback of the generator is carried out by the signal measured on the transducers. The dynamic voltage being very variable, the output resistor of the driver is controlled by transducer impedance. This feedback control allows the stability of the output voltage to a constant value whatever the frequency and the medium is. A Simulink^circledR model of the regulation loop shows that the frequency tuning could be realized by exploiting the command signal of the driver resistance. The precision and the stability of the feedback system are tested for frequencies between 1 to 3 MHz.

Schweitzer, P.; Tisserand, E.; Hamed, A.; Andréa, J.; Coutard, F.

2009-07-01

269

The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression.  

PubMed

Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation. PMID:24371144

Liu, Yongqing; Sánchez-Tilló, Ester; Lu, Xiaoqin; Huang, Li; Clem, Brian; Telang, Sucheta; Jenson, Alfred B; Cuatrecasas, Miriam; Chesney, Jason; Postigo, Antonio; Dean, Douglas C

2014-02-14

270

Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface  

PubMed Central

As the field of neural prosthetics advances, Brain Machine Interface (BMI) design requires the development of virtual prostheses that allow decoding algorithms to be tested for efficacy in a time- and cost-efficient manner. Using an x-ray and MRI-guided skeletal reconstruction, and a graphic artist’s rendering of an anatomically correct macaque upper limb, we created a virtual avatar capable of independent movement across 27 degrees-of-freedom (DOF). Using a custom software interface, we animated the avatar’s movements in real-time using kinematic data acquired from awake, behaving macaque subjects using a 16 camera motion capture system. Using this system, we demonstrate real-time, closed-loop control of up to 27 DOFs in a virtual prosthetic device. Thus, we describe a practical method of testing the efficacy of high-complexity BMI decoding algorithms without the expense of fabricating a physical prosthetic. PMID:23366944

Putrino, David; Wong, Yan T.; Vigeral, Mariana; Pesaran, Bijan

2014-01-01

271

Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.  

PubMed

As the field of neural prosthetics advances, Brain Machine Interface (BMI) design requires the development of virtual prostheses that allow decoding algorithms to be tested for efficacy in a time- and cost-efficient manner. Using an x-ray and MRI-guided skeletal reconstruction, and a graphic artist's rendering of an anatomically correct macaque upper limb, we created a virtual avatar capable of independent movement across 27 degrees-of-freedom (DOF). Using a custom software interface, we animated the avatar's movements in real-time using kinematic data acquired from awake, behaving macaque subjects using a 16 camera motion capture system. Using this system, we demonstrate real-time, closed-loop control of up to 27 DOFs in a virtual prosthetic device. Thus, we describe a practical method of testing the efficacy of high-complexity BMI decoding algorithms without the expense of fabricating a physical prosthetic. PMID:23366944

Putrino, David; Wong, Yan T; Vigeral, Mariana; Pesaran, Bijan

2012-01-01

272

RF feedback development for the PEP-II B Factory  

SciTech Connect

In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity.

Corredoura, P.; Sapozhnikov, L.; Tighe, R.

1994-06-01

273

The perceptual characteristics of voice-hallucinations in deaf people: insights into the nature of subvocal thought and sensory feedback loops.  

PubMed

The study of voice-hallucinations in deaf individuals, who exploit the visuomotor rather than auditory modality for communication, provides rare insight into the relationship between sensory experience and how "voices" are perceived. Relatively little is known about the perceptual characteristics of voice-hallucinations in congenitally deaf people who use lip-reading or sign language as their preferred means of communication. The existing literature on hallucinations in deaf people is reviewed, alongside consideration of how such phenomena may fit into explanatory subvocal articulation hypotheses proposed for auditory verbal hallucinations in hearing people. It is suggested that a failure in subvocal articulation processes may account for voice-hallucinations in both hearing and deaf people but that the distinct way in which hallucinations are experienced may be due to differences in a sensory feedback component, which is influenced by both auditory deprivation and language modality. This article highlights how the study of deaf people may inform wider understanding of auditory verbal hallucinations and subvocal processes generally. PMID:16510696

Atkinson, Joanna R

2006-10-01

274

The Perceptual Characteristics of Voice-Hallucinations in Deaf People: Insights into the Nature of Subvocal Thought and Sensory Feedback Loops  

PubMed Central

The study of voice-hallucinations in deaf individuals, who exploit the visuomotor rather than auditory modality for communication, provides rare insight into the relationship between sensory experience and how “voices” are perceived. Relatively little is known about the perceptual characteristics of voice-hallucinations in congenitally deaf people who use lip-reading or sign language as their preferred means of communication. The existing literature on hallucinations in deaf people is reviewed, alongside consideration of how such phenomena may fit into explanatory subvocal articulation hypotheses proposed for auditory verbal hallucinations in hearing people. It is suggested that a failure in subvocal articulation processes may account for voice-hallucinations in both hearing and deaf people but that the distinct way in which hallucinations are experienced may be due to differences in a sensory feedback component, which is influenced by both auditory deprivation and language modality. This article highlights how the study of deaf people may inform wider understanding of auditory verbal hallucinations and subvocal processes generally. PMID:16510696

Atkinson, Joanna R.

2006-01-01

275

Modular high voltage power supply for chemical analysis  

DOEpatents

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2008-07-15

276

Modular high voltage power supply for chemical analysis  

DOEpatents

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2010-05-04

277

Modular high voltage power supply for chemical analysis  

DOEpatents

A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2007-01-09

278

Feedback control of spin systems  

E-print Network

The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.

Claudio Altafini

2006-01-03

279

P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer.  

PubMed

Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the inner leaflet of the plasma membrane. PIP3 recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP3-regulated proteins in breast cancer cells, levels of the Rac activator PIP3-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP3-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells.Oncogene advance online publication, 6 October 2014; doi:10.1038/onc.2014.328. PMID:25284585

Dillon, L M; Bean, J R; Yang, W; Shee, K; Symonds, L K; Balko, J M; McDonald, W H; Liu, S; Gonzalez-Angulo, A M; Mills, G B; Arteaga, C L; Miller, T W

2014-10-01

280

A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast  

PubMed Central

Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification. PMID:22876190

Jacques, Pierre-Étienne; Pagé, Viviane; Nagy, Stephen; Racine, Ariane; St. Amour, Courtney V.; Zhang, Chao; Shokat, Kevan M.; Schwer, Beate; Robert, François; Fisher, Robert P.; Tanny, Jason C.

2012-01-01

281

Voltage Drop  

NSDL National Science Digital Library

The first site with information on voltage drop is provided by Power and System Innovations on their Frequently Asked Questions: Voltage Drop (1) page. Visitors can read what voltage drop is, what causes it, what happens as a result of it, and what the maximum recommended voltage drop is. The second site, Basics of Electricity (2), is part of General Electric's Lighting for Business Web site. Through descriptions and illustrations, the site explains what voltage drop is and gives examples of how it is calculated using Ohm's law. The next site is a lab worksheet that is part of a class from the Electrical and Computer Engineering Department of Montana State University called Voltage Drop in Cables (3). The objective of the lesson is to determine the internal resistance of an extension cord and choose the proper wire size for a particular application. Students are given an explanation of the procedure and a number of questions to answer related to the exercise. The Oregon Building Congress offers the Lesson Plans (4) Web site and the downloadable Voltage Drop educational activity. The lesson, which is suggested to be contained within a unit on formulas and solving literal equations, explores the concept of voltage drop that is encountered in basic wiring. The fifth site entitled Explanation of Voltage Drop in a Series Circuit (5) is offered by the Horizons Electronic Lesson Plan Resource. The page describes voltage drop as an electronic concept, gives a formula determining voltage drop, provides a schematic that helps illustrate the concept, and offers a quiz and answer sheet. Next, from electrician.com, is the online Voltage Drop Calculator (6). Users input the type and size of wire being used, the voltage and phase, circuit length, and amp load to calculate voltage drop and several other parameters. The seventh site, entitled The Hazards of Voltage Drop (7), is provided within the Electrical Construction Maintenance Web site. The page describes how electrical equipment can overheat or even power down if it operates below its voltage rating. It also provides a thorough explanation of how to determine the load's operating voltage. The last site, maintained by Williamson Labs (8), is a comprehensive learning site called Elementary Electricity. Visitors will find a wealth of information here, including fun descriptions, graphics, and animations on all aspects of electricity including voltage drop.

282

Pulsed Feedback Defers Cellular Differentiation  

PubMed Central

Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle. PMID:22303282

Levine, Joe H.; Fontes, Michelle E.; Dworkin, Jonathan; Elowitz, Michael B.

2012-01-01

283

Sinusoidal voltage controller for uninterruptible power supply by robust control  

Microsoft Academic Search

The output voltage of an uninterruptible power supply (UPS) is distorted by nonlinear loads. To obtain sinusoidal output voltage of a UPS, a new control method of a pulse width modulated (PWM) inverter is proposed applying sliding mode control. The feedback gains of conventional sliding mode control are determined by offline calculation; however this proposed control method calculates the feedback

Tomonobu Senjyu; Katsumi Uezato

1993-01-01

284

Feedback Structures for Vapor Compression Cycle Systems  

Microsoft Academic Search

This paper explores the controllability and interconnectedness of input-output relationships in vapor compression cycles. The magnitude of physical coupling between different outputs used in the feedback loop are examined. It is shown that an alternative to the conventional feedback configuration found in the literature has distinct benefits that allow for improved system regulation using simple classical control techniques. A relative

Michael C. Keir; Andrew G. Alleyne

2007-01-01

285

Studies Of Positive-Position-Feedback Control  

NASA Technical Reports Server (NTRS)

Report discusses theoretical and experimental studies of positive-position-feedback control for suppressing vibrations in large flexible structures. Positive-position-feedback control involves placement of actuators and sensors on structure; control voltages applied to actuators in response to outputs of sensors processed via compensator algorithm. Experiments demonstrate feasibility of suppressing vibrations by positive position feedback, and spillover of vibrational energy into uncontrolled modes has stabilizing effect if control gain sufficiently small.

Fanson, James L.; Caughey, Thomas K.

1992-01-01

286

Digital phase-lock loop  

NASA Technical Reports Server (NTRS)

An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

Thomas, Jr., Jess B. (Inventor)

1991-01-01

287

A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties1[W][OPEN  

PubMed Central

Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. ‘N22’ seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios. PMID:24520156

Lin, Meng-yi; Chai, Kuo-hsing; Ko, Swee-suak; Kuang, Lin-yun; Lur, Huu-Sheng; Charng, Yee-yung

2014-01-01

288

Positive feedback in cellular control systems  

PubMed Central

Summary Feedback loops have been identified in a variety of regulatory systems and organisms. While feedback loops of the same type (negative or positive) tend to have properties in common, they can play distinctively diverse roles in different regulatory systems, where they can affect virulence in a pathogenic bacterium, maturation patterns of vertebrate oocytes and transitions through cell cycle phases in eukaryotic cells. This review focuses on the properties and functions of positive feedback in biological systems, including bistability, hysteresis and activation surges. PMID:18478531

Mitrophanov, Alexander Y.; Groisman, Eduardo A.

2008-01-01

289

Getting Your Loops Straight  

NSDL National Science Digital Library

This article introduces a special issue on the study of biochemical signaling pathways. Complicated biochemical signaling pathways regulate the function of living cells. Such regulatory networks often have âÂÂdownstreamâ components that provide input to components that act earlier in a pathway, creating feedback loops. These feedback loops have the potential to greatly alter the properties of a pathway and how it responds to stimuli. To fully understand these regulatory systems and exploit their vast potential as targets of therapeutic strategies, we need quantitative information on the flow of signals through a pathway and on the timing and location of signaling events within cells. The papers assembled in this special issue and in the companion issue of Science Signaling highlight recent progress in tackling these challenges.

L. Bryan Ray (AAAS;)

2008-10-17

290

Architecture for a High-to-Medium-Voltage Power Converter  

NASA Technical Reports Server (NTRS)

A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

Vorpenian, Vatche

2008-01-01

291

Voltage Controlled Voltage Source (VCVS)  

NSDL National Science Digital Library

Hosted by Clarkson University, this applet demonstrates a circuit that contains a voltage controlled voltage source (VCVS). The gain may be modified using the scroll bar. Even though brief, this resource can be used in a variety of different technical education classrooms.

Dorf, Richard C.

292

Balanced-Bridge Feedback Control Of Motor  

NASA Technical Reports Server (NTRS)

Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

Lurie, Boris J.

1990-01-01

293

On-demand maximally entangled states with a parity meter and continuous feedback  

NASA Astrophysics Data System (ADS)

Generating on-demand maximally entangled states is one of the cornerstones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others. However, the entanglement generation is necessarily harmed by measurement-induced dephasing processes in one of the two parity subspaces. In this work, we propose two different schemes of continuous feedback for a parity measurement. They enable us to avoid both the measurement-induced dephasing process and the experimentally unavoidable dephasing, e.g., due to fluctuations of the gate voltages controlling the initialization of the qubits. We show that we can generate maximally entangled steady states in both parity subspaces. Importantly, the measurement scheme we propose is valid for implementation of parity measurements with feedback loops in various solid-state environments.

Meyer zu Rheda, Clemens; Haack, Géraldine; Romito, Alessandro

2014-10-01

294

Beam-based Feedback for the Linac Coherent Light Source  

SciTech Connect

Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

2010-02-11

295

Paradigms for Quantum Feedback Control  

E-print Network

In this review paper, we survey the main concepts and some of the recent developments in quantum feedback control. For consistency and clarity, essential ideas and notations in the theory of open quantum systems and quantum stochastic calculus, as well as continuous measurement theory are developed. We give a general description of quantum feedback control, set up a coherent model and compare it to open-loop designs. Objectives which can be achieved by feedback, such as rapid state preparation and purification or entanglement generation are formulated and analyzed, based on the relevant literature. The connection between quantum feedback and quantum chaos is also described and unravelled which, apart from its theoretical curiosity, can shed more light on some of the intrinsic properties of this control paradigm.

L. D. Tóth

2012-10-01

296

Video Feedback  

ERIC Educational Resources Information Center

Author states that participation in TV becomes video feedback to teachers and parents. If radical approaches to TV become the norm, video will be the content of a new awareness that is being generated by this new visual culture. (Author)

Jonassen, David H.

1974-01-01

297

Global Warming, Clouds, and Albedo: Feedback Loops  

NSDL National Science Digital Library

This site, from the University Corporation for Atmospheric Research (UCAR), offers a detailed explanation, with diagrams, of both Earth's water cycle and the global heat flow, including the processes that produce the greenhouse effect. Greenhouse gases are listed, and their relative contributions to the greenhouse effect are enumerated. Special attention is paid to the role of clouds.

2009-05-27

298

Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems  

SciTech Connect

Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

Horan, D.; Nassiri, A.; Schwartz, C.

1997-08-01

299

Experiment on bias stability measurement of resonator fiber optic gyro with digital feedback scheme  

NASA Astrophysics Data System (ADS)

Experiment on bias stability measurement of resonator fiber optic gyro with a newly developed digital feedback scheme is performed and a sensitivity of 5.6×10-4 rad/s is demonstrated. Under the digital control scheme, the short term and long term laser central frequency drift are reduced by the output of a fast loop determined by proportional calculation to the order of several least significant bits (LSBs) and the output of a slow loop decided by an up/down counter, respectively. Resettling pulse noise due to imperfect 2? voltage of the hybrid digital serrodyne phase modulation waveform is also reduced by automatic proportional and integration (PI) control. Besides, polarization noise is suppressed by exciting single eigen state of polarization (ESOP) of the resonator with twice 90 degree polarization-axis rotated splicing.

Wang, Xijing; He, Zuyuan; Hotate, Kazuo

2009-10-01

300

A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.  

PubMed

The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 ?m CMOS technology. PMID:23893206

Çilingiro?lu, U?ur; ?pek, Sercan

2013-08-01

301

Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply  

NASA Technical Reports Server (NTRS)

A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.

Bearden, Douglas

2007-01-01

302

MAPK Cascades as Feedback Amplifiers  

E-print Network

Interconvertible enzyme cascades, exemplified by the mitogen activated protein kinase (MAPK) cascade, are a frequent mechanism in signal transduction pathways. There has been much speculation as to the role of these pathways, and how their structure is related to their function. A common conclusion is that the cascades serve to amplify biochemical signals so that a single bound ligand molecule might produce a multitude of second messengers. Some recent work has focused on a particular feature present in some MAPK pathways -- a negative feedback loop which spans the length of the cascade. This is a feature that is shared by a man-made engineering device, the feedback amplifier. We propose a novel interpretation: that by wrapping a feedback loop around an amplifier, these cascades may be acting as biochemical feedback amplifiers which imparts i) increased robustness with respect to internal perturbations; ii) a linear graded response over an extended operating range; iii) insulation from external perturbation, resulting in functional modularization. We also report on the growing list of experimental evidence which supports a graded response of MAPK with respect to Epidermal Growth Factor. This evidence supports our hypothesis that in these circumstances MAPK cascade, may be acting as a feedback amplifier.

Herbert M Sauro; Brian Ingalls

2007-10-26

303

Real-Time Induction Motor Speed Control with a Feedback Utilizing Power Line Communications and a Motor Feeder Cable in Data Transmission  

Microsoft Academic Search

In a motor speed control, a feedback loop is used to transfer the measured motor rotational speed information to the controller. The implementation of the feedback loop requires cabling between the motor and the frequency converter both for signalling and powering. However, the motor feeder cable could be used as a medium for data transmission. A feedback loop that utilizes

Antti Kosonen; Markku Jokinen; Jero Ahola; Markku Niemelä

2006-01-01

304

Linearizing Intra-Train Beam-Beam Deflection Feedback  

SciTech Connect

Beam-beam deflection feedback acting within the crossing time of a single bunch train may be needed to keep linear collider beams colliding at high luminosity. In a short-pulse machine such as the Next Linear Collider (NLC) this feedback must converge quickly to be useful. The non-linear nature of beam-beam deflection vs. beam-beam offset in these machines precludes obtaining both rapid convergence and a stable steady-state lock to beam offsets with a linear feedback algorithm. We show that a simply realizable programmable non-linear amplifier in the feedback loop can linearize the feedback loop, approximately compensating the beam-beam deflection non-linearity. Performance of a prototype non-linear amplifier is shown. Improvement of convergence and stability of the beam-beam feedback loop is simulated.

Smith, S.R.; /SLAC

2006-02-22

305

The voltage-sensor structure in a voltage-gated channel.  

PubMed

A recent electron paramagnetic resonance study of KvAP, a prokaryotic voltage-gated channel, in its lipid native environment has revealed the location of the transmembrane segments, the connecting loops and the relative position of the voltage-sensing charges. The results confirm that the previously reported crystal structure does not represent a native conformation and give us structural constraints that will help in determining the molecular structure of the voltage sensor. PMID:15817390

Bezanilla, Francisco

2005-04-01

306

Constant voltage electro-slag remelting control  

DOEpatents

A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

Schlienger, M.E.

1996-10-22

307

Constant voltage electro-slag remelting control  

DOEpatents

A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

Schlienger, Max E. (Albuquerque, NM)

1996-01-01

308

Low power, scalable multichannel high voltage controller  

DOEpatents

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2006-03-14

309

Low power, scalable multichannel high voltage controller  

DOEpatents

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2008-03-25

310

Single SQUID multiplexer for arrays of voltage-biased superconducting bolometers  

SciTech Connect

We describe a frequency domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. In order to avoid the accumulation of Johnson noise in the summing loop, a tuned bandpass filter is inserted in series with each sensor. For a 32-channel multiplexer for Voltage-biased Superconducting Bolometer (VSB) with a time constant {approx}1msec, we estimate that bias frequencies in the range from {approx}500kHz to {approx}600kHz are practical. The major limitation of our multiplexing scheme is in the slew rate of a readout SQUID. We discuss a ''carrier nulling'' technique which could be used to increase the number of sensors in a row or to multiplex faster bolometers by reducing the required slew rate for a readout SQUID.

Yoon, Jongsoo; Clarke, John; Gildemeister, J.M.; Lee, Adrian T.; Myers, M.J.; Richards, P.L.; Skidmore, J.T.; Spieler, H.G.

2001-08-20

311

Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform  

PubMed Central

Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

2013-01-01

312

Feedback linearization application for LLRF control system  

SciTech Connect

The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

1999-06-01

313

Tradeoffs in the design of multivarable feedback systems  

SciTech Connect

Some of the tradeoffs involved in the design of multivariable feedback systems are examined. The problem of obtaining good loop properties at both the plant input and output and the impact of nonminimum phase zeros is addressed.

Wall, Jr, J E; Doyle, J C; Harvey, C A

1981-01-01

314

Coherent feedback control in quantum transport  

E-print Network

We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.

Clive Emary; John Gough

2014-07-04

315

Adding force feedback to graphics systems: issues and solutions  

Microsoft Academic Search

Integrating force feedback with a complete real-time virtual environment system presents problems which are more difficult than those encountered in building simpler force-feedback systems. In particular, lengthy computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-qua lity forces are to be produced. We present some approaches to these problems

William R. Mark; Scott C. Randolph; Mark Finch; James M. Van Verth; Russell M. Taylor II

1996-01-01

316

Coress feedback  

PubMed Central

This issue highlights the importance of anatomical orientation, which can sometimes be difficult during bowel anastomosis and stoma formation. The need for good medical communication and an adequate handover, particularly at night and at weekends for patients with medical co-morbidities or following complex surgery, is emphasised in another case. We are grateful to the clinicians who have provided the material for these reports. The online reporting form is on our website, www.coress.org.uk, which also includes all previous feedback reports. Published contributions will be acknowledged by a ‘Certificate of Contribution’, which may be included in the contributor’s record of continuing professional development.

Smith, Frank CT

2012-01-01

317

Admittance Enhancement in Force Feedback of Dynamic Systems  

Microsoft Academic Search

A limitation of high-speed contact operations, including robotic assembly, is the magnitude of contact forces resulting from inertial effects. Directly attempting to reduce the apparent inertia of interacting systems through force feedback results in instability. It is shown here that one can introduce a mechanical filter to alter the open-loop system dynamics, making feedback much more effective. Experimental results are

Mark E. Dohring; Wyatt S. Newman

2002-01-01

318

Direct laser additive fabrication system with image feedback control  

DOEpatents

A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

2002-01-01

319

Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization  

NASA Astrophysics Data System (ADS)

Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical.

Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

2014-03-01

320

Feedback linearization for control of air breathing engines  

NASA Technical Reports Server (NTRS)

The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

Phillips, Stephen; Mattern, Duane

1991-01-01

321

Air Force research in human sensory feedback for telepresence  

NASA Technical Reports Server (NTRS)

Telepresence operations require high quality information transfer between the human master and the remotely located slave. Present Air Force research focuses on the human aspects of the information needed to complete the control/feedback loop. Work in three key areas of human sensory feedback for manipulation of objects are described. Specific projects in each key area are outlined, including research tools (hardware), planned research, and test results. Nonmanipulative feedback technologies are mentioned to complete the advanced teleoperation discussions.

Julian, Ronald G.

1993-01-01

322

Modeling and analysis of software development management as closed loop control  

Microsoft Academic Search

Managed software development organizations are de facto closed loop systems, in which management actions influence future behavior based on observations of previous behavior thus forming a closed feedback loop. It is well known from control theory that a closed loop system might exhibit dynamics very different from the dynamics of its open loop components. Therefore, it is the goal of

Thea Schluter; Thomas Birkholzer

2012-01-01

323

Motor feedback speed control by utilizing the motor feeder cable as a communication channel  

Microsoft Academic Search

A feedback loop is used in the motor speed control in order to transmit the measured motor rotational speed information to the controller. The implementation of the feedback loop requires cabling between the motor and the frequency converter both for signalling and powering. However, the motor power cables could be also used for data transmission. The possibility of using the

A. Kosonen; M. Jokinen; V. Sarkimaki; J. Ahola; M. Niemela

2006-01-01

324

GRADIENT-LIKE PROPERTY OF THE SYSTEMS WITH FEEDBACK UNCERTAINTIES UNDER INTEGRAL QUADRATIC CONSTRAINTS  

Microsoft Academic Search

The paper studies the gradient-like property of the systems with feedback uncertainties from an input output point of view. The system con- sists of a stable linear time invariant plant in its forward loop and dynamic uncertainties in the feedback loop, which can be described by an uncertain operator that satisfles integral quadratic constraints. By using the concepts of invertibility

ZHIYONG GENG

2006-01-01

325

DC-SQUID electronics based on adaptive positive feedback; Experiments  

SciTech Connect

This paper demonstrates that the dc-SQUID read-out electronics can be realized utilizing positive feedback without deteriorating the SQUID noise performance. The required gain rise is achieved by interconnecting the SQUID output and a flux modulation coil via a cooled FET acting as a voltage-controlled resistor, different SQUIDs with different types of FETs have been studied experimentally. Possibilities to build an adaptive control of the feedback gain produced by the positive feedback are briefly discussed.

Seppa, H. (Metrology Research Inst., VTT, Technical Research Centre of Finland, Otakaari 7B, SF-02150 Espoo (FI)); Ahonen, A.; Knuutila, J.; Simola, J.; Vilkman, V. (Low Temperature Lab., Helsinki Univ. of Technology, SF-02150 Espoo (FI))

1991-03-01

326

A battery-based, low-noise voltage source  

NASA Astrophysics Data System (ADS)

A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/?Hz is achieved.

Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

2010-06-01

327

A battery-based, low-noise voltage source.  

PubMed

A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved. PMID:20590260

Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

2010-06-01

328

A multiple-pass ring oscillator based dual-loop phase-locked loop  

NASA Astrophysics Data System (ADS)

A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-?m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

Danfeng, Chen; Junyan, Ren; Jingjing, Deng; Wei, Li; Ning, Li

2009-10-01

329

ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS  

PubMed Central

Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

Gong, Jian; Kim, Chang-Jin “CJ”

2009-01-01

330

Atom-laser coherence via multiloop feedback control  

NASA Astrophysics Data System (ADS)

Coherence control is the key to success in the applications of atom-laser beams. A multiloop measurement feedback control scheme is proposed to improve atom-laser coherence. The first loop aims to cancel the decohering effects of the nonlinear atom-atom interactions via direct measurement feedback. However, there are nonlinear interactions with the optical probe field used in the measurement scheme which may also contribute to a degradation in atom-laser performance. Accordingly, a second feedback loop is used to reduce these effects based on linear quadratic Gaussian control. The multiloop design achieves improved atom-laser coherence.

Yanagisawa, M.; James, M. R.

2009-02-01

331

Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback  

NASA Technical Reports Server (NTRS)

A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

Callier, F. M.; Desoer, C. A.

1973-01-01

332

Flexible Tank Circuit Design and Digital Feedback Control Implementation for HIT-SI  

NASA Astrophysics Data System (ADS)

Current drive in the HIT-SI spheromak has been primarily due to relaxation of injected helicity. The ability to couple the injected helicity's perturbation to the plasma during time scales comparable to the natural behavior of the plasma has been unattainable with previous hardware. Only recently, through novel tank circuit and digital feedback control upgrades, has this new regime of operation, including higher injector flux operation, and multiple available driving frequencies been realized. A tank has been designed and added to the flux circuit so that in combination with digital control, the machine will operate near resonance while avoiding large phase shifts during plasma loading. The Analog Devices Blackfin micro-controller-Linux-based digital feedback system has also been improved. Presently, multiple ADC input channels are now available for feedback algorithms, and latency has been improved down to 3 microseconds. These improvements allow for cycle-to-cycle phase control between injector flux and loop voltage circuits. Details of the changes to HIT-SI circuits, control systems, and preliminary results will be presented.

Bourdages, A. B.; Jarboe, T. R.; Nelson, B. A.

2010-11-01

333

Is measurement-based feedback still better for quantum control systems?  

E-print Network

Is measurement-based feedback still better for quantum control systems? Bo Qi , Lei Guo Key Laboratory of Systems and Control, ISS, Academy of Mathematics and Systems Science, Chinese Academy feedback control of quantum systems: Is measurement-based feedback control still better than open- loop

Guo, Lei

334

Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same  

DOEpatents

A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit.

O'Connor, Paul (Bellport, NY)

1998-08-11

335

Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same  

DOEpatents

A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit. 11 figs.

O`Connor, P.

1998-08-11

336

Semiclassical spin-spin dynamics and feedback control in transport through a quantum dot  

NASA Astrophysics Data System (ADS)

We present a theory of magnetotransport through an electronic orbital, where the electron spin interacts with a (sufficiently) large external spin via an exchange interaction. Using a semiclassical approximation, we derive a set of equations of motions for the electron density matrix and the mean value of the external spin that turns out to be highly nonlinear. The dissipation via the electronic leads is implemented in terms of a quantum master equation that is combined with the nonlinear terms of the spin-spin interaction. With an anisotropic exchange coupling a variety of dynamics is generated, such as self-sustained oscillations with parametric resonances or even chaotic behavior. Within our theory we can integrate a Maxwell-demon-like closed-loop feedback scheme that is capable of transporting particles against an applied bias voltage and that can be used to implement a spin filter to generate spin-dependent oscillating currents of opposite directions.

Mosshammer, Klemens; Brandes, Tobias

2014-10-01

337

Programmable high voltage power supply with regulation confined to the high voltage section  

NASA Technical Reports Server (NTRS)

A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

Castell, Karen D. (inventor); Ruitberg, Arthur P. (inventor)

1994-01-01

338

Numerical investigation of the nonlinear dynamics of a hybrid acousto-optic Bragg cell with a variable feedback gain  

NASA Astrophysics Data System (ADS)

Since around 1979, the operation of an acousto-optic Bragg cell under positive first-order feedback via amplification and delay in the loop has been studied extensively by several groups [1-3]. In recent work, the analysis of the nonlinear dynamics (NLD) of the system was extended to include bistable maps and Lyapunov exponents, and application of the chaos for signal encryption and decryption for uniform plane waves. The present work originated with the problem of a variable photodetector aperture opening relative to the first-order light. This potentially complex problem is simplified by assuming instead a variable feedback gain ( ? ~ (t)), which leads to considerably different NLD. This paper examines initially the NLD versus the (DC) bias voltage for different variable- ? ~ conditions, including slow and fast rates of change of the gain with time in relation to the feedback delay. It is found that the response depends critically on the rate of rise of the feedback gain, and also that the resulting chaotic regimes are generally significantly different from those for fixed values of ? ~ . We have generated constant feedback gain and the variable feedback gain (t) chaos characteristics of the hybrid A-O network. Chaos as an equivalent carrier has been used to encrypt messages for both fixed and variable ? ~ . The transmitted signal is detected from the encrypted carrier using a heterodyne method, using a slave Bragg cell with matched keys to generate local chaos followed by a low pass filter and a phase inverter. Results between variable- and fixed-gain systems are compared in terms of advantages and disadvantages.

Chatterjee, Monish R.; Zhou, Hao

2014-09-01

339

Parametric Timing Analysis and Its Application to Dynamic Voltage Scaling  

E-print Network

25 Parametric Timing Analysis and Its Application to Dynamic Voltage Scaling SIBIN MOHAN and FRANK (WCETs) to determine if tasks meet deadlines. Static timing analysis derives bounds on WCETs but requires statically known loop bounds. This work removes the constraint on known loop bounds through parametric

Whalley, David

340

Continuous flow total artificial heart: modeling and feedback control in a mock circulatory system.  

PubMed

We developed a mock circulatory loop and used mathematical modeling to test the in vitro performance of a physiologic flow control system for a total artificial heart (TAH). The TAH was constructed from two continuous flow pumps. The objective of the control system was to maintain loop flow constant in response to changes in outflow resistance of either pump. Baseline outflow resistances of the right (pulmonary vascular resistance) and the left (systemic vascular resistance) pumps were set at 2 and 18 Wood units, respectively. The corresponding circuit flow was 4 L/min. The control system consisted of two digital integral controllers, each regulating the voltage, hence, the rotational speed of one of the pumps. The in vitro performance of the flow control system was validated by increasing systemic and pulmonary vascular resistances in the mock loop by 4 and 8 Wood units (simulating systemic and pulmonary hypertension conditions), respectively. For these simulated hypertensive states, the flow controllers regulated circuit flow back to 4 L/min within seconds by automatically adjusting the rotational speed of either or both pumps. We conclude that this multivariable feedback mechanism may constitute an adequate supplement to the inherent pressure sensitivity of rotary blood pumps for the automatic flow control and left-right flow balance of a dual continuous flow pump TAH system. PMID:18496274

Khalil, Hassan A; Kerr, Daniel T; Franchek, Matthew A; Metcalfe, Ralph W; Benkowski, Robert J; Cohn, William E; Tuzun, Egemen; Radovancevic, Branislav; Frazier, O H; Kadipasaoglu, Kamuran A

2008-01-01

341

Student Engagement with Feedback  

ERIC Educational Resources Information Center

This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

2011-01-01

342

Preventing Feedback Fizzle  

ERIC Educational Resources Information Center

Feedback is certainly about saying or writing helpful, learning-focused comments. But that is only part of it. What happens beforehand? What happens afterward? Feedback that is helpful and learning-focused fits into a context. Before a teacher gives feedback, students need to know the learning target so they have a purpose for using the feedback

Brookhart, Susan M.

2012-01-01

343

Loop-to-loop coupling.  

SciTech Connect

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

2012-05-01

344

Phase-Locked Loops  

NSDL National Science Digital Library

Phase-locked loops (PLL) are unique feedback control circuits that offer many useful features and benefits in electronic applications. PLLs are available either in integrated circuit (IC) form for general applications or built into larger system IC chips. Today, PLLs are found in virtually all types of electronic equipment from PCs to consumer products like TV sets and cell phones. This module provides an introduction to the PLL and its applications. It begins with an overview of the main components of a PLL and how these components work together. It then describes PLL specifications and a description of the most widely used applications including frequency synthesizers, clock multipliers, clock and data recovery circuits, FM demodulators, and filters.

2012-09-06

345

Magnetic-Flux-Compensated Voltage Divider  

NASA Technical Reports Server (NTRS)

A magnetic-flux-compensated voltage-divider circuit has been proposed for use in measuring the true potential across a component that is exposed to large, rapidly varying electric currents like those produced by lightning strikes. An example of such a component is a lightning arrester, which is typically exposed to currents of the order of tens of kiloamperes, having rise times of the order of hundreds of nanoseconds. Traditional voltage-divider circuits are not designed for magnetic-flux-compensation: They contain uncompensated loops having areas large enough that the transient magnetic fluxes associated with large transient currents induce spurious voltages large enough to distort voltage-divider outputs significantly. A drawing of the proposed circuit was not available at the time of receipt of information for this article. What is known from a summary textual description is that the proposed circuit would contain a total of four voltage dividers: There would be two mixed dividers in parallel with each other and with the component of interest (e.g., a lightning arrester), plus two mixed dividers in parallel with each other and in series with the component of interest in the same plane. The electrical and geometric configuration would provide compensation for induced voltages, including those attributable to asymmetry in the volumetric density of the lightning or other transient current, canceling out the spurious voltages and measuring the true voltage across the component.

Mata, Carlos T.

2005-01-01

346

Dynamic Rolling for a Modular Loop Robot  

Microsoft Academic Search

Reconfigurable modular robots have the ability to use differ ent gaits and configurations to perform various tasks. A roll ing gait is the fastest currently implemented gait available for tra versal over level ground and shows dramatic improvements in efficiency. In this work, we analyze and implement a sensor-based feedback controller to achieve dynamic rolling for a loop robot. The

Jimmy Sastra; Sachin Chitta; Mark Yim

2006-01-01

347

Automatic voltage regulator using an AC voltage-voltage converter  

Microsoft Academic Search

Voltage sags and extended undervoltages are one of the main concerns of industry today. These voltage sags could cause high negative impact on productivity, which is certainly an undesirable aspect in industrial and commercial applications. Current tap-changing transformers used in distribution systems have proven to be inadequate in solving these problems related to line regulation. A solution to these problems

Steven M. Hietpas; Mark Naden

2000-01-01

348

Automatic voltage regulator using an AC voltage-voltage converter  

Microsoft Academic Search

Voltage sags and extended undervoltages are one of the main concerns of industries today. These voltage sags could cause high negative impact on productivity, which is certainly an undesirable aspect in industrial and commercial applications. Current tap-changing transformers used in distribution systems have proven to be inadequate in solving these problems related to line regulation. A solution to these problems

Steven M. Hietpas; Mark Naden

1999-01-01

349

Precision voltage regulator  

NASA Technical Reports Server (NTRS)

Balanced positive and negative voltage output circuit, in which error voltage for control is developed from difference in absolute value of positive and negative voltages referenced to a common point, regulates voltage for use with inertial reference unit. Fast-acting, temperature-compensated, high-gain operational amplifier circuits maintain common point.

Hand, P. J.; Crawford, R. A.

1972-01-01

350

High-Accuracy Brain-Machine Interfaces Using Feedback Information  

PubMed Central

Sensory feedback is very important for movement control. However, feedback information has not been directly used to update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual feedback to users. Here, we propose a BMI framework combining image processing as the feedback information with a novel prediction method. The feedback-prediction algorithm (FPA) generates feedback information from the positions of objects and modifies movement prediction according to the information. The FPA predicts a target among objects based on the movement direction predicted from the neural activity. After the target selection, the FPA modifies the predicted direction toward the target and modulates the magnitude of the predicted vector to easily reach the target. The FPA repeats the modification in every prediction time points. To evaluate the improvements of prediction accuracy provided by the feedback, we compared the prediction performances with feedback (FPA) and without feedback. We demonstrated that accuracy of movement prediction can be considerably improved by the FPA combining feedback information. The accuracy of the movement prediction was significantly improved for all subjects (P<0.001) and 32.1% of the mean error was reduced. The BMI performance will be improved by combining feedback information and it will promote the development of a practical BMI system. PMID:25076487

Yeom, Hong Gi; Kim, June Sic; Chung, Chun Kee

2014-01-01

351

Closed-loop pulsed helium ionization detector  

DOEpatents

A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

1987-01-01

352

Voltage Regulation of Connexin Channel Conductance  

PubMed Central

Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches. PMID:25510741

Oh, Seunghoon

2015-01-01

353

Distinct noise-controlling roles of multiple negative feedback mechanisms in a prokaryotic operon system.  

PubMed

Molecular fluctuations are known to affect dynamics of cellular systems in important ways. Studies aimed at understanding how molecular systems of certain regulatory architectures control noise therefore become essential. The interplay between feedback regulation and noise has been previously explored for cellular networks governed by a single negative feedback loop. However, similar issues within networks consisting of more complex regulatory structures remain elusive. The authors investigate how negative feedback loops manage noise within a biochemical cascade concurrently governed by multiple negative feedback loops, using the prokaryotic tryptophan (trp) operon system in Escherechia coli as the model system. To the authors knowledge, this is the first study of noise in the trp operon system. They show that the loops in the trp operon system possess distinct, even opposing, noise-controlling effects despite their seemingly analogous feedback structures. The enzyme inhibition loop, although controlling the last reaction of the cascade, was found to suppress noise not only for the tryptophan output but also for other upstream components. In contrast, the Repression (Rep) loop enhances noise for all systems components. Attenuation (Att) poses intermediate effects by attenuating noise for the upstream components but promoting noise for components downstream of its target. Regarding noise at the output tryptophan, Rep and Att can be categorised as noise-enhancing loops whereas Enzyme Inhibition as a noise-reducing loop. These findings suggest novel implications in how cellular systems with multiple feedback mechanisms control noise. [Includes supplementary material]. PMID:21405203

Nguyen, L K; Kulasiri, D

2011-03-01

354

Probabilistic models for feedback systems.  

SciTech Connect

In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

Grace, Matthew D.; Boggs, Paul T.

2011-02-01

355

The response clamp: functional characterization of neural systems using closed-loop control  

PubMed Central

The voltage clamp method, pioneered by Hodgkin, Huxley, and Katz, laid the foundations to neurophysiological research. Its core rationale is the use of closed-loop control as a tool for system characterization. A recently introduced method, the response clamp, extends the voltage clamp rationale to the functional, phenomenological level. The method consists of on-line estimation of a response variable of interest (e.g., the probability of response or its latency) and a simple feedback control mechanism designed to tightly converge this variable toward a desired trajectory. In the present contribution I offer a perspective on this novel method and its applications in the broader context of system identification and characterization. First, I demonstrate how internal state variables are exposed using the method, and how the use of several controllers may allow for a detailed, multi-variable characterization of the system. Second, I discuss three different categories of applications of the method: (1) exploration of intrinsically generated dynamics, (2) exploration of extrinsically generated dynamics, and (3) generation of input–output trajectories. The relation of these categories to similar uses in the voltage clamp and other techniques is also discussed. Finally, I discuss the method's limitations, as well as its possible synthesis with existing complementary approaches. PMID:23382712

Wallach, Avner

2013-01-01

356

Particle deformation induced by AFM tapping under different setpoint voltages  

NASA Astrophysics Data System (ADS)

The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

2014-09-01

357

STAT3 protein up-regulates G?-interacting vesicle-associated protein (GIV)/Girdin expression, and GIV enhances STAT3 activation in a positive feedback loop during wound healing and tumor invasion/metastasis.  

PubMed

G?-interacting vesicle-associated protein (GIV) is a guanine nucleotide exchange factor that modulates key signaling pathways during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, vascular repair, and cancer invasion/metastasis. We recently demonstrated that GIV is a metastasis-related protein, which serves both as a therapeutic target and as a biomarker for prognostication in cancer patients. Here we report the discovery that GIV is a direct target of the transcription factor signal transducer and activator of transcription-3 (STAT3), which is commonly known as a central regulator of tumor metastasis. We identified a single STAT3-binding site on the GIV promoter that was necessary and sufficient for transcriptional activation of GIV during wound healing and cancer invasion. Immunohistochemical analysis of breast carcinomas showed significant correlation between STAT3 activation and elevated GIV expression. Furthermore, we provide evidence that GIV positively autoregulates its own transcription by enhancing STAT3 activation via its guanine nucleotide exchange factor activity. Our findings provide mechanistic insights into how STAT3 activation is directly integrated with the receptor tyrosine kinase-GIV-G protein signaling axis. The forward feedback regulation we describe here between GIV and STAT3 may have profound therapeutic implications for cancer and epithelial regeneration/repair and could help invent novel approaches in treating and prognosticating cancer. PMID:23066027

Dunkel, Ying; Ong, Andrew; Notani, Dimple; Mittal, Yash; Lam, Michael; Mi, Xiaoyi; Ghosh, Pradipta

2012-12-01

358

STAT3 Protein Up-regulates G?-interacting Vesicle-associated Protein (GIV)/Girdin Expression, and GIV Enhances STAT3 Activation in a Positive Feedback Loop during Wound Healing and Tumor Invasion/Metastasis*  

PubMed Central

G?-interacting vesicle-associated protein (GIV) is a guanine nucleotide exchange factor that modulates key signaling pathways during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, vascular repair, and cancer invasion/metastasis. We recently demonstrated that GIV is a metastasis-related protein, which serves both as a therapeutic target and as a biomarker for prognostication in cancer patients. Here we report the discovery that GIV is a direct target of the transcription factor signal transducer and activator of transcription-3 (STAT3), which is commonly known as a central regulator of tumor metastasis. We identified a single STAT3-binding site on the GIV promoter that was necessary and sufficient for transcriptional activation of GIV during wound healing and cancer invasion. Immunohistochemical analysis of breast carcinomas showed significant correlation between STAT3 activation and elevated GIV expression. Furthermore, we provide evidence that GIV positively autoregulates its own transcription by enhancing STAT3 activation via its guanine nucleotide exchange factor activity. Our findings provide mechanistic insights into how STAT3 activation is directly integrated with the receptor tyrosine kinase-GIV-G protein signaling axis. The forward feedback regulation we describe here between GIV and STAT3 may have profound therapeutic implications for cancer and epithelial regeneration/repair and could help invent novel approaches in treating and prognosticating cancer. PMID:23066027

Dunkel, Ying; Ong, Andrew; Notani, Dimple; Mittal, Yash; Lam, Michael; Mi, Xiaoyi; Ghosh, Pradipta

2012-01-01

359

Improved feedback shift register  

NASA Technical Reports Server (NTRS)

Design of feedback shift register with three tap feedback decoding scheme is described. Application for obtaining sequence synchronization patterns is examined. Operation of the circuitry is described and drawings of the systems are included.

Perlman, M.

1972-01-01

360

The Mythology of Feedback  

ERIC Educational Resources Information Center

Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

Adcroft, Andy

2011-01-01

361

The mythology of feedback  

Microsoft Academic Search

Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues that these two groups will have their own mythology

Andy Adcroft

2011-01-01

362

Developing Sustainable Feedback Practices  

ERIC Educational Resources Information Center

Feedback is central to the development of student learning, but within the constraints of modularized learning in higher education it is increasingly difficult to handle effectively. This article makes a case for sustainable feedback as a contribution to the reconceptualization of feedback processes. The data derive from the Student Assessment and…

Carless, David; Salter, Diane; Yang, Min; Lam, Joy

2011-01-01

363

Operation of the PEP transverse beam feedback  

SciTech Connect

The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results.

Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

1981-02-01

364

Coherent feedback control in quantum transport  

NASA Astrophysics Data System (ADS)

We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As a concrete example we consider the use of feedback to optimize the conductance of a chaotic quantum dot and investigate the effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.

Emary, Clive; Gough, John

2014-11-01

365

Analysis of feedback control of piezoelectric transducers.  

PubMed

Velocity control feedback may be required for implementation in large underwater acoustic arrays to mitigate the effects of strong acoustic field coupling when specific beam pattern performance over a variety of operating conditions is desired. This paper presents an analysis of velocity control with piezoelectric loads using motional current monitoring [as an extension to Aronov, J. Acoust. Soc. Am. 119(6), 3822-3830 (2006) and Bachand, Brown, and Aronov, J. Acoust. Soc. Am. 124(4), 2568 (2008)], with particular interest in automated wideband acoustic beamforming. The analysis is applicable to other forms of motional feedback control such as accelerometer or displacement signal feedback. Topics presented include the control loop's effectiveness, stability criteria, and the array equations governing the acoustical outputs. The conditions that can cause negative radiation impedance are also presented, concluding that in any velocity control system with acoustic interactions, the likelihood of a transmit channel absorbing more energy than it is transmitting increases with the feedback loop gain. This fundamental limitation must be considered before developing any practical acoustic velocity control system with strong inter-element acoustic field coupling. PMID:24907806

Randall, Robert C; Brown, David A

2014-06-01

366

Limited feedback space-time coding in correlated MIMO channels  

Microsoft Academic Search

Space-time codes have been designed over the last decade to enhance the reliability of open-loop fading wireless systems. However, recent technological advances have enabled the possibility of low-rate feedback from the receiver to the transmitter. The focus of this work is on the implications of this feedback in a point-to-point MIMO system with a coherent receiver and a general model

Che Lin; Vasanthan Raghavan; Venugopal V. Veeravalli

2008-01-01

367

An improved output feedback control of flexible large space structures  

NASA Technical Reports Server (NTRS)

A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

Lin, Y. H.; Lin, J. G.

1980-01-01

368

Remote Robot Control With High Force-Feedback Gain  

NASA Technical Reports Server (NTRS)

Improved scheme for force-reflecting hand control of remote robotic manipulator provides unprecedently high force-reflection gain, even when dissimilar master and slave arms used. Three feedback loops contained in remote robot control system exerting position-error-based force feedback and compliance control. Outputs of force and torque sensors on robot not used directly for force reflection, but for compliance control, while errors in position used to generate reflected forces.

Kim, Won S.

1993-01-01

369

Analysis and Comparison of Phase Locked Loop Techniques for Grid Utility Applications  

Microsoft Academic Search

This paper presents an analysis and comparison of phase locked loop techniques used in grid utility applications to find the voltage vector angle generated from the supply voltages. The phase locked loop (PLL) has a wide range of applications as distributed generation (DG), flexible AC transmission systems (FACTS), static VAR compensators, cycloconverters, active power filters (APF's) and others systems connected

L. R. Limongi; R. Bojoi; C. Pica; F. Profumo; A. Tenconi

2007-01-01

370

Generating Electrical Voltage  

NSDL National Science Digital Library

This interactive resource adapted from the Wisconsin Online Resource Center illustrates how electrical voltage is generated through a process called magnetic induction and describes some of the factors that affect the magnitude of the voltage produced.

2009-12-08

371

Automatic voltage imbalance detector  

DOEpatents

A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

Bobbett, Ronald E. (Los Alamos, NM); McCormick, J. Byron (Los Alamos, NM); Kerwin, William J. (Tucson, AZ)

1984-01-01

372

Mixed voltage VLSI design  

NASA Technical Reports Server (NTRS)

A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

Panwar, Ramesh; Rennels, David; Alkalaj, Leon

1993-01-01

373

Voltage monitoring system  

NASA Technical Reports Server (NTRS)

A description is given of a system for monitoring the voltage at a remote location and determining when the voltage exceeds upper and lower levels. The system includes transmission lines for transmitting the voltage back to a central station and applying such to an amplifier having a pair of outputs. One of the outputs of the amplifier is applied to an oscillograph. The other output is fed through an isolation transformer, a full wave rectifier, to a pair of unijunctional transistor circuits for producing pulses when the voltage exceeds or drops below a predetermined level. These pulses, in turn, energize a relay which turns on the oscillograph for recording the voltages being monitored.

Canicatti, C. L. (inventor)

1975-01-01

374

High Voltage SPT Performance  

NASA Technical Reports Server (NTRS)

A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

Manzella, David; Jacobson, David; Jankovsky, Robert

2001-01-01

375

Self-consistent input-output formulation of quantum feedback  

SciTech Connect

A simple method of analyzing quantum feedback circuits is presented. The classical analysis of feedback circuits can be generalized to apply to quantum systems by mapping the field operators of various outputs to other inputs via the standard input-output formalism. Unfortunately, this has led to unphysical results such as the violation of the Heisenberg uncertainty principle for in-loop fields. This paper shows that this general approach can be redeemed by ensuring a self-consistently Hermitian Hamiltonian. The calculations are based on a noncommutative calculus of operator derivatives. A full description of several examples of quantum linear and nonlinear feedback for optical systems is presented.

Yanagisawa, M. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Hope, J. J. [Department of Quantum Science, The Australian National University, Canberra, ACT 0200 (Australia)

2010-12-15

376

The role of proprioceptive feedback in Parkinsonian resting tremor.  

PubMed

In this paper we use a closed-loop force feedback system to investigate the effect of altering proprioceptive feedback on EEG and resting tremor in Parkinson's Disease. A velocity dependent counterforce simulating viscous friction was provided by haptic robots with simultaneous recording of kinematics, EMG and EEG while a patient was on and off dopaminergic medication' We were able to reduce the amplitude of the tremor. We also showed that force feedback shifts the center of EEG-EMG coherence posteriorly toward the somatosensory regions, which may have ramifications for noninvasive therapies. PMID:24110850

Govil, Nikhil; Akinin, Abraham; Ward, Samuel; Snider, Joseph; Plank, Markus; Cauwenberghs, Gert; Poizner, Howard

2013-01-01

377

Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)  

NASA Technical Reports Server (NTRS)

A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given.

Burdea, Grigore C.; Speeter, Thomas H.

1989-01-01

378

Models and Feedback Stabilization of Open Quantum Systems  

E-print Network

At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open quantum system is stabilized by a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a quantum controller with decoherence (reservoir engineering). We begin to explain these models and methods for the photon box experiments realized in the group of Serge Haroche (Nobel Prize 2012). We present then these models and methods for general open quantum systems.

Pierre Rouchon

2014-07-26

379

New interferometric fiber-optic gyroscope with amplified optical feedback.  

PubMed

A novel interferometric fiber-optic gyroscope with amplified optical feedback by an Er-doped fiber amplifier (EDFA) is proposed and theoretically investigated (the proposed gyroscope is named the feedback EDFA-FOG, FE-FOG in what follows). The FE-FOG functions like a resonant fiber-optic gyro (R-FOG) because of its multiple utilization of the Sagnac loop; however, it is completely different because a low-coherence light source is used. In addition, the gyro output signal is pulsed because the modulation frequency of the phase modulator placed in the Sagnac loop is selected to match the total round-trip time delay of the light, which includes the Sagnac-loop delay plus that of the feedback loop of the fiber amplifier. The sharpness of the output pulse can be adjusted by both the gain of an EDFA and the modulation depth of the phase modulator. When rotation occurs the peak position of the output pulse is shifted as a result of the Sagnac effect. The resolution of the rotation measurement depends on the sharpness of the output pulse. The techniques of both the open-loop and closed-loop methods are described in detail, which shows the great advantage of the proposed gyroscope over the to the conventional interferometric fiber-optical gyroscope (I-FOG). PMID:21069022

Shi, C X; Yuhara, T; Iizuka, H; Kajioka, H

1996-01-20

380

Real-time Information, Uncertainty and Quantum Feedback Control  

E-print Network

Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.

Bo Qi; Daoyi Dong; Chunlin Chen; Lijun Liu; Zairong Xi

2014-09-10

381

Manipulator motion control in operational space using joint velocity inner loops  

Microsoft Academic Search

This paper addresses the operational space motion control—trajectory tracking—of robot manipulators endowed with joint velocity feedback inner loops. A general structure for model-based joint velocity controllers is proposed for the inner loop. The required joint velocity reference is provided by an outer loop inspired from the robot kinematic control approach. It is shown that above two-loops control schemes lead to

Rafael Kelly; Javier Moreno

2005-01-01

382

Improved transient and steady state voltage regulation for single and three phase uninterruptible power supplies  

Microsoft Academic Search

Most of the many reported control algorithms for uninterruptible power supplies use either filter inductor or filter capacitor currents as feedback variables to regulate the output voltage. This paper explores the fundamental performance issues associated with the use of these quantities as feedback variables, with a view to determining their contribution to the transient system response in any particular situation.

P. C. Loh; M. J. Newman; D. N. Zmood; D. G. Holmes

2001-01-01

383

A comparative analysis of multiloop voltage regulation strategies for single and three-phase UPS systems  

Microsoft Academic Search

Most of the many reported control algorithms for uninterruptible power supplies (UPSs) use either filter inductor or filter capacitor currents as feedback variables to regulate the output voltage. This paper explores the fundamental performance issues associated with the use of these quantities as feedback variables, with a view to determining their contribution to the transient system response and output harmonic

Poh Chiang Loh; Michael John Newman; Daniel Nahum Zmood; Donald Grahame Holmes

2003-01-01

384

Water Stream "Loop-the-Loop"  

ERIC Educational Resources Information Center

Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

Jefimenko, Oleg

1974-01-01

385

Damping of coherent betatron oscillations of a charged particle beam in synchrotrons with a feedback system  

NASA Astrophysics Data System (ADS)

Decisions of a delay differential equation which describes the dynamics of a charged particle beam in the smoothed approach in synchrotrons with a feedback system are analyzed. Features of the decisions for frequency shifts and decrements of coherent betatron oscillation damping caused by a signal delay in the feedback loop are revealed.

Zhabitsky, V. M.; Chizhova, O. N.

2014-09-01

386

Stabilization of a flexible body (hoop-column) antenna by feedback control law  

NASA Technical Reports Server (NTRS)

Feedback control laws are presented for stabilization models of a hoop/column antenna. A brief review of linear and nonlinear feedback control laws is included. A method that is computable on a microprocessor and assures closed loop stability is explained and compared to a linear control law model.

Choudhury, A.

1984-01-01

387

Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna  

E-print Network

Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna William a positive feedback loop in which clearing of tropical savannas results in warmer and drier climate of tropical savannas increases temperatures and wind speeds and decreases precipitation and relative humidity

Jackson, Robert B.

388

A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem  

ERIC Educational Resources Information Center

Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

2007-01-01

389

Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback  

E-print Network

1 Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic in the haptic loop. Index Terms--Haptic interfaces, Telerobotics, Surgery, Telemedicine, Biomedical engineering

Siena, Università di

390

Observer-based strict positive real (SPR) switching output feedback control  

Microsoft Academic Search

This paper considers switching output feedback control of linear systems and variable-structure systems. Theory for stability analysis and design for a class of observer-based feedback control systems is presented. It is shown how a circle-criterion approach can be used to design an observer-based state feedback control which yields a closed-loop system with specified robustness characteristics. The approach is relevant for

Rolf Johansson; Anders Robertsson; Anton Shiriaev

2004-01-01

391

Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems.  

PubMed

In this paper, an adaptive fuzzy decentralized output feedback control design is presented for a class of interconnected nonlinear pure-feedback systems. The considered nonlinear systems contain unknown nonlinear uncertainties and the states are not necessary to be measured directly. Fuzzy logic systems are employed to approximate the unknown nonlinear functions, and then a fuzzy state observer is designed and the estimations of the immeasurable state variables are obtained. Based on the adaptive backstepping dynamic surface control design technique, an adaptive fuzzy decentralized output feedback control scheme is developed. It is proved that all the variables of the resulting closed-loop system are semi-globally uniformly ultimately bounded, and also that the observer and tracking errors are guaranteed to converge to a small neighborhood of the origin. Some simulation results and comparisons with the existing results are provided to illustrate the effectiveness and merits of the proposed approach. PMID:25051573

Li, Yongming; Tong, Shaocheng; Li, Tieshan

2015-01-01

392

Digital Feedback Control Of Servomotor Via Fiber Optics  

NASA Technical Reports Server (NTRS)

Optoelectronic system effects closed-loop control of shaft angles of servomotors. Includes full-duplex fiber-optic link carrying feedforward and feedback signals, between digital motor-control circuits and modules containing motor-power-switching circuits. Fiber optics provide immunity to noise and rapid transmission of data. Features particularly advantageous in robots.

Dawson, Reginald; Rodriguez, Dagoberto

1992-01-01

393

Neural network controlled voltage disturbance detector and output voltage regulator for Dynamic Voltage Restorer  

Microsoft Academic Search

This paper describes the high power DVR (Dynamic Voltage Restorer) with the neural network controlled voltage disturbance detector and output voltage regulator. Two essential parts of DVR control are how to detect the voltage disturbance such as voltage sag and how to compensate it as fast as possible respectively. The new voltage disturbance detector was implemented by using the delta

Y. H. Chung; H. J. Kim; G. H. Kwon; T. B. Park; S. H. Kim; K. S. Kim; J. W. Choe

2007-01-01

394

Progress towards a double flux-locked-loop scheme for SQuID readout of TES detector arrays  

NASA Astrophysics Data System (ADS)

Frequency Division Multiplexing technique for reading TES detectors with SQuID devices, requires high loop-gain up to MHz frequency range in the SQuID feedback loop. Such a requirement is difficult to achieve when the feedback loop has a physical length that makes the propagation times of signals not negligible, as in the case in which the readout electronics is placed at room temperature. A novel SQuID readout scheme, called Double Loop-Flux Locked loop (DLFLL), has been proposed earlier. According to this scheme it is possible to make use of a simplified cryogenic electronics, AC coupled, featuring low power dissipation, in order to obtain a cryogenic feedback loop that results in reduced propagation times of signals. The DC and low frequency signals are managed by a standard FLL electronics working at room temperature. Here we present the progress of the integrated Double Loop system.

Torrioli, Guido; Lombardo, Simona; Macculi, Claudio; Piro, Luigi; Colasanti, Luca

2014-07-01

395

Ribosome flow model with positive feedback  

PubMed Central

Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3? end can diffuse with increased probability to the 5? end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

Margaliot, Michael; Tuller, Tamir

2013-01-01

396

Disturbance Observer for Speed-Controlled Process with Non-Deterministic Time Delay of Feedback Information  

Microsoft Academic Search

A motor power feeder cable can be used for power supply and to transmit the speed information of the motor to the controller by applying a power line communication method. The method produces latency to the feedback loop and hence, decreases the performance of the system. A disturbance observer is implemented in a control loop to increase the system stiffness

M. Jokinen; A. Kosonen; M. Niemela; J. Ahola; J. Pyrhonen

2007-01-01

397

Engineering applications of a dynamical state feedback chaotification method  

NASA Astrophysics Data System (ADS)

This paper presents two engineering applications of a chaotification method which can be applied to any inputstate linearizable (nonlinear) system including linear controllable ones as special cases. In the used chaotification method, a reference chaotic and linear system can be combined into a special form by a dynamical state feedback increasing the order of the open loop system to have the same chaotic dynamics with the reference chaotic system. Promising dc motor applications of the method are implemented by the proposed dynamical state feedback which is based on matching the closed loop dynamics to the well known Chua and also Lorenz chaotic systems. The first application, which is the chaotified dc motor used for mixing a corn syrup added acid-base mixture, is implemented via a personal computer and a microcontroller based circuit. As a second application, a chaotified dc motor with a taco-generator used in the feedback is realized by using fully analog circuit elements.

?ahin, Sava?; Güzeli?, Cüneyt

2012-09-01

398

Automated Feedback for \\  

Microsoft Academic Search

Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student

Nghi Truong; Paul Roe; Peter Bancroft

2005-01-01

399

Inverse spin Hall effect in a closed loop circuit  

SciTech Connect

We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l'Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

2014-06-16

400

Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System  

NASA Technical Reports Server (NTRS)

The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

Jorgenson, Philip C. E.; Loh, Ching Y.

2004-01-01

401

A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation  

Microsoft Academic Search

BACKGROUND: The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. METHODS: In the current manuscript, a steady state analysis of the metabolic insulin-signaling

Lopamudra Giri; Vivek K Mutalik; KV Venkatesh

2004-01-01

402

All-solid-state pulse adder with bipolar high voltage fast narrow pulses output  

Microsoft Academic Search

A newly developed bipolar high voltage adder is proposed for generating fast narrow pulses. The new circuit topology enables the use of typical half-bridge semiconductor structures on the basis of conventional unipolar all-solid-state pulse adder. Magnetic ring transformers were employed for isolating the charge loop from the high-voltage pulse discharge loop, which simplified the isolation arrangement. Certain measures were implemented

Lan Gao; Dongdong Wang; Jian Qiu; Kefu Liu

2011-01-01

403

Boiling and condensing pumped loop microgravity experiment  

SciTech Connect

Aircraft testing of a boiling and condensing (two-phase) pumped loop system was conducted to investigate transient induced by low gravity (Keplerian) maneuvers. The experiment, unchanged, will repeat a selected aircraft test sequence during its flight aboard a suborbital rocket. Such a test of a two-phase system has never been done. A comparison of aircraft and rocket data, particularly equilibrium conditions, may validate aircraft testing of similar systems: Aircraft testing has been completed and preliminary results indicate that local transients induced by Keplerian maneuvers do not generate sizeable or lasting feedback. System feedback, expected to damp exponentially with loop transit time, {theta}{sub loop} (20 s{lt}{theta}{sub loop}{lt}30 s) is negligible compared to local temperature transients having shorter equilibrium times, {theta}{sub local} (5{lt}{theta}{sub local}{lt}10 s). Since {theta}{sub local} is typically 2 to 5 times shorter than the duration of low gravity, {ital t}{sub 0{minus}{ital g}} (20 s{lt}t{sub 0{minus}{ital g}}{lt}25 s), equilibrium conditions are approximated. Transients following a transition from normal to low gravity resulted from destratification of hot and cold fluid, loss of the liquid convection component in laminar flows, and a reduction in condensing heat transfer.

Standley, V.H.; Fairchild, J.F. (Weapons Laboratory, Technology Assessment Directorate, Space Nuclear Power Branch, Kirtland AFB, New Mexico (USA))

1991-01-10

404

Nonlinear dynamics of neural delayed feedback  

SciTech Connect

Neural delayed feedback is a property shared by many circuits in the central and peripheral nervous systems. The evolution of the neural activity in these circuits depends on their present state as well as on their past states, due to finite propagation time of neural activity along the feedback loop. These systems are often seen to undergo a change from a quiescent state characterized by low level fluctuations to an oscillatory state. We discuss the problem of analyzing this transition using techniques from nonlinear dynamics and stochastic processes. Our main goal is to characterize the nonlinearities which enable autonomous oscillations to occur and to uncover the properties of the noise sources these circuits interact with. The concepts are illustrated on the human pupil light reflex (PLR) which has been studied both theoretically and experimentally using this approach. 5 refs., 3 figs.

Longtin, A.

1990-01-01

405

Tissue modification with feedback: the smart scalpel  

NASA Astrophysics Data System (ADS)

While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

1998-10-01

406

Feedback control laws for highly maneuverable aircraft  

NASA Technical Reports Server (NTRS)

The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

Garrard, William L.; Balas, Gary J.

1992-01-01

407

Wide power range microwave feedback controller  

NASA Technical Reports Server (NTRS)

A substantially constant power level is derived over a predetermined frequency band, in each of a plurality of relatively widely spaced power ranges, from a microwave load having a predetermined amplitude versus frequency response, such as an antenna. A microwave source of substantially constant amplitude drives a forward path connected between the source and the load. A feedback path responsive to the microwave power level in the forward path derives a control voltage for the PIN attenuator. The equalizer attenuator drives a linear, crystal amplitude detector. Attenuating means included in the forward and feedback paths are selectively connected in circuit to maintain the power level of the microwave input to the amplitude detector substantially constant, even though different power ranges are supplied to the load by the forward path.

Titus, L. E. (inventor)

1978-01-01

408

Low voltage to high voltage level shifter and related methods  

NASA Technical Reports Server (NTRS)

A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

2006-01-01

409

Closed-loop structural stability for linear-quadratic optimal systems  

NASA Technical Reports Server (NTRS)

This paper contains an explicit parameterization of a subclass of linear constant gain feedback maps that never destabilize an originally open-loop stable system. These results can then be used to obtain several new structural stability results for multi-input linear-quadratic feedback optimal designs.

Wong, P. K.; Athans, M.

1975-01-01

410

Voltage balanced multilevel voltage source converter system  

DOEpatents

A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

1997-01-01

411

Voltage balanced multilevel voltage source converter system  

DOEpatents

Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

Peng, F.Z.; Lai, J.S.

1997-07-01

412

On Gaussian feedback capacity  

NASA Technical Reports Server (NTRS)

Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.

Dembo, Amir

1989-01-01

413

Stratospheric water vapor feedback.  

PubMed

We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)?K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

2013-11-01

414

Stratospheric water vapor feedback  

PubMed Central

We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2?K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

2013-01-01

415

Distributed delays stabilize negative feedback loops Samuel Bernard  

E-print Network

state of equation (1). Coefficients a = -D1F(0, 0) R and b = -D2F(0, 0) = 0, and the integral is taken to Hayes [12], Theorem 1. Let f() = ( - E) a Dirac mass at E. The trivial solution of equation (3 (d = 1) differential equation with distributed delays, x = -ax - b 0 x(t - )d(). (3) Universit´e de

Boyer, Edmond

416

Apparatus for externally controlled closed-loop feedback digital epitaxy  

DOEpatents

A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

Eres, D.; Sharp, J.W.

1996-07-30

417

The p53 pathway: positive and negative feedback loops  

Microsoft Academic Search

The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes

Sandra L Harris; Arnold J Levine

2005-01-01

418

Effective Sensor Scheduling Schemes Employing Feedback in the Communication Loop  

E-print Network

while simultaneously decreasing chip size and power consumption. The latter gave birth to the fast developing field of sensor networks which have gained great attention in recent years [1], [2]. Many control of control system is called a networked control system (NCS). NCS provides many advantages which classical

Murray, Richard M.

419

Regulation of pollen tube polarity: Feedback loops rule  

Technology Transfer Automated Retrieval System (TEKTRAN)

Targeted delivery of immotile sperm through growing pollen tubes is a crucial step in achieving sexual reproduction in angiosperms. Unlike diffuse-growing cells, the growth of a pollen tube is restricted to the very apical region where targeted exocytosis and regulated endocytosis occur. The plant-s...

420

Generating Electrical Voltage  

NSDL National Science Digital Library

Teachers' Domain presents this interactive lesson designed to help students "learn how a generator converts mechanical energy into electrical energy. Investigate the principle of magnetic induction by moving a conductor through a magnetic field to see how voltage is generated." The lesson is divided into three major sections: How Do Generators Work?, What Factors Influence Voltage Strength?, and What Determines Voltage Polarity? There are plenty of animations to help students visualize the processes at work in electricity generation. On the site, visitors will also find a supplemental background essay, discussion questions, and standards alignment from Teachers' Domain.

421

Coherent controllers for optical-feedback cooling of quantum oscillators  

NASA Astrophysics Data System (ADS)

We study the cooling performance of optical-feedback controllers for open optical and mechanical resonators in the linear quadratic Gaussian setting of stochastic control theory. We utilize analysis and numerical optimization of closed-loop models based on quantum stochastic differential equations to show that coherent control schemes, where we embed the resonator in an interferometer to achieve all-optical feedback, can outperform optimal measurement-based feedback control schemes in the quantum regime of low steady-state excitation number. These performance gains are attributed to the coherent controller's ability to simultaneously process both quadratures of an optical probe field without measurement or loss of fidelity, and may guide the design of coherent feedback schemes for more general problems of robust nonlinear and robust control.

Hamerly, Ryan; Mabuchi, Hideo

2013-01-01

422

Decorrelation of Neural-Network Activity by Inhibitory Feedback  

PubMed Central

Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368

Einevoll, Gaute T.; Diesmann, Markus

2012-01-01

423

High voltage power supply  

NASA Technical Reports Server (NTRS)

A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

Ruitberg, A. P.; Young, K. M. (inventors)

1985-01-01

424

High Voltage TAL Performance  

NASA Technical Reports Server (NTRS)

The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

2001-01-01

425

Imaging voltage in neurons  

PubMed Central

In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

2011-01-01

426

Improving membrane voltage measurements  

E-print Network

as fluorescence resonance energy transfer (FRET) donor and acceptor to develop a voltage sensor, named Mermaid activities in cultured excitable cells. Notably, Mermaid has fast on-off kinetics at warm (B33 1C

Cai, Long

427

ParaScale: Exploiting Parametric Timing Analysis for Real-Time Schedulers and Dynamic Voltage Scaling  

E-print Network

ParaScale: Exploiting Parametric Timing Analysis for Real-Time Schedulers and Dynamic Voltage for dynamic power conservation by exploiting parametric loop bounds for ParaScale, our intra-task dynamic voltage scaling (DVS) approach. Our results demonstrate that the parametric approach to timing analysis

Mueller, Frank

428

Making Time for Feedback  

ERIC Educational Resources Information Center

Ask any teacher what he or she needs more of, and it is a good bet that time will top the list. Anything that promises to recoup a little bit of their workday time is sure to be a best seller. One overlooked time-saver is in how they use feedback. Teachers know that feedback is important for teaching and learning. Unfortunately, most secondary…

Fisher, Douglas; Frey, Nancy

2012-01-01

429

Feedback in the problem of distinguishing between two nonorthogonal coherent states  

SciTech Connect

Feedback is proposed for distinguishing between two weak coherent states with phases differing by {approx}{pi}. The mutual nonorthogonality of such states gives rise to a discrimination error, which can be reduced by using feedback. An optical quantum channel is discussed where the input is classical information encoded in two weak coherent states. For a channel with feedback, the discrimination error probability is calculated, and the mutual entropy that quantifies the fidelity between input and output is evaluated. We find that the use of a feedback loop in a quantum communication channel can increase the mutual entropy when canonical position or photon number is measured.

Gorbachev, V. N., E-mail: valery.gorbachev@gmail.com [St. Petersburg State University of Aerospace Instrumentation (Russian Federation); Chekhova, M. V. [Moscow State University (Russian Federation)

2011-02-15