Science.gov

Sample records for voltage feedback loop

  1. Current vs. Voltage Feedback Amplifiers

    E-print Network

    Papavassiliou, Christos

    Current vs. Voltage Feedback Amplifiers One question continuously troubles the analog design engi- neer: 'Which amplifier topology is better for my application, current feedback or voltage feedback) are not apparent. Today's CFB and VFB amplifiers have comparable performance, but there are cer- tain unique

  2. Feedback loops in biological networks.

    PubMed

    Franco, Elisa; Galloway, Kate E

    2015-01-01

    We introduce fundamental concepts for the design of dynamics and feedback in molecular networks modeled with ordinary differential equations. We use several examples, focusing in particular on the mitogen-activated protein kinase (MAPK) pathway, to illustrate the concept that feedback loops are fundamental in determining the overall dynamic behavior of a system. Often, these loops have a structural function and unequivocally define the system behavior. We conclude with numerical simulations highlighting the potential for bistability and oscillations of the MAPK pathway re-engineered through synthetic promoters and RNA transducers to include positive and negative feedback loops. PMID:25487099

  3. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.

  4. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  5. Output stages inside a negative feedback loop: application to a low-voltage three-phase DC-AC converter for educational purposes

    E-print Network

    Llopis, Francisco

    2013-01-01

    The circuit presented in this paper aims at providing three 40 Vpp 50Hz AC voltages sources with 120-degree phase separation between them. This is a fully analogue circuit that uses standard, low-cost electronic components without resorting to a microcontroller as previously proposed by Shirvasar et al [1]. This circuit may serve as a basis for a low-voltage 3P-AC power supply that students may safely use to realize experiments, i.e. about the principles and applications of three-phase AC power lines, without the risk of electric shocks.

  6. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    SciTech Connect

    Fisch, N.J.; Kritz, A.H. . Plasma Physics Lab.; Hunter Coll., New York, NY . Dept. of Physics)

    1989-07-01

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

  7. Feedback loop process to control acoustic cavitation.

    PubMed

    Sabraoui, Abbas; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe; Mestas, Jean-Louis

    2011-03-01

    Applications involving acoustic cavitation mechanisms, such as sonoporation, are often poorly reproducible because of the unstationary behavior of cavitation. For this purpose, this study proposes to work at a fixed cavitation level instead of a fixed acoustic intensity. A regulated cavitation generator has been developed in an in vitro configuration of standing wave field. This system implements the regulation of the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop based on acoustic measurements. The experimental setup consists of a plane piezoelectric transducer for sonication (continuous wave, frequency 445 kHz) and a hydrophone pointing to the sonicated medium. The cavitation level is quantified every 5 ms from a spectral analysis of the acoustic signal. The results show that the regulation device generates reproducible mean cavitation levels with a standard deviation lower than 1.6% in the applied intensity range (from 0.12 to 3.44 W/cm(2)), while this standard deviation can reach 76% without regulation. The feedback loop process imposes precise cavitation level even in low applied acoustic intensity. PMID:20843725

  8. Closing the Feedback Loop Is Not Enough: The Assessment Spiral

    ERIC Educational Resources Information Center

    Wehlburg, Catherine M.

    2007-01-01

    For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…

  9. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Zhang, Yi; Zhang, Shulin; Krause, Hans-Joachim; Wang, Yongliang; Liu, Chao; Zeng, Jia; Qiu, Yang; Kong, Xiangyan; Dong, Hui; Xie, Xiaoming; Offenhäusser, Andreas; Jiang, Mianheng

    2012-10-01

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm ?Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  10. Feedback control of electrode offset voltage during functional electrical stimulation.

    PubMed

    Chu, Jun-Uk; Song, Kang-Il; Shon, Ahnsei; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan

    2013-08-15

    Control of the electrode offset voltage is an important issue related to the processes of functional electrical stimulation because excess charge accumulation over time damages both the tissue and the electrodes. This paper proposes a new feedback control scheme to regulate the electrode offset voltage to a predetermined reference value. The electrode offset voltage was continuously monitored using a sample-and-hold (S/H) circuit during stimulation and non-stimulation periods. The stimulation current was subsequently adjusted using a proportional-integral (PI) controller to minimise the error between the reference value and the electrode offset voltage. During the stimulation period, the electrode offset voltage was maintained through the S/H circuit, and the PI controller did not affect the amplitude of the stimulation current. In contrast, during the non-stimulation period, the electrode offset voltage was sampled through the S/H circuit and rapidly regulated through the PI controller. The experimental results obtained using a nerve cuff electrode showed that the electrode offset voltage was successfully controlled in terms of the performance specifications, such as the steady- and transient-state responses and the constraint of the controller output. Therefore, the proposed control scheme can potentially be used in various nerve stimulation devices and applications requiring control of the electrode offset voltage. PMID:23685268

  11. Gain of the Feedback Loop Involving Carbon Dioxide and Stomata

    PubMed Central

    Farquhar, Graham D.; Dubbe, Dean R.; Raschke, Klaus

    1978-01-01

    The physiological and physical components of the feedback loop involving intercellular CO2 concentration (ci) and stomata are identified. The loop gain (G) is a measure of the degree of homeostasis in a negative feedback loop [the expression 1/(1-G) represents the fraction to which feedback reduces a perturbance]. Estimates are given for the effects of G on responses of stomata and ci to changes in ambient CO2 concentration, light intensity, and perturbations in the water relations of a leaf. At normal ambient CO2 concentration, the gain of the loop involving stomatal conductance and ci was found to be ?2.2 in field-grown Zea mays, ?3.6 if plants of this species were grown in a growth chamber, and zero in well watered Xanthium strumarium in the vegetative state. PMID:16660527

  12. Creating the feedback loop: closed-loop neurostimulation.

    PubMed

    Hebb, Adam O; Zhang, Jun Jason; Mahoor, Mohammad H; Tsiokos, Christos; Matlack, Charles; Chizeck, Howard Jay; Pouratian, Nader

    2014-01-01

    Current DBS therapy delivers a train of electrical pulses at set stimulation parameters. This open-loop design is effective for movement disorders, but therapy may be further optimized by a closed loop design. The technology to record biosignals has outpaced our understanding of their relationship to the clinical state of the whole person. Neuronal oscillations may represent or facilitate the cooperative functioning of brain ensembles, and may provide critical information to customize neuromodulation therapy. This review addresses advances to date, not of the technology per se, but of the strategies to apply neuronal signals to trigger or modulate stimulation systems. PMID:24262909

  13. Interaction between beam control and rf feedback loops for high Q cavities an heavy beam loading. Revision A

    SciTech Connect

    Mestha, L.K.; Kwan, C.M.; Yeung, K.S.

    1994-04-01

    An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented.

  14. Desert dust suppressing precipitation: A possible desertification feedback loop

    E-print Network

    Daniel, Rosenfeld

    Desert dust suppressing precipitation: A possible desertification feedback loop Daniel Rosenfeld (received for review October 11, 2000) The effect of desert dust on cloud properties and precipitation has desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement

  15. Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops

    E-print Network

    Byrne, John H.

    for the gener- ation of circadian rhythms. To test the sufficiency of the pro- posed mechanisms, two Circadian rhythms reflect oscillating expression of genes, one or a few of which act as clock componentsModeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops Paul Smolen

  16. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  17. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  18. Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems

    E-print Network

    Campbell, Sue Ann

    loop feedback system can be influenced in a precisely controllable manner. 1 Introduction EndocrineDynamic Feedback and the Design of Closed-loop Drug Delivery Systems John Milton1,2 , Sue Ann´eal, Montr´eal, Canada Abstract A closed-loop drug delivery system is constructed in which external negative

  19. Quantized optical mode in a phase-switching feedback loop

    NASA Astrophysics Data System (ADS)

    Tomilin, V. A.; Il'ichov, L. V.

    2015-02-01

    We investigate the steady state of quantized monochromatic cavity mode excited by coherent pumping and placed in a feedback loop that changes the mode phase by ? upon each detection of the photon that left the cavity. Such type of feedback is used for fighting decoherence of Schröbinger cat states. Results of numerical calculations of the Glauber P-function for different detunings of mode frequency from pumping frequency are presented. Qualitative explanation for certain peculiarities of the behavior of the P-function is provided. We also suggest a simplified model that gives accurate description of the behavior of the system in the case where external coherent pumping is far detuned from the cavity eigenfrequency.

  20. Feedback loop design and experimental testing for integrated optics with micro-mechanical tuning

    E-print Network

    Waller, Laura A. (Laura Ann)

    2005-01-01

    I designed a capacitive sensor with feedback control for precision tuning of a MEMS controlled wavelength-selective switch. The implementation is based upon a customized feedback loop with a PID controller. The positional ...

  1. Possible precursors of ball lightning. Observation of closed loops in high voltage discharges

    SciTech Connect

    Alexeff, I.; Rader, M.

    1995-05-01

    Several hundred photographs of ultrahigh voltage discharges have been obtained that show closed current loops. These closed current loops may be precursors of ball lightning. One feature of these discharges may explain why observations of ball lightning may be infrequent; that is, there is a distinct threshold in voltage and/or current below which the closed loops do not occur. This threshold current fits other experimental data but is well above the usually observed currents in natural lightning. 10 refs., 3 figs.

  2. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.

  3. A Series Type BTB Converter for Controlling Voltage Profile in Loop Distribution System with Distributed Generations

    NASA Astrophysics Data System (ADS)

    Simanjorang, Rejeki; Miura, Yushi; Ise, Toshifumi

    Connecting Distributed Generations (DGs) into distribution system has presented challenge of controlling voltage profile in distribution system. The presence of DGs makes voltage profile non-uniform and may result in large voltage fluctuation and over-voltage at loads. Therefore, there is need for strict limitation on power injected by DGs. This paper proposes an effective method to overcome the problem of increase/decrease of voltage in distribution system due to the presence of DGs, and it also realizes higher permissible power injected by DGs. In the proposed method, the configuration of distribution system is changed, firstly, from radial to loop type by tying the receiving ends of feeders. Secondly, a series type Back-To-Back (BTB) converter is installed near substation to improve voltage profile by controlling the voltages of the two nodes in the looped feeders. The effectiveness of the proposed method for improvement of the voltage profile and reduction of the converter capacity is presented.

  4. Experimental Feedback on Sodium Loop Decommissioning at the CEA

    SciTech Connect

    Vinoche, O.; Rodriguez, G.

    2002-07-01

    The aim of this paper is to present experimental feedback on sodium loop dismantling techniques at the CEA (The French Atomic Energy Commission) and to offer recommendations for the decommissioning of Fast Breeder Reactor secondary sodium loops. This study is divided into several parts which correspond to the different stages of a dismantling system. It is based on acquired CEA decommissioning experience which primarily concerns the following: the decommissioning of Rapsodie (France's first Fast Breeder Reactor), the Phenix reactor secondary loop replacement, the sodium loop decommissioning carried out by the Laboratory of Sodium Technologies and Treatment, and several technical documents. This paper deals with the main results of this survey. First, a comparison of 8 pipe-cutting techniques is made, taking into account speed in cutting, reliability, dissemination, fire risk due to the presence of sodium, cutting depth, and different types of waste (empty pipes, sodium-filled pipes, tanks...). This comparison has led us to recommend the use of an alternative saw or a chain saw rather than the use of the plasma torch or grinder. Different techniques are recommended depending on if they are on-site, initial cuttings or if they are to be carried out in a specially-designed facility referred to hereafter as 'the cutting building'. After the cutting stage, the sodium waste must be processed with water to become an ultimate stable waste. Four treatment processes are compared with different standards: speed, cost, low activity adaptability and 'large sodium quantity' adaptability. Recommendations are also made for reliable storage, and for the general dismantling system organization. Last, calculations are presented concerning a complete dismantling facility prototype capable of treating large amounts of sodium. (authors)

  5. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    ERIC Educational Resources Information Center

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  6. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  7. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  8. Voltage Regulation and Line Loss Minimization of Loop Distribution Systems Using UPFC

    NASA Astrophysics Data System (ADS)

    Sayed, Mahmoud A.; Takeshita, Takaharu

    This paper presents a new method for achieving line loss minimization and voltage regulation in the loop distribution systems, simultaneously. First, mathematical analysis of the line loss minimum conditions in the loop distribution systems is presented. Then, load voltage regulation is applied in the loop distribution system under line loss minimum condition. Reference angle of the desired load voltage is the main factor that can be used to minimize total line loss during load voltage control. In order to achieve these two objectives simultaneously, the UPFC (unified power flow controller), a typical FACTS (flexible AC transmission systems) device, that is capable of instantaneous control of transmission and distribution power flow, is used. Also, the UPFC control scheme to regulate the load voltage under line loss minimization is presented. The effectiveness of the proposed control scheme has been verified experimentally using laboratory prototype in a 200V, 6kVA system.

  9. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok; Yang, J.-C.; Chu, Ying Hao; Yu, Pu; Lu, X.; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  10. Inherent directionality explains the lack of feedback loops in empirical networks.

    PubMed

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  11. Inherent directionality explains the lack of feedback loops in empirical networks

    PubMed Central

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  12. Model-Based Vibration Suppression in Piezoelectric Tube Scanners through Induced Voltage Feedback

    E-print Network

    Fleming, Andrew J.

    ,x and vind,y as output signals, generated by the direct piezoelectric effect. Experiments were performedModel-Based Vibration Suppression in Piezoelectric Tube Scanners through Induced Voltage Feedback of piezoelectric tube actuators in scanning probe microscopy is significantly reduced due to the excitation

  13. Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; ?opaciuk, Agata

    2015-03-01

    Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.

  14. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  15. Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of

    E-print Network

    Bath, University of

    Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour is proved for integral equations of convo- lution type which contain hysteresis nonlinearities. On the basis-dimensional system in the forward path and a hysteresis nonlinearity in the feedback path. These sta- bility criteria

  16. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  17. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  18. Channel cytoplasmic loops alter voltage-dependent sodium channel activation in an isoform-specific manner

    PubMed Central

    Bennett, Eric S

    2001-01-01

    The isoform-specific functional role of cytoplasmic structures of two voltage-gated sodium channel isoforms, the human cardiac channel (hH1) and the adult human skeletal muscle channel (hSkM1) was investigated through functional comparison of chimeras.The voltage of half-activation (Va) for hH1 was shifted by > 20 mV in the hyperpolarised direction following internal papain treatment (‘papain sensitive’), while Va for hSkM1 was unaffected (‘papain insensitive’).The hH1 region(s) responsible for this papain sensitivity was localised by testing a series of hH1/hSkM1 chimeras in which combinations of the large hH1 cytoplasmic loops joining the four transmembrane domains replaced analogous hSkM1 loops. Various chimeras were used to determine the smallest subset of loops that converted fully the papain-insensitive hSkM1 into a papain-sensitive channel. Then three converse chimeras were tested in which hSkM1 loops replaced hH1 loops to determine the smallest subset of loops necessary and sufficient to convert the papain-sensitive hH1 into a papain-insensitive channel.Functional studies of this inclusive set of chimeras indicate that the first two cytoplasmic loops of the cardiac sodium channel that join domain I to II (loop A), and domain II to III (loop B), are both necessary, and together are sufficient to produce a papain-induced hyperpolarising shift in the voltage at which channels activate. When both loops are present (wild-type hH1 and the chimera hSkM1AB), Va for the channel shifts in the hyperpolarised direction by > 20 mV with papain treatment. When the analogous hSkM1 loops are present (wild-type hSkM1 and the chimera hH1AB), Va for the channel is not sensitive to treatment with papain. For channels that contain only one of the two hH1 loops, the effect of papain on Va is intermediary.Experiments performed in the absence of papain showed that the activation voltages of the double loop chimeras, hSkM1AB and hH1AB, were shifted significantly from Va for hSkM1 and Va for hH1, respectively, indicating that these loops directly alter channel activation voltage. The resulting shifts in Va were in opposing directions, suggesting that cytoplasmic control of activation voltage is isoform specific. Va for hSkM1AB was about 20 mV more depolarised than Va for hSkM1, and Va for hH1AB was about 9 mV more negative than Va for hH1.These data are the first to indicate isoform-specific cytoplasmic regions of the voltage-gated sodium channel that directly and differently alter the voltage of channel activation. PMID:11533130

  19. Closing the Feedback Loop? Iterative Feedback between Tutor and Student in Coursework Assessments

    ERIC Educational Resources Information Center

    Barker, Martin; Pinard, Michelle

    2014-01-01

    We evaluate the case for using feedback iteratively, to improve student engagement and learning. In this model, students were invited to respond to tutor feedback with students' own responses. Among the three courses/modules (three tutors) studied, differences in feedback styles were evident from: (a) thematic analysis of tutor comments and,…

  20. Extra Exercises for Chapter 9. Information Feedback Causal Loop Diagrams

    E-print Network

    Ford, Andrew

    loop diagram for the electric blanket. Suppose you wish to draw a causal loop diagram to describe temperature control from an electric blanket. This system is similar to the home heating system discussed on the left acts to control the heat flow to the sleeping space from the electric wires in the blanket. (A

  1. On the Effects of Voltage Loop in Paralleled Converters Under Master-Slave Current Sharing

    E-print Network

    Tse, Chi K. "Michael"

    On the Effects of Voltage Loop in Paralleled Converters Under Master-Slave Current Sharing Yuehui master-slave current sharing scheme. The system employs a typical proportional-integral (PI) controller for regulation. Comparisons are made for the cases where the slave modules are controlled with and without

  2. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  3. Optimal open-loop and feedback control using single gimbal control moment gyroscopes

    NASA Technical Reports Server (NTRS)

    Hoelscher, Brian R.; Vadali, Srinvas R.

    1993-01-01

    Methods for control of spacecraft maneuvers through the use of single gimbal control moment gyroscopes are developed. The development employs an integrated model of the spacecraft dynamics with the control moment gyroscope dynamics. Smooth and continuous open-loop control profiles are obtained which minimize a weighted function of maneuver time, magnitude of control effort, and proximity to singular gimbal configurations. Closed-loop state feedback control laws are derived by invoking Lyapunov stability theory. The schemes are presented for implementing the commanded state feedback: gimbal rate control and gimbal acceleration control. The appropriate handling of singular gimbal configurations is also discussed.

  4. MICROBE SENSING, POSITIVE FEEDBACK LOOPS, AND THE PATHOGENESIS OF INFLAMMATORY DISEASES

    PubMed Central

    Beutler, Bruce

    2009-01-01

    Summary The molecular apparatus that protects us against infection can also injure us by causing autoimmune or autoinflammatory disease. It now seems that at times, defects within the sensing arm of innate immunity contribute to diseases of this type. The initiation of an immune response is often microbe dependent and, in many cases, Toll-like receptor (TLR) dependent. Positive feedback loops triggering immune activation may occur when TLR signaling pathways stimulate host cells in an unchecked manner. Or, immune activation may persist because of failure to eradicate an inciting infection. Or on occasion, endogenous DNA may trigger specific immune responses that beget further responses in a TLR-dependent autoamplification loop. Specific biochemical defects that cause loop-related autoimmunity have been revealed by random germline mutagenesis and by gene targeting. We have also developed some insight into critical points at which feedback loops can be interrupted. PMID:19120489

  5. Linking Multimodal Communication and Feedback Loops to Reinforce Plagiarism Awareness

    ERIC Educational Resources Information Center

    O'Donnell, Kerri

    2011-01-01

    In this article, the author describes the use of an electronic quiz on a trial basis as a means of improving students' awareness of academic misconduct issues and their understanding of how to avoid those issues. The quiz integrated several new factors into information-sharing processes, increasing feedback to both students and staff. It was by no…

  6. Closing the Feedback Loop: Physics Undergraduates' Use of Feedback Comments on Laboratory Coursework

    ERIC Educational Resources Information Center

    Donovan, Pam

    2014-01-01

    The laboratory notebooks of physics undergraduates taking two second-year practical courses were audited to discover whether they had used feedback comments in their subsequent coursework. Ninety-five per cent of the 37 students on the first course and 100% of the 14 students on the second course whose work was audited had used feedback. The…

  7. Modeling of bovine spongiform encephalopathy in a two-species feedback loop.

    PubMed

    Barnes, Richard; Lehman, Clarence

    2013-06-01

    Bovine spongiform encephalopathy, otherwise known as mad cow disease, can spread when an individual cow consumes feed containing the infected tissues of another individual, forming a one-species feedback loop. Such feedback is the primary means of transmission for BSE during epidemic conditions. Following outbreaks in the European Union and elsewhere, many governments enacted legislation designed to limit the spread of such diseases via elimination or reduction of one-species feedback loops in agricultural systems. However, two-species feedback loops-those in which infectious material from one-species is consumed by a secondary species whose tissue is then consumed by the first species-were not universally prohibited and have not been studied before. Here we present a basic ecological disease model which examines the rôle feedback loops may play in the spread of BSE and related diseases. Our model shows that there are critical thresholds between the infection's expansion and decrease related to the lifespan of the hosts, the growth rate of the prions, and the amount of prions circulating between hosts. The ecological disease dynamics can be intrinsically oscillatory, having outbreaks as well as refractory periods which can make it appear that the disease is under control while it is still increasing. We show that non-susceptible species that have been intentionally inserted into a feedback loop to stop the spread of disease do not, strictly by themselves, guarantee its control, though they may give that appearance by increasing the refractory period of an epidemic's oscillations. We suggest ways in which age-related dynamics and cross-species coupling should be considered in continuing evaluations aimed at maintaining a safe food supply. PMID:23746801

  8. The role of feed-forward and feedback processes for closed-loop prosthesis control

    PubMed Central

    2011-01-01

    Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i) in ideal conditions, (ii) under sensory deprivation, and (iii) under feed-forward uncertainty. Results (i) We found that subjects formed economical grasps in ideal conditions. (ii) To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii) When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control. PMID:22032545

  9. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets

    E-print Network

    Rothstein, Jonathan

    , are highly useful in a range of applications from personal care products, to foods, as well as drug delivery reactions. These laboratories-on-a-chip hold vast potential for industrial application, however, only in combination with a closed loop feedback system to control the continuous- and dispersed-phase flow rates. Both

  10. A Learning Progression for Feedback Loop Reasoning at Lower Elementary Level

    ERIC Educational Resources Information Center

    Hokayem, Hayat; Ma, Jingjing; Jin, Hui

    2015-01-01

    This study examines to what extent elementary students use feedback loop reasoning, a key component of systems thinking, to reason about interactions among organisms in ecosystems. We conducted clinical interviews with 44 elementary students (1st through 4th grades). We asked students to explain how populations change in two contexts: a…

  11. The Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock

    E-print Network

    , Processes that repeat in time, such as the cell cycle, the circadian rhythm, and seasonal variations. In addition to these more well-known effects, circadian rhythms also play a role in pathogenesis and can guideThe Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock Mechanism A

  12. Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops.

    E-print Network

    Campbell, Sue Ann

    . We analyze the second order differential equation describing a damped harmonic oscillatorStability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops. Sue Ann of mechanical, or neuro­ mechanical systems in which inertia plays an important role [1, 2, 4, 10, 11, 16, 17

  13. Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive

    E-print Network

    Beigl, Michael

    in such a network is increased. By combining RF transmit signal components, a set of transmitting nodes in a sensor transmit beamforming in WSNs Stephan Sigg, Rayan Merched El Masri, Julian Ristau and Michael Beigl-loop feedback based approaches to distributed adaptive transmit beamforming in wireless sensor networks

  14. Fourier analysis and systems identification of the p53 feedback loop

    E-print Network

    Fourier analysis and systems identification of the p53 feedback loop Naama Geva-Zatorskya,1 , Erez oscillation time courses of p53 and Mdm2 protein levels from several hundred cells and analyzed their Fourier dynamics in individual cells following gamma irradiation. We find Fourier spectra with a clear osc

  15. Using Gap Analysis to Support Feedback Loops for Enterprise Architecture Management

    E-print Network

    Bauer, Bernhard

    Using Gap Analysis to Support Feedback Loops for Enterprise Architecture Management Philipp.Bauer@informatik.uni-augsburg.de Abstract Enterprise architecture models are created to support analysis and documentation in different phases of the architecture process. Gap analysis is used in many enterprise architecture processes

  16. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

    E-print Network

    Turner, Matthew

    of Arabidopsis thaliana James CW Locke1,2,3,7 , La´szlo´ Kozma-Bogna´r4 , Peter D Gould5 , Bala´zs Fehe´r6 , E). The clock mechanism in the model plant, Arabidopsis thaliana, was first proposed to comprise a feedback loop

  17. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.

    PubMed

    Zhang, Ying; Wang, Pengcheng; Shao, Wanchen; Zhu, Jian-Kang; Dong, Juan

    2015-04-20

    Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A mitogen-activated protein kinase (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here, we demonstrate that a positive-feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants. PMID:25843888

  18. Maxwell's demon in biochemical signal transduction with feedback loop

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on `Maxwell's demon'--a feedback controller that utilizes information of individual molecules--have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  19. Maxwell's demon in biochemical signal transduction with feedback loop

    E-print Network

    Sosuke Ito; Takahiro Sagawa

    2015-04-15

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive researches of "Maxwell's demon" - a feedback controller that utilizes information of individual molecules - has led to a unified theory of information and thermodynamics. Here we combine these two streams of researches, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we found that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result would open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  20. Maxwell's demon in biochemical signal transduction with feedback loop

    PubMed Central

    Ito, Sosuke; Sagawa, Takahiro

    2015-01-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on ‘Maxwell's demon'—a feedback controller that utilizes information of individual molecules—have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information–thermodynamics link. PMID:26099556

  1. Maxwell's demon in biochemical signal transduction with feedback loop.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2015-01-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on 'Maxwell's demon'-a feedback controller that utilizes information of individual molecules-have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link. PMID:26099556

  2. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback. PMID:25420268

  3. Stochastic analysis of bistability in coherent mixed feedback loops combining transcriptional and posttranscriptional regulations

    NASA Astrophysics Data System (ADS)

    Nitzan, Mor; Shimoni, Yishai; Rosolio, Oded; Margalit, Hanah; Biham, Ofer

    2015-05-01

    Mixed feedback loops combining transcriptional and posttranscriptional regulations are common in cellular regulatory networks. They consist of two genes, encoding a transcription factor and a small noncoding RNA (sRNA), which mutually regulate each other's expression. We present a theoretical and numerical study of coherent mixed feedback loops of this type, in which both regulations are negative. Under suitable conditions, these feedback loops are expected to exhibit bistability, namely, two stable states, one dominated by the transcriptional repressor and the other dominated by the sRNA. We use deterministic methods based on rate equation models, in order to identify the range of parameters in which bistability takes place. However, the deterministic models do not account for the finite lifetimes of the bistable states and the spontaneous, fluctuation-driven transitions between them. Therefore, we use stochastic methods to calculate the average lifetimes of the two states. It is found that these lifetimes strongly depend on rate coefficients such as the transcription rates of the transcriptional repressor and the sRNA. In particular, we show that the fraction of time the system spends in the sRNA-dominated state follows a monotonically decreasing sigmoid function of the transcriptional repressor transcription rate. The biological relevance of these results is discussed in the context of such mixed feedback loops in Escherichia coli. It is shown that the fluctuation-driven transitions and the dependence of some rate coefficients on the biological conditions enable the cells to switch to the state which is better suited for the existing conditions and to remain in that state as long as these conditions persist.

  4. Fine-tuning of Voltage Sensitivity of the Kv1.2 Potassium Channel by Interhelix Loop Dynamics*

    PubMed Central

    Sand, Rheanna; Sharmin, Nazlee; Morgan, Carla; Gallin, Warren J.

    2013-01-01

    Many proteins function by changing conformation in response to ligand binding or changes in other factors in their environment. Any change in the sequence of a protein, for example during evolution, which alters the relative free energies of the different functional conformations changes the conditions under which the protein will function. Voltage-gated ion channels are membrane proteins that open and close an ion-selective pore in response to changes in transmembrane voltage. The charged S4 transmembrane helix transduces changes in transmembrane voltage into a change in protein internal energy by interacting with the rest of the channel protein through a combination of non-covalent interactions between adjacent helices and covalent interactions along the peptide backbone. However, the structural basis for the wide variation in the V50 value between different voltage-gated potassium channels is not well defined. To test the role of the loop linking the S3 helix and the S4 helix in voltage sensitivity, we have constructed a set of mutants of the rat Kv1.2 channel that vary solely in the length and composition of the extracellular loop that connects S4 to S3. We evaluated the effect of these different loop substitutions on the voltage sensitivity of the channel and compared these experimental results with molecular dynamics simulations of the loop structures. Here, we show that this loop has a significant role in setting the precise V50 of activation in Kv1 family channels. PMID:23413033

  5. Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer.

    PubMed

    Zhao, Jing; Ye, Wei; Wu, Juan; Liu, Lijuan; Yang, Lina; Gao, Lu; Chen, Biliang; Zhang, Fanglin; Yang, Hong; Li, Yu

    2015-07-01

    CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells. PMID:25998266

  6. A social feedback loop for speech development and its reduction in autism

    PubMed Central

    Warlaumont, Anne S.; Richards, Jeffrey A.; Gilkerson, Jill; Oller, D. Kimbrough

    2014-01-01

    We analyze the microstructure of child-adult interaction during naturalistic, daylong, automatically labeled audio recordings (13,836 hours total) of children (8- to 48-month-olds) with and without autism. We find that adult responses are more likely when child vocalizations are speech-related. In turn, a child vocalization is more likely to be speech-related if the previous speech-related child vocalization received an immediate adult response. Taken together, these results are consistent with the idea that there is a social feedback loop between child and caregiver that promotes speech-language development. Although this feedback loop applies in both typical development and autism, children with autism produce proportionally fewer speech-related vocalizations and the responses they receive are less contingent on whether their vocalizations are speech-related. We argue that such differences will diminish the strength of the social feedback loop with cascading effects on speech development over time. Differences related to socioeconomic status are also reported. PMID:24840717

  7. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  8. FALCON: Feedback Adaptive Loop for ContentBased Leejay Wu Christos Faloutsos Katia Sycara Terry R. Payne

    E-print Network

    Faloutsos, Christos

    FALCON: Feedback Adaptive Loop for Content­Based Retrieval Leejay Wu Christos Faloutsos Katia completely. This paper presents a novel approach, FALCON, which allows easy specification of complex queries

  9. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    NASA Astrophysics Data System (ADS)

    Wang, Junwei; Zhou, Tianshou

    2010-06-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per and clk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  10. Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    E-print Network

    Seth D. Cohen; Damien Rontani; Daniel J. Gauthier

    2012-08-14

    We report on an ultra-high-frequency (> 1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.

  11. Short and long sympathetic-sensory feedback loops in white fat.

    PubMed

    Ryu, Vitaly; Bartness, Timothy J

    2014-06-15

    We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions. PMID:24717676

  12. Short and long sympathetic-sensory feedback loops in white fat

    PubMed Central

    Ryu, Vitaly

    2014-01-01

    We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (?50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions. PMID:24717676

  13. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward concordance with X-ray observations. The tight self-regulation has key implications for the group/cluster scaling relations, such as Lx-Tx, in agreement with a recent X-ray stacking analysis of 250000 central galaxies.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  14. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward observational concordance. The tight self-regulation has key implications for the scaling relations, such as Lx-Tx, and the X-ray spectrum of hot halos.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  15. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward observational concordance. The tight self-regulation has key implications for the group/cluster scaling relations, such as Lx-Tx, in agreement with a recent X-ray stacking analysis of 250000 central galaxies.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  16. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  17. Steady-state fluctuations of a genetic feedback loop: an exact solution

    E-print Network

    R. Grima; D. R. Schmidt; T. J. Newman

    2012-06-27

    Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution (Hornos et al, Phys. Rev. E {\\bf 72}, 051907 (2005) and subsequent studies). We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.

  18. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  19. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between ?0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of ?0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application. PMID:24116724

  20. Dicer and Hsp104 function in a negative feedback loop to confer robustness to environmental stress.

    PubMed

    Oberti, Daniele; Biasini, Adriano; Kirschmann, Moritz Alexander; Genoud, Christel; Stunnenberg, Rieka; Shimada, Yukiko; Bühler, Marc

    2015-01-01

    Epigenetic mechanisms can be influenced by environmental cues and thus evoke phenotypic variation. This plasticity can be advantageous for adaptation but also detrimental if not tightly controlled. Although having attracted considerable interest, it remains largely unknown if and how environmental cues such as temperature trigger epigenetic alterations. Using fission yeast, we demonstrate that environmentally induced discontinuous phenotypic variation is buffered by a negative feedback loop that involves the RNase Dicer and the protein disaggregase Hsp104. In the absence of Hsp104, Dicer accumulates in cytoplasmic inclusions and heterochromatin becomes unstable at elevated temperatures, an epigenetic state inherited for many cell divisions after the heat stress. Loss of Dicer leads to toxic aggregation of an exogenous prionogenic protein. Our results highlight the importance of feedback regulation in building epigenetic memory and uncover Hsp104 and Dicer as homeostatic controllers that buffer environmentally induced stochastic epigenetic variation and toxic aggregation of prionogenic proteins. PMID:25543137

  1. Functional characteristics of a double positive feedback loop coupled with autorepression

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhasis; Bose, Indrani

    2008-12-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic ?-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the ?-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the ?-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON ? OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

  2. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    NASA Astrophysics Data System (ADS)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from our ongoing research on developmental patterning.

  3. Stochastic Gene Expression in a Lentiviral Positive Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity

    E-print Network

    Leor S. Weinberger; John C. Burnett; Jared E. Toettcher; Adam P. Arkin; David V. Schaffer

    2006-08-01

    Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, Weinberger et al. (2005) take an integrated computational-experimental approach to study the Tat transactivation feedback loop in HIV-1 and show that fluctuations in a key regulator, Tat, can result in a phenotypic bifurcation. This phenomenon is observed in an isogenic population where individual cells display two distinct expression states corresponding to latent and productive infection by HIV-1. These findings demonstrate the importance of stochastic gene expression in molecular "decision-making."

  4. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  5. Performance of the load-in-the-loop single Op-Amp voltage Controlled current source from the Op-Amp Parameters

    NASA Astrophysics Data System (ADS)

    Macías, R.; Seoane, F.; Bragós, R.

    2010-04-01

    In recent years, Electrical Bioimpedance (EBI) methods have gained importance. These methods are often based on obtaining impedance spectrum in the range of ?-dispersion, i.e. from a few kHz up to some MHz. To measure EBI a constant current is often injected and the voltage across the tissue under study is recorded. Due to the performance of the current source influences the performance of the entire system, in terms of frequency range, several designs have been implemented and studied. In this paper the basic structure of a Voltage-Controlled Current Source based on a single Op-Amp in inverter configuration with a floating load, known as load-in-the-loop current source, is revisited and studied deeply. We focus on the dependence of the output impedance with the circuit parameters, i.e. the feedback resistor and the inverter-input resistor, and the Op-Amp main parameters, i.e. open loop gain, CMRR and input impedance. After obtaining the experimental results, using modern Op-Amps, and comparing to the theoretical and simulated ones, they confirm the design under study can be a good solution for multi-frequency wideband EBI applications because of higher values of the output impedance than 100k? at 1MHz are obtained. Furthermore, an enhancement of the basic design, using a current conveyor as a first stage, is proposed, studied and implemented.

  6. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  7. PKC? maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback.

    PubMed

    Kim, R-K; Suh, Y; Hwang, E; Yoo, K-C; Choi, K-S; An, S; Hwang, S-G; Kim, I-G; Kim, M-J; Lee, H-J; Lee, S-J

    2015-11-12

    The existence of tumor initiating cells (TICs) has been emerged as a good therapeutic target for treatment of glioblastoma that is the most aggressive brain tumor with poor prognosis. However, the molecular mechanisms that regulate the phenotypes of TICs still remain obscure. In this study, we found that PKC?, among PKC isoforms, is preferentially activated in TICs and acts as a critical regulator for the maintenance of TICs in glioblastoma. By modulating the expression levels or activity of PKC?, we demonstrated that PKC? promotes self-renewal and tumorigenic potentials of TICs. Importantly, we found that the activation of PKC? persists in TICs through an autocrine loop with positive feedback that was driven by PKC?/STAT3/IL-23/JAK signaling axis. Moreover, for phenotypes of TICs, we showed that PKC? activates AKT signaling component by phosphorylation specifically on Ser473. Taken together, we proposed that TICs regulate their own population in glioblastoma through an autocrine loop with positive feedback that is driven by PKC?-dependent secretion of cytokines. PMID:25746003

  8. Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop

    NASA Astrophysics Data System (ADS)

    Manzaneque, T.; Hernando-García, J.; Ababneh, A.; Schwarz, P.; Seidel, H.; Schmid, U.; Sánchez-Rojas, J. L.

    2011-02-01

    An all-electrical velocity feedback control to enhance the quality factor of piezoelectric aluminium nitride (AlN)-based microcantilevers and microbridges was implemented. Two alternatives to obtain a velocity-proportional signal were demonstrated depending on the top electrode configuration. For a straightforward electrode design in one-port configuration (i.e. self-actuation and self-sensing), a velocity signal, proportional to the piezoelectric current, was used in the feedback loop by cancelling out the dielectric current electronically. For top electrodes allowing a two-port configuration (i.e. one for actuation and one for sensing), the piezoelectric current is directly extracted and its relationship with velocity is analysed taking the symmetry of the modal shape into account. Standard operational amplifier-based configurations for the feedback circuits were implemented on a printed circuit board. Quality factors were determined from the transient electrical response of the devices. Comparable results were obtained from the displacement spectrum applying a laser Doppler vibrometer. Quality factors as high as 2 × 105, corresponding to an enhancement factor of about 200, were achieved in air for the lowest gain margin achievable before the circuit becomes unstable, making this kind of device more competitive for mass sensor applications due to enhanced spectral resolution.

  9. Activation of TGF-?1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    PubMed

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-?1 (TGF-?1) initiates HBV-associated fibrogenesis. The mechanism of TGF-?1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-?1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-?1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-?1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-?1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-?1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated ?-SMA, collagen I, and TGF-?1 synthesis. These findings indicate that TGF-?1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-? receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis. PMID:26559755

  10. Activation of TGF-?1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis

    PubMed Central

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-?1 (TGF-?1) initiates HBV-associated fibrogenesis. The mechanism of TGF-?1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-?1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-?1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-?1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-?1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-?1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated ?-SMA, collagen I, and TGF-?1 synthesis. These findings indicate that TGF-?1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-? receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis. PMID:26559755

  11. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  12. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  13. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  14. Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons

    PubMed Central

    Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas

    2012-01-01

    We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887

  15. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  16. Sand and sandbar willow: a feedback loop amplifies environmental sensitivity at the riparian interface.

    PubMed

    Rood, Stewart B; Goater, Lori A; Gill, Karen M; Braatne, Jeffrey H

    2011-01-01

    Riparian or streamside zones support dynamic ecosystems with three interacting components: flowing water, alluvia (river-transported sediments), and vegetation. River damming influences all three, and subsequent responses can provide insight into underlying processes. We investigated these components along the 315-km Hells Canyon corridor of the Snake River that included reaches upstream, along, and downstream from three large dams and reservoirs, and along the Salmon River, a free-flowing tributary. Sandbar willow was generally the woody plant at the lowest bank position and was abundant along upstream reaches (53, 45, 67% of transects), sparse along reservoirs (11, 12, 0%), and sparse along the Snake River downstream (11%). It was prolific along the undammed Salmon River (83%) and intermediate along the Snake River below the Salmon inflow (27%), indicating partial recovery with the contribution of water and sediments. Along these rivers, it commonly occurred on sandy substrates, especially on shallow-sloped surfaces, and emerged from interstitial sands between cobbles on steeper surfaces. However, along the Snake River below the dams, sandbars have eroded and willows were sparse on remnant, degrading sand surfaces. We conclude that a feedback loop exists between sands and sandbar willow. Sand favors willow colonization and clonal expansion, and reciprocally the extensively branched willows create slack-water zones that protect and trap sands. This feedback may sustain surface sands and sandbar willows along free-flowing river systems and it amplifies their mutual vulnerability to river damming. Following damming, sediment-depleted water is released downstream, eroding surface sands and reducing willow colonization and expansion. With willow decline, sands are further exposed and eroded, compounding these impacts. From this feedback, we predict the coordinated depletion of surface sands and riparian willows along dammed rivers throughout the Northern Hemisphere. PMID:20803218

  17. Applying Marine Habitat Data to Fishery Management on the US West Coast: Initiating a Policy-Science Feedback Loop

    E-print Network

    Goldfinger, Chris

    439 Applying Marine Habitat Data to Fishery Management on the US West Coast: Initiating a Policy., and Burns, R.W., 2007, Applying marine habitat data to fishery management on the US west coast: Initiating a policy-science feedback loop, in Todd, B.J., and Greene, H.G., eds., Mapping the Seafloor for Habitat

  18. Asymmetrisation of the profile of a thin dynamic holographic grating in a TV-locked optical feedback loop

    SciTech Connect

    Venediktov, Vladimir Yu; Ivanova, Natalya L; Freigang, N N; Laskin, V A

    2009-10-31

    A system for recording a dynamic holographic grating in an optically addressed liquid-crystal spatial light modulator is studied. The system provides the asymmetrisation of the grating profile by using a TV-locked optical feedback loop (nonlinear or adaptive interferometer). (laser applications and other topics in quantum electronics)

  19. A Reduced Model Clarifies the Role of Feedback Loops and Time Delays in the Drosophila Circadian Oscillator

    E-print Network

    Byrne, John H.

    Circadian rhythms reflect oscillating expression of genes, one or a few of which act as clock components of gene expres- sion. Several simpler models have also been proposed to describe circadian rhythmA Reduced Model Clarifies the Role of Feedback Loops and Time Delays in the Drosophila Circadian

  20. A Positive Autoregulatory BDNF Feedback Loop via C/EBP? Mediates Hippocampal Memory Consolidation

    PubMed Central

    Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella

    2014-01-01

    Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein ? (C/EBP?) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBP? expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBP? and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292

  1. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence

    PubMed Central

    Gamba, Pamela; Jonker, Martijs J.; Hamoen, Leendert W.

    2015-01-01

    Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits in order to obtain a bimodal response. A classical model of bimodal differentiation is the activation of genetic competence in Bacillus subtilis. The competence transcription factor ComK activates transcription of its own gene, and an intricate regulatory network controls the switch to competence and ensures its reversibility. However, it is noise in ComK expression that determines which cells activate the ComK autostimulatory loop and become competent for genetic transformation. Despite its important role in bimodal gene expression, noise remains difficult to investigate due to its inherent stochastic nature. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators to screen for possible factors that affect noise. This led to the identification of a novel protein Kre (YkyB) that controls the bimodal regulation of ComK. Interestingly, Kre appears to modulate the induction of ComK by affecting the stability of comK mRNA. The protein influences the expression of many genes, however, Kre is only found in bacteria that contain a ComK homologue and, importantly, kre expression itself is downregulated by ComK. The evolutionary significance of this new feedback loop for the reduction of transcriptional noise in comK expression is discussed. Our findings show the importance of mRNA stability in bimodal regulation, a factor that requires more attention when studying and modelling this non-deterministic developmental mechanism. PMID:26110430

  2. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  3. Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK

    SciTech Connect

    Lee, S.; Gildemeister, J.M.; Holmes, W.; Lee, A.T.; Richards, P.L.

    1998-06-01

    We present an experimental study of a composite voltage-biased superconducting bolometer (VSB). The tested VSB consists of a Ti-film superconducting thermometer ( T{sub c}{approximately}375 mK) on a Si substrate suspended by NbTi superconducting leads. A resistor attached to the substrate provides calibrated heat input into the bolometer. The current through the bolometer is measured with a superconducting quantum interference device ammeter. Strong negative electrothermal feedback fixes the bolometer temperature at T{sub c} and reduces the measured response time from 2.6 s to 13 ms. As predicted, the measured current responsivity of the bolometer is equal to the inverse of the bias voltage. A noise equivalent power of 5{times}10{sup {minus}17} W/{radical}()Hz was measured for a thermal conductance G{approximately}4.7{times}10{sup {minus}10} W/K, which is consistent with the expected thermal noise. Excess noise was observed for bias conditions for which the electrothermal feedback strength was close to maximum. {copyright} 1998 Optical Society of America

  4. Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops.

    PubMed

    Liu, Jie; Guo, Nan; Li, Zhaohui; Yu, Changyuan; Lu, Chao

    2013-11-01

    A microwave photonic filter with the highest reported quality factor (Q) value of 4895.31 is proposed and experimentally demonstrated by using two cascaded infinite impulse response (IIR) filters. Each IIR filter comprises both optical and electronic signals in a feedback loop and thus the loop length can be reduced without the need to consider the light coherence length. The Vernier effect enables a significant improvement of the free spectral ranges and Q values of the cascaded filter. The Q value of the proposed microwave photonic filter can be changed when the loop lengths of two cascaded filters are carefully adjusted. In addition, for a fixed Q, the frequency response of the filter can also be tuned by adjusting the bias of the Mach-Zehnder modulator in each loop. PMID:24177079

  5. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping

    SciTech Connect

    Iizuka, Katsumi; Horikawa, Yukio

    2008-09-12

    BHLHB2/DEC1 is a transcription factor implicated in cell proliferation, apoptosis, and metabolism, and is also known to play an important role in the regulation of the mammalian circadian rhythm. However, its precise role in metabolism remains unclear. We investigated the link between BHLHB2 and ChREBP, a glucose-activated transcription factor involved in the regulation of lipogenesis. Glucose stimulation and overexpression of dominant active ChREBP induced Bhlhb2 mRNA expression in rat hepatocytes. Deletion studies showed that ChoRE (-160 to -143 bp) in the mouse Bhlhb2 promoter region is functional in vivo. Overexpression of BHLHB2 inhibited glucose and ChREBP-mediated induction of rat Fasn and liver pyruvate kinase (Lpk) mRNA. ChIP assay demonstrated that BHLHB2 bound to ChoRE in the Fasn, Lpk, and Bhlhb2 promoter regions in vivo. In conclusion, BHLHB2 and ChREBP constitute a novel feedback loop involved in the regulation of lipogenesis.

  6. Casein kinase 1?–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1? (CK1?), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1? enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1?, as depletion of CK1? reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1? protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1? increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1? inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1?-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  7. Retinoic Acid Regulation of the Mesp-Ripply feedback loop during Vertebrate Segmental Patterning

    PubMed Central

    Moreno, Tanya A.; Jappelli, Roberto; Belmonte, Juan Carlos Izpisúa; Kintner, Chris

    2015-01-01

    The Mesp bHLH genes play a conserved role during segmental patterning of the mesoderm in the vertebrate embryo by specifying segmental boundaries and anteroposterior (A-P) segmental polarity. Here we use a xenotransgenic approach to compare the transcriptional enhancers that drive expression of the Mesp genes within segments of the presomitic mesoderm (PSM) of different vertebrate species. We find that the genomic sequences upstream of the mespb gene in the pufferfish Takifugu rubripes (Tr-mespb) are able to drive segmental expression in transgenic Xenopus embryos while those from the Xenopus laevis mespb (Xl-mespb) gene drive segmental expression in transgenic zebrafish. In both cases, the anterior segmental boundary of transgene expression closely matches the expression of the endogenous Mesp genes, indicating that many inputs into segmental gene expression are highly conserved. By contrast, we find that direct retinoic acid (RA) regulation of endogenous Mesp gene expression is variable amongst vertebrate species. Both Tr-mespb and Xl-mespb are directly upregulated by RA, through a complex, distal element. By contrast, RA represses the zebrafish Mesp genes. We show that this repression is mediated, in part, by RA-mediated activation of the Ripply genes, which together with Mesp genes form an RA-responsive negative feedback loop. These observations suggest that variations in a direct response to RA input may allow for changes in A-P patterning of the segments in different vertebrate species. PMID:18261720

  8. Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop

    PubMed Central

    Chakraborty, Riddhita; Li, Ying; Zhou, Lei; Golic, Kent G.

    2015-01-01

    The tumor suppressor P53 is a critical mediator of the apoptotic response to DNA double-strand breaks through the transcriptional activation of pro-apoptotic genes. This mechanism is evolutionarily conserved from mammals to lower invertebrates, including Drosophila melanogaster. P53 also transcriptionally induces its primary negative regulator, Mdm2, which has not been found in Drosophila. In this study we identified the Drosophila gene companion of reaper (corp) as a gene whose overexpression promotes survival of cells with DNA damage in the soma but reduces their survival in the germline. These disparate effects are shared by p53 mutants, suggesting that Corp may be a negative regulator of P53. Confirming this supposition, we found that corp negatively regulates P53 protein level. It has been previously shown that P53 transcriptionally activates corp; thus, Corp produces a negative feedback loop on P53. We further found that Drosophila Corp shares a protein motif with vertebrate Mdm2 in a region that mediates the Mdm2:P53 physical interaction. In Corp, this motif mediates physical interaction with Drosophila P53. Our findings implicate Corp as a functional analog of vertebrate Mdm2 in flies. PMID:26230084

  9. iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia.

    PubMed

    Chikh, Anissa; Matin, Rubeta N H; Senatore, Valentina; Hufbauer, Martin; Lavery, Danielle; Raimondi, Claudio; Ostano, Paola; Mello-Grand, Maurizia; Ghimenti, Chiara; Bahta, Adiam; Khalaf, Sahira; Akgül, Baki; Braun, Kristin M; Chiorino, Giovanna; Philpott, Michael P; Harwood, Catherine A; Bergamaschi, Daniele

    2011-10-19

    iASPP, an inhibitory member of the ASPP (apoptosis stimulating protein of p53) family, is an evolutionarily conserved inhibitor of p53 which is frequently upregulated in human cancers. However, little is known about the role of iASPP under physiological conditions. Here, we report that iASPP is a critical regulator of epithelial development. We demonstrate a novel autoregulatory feedback loop which controls crucial physiological activities by linking iASPP to p63, via two previously unreported microRNAs, miR-574-3p and miR-720. By investigating its function in stratified epithelia, we show that iASPP participates in the p63-mediated epithelial integrity program by regulating the expression of genes essential for cell adhesion. Silencing of iASPP in keratinocytes by RNA interference promotes and accelerates a differentiation pathway, which also affects and slowdown cellular proliferation. Taken together, these data reveal iASPP as a key regulator of epithelial homeostasis. PMID:21897369

  10. Caspase-1 activity affects AIM2 speck formation/stability through a negative feedback loop

    PubMed Central

    Juruj, C.; Lelogeais, V.; Pierini, R.; Perret, M.; Py, B. F.; Jamilloux, Y.; Broz, P.; Ader, F.; Faure, M.; Henry, T.

    2013-01-01

    The inflammasome is an innate immune signaling platform leading to caspase-1 activation, maturation of pro-inflammatory cytokines and cell death. Recognition of DNA within the host cytosol induces the formation of a large complex composed of the AIM2 receptor, the ASC adaptor and the caspase-1 effector. Francisella tularensis, the agent of tularemia, replicates within the host cytosol. The macrophage cytosolic surveillance system detects Francisella through the AIM2 inflammasome. Upon Francisella novicida infection, we observed a faster kinetics of AIM2 speck formation in ASCKO and Casp1KO as compared to WT macrophages. This observation was validated by a biochemical approach thus demonstrating for the first time the existence of a negative feedback loop controlled by ASC/caspase-1 that regulates AIM2 complex formation/stability. This regulatory mechanism acted before pyroptosis and required caspase-1 catalytic activity. Our data suggest that sublytic caspase-1 activity could delay the formation of stable AIM2 speck, an inflammasome complex associated with cell death. PMID:23630667

  11. Feedback.

    ERIC Educational Resources Information Center

    Stenstrom, Anna-Brita

    A study of feedback in conversational question-response exchanges focused on the questioner's feedback to the respondent. It examined three types of "followup" moves: the ordinary type revealing the questioner's attitude to the response and closing the exchange; the type signaling the questioner's reaction to the response and inviting further…

  12. On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model

    NASA Astrophysics Data System (ADS)

    Shen, B.-W.

    2014-04-01

    In this study, we discuss the role of the nonlinear terms and linear (heating) term in the energy cycle of the three-dimensional (X-Y-Z) non-dissipative Lorenz model (3D-NLM). (X, Y, Z) represent the solutions in the phase space. We first present the closed-form solution to the nonlinear equation d2 X/d?2+ (X2/2)X = 0, ? is a non-dimensional time, which was never documented in the literature. As the solution is oscillatory (wave-like) and the nonlinear term (X2) is associated with the nonlinear feedback loop, it is suggested that the nonlinear feedback loop may act as a restoring force. We then show that the competing impact of nonlinear restoring force and linear (heating) force determines the partitions of the averaged available potential energy from Y and Z modes, respectively, denoted as APEY and APEZ. Based on the energy analysis, an energy cycle with four different regimes is identified with the following four points: A(X, Y) = (0,0), B = (Xt, Yt), C = (Xm, Ym), and D = (Xt, -Yt). Point A is a saddle point. The initial perturbation (X, Y, Z) = (0, 1, 0) gives (Xt, Yt) = ( 2?r , r) and (Xm, Ym) = (2 ?r , 0). ? is the Prandtl number, and r is the normalized Rayleigh number. The energy cycle starts at (near) point A, A+ = (0, 0+) to be specific, goes through B, C, and D, and returns back to A, i.e., A- = (0,0-). From point A to point B, denoted as Leg A-B, where the linear (heating) force dominates, the solution X grows gradually with { KE↑, APEY↓, APEZ↓}. KE is the averaged kinetic energy. We use the upper arrow (↑) and down arrow (↓) to indicate an increase and decrease, respectively. In Leg B-C (or C-D) where nonlinear restoring force becomes dominant, the solution X increases (or decreases) rapidly with KE↑, APEY↑, APEZ↓ (or KE↓, APEY↓, APEZ↑). In Leg D-A, the solution X decreases slowly with {KE↓, APEY↑, APEZ↑ }. As point A is a saddle point, the aforementioned cycle may be only half of a "big" cycle, displaying the wing pattern of a glasswinged butterfly, and the other half cycle is antisymmetric with respect to the origin, namely B = (-Xt, -Yt), C = (-Xm, 0), and D = (-Xt, Yt).

  13. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells.

    PubMed

    Saha, Shilpi; Bhattacharjee, Pushpak; Mukherjee, Shravanti; Mazumdar, Minakshi; Chakraborty, Samik; Khurana, Anil; Nayak, Debadatta; Manchanda, Rajkumar; Chakrabarty, Rathin; Das, Tanya; Sa, Gaurisankar

    2014-04-01

    The adverse side-effects associated with chemotherapy during cancer treatment have shifted considerable focus towards therapies that are targeted but devoid of toxic side-effects. In the present study, the antitumorigenic activity of thuja, the bioactive derivative of the medicinal plant Thuja occidentalis, was evaluated, and the molecular mechanisms underlying thuja-induced apoptosis of functional p53-expressing mammary epithelial carcinoma cells were elucidated. Our results showed that thuja successfully induced apoptosis in functional p53-expressing mammary epithelial carcinoma cells. Abrogation of intracellular reactive oxygen species (ROS), prevention of p53-activation, knockdown of p53 or inhibition of its functional activity significantly abridged ROS generation. Notably, under these conditions, thuja-induced breast cancer cell apoptosis was reduced, thereby validating the existence of an ROS-p53 feedback loop. Elucidating this feedback loop revealed bi-phasic ROS generation as a key mediator of thuja-induced apoptosis. the first phase of ROS was instrumental in ensuring activation of p53 via p38MAPK and its nuclear translocation for transactivation of Bax, which induced a second phase of mitochondrial ROS to construct the ROS-p53 feedback loop. Such molecular crosstalk induced mitochondrial changes i) to maintain and amplify the thuja signal in a positive self-regulatory feedback manner; and ii) to promote the mitochondrial death cascade through cytochrome c release and caspase-driven apoptosis. These results open the horizon for developing a targeted therapy by modulating the redox status of functional p53-expressing mammary epithelial carcinoma cells by thuja. PMID:24482097

  14. NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production

    PubMed Central

    Soyano, Takashi; Hirakawa, Hideki; Sato, Shusei; Hayashi, Makoto; Kawaguchi, Masayoshi

    2014-01-01

    Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell–cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root–shoot communication to control the number of root nodules, root lateral organs that harbor symbiotic nitrogen-fixing bacteria known as rhizobia. This feedback system, known as autoregulation of nodulation (AON), consists of two long-distance mobile signals: root-derived and shoot-derived signals. Two Lotus japonicus CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE)-related small peptides, CLE ROOT SIGNAL1 (CLE-RS1) and CLE-RS2, function as root-derived signals and are perceived by a shoot-acting AON factor, the HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor protein, an ortholog of Arabidopsis CLAVATA1, which is responsible for shoot apical meristem homeostasis. This peptide–receptor interaction is necessary for systemic suppression of nodulation. How the onset of nodulation activates AON and how optimal nodule numbers are maintained remain unknown, however. Here we show that an RWP-RK–containing transcription factor, NODULE INCEPTION (NIN), which induces nodule-like structures without rhizobial infection when expressed ectopically, directly targets CLE-RS1 and CLE-RS2. Roots constitutively expressing NIN systemically repress activation of endogenous NIN expression in untransformed roots of the same plant in a HAR1-dependent manner, leading to systemic suppression of nodulation and down-regulation of CLE expression. Our findings provide, to our knowledge, the first molecular evidence of a long-distance autoregulatory negative-feedback loop that homeostatically regulates nodule organ formation. PMID:25246578

  15. Stabilization of polymer electrolyte fuel cell voltage with reduced-order Lyapunov exponent feedback and corrective pressure perturbations

    NASA Astrophysics Data System (ADS)

    Burkholder, Michael B.; Litster, Shawn

    2015-02-01

    Polymer electrolyte fuel cell (PEFC) system efficiency can be decreased by instabilities resulting from the accumulation of water in the cathode as well as by excessive air delivery parasitic loads used to prevent liquid water accumulation. In this work, we present a new instability detection diagnostic tailored for the nonlinear and chaotic dynamics of PEFC operation with multi-phase flow in the gas channels. The instability statistic, the Lyapunov exponent of the reduced-order voltage return map, ?, is a measure of the exponential rate of divergence in the dynamic voltage signal measured from the fuel cell. A key advantage of this statistic for embedded control is that it is a self-referencing measure of the system stability for feedback and is not based on an a priori performance threshold. Our experiments demonstrate that the Lyapunov exponent statistic provides a warning typically 100 s in advance of significant power loss. Using this statistic as a control diagnostic, a new control scheme that detects PEFC instability in real time and mitigates it with pressure perturbations was applied experimentally to several fuel cell systems, including one that simulates stack operation. Our control scheme resulted in increased PEFC power, decreased cathode flooding leading to a lower parasitic load for air delivery, and stable PEFC performance.

  16. Closing the Feedback Loop: An Interactive Voice Response System to Provide Follow-up and Feedback in Primary Care Settings

    PubMed Central

    Willig, James H.; Krawitz, Marc; Panjamapirom, Anantachai; Ray, Midge N.; Nevin, Christa R.; English, Thomas M.; Cohen, Mark P.; Berner, Eta S.

    2013-01-01

    In primary care settings, follow-up regarding the outcome of acute outpatient visits is largely absent. We sought to develop an automated interactive voice response system (IVRS) for patient follow-up with feedback to providers capable of interfacing with multiple pre-existing electronic medical records (EMRs). A system was designed to extract data from EMRs, integrate with the IVRS, call patients for follow-up, and provide a feedback report to providers. Challenges during the development process were analyzed and summarized. The components of the technological solution and details of its implementation are reported. Lessons learned include: (1) Modular utilization of system components is often needed to adapt to specific clinic workflow and patient population needs (2) Understanding the local telephony environment greatly impacts development and is critical to success, and (3) Ample time for development of the IVRS questionnaire (mapping all branching paths) and speech recognition tuning (sensitivity, use of barge-in tuning, use of “known voice”) is needed. With proper attention to design and development, modular follow-up and feedback systems can be integrated into existing EMR systems providing the benefits of IVRS follow-up to patients and providers across diverse practice settings. PMID:23340825

  17. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-?B signaling pathway

    SciTech Connect

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-?B pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-?B pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-?B) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-?B pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-?B pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  18. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK-NF-?B signaling pathway.

    PubMed

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-?B) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-?B pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK-NF-?B pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma. PMID:24582558

  19. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid.

    PubMed

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M

    2015-12-18

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity. PMID:26511318

  20. An affinity-effect relationship for microbial communities in plant-soil feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-soil feedback involving soil microorganisms can regulate plant populations. To participate in plant-soil feedback, microorganisms must display an affinity for plant species, and they must produce consistent effects on plant growth. We tested the validity and strength of microbial affinity-effe...

  1. Examining the feedback signals used in closed-loop control of intense laser fragmentation of CO{sup +}

    SciTech Connect

    Wells, E.; Todt, Michael; Jochim, Bethany; Gregerson, Neal; Averin, R.; Wells, Nathan G.; Smolnisky, N. L.; Jastram, Nathan; McKenna, J.; Sayler, A. M.; Johnson, Nora G.; Zohrabi, M.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.

    2009-12-15

    A closed-loop feedback system is used to determine the optimal pulse shapes for manipulating the branching ratio of carbon monoxide following ionization by an intense laser pulse. We focus on manipulating the C{sup +}+O and C+O{sup +} branching ratios of excited states of transient CO{sup +}. The feedback control system consists of a high resolution time-of-flight spectrometer coupled via a genetic feedback algorithm to an acousto-optical programmable dispersive filter that is incorporated into the ultrafast laser system. Using the spectrometer resolution to distinguish dissociation pathways and select a specific pathway to drive the algorithm, we are able to demonstrate enhanced control of some fragmentation channels. Principal control analysis indicates that the more specific feedback results in numerically simpler optimal pulse shapes. The combination of a more specific target and reduction in pulse complexity could lead to more straightforward investigations of the control mechanism. Analysis of the pulse shapes in conjunction with measurement of the fragment kinetic energy release distributions obtained from the optimized laser pulses is used to probe the dissociative ionization mechanisms.

  2. In vivo argon laser vascular welding using thermal feedback: open and closed loop patency and collagen crosslinking

    SciTech Connect

    Small, W., LLNL

    1997-02-28

    An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 {micro}m optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 C using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

  3. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  4. Adaptive Output Feedback Based on Closed-Loop Reference Models for Hypersonic Vehicles

    E-print Network

    Annaswamy, Anuradha M.

    2015-04-07

    This paper presents a new method of synthesizing an output feedback adaptive controller for a class of uncertain, non-square, multi-input multi-output systems that often occur in hypersonic vehicle models. The main challenge ...

  5. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop.

    PubMed

    Miles, Wayne O; Lepesant, Julie M J; Bourdeaux, Jessie; Texier, Manuela; Kerenyi, Marc A; Nakakido, Makoto; Hamamoto, Ryuji; Orkin, Stuart H; Dyson, Nicholas J; Di Stefano, Luisa

    2015-12-15

    The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies. PMID:26438601

  6. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.

    PubMed

    Feng, Qing; Snider, Lauren; Jagannathan, Sujatha; Tawil, Rabi; van der Maarel, Silvère M; Tapscott, Stephen J; Bradley, Robert K

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a muscular dystrophy caused by inefficient epigenetic repression of the D4Z4 macrosatellite array and somatic expression of the DUX4 retrogene. DUX4 is a double homeobox transcription factor that is normally expressed in the testis and causes apoptosis and FSHD when misexpressed in skeletal muscle. The mechanism(s) of DUX4 toxicity in muscle is incompletely understood. We report that DUX4-triggered proteolytic degradation of UPF1, a central component of the nonsense-mediated decay (NMD) machinery, is associated with profound NMD inhibition, resulting in global accumulation of RNAs normally degraded as NMD substrates. DUX4 mRNA is itself degraded by NMD, such that inhibition of NMD by DUX4 protein stabilizes DUX4 mRNA through a double-negative feedback loop in FSHD muscle cells. This feedback loop illustrates an unexpected mode of autoregulatory behavior of a transcription factor, is consistent with 'bursts' of DUX4 expression in FSHD muscle, and has implications for FSHD pathogenesis. PMID:25564732

  7. A positive feedback loop between Gli1 and tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma

    PubMed Central

    Shi, X; Zhan, X; Wu, J

    2015-01-01

    Sonic hedgehog (Shh) signaling is critical during normal development, and the abnormal activation of the Shh pathway is involved in many human cancers. As a target gene of the Shh pathway and as a transcription activator downstream of Shh signaling, Gli1 autoregulates and increases Shh signaling output. Gli1 is one of the key oncogenic factors in Shh-induced tumors such as medulloblastoma. Gli1 is posttranslationally modified, but the nature of the active form of Gli1 was unclear. Here we identified a Src family kinase Hck as a novel activator of Gli1. In Shh-responsive NIH3T3 cells, Hck interacts with Gli1 and phosphorylates multiple tyrosine residues in Gli1. Gli1-mediated target gene activation was significantly enhanced by Hck with both kinase activity-dependent and -independent mechanisms. We provide evidence showing that Hck disrupts the interaction between Gli1 and its inhibitor Sufu. In both NIH3T3 cells and cerebellum granule neuron precursors, the Hck gene is also a direct target of Gli1. Therefore, Gli1 and Hck form a positive feedback loop that amplifies Shh signaling transcription outcomes. In Shh-induced medulloblastoma, Hck is highly expressed and Gli1 is tyrosine phosphorylated, which may enhance the tumorigenic effects of the Gli1 oncogene. RNAi-mediated inhibition of Hck expression significantly repressed medulloblastoma cell growth. In summary, a novel positive feedback loop contributes to maximal Gli1 oncogenic activities in Shh-induced tumors such as medulloblastoma. PMID:26619401

  8. Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling

    PubMed Central

    Osorio-Zambrano, William F.; Davey, Scott

    2015-01-01

    Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation. PMID:26658951

  9. GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop.

    PubMed

    Giacco, Ferdinando; Du, Xueliang; Carratú, Anna; Gerfen, Gary J; D'Apolito, Maria; Giardino, Ida; Rasola, Andrea; Marin, Oriano; Divakaruni, Ajit S; Murphy, Anne N; Shah, Manasi S; Brownlee, Michael

    2015-09-01

    The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9-36)(amide) reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9-36)(amide), for the prevention and treatment of diabetes complications. PMID:26294429

  10. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    SciTech Connect

    Kido, Tatsuo; Lau, Yun-Fai Chris

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.

  11. Effect of Abscisic Acid on the Gain of the Feedback Loop Involving Carbon Dioxide and Stomata 1

    PubMed Central

    Dubbe, Dean R.; Farquhar, Graham D.; Raschke, Klaus

    1978-01-01

    Gains of the feedback loops involving intercellular CO2 concentration on one hand, and CO2 assimilation and stomata on the other (= assimilation loop with gain [GA] and conductance loop with gain [Gg]) were determined in detached leaves of Amaranthus powelli S. Wats., Avena sativa L., Gossypium hirsutum L., Xanthium strumarium L., and Zea mays in the absence and presence of 10?5 m (±) abscisic acid (ABA) in the transpiration stream. Determinations were made for an ambient CO2 concentration of 300 microliters per liter. In the absence of ABA, stomata were insensitive to CO2 (Gg between 0.00 and ?0.02) in A. sativa, G. hirsutum, and X. strumarium, sensitive in A powelli (Gg = ?0.46), and very sensitive in Z. mays (Gg = ?3.6). Addition of ABA increased the absolute values of the gain of the conductance loop in A. powelli (Gg = ?2.0), G. hirsutum (Gg = ?0.31), and X. strumarium (Gg = ?1.14). Stomata closed completely in A. sativa. In Z. mays, Gg decreased after application of ABA to a value of ?0.86, but stomatal sensitivity to CO2 increased for intercellular CO2 concentrations < 100 microliters per liter. The gain of the assimilation loop increased after application of ABA in all cases, from values between 0.0 (A. powelli) and ?0.21 (Z. mays) in the absence of ABA to values between ?0.19 (A. powelli) and ?0.43 (Z. mays) in the presence of ABA. In none of the species examined did ABA affect the photosynthetic capacity of the leaves. The application of ABA caused stomatal narrowing which affected transpiration more than the assimilation of CO2. In the case of A. powelli the transpiration ratio decreased without a concomitant reduction of the assimilation rate. PMID:16660528

  12. BWeb Notes for Chapter 9: Information Feedback and Causal Loop Diagrams

    E-print Network

    Ford, Andrew

    , an increase in the loop gain leads to an increase in the frequency of the oscillations. · a model as the primary building blocks of influential structure. Mojtahedzadeh (2008) provides a comparison the PPM." A third approach is statistical sc

  13. Density-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae

    PubMed Central

    Farkas, Timothy E.; Montejo-Kovacevich, Gabriela

    2014-01-01

    Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation. PMID:25505057

  14. The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.

    PubMed

    Bacqué-Cazenave, Julien; Chung, Bryce; Cofer, David W; Cattaert, Daniel; Edwards, Donald H

    2015-03-15

    Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state. PMID:25552643

  15. Statistics of resonance fluorescence of a pair of atoms in a feedback loop

    SciTech Connect

    Tomilin, V. A. Il'ichev, L. V.

    2013-02-15

    The statistics of photoemission events of a pair of closely spaced two-level atoms is calculated in a classical light field whose phase is changed by {pi} after the detection of each spontaneous photon. This statistics is compared with the statistics in the case when the feedback is missing. In both cases, one can observe noticeable antibunching of photons in the range of parameters where no antibunching is observed in a single-atom system. The feedback substantially increases the antibunching. This effect manifests itself more strongly in relatively weak fields and for considerable frequency detunings.

  16. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, Rik W. A. A. (Schenectady, NY); King, Robert D. (Schenectady, NY); Sanza, Peter C. (Clifton Park, NY); Haefner, Kenneth B. (Schenectady, NY)

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  17. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  18. DEPENDENCE OF STEM CELL FATE IN ARABIDOPSIS ON A FEEDBACK LOOP REGULATED BY CLV3 ACTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of stem cells in plant meristems is governed by directional signalling systems that are regulated by negative feedback. In Arabidopsis, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell restricting pathway. We have used transgenic plants over-expressing CLV3 t...

  19. Effective Sensor Scheduling Schemes in a Sensor Network by Employing Feedback in the Communication Loop

    E-print Network

    Murray, Richard M.

    capa- bilities while simultaneously decreasing chip size and power consumption. The latter gave birth]. Many control applications now take advantage of sensor networks and the loops are closed via the network [3]. These types of control system are called a networked control systems (NCS). NCS provide many

  20. PIV wave propagation investigation of non-linear losses through 90 degree bends in a thermoacoustic engine's feedback loop

    NASA Astrophysics Data System (ADS)

    Wee, S. T.; Hann, D. B.; Abakr, Yousif Abdalla; Riley, P.

    2012-06-01

    Thermoacoustic engine technology has recently been applied to renewable energy to convert heat energy into acoustic energy for the purpose of electricity generation. One of the vital components of the engine is its feedback loop which is sensitive to geometrical changes that can cause system losses. We previously postulated that a critical Acoustic Dean Number exist above which the Acoustic Power Transmission Loss increases drastically for a wave propagating though a bend. This paper investigates the wave propagation through the bend using Particle Image Velocimetry(PIV). This technique has not been used in this field of investigation and allows the flow visualization as well as the planar velocity field measurement of the system. The PIV results confirmed earlier pressure measurements that a critical Dean number does exist, and describes visualizations of the flows causing the losses.

  1. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    E-print Network

    Gaspari, M

    2015-01-01

    Supermassive black hole accretion and feedback play central role in the evolution of galaxies, groups, and clusters. I review how AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion (CCA). In a turbulent and heated atmosphere, cold clouds and kpc-scale filaments condense out of the plasma via thermal instability and rain toward the black hole. In the nucleus, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation or mixing, boosting the accretion rate up to 100 times the Bondi rate. The rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. The AGN heating stifles the formation of multiphase gas and accretion, the feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, CCA creates a symbiotic link between the black hole and the whole host via a tight self-regulate...

  2. Transglutaminase II/MicroRNA-218/-181a Loop Regulates Positive Feedback Relationship between Allergic Inflammation and Tumor Metastasis*

    PubMed Central

    Eom, Sangkyung; Kim, Youngmi; Kim, Misun; Park, Deokbum; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2014-01-01

    The molecular mechanism of transglutaminase II (TGaseII)-mediated allergic inflammation remains largely unknown. TGaseII, induced by antigen stimulation, showed an interaction and co-localization with Fc?RI. TGaseII was necessary for in vivo allergic inflammation, such as triphasic cutaneous reaction, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. TGaseII was necessary for the enhanced metastatic potential of B16F1 melanoma cells by passive systemic anaphylaxis. TGaseII was shown to be a secreted protein. Recombinant TGaseII protein increased the histamine release and ?-hexosaminidase activity, and enhanced the metastatic potential of B16F1 mouse melanoma cells. Recombinant TGaseII protein induced the activation of EGF receptor and an interaction between EGF receptor and Fc?RI. Recombinant TGaseII protein displayed angiogenic potential accompanied by allergic inflammation. R2 peptide, an inhibitor of TGaseII, exerted negative effects on in vitro and in vivo allergic inflammation by regulating the expression of TGaseII and Fc?RI signaling. MicroRNA (miR)-218 and miR-181a, decreased during allergic inflammation, were predicted as negative regulators of TGaseII by microRNA array and TargetScan analysis. miR-218 and miR-181a formed a negative feedback loop with TGaseII and regulated the in vitro and in vivo allergic inflammation. TGaseII was necessary for the interaction between mast cells and macrophages during allergic inflammation. Mast cells and macrophages, activated during allergic inflammation, were responsible for the enhanced metastatic potential of tumor cells that are accompanied by allergic inflammation. In conclusion, the TGaseII/miR-218/-181a feedback loop can be employed for the development of anti-allergy therapeutics. PMID:25202021

  3. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach

    NASA Astrophysics Data System (ADS)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-06-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented and the parameterisation approach that would be taken in each case is discussed. Preliminary findings in the case studies lend support to the conceptual theories outlined in the framework. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to improve social-ecological systems modelling through better representation of human feedbacks on hydrological processes.

  4. MKK4/SEK1 Is Negatively Regulated through a Feedback Loop Involving the E3 Ubiquitin Ligase Itch*

    PubMed Central

    Ahn, Young-Ho; Kurie, Jonathan M.

    2009-01-01

    Cells exposed to environmental stress rapidly activate the MAPK cascade (MKKK/MKK/MAPK). The transient nature of stress signaling is a consequence of negative feedback signals that lead to kinase dephosphorylation, degradation, and sequestration, which have not been fully elucidated for MKK family members. Here, we investigated the signals that negatively regulate MKK4/SEK1, an upstream activator of the MAPKs JNK and p38/HOG1. Following exposure of cells to sorbitol, MKK4 underwent ubiquitination and degradation in a proteasome-dependent manner. MKK4 ubiquitination required JNK kinase activity. The JNK substrate Itch (a HECT domain-containing Nedd4-like ubiquitin protein ligase) bound to MKK4, ubiquitinated lysines 140 and 143, and promoted MKK4 degradation. Other E3 ligases within the MAPK modular complex did not ubiquitinate MKK4. These data suggest that MKK4 is negatively regulated through a feedback loop involving the E3 ubiquitin ligase Itch, which has a fundamental role in the mechanism that controls MKK4 protein levels. PMID:19737936

  5. Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop.

    PubMed

    Kiselev, Vladimir Yu; Juvin, Veronique; Malek, Mouhannad; Luscombe, Nicholas; Hawkins, Phillip; Novère, Nicolas Le; Stephens, Len

    2015-11-16

    PIP3 is synthesized by the Class I PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. PIP3-dependent modulation of mRNA accumulation is clearly important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to acute regulation by EGF, in the presence or absence of a PI3K? inhibitor, compare it to chronic activation of PI3K signalling by cancer-relevant mutations (isogenic cells expressing an oncomutant PI3K? allele or lacking the PIP3-phosphatase/tumour-suppressor, PTEN). Our results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signalling ('butterfly effect'), a much smaller number do so in a coherent fashion with the different PIP3 perturbations. This suggests a subset of more directly regulated mRNAs. We show that mRNAs respond differently to given aspects of PIP3 regulation. Some PIP3-sensitive mRNAs encode PI3K pathway components, thus suggesting a transcriptional feedback loop. We identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement. PMID:26464442

  6. Generation of a periodic sequence of powerful ultrashort pulses in a traveling wave tube with bleachable absorber in the feedback loop

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2015-09-01

    It is shown that a periodic series of ultrashort pulses can be formed in electron microwave generators with a bleachable absorber in the feedback loop. The peak power of such radiation is considerably higher than radiation power in stationary modes. The pulsed generation method is analogous to the method of passive synchronization of waves, which is widely used in laser physics.

  7. PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop

    PubMed Central

    Selitrennik, Michael; Lev, Sima

    2015-01-01

    The involvement of ErbB family members in breast cancer progression and metastasis has been demonstrated by many studies. However, the downstream effectors that mediate their migratory and invasive responses have not been fully explored. In this study, we show that the non-receptor tyrosine kinase PYK2 is a key effector of EGFR and HER2 signaling in human breast carcinoma. We found that PYK2 is activated by both EGF and heregulin (HRG) in breast cancer cells, and positively regulates EGF/HRG-induced cell spreading, migration and invasion. PYK2 depletion markedly affects ERK1/2 and STAT3 phosphorylation in response to EGF/HRG as well as to IL8 treatment. Importantly, PYK2 depletion also reduced EGF/HRG-induced MMP9 and IL8 transcription, while IL8 inhibition abrogated EGF-induced MMP9 transcription and attenuated cell invasion. IL8, which is transcriptionally regulated by STAT3 and induces PYK2 activation, prolonged EGF-induced PYK2, STAT3 and ERK1/2 phosphorylation suggesting that IL8 acts through an autocrine loop to reinforce EGF-induced signals. Collectively our studies suggest that PYK2 is a common downstream effector of ErbB and IL8 receptors, and that PYK2 integrates their signaling pathways through a positive feedback loop to potentiate breast cancer invasion. Hence, PYK2 could be a potential therapeutic target for a subset of breast cancer patients. PMID:26084289

  8. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells.

    PubMed

    Preca, Bogdan-Tiberius; Bajdak, Karolina; Mock, Kerstin; Sundararajan, Vignesh; Pfannstiel, Jessica; Maurer, Jochen; Wellner, Ulrich; Hopt, Ulrich T; Brummer, Tilman; Brabletz, Simone; Brabletz, Thomas; Stemmler, Marc P

    2015-12-01

    Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis. PMID:26077342

  9. A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias.

    PubMed

    Moretti, Francesca; Marinari, Barbara; Lo Iacono, Nadia; Botti, Elisabetta; Giunta, Alessandro; Spallone, Giulia; Garaffo, Giulia; Vernersson-Lindahl, Emma; Merlo, Giorgio; Mills, Alea A; Ballarò, Costanza; Alemà, Stefano; Chimenti, Sergio; Guerrini, Luisa; Costanzo, Antonio

    2010-05-01

    The human congenital syndromes ectrodactyly ectodermal dysplasia-cleft lip/palate syndrome, ankyloblepharon ectodermal dysplasia clefting, and split-hand/foot malformation are all characterized by ectodermal dysplasia, limb malformations, and cleft lip/palate. These phenotypic features are a result of an imbalance between the proliferation and differentiation of precursor cells during development of ectoderm-derived structures. Mutations in the p63 and interferon regulatory factor 6 (IRF6) genes have been found in human patients with these syndromes, consistent with phenotypes. Here, we used human and mouse primary keratinocytes and mouse models to investigate the role of p63 and IRF6 in proliferation and differentiation. We report that the DeltaNp63 isoform of p63 activated transcription of IRF6, and this, in turn, induced proteasome-mediated DeltaNp63 degradation. This feedback regulatory loop allowed keratinocytes to exit the cell cycle, thereby limiting their ability to proliferate. Importantly, mutations in either p63 or IRF6 resulted in disruption of this regulatory loop: p63 mutations causing ectodermal dysplasias were unable to activate IRF6 transcription, and mice with mutated or null p63 showed reduced Irf6 expression in their palate and ectoderm. These results identify what we believe to be a novel mechanism that regulates the proliferation-differentiation balance of keratinocytes essential for palate fusion and skin differentiation and links the pathogenesis of 2 genetically different groups of ectodermal dysplasia syndromes into a common molecular pathway. PMID:20424325

  10. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  11. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

  12. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.

    PubMed

    Brand, U; Fletcher, J C; Hobe, M; Meyerowitz, E M; Simon, R

    2000-07-28

    The fate of stem cells in plant meristems is governed by directional signaling systems that are regulated by negative feedback. In Arabidopsis thaliana, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell-restricting pathway. We used transgenic plants overexpressing CLV3 to show that meristem cell accumulation and fate depends directly on the level of CLV3 activity and that CLV3 signaling occurs exclusively through a CLV1/CLV2 receptor kinase complex. We also demonstrate that the CLV pathway acts by repressing the activity of the transcription factor WUSCHEL, an element of the positive, stem cell-promoting pathway. PMID:10915624

  13. PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock.

    PubMed

    Ruoff, Peter; Christensen, Melinda K; Sharma, Vijay K

    2005-11-01

    We have analysed a first-order kinetic representation of a interlocking-feedback loop model for the Drosophila circadian clock. In this model, the transcription factor Drosophila CLOCK (dCLK) which activates the clock genes period (per) and timeless (tim) is subjected to positive and negative regulations by the proteins 'PAR Domain Protein 1' (PDP1) and VRILLE (VRI), whose transcription is activated by dCLK. The PER/TIM complex binds to dCLK and in this way reduces the activity of dCLK. The results of our simulations suggest that the positive and negative feedback loops of Pdp1 and vri are essential for the overall oscillations. Although self sustained oscillations can be obtained without per/tim, the model shows that the PER/TIM complex plays an important role in amplification and stabilization of the oscillations generated by the Pdp1/vri positive/negative feedback loops. We further show that in contrast to a single (per/tim) negative feedback loop oscillator, the interlocking-feedback loop model can readily account for the effect of gene dosages of per, vri, and Pdp1 on the period length. Calculations of phase resetting on a temperature compensated version of the model shows good agreement with experimental phase response curves for high and low temperature pulses. Also, the partial losses of temperature compensation in perS and perL mutants can be described, which are related to decreased stabilities of the PER/TIM complex in perS and the stronger/more stable inhibitory complex between dCLK and PER/TIM in perL, respectively. The model shows (somewhat surprisingly) poor entrainment properties, especially under extended light/dark (L/D) cycles, which suggests that parts of the L/D tracking or sensing system are not well represented. PMID:15935389

  14. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    PubMed

    Moore, Richard; Ooi, Hsu Kiang; Kang, Taek; Bleris, Leonidas; Ma, Lan

    2015-12-01

    The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53. PMID:26642352

  15. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells

    PubMed Central

    Bleris, Leonidas; Ma, Lan

    2015-01-01

    The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53. PMID:26642352

  16. Physical Impacts on Ecological Processes Close Ecomorphodynamic Feedback Loops: Recent Examples

    NASA Astrophysics Data System (ADS)

    Murray, A. B.

    2014-12-01

    The effects that vegetation and animals can have on sediment transport and therefore landscape evolution have been recognized and studied for decades. However, the other half of the eco-morphodynamic feedback—the effects that landscape formation processes have on ecosystem processes—has received focus more recently. Only by studying the couplings in both directions between biological and physical processes simultaneously can we understand the mechanisms important in shaping many landscapes. Here I will illustrate this point with representative examples from recent literature. Although the two-way coupling is essential in landscapes as large and slowly changing as mountain ranges, coastal landscapes provide clear and instructive examples, largely because of the relatively short timescales for landscape/ecosystem evolution in many coastal environments.

  17. Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage

    NASA Astrophysics Data System (ADS)

    Che, Y. X.; Ong, H. S.; Lai, L. C.; Karuppiah, S.; Ong, X. J.; Do, N. Q.

    2013-06-01

    Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

  18. Actin-mediated feedback loops in B-cell receptor signaling

    PubMed Central

    Song, Wenxia; Liu, Chaohong; Seeley-Fallen, Margaret K.; Miller, Heather; Ketchum, Christina; Upadhyaya, Arpita

    2013-01-01

    Summary Upon recognizing cognate antigen, B cells mobilize multiple cellular apparatuses to propagate an optimal response. Antigen binding is transduced into cytoplasmic signaling events through B-cell antigen receptor (BCR)-based signalosomes at the B-cell surface. BCR signalosomes are dynamic and transient and are subsequently endocytosed for antigen processing. The function of BCR signalosomes is one of the determining factors for the fate of B cells: clonal expansion, anergy, or apoptosis. Accumulating evidence underscores the importance of the actin cytoskeleton in B-cell activation. We have begun to appreciate the role of actin dynamics in regulating BCR-mediated tonic signaling and the formation of BCR signalosomes. Our recent studies reveal an additional function of the actin cytoskeleton in the downregulation of BCR signaling, consequently contributing to the generation and maintenance of B-cell self-tolerance. In this review, we discuss how actin remodels its organization and dynamics in close coordination with BCR signaling and how actin remodeling in turn amplifies the activation and subsequent downregulation process of BCR signaling, providing vital feedback for optimal BCR activation. PMID:24117821

  19. High voltage DC power supply

    DOEpatents

    Droege, Thomas F. (Batavia, IL)

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  20. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  1. Demonstration and biological significance of a gastrin?P21?activated kinase 1 feedback loop in colorectal cancer cells

    PubMed Central

    Huynh, Nhi; Liu, Kevin H.; Yim, Mildred; Shulkes, Arthur; Baldwin, Graham S.; He, Hong

    2014-01-01

    Abstract Gastrins, including amidated gastrin17 and glycine?extended gastrin17, are important growth factors in colorectal cancer (CRC). The p21?activated kinase 1 (PAK1) plays key roles in cellular processes including proliferation, survival, and motility, and in cell transformation and tumor progression. PAK1 expression increases with the progression of CRC, and knockdown of PAK1 blocks CRC cell growth and metastasis both in vitro and in vivo. The aim of this study was to determine the interaction between PAK1 and gastrins in CRC cells. PAK1 expression and activation were assayed by Western blots, and concentrations of gastrin mRNA and peptides by real?time PCR and radioimmunoassay, respectively. Proliferation of CRC cells was measured by 3H?thymidine incorporation, and vascular endothelial growth factor (VEGF) secretion was measured by ELISA. Gastrins activated PAK1 via PI3K?dependent pathways. Activated PAK1 in turn mediated gastrin?stimulated activation of ??catenin and VEGF secretion in CRC cells, as knockdown of PAK1 blocked stimulation of these cellular processes by gastrins. Downregulation of gastrin reduced the expression and activity of PAK1, but in contrast there was a compensatory increase in gastrins either when PAK1 was downregulated, or after treatment with a PAK inhibitor. Our results indicate that PAK1 is required for the stimulation of CRC cells by gastrins, and suggest the existence of an inhibitory feedback loop by which PAK1 downregulates gastrin production in CRC cells. PMID:24963032

  2. Negative feedback loop between p66Shc and ZEB1 regulates fibrotic EMT response in lung cancer cells

    PubMed Central

    Li, X; Gao, D; Wang, H; Li, X; Yang, J; Yan, X; Liu, Z; Ma, Z

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) program is crucial for the epithelial cancer progression and fibrotic diseases. Our previous work has demonstrated that p66Shc, a focal adhesion-associated adaptor protein, is frequently downregulated in lung cancers and its depletion promotes metastasis behavior through anoikis resistance. However, mechanism underlying loss of p66Shc and EMT response is not fully understood. Here, we showed that p66Shc deficiency enhanced the expression of ZEB1, the known mesenchymal transcription factor and consequently increased Vimentin, and decreased epithelial markers of E-cadherin and ?-catenin. p66Shc depletion also increased cell invasion and migration. In addition, ChIP and luciferase assays showed that these effects were directly mediated by ZEB1 repression of p66Shc promoter. Thus, our findings define a critical role of p66Shc in the suppression of fibrotic EMT response with a negative feedback loop between p66Shc and ZEB1 in lung epithelial cancer cells. PMID:25837484

  3. Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop

    SciTech Connect

    Lai, Serene R.; Cunningham, Amanda P.; Huynh, Vu Q.; Andrews, Lucy G.; Tollefsbol, Trygve O. . E-mail: trygve@uab.edu

    2007-01-15

    The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the enzyme telomerase which is responsible for telomeric maintenance and extension. Using RNA interference to knock down hTERT mRNA expression, we provide evidence that hTERT exerts extra-telomeric effects on the cell cycle and on its own regulatory proteins, specifically: p53 and p21. We tested our hypothesis that hTERT regulates its own expression through effects on upstream regulatory genes using transformed human embryonic kidney (HEK 293) cells, p53 and p16 {sup INK4a} null human ovarian cancer SKOV-3 cells, and p53-null MDA-MB-157 human mammary cancer cells. In HEK 293 cells, hTERT knockdown resulted in elevated p53 and p21 transcription and a decrease in cellular proliferation. Similar results were observed in the MDA-MB-157 cell line where p21 was upregulated, correlating with cell growth inhibition. In contrast, we observed a decrease in expression of p21 in SKOV-3 cells with hTERT knockdown and cell growth appeared to be unaffected. These findings suggest that hTERT may be involved in a feedback loop system, thereby playing a role in its own regulation.

  4. INSM1 increases N-myc stability and oncogenesis via a positive-feedback loop in neuroblastoma.

    PubMed

    Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2015-11-01

    Insulinoma associated-1 (IA-1/INSM1) gene is exclusively expressed during early embryonic development, but has been found to be re-expressed at high levels in neuroendocrine tumors including neuroblastoma. Using over-expression and knockdown experiments in neuroblastoma cells, we showed that INSM1 is critical for cell proliferation, BME-coated invasion, and soft agar colony formation. Here, we identified INSM1 as a novel target gene activated by N-myc in N-myc amplified neuroblastoma cells. The Sonic hedgehog signaling pathway induced INSM1 by increasing N-myc expression. INSM1 activated PI3K/AKT/GSK3? pathways to suppress N-myc phosphorylation (Thr-58) and inhibited degradation of N-myc. Inversely, N-myc protein bound to the E2-box region of the INSM1 promoter and activated INSM1 expression. The invasion assay and the xenograft nude mouse tumor model revealed that the INSM1 factor facilitated growth and oncogenesis of neuroblastoma. The current data supports our hypothesis that a positive-feedback loop of sonic hedgehog signaling induced INSM1 through N-myc and INSM1 enhanced N-myc stability contributing to the transformation of human neuroblastoma. PMID:26456864

  5. Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling.

    PubMed

    Desforges, Michelle; Harris, Lynda K; Aplin, John D

    2015-01-01

    Elastin breakdown in the walls of uterine spiral arteries during early pregnancy facilitates their transformation into dilated, high-flow, low-resistance channels. Elastin-derived peptides (EDP) can influence cell migration, invasion and protease activity, and so we hypothesized that EDP released during elastolysis promote extravillous trophoblast (EVT) invasion and further elastin breakdown. Treatment of the trophoblast cell line SGHPL4 with the elastin-derived matrikine VGVAPG (1 ?g/ml) significantly increased total elastase activity, promoted migration in a wound healing assay and increased invasion through Matrigel-coated transwells compared with vehicle control (0.1% DMSO) or the scrambled sequence VVGPGA. Furthermore, treatment of first-trimester placental villous explants with this EDP significantly increased both the area of trophoblast outgrowth and distance of migration away from the villous tips. Primary first-trimester cytotrophoblast exposed to VGVAPG (1 ?g/ml) for 30 min showed increased phosphorylation of endothelial nitric oxide synthase and activation of the mitogen activated protein kinase pathway, events also associated with tumour cell migration and invasion. These in vitro observations suggest liberation of bioactive EDP during induction of elastolysis in the uterine spiral arteries may orchestrate a positive feedback loop that promotes EVT invasion and further elastin breakdown, contributing to the process of vascular remodelling. PMID:25245255

  6. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells

    PubMed Central

    Gao, Yuan; Wu, Fuju; Zhou, Jichun; Yan, Lei; Jurczak, Michael J.; Lee, Hui-Young; Yang, Lihua; Mueller, Martin; Zhou, Xiao-Bo; Dandolo, Luisa; Szendroedi, Julia; Roden, Michael; Flannery, Clare; Taylor, Hugh; Carmichael, Gordon G.; Shulman, Gerald I.; Huang, Yingqun

    2014-01-01

    The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells. PMID:25399420

  7. A Regulatory Feedback Loop between RpoS and SpoT Supports the Survival of Legionella pneumophila in Water

    PubMed Central

    Trigui, Hana; Dudyk, Paulina; Oh, Jinrok; Hong, Jong-In

    2014-01-01

    Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation. PMID:25416763

  8. DLK1 Regulates Whole-Body Glucose Metabolism: A Negative Feedback Regulation of the Osteocalcin-Insulin Loop.

    PubMed

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge; Karsenty, Gerard; Kassem, Moustapha

    2015-09-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed-forward loop between circulating osteoblast (OB)-derived undercarboxylated osteocalcin (Glu-OCN) and pancreatic ?-cell insulin; in turn, insulin favors osteocalcin (OCN) bioactivity. These data suggest the existence of a negative regulation of this cross talk between OCN and insulin. Recently, we identified delta like-1 (DLK1) as an endocrine regulator of bone turnover. Because DLK1 is colocalized with insulin in pancreatic ?-cells, we examined the role of DLK1 in insulin signaling in OBs and energy metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experienced significantly lower blood glucose levels than Glu-OCN-treated wild-type mice. The data suggest that Glu-OCN-controlled production of DLK1 by pancreatic ?-cells acts as a negative feedback mechanism to counteract the stimulatory effects of insulin on OB production of Glu-OCN, a potential mechanism preventing OCN-induced hypoglycemia. PMID:25918236

  9. PPAR{gamma} ligands suppress the feedback loop between E2F2 and cyclin-E1

    SciTech Connect

    Komatsu, Yoko; Ito, Ichiaki; Wayama, Mitsutoshi; Fujimura, Akiko; Akaogi, Kensuke; Machida, Hikaru; Nakajima, Yuka; Kuroda, Takao; Ohmori, Kazuji; Murayama, Akiko; Kimura, Keiji; Yanagisawa, Junn

    2008-05-23

    PPAR{gamma} is a nuclear hormone receptor that plays a key role in the induction of peroxisome proliferation. A number of studies showed that PPAR{gamma} ligands suppress cell cycle progression; however, the mechanism remains to be determined. Here, we showed that PPAR{gamma} ligand troglitazone inhibited G1/S transition in colon cancer cells, LS174T. Troglitazone did not affect on either expression of CDK inhibitor (p18) or Wnt signaling pathway, indicating that these pathways were not involved in the troglitazone-dependent cell cycle arrest. GeneChip and RT-PCR analyses revealed that troglitazone decreased mRNA levels of cell cycle regulatory factors E2F2 and cyclin-E1 whose expression is activated by E2F2. Down-regulation of E2F2 by troglitazone results in decrease of cyclin-E1 transcription, which could inhibit phosphorylation of Rb protein, and consequently evoke the suppression of E2F2 transcriptional activity. Thus, we propose that troglitazone suppresses the feedback loop containing E2F2, cyclin-E1, and Rb protein.

  10. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    PubMed Central

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBP?, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  11. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    SciTech Connect

    Garrison, Sean

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  12. MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc

    PubMed Central

    Aguda, Baltazar D.; Kim, Yangjin; Piper-Hunter, Melissa G.; Friedman, Avner; Marsh, Clay B.

    2008-01-01

    The transcription factors E2F and Myc participate in the control of cell proliferation and apoptosis, and can act as oncogenes or tumor suppressors depending on their levels of expression. Positive feedback loops in the regulation of these factors are predicted—and recently shown experimentally—to lead to bistability, which is a phenomenon characterized by the existence of low and high protein levels (“off” and “on” levels, respectively), with sharp transitions between levels being inducible by, for example, changes in growth factor concentrations. E2F and Myc are inhibited at the posttranscriptional step by members of a cluster of microRNAs (miRs) called miR-17-92. In return, E2F and Myc induce the transcription of miR-17-92, thus forming a negative feedback loop in the interaction network. The consequences of the coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop are analyzed using a mathematical model. The model predicts that miR-17-92 plays a critical role in regulating the position of the off–on switch in E2F/Myc protein levels, and in determining the on levels of these proteins. The model also predicts large-amplitude protein oscillations that coexist with the off steady state levels. Using the concept and model prediction of a “cancer zone,” the oncogenic and tumor suppressor properties of miR-17-92 is demonstrated to parallel the same properties of E2F and Myc. PMID:19066217

  13. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is persistent and leads to many no-data cells in the satellite products. The Rijnland area is a low-lying area with tight water system control. The satellite data is used as input in a SIMGRO model, a spatially distributed hydrological model that is able to handle the controlled water system and that is suitable for the low-lying areas in the Netherlands. The application in the Rijnland area gives overall a good result of total discharge. By using the method, the hydrological model is improved in term of spatial hydrological state, where the original model is only calibrated to discharge in one location. [1] Alexandridis, T.K., Cherif, I., Chemin, Y., Silleos, G.N., Stavrinos, E. & Zalidis, G.C. (2009). Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas. Remote Sensing. 1

  14. MicroRNA-155-IFN-? Feedback Loop in CD4+T Cells of Erosive type Oral Lichen Planus

    PubMed Central

    Hu, Jing-Yu; Zhang, Jing; Ma, Jing-Zhi; Liang, Xue-Yi; Chen, Guan-Ying; Lu, Rui; Du, Ge-Fei; Zhou, Gang

    2015-01-01

    Oral lichen planus (OLP) is a T cell-mediated immune disorder, and we have indicated a Th1-dominated immune response in OLP. MicroRNA-155 (miR-155) could promote Th1 cells polarization. The present study aims to determine the role of miR-155 in immune response of OLP. The expression of miR-155 and the target mRNA was tested by Real-Time PCR. The serum levels of IL-2, 4, 10 and IFN-? were examined with ELISA. Furthermore, in vitro study was built to observe the function of miR-155 in erosive-type OLP (EOLP). Finally, we determined the expression and correlation of miR-155 and SOCS1 in EOLP CD4+ T cells. The results showed miR-155 was high related with the disease severities. Besides, serum IFN-? was specifically increased in EOLP group, while IL-4 was decreased. In vitro studies showed miR-155 could reinforce IFN-? signal transducer, and the induction of IFN-? could also promote miR-155 expression in EOLP CD4+ T cells. In addition, miR-155 levels were negatively related with SOCS1 mRNA expression in EOLP CD4+ T cells. Our study revealed a positive miR-155- IFN-? feedback loop in EOLP CD4+ T cell, which might contribute to the Th1-dominated immune response. Furthermore, miR-155 could be used for the evaluation and treatment of OLP. PMID:26594049

  15. Multiscale modeling of tissue-engineered fat: is there a deformation-driven positive feedback loop in adipogenesis?

    PubMed

    Shoham, Naama; Mor-Yossef Moldovan, Lisa; Benayahu, Dafna; Gefen, Amit

    2015-04-01

    Mechanotransduction plays a role in adipose tissues by transducing the environmental mechanical signals. It is recognized that dynamic or cyclic mechanical strains suppress adipogenesis, but static strains activate the adipogenic signaling pathways. This phenomenon needs to be investigated further, given its potential use in tissue engineering of fat. We used in vitro cultures as model systems for studying differentiation and function of adipocytes. Additionally, using the finite element method, we developed here sets of multiscale models (MSM), which represent single or multiple adipocytes embedded in scaffolds, stimulated mechanically in a static regime. Based on in vitro adipocyte culture work, these models were employed to study the hypothesis that the loading state of the plasma membrane (PM) in adipocytes is influenced by neighboring cells, which could reflect positive feedback loops of en mass adipose cell differentiation. We demonstrate that under static loading, tensile strains at the PM increase with the stage of cell maturation. Furthermore, when the cell density was sufficient (above 19 cells per 100??m(3)), progressive differentiation in some of the cells caused higher magnitudes of tensile strains in the PMs of other nearby cells. MSM are currently the only feasible means to correlate continuum (macrolevel) construct deformations to subcellular-level PM stretches in distorted cells. These macro-to-micro mechanobiology relationships, revealed through MSM, point to stimulations that promote the formation of lipid droplet accumulations and the increase of adipogenesis. Such models are a cost-effective useful platform for achieving better understanding of these deformation-driven cell processes toward optimized design of tissue-engineered fat constructs. PMID:25517541

  16. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop

    PubMed Central

    Leon-Pinzon, Carolina; Cercós, Montserrat G.; Noguez, Paula; Trueta, Citlali; De-Miguel, Francisco F.

    2014-01-01

    The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca2+ entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca2+ transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca2+ entry through L-type channels activated Ca2+-induced Ca2+ release. A resulting fast Ca2+ transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca2+ transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca2+ increase in the submembrane shell. This localized Ca2+ increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca2+ and this Ca2+ evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission. PMID:25018697

  17. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  18. Robust Voltage Stabilization in an Isolated Wind-Diesel Power System using PSO based-Fixed Structure H? Loop Shaping Control

    NASA Astrophysics Data System (ADS)

    Vachirasricirikul, Sitthidet; Ngamroo, Issarachai; Kaitwanidvilai, Somyot

    It is well known that the power system controller designed by H? control is complicated, high order and impractical. In power system applications, practical structures such as proportional integral derivative (PID) etc., are widely used, because of their simple structure, less number of tuning parameters and low-order. However, tuning of controller parameters to achieve a good performance and robustness is based on designer's experiences. To overcome this problem, this paper proposes a fixed structure robust H? loop shaping control to design Static Var Compensator (SVC) and Automatic Voltage Regulator (AVR) for robust stabilization of voltage fluctuation in an isolated wind-diesel hybrid power system. The structure of the robust controller of SVC and AVR is specified by a PID controller. In the system modeling, a normalized coprime factorization is applied to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions etc. Based on the H? loop shaping, the performance and robust stability conditions are formulated as the optimization problem. The particle swarm optimization is applied to solve for PID control parameters of SVC and AVR simultaneously. Simulation studies confirm the control effect and robustness of the proposed control.

  19. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large ?-hairpin loop.

    PubMed

    Bende, Niraj S; Dziemborowicz, S?awomir; Herzig, Volker; Ramanujam, Venkatraman; Brown, Geoffrey W; Bosmans, Frank; Nicholson, Graham M; King, Glenn F; Mobli, Mehdi

    2015-03-01

    Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large ?-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker. PMID:25559770

  20. A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.

    PubMed

    Liu, Hsuan-Liang; Lin, Jin-Chung

    2004-05-15

    Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology models reveal that the pore loop domains of these Kv channels exhibit similar folds to those of KcsA. The structural features and specific packing of aromatic residues around the selectivity filter of these Kv channels are nearly identical to those of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. The distribution of polar and nonpolar side chains on the surfaces of the KcsA and Kv channels reveals that they exhibit a segregation of side chains common to most integral membrane proteins. As the hydrogen bond between Glu71 and Asp80 in KcsA plays an important role in stabilizing the channel, the substituted Val residue in the Kv family corresponding to Glu71 of KcsA stabilizes the channel by making hydrophobic contact with Tyr residue from the signature sequence of the selectivity filter. The homology models of these Kv channels provide particularly attractive subjects for further structure-based studies. PMID:15103620

  1. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  2. The Paracrine Feedback Loop Between Vitamin D3 (1,25(OH)2D3) and PTHrP in Prehypertrophic Chondrocytes

    PubMed Central

    Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

    2014-01-01

    The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10?8?M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1?- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. PMID:24777663

  3. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    E-print Network

    Garrison, Sean Michael

    2009-05-22

    in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate...

  4. Feedback loops in educational environments using web-based survey tools : new technology development and three implementation case studies

    E-print Network

    Spead, Benjamin, 1978-

    2004-01-01

    This thesis presents lessons from the development of an on-line, web-based feedback system and preliminary analysis of the socio-technical interactions associated with the specification, design and use of this system. The ...

  5. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID:26042044

  6. The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-?B positive feedback loop in peripheral T-cell lymphoma.

    PubMed

    Boddicker, Rebecca L; Kip, N Sertac; Xing, Xiaoming; Zeng, Yu; Yang, Zhi-Zhang; Lee, Jeong-Heon; Almada, Luciana L; Elsawa, Sherine F; Knudson, Ryan A; Law, Mark E; Ketterling, Rhett P; Cunningham, Julie M; Wu, Yanhong; Maurer, Matthew J; O'Byrne, Megan M; Cerhan, James R; Slager, Susan L; Link, Brian K; Porcher, Julie C; Grote, Deanna M; Jelinek, Diane F; Dogan, Ahmet; Ansell, Stephen M; Fernandez-Zapico, Martin E; Feldman, Andrew L

    2015-05-14

    Peripheral T-cell lymphomas (PTCLs) are generally aggressive non-Hodgkin lymphomas with poor overall survival rates following standard therapy. One-third of PTCLs express interferon regulatory factor-4 (IRF4), a tightly regulated transcription factor involved in lymphocyte growth and differentiation. IRF4 drives tumor growth in several lymphoid malignancies and has been proposed as a candidate therapeutic target. Because direct IRF4 inhibitors are not clinically available, we sought to characterize the mechanism by which IRF4 expression is regulated in PTCLs. We demonstrated that IRF4 is constitutively expressed in PTCL cells and drives Myc expression and proliferation. Using an inhibitor screen, we identified nuclear factor ?B (NF-?B) as a candidate regulator of IRF4 expression and cell proliferation. We then demonstrated that the NF-?B subunits p52 and RelB were transcriptional activators of IRF4. Further analysis showed that activation of CD30 promotes p52 and RelB activity and subsequent IRF4 expression. Finally, we showed that IRF4 transcriptionally regulates CD30 expression. Taken together, these data demonstrate a novel positive feedback loop involving CD30, NF-?B, and IRF4; further evidence for this mechanism was demonstrated in human PTCL tissue samples. Accordingly, NF-?B inhibitors may represent a clinical means to disrupt this feedback loop in IRF4-positive PTCLs. PMID:25833963

  7. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  8. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis

    PubMed Central

    Rokavec, Matjaz; Öner, Meryem Gülfem; Li, Huihui; Jackstadt, Rene; Jiang, Longchang; Lodygin, Dmitri; Kaller, Markus; Horst, David; Ziegler, Paul K.; Schwitalla, Sarah; Slotta-Huspenina, Julia; Bader, Franz G.; Greten, Florian R.; Hermeking, Heiko

    2014-01-01

    Members of the miR-34 family are induced by the tumor suppressor p53 and are known to inhibit epithelial-to-mesenchymal transition (EMT) and therefore presumably suppress the early phases of metastasis. Here, we determined that exposure of human colorectal cancer (CRC) cells to the cytokine IL-6 activates the oncogenic STAT3 transcription factor, which directly represses the MIR34A gene via a conserved STAT3-binding site in the first intron. Repression of MIR34A was required for IL-6–induced EMT and invasion. Furthermore, we identified the IL-6 receptor (IL-6R), which mediates IL-6–dependent STAT3 activation, as a conserved, direct miR-34a target. The resulting IL-6R/STAT3/miR-34a feedback loop was present in primary colorectal tumors as well as CRC, breast, and prostate cancer cell lines and associated with a mesenchymal phenotype. An active IL-6R/STAT3/miR-34a loop was necessary for EMT, invasion, and metastasis of CRC cell lines and was associated with nodal and distant metastasis in CRC patient samples. p53 activation in CRC cells interfered with IL-6–induced invasion and migration via miR-34a–dependent downregulation of IL6R expression. In Mir34a-deficient mice, colitis-associated intestinal tumors displayed upregulation of p-STAT3, IL-6R, and SNAIL and progressed to invasive carcinomas, which was not observed in WT animals. Collectively, our data indicate that p53-dependent expression of miR-34a suppresses tumor progression by inhibiting a IL-6R/STAT3/miR-34a feedback loop. PMID:24642471

  9. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  10. A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem.

    PubMed

    Katayama, Hirofumi; Iwamoto, Kuninori; Kariya, Yuka; Asakawa, Tomohiro; Kan, Toshiyuki; Fukuda, Hiroo; Ohashi-Ito, Kyoko

    2015-12-01

    Controlling cell division and differentiation in meristems is essential for proper plant growth. Two bHLH heterodimers consisting of LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS 5 (TMO5)/TMO5-LIKE1 (T5L1) regulate periclinal cell division in vascular cells in the root apical meristem (RAM) [1-5]. In this study, we further investigated the functions of LHW-T5L1, finding that in addition to controlling cell division, this complex regulates xylem differentiation in the RAM via a novel negative regulatory system. LHW-T5L1 upregulated the thermospermine synthase gene ACAULIS5 (ACL5), as well as SUPPRESSOR OF ACAULIS5 LIKE3 (SACL3), which encodes a bHLH protein, in the RAM. The SACL3 promoter sequence contains a conserved upstream open reading frame (uORF) [6], which blocked translation of the main SACL3 ORF in the absence of thermospermine. Thermospermine eliminated the negative effect of uORF and enhanced SACL3 production. Further genetic and molecular biological analyses indicated that ACL5 and SACL3 suppress the function of LHW-T5L1 through a protein-protein interaction between LHW and SACL3. Finally, we showed that a negative feedback loop consisting of LHW-T5L1, ACL5, SACL3, and LHW-SACL3 contributes to maintain RAM size and proper root growth. These findings suggest that a negative feedback loop regulates the LHW-T5L1 output level to coordinate cell division and differentiation in a cell-autonomous manner. PMID:26616019

  11. Optical voltage reference

    DOEpatents

    Rankin, Richard (Ammon, ID); Kotter, Dale (Bingham County, ID)

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  12. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  13. A feedback regulatory loop involving p53/miR-200 and growth hormone endocrine axis controls embryo size of zebrafish

    PubMed Central

    Jing, Jing; Xiong, Shuting; Li, Zhi; Wu, Junjie; Zhou, Li; Gui, Jian-Fang; Mei, Jie

    2015-01-01

    In vertebrates, growth hormone/insulin-like growth factor (GH/IGF) axis signaling plays a critical role in regulating somatic growth. Understanding the direct upstream regulators of GH/IGF axis remains a major challenge. Our studies of the zebrafish reveal that the conserved miR-200 family members are critical regulators of embryo size by targeting several GH/IGF axis genes, including GH, GHRa, GHRb and IGF2a. Overexpression of miR-200s led to cell cycle arrest in the G1 phase and induced apoptotic responses during embryo development, thereby inhibiting somatic growth of zebrafish embryos. Intriguingly, GH induced expression of both p53 and miR-200s, and miR-200s is a potential p53 transcriptional target, thus forming a negative feedback loop. Significantly, the up-regulation of miR-200s associated with GH activation is abolished in embryos with p53 mutation. By integrating these studies, we conclude that p53/miR-200 and GH/IGF signaling pathway form a negative regulatory loop to control embryo size, that provide critical insights into the long-standing puzzle of how body growth is determined during early development of teleosts. PMID:26507500

  14. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    SciTech Connect

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  15. Pilot-in-the-Loop Evaluation of a Yaw Rate to Throttle Feedback Control with Enhanced Engine Response

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Guo, Ten-Huei; Sowers, T. Shane; Chicatelli, Amy K.; Fulton, Christopher E.; May, Ryan D.; Owen, A. Karl

    2012-01-01

    This paper describes the implementation and evaluation of a yaw rate to throttle feedback system designed to replace a damaged rudder. It can act as a Dutch roll damper and as a means to facilitate pilot input for crosswind landings. Enhanced propulsion control modes were implemented to increase responsiveness and thrust level of the engine, which impact flight dynamics and performance. Piloted evaluations were performed to determine the capability of the engines to substitute for the rudder function under emergency conditions. The results showed that this type of implementation is beneficial, but the engines' capability to replace the rudder is limited.

  16. High Power Passive Phase Locking of Four Yb-Doped Fiber Amplifiers by an All-Optical Feedback Loop

    NASA Astrophysics Data System (ADS)

    Xue, Yu-Hao; He, Bing; Zhou, Jun; Li, Zhen; Fan, Yuan-Yuan; Qi, Yun-Feng; Liu, Chi; Yuan, Zhi-Jun; Zhang, Hai-Bo; Lou, Qi-Hong

    2011-05-01

    We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity. The interference patterns at different output power are observed and the Strehl ratios are measured. The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification. The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber, in good agreement with the calculated results. By using master oscillator power-amplifier (MOPA) architecture and broadband operation of passively phased systems, higher power scaling with high beam quality appears to be feasible.

  17. Harvesting entropy and quantifying the transition from noise to chaos in a photon-counting feedback loop

    E-print Network

    Aaron M. Hagerstrom; Thomas E. Murphy; Rajarshi Roy

    2015-08-07

    Some physical processes, including the intensity fluctuations of a chaotic laser, the detection of single photons, and the Brownian motion of a microscopic particle in a fluid are unpredictable, at least on long timescales. This unpredictability can be due to a variety of physical mechanisms, but it is quantified by an entropy rate. This rate describes how quickly a system produces new and random information, is fundamentally important in statistical mechanics and practically important for random number generation. We experimentally study entropy generation and the emergence of deterministic chaotic dynamics from discrete noise in a system that applies feedback to a weak optical signal at the single-photon level. We show that the dynamics qualitatively change from shot noise to chaos as the photon rate increases, and that the entropy rate can reflect either the deterministic or noisy aspects of the system depending on the sampling rate and resolution.

  18. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  19. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  20. The miR-101/RUNX1 feedback regulatory loop modulates chemo-sensitivity and invasion in human lung cancer

    PubMed Central

    Wang, Xianghui; Zhao, Yihua; Qian, Haiyun; Huang, Jiangping; Cui, Fenghe; Mao, Zhifu

    2015-01-01

    The deregulation of miR-101 has been implicated in multiple cancer types including lung cancer, but the exact role, mechanisms and how silencing of miR-101 remain elusive. Here we confirmed miR-101 downregulation in lung cancer cell lines and patient tissues. Restored miR-101 expression remarkably sensitized lung cancer cells to chemotherapy and inhibited invasion. Mechanistically, we indicated that miR-101 inversely correlated with RUNX1 expression, and identified RUNX1 as a novel target of miR-101. RUNX1 impaired the effects of miR-101 on chemotherapeutic sensitization and invasion inhibition. Moreover, RUNX1 knockdown resulted into increase of miR-101 expression and elevation of luciferase activity driven by miR-101 promoter in lung cancer cells, suggesting RUNX1 negatively transcriptionally regulated miR-101 expression via physically binding to miR-101 promoter. These findings support that miR-101 downregulation accelerates the progression of lung cancer via RUNX1 dependent manner and suggest that miR-101/RUNX1 feedback axis may have therapeutic value in treating refractory lung cancer. PMID:26628987

  1. Feedback Augmented Sub-Ranging (FASR) Quantizer

    NASA Technical Reports Server (NTRS)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

  2. The inhibitory effects of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and underlying mechanism

    PubMed Central

    Xu, Shaohua; Wang, Tao; Song, Wen; Jiang, Tao; Zhang, Feng; Yin, Yu; Jiang, Shi-Wen; Wu, Kongming; Yu, Zuoren; Wang, Chenguang; Chen, Ke

    2015-01-01

    Prostate cancer at advanced stages including metastatic and castration-resistant cancer remains incurable due to the lack of effective therapies. MiR-190a belongs to the small noncoding RNA family and has an important role in breast cancer metastasis. However, it is still unknown whether miR-190a plays a role in prostate cancer development. Herein, we first observed AR/miR-190a/YB-1 forms an auto-regulatory negative feedback loop in prostate cancer: miR-190a expression was down-regulated by AR activation; YB-1 functions are as an AR activator; miR-190a inhibited AR expression and transactivation through direct binding to 3?UTR of YB-1 gene. MiR-190a contributes the human prostate cancer cell growth through AR-dependent signaling. Moreover, we examined the expression of miR-190a and observed a significant decrease in human prostate cancers. Reduced expression of miR-190a was inversely correlated to AR levels of prostate cancer patients, and patients with higher miR-190a expression in their tumor have improved tumor-free survival. Taken together, our findings identified a biochemical and functional link between miR-190a with reduced expression in advanced prostate cancer, YB-1 and AR signaling in prostate cancer. PMID:26314494

  3. Reciprocal negative feedback loop between EZH2 and miR-101-1 contributes to miR-101 deregulation in hepatocellular carcinoma.

    PubMed

    Huang, Da; Wang, Xiaobei; Zhuang, Chunbo; Shi, Wuhe; Liu, Mu; Tu, Qiming; Zhang, Detai; Hu, Lihua

    2016-02-01

    Although the tumor suppressive role of miR-101 is well documented in hepatocellular carcinoma (HCC), how the expression of miR-101 itself is regulated remains elusive. In the present study, we demonstrated that the miR-101 precursor pre-miR-101-1 could be regulated by an important epigenetic regulator, the enhancer of zeste homolog 2 (EZH2). Reporter gene assays revealed that ectopic expression of EZH2 inhibited the transcriptional activities of miR-101-1 promoter. Subsequent analyses revealed that miR-101-1 directly represses the expression of EZH2, and miR-101-1 and EZH2 form a reciprocal negative feedback loop as indicated by the fact that ectopic mature miR-101 could induce endogenous pre-miR-101-1 expression. This mature miR-101-induced pre-miR-101 expression was specific to pre-miR-101-1 and depended on EZH2 activities. Moreover, our results also demonstrated that similar antitumor effects can be achieved either by ectopic miR-101 or EZH2 silencing in HCC cells. These findings show that elevated EZH2 contributes to miR-101 deregulation in HCC and highlight the coordinated role of miR-101 and EZH2 in hepatocarcinogenesis. PMID:26718325

  4. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop

    PubMed Central

    Wang, Jiajia; Zhang, Junxia; Qian, Jin; Li, Ri; Tao, Tao; Wei, Wenjin; Hu, Qi; Liu, Ning; You, Yongping

    2015-01-01

    Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion via siRNA inhibits cell proliferation and aerobic glycolysis in glioma cells. C-Myc promotes up-regulation of hnRNPA1 expression, hnRNPA1 binding to PKM pre-mRNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a, which functionally targets c-Myc, whereas hnRNPA1 blocks the biogenesis of let-7a to counteract its ability to downregulate the c-Myc/hnRNPA1/PKM2 signaling pathway. The down-regulation of c-Myc/hnRNPA1/PKM2 by let-7a is verified using a glioma xenograft model. These results suggest that let-7a, c-Myc and hnRNPA1 from a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of glioma cells. These findings elucidate a new pathway mediating aerobic glycolysis in gliomas and provide an attractive potential target for therapeutic intervention. PMID:25948776

  5. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-{beta}, ERK, JNK, and p38 MAPK signaling

    SciTech Connect

    Yu, Hong-Wei; Liu, Qi-Feng; Liu, Gui-Nan

    2010-05-28

    Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-{beta} (TGF-{beta}) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-{beta} DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-{beta}, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.

  6. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A.

    PubMed

    Wolchinsky, Zohar; Shivtiel, Shoham; Kouwenhoven, Evelyn Nathalie; Putin, Daria; Sprecher, Eli; Zhou, Huiqing; Rouleau, Matthieu; Aberdam, Daniel

    2014-01-01

    The transcription factor p63, member of the p53 gene family, encodes for two main isoforms, TAp63 and ?Np63 with distinct functions on epithelial homeostasis and cancer. Recently, we discovered that TAp63 is essential for in vitro cardiogenesis and heart development in vivo. TAp63 is expressed by embryonic endoderm and acts on cardiac progenitors by a cell-non-autonomous manner. In the present study, we search for cardiogenic secreted factors that could be regulated by TAp63 and, by ChIP-seq analysis, identified Angiomodulin (AGM), also named IGFBP7 or IGFBP-rP1. We demonstrate that AGM is necessary for cardiac commitment of embryonic stem cells (ESCs) and its regulation depends on TAp63 isoform. TAp63 directly activates both AGM and Activin-A during ESC cardiogenesis while these secreted factors modulate TAp63 gene expression by a feedback loop mechanism. The molecular circuitry controlled by TAp63 on AGM/Activin-A signaling pathway and thus on cardiogenesis emphasizes the importance of p63 during early cardiac development. PMID:24145187

  7. HD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23[W

    PubMed Central

    Khosla, Aashima; Paper, Janet M.; Boehler, Allison P.; Bradley, Amanda M.; Neumann, Titus R.; Schrick, Kathrin

    2014-01-01

    The class IV homeodomain leucine zipper transcription factor GLABRA2 (GL2) acts in a complex regulatory circuit that regulates the differentiation of trichomes in Arabidopsis thaliana. We describe a genetic interaction with HOMEODOMAIN GLABROUS11 (HDG11), previously identified as a negative regulator of trichome branching. gl2 hdg11 double mutants display enhanced trichome cell-type differentiation defects. Transgenic expression of HDG11 using the GL2 promoter partially suppresses gl2 trichome phenotypes. Vice versa, expression of GL2 under the control of its native promoter partially complements hdg11 ectopic branching. Since gl2 hdg11 and gl2 myb23 double mutants and the triple mutant display similar trichome differentiation defects, we investigated a connection to the R2R3-MYB transcription factor MYB23. We show that MYB23 transcript levels are significantly reduced in shoots from gl2 mutants and that GL2 can drive the expression of a MYB23-promoter fusion to green fluorescent protein. Yeast one-hybrid, chromatin immunoprecipitation, and in planta reporter gene experiments indicate that an L1-box in the MYB23 promoter acts as a GL2 binding site. Taken together, our findings reveal a functional redundancy between GL2 and HDG11, two homeodomain leucine zipper transcription factors previously thought to mediate opposing functions in trichome morphogenesis. A model is proposed in which GL2 transcript levels are maintained through a positive feedback loop involving GL2 activation of MYB23. PMID:24824485

  8. KIF4A and PP2A–B56 form a spatially restricted feedback loop opposing Aurora B at the anaphase central spindle

    PubMed Central

    Bastos, Ricardo Nunes; Cundell, Michael J.

    2014-01-01

    The mitotic kinase Aurora B is concentrated at the anaphase central spindle by the kinesin MKlp2 during mitotic exit and cytokinesis. This pool of Aurora B phosphorylates substrates including the kinesin KIF4A to regulate central spindle length. In this paper, we identify a counteracting system in which PP2A–B56? and -?, but not PP2A–B56?, -?, and -?, are maintained at the central spindle by KIF4A. Biochemical assays show that PP2A–B56? can dephosphorylate the T799 Aurora B site on KIF4A and thereby counteract the Aurora B– and microtubule-stimulated ATPase activity of KIF4A. In agreement with these observations, combined silencing of PP2A–B56? and -? resulted in increased phosphorylation of KIF4A T799 and decreased central spindle growth in anaphase B. Furthermore, reduced turnover of regulatory phosphorylation on another Aurora B substrate MKlp1 was observed, suggesting that PP2A–B56? and -? play a general role opposing Aurora B at the central spindle. KIF4A and PP2A–B56? and -? therefore create a spatially restricted negative feedback loop counteracting Aurora B in anaphase. PMID:25512391

  9. Ontogeny of specific prolactin binding sites in the rat choroid plexus and their temporal relation to the prolactin short-loop feedback system

    SciTech Connect

    Silverman, .F.

    1985-01-01

    The development of prolactin receptors in the choroid plexus of the rat was examined using the in vivo autoradiographic approach employing the principle of competitive binding. Animals aged 0, 10, 14, and 18 days postnatal were perfusion fixed following hormone injection and prepared for light microscopic autoradiography. The choroid plexus first demonstrated specific binding of prolactin at 14 days postnatal. The lactogen specificity of these binding sites was further defined by the ability of I/sup 125/-prolactin to be displaced by unlabelled human growth hormone, which is lactogenic in rats, and not by unlabelled insulin, which is structurally dissimilar to prolactin. Morphometric analysis was performed on electron micrographs of choroid plexus from 10 and 14 day postnatal rats. The volume densities of constituents known to be involved in the synthesis and/or function of polypeptide hormone receptors were measured and differences tested for statistical significance. A semi-quantitative histo-fluorescence technique was used to evaluate the ability of prolactin to stimulate secretion of its inhibiting factor, dopamine, in 10 day postnatal rats. The present findings indicate that the ontogenesis of specific prolactin binding sites is not temporally connected with the establishment of the prolactin short-loop feedback system since activation of the system occurs prior to the establishment of specific prolactin binding at choroid plexus.

  10. A three-component signalling system fine-tunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris.

    PubMed

    Wang, Fang-Fang; Deng, Chao-Ying; Cai, Zhen; Wang, Ting; Wang, Li; Wang, Xiao-Zheng; Chen, Xiao-Ying; Fang, Rong-Xiang; Qian, Wei

    2014-07-01

    During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio-temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine-tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5' end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress-responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a 'three-component' signalling system fine-tunes expression kinetics of downstream genes. PMID:24119200

  11. Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers.

    PubMed

    Zanchi, Marta G; Pauly, John M; Scott, Greig C

    2010-05-01

    A modified Cartesian feedback method called "frequency-offset Cartesian feedback" and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems.In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200-1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback.In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450

  12. Feedback and Sentence Learning.

    ERIC Educational Resources Information Center

    Guthrie, John T.

    The theoretical functions of external feedback in SR and closed loop models of verbal learning are presented. Contradictory predictions from the models are tested with a three by three factorial experiment including three types of feedback and three amounts of rehearsal. There were 90 adult students run individually and they were required to learn…

  13. miR-221 Promotes Epithelial-Mesenchymal Transition through Targeting PTEN and Forms a Positive Feedback Loop with ?-catenin/c-Jun Signaling Pathway in Extra-Hepatic Cholangiocarcinoma

    PubMed Central

    Yao, Lei; Li, Guodong; Ma, Donglai; Sun, Chen; Gao, Shuang; Zhang, Ping

    2015-01-01

    Extrahepatic cholangiocarcinoma (EHCC) is a refractory malignancy with poor prognosis due to its early invasion, metastasis and recurrence after operation. Therefore, understanding the mechanisms of invasion and metastasis is the key to the development of new and effective therapeutic strategies for EHCC. In the present study we demonstrated that miR-221 promoted EHCC invasion and metastasis through targeting PTEN and formed a positive feedback loop with ?-catenin/c-Jun signaling pathway. We found miR-221 was upregulated in EHCC specimens and CC cell lines. Moreover, miR-221 was found strongly associated with the metastasis and prognosis of EHCC patients. The expression of PTEN was downregulated in EHCC patients and CC cell lines, and was further demonstrated as one of the downstream targets of miR-221. In addition, our data indicated that ?-catenin activated miR-221 through c-jun, while miR-221 enhanced ?-catenin signaling induced-epithelial-mesenchymal transition (EMT) by targeting PTEN, hence forming a positive feedback loop in EHCC cell lines. In conclusion, our results suggested that miR-221 promotes EMT through targeting PTEN and forms a positive feedback loop with ?-catenin/c-Jun signaling pathway in EHCC. PMID:26501139

  14. Global Feedback Simulator

    Energy Science and Technology Software Center (ESTSC)

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as themore »ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.« less

  15. Global Feedback Simulator

    SciTech Connect

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as the ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.

  16. Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2015-01-01

    We have previously reported that an adaptor protein CRK, including CRK-I and CRK-II, plays essential roles in the malignant potential of various aggressive human cancers, suggesting the validity of targeting CRK in molecular targeted therapy of a wide range of cancers. Nevertheless, the role of CRK in human bladder cancer with marked invasion, characterized by distant metastasis and poor prognosis, remains obscure. In the present study, immunohistochemistry indicated a striking enhancement of CRK-I/-II, but not CRK-like, in human bladder cancer tissues compared to normal urothelium. We established CRK-knockdown bladder cancer cells using 5637 and UM-UC-3, which showed a significant decline in cell migration, invasion, and proliferation. It is noteworthy that an elimination of CRK conferred suppressed phosphorylation of c-Met and the downstream scaffold protein Gab1 in a hepatocyte growth factor-dependent and -independent manner. In epithelial–mesenchymal transition-related molecules, E-cadherin was upregulated by CRK elimination, whereas N-cadherin, vimentin, and Zeb1 were downregulated. A similar effect was observed following treatment with c-Met inhibitor SU11274. Depletion of CRK significantly decreased cell proliferation of 5637 and UM-UC-3, consistent with reduced activity of ERK. An orthotopic xenograft model with bioluminescent imaging revealed that CRK knockdown significantly attenuated not only tumor volume but also the number of circulating tumor cells, resulted in a complete abrogation of metastasis. Taken together, this evidence uncovered essential roles of CRK in invasive bladder cancer through the hepatocyte growth factor/c-Met/CRK feedback loop for epithelial–mesenchymal transition induction. Thus, CRK might be a potent molecular target in bladder cancer, particularly for preventing metastasis, leading to the resolution of clinically longstanding critical issues. PMID:25816892

  17. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner

    PubMed Central

    Guo, W; Zhang, Y; Ling, Z; Liu, X; Zhao, X; Yuan, Z; Nie, C; Wei, Y

    2015-01-01

    Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53. PMID:26469967

  18. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner.

    PubMed

    Guo, W; Zhang, Y; Ling, Z; Liu, X; Zhao, X; Yuan, Z; Nie, C; Wei, Y

    2015-01-01

    Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53. PMID:26469967

  19. p38/p53/miR-200a-3p feedback loop promotes oxidative stress-mediated liver cell death.

    PubMed

    Xiao, Yongtao; Yan, Weihui; Lu, Lina; Wang, Ying; Lu, Wei; Cao, Yi; Cai, Wei

    2015-01-01

    Although our previous studies have provided evidence that oxidative stress has an essential role in total parenteral nutrition (TPN)-associated liver injury, the mechanisms involved are incompletely understood. Here, we show the existence of crosstalk between the miR-200 family of microRNAs and oxidative stress. The members of the miR-200 family are markedly enhanced in hepatic cells by hydrogen peroxide (H2O2) treatment. The upregulation of miR-200-3p in turn modulates the H2O2-mediated oxidative stress response by targeting p38?. The enhanced expression of miR-200-3p mimics p38? deficiency and promotes H2O2-induced cell death. Members of the miR-200 family that are known to inhibit the epithelial to mesenchymal transition (EMT) are induced by the tumor suppressor p53. Here, we show that p53 phosphorylation at Ser 33 contributes to H2O2-induced miR-200s transcription. In addition, we show that p38? can directly phosphorylate p53 at serine 33 upon H2O2 exposure. Thus, we suggest that in liver cells, the oxidative stress-induced, p38?-mediated phosphorylation of p53 at Ser33 is essential for the functional regulation of oxidative stress-induced miR-200 transcription by p53. Collectively, our data indicate that the p53-dependent expression of miR-200a-3p promotes cell death by inhibiting a p38/p53/miR-200 feedback loop. PMID:25789565

  20. Feedback control for clinicians.

    PubMed

    Dumont, Guy A

    2014-02-01

    Although feedback control and automation has revolutionized many fields of human activity, it has yet to have a significant impact on healthcare, particularly when a patient is in the loop. Although there have been a number of studies concerned with closed-loop control of anesthesia, they have yet to have an impact on clinical practice. For such systems to be successful, engineers and clinicians have to work hand in hand, for this they have to have a basic understanding of each other's fields. The goal of this paper is to introduce clinicians to basic concepts in control engineering, with an emphasis on the properties of feedback control. Concepts such as modelling for control, feedback and uncertainty, robustness, feedback controller such as proportional-integral-derivative control, predictive control and adaptive control are briefly reviewed. Finally we discuss the safety issues around closed-loop control and discuss ways by which safe control can be guaranteed. PMID:23579866

  1. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  2. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  3. A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling

    PubMed Central

    2014-01-01

    Background High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NF?B and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NF?B and Hh signaling. Here we investigate the interaction of MID1 and AR. Methods AR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively. Results The microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner. Conclusion Promotion of AR, in addition to enhancement of the Akt-, NF?B-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer. PMID:24913494

  4. Let-7b/c Enhance the Stability of a Tissue-Specific mRNA during Mammalian Organogenesis as Part of a Feedback Loop Involving KSRP

    PubMed Central

    Repetto, Emanuela; Briata, Paola; Kuziner, Nathalie; Harfe, Brian D.; McManus, Michael T.; Gherzi, Roberto; Rosenfeld, Michael G.; Trabucchi, Michele

    2012-01-01

    Gene silencing mediated by either microRNAs (miRNAs) or Adenylate/uridylate-rich elements Mediated mRNA Degradation (AMD) is a powerful way to post-transcriptionally modulate gene expression. We and others have reported that the RNA–binding protein KSRP favors the biogenesis of select miRNAs (including let-7 family) and activates AMD promoting the decay of inherently labile mRNAs. Different layers of interplay between miRNA– and AMD–mediated gene silencing have been proposed in cultured cells, but the relationship between the two pathways in living organisms is still elusive. We conditionally deleted Dicer in mouse pituitary from embryonic day (E) 9.5 through Cre-mediated recombination. In situ hybridization, immunohistochemistry, and quantitative reverse transcriptase–PCR revealed that Dicer is essential for pituitary morphogenesis and correct expression of hormones. Strikingly, ?GSU (alpha glycoprotein subunit, common to three pituitary hormones) was absent in Dicer-deleted pituitaries. ?GSU mRNA is unstable and its half-life increases during pituitary development. A transcriptome-wide analysis of microdissected E12.5 pituitaries revealed a significant increment of KSRP expression in conditional Dicer-deleted mice. We found that KSRP directly binds to ?GSU mRNA, promoting its rapid decay; and, during pituitary development, ?GSU expression displays an inverse temporal relationship to KSRP. Further, let-7b/c downregulated KSRP expression, promoting the degradation of its mRNA by directly binding to the 3?UTR. Therefore, we propose a model in which let-7b/c and KSRP operate within a negative feedback loop. Starting from E12.5, KSRP induces the maturation of let-7b/c that, in turn, post-transcriptionally downregulates the expression of KSRP itself. This event leads to stabilization of ?GSU mRNA, which ultimately enhances the steady-state expression levels. We have identified a post-transcriptional regulatory network active during mouse pituitary development in which the expression of the hormone ?GSU is increased by let7b/c through downregulation of KSRP. Our study unveils a functional crosstalk between miRNA– and AMD–dependent gene regulation during mammalian organogenesis events. PMID:22844247

  5. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop.

    PubMed

    Menssen, Antje; Hydbring, Per; Kapelle, Karsten; Vervoorts, Jörg; Diebold, Joachim; Lüscher, Bernhard; Larsson, Lars-Gunnar; Hermeking, Heiko

    2012-01-24

    Silent information regulator 1 (SIRT1) represents an NAD(+)-dependent deacetylase that inhibits proapoptotic factors including p53. Here we determined whether SIRT1 is downstream of the prototypic c-MYC oncogene, which is activated in the majority of tumors. Elevated expression of c-MYC in human colorectal cancer correlated with increased SIRT1 protein levels. Activation of a conditional c-MYC allele induced increased levels of SIRT1 protein, NAD(+), and nicotinamide-phosphoribosyltransferase (NAMPT) mRNA in several cell types. This increase in SIRT1 required the induction of the NAMPT gene by c-MYC. NAMPT is the rate-limiting enzyme of the NAD(+) salvage pathway and enhances SIRT1 activity by increasing the amount of NAD(+). c-MYC also contributed to SIRT1 activation by sequestering the SIRT1 inhibitor deleted in breast cancer 1 (DBC1) from the SIRT1 protein. In primary human fibroblasts previously immortalized by introduction of c-MYC, down-regulation of SIRT1 induced senescence and apoptosis. In various cell lines inactivation of SIRT1 by RNA interference, chemical inhibitors, or ectopic DBC1 enhanced c-MYC-induced apoptosis. Furthermore, SIRT1 directly bound to and deacetylated c-MYC. Enforced SIRT1 expression increased and depletion/inhibition of SIRT1 reduced c-MYC stability. Depletion/inhibition of SIRT1 correlated with reduced lysine 63-linked polyubiquitination of c-Myc, which presumably destabilizes c-MYC by supporting degradative lysine 48-linked polyubiquitination. Moreover, SIRT1 enhanced the transcriptional activity of c-MYC. Taken together, these results show that c-MYC activates SIRT1, which in turn promotes c-MYC function. Furthermore, SIRT1 suppressed cellular senescence in cells with deregulated c-MYC expression and also inhibited c-MYC-induced apoptosis. Constitutive activation of this positive feedback loop may contribute to the development and maintenance of tumors in the context of deregulated c-MYC. PMID:22190494

  6. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  7. Steep Subthreshold Swing n- and p-Channel Operation of Bendable Feedback Field-Effect Transistors with p(+)-i-n(+) Nanowires by Dual-Top-Gate Voltage Modulation.

    PubMed

    Jeon, Youngin; Kim, Minsuk; Lim, Doohyeok; Kim, Sangsig

    2015-08-12

    In this study, we present the steep switching characteristics of bendable feedback field-effect transistors (FBFETs) consisting of p(+)-i-n(+) Si nanowires (NWs) and dual-top-gate structures. As a result of a positive feedback loop in the intrinsic channel region, our FBFET features the outstanding switching characteristics of an on/off current ratio of approximately 10(6), and point subthreshold swings (SSs) of 18-19 mV/dec in the n-channel operation mode and of 10-23 mV/dec in the p-channel operation mode. Not only can these devices operate in n- or p-channel modes, their switching characteristics can also be modulated by adjusting the gate biases. Moreover, the device maintains its steep SS characteristics, even when the substrate is bent. This study demonstrates the promising potential of bendable NW FBFETs for use as low-power components in integrated circuits or memory devices. PMID:26218327

  8. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.

    PubMed

    Mussivand, T; Holmes, K S; Hum, A; Keon, W J

    1996-06-01

    Rotary blood pumps often require a constant operating voltage. To meet this requirement and to eliminate the need for percutaneous leads, a voltage-regulated transcutaneous energy transfer (TET) system has been developed. Voltage regulation is achieved by using a transcutaneous infrared feedback control loop operating on a 890 nanometer (nm) wavelength. In vitro testing of the system developed has shown that output voltage can be maintained to within 0.2 V of nominal (14.5 V) for delivered powers up to 50 watts (W) and coil separations of between 3 and 10 mm. Power transfer efficiencies were determined to be from 68% to 72% over the tested range of coil separations and output currents from 1.5 to 3.6 amperes (A). This system has demonstrated acceptable performance in regulating output voltage while transferring power inductively without using percutaneous connections. By integrating this type of TET system with an implanted rotary blood pump, the quality of life for the device recipient could be improved. PMID:8817967

  9. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer.

    PubMed

    Shi, Lei; Jackstadt, Rene; Siemens, Helge; Li, Huihui; Kirchner, Thomas; Hermeking, Heiko

    2014-01-15

    The transcription factor AP4 mediates epithelial-mesenchymal transition (EMT) in colorectal cancer but its control in this setting is not fully understood. Here, we report the definition of a double-negative feedback loop involving AP4 and miR-15a/16-1 that regulates EMT and metastatic progression. In colorectal cancer cells, AP4 was downregulated by DNA damage in a p53-dependent manner. AP4 downregulation by p53 was mediated indirectly by the tumor-suppressive microRNAs miR-15a and miR-16-1, which targeted the 3' untranslated region (3'-UTR) of AP4 mRNA, induced mesenchymal-epithelial transition (MET), and inhibited colorectal cancer cell migration and invasion. The downregulation of AP4 was necessary for induction of MET and cell cycle arrest by miR-15a/16-1. In tumor xenoplants, ectopic miR-15a/16-1 suppressed formation of lung metastases. Furthermore, AP4 directly suppressed expression of miR-15a/16-1. In clinical specimens of colorectal cancer, miR-15a levels inversely correlated with AP4 protein levels shown previously to correlate with distant metastasis and poor survival. In summary, our results define a double-negative feedback loop involving miR-15a/16-1 and AP4 that stabilizes epithelial and mesenchymal states, respectively, which may determine metastatic prowess. PMID:24285725

  10. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  11. Audio Feedback -- Better Feedback?

    ERIC Educational Resources Information Center

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  12. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  13. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  14. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  15. System Design as a Three-Phase Dual-Loop (TPDL) Process: Types of Knowledge-Applied Sources of Feedback, and Student Development as Independent Learners

    ERIC Educational Resources Information Center

    Barak, Moshe

    2010-01-01

    This study aimed at exploring how high school students deal with designing an information system, for example, for a small business or a medical clinic, the extent to which students develop as independent learners while working on their projects, and the factors that help or hinder fostering students' design skills. The three-phase dual-loop

  16. Simple Optoelectronic Feedback in Microwave Oscillators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

  17. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  18. Finite Feedback Cycling in Structural Equation Models

    ERIC Educational Resources Information Center

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  19. A prototype framework for models of socio-hydrology: identification of key feedback loops with application to two Australian case-studies

    NASA Astrophysics Data System (ADS)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-01-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system-scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for a model of socio-hydrology that posits a novel construct, a composite Community Sensitivity state variable, as a key link to elucidate the drivers of behavioural response in a hydrological context. The framework provides for both macro-scale contextual parameters, which allow it to be applied across climate, socioeconomic and political gradients, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two different socio-hydrological case studies, taken from the Australian experience, are presented and discussed. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to participate in the growing field of social-ecological systems modelling.

  20. High-voltage circuits for power management on 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Pashmineh, S.; Killat, D.

    2015-11-01

    This paper presents two high-voltage circuits used in power management, a switching driver for buck converter with optimized on-resistance and a low dropout (LDO) voltage regulator with 2-stacked pMOS pass devices. The circuit design is based on stacked MOSFETs, thus the circuits are technology independent. High-voltage drivers with stacked devices suffer from slow switching characteristics. In this paper, a new concept to adjust gate voltages of stacked transistors is introduced for reduction of on-resistance. According to the theory, a circuit is proposed that drives 2 stacked transistors of a driver. Simulation results show a reduction of the on-resistance between 27 and 86 % and a reduction of rise and fall times between 16 and 83 % with a load capacitance of 150 pF at various supply voltages, compared to previous work. The concept can be applied to each high-voltage driver that is based on a number (N) of stacked transistors. The high voltage compatibility of the low drop-out voltage regulator (LDO) is established by a 2-stacked pMOS transistors as pass device controlled by two regulators: an error amplifier and a 2nd amplifier adjusting the division of the voltages between the two pass transistors. A high GBW and good DC accuracy in line and load regulation is achieved by using 3-stage error amplifiers. To improve stability, two feedback loops are utilized. In this paper, the 2.5 V I/O transistors of the TSMC 65 nm CMOS technology are used for the circuit design.

  1. RF feedback development for the PEP-II B Factory

    SciTech Connect

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity.

  2. A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis.

    PubMed

    Wang, Xiaofang; Wang, Lei; Mo, Qingjiang; Jia, Ankui; Dong, Yuqian; Wang, Guoqiang

    2016-01-01

    Pancreatic cancer is a common malignancy whose prognosis and treatment of pancreatic cancer is extremely poor, with only 20% of patients reaching two years of survival. Previous findings have shown that the tumor suppressor p53 is involved in the development of various types of cancer, including pancreatic cancer. Additionally, p53 is able to activate TP53INP1 transcription by regulating several phenotypes of cancer cells. Using gain and loss-of-function assays, the aim of the present study was to examine the relationships between miR-19a/b and cancer development as well as potential underlying mechanisms. The results showed that miR-19a/b identified a positive feedback regulation of p53/TP53INP1 axis. Additionally, p53 upregulated the TP53INP1 level in pancreatic cancer cells. However, overexpressed miR-19a/b partially restored the TP53 function in the pancreatic cancer cells while miR-19a/b downregulated TP53INP1 protein by directly targeting 3'UTR of its mRNA at the post-transcriptional level. In addition, the patient tissues identified that the miR-19a/b level in pancreatic cancer tissues was conversely correlated with TP53 and TP53INP1 expression. The results provide evidence for revealing the molecular mechanism involved in the development of pancreatic cancer and may be useful in the identification of new therapeutic targets for pancreatic cancer. PMID:26531836

  3. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana.

    PubMed

    Mikani, Azam; Watari, Yasuhiko; Takeda, Makio

    2015-12-01

    Immunohistochemical reactivities against short neuropeptide F (sNPF-ir) and crustacean cardioactive peptide (CCAP-ir) were detected in both the brain-subesophageal ganglion (Br-SOG) and midgut epithelial cells of the male American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells and decreased the CCAP-ir cells in the Br-SOG, whereas refeeding reversed these effects. The contents of sNPF in the Br-SOG, midgut and hemolymph titer decreased in response to an injection of CCAP into the hemocoel of normally fed male cockroaches, while CCAP titers/contents decreased in response to an injection of sNPF. The results of a double-labeling experiment demonstrated that sNPF-ir co-existed in CCAP-ir cells in the pars intercerebralis (PI), dorsolateral region of protocerebrum (DL), deutocerebrum (De) and SOG. sNPF-ir and CCAP-ir were also colocalized in the midgut. sNPF and CCAP are neuropeptides and midgut factors that interact with each other. Since the two peptides are known to be secreted by identical cells that affect each other, this constitutes autocrine negative feedback regulation for a quick response to food accessibility/inaccessibility. These peptides not only constitute the switch in the digestive mechanism but also couple digestive adaptation with behavior. A CCAP injection suppressed locomotor activity when cockroaches were starved, whereas sNPF activated it when they were fed. PMID:26178071

  4. LIM Homeobox 8 (Lhx8) Is a Key Regulator of the Cholinergic Neuronal Function via a Tropomyosin Receptor Kinase A (TrkA)-mediated Positive Feedback Loop*

    PubMed Central

    Tomioka, Takeyasu; Shimazaki, Takuya; Yamauchi, Toshihiko; Oki, Toru; Ohgoh, Makoto; Okano, Hideyuki

    2014-01-01

    Basal forebrain cholinergic neurons play an important role in cognitive functions such as learning and memory, and they are affected in several neurodegenerative diseases, including Alzheimer disease and Down syndrome. Despite their functional importance, the molecular mechanisms of functional maturation and maintenance of these cholinergic neurons after the differentiation stage have not been fully elucidated. This study demonstrates that the LIM homeobox 8 (Lhx8) transcription factor regulates cholinergic function in rat septal cholinergic neurons in primary cultures from E18.5 embryos and in the adult brain. Lhx8 expression modulated tropomyosin receptor kinase A (TrkA) expression in septal cholinergic neurons in vitro and in vivo, resulting in regulated acetylcholine release as an index of cholinergic function. In addition, Lhx8 expression and function were regulated by nerve growth factor (NGF), and the effect of NGF was potentiated by Lhx8-induced TrkA expression. Together, our findings suggest that positive feedback regulation between Lhx8, TrkA, and NGF is an important regulatory mechanism for cholinergic functions of the septum. PMID:24265310

  5. Architecture for a High-to-Medium-Voltage Power Converter

    NASA Technical Reports Server (NTRS)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  6. Self-organization of pulsing and bursting in a CO{sub 2} laser with opto-electronic feedback

    SciTech Connect

    Freire, Joana G.; Meucci, Riccardo; Arecchi, Fortunato Tito; and others

    2015-09-15

    We report a detailed investigation of the stability of a CO{sub 2} laser with feedback as described by a six-dimensional rate-equations model which provides satisfactory agreement between numerical and experimental results. We focus on experimentally accessible parameters, like bias voltage, feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters controlling cavity losses are also investigated as well as control planes which imply changes of the laser physical medium. For several parameter combinations, we report stability diagrams detailing how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to emerge organized in several hitherto unseen regular and irregular phases and to exhibit a much richer and complex range of behaviors than described thus far. A significant observation is that qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather distinct control parameters, suggesting the existence of unexpected symmetries in the laser control space.

  7. Self-organization of pulsing and bursting in a CO2 laser with opto-electronic feedback

    NASA Astrophysics Data System (ADS)

    Freire, Joana G.; Meucci, Riccardo; Arecchi, Fortunato Tito; Gallas, Jason A. C.

    2015-09-01

    We report a detailed investigation of the stability of a CO2 laser with feedback as described by a six-dimensional rate-equations model which provides satisfactory agreement between numerical and experimental results. We focus on experimentally accessible parameters, like bias voltage, feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters controlling cavity losses are also investigated as well as control planes which imply changes of the laser physical medium. For several parameter combinations, we report stability diagrams detailing how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to emerge organized in several hitherto unseen regular and irregular phases and to exhibit a much richer and complex range of behaviors than described thus far. A significant observation is that qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather distinct control parameters, suggesting the existence of unexpected symmetries in the laser control space.

  8. Role of histone deacetylase 3 in ankylosing spondylitis via negative feedback loop with microRNA-130a and enhancement of tumor necrosis factor-1? expression in peripheral blood mononuclear cells

    PubMed Central

    JIANG, YA; WANG, LIN

    2016-01-01

    The present study was performed to investigate the molecular mechanism of ankylosing spondylitis (AS). The interaction between micro (mi)RNA-130a and its target tumor necrosis factor (TNF)-1? and histone deactylase (HDAC)3 was assessed in peripheral blood mononuclear cells (PBMCs) from AS patients. Increased HDAC3 and decreased miRNA-130a levels were observed in PBMCs from AS patients. HDAC3 knockdown or HDAC3 inhibition promoted the expression of miRNA-130a, and HDAC3 was recruited to the promoter region of the gene encoding miRNA-130a in PBMCs. In addition, miR-130a overexpression led to a decrease, whereas miR-130a inhibition led to an increase of TNF-1? expression in PBMCs. Furthermore, HDAC3 knockdown or HDAC3 inhibition was associated with simultaneous upregulation of the expression of miR-130a and downregulation of the expression of TNF-1? in PBMCs. These results indicated that HDAC3 was involved in the regulation of the underlying molecular mechanism of AS by forming a negative feedback loop with miR-130a and enhancement of TNF-1? expression. PMID:26531724

  9. Soluble IL6R represents a miR-34a target: potential implications for the recently identified IL-6R/STAT3/miR-34a feed-back loop

    PubMed Central

    Hermeking, Heiko

    2015-01-01

    We previously reported that IL-6R, STAT3 and miR-34a form a positive feedback-loop, which promotes epithelial to mesenchymal transition (EMT), invasion, and metastasis of colorectal cancer (CRC) [1]. In that study only the membrane-bound form of the IL-6R was shown to be repressed by miR-34a. Here, we show that also the mRNA encoding the soluble IL6R (s-IL-6R) is directly targeted and repressed by miR-34a. Accordingly, the concentration of s-IL6R protein was decreased in conditioned media of CRC cell lines ectopically expressing miR-34a. The s-IL-6R mediates IL-6 trans-signaling, which also affects cells that do not express the IL-6R. Since IL-6 trans-signaling is involved in numerous inflammatory disease states these findings may be relevant for future therapeutic approaches. PMID:26091352

  10. Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2007-01-01

    A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.

  11. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  12. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  13. Low power, scalable multichannel high voltage controller

    SciTech Connect

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  14. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  15. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  16. Beam-based Feedback for the Linac Coherent Light Source

    SciTech Connect

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  17. Feedback Induced Death in Coupled Oscillators

    E-print Network

    Ming Luo

    2011-11-10

    We investigate oscillation death in systems of coupled nonlinear oscillators with feedback loop. We find that feedback results in oscillation death both in small sets or large ensembles. More importantly, the death zone in parameter space is significantly enlarged and oscillation death could occur even in coupled identical oscillators in the presence of feedback. We find that there are two different ways to oscillation death, namely desynchronization and completely synchronization induced oscillation death. Feedback induced oscillation death may be used to suppress unexpected oscillations, e.g., in chaotic laser arrays.

  18. Single SQUID multiplexer for arrays of voltage-biased superconducting bolometers

    SciTech Connect

    Yoon, Jongsoo; Clarke, John; Gildemeister, J.M.; Lee, Adrian T.; Myers, M.J.; Richards, P.L.; Skidmore, J.T.; Spieler, H.G.

    2001-08-20

    We describe a frequency domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. In order to avoid the accumulation of Johnson noise in the summing loop, a tuned bandpass filter is inserted in series with each sensor. For a 32-channel multiplexer for Voltage-biased Superconducting Bolometer (VSB) with a time constant {approx}1msec, we estimate that bias frequencies in the range from {approx}500kHz to {approx}600kHz are practical. The major limitation of our multiplexing scheme is in the slew rate of a readout SQUID. We discuss a ''carrier nulling'' technique which could be used to increase the number of sensors in a row or to multiplex faster bolometers by reducing the required slew rate for a readout SQUID.

  19. A Probabilistic Approach to Mixed Open-loop and Closed-loop Control, with Application to Extreme Autonomous Driving

    E-print Network

    Kolter, J. Zico

    complex regions and without the need to hand-tune the switching control law. We apply our approach-loop control (actively controlling the system based on state feedback) and open-loop control (executing a fixed sequence of control inputs without any feedback). To motivate such strategies, we focus on the task

  20. MAPK Cascades as Feedback Amplifiers

    E-print Network

    Herbert M Sauro; Brian Ingalls

    2007-10-26

    Interconvertible enzyme cascades, exemplified by the mitogen activated protein kinase (MAPK) cascade, are a frequent mechanism in signal transduction pathways. There has been much speculation as to the role of these pathways, and how their structure is related to their function. A common conclusion is that the cascades serve to amplify biochemical signals so that a single bound ligand molecule might produce a multitude of second messengers. Some recent work has focused on a particular feature present in some MAPK pathways -- a negative feedback loop which spans the length of the cascade. This is a feature that is shared by a man-made engineering device, the feedback amplifier. We propose a novel interpretation: that by wrapping a feedback loop around an amplifier, these cascades may be acting as biochemical feedback amplifiers which imparts i) increased robustness with respect to internal perturbations; ii) a linear graded response over an extended operating range; iii) insulation from external perturbation, resulting in functional modularization. We also report on the growing list of experimental evidence which supports a graded response of MAPK with respect to Epidermal Growth Factor. This evidence supports our hypothesis that in these circumstances MAPK cascade, may be acting as a feedback amplifier.

  1. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/?Hz is achieved.

  2. Feedback Scheduling: An Event-Driven Paradigm

    E-print Network

    Xia, Feng; Sun, Youxian

    2008-01-01

    Embedded computing systems today increasingly feature resource constraints and workload variability, which lead to uncertainty in resource availability. This raises great challenges to software design and programming in multitasking environments. In this paper, the emerging methodology of feedback scheduling is introduced to address these challenges. As a closed-loop approach to resource management, feedback scheduling promises to enhance the flexibility and resource efficiency of various software programs through dynamically distributing available resources among concurrent tasks based on feedback information about the actual usage of the resources. With emphasis on the behavioral design of feedback schedulers, we describe a general framework of feedback scheduling in the context of real-time control applications. A simple yet illustrative feedback scheduling algorithm is given. From a programming perspective, we describe how to modify the implementation of control tasks to facilitate the application of feed...

  3. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  4. A speech locked loop for cochlear implants and speech prostheses

    E-print Network

    Wee, Keng Hoong

    We have previously described a feedback loop that combines an auditory processor with a low-power analog integrated-circuit vocal tract to create a speech-locked-loop. Here, we describe how the speech-locked loop can help ...

  5. A Digital PFC Controller without Input Voltage Sensing

    E-print Network

    A Digital PFC Controller without Input Voltage Sensing Barry Mather, Bhaskar Ramachandran introduces a novel digital PFC (DPFC) control approach that requires no input voltage sensing or current loop available controllers [7, 8]. Digital PFC controllers, offering improved system interface, power management

  6. Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications

    E-print Network

    Johansson, Karl Henrik

    Sandberg, Mikael Johansson, Pan Gun Park, Emmanuel Witrant #12;4/9/2008 2 Feedback control systems Johansson, Pan Gun Park, Emmanuel Witrant Closing the Loop over Wireless Networks:Closing the Loop over everywhere Plant SensorActuator Controller Control over wireless networks How to control a plant when sensor

  7. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  8. Analysis of sampling and quantization effects on the performance of PN code tracking loops

    NASA Technical Reports Server (NTRS)

    Quirk, K. J.; Srinivasan, M.

    2002-01-01

    Pseudonoise (PN) code tracking loops in direct-sequence spread-spectrum systems are often implemented using digital hardware. Performance degradation due to quantization and sampling effects is not adequately characterized by the traditional analog system feedback loop analysis.

  9. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  10. Voltage Regulation of Connexin Channel Conductance

    PubMed Central

    Oh, Seunghoon

    2015-01-01

    Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches. PMID:25510741

  11. Improving Low Voltage Ride Through Capability of Wind Generators Using Dynamic Voltage Restorer

    NASA Astrophysics Data System (ADS)

    Sivasankar, Gangatharan; Suresh Kumar, Velu

    2014-08-01

    The increasing wind power integration with power grid has forced the situation to improve the reliability of wind generators for stable operation. One important problem with induction generator based wind farm is its low ride through capability to the grid voltage disturbance. Any disturbance such as voltage dip may cause wind farm outages. Since wind power contribution is in predominant percentage, such outages may lead to stability problem. The proposed strategy is to use dynamic voltage controller (DVR) to compensate the voltage disturbance. The DVR provides the wind generator the ability to remain connected in grid and improve the reliability. The voltage dips due to symmetrical and unsymmetrical faults are considered for analysis. The vector control scheme is employed for fault compensation which uses software phase locked loop scheme and park dq0 transformation technique. Extensive simulation results are included to illustrate the control and operation of DVR.

  12. Feedback Control of Quantum Systems Dedicated to Slava Belavkin

    E-print Network

    James, Matthew

    Feedback Control of Quantum Systems Matt James ANU #12;Dedicated to Slava Belavkin who pioneered want to control things at the nanoscale - e.g. atoms. Watt used a governor to control steam engines. controller quantum system control actions information #12;Closed loop means feedback, just like in Watt

  13. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  14. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    PubMed

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets). PMID:18497909

  15. Tumor Suppressor APC and Musashi1: Double-Negative Feedback, Wnt Signaling and Colon Cancer

    E-print Network

    Spears, Erick

    2011-08-31

    in the intestinal epithelium. I have identified a double-negative feedback loop between APC and a sequence specific RNA binding protein, Mushashi-1 (MSI1). I hypothesize that this feedback loop serves to maintain a critical balance and that disruption...

  16. RF feedback simulation results for PEP-II

    SciTech Connect

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined.

  17. Steering and Trapping Multiple Particles by Feedback Flow Control: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Armani, Mike; Chaudhary, Satej; Probst, Roland; Shapiro, Benjamin

    2006-03-01

    On the macro scale, feedback control is routinely applied to improve performance and enable new tasks in complex and uncertain systems operating in noisy environments. Our lab has focused on applying feedback control ideas to systems on the micro scale. We show how to combine micro-fluidics and feedback control to independently steer multiple particles with micrometer accuracy in two spatial dimensions. The particles are steered by creating a spatially and temporally varying fluid flow that carries all the particles from where they are to where they should be at each time step. Our control loop comprises sensing, computation, and actuation to steer particles along user-input trajectories, to hold particles in place, or both. Particle locations are identified in real-time by an optical system and sent to a control algorithm that then determines the electrode voltages necessary to create a flow field to carry all the particles to their next desired locations. The process repeats at the next time instant. We have demonstrated flow steering of multiple particles at once both in simulations and in experiments. The steering algorithm is robust to uncertainty and works even when conditions of the particles (size, surface charge), conditions of the buffer (pH, temperature, electro-chemistry, impurities), and attributes of the devices (errors in fabrication geometry, parasitic pressure flows driven by surface tension) vary and/or are unknown.

  18. Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same

    DOEpatents

    O`Connor, P.

    1998-08-11

    A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit. 11 figs.

  19. Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same

    DOEpatents

    O'Connor, Paul (Bellport, NY)

    1998-08-11

    A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit.

  20. Semiclassical spin-spin dynamics and feedback control in transport through a quantum dot

    NASA Astrophysics Data System (ADS)

    Mosshammer, Klemens; Brandes, Tobias

    2014-10-01

    We present a theory of magnetotransport through an electronic orbital, where the electron spin interacts with a (sufficiently) large external spin via an exchange interaction. Using a semiclassical approximation, we derive a set of equations of motions for the electron density matrix and the mean value of the external spin that turns out to be highly nonlinear. The dissipation via the electronic leads is implemented in terms of a quantum master equation that is combined with the nonlinear terms of the spin-spin interaction. With an anisotropic exchange coupling a variety of dynamics is generated, such as self-sustained oscillations with parametric resonances or even chaotic behavior. Within our theory we can integrate a Maxwell-demon-like closed-loop feedback scheme that is capable of transporting particles against an applied bias voltage and that can be used to implement a spin filter to generate spin-dependent oscillating currents of opposite directions.

  1. Rogowski Loop design for NSTX

    SciTech Connect

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-06

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies.

  2. Aalborg Universitet Active damping of LLCL-filter resonance based on LC-trap voltage and capacitor

    E-print Network

    Berning, Torsten

    Aalborg Universitet Active damping of LLCL-filter resonance based on LC-trap voltage and capacitor voltage and capacitor current feedback. In Proceedings of the 2015 IEEE Applied Power Electronics and Capacitor Current Feedback Min Huang, Xiongfei Wang, Poh Chiang Loh, Frede Blaabjerg Department of Energy

  3. Feasibility Study of a 6.6kV, 1MW Transformerless BTB-Based Loop Controller

    NASA Astrophysics Data System (ADS)

    Yonetani, Shinsuke; Fujita, Hideaki; Akagi, Hirofumi; Okada, Naotaka

    This paper achieves a feasibility study of a 6.6kV, 1MW loop controller that consists of a transformerless back-to-back configuration using two 5-level diode-clamped converters. However, the loop controller requires reducing the zero-sequence current circulating between the two distribution lines below than 0.2 A in rms, in order to avoid malfunction of line-to-ground fault protection relays. Moreover, all the dc voltages across four capacitors in the dc link have to be controlled equally. This paper presents a solution to these problems. Two common-mode chokes are installed at the ac side of each converter to suppress high-frequency zero-sequence currents, while feedback control is applied to eliminate low-frequency zero-sequence currents. Two bidirectional buck-boost dc-dc converters are employed to keep the four capacitor voltages equal. Simulation results verify viability and effectiveness of the loop controller, along with the developed theoretical analysis.

  4. Time-Delayed Quantum Feedback Control

    NASA Astrophysics Data System (ADS)

    Grimsmo, Arne L.

    2015-08-01

    A theory of time-delayed coherent quantum feedback is developed. More specifically, we consider a quantum system coupled to a bosonic reservoir creating a unidirectional feedback loop. It is shown that the dynamics can be mapped onto a fictitious series of cascaded quantum systems, where the system is driven by past versions of itself. The derivation of this model relies on a tensor network representation of the system-reservoir time propagator. For concreteness, this general theory is applied to a driven two-level atom scattering into a coherent feedback loop. We demonstrate how delay effects can qualitatively change the dynamics of the atom and how quantum control can be implemented in the presence of time delays.

  5. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  6. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E. (Los Alamos, NM); McCormick, J. Byron (Los Alamos, NM); Kerwin, William J. (Tucson, AZ)

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  7. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  8. Optimal feedback strength for noise suppression in auto-regulatory gene networks

    E-print Network

    Hespanha, João Pedro

    is manipulated can be used to determine the level of extrinsic noise in these gene networks. #12;Optimal feedbackOptimal feedback strength for noise suppression in auto-regulatory gene networks Abhyudai Singh 1 Auto-regulatory feedback loops, where the protein expressed from a gene inhibits or activates its own

  9. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  10. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  11. Building steady-state simulators via hierarchical feedback decomposition

    SciTech Connect

    Rouquette, N.

    1996-12-31

    In recent years, compositional modeling and self-explanatory simulation techniques have simplified the process of building dynamic simulators of physical systems. Building steady-state simulators is, conceptually, a simpler task consisting in solving a set algebraic equations. This simplicity hides delicate technical issues of convergence and search-space size due to the potentially large number of unknown parameters. We present an automated technique for reducing the dimensionality of the problem by (1) automatically identifying feedback loops (a generally NP-complete problem), (2) hierarchically decomposing the set of equations in terms of feedback loops, and (3) structuring a simulator where equations are solved either serially without search or in isolation within a feedback loop. This paper describes the key algorithms and the results of their implementation on building simulators for a two-phase evaporator loop system across multiple combinations of causal and non-causal approximations.

  12. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  13. Student Engagement with Feedback

    ERIC Educational Resources Information Center

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  14. Preventing Feedback Fizzle

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2012-01-01

    Feedback is certainly about saying or writing helpful, learning-focused comments. But that is only part of it. What happens beforehand? What happens afterward? Feedback that is helpful and learning-focused fits into a context. Before a teacher gives feedback, students need to know the learning target so they have a purpose for using the feedback

  15. A dual-loop model of the human controller

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A representative model of the human controller in single-axis compensatory tracking tasks that exhibits an internal feedback loop which is not evident in single-loop models now in common use is presented. This hypothetical inner-loop involves a neuromuscular command signal derived from the time rate of change of controlled element output which is due to control activity. It is not contended that the single-loop human controller models now in use are incorrect, but that they contain an implicit but important internal loop closure, which, if explicitly considered, can account for a good deal of the adaptive nature of the human controller in a systematic manner.

  16. Enhancement of Field Squeezing Using Coherent Feedback

    E-print Network

    J. E. Gough; S. Wildfeuer

    2009-08-22

    The theory of quantum feedback networks has recently been developed with the aim of showing how quantum input-output components may be connected together so as to control, stabilize or enhance the performance of one of the subcomponents. In this paper we show how the degree to which an idealized component (a degenerate parametric amplifier in the strong-coupling regime) can squeeze input fields may be enhanced by placing the component in-loop in a simple feedback mechanism involving a beam splitter. We study the spectral properties of output fields, placing particular emphasis on the elastic and inelastic components of the power density.

  17. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  18. Phase-Locked Loop Based Frequency Synthesizer

    E-print Network

    Bibyk, Steven B.

    · Voltage controlled oscillator (VCO) · Frequency divider ­ Prescaler ­ Program counter ­ swallow counter Prescalar /7, /8 Program Counter /2400 Swallow Counter /3, /4, /5 433, 432.974, 433.026 MHz Loop Filter On divide ratio: 16803, 16804, 16805 · Prescaler: 7, 8 Program counter: 2400 Swallow counter: 3, 4, 5 #12

  19. Feedback Dynamic Voltage Scaling DVSEDF Scheduling: Correctness and PIDFeedback

    E-print Network

    Mueller, Frank

    and frequency levels and, subsequently, prolong battery life. In this paper, we present a novel approach using to their limited battery lifetime. Energy saving techniques usually prolong the battery life but, at the same, time

  20. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  1. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.

  2. Internal and external feedback circuits for skilled forelimb movement

    PubMed Central

    Azim, Eiman; Fink, Andrew J.P.; Jessell, Thomas M.

    2015-01-01

    Skilled motor behavior emerges from interactions between efferent neural pathways that induce muscle contraction and feedback systems that report and refine movement. Two broad classes of feedback projections modify motor output, one from the periphery and a second that originates within the central nervous system. The mechanisms through which these pathways influence movement remain poorly understood, however. Here we discuss recent studies that delineate spinal circuitry that binds external and internal feedback pathways to forelimb motor behavior. A spinal presynaptic inhibitory circuit regulates the strength of external feedback, promoting limb stability during goal-directed reaching. A distinct excitatory propriospinal circuit conveys copies of motor commands to the cerebellum, establishing an internal feedback loop that rapidly modulates forelimb motor output. The behavioral consequences of manipulating these two circuits reveal distinct controls on motor performance, and provide an initial insight into feedback strategies that underlie skilled forelimb movement. PMID:25699987

  3. Probabilistic models for feedback systems.

    SciTech Connect

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  4. Cyber Physical System Challenges for Human-in-the-Loop Control Sirajum Munir, John A. Stankovic

    E-print Network

    Stankovic, John A.

    and behavioral aspect of human beings. Here we propose that it is necessary to raise human-in-the-loop controlCyber Physical System Challenges for Human-in-the-Loop Control Sirajum Munir, John A. Stankovic for employ- ing feedback control with humans in the loop. They are: (i) the need for a comprehensive

  5. Voltage verification unit

    DOEpatents

    Martin, Edward J. (Virginia Beach, VA)

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  6. Remote feedback stabilization of tokamak instabilities

    SciTech Connect

    Sen, A.K. )

    1994-05-01

    A novel remote suppressor consisting of an injected ion beam has been used for the stabilization of plasma instabilities. A collisionless curvature-driven trapped-particle instability, an [bold E][times][bold B] flute mode and an ion temperature gradient (ITG) instability have been successfully suppressed down to noise levels using this scheme. Furthermore, the first experimental demonstration of a multimode feedback stabilization with a single sensor--suppressor pair has been achieved. Two modes (an [bold E][times][bold B] flute and an ITG mode) were simultaneously stabilized with a simple state-feedback-type method where more state'' information was generated from a single-sensor Langmuir probe by appropriate signal processing. The above experiments may be considered as paradigms for controlling several important tokamak instabilities. First, feedback suppression of edge fluctuations in a tokamak with a suitable form of insulated segmented poloidal limiter sections used as Langmuir-probe-like suppressors is proposed. Other feedback control schemes are proposed for the suppression of electrostatic core fluctuations via appropriately phased ion density input from a modulated neutral beam. Most importantly, a scheme to control major disruptions in tokamaks via feedback suppression of kink (and possibly) tearing modes is discussed. This may be accomplished by using a modulated neutral beam suppressor in a feedback loop, which will supply a momentum input of appropriate phase and amplitude. Simple theoretical models predict modest levels of beam energy, current, and power.

  7. Single Event Transients in Low Voltage Dropout (LVDO) Voltage Regulators

    NASA Technical Reports Server (NTRS)

    LaBel, K.; Karsh, J.; Pursley, S.; Kleyner, I.; Katz, R.; Poivey, C.; Kim, H.; Seidleck, C.

    2006-01-01

    This viewgraph presentation reviews the use of Low Voltage Dropout (LVDO) Voltage Regulators in environments where heavy ion induced Single Event Transients are a concern to the designers.Included in the presentation are results of tests of voltage regulators.

  8. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  9. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  10. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  11. RF feedback simulation for the PEP-II B Factory

    SciTech Connect

    Tighe, R.

    1994-06-01

    A model, of the beam and RF system for PEP-11 has been developed to allow both time-domain simulation and frequency-domain analysis of the complete system. The model includes the full set of feedback loops and nonlinear elements such as the beam and klystron. The model may be used to predict beam and feedback stability in the presence of nonlinearities through time-domain simulation as well as system frequency response about a given operating point.

  12. Remote Robot Control With High Force-Feedback Gain

    NASA Technical Reports Server (NTRS)

    Kim, Won S.

    1993-01-01

    Improved scheme for force-reflecting hand control of remote robotic manipulator provides unprecedently high force-reflection gain, even when dissimilar master and slave arms used. Three feedback loops contained in remote robot control system exerting position-error-based force feedback and compliance control. Outputs of force and torque sensors on robot not used directly for force reflection, but for compliance control, while errors in position used to generate reflected forces.

  13. Passage Feedback with IRIS.

    ERIC Educational Resources Information Center

    Yang, Kiduk; Maglaughlin, Kelly L.; Newby, Gregory B.

    2001-01-01

    Compares a user-defined passage feedback system to a document feedback system for information retrieval, based on TREC (Text Retrieval Conference) guidelines. Highlights include a description of IRIS, an interactive retrieval system; text processing; ranking; term weights; feedback models, including the adaptive linear model; and suggestions for…

  14. Feedbacks in human-landscape systems.

    PubMed

    Chin, Anne; Florsheim, Joan L; Wohl, Ellen; Collins, Brian D

    2014-01-01

    This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change. PMID:23592016

  15. Threshold voltage extraction circuit 

    E-print Network

    Hoon, Siew Kuok

    2000-01-01

    A novel optimally self-biasing MOSFET threshold-voltage (V[]) extractor circuit is presented. It implements the most popular industrial extraction algorithm of biasing a saturated MOSFET to the linear portion of its [] versus [] characteristic...

  16. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  17. High-voltage distributors

    NASA Technical Reports Server (NTRS)

    Mcchesney, J. F., Jr.

    1974-01-01

    Two distributors reduce high-voltage breakdowns and corona discharges. Both distributors are constructed to prevent air traps and facilitate servicing without soldering. Occurrence of coronas is also minimized due to smooth surfaces of device.

  18. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  19. Low-voltage gyrotrons

    SciTech Connect

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-15

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  20. 2.14 / 2.140 Analysis and Design of Feedback Control Systems, Spring 2007

    E-print Network

    Trumper, David

    This course develops the fundamentals of feedback control using linear transfer function system models. It covers analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop ...

  1. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias (Garbsen, DE); Eisermann, Henning (Edermissen, DE)

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  2. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor

    E-print Network

    voltage sensor François St-Pierre1,2 , Jesse D Marshall3,4 , Ying Yang1,2 , Yiyang Gong3,4 , Mark J 1. Development of ASAP1-class voltage sensors. (a) Alignment of the S3-S4 loop region of voltageV relative to the holding potential of ­70 mV for three sensor variants with different insertion points of cp

  3. Quantum Feedback Control of Atomic Motion in an Optical Cavity

    E-print Network

    Daniel A. Steck; Kurt Jacobs; Hideo Mabuchi; Tanmoy Bhattacharya; Salman Habib

    2004-06-25

    We study quantum feedback cooling of atomic motion in an optical cavity as a prototypical nonlinear quantum control problem. We design a feedback algorithm that can cool the atom to the ground state of the optical potential with high efficiency despite the nonlinear nature of this problem. An important ingredient is a simplified state-estimation algorithm, necessary for a real-time implementation of the feedback loop. We also describe the critical role of parity dynamics in the cooling process and present a simple theory that predicts the achievable steady-state atomic energies.

  4. Quantum feedback control of atomic motion in an optical cavity.

    PubMed

    Steck, Daniel A; Jacobs, Kurt; Mabuchi, Hideo; Bhattacharya, Tanmoy; Habib, Salman

    2004-06-01

    We study quantum feedback cooling of atomic motion in an optical cavity. We design a feedback algorithm that can cool the atom to the ground state of the optical potential with high efficiency despite the nonlinear nature of this problem. An important ingredient is a simplified state-estimation algorithm, necessary for a real-time implementation of the feedback loop. We also describe the critical role of parity dynamics in the cooling process and present a simple theory that predicts the achievable steady-state atomic energies. PMID:15245219

  5. Quantum Feedback Control of Atomic Motion in an Optical Cavity

    E-print Network

    Bhattacharya, T; Jacobs, K; Mabuchi, H; Steck, D A; Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt; Mabuchi, Hideo; Steck, Daniel A.

    2003-01-01

    We study quantum feedback cooling of atomic motion in an optical cavity as a prototypical nonlinear quantum control problem. We design a feedback algorithm that can cool the atom to the ground state of the optical potential with high efficiency despite the nonlinear nature of this problem. An important ingredient is a simplified state-estimation algorithm, necessary for a real-time implementation of the feedback loop. We also describe the critical role of parity dynamics in the cooling process and present a simple theory that predicts the achievable steady-state atomic energies.

  6. Self-consistent input-output formulation of quantum feedback

    SciTech Connect

    Yanagisawa, M.; Hope, J. J.

    2010-12-15

    A simple method of analyzing quantum feedback circuits is presented. The classical analysis of feedback circuits can be generalized to apply to quantum systems by mapping the field operators of various outputs to other inputs via the standard input-output formalism. Unfortunately, this has led to unphysical results such as the violation of the Heisenberg uncertainty principle for in-loop fields. This paper shows that this general approach can be redeemed by ensuring a self-consistently Hermitian Hamiltonian. The calculations are based on a noncommutative calculus of operator derivatives. A full description of several examples of quantum linear and nonlinear feedback for optical systems is presented.

  7. Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)

    NASA Technical Reports Server (NTRS)

    Burdea, Grigore C.; Speeter, Thomas H.

    1989-01-01

    A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given.

  8. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  9. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  10. The effects of plasma deformability on the feedback stabilization of axisymmetric modes in tokamak plasmas

    SciTech Connect

    Ward, D.J.; Jardin, S.C.

    1992-01-01

    The effects of plasma deformability on the feedback stabilization of axisymmetric modes of tokamak plasmas are studied. It is seen that plasmas with strongly shaped cross sections have unstable motion different from a rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the eigenfunction in a way that reduces the stabilizing eddy currents in these conductors. Passive feedback results using several equilibria of varying shape are presented. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops which are used to determine plasma vertical position for the active feedback system. The variations of these non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations. Active feedback results are presented for the PBX-M tokamak configuration.

  11. Voltage Regulation Performance of a Shunt Active Filter Intended for Installation on a Power Distribution System

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Jintakosonwit, Pichai; Fujita, Hideaki; Akagi, Hirofumi; Shinohara, Junya; Hakoda, Hirotoshi

    This paper discusses control characteristics of line-voltage regulation by a shunt active filter intended for installation on a power distribution system. Since the power circuit configuration of the active filter is the same as a static synchronous compensator (STATCOM), it is possible to regulate the line voltage by means of controlling an adequate amount of a reactive power. In this case, no harmonic voltage affects a feedback controller for the line-voltage regulation, because the active filter eliminates harmonic components from the line voltage at the installation bus. The dynamic performance is also investigated by computer simulation and experimental results. This paper proposes a new compensation scheme capable of reducing transient voltage fluctuations caused by a phase angle change in the installation bus voltage.

  12. RF power recovery feedback circulator

    DOEpatents

    Sharamentov, Sergey I. (Bolingbrook, IL)

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  13. Voltage controlled current source

    DOEpatents

    Casne, Gregory M. (Pittsburgh, PA)

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  14. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  15. High voltage coaxial switch

    DOEpatents

    Rink, John P. (Los Alamos, NM)

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  16. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W. (Albuquerque, NM); Savage, Mark E. (Albuquerque, NM)

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  17. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  18. A Multiphase Generator Based on VCDR (Voltage-Controlled Variable Delay Ring)

    NASA Astrophysics Data System (ADS)

    Woo, Minseok; Moon, Byoungkwon; Kim, Daejeong

    A new delay-locked loop (DLL)-based multiphase generator is presented. To achieve an arbitrary integer multiplication factor, a voltage-controlled variable delay ring (VCDR) is adopted, and a new “generate and reset” (GNR) cell is developed. The whole circuit of the closed loop was designed and characterized in a 1.2-V 0.13-µm CMOS process. The simulated results show that the loop operates from 1.0MHz to 1.2GHz under the supply voltage of 1.2V, and the GNR cell exhibits low supply sensitivity of 1300-ps/V.

  19. The Use of Feedback Mechanisms in Interpreting the Robustness of a Neoliberal Educational Assemblage

    ERIC Educational Resources Information Center

    Demerath, Peter; Mattheis, Allison

    2015-01-01

    This article demonstrates how using feedback mechanisms or "loops" as heuristic devices can help ethnographers explain the interior logic, robustness and contradictions within complex educational assemblages. After reviewing the use of feedback mechanisms in the natural and social sciences, particularly practice theory, the article…

  20. Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna

    E-print Network

    Jackson, Robert B.

    Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna William a positive feedback loop in which clearing of tropical savannas results in warmer and drier climate of tropical savannas increases temperatures and wind speeds and decreases precipitation and relative humidity

  1. A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem

    ERIC Educational Resources Information Center

    Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

    2007-01-01

    Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

  2. A computer-based digital feedback control of frequency drift of multiple lasers

    E-print Network

    Orozco, Luis A.

    other lasers using a scanning Fabry­Pe´rot cavity. A personal computer-based multifunction data, and obtain infinite dc gain in the feedback loop by using digital electronics. A personal computerA computer-based digital feedback control of frequency drift of multiple lasers W. Z. Zhao, J. E

  3. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback

    E-print Network

    Siena, Università di

    1 Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic in the haptic loop. Index Terms--Haptic interfaces, Telerobotics, Surgery, Telemedicine, Biomedical engineering

  4. Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects.

    PubMed

    Maltenfort, Mitchell G; Burke, R E

    2003-05-01

    Skeletofusimotor (beta) motoneurons innervate both extrafusal muscle units and muscle fibers within muscle spindle stretch receptors. By receiving excitation from group Ia muscle spindle afferents and driving the muscle spindle afferents that excite them, they form a positive feedback loop of unknown function. To study it, we developed a computationally efficient model of group Ia afferent behavior, capable of responding to multiple fusimotor inputs, that matched experimental data. This spindle model was then incorporated into a simulation of group Ia feedback during ramp/hold and triangular stretches with and without closure of the beta loop, assuming that gamma and beta fusimotor drives of the same type (static or dynamic) have identical effects on spindle afferent firing. The effects of beta feedback were implemented by driving a fusimotor input with a delayed and filtered fraction of the spindle afferent output. During triangular stretches, feedback through static beta motoneurons enhanced Ia afferent firing during shortening of the spindle. In contrast, closure of a dynamic beta loop increased Ia firing during lengthening. The strength of beta feedback, estimated as a "loop gain" was comparable to experimental estimates. The loop gain increased with velocity and amplitude of stretch but decreased with increased superimposed gamma fusimotor rates. The strongest loop gains were seen when the beta loop and the gamma bias were of different types (static vs. dynamic). PMID:12740414

  5. Geomagnetism and induced voltage

    NASA Astrophysics Data System (ADS)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-07-01

    Introductory physics laboratories have seen an influx of conceptual integrated science over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is initiated by the change in the magnetic flux due to the Earth's magnetic field and movement. This simple and enjoyable experiment will demonstrate how basic concepts in physics and geology can help us think about possible health effects due to the induced voltage.

  6. Feedback stabilization initiative

    SciTech Connect

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  7. NONLINEAR TIME-INVARIANT FEEDBACK CONTROL OF AN UNDERACTUATED MARINE

    E-print Network

    Zimmer, Uwe

    NONLINEAR TIME-INVARIANT FEEDBACK CONTROL OF AN UNDERACTUATED MARINE VEHICLE ALONG A STRAIGHT: A nonlinear, closed-loop, time-invariant controller that globally stabilizes an underactuated marine vehicle: Marine systems, nonlinear control, tracking. 1. INTRODUCTION Consider a marine vehicle moving in the hori

  8. Digital Feedback Control Of Servomotor Via Fiber Optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald; Rodriguez, Dagoberto

    1992-01-01

    Optoelectronic system effects closed-loop control of shaft angles of servomotors. Includes full-duplex fiber-optic link carrying feedforward and feedback signals, between digital motor-control circuits and modules containing motor-power-switching circuits. Fiber optics provide immunity to noise and rapid transmission of data. Features particularly advantageous in robots.

  9. Position Sensor Performance in Nanometer Resolution Feedback Systems

    E-print Network

    Fleming, Andrew J.

    Position Sensor Performance in Nanometer Resolution Feedback Systems Andrew J. Fleming School and resolution of position sensors. Unfortunately, these parameters may not be available in a form that allows direct comparison between sensors or the prediction of closed- loop performance. This article presents

  10. Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems.

    PubMed

    Li, Yongming; Tong, Shaocheng; Li, Tieshan

    2015-01-01

    In this paper, an adaptive fuzzy decentralized output feedback control design is presented for a class of interconnected nonlinear pure-feedback systems. The considered nonlinear systems contain unknown nonlinear uncertainties and the states are not necessary to be measured directly. Fuzzy logic systems are employed to approximate the unknown nonlinear functions, and then a fuzzy state observer is designed and the estimations of the immeasurable state variables are obtained. Based on the adaptive backstepping dynamic surface control design technique, an adaptive fuzzy decentralized output feedback control scheme is developed. It is proved that all the variables of the resulting closed-loop system are semi-globally uniformly ultimately bounded, and also that the observer and tracking errors are guaranteed to converge to a small neighborhood of the origin. Some simulation results and comparisons with the existing results are provided to illustrate the effectiveness and merits of the proposed approach. PMID:25051573

  11. Improving membrane voltage measurements

    E-print Network

    Cai, Long

    as fluorescence resonance energy transfer (FRET) donor and acceptor to develop a voltage sensor, named Mermaid of Aequorea victoria green fluorescent protein (GFP) emitting blue, cyan and yellow and the discovery of GFP have been developed for fluorescence resonance energy transfer (FRET) applications2. Unimolecular

  12. Geomagnetism and Induced Voltage

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is…

  13. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3? end can diffuse with increased probability to the 5? end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  14. Group Feedback for Continuous Learning

    ERIC Educational Resources Information Center

    London, Manuel; Sessa, Valerie I.

    2006-01-01

    This article explores relationships between feedback, group learning, and performance. It considers how feedback to individuals and the group as a whole supports continuous group learning. Feedback source, purpose, clarity, and valence may affect perceptions, processing, and outcomes of feedback. How feedback is processed and used may be…

  15. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  16. Engineering applications of a dynamical state feedback chaotification method

    NASA Astrophysics Data System (ADS)

    ?ahin, Sava?; Güzeli?, Cüneyt

    2012-09-01

    This paper presents two engineering applications of a chaotification method which can be applied to any inputstate linearizable (nonlinear) system including linear controllable ones as special cases. In the used chaotification method, a reference chaotic and linear system can be combined into a special form by a dynamical state feedback increasing the order of the open loop system to have the same chaotic dynamics with the reference chaotic system. Promising dc motor applications of the method are implemented by the proposed dynamical state feedback which is based on matching the closed loop dynamics to the well known Chua and also Lorenz chaotic systems. The first application, which is the chaotified dc motor used for mixing a corn syrup added acid-base mixture, is implemented via a personal computer and a microcontroller based circuit. As a second application, a chaotified dc motor with a taco-generator used in the feedback is realized by using fully analog circuit elements.

  17. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  18. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  19. Signal Flows in Non-Markovian Linear Quantum Feedback Networks

    E-print Network

    Re-Bing Wu; Jing Zhang; Yu-xi Liu; Tzyh-Jong Tarn

    2014-12-17

    Enabled by rapidly developing quantum technologies, it is possible to network quantum systems at a much larger scale in the near future. To deal with non-Markovian dynamics that is prevalent in solid-state devices, we propose a general transfer function based framework for modeling linear quantum networks, in which signal flow graphs are applied to characterize the network topology by flow of quantum signals. We define a noncommutative ring $\\mathbb{D}$ and use its elements to construct Hamiltonians, transformations and transfer functions for both active and passive systems. The signal flow graph obtained for direct and indirect coherent quantum feedback systems clearly show the feedback loop via bidirectional signal flows. Importantly, the transfer function from input to output field is derived for non-Markovian quantum systems with colored inputs, from which the Markovian input-output relation can be easily obtained as a limiting case. Moreover, the transfer function possesses a symmetry structure that is analogous to the well-know scattering transformation in \\sd picture. Finally, we show that these transfer functions can be integrated to build complex feedback networks via interconnections, serial products and feedback, which may include either direct or indirect coherent feedback loops, and transfer functions between quantum signal nodes can be calculated by the Riegle's matrix gain rule. The theory paves the way for modeling, analyzing and synthesizing non-Markovian linear quantum feedback networks in the frequency-domain.

  20. Closed-Loop Optogenetic Brain Interface.

    PubMed

    Pashaie, Ramin; Baumgartner, Ryan; Richner, Thomas J; Brodnick, Sarah K; Azimipour, Mehdi; Eliceiri, Kevin W; Williams, Justin C

    2015-10-01

    This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which electrode arrays are embedded within an optically transparent biocompatible substrate that provides optical access to the brain tissue during electrophysiology recording. An optical setup was designed capable of projecting arbitrary patterns of light for optogenetic stimulation and performing fluorescence microscopy through the implant. For realization of a closed-loop system using this platform, the feedback can be taken from electrophysiology data or fluorescence imaging. In the closed-loop systems discussed in this paper, the feedback signal was taken from the micro-ECoG. In these algorithms, the electrophysiology data are continuously transferred to a computer and compared with some predefined spatial-temporal patterns of neural activity. The computer which processes the data also readjusts the duration and distribution of optogenetic stimulating pulses to minimize the difference between the recorded activity and the predefined set points so that after a limited period of transient response the recorded activity follows the set points. Details of the system design and implementation of typical closed-loop paradigms are discussed in this paper. PMID:26011877

  1. Boiling and condensing pumped loop microgravity experiment

    SciTech Connect

    Standley, V.H.; Fairchild, J.F. )

    1991-01-10

    Aircraft testing of a boiling and condensing (two-phase) pumped loop system was conducted to investigate transient induced by low gravity (Keplerian) maneuvers. The experiment, unchanged, will repeat a selected aircraft test sequence during its flight aboard a suborbital rocket. Such a test of a two-phase system has never been done. A comparison of aircraft and rocket data, particularly equilibrium conditions, may validate aircraft testing of similar systems: Aircraft testing has been completed and preliminary results indicate that local transients induced by Keplerian maneuvers do not generate sizeable or lasting feedback. System feedback, expected to damp exponentially with loop transit time, {theta}{sub loop} (20 s{lt}{theta}{sub loop}{lt}30 s) is negligible compared to local temperature transients having shorter equilibrium times, {theta}{sub local} (5{lt}{theta}{sub local}{lt}10 s). Since {theta}{sub local} is typically 2 to 5 times shorter than the duration of low gravity, {ital t}{sub 0{minus}{ital g}} (20 s{lt}t{sub 0{minus}{ital g}}{lt}25 s), equilibrium conditions are approximated. Transients following a transition from normal to low gravity resulted from destratification of hot and cold fluid, loss of the liquid convection component in laminar flows, and a reduction in condensing heat transfer.

  2. A general formula for prediction of iron losses under nonsinusoidal voltage waveform

    SciTech Connect

    Amar, M.; Kaczmarek, R.

    1995-09-01

    A simple and efficient method for the estimation of iron loss under any nonsinusoidal voltage without multiple zero crossings (i.e. without minor hysteresis loops) is proposed. This method is based on the loss separation model, where iron loss is decomposed into hysteresis, classical and excess loss components. The voltage waveform is identified by the form factor coefficient, easily accessible. Knowledge of the voltage harmonic spectrum is not required in this method. The cases of rectangular pulse, PWM, and fundamental plus a controlled third harmonic voltages are treated and a satisfactory prediction of iron loss is obtained.

  3. Tissue modification with feedback: the smart scalpel

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  4. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  5. Nonlinear dynamics of neural delayed feedback

    SciTech Connect

    Longtin, A.

    1990-01-01

    Neural delayed feedback is a property shared by many circuits in the central and peripheral nervous systems. The evolution of the neural activity in these circuits depends on their present state as well as on their past states, due to finite propagation time of neural activity along the feedback loop. These systems are often seen to undergo a change from a quiescent state characterized by low level fluctuations to an oscillatory state. We discuss the problem of analyzing this transition using techniques from nonlinear dynamics and stochastic processes. Our main goal is to characterize the nonlinearities which enable autonomous oscillations to occur and to uncover the properties of the noise sources these circuits interact with. The concepts are illustrated on the human pupil light reflex (PLR) which has been studied both theoretically and experimentally using this approach. 5 refs., 3 figs.

  6. Optogenetic feedback control of neural activity.

    PubMed

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the 'optoclamp', a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. PMID:26140329

  7. Instantaneous closed loop control of the Navier-Stokes system Technische Universitat Dresden

    E-print Network

    Hinze, Michael

    control serves a dual purpose ­ to construct a closed loop feedback control law which steers the system for the continuous and discrete-in-time control laws are presented. Keywords: Optimal control, Instantaneous control;1 INTRODUCTION 2 as is shown in [14], instantaneous control may be regarded as as nonlinear feedback control

  8. Closed-loop structural stability for linear-quadratic optimal systems

    NASA Technical Reports Server (NTRS)

    Wong, P. K.; Athans, M.

    1975-01-01

    This paper contains an explicit parameterization of a subclass of linear constant gain feedback maps that never destabilize an originally open-loop stable system. These results can then be used to obtain several new structural stability results for multi-input linear-quadratic feedback optimal designs.

  9. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (inventors)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  10. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  11. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes constructed device very mobile. The project is still developing.

  12. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  13. High Voltage Connector

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-03-06

    The originally designed high voltage connectors were to be made of brass. However, if treated like a Bellevile spring with the initially given dimensions, the stresses of the connector when crimped were calculated to be much higher than the yield stress of brass. Since the flange and outer diameters of the connector are to remain small, it was necessary to alter the other dimensions and choice of material in order to bring down the stresses applied to the connector.

  14. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  15. Double reference pulsed phase locked loop

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (inventor)

    1986-01-01

    A double reference pulse phase locked loop is described which measures the phase shift between tone burst signals initially derived from the same periodic signal source (voltage controlled oscillator) and delayed by different amounts because of two different paths. A first path is from the transducer to the surface of a sample and back. A second path is from the transducer to the opposite surface and back. A first pulse phase locked loop including a phase detector and a phase shifter forces the tone burst signal delayed by the second path in phase quadrature with the periodic signal source. A second pulse phase locked loop including a second phase detector forces the tone burst signals delayed by the first path into phase quadrature with the phase shifted periodic signal source.

  16. Charge-pump voltage converter

    DOEpatents

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  17. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, Djula (Knoxville, TN); Sharp, Jeffrey W. (Knoxville, TN)

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  18. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  19. Extracellular matrix proteins: a positive feedback loop in lung fibrosis?

    PubMed

    Blaauboer, Marjolein E; Boeijen, Fee R; Emson, Claire L; Turner, Scott M; Zandieh-Doulabi, Behrouz; Hanemaaijer, Roeland; Smit, Theo H; Stoop, Reinout; Everts, Vincent

    2014-02-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation. Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0-10 ng/ml transforming growth factor (TGF)?1. mRNA expression was analyzed by quantitative real-time PCR. New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGF?1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers ? smooth muscle actin and type I collagen. The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis. PMID:24291458

  20. Regulation of pollen tube polarity: Feedback loops rule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Targeted delivery of immotile sperm through growing pollen tubes is a crucial step in achieving sexual reproduction in angiosperms. Unlike diffuse-growing cells, the growth of a pollen tube is restricted to the very apical region where targeted exocytosis and regulated endocytosis occur. The plant-s...

  1. Effective Sensor Scheduling Schemes Employing Feedback in the Communication Loop

    E-print Network

    Murray, Richard M.

    while simultaneously decreasing chip size and power consumption. The latter gave birth to the fast developing field of sensor networks which have gained great attention in recent years [1], [2]. Many control of control system is called a networked control system (NCS). NCS provides many advantages which classical

  2. Feedback Loop between High Level Semantics and Low Level Vision

    E-print Network

    Daume III, Hal

    scores. For example, in an event recognition system for basketball, the low level detections like shot-on-one basketball videos that uses Markov Logic Networks. 1 Introduction Computer vision systems are generally missed and rebound events are related by high level rules of the game which say that a shot missed event

  3. Better Safe than Sorry: Interlinked Feedback Loops for Robust Mitophagy.

    PubMed

    Manford, Andrew G; Rape, Michael

    2015-10-01

    In this issue of Molecular Cell, Heo et al. (2015) uncover a new mechanism of signal amplification during mitophagy through cooperative regulation of the TBK1 kinase and autophagy receptors. PMID:26431022

  4. ANTENNAL FEEDBACK LOOP REGULATES PHEROMONE RELEASE IN BEETLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regulation of pheromone release is critical for intraspecific communication and avoidance of predators release is critical for intraspecific communication and avoidance of predators or parasites dependent on such messages. Pheromone production is under endocrine control in insects (1,2). However, ...

  5. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  6. Bridge feedback for active damping augmentation

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Lurie, B. J.

    1990-01-01

    A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.

  7. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)?K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  8. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2?K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  9. Active Feedback Mirror System for the IR Beamline 1.4.x Complex Wayne R. McKinney1

    E-print Network

    , California 94720, USA 3 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550-axis feedback loop. TECHNICAL DETAILS Conversations with M. Melczer of Lawrence Livermore National Lab (LLNL

  10. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368

  11. The use of force feedback control for robotic mating of umbilical fuel lines

    NASA Technical Reports Server (NTRS)

    Fullmer, R.; Dilpare, A.; Davis, L.

    1988-01-01

    Control problems in developing force feedback control to use in remotely connecting, disconnecting, and reconnecting the umbilical fuel lines of the Space Shuttle Vehicle are discussed. A docking protocol is proposed, indicating the required role of force feedback. The use of active force feedback control is examined and performance requirements and experimental results are given. A single degree-of-freedom force feedback model is presented and the application of classical control compensation techniques to the force control loop to increase flexibility is considered. In addition, possible modifications to the controller and plans for future research are discussed.

  12. MiR-208a stimulates the cocktail of SOX2 and ?-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1.

    PubMed

    Sun, Xin; Jiang, Shiwen; Liu, Jian; Wang, Huangzhen; Zhang, Yiwen; Tang, Shou-Ching; Wang, Jichang; Du, Ning; Xu, Chongwen; Wang, Chenguang; Qin, Sida; Zhang, Jia; Liu, Dapeng; Zhang, Yunfeng; Li, Xiaojun; Wang, Jiansheng; Dong, Jun; Wang, Xin; Xu, Shaohua; Tao, Zhen; Xu, Fei; Zhou, Jie; Wang, Tao; Ren, Hong

    2015-10-20

    MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and ?-MHC (?-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, ?-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75-1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or ?-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and ?-catenin. The knockdown of either SOX2 or ?-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75-1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75-1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/?-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal. PMID:26460550

  13. Making Time for Feedback

    ERIC Educational Resources Information Center

    Fisher, Douglas; Frey, Nancy

    2012-01-01

    Ask any teacher what he or she needs more of, and it is a good bet that time will top the list. Anything that promises to recoup a little bit of their workday time is sure to be a best seller. One overlooked time-saver is in how they use feedback. Teachers know that feedback is important for teaching and learning. Unfortunately, most secondary…

  14. Blind loop syndrome

    MedlinePLUS

    Blind loop syndrome occurs when digested food slows or stops moving through part of the intestines. This ... The name of this condition refers to the "blind loop" formed by part of the intestine that ...

  15. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    PubMed

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. PMID:25726897

  16. Seven Keys to Effective Feedback

    ERIC Educational Resources Information Center

    Wiggins, Grant

    2012-01-01

    The term "feedback" is often used to describe all kinds of comments made after the fact, including advice, praise, and evaluation. But none of these are feedback, strictly speaking. Basically, feedback is information about how one is doing in his or her efforts to reach a goal. Whether feedback is just there to be grasped or is provided by another…

  17. Transgressive loop group extensions

    E-print Network

    Konrad Waldorf

    2015-04-27

    A central extension of the loop group of a Lie group is called transgressive, if it corresponds under transgression to a degree four class in the cohomology of the classifying space of the Lie group. Transgressive loop group extensions are those that can be explored by finite-dimensional, higher-categorical geometry over the Lie group. We show how transgressive central extensions can be characterized in a loop-group theoretical way, in terms of loop fusion and thin homotopy equivariance.

  18. An active feedback recovery technique from disruption events induced by m = 2, n = 1 tearing modes in ohmically heated tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zanca, P.; Paccagnella, R.; Finotti, C.; Fassina, A.; Manduchi, G.; Cavazzana, R.; Franz, P.; Piron, C.; Piron, L.

    2015-04-01

    We present experimental results of magnetic feedback control on the m = 2, n = 1 tearing mode in RFX-mod operated as a circular ohmically heated tokamak. The feedback suppression of the non-resonant m = 2, n = 1 resistive wall mode (RWM) in q(a) < 2 plasmas is a well-established result of RFX-mod. The control of the tearing counterpart, which develops in q(a) > 2 equilibrium, is instead a more difficult issue. In fact, the disruption induced by a growing amplitude m = 2, n = 1 tearing mode can be prevented by feedback only when the resonant surface q = 2 is close to the plasma edge, namely 2 < q(a) < 2.5, and the electron density does not exceed approximately half of the Greenwald limit. The RFX-mod data show very clearly that a large amplitude m = 2, n = 1 tearing mode significantly limits the operative region of plasma parameters even in the presence of an efficient magnetic feedback. A combined technique of tearing mode and q(a) control has been therefore developed to recover the discharge from the most critical conditions: the potentially disruptive tearing mode is converted into the relatively benign RWM by suddenly decreasing q(a) below 2. The experiments successfully demonstrate the concept. The q(a) control has been performed through the plasma current, given the capability of the toroidal loop-voltage power supply of RFX-mod. We also propose a path for decreasing q(a) by acting on the plasma shape, which could be applied to medium size elongated tokamaks.

  19. A multi-band phase-locked loop frequency synthesizer 

    E-print Network

    Palermo, Samuel Michael

    1999-01-01

    A phase-locked loop (PLL) frequency synthesizer suitable for multi-band transceivers is proposed. The multi-band PLL frequency synthesizer uses a switched tuning voltage- controlled oscillator (VCO) that covers a frequency range of 111 to 297MHz...

  20. Fiber Optic High Voltage Probe

    SciTech Connect

    Matthew J. Heino

    1999-08-01

    We developed a fiber coupled sensor to measure High Voltage directly using only light as the probe. We use the Pockles effect in lithium niobate crystal which will induce a phase shift in a laser beam that varies according to applied voltage. This can then be transformed into a modulation of beam intensity by polarizers, interferometery, or waveguide coupling. No voltage dividers are necessary, nor is any physical connection. This is accompanied by taking advantage of the structure of the power system itself, using voltage planes and dielectric insulation already present as the capacitive voltage divider. We hypothesize a bandwidth from GHz to DC. Such a system could be used in any application that calls for isolated and unobtrusive voltage sensing.

  1. Global climate feedbacks

    SciTech Connect

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  2. Voltage reduction cuts appliance loads

    SciTech Connect

    Not Available

    1980-01-15

    An analysis of the effect of circuit-voltage reduction on individual appliances shows that, for most appliances, there is a definite reduction in load when voltage is reduced. Depending on the type of appliance, there may be a reduction in energy usage. Data are graphically shown for a television, clothes washer, toaster oven, and refrigerators. Additional data are presented on the efficiencies of some small induction motors as a function of voltage and load.

  3. Chen Integrals, Generalized Loops and Loop Calculus

    NASA Astrophysics Data System (ADS)

    Tavares, J. N.

    We use Chen iterated line integrals to construct a topological algebra {A}p of separating functions on the group of loops L?p. {A}p has a Hopf algebra structure which allows the construction of a group structure on its spectrum. We call this topological group the group of generalized loops widetilde {{L} {M}p } Then we develop a loop calculus, based on the end point and area derivative operators, providing a rigorous mathematical treatment of the early heuristic ideas of Gambini, Trias and also Mandelstam, Makeenko and Migdal. Finally, we define a natural action of the “pointed” diffeomorphism group Diffp(?) on widetilde {{L} {M}p }, and consider a variational derivative which allows the construction of homotopy invariants. This formalism is useful for constructing a mathematical theory of loop representation of gauge theories and quantum gravity.

  4. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P. (Espanola, NM)

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  5. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (inventors)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  6. A Lead Angle Control for HB-Type Stepping Motor in the Constant Voltage Range

    NASA Astrophysics Data System (ADS)

    Okumatsu, Yoshihiro; Kawamura, Atsuo

    Stepping motors are generally used as a positioning servo in the OA (Office Automation) and FA (Factory Automation) system because the construction cost is very low and the construction of system is very easy. Since they are generally driven by an open loop controller, the response of stepping motors is oscillatory and it is possible to be out of drive. Therefore they are driven by a closed loop controller in the special system, which requires the high reliability and stability. The lead angle control is used as a closed loop controller of stepping motors because an applied voltage amplitude is not able to be controlled. However a closed loop control of stepping motors is hardly used at present. This paper presents the lead angle control based on the vector control in the constant voltage drive range for 2 phases HB type stepping motors. In the constant voltage range, since the HB type stepping motor is modeled as a surface permanent magnet motor, the motor torque is controlled by the q-axis current. The d-axis current is calculated by the voltage limit condition because of the constant voltage amplitude operation. The control performances are examined by the simulations and experimental results.

  7. Substation voltage upgrading

    SciTech Connect

    Panek, J.; Elahi, H.; Lux, A.; Imece, A.F. . Power Systems Engineering Dept.); LaPanse, R.A.; Stewart, J.R. )

    1992-04-01

    This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

  8. Brain Activation of Negative Feedback in Rule Acquisition Revealed in a Segmented Wisconsin Card Sorting Test

    PubMed Central

    Wang, Jing; Cao, Bihua; Cai, Xueli; Gao, Heming; Li, Fuhong

    2015-01-01

    The present study is to investigate the brain activation associated with the informative value of negative feedback in rule acquisition. In each trial of a segmented Wisconsin Card Sorting Test, participants were provided with three reference cards and one target card, and were asked to match one of three reference cards to the target card based on a classification rule. Participants received feedback after each match. Participants would acquire the rule after one negative feedback (1-NF condition) or two successive negative feedbacks (2-NF condition). The functional magnetic resonance imaging (fMRI) results indicated that lateral prefrontal-to-parietal cortices were more active in the 2-NF condition than in the 1-NF condition. The activation in the right lateral prefrontal cortex and left posterior parietal cortex increased gradually with the amount of negative feedback. These results demonstrate that the informative value of negative feedback in rule acquisition might be modulated by the lateral prefronto-parietal loop. PMID:26469519

  9. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.

  10. AGN Feedback Mechanisms

    E-print Network

    Mitchell C. Begelman

    2003-03-03

    Accreting black holes can release enormous amounts of energy to their surroundings, in various forms. Such feedback may profoundly influence a black hole's environment. After briefly reviewing the possible types of feedback, I focus on the injection of kinetic energy through jets and powerful winds. The effects of these outflows may be especially apparent in the heating of the X-ray--emitting atmospheres that pervade clusters of galaxies. Analogous heating effects, during the epoch of galaxy formation, could regulate the growth of supermassive black holes.

  11. Stabilization of electrostatic MEMS resonators using a delayed feedback controller

    NASA Astrophysics Data System (ADS)

    Alsaleem, Fadi M.; Younis, Mohammad I.

    2010-03-01

    We present a study for the stabilization of a MEMS resonator actuated with DC and AC voltages using a delayed feedback controller. We show that the delayed feedback controller, with a careful selection of its parameters, can be used to stabilize an originally unstable resonator operating in the dynamic pull-in frequency band. Also, the controller is shown to enhance the stability of the resonator near pull-in, where it experiences a strong fractal behavior. In both cases, the controller shows superior performance in rejecting disturbances. Experimental and theoretical results are presented to demonstrate the capability of the feedback controller to stabilize the performance of a capacitive resonator. Good agreement between simulation and experiment is demonstrated.

  12. Information-reduced Carrier Synchronization of Iterative Decoded BPSK and QPSK using Soft Decision (Extrinsic) Feedback

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban; Jones, Christopher

    2008-01-01

    This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.

  13. Strain-optic voltage monitor

    SciTech Connect

    Weiss, J.D.

    1995-12-31

    A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field.

  14. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  15. Cosmic string loop shapes

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Olum, Ken D.; Shlaer, Benjamin

    2015-09-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational backreaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusplike structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  16. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise leave the fundamental timing signal unchanged. The buffered timing signal would be fed as input to the level shifter. The output of the level shifter would serve as a timing and control signal for the high-voltage switch, causing the switch to alternately be (1) opened, allowing the capacitive load to be charged from a high-voltage DC power supply; then (2) closed to discharge the capacitive load to ground. Hence, the output waveform would closely approximate a series of exponential charging and discharging curves (see Figure 2).

  17. Accountability and feedback, part IV: destructive feedback.

    PubMed

    Harolds, Jay A

    2013-04-01

    There are times that feedback is destructive rather than helpful to the employee and the organization. Occasionally, this is deliberate, such as when a boss does not like someone for reasons that have nothing to do with his/her performance as an employee, or his/her character. More often, it is inadvertent. This could be due to erroneous information from others or the leader's failure to take the time to adequately observe or supervise others. It could also be due to a lack of understanding of the individual's communication style, or failure to take into account age, cultural, religious, or sex differences. This article addresses some of these issues and what to do about it. PMID:23429385

  18. School Formative Feedback Systems

    ERIC Educational Resources Information Center

    Halverson, Richard

    2010-01-01

    Data-driven instructional improvement relies on developing coherent systems that allow school staff to generate, interpret, and act upon quality formative information on students and school programs. This article offers a formative feedback system model that captures how school leaders and teachers structure artifacts and practices to create…

  19. Review of Assessment Feedback

    ERIC Educational Resources Information Center

    Li, Jinrui; De Luca, Rosemary

    2014-01-01

    This article reviews 37 empirical studies, selected from 363 articles and 20 journals, on assessment feedback published between 2000 and 2011. The reviewed articles, many of which came out of studies in the UK and Australia, reflect the most current issues and developments in the area of assessing disciplinary writing. The article aims to outline…

  20. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  1. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Astrophysics Data System (ADS)

    Anderson, Karl F.

    1994-12-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  2. On the benefits of hysteresis effects for closed-loop separation control using plasma actuation

    NASA Astrophysics Data System (ADS)

    Benard, N.; Cattafesta, L. N.; Moreau, E.; Griffin, J.; Bonnet, J. P.

    2011-08-01

    Flow separation control by a non-thermal plasma actuator is considered for a NACA 0015 airfoil at a chord Reynolds number of 1.9 × 105. Static hysteresis in the lift coefficient is demonstrated for increasing and then decreasing sinusoidal voltage amplitude supplying a typical single dielectric barrier discharge actuator at the leading edge of the model. In addition to these open-loop experiments, unsteady surface pressure signals are examined for transient processes involving forced reattachment and natural separation. The results show that strong pressure oscillations in the relatively slow separation process, compared to reattachment, precede the ultimate massive flow separation. To enhance the contrast between the parts of the signal related to the attached flow and those related to the incipient separation, RMS estimate of filtered values of Cp is used to define a flow separation predictor that is implemented in feedback control. Two simple controllers are proposed, one based on a predefined threshold of the unsteady Cp and another that utilizes the flow separation predictor to identify incipient separation. The latter effectively leverages the hysteresis in the post-stall regime to reduce the electrical power consumed by the actuator while maintaining continuously attached flow.

  3. A numerical study of mesoscale vegetation-atmosphere feedbacks using a new dynamically coupled vegetation-atmosphere model

    NASA Astrophysics Data System (ADS)

    Rastogi, Deeksha; Baidya Roy, Somnath

    2013-04-01

    Vegetation is an integral component of the earth system. Vegetation-atmosphere interactions go beyond a simple forcing-response system and include nonlinear feedback loops. Any change in land-use/land-cover acts as a forcing that elicits a response from the atmosphere. This response in turn goes on the affect the land-cover, thereby completing the feedback loop. A number of numerical modeling studies have explored these feedbacks over climate scales but mesoscale studies are limited due to the lack of appropriate modeling tools. In this project, a computationally efficient modeling tool, WRFCROP, has been developed to study these feedbacks at high spatio-temporal resolution. WRFCROP consists of the well-known Weather Research and Forecasting (WRF) model with a new vegetation submodule derived from a crop growth model SUCROS. WRFCROP is used to investigate seasonal-scale feedbacks, primarily focusing on near-surface air temperatures in croplands of the Midwestern United States. The WRFCROP model is evaluated using FLUXNET and MODIS data for soybean crops in Illinois and Nebraska. Results show that crop growth modifies surface heat, moisture and momentum fluxes that affect local temperature, cloud cover and precipitation. These meteorological parameters affect crop growth thereby generating positive and/or negative feedback loops. For example, an increase in cloud cover reduces incoming shortwave radiation and hence photosynthesis, exerting a negative feedback. However, more clouds also lead to increased precipitation that reduces water stress and promotes growth, resulting in a positive feedback. WRFCROP simulations are able to identify a number of feedback loops that affect near-surface air temperature. The primary driver of this feedback is the decrease in Bowen ratio due to increase in Leaf Area Index during the growing season. Currently, the capability of WRFCROP to simulate feedbacks in tropical South America is being explored.

  4. Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback

    SciTech Connect

    Takei, Y.; Yamasaki, N.Y; Mitsuda, K.; Kimura, S.; Hirakoso, W.; Masui, K.; Korte, P. A. J. de; Kuur, J. van der; Gottardi, L.

    2009-12-16

    A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz with standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.

  5. A novel charge sensitive preamplifier without the feedback resistor

    SciTech Connect

    Bertuccio, G. . Dipt. di Elettronica e Informazione); Rehak, P.; Xi, D. )

    1992-01-01

    A novel charge sensitive preamplifier which has no resistor in parallel with the feedback capacitor is presented. No external device or circuit is required to discharge the feedback capacitor. The detector leakage and signal current flows away through the gate of the first JFET which works with its gate to source junction slightly forward biased. The DC stabilization of the preamplifier is accomplished by an additional feedback loop, which permits to equalize the current flowing through the forward baised gate to source junction and the current coming from the detector. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using an input JFET with a transconductance to gate capacitance ratio of 4 mS/5.4 pF.

  6. A novel charge sensitive preamplifier without the feedback resistor

    SciTech Connect

    Bertuccio, G.; Rehak, P.; Xi, D.

    1992-07-01

    A novel charge sensitive preamplifier which has no resistor in parallel with the feedback capacitor is presented. No external device or circuit is required to discharge the feedback capacitor. The detector leakage and signal current flows away through the gate of the first JFET which works with its gate to source junction slightly forward biased. The DC stabilization of the preamplifier is accomplished by an additional feedback loop, which permits to equalize the current flowing through the forward baised gate to source junction and the current coming from the detector. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using an input JFET with a transconductance to gate capacitance ratio of 4 mS/5.4 pF.

  7. A closed-loop compressive-sensing-based neural recording system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S.; Hsiao, Steven; Tran, Trac D.; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    Objective. This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. Approach. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Main results. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm2/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Significance. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  8. Feedback control of a solid-state qubit using high-fidelity projective measurement.

    PubMed

    Ristè, D; Bultink, C C; Lehnert, K W; DiCarlo, L

    2012-12-14

    We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating experiments more than 10 times faster than by passive initialization. This closed-loop qubit control is necessary for measurement-based protocols such as quantum error correction and teleportation. PMID:23368293

  9. Feedback and Perseverence in Reading.

    ERIC Educational Resources Information Center

    Guthrie, John T.

    The effects of immediate and delayed feedback on perseverance and learning were investigated with a 3 x 3 factorial design. It was hypothesized that delayed feedback would reduce perseverance while immediate feedback would increase it. Subjects were 72 male college students, paid for participation. They read prose sentences and completed cloze…

  10. Student Perceptions of Classroom Feedback

    ERIC Educational Resources Information Center

    Gamlem, Siv M.; Smith, Kari

    2013-01-01

    Feedback to students has been identified as a key strategy in learning and teaching, but we know less about how feedback is understood by students. The purpose of this study is to gain more insight into lower secondary students' perceptions of when and how they find classroom feedback useful. This article draws on data generated through individual…

  11. Engaging Students with Audio Feedback

    ERIC Educational Resources Information Center

    Cann, Alan

    2014-01-01

    Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…

  12. How to Give Professional Feedback

    ERIC Educational Resources Information Center

    Brookhart, Susan M.; Moss, Connie M.

    2015-01-01

    Professional learning "should be a joy," the authors write, "not an affliction." Feedback experts Brookhart and Moss show how professional feedback can best motivate educators to learn. Professional conversations should be dialogs between the teacher and the principal, and feedback should feed teacher professional learning…

  13. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures.

    PubMed

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C W

    2015-12-23

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops. PMID:26613293

  14. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C. W.

    2015-12-01

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  15. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    NASA Astrophysics Data System (ADS)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  16. Feedback control of unsupported standing in paraplegia--part I: optimal control approach.

    PubMed

    Hunt, K J; Munih, M; de N Donaldson, N

    1997-12-01

    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. In this paper, we extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity. PMID:9422458

  17. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle. PMID:18262528

  18. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  19. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty (West Bloomfield, MI)

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  20. What Controls DNA Looping?

    PubMed Central

    Perez, Pamela J.; Clauvelin, Nicolas; Grosner, Michael A.; Colasanti, Andrew V.; Olson, Wilma K.

    2014-01-01

    The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture. PMID:25167135

  1. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  2. Voltage Sensors Monitor Harmful Static

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  3. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  4. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    ERIC Educational Resources Information Center

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  5. Cloud CCN feedback

    SciTech Connect

    Hudson, J.G.

    1992-12-31

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result.

  6. High sensitivity bulk electro-optic modulator field sensor for high voltage environments

    E-print Network

    Shy,Jow-Tsong

    are attached to a dipole or loop an- tenna to detect the electric or magnetic fields. The antenna creates or magnetic field around a high voltage electrical system. A Mach­Zender interferometer type modulator is generally used in this kind of sensor. The sensor has good sensitivity to electric or magnetic fields

  7. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  8. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  9. Feedback-enhanced self-organization of atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Ivanov, D. A.; Ivanova, T. Yu.

    2014-12-01

    We considered an application of a feedback loop to enhance the self-organization of atoms in a cavity. In contrast to the original setup, we assumed the light leaking from the cavity was photo-detected and the signal was used to appropriately adjust the atomic potential. It was shown that no additional feedback-induced quantum noise was introduced into the system. Numerical simulations performed in classical approximation showed that the application of feedback weakened the requirement for the atom-field coupling needed to observe the self-organization.

  10. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method

    SciTech Connect

    Quan, Li-Di; School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074 ; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji

    2014-01-15

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup ?7} rad /?( Hz ) at the signal frequency of 2?mHz, which contributes a 0.4 ppm uncertainty to the G value.

  11. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. Central Safety Factor and #12;ßN Control on NSTX-U via Beam Power and Plasma Boundary Shape Modification, using TRANSP for Closed Loop Simulations

    SciTech Connect

    Boyer, M. D.; Andre, R.; Gates, David A.; Gerhardt, S.; Goumiri, I. R.; Menard, Jon

    2014-08-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling #12;ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  13. Fighting Decoherence by Feedback-controlled Dissipation

    E-print Network

    Gernot Schaller

    2012-06-12

    Repeated closed-loop control operations acting as piecewise-constant Liouville superoperators conditioned on the outcomes of regularly performed measurements may effectively be described by a fixed-point iteration for the density matrix. Even when all Liouville superoperators point to the completely mixed state, feedback of the measurement result may lead to a pure state, which can be interpreted as selective dampening of undesired states. Using a microscopic model, we exemplify this for a single qubit, which can be purified in an arbitrary single-qubit state by tuning the measurement direction and two qubits that may be purified towards a Bell state by applying a special continuous two-local measurement. The method does not require precise knowledge of decoherence channels and works for large reservoir temperatures provided measurement, processing, and control can be implemented in a continuous fashion.

  14. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  15. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  16. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  17. Understanding Voltage Gating of Providencia stuartii Porins at Atomic Level.

    PubMed

    Song, Wanling; Bajaj, Harsha; Nasrallah, Chady; Jiang, Hualiang; Winterhalter, Mathias; Colletier, Jacques-Philippe; Xu, Yechun

    2015-05-01

    Bacterial porins are water-filled ?-barrel channels that allow translocation of solutes across the outer membrane. They feature a constriction zone, contributed by the plunging of extracellular loop 3 (L3) into the channel lumen. Porins are generally in the open state, but undergo gating in response to external voltages. To date the underlying mechanism is unclear. Here we report results from molecular dynamics simulations on the two porins of Providenica stuartii, Omp-Pst1 and Omp-Pst2, which display distinct voltage sensitivities. Voltage gating was observed in Omp-Pst2, where the binding of cations in-between L3 and the barrel wall results in exposing a conserved aromatic residue in the channel lumen, thereby halting ion permeation. Comparison of Omp-Pst1 and Omp-Pst2 structures and trajectories suggests that their sensitivity to voltage is encoded in the hydrogen-bonding network anchoring L3 onto the barrel wall, as we observed that it is the strength of this network that governs the probability of cations binding behind L3. That Omp-Pst2 gating is observed only when ions flow against the electrostatic potential gradient of the channel furthermore suggests a possible role for this porin in the regulation of charge distribution across the outer membrane and bacterial homeostasis. PMID:25955156

  18. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  19. Multiprotein DNA looping

    E-print Network

    Jose M. G. Vilar; Leonor Saiz

    2006-06-19

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switch-like transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  20. A linear control design structure to maintain loop properties during limit operation in a multi-nozzle turbofan engine

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Ouzts, Peter

    1991-01-01

    The implementation of multi-variable control systems on turbofan engines requires the use of limit protection to maintain safe engine operation. Since a turbofan engine typically encounters limits during transient operation, the use of a limit protection scheme that modifies the feedback loop may void the desired 'guarantees' associated with linear multi-variable control design methods, necessitating considerable simulation to validate the control with limited protection. An alternative control design structure is proposed that maintains the desired linear feedback properties when certain safety limits are encountered by moving the limit protection scheme outside the feedback loop. This proposed structure is compared to a structure with a limit protection scheme that modifies the feedback loop properties. The two design structures are compared using both linear and nonlinear simulations. The evaluation emphasizes responses where the fan surge margin limit is encountered.

  1. Feature saliency and feedback information interactively impact visual category learning

    PubMed Central

    Hammer, Rubi; Sloutsky, Vladimir; Grill-Spector, Kalanit

    2015-01-01

    Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features relevant for categorization are not salient, VCL relies also on perceptual learning, which enables becoming more sensitive to subtle yet important differences between objects. Little is known about how attentional learning and perceptual learning interact when VCL relies on both processes at the same time. Here we tested this interaction. Participants performed VCL tasks in which they learned to categorize novel stimuli by detecting the feature dimension relevant for categorization. Tasks varied both in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency tasks), and in feedback information (tasks with mid-information, moderately ambiguous feedback that increased attentional load, vs. tasks with high-information non-ambiguous feedback). We found that mid-information and high-information feedback were similarly effective for VCL in high-saliency tasks. This suggests that an increased attentional load, associated with the processing of moderately ambiguous feedback, has little effect on VCL when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning; but when the feedback was highly informative participants were able to ultimately attain the same performance as during the high-saliency VCL tasks. However, VCL was significantly compromised in the low-saliency mid-information feedback task. We suggest that such low-saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’ where two interdependent learning processes have to take place simultaneously. PMID:25745404

  2. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  3. A loop quantum multiverse?

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    2013-02-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  4. A loop quantum multiverse?

    E-print Network

    Martin Bojowald

    2012-12-20

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  5. Feedback in clinical medical education.

    PubMed

    Ende, J

    1983-08-12

    In the setting of clinical medical education, feedback refers to information describing students' or house officers' performance in a given activity that is intended to guide their future performance in that same or in a related activity. It is a key step in the acquisition of clinical skills, yet feedback is often omitted or handled improperly in clinical training. This can result in important untoward consequences, some of which may extend beyond the training period. Once the nature of the feedback process is appreciated, however, especially the distinction between feedback and evaluation and the importance of focusing on the trainees' observable behaviors rather than on the trainees themselves, the educational benefit of feedback can be realized. This article presents guidelines for offering feedback that have been set forth in the literature of business administration, psychology, and education, adapted here for use by teachers and students of clinical medicine. PMID:6876333

  6. Hot giant loop holography

    SciTech Connect

    Grignani, Gianluca; Karczmarek, Joanna L.; Semenoff, Gordon W.

    2010-07-15

    We argue that there is a phase transition in the expectation value of the Polyakov loop operator in the large N limit of the high temperature deconfined phase of N=4 Yang-Mills theory on a spatial S{sup 3}. It occurs for the large completely symmetric representation of the SU(N) symmetry group. We speculate that this transition is reflected in the D-branes which are the string theory duals of giant loops.

  7. Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser

    SciTech Connect

    Raghunathan, R. Kovanis, V.; Lester, L. F.; Grillot, F.; Mee, J. K.; Murrell, D.

    2014-07-28

    The external optical feedback-sensitivity of a two-section, passively mode-locked quantum dot laser operating at elevated temperature is experimentally investigated as a function of absorber bias voltage. Results show that the reverse-bias voltage on the absorber has a direct impact on the damping rate of the free-running relaxation oscillations of the optical signal output, thereby enabling interactive external control over the feedback-response of the device, even under the nearly resonant cavity configuration. The combination of high temperature operation and tunable feedback-sensitivity is highly promising from a technological standpoint, in particular, for applications requiring monolithic integration of multi-component architectures on a single chip in order to accomplish, for instance, the dual-objectives of stable pulse quality and isolation from parasitic reflections.

  8. Voltage, energy and power in electric circuits

    E-print Network

    Haase, Markus

    Voltage, energy and power in electric circuits Science teaching unit #12;Disclaimer The Department-2008DVD-EN Voltage, energy and power in electric circuits #12;#12;© Crown copyright 2008 1The National Strategies | Secondary Voltage, energy and power in electric circuits 00094-2008DVD-EN Contents Voltage

  9. Closed-Loop and Robust Control of Quantum Systems

    PubMed Central

    Wang, Lin-Cheng

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H? control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

  10. Closed-loop and robust control of quantum systems.

    PubMed

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(?) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

  11. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  12. Closed-loop, open-source electrophysiology.

    PubMed

    Rolston, John D; Gross, Robert E; Potter, Steve M

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  13. Closed-Loop, Open-Source Electrophysiology

    PubMed Central

    Rolston, John D.; Gross, Robert E.; Potter, Steve M.

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  14. Detrended Fluctuation Analysis of Systolic Blood Pressure Control Loop

    E-print Network

    Galhardo, C E C; de Menezes, M Argollo; Soares, P P S

    2009-01-01

    We use detrended fluctuation analysis (DFA) to study the dynamics of blood pressure oscillations and its feedback control in rats by analyzing systolic pressure time series before and after a surgical procedure that interrupts its control loop. We found, for each situation, a crossover between two scaling regions characterized by exponents that reflect the nature of the feedback control and its range of operation. In addition, we found evidences of adaptation in the dynamics of blood pressure regulation a few days after surgical disruption of its main feedback circuit. Based on the paradigm of antagonistic, bipartite (vagal and sympathetic) action of the central nerve system, we propose a simple model for pressure homeostasis as the balance between two nonlinear opposing forces, successfully reproducing the crossover observed in the DFA of actual pressure signals.

  15. DEP actuated nanoliter droplet dispensing using feedback control Kai-Liang Wang,a

    E-print Network

    Jones, Thomas B.

    Article on the web 24th December 2008 DOI: 10.1039/b816438j Dielectrophoretic (DEP) droplet dispensingDEP actuated nanoliter droplet dispensing using feedback control Kai-Liang Wang,a Thomas B. Jones control systems for high-speed microfluidic devices. Open- loop control of DEP droplet dispensing

  16. Robust Relay-Feedback Based Autotuning for DC-DC Converters

    E-print Network

    technique is based on digital relay feedback and exhibits some features specifically developed to improve, in order to achieve proper stability margins and dynamic closed-loop performances. Other sources of process the best performances for a specific power converter, and it cannot track any process parametric variations

  17. An Augmented Lecture Feedback System to Support Learner and Teacher Communication

    ERIC Educational Resources Information Center

    Zarraonandia, Telmo; Aedo, Ignacio; Diaz, Paloma; Montero, Alvaro

    2013-01-01

    In this paper, it is advocated that the feedback loop between learners and teachers could be improved by making use of augmented reality (AR) techniques. The bidirectional communication between teacher and learners is sometimes hampered by students' fear of showing themselves up in front of their classmates. In order to overcome this problem,…

  18. Torque feedback transmission

    SciTech Connect

    Whalen, B.L.

    1987-01-20

    This patent describes an infinitely variable transmission of inline configuration for interconnecting a primer mover with a load for clutch free operation in a range of speed including hydraulic neutral comprising: a. planetary gear train means having a ring gear, planetary gears supported by a planetary gear carrier, and a sun gear, the sun gear being connected mechanically to the load, output shaft means for joining the sun gear to the load; b. variable torque feedback means comprising (i) a variable displacement hydraulic motor whose rotor shaft is in line with the output shaft means and drivingly connected to the prime mover and the planetary gear carrier during the full range of operation of the transmission, and (ii) a fixed displacement hydraulic pump connected hydraulically to the motor, the rotor shaft of the pump being connected mechanically to the ring gear and being axially displaced from the output shaft means; c. means for adjusting the displacement volume within the hydraulic motor for controlling the torque feedback in the transmission to provide infinitely variable coupling between the prime mover and the load over the full range of the transmission including hydraulic neutral; d. a speed reducer between the primer mover and the motor rotor shaft and a speed multiplier between the sun gear and the load; and e. mechanical transmission assembly means between the speed multiplier and the load in line with the motor rotor shaft and the output shaft means for providing selection of drive, reverse, park, and neutral.

  19. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  20. Natural prehension in trials without haptic feedback but only when calibration is allowed.

    PubMed

    Bingham, Geoffrey; Coats, Rachel; Mon-Williams, Mark

    2007-01-28

    Reach-to-grasp (prehension) movements are normally accurate, precise and stereotypical in movement pattern. These features disappear when haptic feedback is removed in 'virtual reality' systems or when participants pantomime prehension. [Goodale, M. A., Jakobsen, L. S., Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32, 1159-1178] suggested that pantomimed reaches are unnatural in form because the ventral rather than the dorsal stream mediates them. We tested whether calibration can prevent 'unnatural' prehension. Calibration refers to the use of an error (visual and/or kinaesthetic) signal to refine performance. We asked participants to reach-and-grasp in four conditions: (A) baseline; (B) reaching-to-grasp with haptic feedback (visual open-loop prehension to a physical object); (C) no feedback (visual-open-loop prehension to an object that could be seen but not felt); (D) a random mixture of (B) and (C). A 45 degrees mirror was used to display objects without any reduction in visual quality. The normal decrements in performance were observed in condition (C) but not in the identical trials randomly embedded with feedback trials in condition (D). These findings show that participants can produce normal visual-open-loop prehension in the absence of haptic feedback when calibration is allowed. Thus, dorsal stream processing can support pantomimed reaching when calibration is allowed. PMID:17045314

  1. Magnetically driven behavior of plasma loops

    NASA Astrophysics Data System (ADS)

    Stenson, Eve; Bellan, Paul

    2008-11-01

    By studying one or two current-carrying arched flux tubes in a laboratory environment, much can be learned about fundamental plasma dynamics and, potentially, analogous features found in the solar corona. These flux tubes, filled with low-beta plasma, are created with a modified plasma gun. Similar to spheromak guns but possessing a different geometry, the gun comprises an arched vacuum field linking a coplanar anode and cathode. Neutral gas is supplied from nozzles in the electrodes as high voltage is applied, ionizing the gas to form a semicircular loop of plasma. Supplying more than one neutral gas allows the resulting portions of the plasma to be imaged separately with optical filters. When two gases are supplied to a single loop, one from each electrode, high-speed jets are seen to flow from both ends into the apex. This method was used to test an MHD theory explaining flux tube collimation (P. M. Bellan, Phys. Plasmas 10, 1999 (2003)). If instead a pair of loops is created, each from a different gas, the two twist around each other and/or merge; experiments of this type suggest reconnection effects (J. F. Hansen et al, Phys. Plasmas 11, 3177 (2004)). The plasma's changing magnetic field is measured with an array of ``B dot'' probes and compared to force-free models.

  2. Ancillary service details: Voltage control

    SciTech Connect

    Kirby, B.; Hirst, E.

    1997-12-01

    Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

  3. 2009/2010 G52AIM Assessment Feedback Coursework Feedback

    E-print Network

    Qu, Rong

    2009/2010 G52AIM Assessment Feedback 1 Coursework Feedback Statistics for each question to the MKP basic model. Most students provided a good review of the approaches in the literature, and how structures and differences among various approaches in the literature. Some reports had a lack of references

  4. Feedback Mechanism for Microtubule Length Regulation by Stathmin Gradients

    E-print Network

    Maria Zeitz; Jan Kierfeld

    2014-12-09

    We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switch-like regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT length distributions for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe promoting stathmin we do not find bistability.

  5. Low Voltage Spatial Light Modulator

    SciTech Connect

    Papavasiliou, A

    2003-02-19

    This project studied the feasibility of a Low-Voltage actuator technology that promises to reduce the switched voltage requirements and linearize the response of spatial light modulators. We created computer models that demonstrate substantial advantages offered by this technology, and fabricated and tested those devices. SLMs are electro-optic devices for modulating the phase, amplitude or angle of light beams, laser or other. Applications for arrays of SLMs include turbulence correction for high-speed optical communications, imaging through distorting media, input devices for holographic memories, optical manipulation of DNA molecules, and optical computers. Devices based on micro electro-mechanical systems (MEMS) technology have recently become of special interest because of their potential for greatly improved performance at a much lower cost than piezoelectric or liquid crystal based devices. The new MEMS-based SLM devices could have important applications in high-speed optical communication and remote optical sensing, in support of DoD and DOE missions. Virtually all previously demonstrated MEMS SLMs are based on parallel-plate capacitors where an applied voltage causes a mirror attached to a suspended electrode to move towards a fixed electrode. They require relatively high voltages, typically on the order of 100 V, resulting in (1) large transistor sizes, available only from specialized foundries at significant cost and limiting the amount/sophistication of electronics under each SLM pixel, and (2) large power dissipation/area, resulting in a heat removal issue because of the optical precision required ({approx} 1/50-th of a wavelength). The actuator described in this process uses an advanced geometry that was invented at LLNL and is currently still proprietary. The new geometry allows the application of a bias voltage. This applied bias voltage results in a reduction of the required switched voltage and a linearization of the response curve. When this advanced actuator is coupled with non-linear springs, the response curve becomes even more linear. The response curve of the springs is tailored to produce an actuator with extremely linear displacement vs. voltage characteristics.

  6. Hysteresis Phenomenon in Heat-Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats

    NASA Astrophysics Data System (ADS)

    Oroumei, Azam; Tavanai, Hossein; Morshed, Mohammad

    2015-07-01

    This article verifies the hysteresis phenomenon in heat-voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. A third-order polynomial model fits the heat-voltage data better than a second-order polynomial model. It was also observed that the hysteresis loop area of nanofibrous and regular fibrous mats increases with decreasing fiber diameter. Moreover, the curvature of the hysteresis loops is significantly affected by the fiber diameter. In fact, the slope of the curvatures increases with decreasing fiber diameter.

  7. Attributes of an Effective Feedback Process

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2015

    2015-01-01

    Not all feedback is created equal. It is actually quite uneven in its design and effectiveness. Feedback forms typically used by educators and the feedback process used to support learning have markedly different attributes. Understanding the key attributes of effective feedback is important for those involved in the feedback process. The tools…

  8. Moving Feedback Forward: Theory to Practice

    ERIC Educational Resources Information Center

    Orsmond, Paul; Maw, Stephen J.; Park, Julian R.; Gomez, Stephen; Crook, Anne C.

    2013-01-01

    There is substantial research interest in tutor feedback and students' perception and use of such feedback. This paper considers some of the major issues raised in relation to tutor feedback and student learning. We explore some of the current feedback drivers, most notably the need for feedback to move away from simply a monologue from a tutor to…

  9. Feedback: Implications for Further Research and Study.

    ERIC Educational Resources Information Center

    Nishikawa, Sue S.

    This report reviews current literature on feedback and suggests practical implications of feedback research for educators. A definition of feedback is offered, and past definitions in prior research are noted. An analysis of the current state of knowledge of feedback discusses the historical development of feedback theory and suggests that…

  10. Understanding Feedback: A Learning Theory Perspective

    ERIC Educational Resources Information Center

    Thurlings, Marieke; Vermeulen, Marjan; Bastiaens, Theo; Stijnen, Sjef

    2013-01-01

    This article aims to review literature on feedback to teachers. Because research has hardly focused on feedback among teachers, the review's scope also includes feedback in classrooms. The review proposes that the effectiveness of feedback and feedback processes depend on the learning theory adhered to. Findings show that regardless of the…

  11. Development of a New Voltage Sag Compensator with a Gradationally Controlled Voltage Inverter

    NASA Astrophysics Data System (ADS)

    Yamada, Masaki; Iwata, Akihiko; Hatakeyama, Yoshihiro; Ishii, Yasuhiro

    A new voltage sag compensator with a gradationally controlled voltage inverter which exceeds SEMI F47 standard has been developed. It consists of a gradationally controlled voltage inverter in which inverters are connected in series and are charged at different voltages to each other, and which outputs the sum of each output voltage. This system is small and with an extremely low loss.

  12. The coefficient of the voltage induced frequency shift measurement on a quartz tuning fork.

    PubMed

    Hou, Yubin; Lu, Qingyou

    2014-01-01

    We have measured the coefficient of the voltage induced frequency shift (VIFS) of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built. PMID:25414971

  13. An Application of Fictitious Reference Iterative Tuning to State Feedback Control

    NASA Astrophysics Data System (ADS)

    Matsui, Yoshihiro; Akamatsu, Shunichi; Kimura, Tomohiko; Nakano, Kazushi; Sakurama, Kazunori

    In this paper, an application method of Fictitious Reference Iterative Tuning (FRIT), which has been developed for controller gain tuning for single-input single-output systems, to state feedback gain tuning for single-input multivariable systems is proposed. Transient response data of a single-input multivariable plant obtained under closed-loop operation is used for model matching by the FRIT in time domain. The data is also used in frequency domain to estimate the stability and to improve the control performance of the closed-loop system with the state feedback gain tuned by the method. The method is applied to a state feedback control system for an inverted pendulum with an inertia rotor and its usefulness is illustrated through experiments.

  14. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    PubMed

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators. PMID:22330565

  15. A program to evaluate a control system based on feedback of aerodynamic pressure differentials

    NASA Technical Reports Server (NTRS)

    Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.

  16. Student Interpretations of Diagnostic Feedback

    ERIC Educational Resources Information Center

    Doe, Christine

    2015-01-01

    Diagnostic assessment is increasingly being recognized as a potentially beneficial tool for teaching and learning (Jang, 2012). There have been calls in the research literature for students to receive diagnostic feedback and for researchers to investigate how such feedback is used by students. Therefore, this study examined how students…

  17. Motivating Students through Formative Feedback

    ERIC Educational Resources Information Center

    Mauch, Lois

    2007-01-01

    Technology tools that are used to help apply standards and benchmarks motivate physical educators to use new methods of teaching, and create new ways to provide students with direct formative feedback, the number one motivator for students. Direct formative feedback refers to verbal communication between the teacher and/or parent and student. The…

  18. Fast Feedback in Classroom Practice

    ERIC Educational Resources Information Center

    Emmett, Katrina; Klaassen, Kees; Eijkelhof, Harrie

    2009-01-01

    In this article we describe one application of the fast feedback method (see Berg 2003 "Aust. Sci. Teach. J." 28-34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to be successful, and the data that we obtained…

  19. Attribution Analysis of Cloud Feedback 

    E-print Network

    Zhou, Chen

    2014-07-15

    the magnitude of long-term cloud feedback predicted by models. Observations suggest that there are more low clouds in the planetary boundary layer in response to inter-annual surface warming, contributing a strong negative cloud feedback. The overall cloud...

  20. Simulation of a Complex Closed-Loop Controlled Power Electronics Circuit in Simulink

    NASA Astrophysics Data System (ADS)

    Mehrabani, Hossein; Kukrer, Osman

    2008-10-01

    In this paper, the simulation of complicated power electronic systems involving closed-loop control is discussed. The circuit chosen is a Series Resonant dc-dc Converter with closed-loop control of the output voltage. A complex circuit chosen from the power electronics literature has been simulated using the Simpower toolbox of Simulink. The simulation model is described and results pertaining to transient operation of the circuit are presented.