Science.gov

Sample records for voltage measurement electrodes

  1. Photoconductivity of high voltage space insulating materials: Measurements with metal electrodes

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.

    1975-01-01

    The electrical conductivities of high voltage insulating materials were measured in the dark and under various intensities of illumination. The materials investigated included FEP Teflon, Kapton-H, fused quartz, and parylene. Conductivities were determined as functions of temperature between 22 and 100 C and light intensity between 0 and 2.5 kW/m2. The thickness dependence of the conductivity was determined for Teflon and Kapton, and the influence of spectral wavelengths on the conductivity was determined in several cases. All measurements were made in a vacuum to simulate a space environment, and all samples had metallic electrodes. The conductivity of Kapton was permanently increased by exposure to light; changes as great as five orders of magnitude were observed after six hours of illumination.

  2. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  3. Electrode voltage fall and total voltage of a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  4. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    PubMed

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group. PMID:23365792

  5. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  6. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  7. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Jin, Yang; Sima, Wenxia; Liu, Mengna

    2016-04-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  8. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator

    PubMed Central

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended. PMID:26302491

  9. Methods for testing high voltage connectors in vacuum, measurements of thermal stresses in encapsulated assemblies, and measurement of dielectric strength of electrodes in encapsulants versus radius of curvature

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1976-01-01

    Internal embedment stress measurements were performed, using tiny ferrite core transformers, whose voltage output was calibrated versus pressure by the manufacturer. Comparative internal strain measurements were made by attaching conventional strain gages to the same type of resistors and encapsulating these in various potting compounds. Both types of determinations were carried out while temperature cycling from 77 C to -50 C.

  10. On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection

    PubMed Central

    Krishnan, Ashwati; Kelly, Shawn K.

    2016-01-01

    Current technology has enabled a significant increase in the number of electrodes for electrical stimulation. For large arrays of electrodes, it becomes increasingly difficult to monitor and detect failures at the stimulation site. In this paper, we propose the idea that the residual voltage from a biphasic electrical stimulation pulse can serve to recognize damage at the electrode-tissue interface. We use a simple switch circuit approach to estimate the relaxation time constant of the electrode model, which essentially models the residual voltage in biphasic electrical stimulation, and compare it with standard electrode characterization techniques. Out of 15 electrodes in a polyimide-based SIROF array, our approach highlights 3 damaged electrodes, consistent with measurements made using cyclic voltammetry and electrode impedance spectroscopy.

  11. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOEpatents

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1998-01-13

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

  12. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1998-01-01

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  13. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  14. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  15. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    NASA Technical Reports Server (NTRS)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; Surles-Law, K.; Williams, P.

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  16. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  17. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  18. Dielectric constant well logging with current and voltage electrodes

    SciTech Connect

    Hoyer, W.A.; Kern, J.W.; Spann, M.M.

    1982-11-30

    This invention provides for methods and systems for measuring the dielectric constant of an earth formation. In a preferred embodiment, an alternating current is passed through a portion of the formation and a reference resistor in series with the portion. The capacitance and the dielectric constant of the portion may be determined from the phase difference between the voltage across the reference resistor and the voltage across the portion. This phase difference may be obtained by generating a voltage which is in phase with the voltage across the reference resistor, but which has the magnitude of the voltage across the portion. To obtain the phase difference by an alternate digital method, the voltage across the referenced resistor and the voltage across the portion are each transformed into a square wave signal. The two square wave signals are then compared to obtain the sign and the magnitude of the phase difference between the two square waves. In an alternate preferred embodiment, an alternating current is passed through the portion of the earth formation and through a capacitor and a resistor connected in series with the portion. The first dc signal is generated by filtering out the high frequency components from the product of the voltages across the capacitor and across the portion. A second dc signal is generated by filtering out the high frequency components from the product of the voltages across the referenced resistor and across the portion. The phase difference between the voltage across the portion and the current through the portion may be determined, from which the capacitance and the dielectric constant of the portion may then be calculated.

  19. Field Emission Measurements from Niobium Electrodes

    SciTech Connect

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  20. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  1. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  2. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  3. Electrical measuring while drilling with composite electrodes

    SciTech Connect

    Peppers, J.M.

    1986-04-22

    A method is described for transmitting data taken at the bottom of a well bore near the drill bit to the earth's surface through a large volume of the earth formation surrounding the well bore between the drill bit and the earth's surface. The method consists of: (a) generating electrical power within the drill pipe responsive to drilling fluids pumped through the drill pipe; (b) generating sequential bursts of a first AC voltage in digital sequence representing a digital information signal with use of such electrical power and with the digital being representative of a measured parameter occurring near the drill bit; (c) passing a first AC signal current impressed by the first AC voltage through a first electrode from the drilling string to be focussed outwardly and radially away from the well bore to form one path of initially horizontal current flow radially out through the drilling fluids and surrounding earth formation with the common path of the first AC current being the drill pipe; and (d) receiving and detecting a first AC signal potential resulting from the first AC signal current with a receiver/detection means connected to the drill pipe and to a receiver electrode located remote from the drilling string and electrically connected into the earth formation.

  4. Measuring breakdown voltage for objectively detecting ignition in fire research

    NASA Astrophysics Data System (ADS)

    Ochoterena, R.; Försth, M.; Elfsberg, Mattias; Larsson, Anders

    2013-10-01

    This paper presents a method intended for detecting the initiation of combustion and the presence of smoke in confined or open spaces by continuously applying an intermittent high-voltage pulse between the electrodes. The method is based on an electrical circuit which generates an electrical discharge measuring simultaneously the breakdown voltage between the electrodes. It has been successfully used for the detection of particle-laden aerosols and flames. However, measurements in this study showed that detecting pyrolysis products with this methodology is challenging and arduous. The method presented here is robust and exploits the necessity of having an ignition system which at the same time can automatically discern between clean air, flames or particle-laden aerosols and can be easily implemented in the existing cone calorimeter with very minor modifications.

  5. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  6. Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster

    SciTech Connect

    Y. Raitses; D. Staack; N.J. Fisch

    2001-10-16

    Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.

  7. Thermoelectric corrections to quantum voltage measurement

    NASA Astrophysics Data System (ADS)

    Bergfield, Justin P.; Stafford, Charles A.

    2014-12-01

    A generalization of Büttiker's voltage probe concept for nonzero temperatures is an open third terminal of a quantum thermoelectric circuit. An explicit analytic expression for the thermoelectric correction to an ideal quantum voltage measurement in linear response is derived and interpreted in terms of local Peltier cooling/heating within the nonequilibrium system. The thermoelectric correction is found to be large (up to ±24 % of the peak voltage) in a prototypical ballistic quantum conductor (graphene nanoribbon). The effects of measurement nonideality are also investigated. Our findings have important implications for precision local electrical measurements.

  8. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  9. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  10. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGESBeta

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  11. Voltage distribution over capacitively coupled plasma electrode for atmospheric-pressure plasma generation

    PubMed Central

    2013-01-01

    When capacitively coupled plasma (CCP) is used to generate large-area plasma, the standing wave effect becomes significant, which results in the hindering of the uniform plasma process such as in a plasma etcher or plasma chemical vapor deposition. In this study, the transmission line modeling method is applied to calculate the voltage distribution over atmospheric-pressure CCP electrodes with the size of 1 m × 0.2 m. The measured plasma impedance in our previous study was used in the present calculation. The results of the calculations clearly showed the effects of excitation frequency and the impedance of the plasma on the form of the voltage distribution caused by the standing wave effect. In the case of 150 MHz frequency, the standing wave effect causes a drastic change in the voltage distribution via plasma ignition; however, the change is small for 13.56 MHz. It was also clarified that the power application position is important for obtaining a uniform voltage distribution. PMID:23634893

  12. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  13. Total Electrode Fall Measurement in a Parallel-Plate Magnetoplasmadynamic Thruster

    NASA Astrophysics Data System (ADS)

    Nakata, Daisuke; Toki, Kyoichiro; Shimizu, Yukio; Funaki, Ikkoh; Kuninaka, Hitoshi; Arakawa, Yoshihiro

    The total electrode fall voltage in a channel of magnetoplasmadynamic (MPD) thruster was determined by using "zero-limit approximating method", which is one of the classical methods widely used in the arc welding field. A new five-channel parallel-plate MPDT was designed and operated in a quasi-steady mode. This paper presents the measurement of the discharge voltage vs. the electrode gap for gaps from 1 mm to 4 mm. The extrapolated zero-gap intercept resulted in 18 V, which was considered as the total electrode-fall voltage. The electrode-fall voltage did not depend on the discharge current unless the discharge current exceeded onset threshold. It is considered that most of the electrode fall is deposited on the cathode side since the space potential at the inter-electrode region was almost equal to the anode potential.

  14. RF Voltage Measurements on ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Bell, G. L.; Goulding, R. H.; Hoffman, D. J.; Wilgen, J. B.; Zhang, H. M.; Ryan, P. M.; Syed, G. M. S.; Kaye, A. S.

    1996-11-01

    Particle and heat flux on the plasma facing surfaces of high-power RF antennas used in fusion devices can result in damage to the antenna structures. High impedance capacitive probe measurements of the RF voltages on Faraday shields of several loop antennas indicate that voltages as high as 30% of the drive voltage can exist for 0/0 phasing (D.J. Hoffman, et al., AIP Conf. Proc. 355), 368 (Palm Spgs., CA, 1995).. These voltages can contribute to increased energy deposition on the antenna owing to increased RF sheath voltages. We report on continued efforts to understand the source and to control these RF voltages. E and B field distributions have been measured on the mock-up of the JET A2 antenna using standard B-dot probes and novel E-field probes positioned with a new automated scanning system. These data are compared with calculated fields from 3-D antenna models. The measurements demonstrate the dependency of the surface E-fields on the phasing of the strap currents and show the charge accumulation at the antenna top and bottom predicted by the models.

  15. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  16. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail III, William Banning; Momii, Steven Thomas

    2003-06-10

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  17. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2000-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  18. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2001-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  19. Current-voltage characteristics of organic semiconductors: Interfacial control between organic layers and electrodes

    NASA Astrophysics Data System (ADS)

    Kondo, Takeshi

    2007-12-01

    Current-voltage (I-V) characteristics of organic molecular glasses and solution processable materials embedded between two electrodes were studied to find materials possessing high charge-carrier mobilities and to design organic memory devices. The comparison studies between TOF, FET and SCLC measurements confirm the validity of using analyses of I-V characteristics to determine the mobility of organic semiconductors. Hexaazatrinaphthylene derivatives tri-substituted by electron withdrawing groups were characterized as potential electron transporting molecular glasses. The presence of two isomers has important implications for film morphology and effective mobility. The statistical isomer mixture of hexaazatrinaphthylene derivatized with pentafluoro-phenylmethyl ester is able to form amorphous films, and electron mobilities with the range of 10--2 cm2/Vs are observed in their I-V characteristics. Single-layer organic memory devices consisting of a polymer layer embedded between an Al electrode and ITO modified with Ag nanodots (Ag-NDs) prepared by a solution-based surface assembly demonstrated a potential capability as nonvolatile organic memory device with high ON/OFF switching ratios of 10 4. This level of performance could be achieved by modifying the ITO electrodes with some Ag-NDs that act as trapping sites, reducing the current in the OFF state. Based upon the observed electrical characteristics, the currents of the low-resistance state can be attributed to a tunneling through low-resistance pathways of metal particles originating from the metal top electrode in the organic layer and that the high-resistance state is controlled by charge trapping by the metal particles including Ag-NDs. In an alternative approach, complex films of AgNO3: hexaazatrinaphthylene derivatives were studied as the active layers for all-solution processed and air-stable organic memory devices. Rewritable memory effects were observed in the devices comprised of a thin polymer

  20. Improving the performance of stainless-steel DC high voltage photoelectron gun cathode electrodes via gas conditioning with helium or krypton

    SciTech Connect

    BastaniNejad, M.; Elmustafa, A. A.; Forman, E.; Clark, J.; Covert, S.; Grames, J.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Suleiman, R.

    2014-10-01

    Gas conditioning was shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns, thus providing a reliable means to operate photoguns at higher voltages and field strengths. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. We have studied five stainless steel electrodes (304L and 316LN) that were polished to approximately 20 nm surface roughness using diamond grit, and evaluated inside a high voltage apparatus to determine the onset of field emission as a function of voltage and field strength. The field emission characteristics of each electrode varied significantly upon the initial application of voltage but improved to nearly the same level after gas conditioning using either helium or krypton, exhibiting less than 10 pA field emission at -225 kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength of ~13 MV/m. Finally, field emission could be reduced with either gas, but there were conditions related to gas choice, voltage and field strength that were more favorable than others.

  1. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    SciTech Connect

    Wu, Kunlin; Bai, Meilin; Hou, Shimin; Sanvito, Stefano

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules.

  2. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-15

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (∼nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  3. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  4. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE PAGESBeta

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  5. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation.

    PubMed

    Deale, O C; Ng, K T; Kim-Van Housen, E J; Lerman, B B

    2001-08-01

    Mapping of the myocardial scalar electric potential during defibrillation is normally performed with unipolar electrodes connected to voltage dividers and a global potential reference. Unfortunately, vector potential gradients that are calculated from these data tend to exhibit a high sensitivity to measurement errors. This paper presents a calibrated single-plunge bipolar electrode array (EA) that avoids the error sensitivity of unipolar electrodes. The EA is triaxial, uses a local potential reference, and simultaneously measures all three components of the myocardial electric field vector. An electrode spacing of approximately 500 microm allows the EA to be direct-coupled to high-input-impedance, isolated, differential amplifiers and eliminates the need for voltage dividers. Calibration is performed with an electrolytic tank in which an accurately measured, uniform electric field is produced. For each EA, unique calibration matrices are determined which transform potential difference readings from the EA to orthogonal components of the electric field vector. Elements of the matrices are evaluated by least squares multiple regression analysis of data recorded during rotation of the electric field. The design of the electrolytic tank and electrode holder allows the electric field vector to be rotated globally with respect to the electrode axes. The calibration technique corrects for both field perturbation by the plunge electrode body and deviations from orthogonality of the electrode axes. A unique feature of this technique is that it eliminates the need for mechanical measurement of the electrode spacing. During calibration, only angular settings and voltages are recorded. For this study, ten EAs were calibrated and their root-mean-square (rms) errors evaluated. The mean of the vector magnitude rms errors over the set of ten EAs was 0.40% and the standard deviation 0.07%. Calibrated EAs were also tested for multisite mapping in four dogs during high-voltage

  6. Measurement of secondary ionization coefficient of CaO film electrode

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Kashiwagi, Yasuhide; Itoh, Haruo

    2013-02-01

    The secondary ionization coefficient γ of a CaO film electrode is investigated taking into account the difference in breakdown voltage obtained by repeated voltage applications. Such measurement is performed under a sinusoidal voltage of 0.5 Hz. If the CaO film electrode acts as the cathode, breakdown voltage gradually decreases and converges to an almost constant value after several breakdowns. From the obtained results, the γ of the CaO film electrode is determined for each breakdown using Townsend's criterion. The γ in the first breakdown is lower than those in subsequent breakdowns, particularly in the steady state. The difference in γ is considered to originate from accumulated charges on the CaO film electrode. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  7. A method for voltage measurements of cancerous vs non-cancerous omentum.

    PubMed

    Wu, W; Vitharana, K; Gorgy, T; Paterson, A; Cunnea, P; Gabra, H; Fotopoulou, C; Boutelle, M G; Drakakis, E M

    2015-08-01

    This paper presents and elaborates upon the practicalities of a method which enables the recording of voltage measurements from omental tissue in patients with advanced ovarian cancer. The key components of the proposed low-cost experimental setup are a tungsten electrode, a Ag/AgCl reference electrode and an instrumentation amplifier. Intriguingly, potential difference recordings between cancerous omentum and tissue culture media and between non-cancerous omentum and media, differ for tissue samples coming from the same patient. Further studies are warranted to assess the potential prognostic value of voltage measurements in cancerous tissue. PMID:26738030

  8. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  9. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    PubMed Central

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  10. Electronic circuit for measuring series connected electrochemical cell voltages

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2000-01-01

    An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

  11. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  12. Charge storage: stability measures in implantable electrodes.

    PubMed

    Peixoto, Nathalia; Jackson, Kassandra; Samiyi, Raamin; Minnikanti, Saugandhika

    2009-01-01

    Here we report on long-term (300 to 600 hours) stability measures for implantable stimulating electrodes. We have considered several measures of stability as they refer to reliability of charge carrying capacity in implantable electrodes. We have designed and manufactured coatings for large area (1 to 2mm(2)) stainless steel substrates. Materials tested were electrodeposited iridium oxide films, multi-walled carbon nanotube mesh, and PEDOT:PSS. Traditional characterization techniques such as cyclic voltammetry and electrochemical impedance spectroscopy cover a small fraction of the characterization framework needed for ensuring the safety and performance of electrodes designed for long-term implants. The stability measures suggested here rely on continuous low frequency cycling and evaluation of cathodic charge storage capacity during cycling. We experimentally show, in this paper, that the stability may be measured and is relevant for long-term applications of such coatings. PMID:19963977

  13. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobate's (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps - 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensor's U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  14. Electrowetting on dielectric device with crescent electrodes for reliable and low-voltage droplet manipulation

    PubMed Central

    Xu, Xiaowei; Sun, Lining; Chen, Liguo; Zhou, Zhaozhong; Xiao, Junjian; Zhang, Yuliang

    2014-01-01

    Digital microfluidics based on electrowetting on dielectric is an emerging popular technology that manipulates single droplets at the microliter or even the nanoliter level. It has the unique advantages of rapid response, low reagent consumption, and high integration and is mainly applied in the field of biochemical analysis. However, currently, this technology still has a few problems, such as high control voltage, low droplet velocity, and continuity in flow, limiting its application. In this paper, through theoretical analysis and numerical simulation, it is deduced that a drive electrode with a crescent configuration can reduce the driving voltage. The experimental results not only validate this deduction but also indicate that crescent electrode can improve the droplet motion continuity and the success in split rate. PMID:25553184

  15. A novel 3D low voltage electrostatic RF MEMS switch with two movable electrodes

    NASA Astrophysics Data System (ADS)

    Babaei, Jafar; Ramer, Rodica; Hesketh, Timothy

    2007-12-01

    This paper will report on the design and fabrication of a novel 3D electrostatic RF MEMS switch, which uses two movable electrodes. The concept of two movable electrodes represents a unique feature of this device and is introduced to the RF MEMS community for the first time. Since the operating principle of the switch is based on electrostatic actuation, this unique feature results in a lower operating voltage. Combining the special bulk and surface micromachining techniques has enabled the realization of this new 3D RF MEMS switch. There are two main configuration for the device structure: 1) in the first device structure all parts are made up of bulk-micromachined free-structures. 2) In the second device structure the lower part is made up of a movable bulk-micromachined cantilever and the upper section is made up of surface micromachined movable thin film structures. By applying a DC voltage between movable plates, they come in touch and provide a pass for the RF signal (on-state of the switch) and as the DC voltage is removed, electrodes will be separated and disconnect the RF signal (off-state). The substrate can be used as a third electrode to separate beams in case of stiction. The monolithic nature of this switch technology makes it possible to develop various switch configurations like SPNT, C-type, and R-type switches, and switch matrices monolithically. This switch can be used as the basic building blocks for microwave switch matrices, multiplexers / demultiplexers, and phase shifters operating at microwave frequencies. The aim is to use the new features of this switch to achieve an acceptable low switching voltage, a better RF performance and particularly reliable switching operation. In this paper design considerations, HFSS simulation and the preliminary fabrication results of the switch are demonstrated.

  16. Dynamics of a metallic particle bouncing between alternating high voltage electrodes

    NASA Astrophysics Data System (ADS)

    Park, Kijun; Goo, Sun-Geun; Yoon, Jin-Yul; Kye, Won-Ho; Kwon, Tae-Yoon; Rim, Sunghwan; Kim, Chil-Min; Park, Young-Jai

    2003-07-01

    We study the dynamics of the motion of a metallic particle bouncing between alternating high-voltage electrodes in a compressed SF6 gas coaxial insulator. Through the study of the bifurcation diagram and attractors, we find that the dynamics of a metallic particle develops from a stable periodic motion to chaos as the strength of the electric field increases. Based on these results, we show numerically that the chaotic motion of the particle can be stabilized by using a chaos control method.

  17. dc step response of induced-charge electro-osmosis between parallel electrodes at large voltages

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2014-07-01

    Induced-charge electro-osmosis (ICEO) is important since it can be used for realizing high performance microfluidic devices. Here, we analyze the simplest problem of ion relaxation around a circular polarizable cylinder between parallel blocking electrodes in a closed cell by using a multiphysics coupled simulation technique. This technique is based on a combination of the finite-element method and finite-volume method for the Poisson-Nernst-Planck (PNP) equations having a flow term and the Stokes equation having an electric stress term. Through this analysis, we successfully demonstrate that on application of dc voltages, quadorapolar ICEO vortex flows grow during the charging time of the cylinder for both unbounded and bounded problems and decay during the charging time of the parallel electrodes only for the bounded problem using blocking electrodes. Further, by proposing a simple model that considers the two-dimensional (2D) PNP equations analytically, we successfully explain the step response time of the ICEO flow for the both unbounded and bounded problems. Furthermore, at low applied voltages, we find analytical formulations on steady diffused-ion problems and steady ICEO-flow problems and examine that our numerical results agree well with the analytical results. Moreover, by considering an ion-conserving condition with 2D Poisson-Boltzmann equations, we explain significant decrease of the maximum slip velocity at large applied voltages fairly well. We believe that our analysis will contribute greatly to the realistic designs of prospective high-performance microfluidic devices.

  18. Voltage breakdown between closely spaced electrodes over polymeric insulator surfaces in air

    NASA Astrophysics Data System (ADS)

    Gray, Eoin W.; Harrington, Daniel J.

    1982-01-01

    Voltage breakdowns of some narrow gap electrodes [2-10 mil (0.05-0.25 mm)] on polymeric insulator surfaces (epoxy-glass and triazine) have been examined over the pressure range from atmospheric pressure to 127 Torr and are shown to be an air breakdown modified by the presence of the insulator. Breakdown values as a function of the number of the breakdown and discharge energy level were also examined. In the worst case the breakdown voltage was observed to decrease by approximately 1300 V after about five successive breakdowns. The breakdown voltage between narrowly spaced metallic contacts on dielectric surfaces has been assumed to exhibit a Gaussian distribution. Non-Gaussian, bimodal distributions have been observed in the present work. These bimodal distributions, found on fine line epoxy-glass and triazine printed wiring boards, and attempts for explanation in terms of the flashover discharge initiating mechanisms, including the effects of ultraviolet radiation and a negative-ion flux on breakdown, are described. Negative ions appear to reduce the standard deviation but do not reduce the breakdown voltage. Ultraviolet radiation reduces both the standard deviation and the breakdown voltage. Increasing the conductor overlap distance (line length) reduced the breakdown voltage.

  19. Origin of voltage decay in high-capacity layered oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S.; Gonbeau, D.; Vantendeloo, G.; Tarascon, J.-M.

    2015-02-01

    Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g-1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g-1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

  20. Inexpensive pulse-train converter measures analog voltage

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1977-01-01

    Converter measures small voltages or currents in presence of very large common-mode voltages (thousands of volts ac or dc). Advantages are low power consumption, transmission via single isolated channel, simplicity, and operation from single-polarity power supply.

  1. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    SciTech Connect

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupled plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.

  2. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    PubMed

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied. PMID:17946734

  3. Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik

    2016-05-01

    Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.

  4. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  5. Analysis of NSTX TF Joint Voltage Measurements

    SciTech Connect

    R, Woolley

    2005-10-07

    This report presents findings of analyses of recorded current and voltage data associated with 72 electrical joints operating at high current and high mechanical stress. The analysis goal was to characterize the mechanical behavior of each joint and thus evaluate its mechanical supports. The joints are part of the toroidal field (TF) magnet system of the National Spherical Torus Experiment (NSTX) pulsed plasma device operating at the Princeton Plasma Physics Laboratory (PPPL). Since there is not sufficient space near the joints for much traditional mechanical instrumentation, small voltage probes were installed on each joint and their voltage monitoring waveforms have been recorded on sampling digitizers during each NSTX ''shot''.

  6. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  7. Nanowire-Modified Three-Dimensional Electrode Enabling Low-Voltage Electroporation for Water Disinfection.

    PubMed

    Huo, Zheng-Yang; Xie, Xing; Yu, Tong; Lu, Yun; Feng, Chao; Hu, Hong-Ying

    2016-07-19

    More than 10% of the people in the world still suffer from inadequate access to clean water. Traditional water disinfection methods (e.g., chlorination and ultraviolet radiation) include concerns about the formation of carcinogenic disinfection byproducts (DBPs), pathogen reactivation, and/or excessive energy consumption. Recently, a nanowire-assisted electroporation-disinfection method was introduced as an alternative. Here, we develop a new copper oxide nanowire (CuONW)-modified three-dimensional copper foam electrode using a facile thermal oxidation approach. An electroporation-disinfection cell (EDC) equipped with two such electrodes has achieved superior disinfection performance (>7 log removal and no detectable bacteria in the effluent). The disinfection mechanism of electroporation guarantees an exceedingly low operation voltage (1 V) and level of energy consumption (25 J L(-1)) with a short contact time (7 s). The low operation voltage avoids chlorine generation and thus reduces the potential of DBP formation. Because of irreversible electroporation damage on cell membranes, no regrowth and/or reactivation of bacteria occurs during storage after EDC treatment. Water disinfection using EDCs has great potential for practical applications. PMID:27341009

  8. Study of a guarded electrode system in the dc conductivity measurement of insulating liquid

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Hao, Miao; Chen, George; Wilson, Gordon; Jarman, Paul

    2014-07-01

    The design and choice of an electrode system is important in dc conductivity measurement of insulating liquid. In this paper, the electric field distribution of an electrode system which consists of two parallel circular metallic electrodes and a guard electrode has been studied using Comsol Multiphysics software. A new parameter, which is not yet involved in current standards, the edge radius, has been mentioned in the literature formerly and is currently discussed in a CIGRE working group. In this paper, the influence of this parameter has been investigated by means of field calculation. As seen from the simulating result, there are regions in the vicinity of the edges of the guard and measuring electrode that are under high electric field. If the edges of these two electrodes are sharp, the maximum electric field in the test cell will be much higher than the average field between the measuring electrode and the high voltage electrode. An empirical equation has been proposed to calculate this maximum field. The classic correction expression for an effective radius has been re-evaluated with the edge radius being taken into account. Experimental work has been performed to confirm this conclusion. Three kinds of mineral oils with different ageing times have been tested under the dc field using a guarded electrode system and the electric strengths of these oils have been estimated. A recommendation has been made to current standards in insulating liquid measurement.

  9. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    PubMed

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-01

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (<80%). The physical origins of such hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry. PMID:26847657

  10. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium/redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    The effect of acid concentration on the performance of the iron-titanium redox flow cell was studied. When the acidity was increased, open-circuit voltages decreased on the titanium side but load voltages increased due to decreased polarization. The best load voltage occurs when there is high acidity on the titanium side coupled with low acidity on the iron side, but such cells show voltage losses with repeated cycling because of the diffusion of acid through the membrane. No membrane tested has been found capable of maintaining the differences in acidity. Chelating agents show some promise in reducing polarization at the Ti electrode and thus improving energy efficiency.

  11. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp

    PubMed Central

    Hagiwara, Susumu; Ohmori, Harunori

    1982-01-01

    1. The properties of the Ca channel in tissue cultured clonal cells (GH3) isolated from a rat anterior pituitary tumour were studied with the patch electrode voltage-clamp technique. 2. To isolate the current through the Ca channel, the currents through the Na channel, the delayed K channel and the Ca2+ induced K channel were minimized by replacing the external Na+ with TEA+ and adding EGTA to the K-free solution inside the patch electrode. 3. The selectivity ratios through the Ca channel with different cations were 2·7 (Ba2+):1·6 (Sr2+):1·0 (Ca2+) and the m2 form of the activation kinetics and the relationships between the time constant and the membrane potential were common to the three divalent cations. 4. The amplitude of the Ba2+ current increased linearly with [Ba2+]o up to 25 mM and thereafter tended to show saturation. 5. The current—voltage relation showed a positive shift along the voltage axis as [Ba2+]o increased, probably due to the screening effect of Ba2+ on the negative surface charges. 6. The time constant of activation as a function of the membrane potential showed a parallel shift as [Ba2+]o was increased, suggesting that the activation kinetics were independent of the permeant ion concentration. 7. The time constant of the tail current was consistent with m2 kinetics for opening and closing of the Ca channel. 8. The extrapolated `instantaneous' tail current rapidly increased as the activating membrane potential became more positive and reached an apparent saturation at membrane potentials substantially more positive than the potential that gave the maximum peak inward current, and suggested that the single channel has a sigmoidal current—voltage relationship. 9. The power density spectrum obtained during the steady-state inward Ba2+ current had a cut-off frequency which was nearly voltage independent; this is expected if the fluctuation of the current originates from m2 activation kinetics. 10. The results of noise analysis suggest that

  12. Measuring Helical FCG Voltage with an Electric Field Antenna

    SciTech Connect

    White, A D; Anderson, R A; Javedani, J B; Reisman, D B; Goerz, D A; Ferriera, A J; Speer, R D

    2011-08-01

    A method of measuring the voltage produced by a helical explosive flux compression generator using a remote electric field antenna is described in detail. The diagnostic has been successfully implemented on several experiments. Measured data from the diagnostic compare favorably with voltages predicted using the code CAGEN, validating our predictive modeling tools. The measured data is important to understanding generator performance, and is measured with a low-risk, minimally intrusive approach.

  13. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.

    PubMed

    Hilbers, Florian; Poulsen, Hanne

    2016-01-01

    The transport of three Na(+) per two K(+) means that the Na,K-ATPase is electrogenic, and though the currents generated by the ion pump are small compared to ion channel currents, they can be measured using electrophysiology, both steady-state pumping and individual steps in the transport cycle. Various electrophysiological techniques have been used to study the endogenous pumps of the squid giant axon and of cardiac myocytes from for example rabbits. Here, we describe the characterization of heterologously expressed Na,K-ATPases using two-electrode voltage clamping (TEVC) and oocytes from the Xenopus laevis frog as the model cell. With this system, the effects of particular mutations can be studied, including the numerous mutations that in later years have been found to cause human diseases. PMID:26695042

  14. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.

  15. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.

  16. Measuring multimegavolt pulsed voltages using Compton-generated electrons

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Weber, B. V.; Pereira, N. R.; Hinshelwood, D. D.; Stephanakis, S. J.; Young, F. C.

    2004-01-01

    The "Compton-Hall" voltmeter is a radiation-based voltage diagnostic that has been developed to measure voltages on high-power (TW) pulsed generators. The instrument collimates photons generated from bremsstrahlung produced in the diode onto an aluminum target to generate Compton-generated electrons. Permanent magnets bend the Compton electron orbits that escape the target toward a silicon pin diode detector. A GaAs photoconductive detector (PCD) detects photons that pass through the Compton target. The diode voltage is determined from the ratio of the electron dose in the pin detector to the x-ray dose in the PCD. The Integrated Tiger Series of electron-photon transport codes is used to determine the relationship between the measured dose ratio and the diode voltage. Variations in the electron beam's angle of incidence on the bremsstrahlung target produce changes in the shape of the photon spectrum that lead to large variations in the voltage inferred from the voltmeter. The voltage uncertainty is minimized when the voltmeter is fielded at an angle of 45° with respect to the bremsstrahlung target. In this position, the photon spectra for different angles of incidence all converge onto a single spectrum reducing the uncertainty in the voltage to less than 10% for voltages below 4 MV. Higher and lower voltages than the range considered in this article can be measured by adjusting the strength of the applied magnetic field or the position of the electron detector relative to the Compton target. The instrument was fielded on the Gamble II pulsed-power generator configured with a plasma opening switch. Measurements produced a time-dependent voltage with a peak (3.7 MV) that agrees with nuclear activation measurements and a pulse shape that is consistent with the measured radiation pulse shape.

  17. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  18. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis

    PubMed Central

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  19. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis.

    PubMed

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  20. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui

    2016-04-01

    Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  1. Arc voltage distribution properties as a function of melting current, electrode gap, and CO pressure during vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-10-01

    An industrial vacuum arc remelting experiment was carried out at Cytemp Specialty Steel Corp. (Titusville, PA) during which a 0.432-m-diameter Alloy 718 electrode was remelted into a 0.508-m-diameter ingot. The purpose of the experiment was to investigate the response of the arc voltage distribution properties (mean, standard deviation, and skewness) and the drip-short frequency to melting current, electrode gap, and CO pressure. The responses were characterized by recording and analyzing changes in the temporally averaged properties. Each independent variable was systematically varied in accordance with a modified Yates order factor space experimental design within the following ranges: melting current, 5,000 to 11,200 A; electrode gap, 0.004 to 0.056 m; and CO pressure, 0.40 to 14.7 Pa. Statistical models were developed describing the correlation between the averaged arc voltage distribution properties and the independent variables. The models demonstrate that all of the voltage distribution properties, as well as the drip-short frequency, are directly related to electrode gap. An arc column model is presented to account for the mean arc voltage properties and the model is used to estimate the arc column pressure. The potential usefulness of the distribution properties as process diagnostics and control responses is evaluated.

  2. Measurement of EMG activity with textile electrodes embedded into clothing.

    PubMed

    Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S

    2007-11-01

    Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG. PMID:17978424

  3. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    SciTech Connect

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.

  4. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    DOE PAGESBeta

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We proposemore » that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.« less

  5. Three electrode measurements on solid electrolytes

    SciTech Connect

    Pham, A.Q.; Glass, R.S.

    1995-12-01

    AC impedance spectroscopy and chronopotentiometry have been used to study solid-state ionic conductors. Results obtained using three electrodes are compared to those using a two-electrode configuration. The uncompensated resistance was shown to depend strongly on the geometric placement of the electrodes. The optimal configuration for minimized uncompensated resistance effects is similar to the Luggin capillary arrangement in the liquid phase. The effect of non-negligible geometric capacitance on interpretation of results is discussed.

  6. A LabVIEW based experiment system for the efficient collection and analysis of cyclic voltametry and electrode charge capacity measurements.

    PubMed

    Detlefsen, D; Hu, Z; Troyk, P R

    2006-01-01

    Cyclic voltametry and recording of stimulation electrode voltage excursions are two critical methods of measurement for understanding the performance of implantable electrodes. Because implanted electrodes cannot easily be replaced, it is necessary to have an a-priori understanding of an electrode's implanted performance and capabilities. In-vitro exhaustive tests are often needed to quantify an electrodes performance. Using commonly available equipment, the human labor cost to conduct this work is immense. Presented is an automated experiment system that is highly configurable that can efficiently conduct a battery of repeatable CV and stimulation recording measurements. Results of preparing 96 electrodes prior to an animal implantation are also discussed. PMID:17947002

  7. Method for linearizing deflection of a MEMS device using binary electrodes and voltage modulation

    DOEpatents

    Horenstein, Mark N [West Roxbury, MA

    2008-06-10

    A micromechanical device comprising one or more electronically movable structure sets comprising for each set a first electrode supported on a substrate and a second electrode supported substantially parallel from said first electrode. Said second electrode is movable with respect to said first electrode whereby an electric potential applied between said first and second electrodes causing said second electrode to move relative to said first electrode a distance X, (X), where X is a nonlinear function of said potential, (V). Means are provided for linearizing the relationship between V and X.

  8. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  9. Measured Capacitance Change Based on Dielectric Location Using Long Distance Measurement Electrodes with Additional Arc Electrodes

    NASA Astrophysics Data System (ADS)

    Ohchi, Masashi; Furukawa, Tatsuya

    The new measurement scheme for the permittivity distribution have been proposed and tested experimentally based on the measured capacitance using a pair of long distance electrodes with the cylindrical shield and the additional arc electrodes. We have proposed the method of the electric field visualization using the electric lines of force based on the scalar potential, moreover, we have presented the new strategy in the estimation of the capacitance based on the electrostatic energy. In the paper, we will describe the capacitance of experimental results using the experiment system, where acrylic rod are inserted, and numerical results using FEM. It is found out that the capacitance is greatly influenced by the electric field deviation due to the location of dielectrics.

  10. Frequency response measurements in battery electrodes

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1992-01-01

    Electrical impedance spectroscopy was used to investigate the behavior of porous zinc, silver, cadmium, and nickel electrodes. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two AgZn cells, one apparently good and the other bad. The impedance data was fit to equivalent circuit models.

  11. Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    The porous, self-supporting, elongated electrode is made, having at least two chambers through its axial length, the chambers separated by an electronically conductive member. This electrode can be an air electrode of a fuel cell, having a superimposed solid electrolyte and fuel electrode.

  12. Traveling electric field probed by a fine particle above voltage-modulated strips in a striped electrode device

    SciTech Connect

    Li Yangfang; Jiang Ke; Thomas, H. M.; Morfill, G. E.; Zhang Wengui; Ma, J. X.

    2010-03-15

    It is described that the distribution of the horizontal electric field above a striped electrode can be inferred from the trajectory of a single fine particle with known mass and diameter. The striped electrode consists of 100 segmented stainless steel strips, each electrically insulated. A traveling periodic potential profile is produced above the striped electrode by modulating the voltage signals on the strips. When the voltage modulation is on, the fine particle, which is originally levitated in the sheath region above the striped electrode, experiences a periodic oscillation along both the vertical and the horizontal directions because of the periodic electric force arising from the modulation voltages. Tracking the motion of the fine particles, the electric force is obtained from the momentum equation including the gravity and the neutral gas friction. With the particle charge estimated by the vertical oscillation method, the electric field can be derived. The horizontal electric field obtained by this method is in agreement with the result predicted by a collisional particle-in-cell simulation.

  13. Generation of obliquely incident ions using phase-shifted RF voltages applied on rod electrodes

    NASA Astrophysics Data System (ADS)

    Ui, Akio; Sato, Yosuke; Sasaki, Toshiyuki; Sakai, Itsuko; Hayashi, Hisataka

    2016-06-01

    A new method of generating obliquely incident ions has been investigated. A plasma system with a cathode consisting of a repetition of a group of four electrode rods connected to their respective RF power supplies is proposed. The ion angular distribution (IAD) is controlled by modulating the phase shift of the four RF powers. The IAD of an argon high-density plasma was analyzed on the basis of transient plasma simulation. When the RF voltages are controlled so that the phase shift is π/2, a convex-shaped plasma sheath corresponding to each group of four rods appears and propagates parallel to the wafer with time. By propagating this “wavy” sheath, a bimodal IAD consisting of ions obliquely incident mainly from two directions are obtained nearly uniformly across the wafer. This method is capable of generating obliquely incident ions, which is expected to be effective as an additional knob for precise profile control in fine-pattern reactive-ion etching (RIE).

  14. Low voltage charge-balanced capacitance-voltage conversion circuit for one-side-electrode-type fluid-based inclination sensor

    NASA Astrophysics Data System (ADS)

    Manaf, Asrulnizam Bin Abd; Matsumoto, Yoshinori

    2009-01-01

    A low voltage detection circuit for a capacitance sensor is important for connection to a low voltage digital circuit interface. We studied two different charge-balanced capacitance-voltage ( C- V) conversion circuits configurations; the operational amplifier and the inverter amplifier. Both capacitance detection circuits were designed using 0.35 μm CMOS circuitry technology. Both amplifiers used in the detection circuits were not affected by offset voltage. The current consumption for capacitance detection circuit was reduced from 250 μA at V dd 3.3 V to 38 μA at V dd 1.3 V by switching from an operational amplifier to an inverter amplifier. These circuits were packaged with one-side-electrode-type fluid-based inclination sensors on ceramic substrates. The size of the sensor is ∅ 4.0 mm × 1.0 mm and pure propylene carbonate was used as electrolyte. Changes in temperature did not affect the output voltage of the sensor between -10 °C and 50 °C. This results show that the inverter amplifier used in the detection circuit was not affected by offset voltage and the output voltage V m is depends only on capacitor ratio. The capacitance detection circuit using the inverter amplifier shows a high-sensitivity of about 7 mV/deg over the operational amplifier at V dd 1.3 V. The response time, resolution and minimum moving angle of sensor were 0.7 s, 0.86° and 0.4°, respectively, at V dd 1.3 V for the inverter amplifier type of capacitance detection circuit.

  15. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  16. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  17. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  18. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresi

    DOE PAGESBeta

    Wang, Junjie; Braun, Paul V.; Zhou, Hui; Nanda, Jagjit

    2015-03-26

    Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed elec-trodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) wasmore » 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.« less

  19. Instrumentation for measuring low-level currents/voltages

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.

    1977-01-01

    Instrumentation consists of high-output resistance voltage measuring amplifier (electrometer) and current-to-frequency converter (current digitizer) coupled to set of timers and counters. Digital display of time-averaged signals with amplitudes varying over 11 decades is possible.

  20. Electroencephalogram measurement using polymer-based dry microneedle electrode

    NASA Astrophysics Data System (ADS)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  1. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    SciTech Connect

    Williamson, R.L.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  2. Primary measurement of total ultrasonic power with improved accuracy in rf voltage measurement.

    PubMed

    Dubey, P K; Kumar, Ashok; Kumar, Yudhisther; Gupta, Reeta; Joshi, Deepa

    2010-10-01

    Out of the various existing ultrasonic power measurement techniques, the radiation force balance method using microbalance is most widely used in low power (below 1 W) regime. The major source of uncertainty associated with this technique is the error in ac voltage measurement applied to the transducer for the generation of ultrasonic waves. The sources that deteriorate the ac voltage measurement accuracy include cable length and impedance mismatch. We introduce a new differential peak to peak measurement approach to reduce the ac voltage measurement error. The method holds the average peak amplitude of each polarity. Ultralow offset difference amplifier is used to measure peak to peak voltage. The method is insensitive to the variations in the dc offset of the source. The functionality of this method has been tested and compared with the conventional rf voltage measurement method. The output of this proposed technique is dc, which can be measured with an error of less than 0.1%. PMID:21034111

  3. DC voltage-voltage method to measure the interface traps in sub-micron MOSTs

    NASA Astrophysics Data System (ADS)

    Jie, B. B.; Li, M. F.; Chim, W. K.; Chan, D. S. H.; Lo, K. F.

    1999-07-01

    A dc voltage-voltage technique for the measurement of stress-generated interface traps in submicron MOSTs is demonstrated. This method uses the source-bulk-drain of a submicron MOST as an effective lateral bipolar transistor when the channel region is out of inversion under the control of the gate voltage Vgb. The emitter injects the minority carriers to the base region and the collector is open. The Vcb versus Vgb spectrum can be explained quantitatively in the spirit of the extended Ebers-Moll equations and interface trap SRH recombination. The spectrum shows clear information on stress-generated interface traps located at the collector-junction region. The new method has the advantages of simplicity, high sensitivity and wide application range to different device structures. A single effective interface trap at the source or drain side could be detected, and interface traps at the source side can be separated from those at the drain side by the new method. Moreover, we propose an improved gated-diode method to separate interface traps at the source side from those at the drain side.

  4. Low-inductance capacitive probe for spark gap voltage measurements

    NASA Astrophysics Data System (ADS)

    Barrett, David M.; Byron, Stanley R.; Crawford, Edward A.; Ford, Dennis H.; Kimura, Wayne D.; Kushner, Mark J.

    1985-11-01

    A novel high-voltage (>50 kV) capacitive probe has been developed to measure the voltage drop across a laser-triggered spark gap. The capacitors which comprise the voltage probe consist of three flat, annular rings that are housed within the spark gap chamber. The rings are oriented perpendicular to the spark column axis such that the column is formed in the open center of the rings. Polyethylene and Kapton foil are employed as dielectrics. The resistive portion of the divider is housed in a shielded enclosure external to the switch chamber. The inherent simplicity of the probe design ensures low inductance while minimizing stray capacitance; thus, the probe has excellent response characteristics (≊1-ns theoretical rise time), and does not interfere with the performance of the switch. The probe has also been designed to permit access for laser triggering and interferometric measurements of the spark column formation. The voltage, current, and resistance characteristics of a laser-triggered spark gap for various gas mixtures are also discussed.

  5. Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF(6) decomposition.

    PubMed

    Kurte, R; Beyer, C; Heise, H M; Klockow, D

    2002-08-01

    Sulfur hexafluoride is a chemically inert gas which is used in gas insulated substations (GIS) and other high-voltage equipment, leading to a significant enhancement of apparatus lifetime and reductions in installation size and maintenance requirements compared to conventional air insulated substations. However, component failures due to aging of the gas through electrical discharges may occur, and on-site monitoring for risk assessment is needed. Infrared spectroscopy was used for the analysis of gaseous by-products generated from electrical discharges in sulfur hexafluoride gas. An infrared monitoring system was developed using a micro-cell coupled to an FTIR spectrometer by silver halide fibers. Partial least-squares calibration was applied by using a limited number of optimally selected spectral variables. Emphasis was placed on the determination of main decomposition products, such as SOF(2), SOF(4), and SO(2)F(2). Besides the different electrical conditions, the material of the plane counter electrode of the discharge chamber was also varied between silver, aluminum, copper, tungsten, or tungsten/copper alloy. For the spark experiments the point electrode was the same material as chosen for the plane electrode, whereas for partial discharges a stainless steel needle was employed. Complementary investigations on the chemical composition within the solid counter electrode material by secondary neutral mass spectrometry (SNMS) were also carried out. Under sparking conditions, the electrode material plays an important role in the decomposition rates of the gas-phase, but no relevant material dependence could be observed under partial discharge conditions. PMID:12185577

  6. Visualization of electrical field of electrode using voltage-controlled fluorescence release.

    PubMed

    Jia, Wenyan; Wu, Jiamin; Gao, Di; Wang, Hao; Sun, Mingui

    2016-08-01

    In this study we propose an approach to directly visualize electrical current distribution at the electrode-electrolyte interface of a biopotential electrode. High-speed fluorescent microscopic images are acquired when an electric potential is applied across the interface to trigger the release of fluorescent material from the surface of the electrode. These images are analyzed computationally to obtain the distribution of the electric field from the fluorescent intensity of each pixel. Our approach allows direct observation of microscopic electrical current distribution around the electrode. Experiments are conducted to validate the feasibility of the fluorescent imaging method. PMID:27253615

  7. Improved electrode paste provides reliable measurement of galvanic skin response

    NASA Technical Reports Server (NTRS)

    Day, J. L.

    1966-01-01

    High-conductivity electrode paste is used in obtaining accurate skin resistance or skin potential measurements. The paste is isotonic to perspiration, is nonirritating and nonsensitizing, and has an extended shelf life.

  8. MnO 2-Pt/C composite electrodes for preventing voltage reversal effects with polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wei, Z. D.; Ji, M. B.; Hong, Y.; Sun, C. X.; Chan, S. H.; Shen, P. K.

    Water is produced at the cathode of proton-exchange membrane fuel cells (PEMFC). If water were not being removed effectively, it would accumulate at the cathode of PEMFC causing the electrode flooding. The consequence is oxygen starvation, thus increasing the concentration overpotential of the cathode. In the worst scenarios, a proton (H +) reduction reaction (PRR), instead of the oxygen reduction reaction (ORR), might occur at the cathode. Not only will this cause a cathode potential drop, but the output voltage of a single cell would likely be reversed due to oxygen starvation. This phenomenon is termed the voltage reversal effect (VRE) in this paper. To study and resolve the VRE problem, a MnO 2-Pt/C composite electrode was used to replace the conventional Pt/C electrode. The authors suggest that the electrochemical reduction of MnO 2 in the composite electrode has almost the same Nernstian potential as the ORR, which would serve as a substitute for the ORR in the case of oxygen starvation. Thus, the voltage reversal effect caused by the PRR could be avoided. Two environments, N 2- and O 2-saturated H 2SO 4, were adopted to simulate two cases, i.e., O 2 starvation and O 2 rich. It was found that MnO 2-Pt/C can prevent the voltage reversal effect to a certain extent. In a N 2-saturated 1 M H 2SO 4 solution, the current density of the Pt/C electrode made of 0.6 mg Pt cm -2 was close to 0, while for the MnO 2-Pt/C composite electrode made of 0.4 mg Pt cm -2 and 0.8 mg MnO 2 cm -2, it was as high as 10 mA cm -2. Though the current generated on the MnO 2-Pt/C composite electrode in the case of oxygen starvation is not as great as that in the case when oxygen rich, it might be high enough for some cases, such as powering a radio, hearing-aid and so like miniature devices. In an O 2-saturated 1 M H 2SO 4, the presence of MnO 2 in a MnO 2-Pt/C composite electrode primarily plays a catalytic role in the ORR. It enhances the catalytic behavior of Pt for the ORR. The

  9. Crayfish stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes.

    PubMed Central

    Brown, H M; Ottoson, D; Rydqvist, B

    1978-01-01

    1. The membrane characteristics of the slowly adapting stretch receptor from the crayfish, Astacus fluviatilis, were examined with electrophysiological techniques consisting of membrane potential recording, voltage clamp and ion-sensitive microelectrodes. 2. The passive membrane current (Ip) following step changes of the membrane potential to levels above 0 mV required more than a minute to decay to a steady-state level. 3. The stretch-induced current (SIC, where SIC = Itotal--Ipassive) was not fully developed until the Ip had decayed to a steady state. 4. With Ip at the steady state and the stretch-induced current at the O-current potential, a slow stretch-induced inward current was isolated. The latter reaches a maximum after 1 sec of stretch and declines even more slowly after stretch. The I-V relation of the slow current had a negative slope and reversed sign near the resting potential. It is suggested that this current is due to a Cl- conductance change. 5. The stretch-induced current, consisting of a rapid transient phase and a steady component can be isolated from the slow stretch-induced current at a holding potential corresponding to the resting potential. 6. The SIC-Em relation is non-linear and reverses sign at about +15 mV. 7. In a given cell, the reversal potential of the stretch-induced potential change obtained with current clamp coincided with the 0-current potential of the stretch-induced current obtained by voltage clamp. The average value from twenty-six cells was +13 +/- 6.5 mV; cell to cell variability seemed to be correlated with dendrite length. 8. Tris (mol. wt. 121) or arginine (mol. wt. 174) susbstituted for Na+ reduces but does not abolish the stretch-induced current. 9. The permeability ratios of Tris:Na and arginine:Na were estimated from changes in the 0-current potential as these cations replaced Na+ in the external medium. The PTris:PNa was somewhat higher (0.31) than the Parginine:PNa ratio (0.25). 10. Changes in the external Ca2

  10. Effect of electrode cap on measured cortical motor threshold.

    PubMed

    Julkunen, Petro; Säisänen, Laura; Sarasti, Maria; Könönen, Mervi

    2009-01-30

    We investigated the role of electrode cap use in the determination of the cortical motor threshold (MT), and the resulting changes in the recorded motor evoked potentials (MEPs). We also tested whether the induced changes in determined MT could be corrected via previously introduced correction method. Sixteen healthy subjects were studied. Navigated TMS was used for mapping the optimal representation area of the thenar musculature in the primary motor cortex and individual MTs were determined with and without the use of the electrode cap. A mathematical correction was utilized to compensate for the effect of electrode cap in the MTs. Individual MEPs were also measured. We observed a significant (p<0.05) increase in the determined MTs attributable to the use of the electrode cap. At the group level this difference was reduced significantly (p<0.01) by the use of the correction method. However, at the individual level the efficiency of the correction was poor. The MEP-amplitudes were not affected whether measured with or without the electrode cap. The electrode cap affects significantly the cortical MT measured as stimulation intensity making the comparison of MTs difficult with other studies not having used an electrode cap. PMID:18801386

  11. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  12. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  13. Volume-surface barrier discharge in dried air in three-electrode system fed by impulse high voltage with nanosecond rise time

    NASA Astrophysics Data System (ADS)

    Malashin, Maxim; Rebrov, Igor; Nebogatkin, Sergey; Sokolova, Marina; Nikitin, Alexey; Voevodin, Vadim; Krivov, Sergey

    2016-08-01

    Results of experimental investigation of a volume-surface barrier discharge in a three-electrode system under periodic impulse voltage applied to the surface discharge (SD) electrodes and a d.c. potential applied to an additional third electrode are presented. It is shown that there is a strong influence of polarity and amplitude of the d.c. potential on the direct current "extracted" out of the surface discharge plasma layer by electric field of the third electrode. The amount of charged positive species that constitute the "extracted" current prevails under positive impulse voltage for low values of the negative d.c. potential of the third electrode. The amount of negative species prevails with higher values of the positive d.c. positive of the third electrode. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  14. Electronic transport in oligo-para-phenylene junctions attached to carbon nanotube electrodes: Transition-voltage spectroscopy and chirality

    SciTech Connect

    Brito Silva, C. A. Jr.; Silva, S. J. S. da; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2011-06-15

    We have investigated, by means of a nonequilibrium Green's function method coupled to density functional theory, the electronic transport properties of molecular junctions composed of oligo-para-phenylene (with two, three, four, and five phenyl rings) covalently bridging the gap between metallic carbon nanotubes electrodes. We have found that the current is strongly correlated to a purely geometrical chiral parameter, both on-resonance and off-resonance. The Fowler-Nordheim plot exhibits minima, V{sub min}, that occur whenever the tail of a resonant transmission peak enters in the bias window. This result corroborates the scenario in which the coherent transport model gives the correct interpretation to transition voltage spectroscopy (TVS). We have shown that V{sub min} corresponds to voltages where a negative differential resistance (NDR) occurs. The finding that V{sub min} corresponds to voltages that exhibit NDR, which can be explained only in single-molecule junctions within the coherent transport model, further confirms the applicability of such models to adequately interpret TVS. The fact that the electrodes are organic is at the origin of differences in the behavior of V{sub min} if compared to the case of molecular junctions with nonorganic contacts treated so far.

  15. Electrochemical impedance measurement of a carbon nanotube probe electrode.

    PubMed

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. PMID:23124171

  16. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  17. Measuring the displacement of the movable guard electrode in the new vertical calculable capacitor at NIM

    NASA Astrophysics Data System (ADS)

    Wang, Jianbo; Qian, Jin; Liu, Zhongyou; Liu, Xiuying; Lu, Zhuliang; Huang, Lu; Yin, Cong; Li, Tongbao

    2014-11-01

    A new type vertical calculable capacitor has been built at National Institute of Metrology (NIM) cooperated with National Measurement Institute of Australia (NMIA). The calculable capacitor is the highest accuracy equipment apparatus except the quantum voltage and the quantum resistance in the electromagnetic metrological field. In order to measure the capacitance precisely, the accurate displacement measurement among the two guard electrodes in the calculable capacitor is a pivotal part. This paper describes a method of measuring the displacement of a Fabry-Perot interferometer, and this interferometer is component of two mirrors in two guard electrodes of the calculable capacitor at NIM. One concave reflective mirror, with 5 m radius and 70% reflectivity, is on the top of the bottom fixed guards electrodes. The other planar mirror is placed at the end of the moveable guard electrodes. This Fabry-Perot interferometer employs a home-made lamb-dip stabilization He-Ne laser at 633 nm to measure the displacement of the movable guard electrode. The internal modulation, which is used for laser stabilization, is also employed for locking the Fabry-Perot interferometer. The displacement of the movable guard electrode could be measured, when the Fabry-Perot interferometer is locked to the stabilization laser at two positions respectively. An iodine stabilization He-Ne laser at 633 nm is employed to simultaneously calibrate the wavelength of lamb-dip working laser. A reproducibility of 1.43×10-8(k=3) for the range of 205 mm can be obtained at present, and that is estimated from the experimental results of calculable capacitor.

  18. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements.

    PubMed

    Hourdakis, C J

    2011-04-01

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, Ū(P), the average, Ū, the effective, U(eff) or the maximum peak, U(P) tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average Ū or the average peak, Ū(p) voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k(PPV,kVp) and the average k(PPV,Uav) conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated-according to the proposed method-PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from Ū(p) and Ū measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements. PMID:21403184

  19. Measurements of Electrode Skin Impedances using Carbon Rubber Electrodes - First Results

    NASA Astrophysics Data System (ADS)

    Kaufmann, Steffen; Ardelt, Gunther; Ryschka, Martin

    2013-04-01

    Non-invasive bioimpedance measurement as a tool in biomedical engineering and life sciences allows conclusions about condition and composition of living tissue. For interfacing the electronic conduction of the instrumentation and the ionic conduction of the tissue, electrodes are needed. A crucial point is the uncertainty arising from the unknown, time-varying and current density depend Electrode Skin Impedance (ESI). This work presents ESI measurements using carbon rubber electrodes on different human test subjects. The measurements for this work are carried out by employing a high accuracy Bioimpedance Measurement System (BMS) developed by the authors group, which is based on a Field Programmable Gate Array (FPGA) System on Chip (SoC). The system is able to measure magnitude and phase of complex impedances using a two- or four-electrode setup, with excitation currents from 60 μA to 5 mA in a frequency range from about 10 kHz to 300 kHz. Achieved overall measurement uncertainties are below 1%.

  20. Modeling of gas flow in the cylindrical channels of high-voltage plasma torches with rod electrodes

    NASA Astrophysics Data System (ADS)

    Borovskoy, A. M.; Popov, S. D.; Surov, A. V.

    2013-08-01

    The article is devoted to the calculation of gas dynamic parameters of gas flow in various areas of low-temperature plasma generator, therefore, target area's grid was built for the simulation of plasma gas flow in channels of studied high-voltage AC plasma torches and calculations of three-dimensional gas flow was made using GAMBIT and FLUENT soft-ware and Spalart-Allmares turbulence model, air flow was simulated in the tangential feed's areas, in the cylindrical channel, in the tapering nozzle chamber and in the mixing chamber of plasma torches and outside (in the environment); thus, 3D-modelling of the cold plasma-forming gas flow was performed in cylindrical channels of studied high-voltage AC plasma torches with rod electrodes for the first time.

  1. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    SciTech Connect

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-07-27

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 {Omega} load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs.

  2. Apparatus for focused electrode induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1986-04-15

    An induced polarization logging tool is described for measuring parameters of a formation surrounding a borehole. The logging tool consists of: a non-conductive logging sonde; a plurality of electrodes disposed on the sonde, the electrodes including at least a survey current electrode and guard electrodes disposed on opposite sides of the survey current electrode, a non-polarizing voltage measuring electrode, a non-polarizing voltage reference electrode and a current return electrode, both the voltage reference and current return electrodes being located a greater distance from the survey current electrode than the guard electrodes; means connected to the survey current electrode and the guard electrodes for generating a signal representative of the potential difference in the formation between the survey current electrode and the guard electrodes; first control means directly coupled to the survey current electrode, the first control means controlling the current flow to the survey current electrode in response to the potential difference signal; a second control means directly coupled to the guard electrodes to control the current flow to the guard electrodes in response to the potential difference signal; a source of alternating current located at the surface, one end of the source being coupled to the two control means and the other to the current return electrode, the source supplying alternating current at various discrete frequencies between substantially 0.01 and 100 Hz; measurement means directly coupled to the voltage measurement and survey current electrodes to measure the amplitude and phase of the voltage induced in the formation and the amplitude and phase of the current flow to the survey electrode; and transmission means for transmitting the measurements to the surface.

  3. Effect of applied voltage, initial concentration and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes

    PubMed Central

    Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2012-01-01

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797

  4. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.

    PubMed

    Ulbrich, Mark; Muhlsteff, Jens; Teichmann, Daniel; Leonhardt, Steffen; Walter, Marian

    2015-06-01

    Bioimpedance measurements on the human thorax are suitable for assessment of body composition or hemodynamic parameters, such as stroke volume; they are non-invasive, easy in application and inexpensive. When targeting personal healthcare scenarios, the technology can be integrated into textiles to increase ease, comfort and coverage of measurements. Bioimpedance is generally measured using two electrodes injecting low alternating currents (0.5-10 mA) and two additional electrodes to measure the corresponding voltage drop. The impedance is measured either spectroscopically (bioimpedance spectroscopy, BIS) between 5 kHz and 1 MHz or continuously at a fixed frequency around 100 kHz (impedance cardiography, ICG). A thorax simulator is being developed for testing and calibration of bioimpedance devices and other new developments. For the first time, it is possible to mimic the complete time-variant properties of the thorax during an impedance measurement. This includes the dynamic real part and dynamic imaginary part of the impedance with a peak-to-peak value of 0.2 Ω and an adjustable base impedance (24.6 Ω ≥ Z0 ≥ 51.6 Ω). Another novelty is adjustable complex electrode-skin contact impedances for up to 8 electrodes to evaluate bioimpedance devices in combination with textile electrodes. In addition, an electrocardiographic signal is provided for cardiographic measurements which is used in ICG devices. This provides the possibility to generate physiologic impedance changes, and in combination with an ECG, all parameters of interest such as stroke volume (SV), pre-ejection period (PEP) or extracellular resistance (Re) can be simulated. The speed of all dynamic signals can be altered. The simulator was successfully tested with commercially available BIS and ICG devices and the preset signals are measured with high correlation (r = 0.996). PMID:25148671

  5. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  6. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment. PMID:22667663

  7. Motional induction voltage measurements in estuarine environments: the Ria de Aveiro Lagoon (Portugal)

    NASA Astrophysics Data System (ADS)

    Nolasco, Rita; Soares, António; Dias, João M.; Monteiro Santos, Fernando A.; Palshin, N. A.; Represas, Patricia; Vaz, Nuno

    2006-07-01

    Electromagnetic fluctuations in the ocean have external sources like ionospheric-magnetospheric current systems, and purely internal oceanic sources associated with interaction between water velocity fields and the geomagnetic field, that is, the motionally induced voltage (MIV). During the last decade techniques based on MIV have proven to provide reliable information when applied to the flow monitoring at large oceanic channels. In this paper analysis of data resulting from the implementation of these techniques in a small-scale system, that is, the Ria de Aveiro lagoon (Portugal), is presented. A submarine cable crossing the channel at the entrance of the lagoon (Barra channel) allows the measurement of the potential difference between two electrodes located on both sides of the channel. Spectral analysis of these data reveals that measured voltages are dominated by semidiurnal M2, S2/K2 frequencies. Comparison between the sum of the four main constituents determined by harmonic analysis and the sea surface elevation measured at a tide gauge located at the lagoon mouth reveal that the measured potential difference is proportional to the water flow. To estimate the water flow in this location from the MIV measurements the data collected using this methodology were compared with numerical results obtained from a previously calibrated hydrodynamic model. A value of 720 m3 s-1 mV-1 was estimated for the coefficient relating voltage and water transport at Barra. Taking this value into account a sediment layer of about 20 m is estimated, at Barra. The results show that it is possible to indirectly measure the water transport (by tidal and residual flows) through the channel by measuring the differences of electrical potential. This demonstrates the applicability of the MIV method to a small-scale system.

  8. Measurement of microchannel fluidic resistance with a standard voltage meter.

    PubMed

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-01

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. PMID:23245901

  9. Thermo-voltage measurements of atomic contacts at low temperature.

    PubMed

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke

    2016-01-01

    We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  10. Thermo-voltage measurements of atomic contacts at low temperature

    PubMed Central

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul

    2016-01-01

    Summary We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  11. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOEpatents

    Sullivan, James S.; Hawkins, Steven A.

    2012-09-04

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  12. Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Paez, Carlos; Schulz, Peter; Roemer, Rudolf; Wilson, Neil

    2013-03-01

    In this work we numerically calculate the electric current through three kinds of DNA sequences (telomeric, λ-DNA, and p53-DNA) described by different heuristic models. A bias voltage is applied between two zig-zag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. The calculation of current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of lengths and sequence initialisation at the contacts. The current-voltage curves suggest the existence of stepped structures independent of length and sequencing initialisation at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNA, such as λ-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current.

  13. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode.

    PubMed

    Bolton, T B

    1975-08-01

    1. A double sucrose-gap voltage-clamp technique is described for use on smooth muscle strips longer than about 2 mm. It involves intracellular recording by microelectrode of the membrane potential of a narrow region of the strip ("node") sandwiched between two streams of deionized sucrose solution. Current was passed into the node across one or both sucrose streams. 2. Preliminary experiments in which potential was recorded intracellularly at two points during polarization of a "short cable" preparation, formed by folding over a strip of smooth muscle, suggested that a node width of less than 0-15 mm was needed to achieve uniform potential during inward current flow. However, when node width between sucrose-gaps was reduced to 0-5 mm, spontaneous electrical activity was lost, and below 0-5 mm spike threshold was raised and the regenerative spike became graded. The currents flowing during the application of rectangular voltage-clamp command potentials were described. 3. Using taenia smooth muscle it was shown by recording with a second, independent micro-electrode that potential was not uniform for up to 200 ms or more following a step change in potential under voltage-clamp in nodes 0-4-0-5 mm wide where current was passed across both sucrose gaps. However, reasonably uniform nodal potentials were obtained using ramps with relatively slow rates of rise (25 mV/s). 4. Using such slow ramp commands under voltage clamp, the effects of carbachol on the current-voltage relationship of longitudinal muscle of ileum and taenia were studied in hypertonic solution. 5. In the presence of carbachol (10(-6) to 10(-5) g/ml.) additional inward current flowed across the membrane (in some experiments an equilibrium potential was observed at which this current reversed direction). The magnitude of this additional current was linearly related to potential at potentials negative to the resting potential. At potentials positive to the resting membrane potential, this additional current

  14. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode.

    PubMed

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  15. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms.

  16. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    PubMed Central

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  17. Developing barbed microtip-based electrode arrays for biopotential measurement.

    PubMed

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-01-01

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated. PMID:25014098

  18. Experimental evidence for the role of electrodes and oxygen vacancies in voltage nonlinearities observed in high-k metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Vallée, C.

    2007-10-01

    This work reports on voltage nonlinearities in metal-insulator-metal (MIM) capacitors using amorphous barium titanate (a-BaTiO3) thin films. It is experimentally demonstrated that voltage nonlinearity is related to the formation of a double layer at electrodes (electrode polarization mechanism). The magnitude of nonlinearities is shown to be controlled by the nature of the metal contacts (Al, Cu, Au, and Ag), as well as by the presence of oxygen during film deposition. It is thought that oxygen vacancies are the defects responsible for the nonlinear character of high-k oxide-based MIM capacitors.

  19. Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes.

    PubMed

    Wang, Xihua; Koleilat, Ghada I; Fischer, Armin; Tang, Jiang; Debnath, Ratan; Levina, Larissa; Sargent, Edward H

    2011-10-01

    Colloidal quantum dots (CQDs) enable multijunction solar cells using a single material programmed using the quantum size effect. Here we report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible-wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device's collecting electrodes-the heterointerface with electron-accepting TiO(2) and the deep-work-function hole-collecting MoO(3) for ohmic contact-for maximum efficiency. We report an open-circuit voltage of 0.70 V, the highest observed in a colloidal quantum dot solar cell operating at room temperature. We report an AM1.5 solar power conversion efficiency of 3.5%, the highest observed in >1.5 eV bandgap CQD PV device. PMID:21936534

  20. Optimum electrode configuration selection for electrical resistance change based damage detection in composites using an effective independence measure

    NASA Astrophysics Data System (ADS)

    Escalona, Luis; Díaz-Montiel, Paulina; Venkataraman, Satchi

    2016-04-01

    Laminated carbon fiber reinforced polymer (CFRP) composite materials are increasingly used in aerospace structures due to their superior mechanical properties and reduced weight. Assessing the health and integrity of these structures requires non-destructive evaluation (NDE) techniques to detect and measure interlaminar delamination and intralaminar matrix cracking damage. The electrical resistance change (ERC) based NDE technique uses the inherent changes in conductive properties of the composite to characterize internal damage. Several works that have explored the ERC technique have been limited to thin cross-ply laminates with simple linear or circular electrode arrangements. This paper investigates a method of optimum selection of electrode configurations for delamination detection in thick cross-ply laminates using ERC. Inverse identification of damage requires numerical optimization of the measured response with a model predicted response. Here, the electrical voltage field in the CFRP composite laminate is calculated using finite element analysis (FEA) models for different specified delamination size and locations, and location of ground and current electrodes. Reducing the number of sensor locations and measurements is needed to reduce hardware requirements, and computational effort needed for inverse identification. This paper explores the use of effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations of selecting a pair of electrodes among the n electrodes. To enable use of EI to ERC required, it is proposed in this research a singular value decomposition SVD to obtain a spectral representation of the resistance measurements in the laminate. The effectiveness of EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of

  1. Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Sermage, B.; Essa, Z.; Taleb, N.; Quillec, M.; Aubin, J.; Hartmann, J. M.; Veillerot, M.

    2016-04-01

    The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C2 versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, we show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.

  2. Molds and Resists Studies for Nanoimprint Lithography of Electrodes in Low-Voltage Polymer Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Cavallari, Marco Roberto; Zanchin, Vinicius Ramos; Pojar, Mariana; Seabra, Antonio Carlos; de Assumpção Pereira-da-Silva, Marcelo; Fonseca, Fernando Josepetti; de Andrade, Adnei Melges

    2014-05-01

    A low-cost patterning of electrodes was investigated looking forward to replacing conventional photolithography for the processing of low-operating voltage polymeric thin-film transistors. Hard silicon, etched by sulfur hexafluoride and oxygen gas mixture, and flexible polydimethylsiloxane imprinting molds were studied through atomic force microscopy (AFM) and field emission gun scanning electron microscopy. The higher the concentration of oxygen in reactive ion etching, the lower the etch rate, sidewall angle, and surface roughness. A concentration around 30 % at 100 mTorr, 65 W and 70 sccm was demonstrated as adequate for submicrometric channels, presenting a reduced etch rate of 176 nm/min. Imprinting with positive photoresist AZ1518 was compared to negative SU-8 2002 by optical microscopy and AFM. Conformal results were obtained only with the last resist by hot embossing at 120 °C and 1 kgf/cm2 for 2 min, followed by a 10 min post-baking at 100 °C. The patterning procedure was applied to define gold source and drain electrodes on oxide-covered substrates to produce bottom-gate bottom-contact transistors. Poly(3-hexylthiophene) (P3HT) devices were processed on high-κ titanium oxynitride (TiO x N y ) deposited by radiofrequency magnetron sputtering over indium tin oxide-covered glass to achieve low-voltage operation. Hole mobility on micrometric imprinted channels may approach amorphous silicon (˜0.01 cm2/V s) and, since these devices operated at less than 5 V, they are not only suitable for electronic applications but also as sensors in aqueous media.

  3. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S.; Meunier, Vincent

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  4. On the Thrust of a Single Electrode Electrohydrodynamic Thruster

    NASA Astrophysics Data System (ADS)

    Ilit', Tomáš; Váry, Michal; Valko, Pavol

    2015-03-01

    Linear thrust generation by a single pin emitter electrode under AC excitation has been studied. Presented are thrust measurements of a single electrode thruster, in comparison with classical, two electrode electrohydrodynamic thruster. The experiments show comparable thrust for both configurations at low voltage levels, suggesting higher thrust-to-weight ratio of single electrode thrusters at low applied voltages. Further, a hypothesis of single electrode thrust creation is proposed.

  5. Pressure-independent point in current-voltage characteristics of coplanar electrode microplasma devices operated in neon

    NASA Astrophysics Data System (ADS)

    Meng, Lingguo; Xing, Jianping; Liang, Zhihu; Liu, Chunliang; Lin, Zhaojun

    2010-05-01

    We introduce the idea of a pressure-independent point (PIP) in a group of current-voltage curves for the coplanar electrode microplasma device (CEMPD) at neon pressures ranging from 15 to 95 kPa. We studied four samples of CEMPDs with different sizes of the microcavity and observed the PIP phenomenon for each sample. The PIP voltage depends on the area of the microcavity and is independent of the height of the microcavity. The PIP discharge current, IPIP, is proportional to the volume (Vol) of the microcavity and can be expressed by the formula IPIP=IPIP0+D×Vol. For our samples, IPIP0 (the discharge current when Vol is zero) is about zero and D (discharge current density) is about 3.95 mA mm-3. The error in D is 0.411 mA mm-3 (less than 11% of D). When the CEMPD operates at VPIP, the discharge current is quite stable under different neon pressures.

  6. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery.

    PubMed

    Wei, Zewen; Zheng, Shuquan; Wang, Renxin; Bu, Xiangli; Ma, Huailei; Wu, Yidi; Zhu, Ling; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong

    2014-10-21

    In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods. PMID:25182174

  7. Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Páez, Carlos J.; Schulz, Peter A.; Wilson, Neil R.; Römer, Rudolf A.

    2012-09-01

    In this work, we numerically calculate the electric current through three kinds of DNA sequences (telomeric, λ-DNA and p53-DNA) described by different heuristic models. A bias voltage is applied between two zigzag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. Calculation of the current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of length and sequence initialization at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNAs, such as λ-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current.

  8. Pressure-independent point in current-voltage characteristics of coplanar electrode microplasma devices operated in neon

    SciTech Connect

    Meng Lingguo; Lin Zhaojun; Xing Jianping; Liang Zhihu; Liu Chunliang

    2010-05-10

    We introduce the idea of a pressure-independent point (PIP) in a group of current-voltage curves for the coplanar electrode microplasma device (CEMPD) at neon pressures ranging from 15 to 95 kPa. We studied four samples of CEMPDs with different sizes of the microcavity and observed the PIP phenomenon for each sample. The PIP voltage depends on the area of the microcavity and is independent of the height of the microcavity. The PIP discharge current, I{sub PIP}, is proportional to the volume (Vol) of the microcavity and can be expressed by the formula I{sub PIP}=I{sub PIP0}+DxVol. For our samples, I{sub PIP0} (the discharge current when Vol is zero) is about zero and D (discharge current density) is about 3.95 mA mm{sup -3}. The error in D is 0.411 mA mm{sup -3} (less than 11% of D). When the CEMPD operates at V{sub PIP}, the discharge current is quite stable under different neon pressures.

  9. A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Jia-yi; Zhao, Lin; Li, Nan; Liu, Hang

    2015-08-01

    The study experimentally investigates the changing performance of three-dimensional electrode H2O2-producting MFCs coupled with simultaneous wastewater treatment at various external cell voltages from 0.1 V to 0.8 V, in order to explore the optimal applied voltage and its reasons. The graphite particle electrodes made of graphite powders with polytetrafluoroethene (PTFE) as the binder are used as three-dimensional cathode. The results indicate that applied voltage is demonstrated to increase the productive rate and output of H2O2 and the efficiency of acetate degradation. Besides, a relatively high current density caused by a high applied voltage has a positive impact on anode performance in terms of organic degradation and coulombic efficiency. In addition, a relatively high voltage leads to the reduction of H2O2 and the evolution of H2. Considering H2O2 concentration, anodic COD removal and current efficiencies of MFCs at various voltages, the optimal voltage is chosen to be 0.4 V, achieving the H2O2 generation of 705.6 mg L-1 at a rate of 2.12 kg m-3 day-1 and 76% COD removal in 8 h, with energy input of 0.659 kWh per kg H2O2. Coulombic efficiency, faradic efficiency and COD conversion efficiency are 92%, 96%, and 88% respectively.

  10. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  11. Frequency response measurements of integrated-optic electrodes

    SciTech Connect

    Hugenberg, K.F; Sargis, P.D.; McConaghy, C.F.

    1994-07-01

    The frequency response of electro-optic waveguides can be determined using a variety of testing methods. In this paper, we compare and contrast three measurement techniques used to test our LiNbO{sub 3} devices for improving packages and electrode designs. Each method is described and accompanied by typical results and the experimental setup. Finally, we summarize the advantages and disadvantages of each method.

  12. Development of a system to measure local measurement conditions around textile electrodes.

    PubMed

    Kim, Saim; Oliveira, Joana; Roethlingshoefer, Lisa; Leonhard, Steffen

    2010-01-01

    The three main influence factors on the interface between textile electrode an skin are: temperature, contact pressure and relative humidity. This paper presents first results of a prototype, which measures these local measurement conditions around textile electrodes. The wearable prototype is a data acquisition system based on a microcontroller with a flexible sensor sleeve. Validation measurements included variation of ambient temperature, contact pressures and sleeve material. Results show a good correlation with data found in literature. PMID:21096676

  13. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726

  14. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres.

    PubMed

    Colatsky, T J

    1980-08-01

    1. Voltage clamp studies of the excitatory sodium current, INa, were carried out in rabbit cardiac Purkinje fibres using th two-micro-electrode technique. Previous work has shown the rabbit Purkinje fibre to have relatively simple morphology (Sommer & Johnson, 1968) and electrical structure (Colatsky & Tsien, 1979a) compared to other cardiac preparations. 2. Non-uniformities in membrane potential were kept small by reducing the size of INa to less than 50 microA/cm2 of total membrane surface area through prepulse inactivation or removal of external sodium, Nao. Temporal resolution was improved by cooling to 10-26 degrees C. These adjustments did not greatly alter the measured properties of the sodium channel. 3. Under these conditions, sodium currents were recorded satisfying a number of criteria for adequate voltage control. Direct measurement of longitudinal non-uniformity using a second voltage electrode showed only small deviations at the time of peak current. 4. The properties of the sodium channel were examined using conventional protocols. Both peak sodium permeability, PNa, and steady-state sodium inactivation, h infinity, showed a sigmoidal dependence on membrane potential. PNa rose steeply with small depolarizations, increasing roughly e-fold per 3.2 mV, and reaching half-maximal activation at -30 +/- 2 mV. The h infinity -V curve had a midpoint of -74.9 +/- 2 mV and a reciprocal slope of 4.56 +/- 0.13 mV at temperatures of 10-19.5 degrees C, and showed a dependence on temperature, shifting to more negative potentials with cooling (approximately 3 mV/10 degrees C). Recovery of INa from inactivation in double pulse experiments followed a single exponential time course with time constants of 108-200 msec at 19 degrees C for holding potentials near -80 mV. No attempt was made to describe the activation kinetics because of uncertainties about the early time course of the current. 5. These data predict a maximum duration for INa of less than 1-2 msec and a

  15. Single Cell Measurement of Dopamine Release with Simultaneous Voltage-clamp and Amperometry

    PubMed Central

    Saha, Kaustuv; Swant, Jarod; Khoshbouei, Habibeh

    2012-01-01

    After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution. PMID:23207721

  16. The use of virtual ground to control transmembrane voltages and measure bilayer currents in serial arrays of droplet interface bilayers

    NASA Astrophysics Data System (ADS)

    Sarles, Stephen A.

    2013-09-01

    The droplet interface bilayer (DIB) is a simple technique for constructing a stable lipid bilayer at the interface of two lipid-encased water droplets submerged in oil. Networks of DIBs formed by connecting more than two droplets constitute a new form of modular biomolecular smart material, where the transduction properties of a single lipid bilayer can affect the actions performed at other interface bilayers in the network via diffusion through the aqueous environments of shared droplet connections. The passive electrical properties of a lipid bilayer and the arrangement of droplets that determine the paths for transport in the network require specific electrical control to stimulate and interrogate each bilayer. Here, we explore the use of virtual ground for electrodes inserted into specific droplets in the network and employ a multichannel patch clamp amplifier to characterize bilayer formation and ion-channel activity in a serial DIB array. Analysis of serial connections of DIBs is discussed to understand how assigning electrode connections to the measurement device can be used to measure activity across all lipid membranes within a network. Serial arrays of DIBs are assembled using the regulated attachment method within a multi-compartment flexible substrate, and wire-type electrodes inserted into each droplet compartment of the substrate enable the application of voltage and measurement of current in each droplet in the array.

  17. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  18. Measurement of rf voltages on the plasma-touching surfaces of ICRF antennas

    SciTech Connect

    Hoffman, D.J.; Baity, F.W.; Bell, G.L.; Bigelow, T.S.; Caughman, J.B.O.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Zhang, H.

    1995-09-01

    Measurements of the rf voltages on Faraday shields and protection bumpers have been made for several loop antennas, including the mock-up antenna and Al for JET, the original antenna for Tore Supra, the present ASDEX-U antenna, and the folded waveguide. The loop antennas show voltages that scale to {approx}12 kV for a maximum input voltage of 30 kV with 0/0 phasing. The voltages are dramatically reduced for 0/{pi} phasing. These voltages are significant in that they can substantially increase the rf sheath potential beyond the levels associated with the simple electromagnetic field linkage from the current straps that results in plasma heating. In this paper, we investigate and measure the source of these voltages, their scaling with antenna impedance, and the differences between the loop arrays.

  19. Measurement of rf voltages on the plasma-touching surfaces of ICRF antennas

    SciTech Connect

    Hoffman, D.J.; Baity, F.W.; Bell, G.L.; Bigelow, T.S.; Caughman, J.B.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Zhang, H.

    1996-02-01

    Measurements of the rf voltages on Faraday shields and protection bumpers have been made for several loop antennas, including the mock-up antenna and A1 for JET, the original antenna for Tore Supra, the present ASDEX-U antenna, and the folded waveguide. The loop antennas show voltages that scale to {approx_equal}12 kV for a maximum input voltage of 30 kV with 0/0 phasing. The voltages are dramatically reduced for 0/{pi} phasing. These voltages are significant in that they can substantially increase the rf sheath potential beyond the levels associated with the simple electromagnetic field linkage from the current straps that results in plasma heating. In this paper, we investigate and measure the source of these voltages, their scaling with antenna impedance, and the differences between the loop arrays. {copyright} {ital 1996 American Institute of Physics.}

  20. Measurement of rf voltages on the plasma-touching surfaces of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Hoffman, D. J.; Baity, F. W.; Bell, G. L.; Bigelow, T. S.; Caughman, J. B. O.; Goulding, R. H.; Haste, G. R.; Ryan, P. M.; Zhang, H.

    1996-02-01

    Measurements of the rf voltages on Faraday shields and protection bumpers have been made for several loop antennas, including the mock-up antenna and A1 for JET, the original antenna for Tore Supra, the present ASDEX-U antenna, and the folded waveguide. The loop antennas show voltages that scale to ≊12 kV for a maximum input voltage of 30 kV with 0/0 phasing. The voltages are dramatically reduced for 0/π phasing. These voltages are significant in that they can substantially increase the rf sheath potential beyond the levels associated with the simple electromagnetic field linkage from the current straps that results in plasma heating. In this paper, we investigate and measure the source of these voltages, their scaling with antenna impedance, and the differences between the loop arrays.

  1. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    SciTech Connect

    Jäger, Timo Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  2. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  3. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresi

    SciTech Connect

    Wang, Junjie; Braun, Paul V.; Zhou, Hui; Nanda, Jagjit

    2015-03-26

    Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed elec-trodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) was 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.

  4. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution.

    PubMed

    Ryynänen, Outi R M; Hyttinen, Jari A K; Laarne, Päivi H; Malmivuo, Jaakko A

    2004-09-01

    The purpose of the present study was to examine the spatial resolution of electroencephalography (EEG) by means of inverse cortical EEG solution. The main interest was to study how the number of measurement electrodes and the amount of measurement noise affects the spatial resolution. A three-layer spherical head model was used to obtain the source-field relationship of cortical potentials and scalp EEG field. Singular value decomposition was used to evaluate the spatial resolution with various measurement noise estimates. The results suggest that as the measurement noise increases the advantage of dense electrode systems is decreased. With low realistic measurement noise, a more accurate inverse cortical potential distribution can be obtained with an electrode system where the distance between two electrodes is as small as 16 mm, corresponding to as many as 256 measurement electrodes. In clinical measurement environments, it is always beneficial to have at least 64 measurement electrodes. PMID:15376503

  5. Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode

    ERIC Educational Resources Information Center

    King, David; Friend, Jeffrey; Kariuki, James

    2010-01-01

    A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…

  6. Time-resolved voltage measurements of Z-pinch radiation sources with a vacuum voltmeter

    SciTech Connect

    Murphy, D. P.; Allen, R. J.; Weber, B. V.; Commisso, R. J.; Apruzese, J. P.; Phipps, D. G.; Mosher, D.

    2008-10-15

    A vacuum-voltmeter (VVM) was fielded on the Saturn pulsed power generator during a series of argon gas-puff Z-pinch shots. Time-resolved voltage and separately measured load current are used to determine several dynamic properties as the load implodes, namely, the inductance, L(t), net energy coupled to the load, E{sub coupled}(t), and the load radius, r(t). The VVM is a two-stage voltage divider, designed to operate at voltages up to 2 MV. The VVM is presently being modified to operate at voltages up to 6 MV for eventual use on the Z generator.

  7. Electrical system for measurement of breakdown voltage of vacuum and gas-filled tubes using a dynamic method

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Milosavljević, Čedomir S.; Pejović, Momčilo M.

    2003-06-01

    This article describes an electrical system aimed at measuring and data acquisition of breakdown voltages of vacuum and gas-filled tubes. The measurements were performed using a nitrogen-filled tube at 4 mbar pressure. Based on the measured breakdown voltage data as a function of the applied voltage increase rate, a static breakdown voltage is estimated for the applied voltage gradient ranging from 0.1 to 1 V s-1 and from 1 to 10 V s-1. The histograms of breakdown voltages versus applied voltage increase rates from 0.1 and 0.5 V s-1 are approximated by the probability density functions using a fitting procedure.

  8. Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes.

    PubMed Central

    Alvarez-Leefmans, F J; Rink, T J; Tsien, R Y

    1981-01-01

    1. Intracellular free calcium concentration, [Ca2+]i, was measured in giant neurones of the sub-oesophageal ganglia of Helix aspersa, using Ca-selective micro-electrodes containing a PVC-gelled, neutral-ligand sensor. 2. In calibration solutions the electrodes had a virtually ideal, Nernstian, response down to 1 microM-Ca2+ in the presence of 0.125 M-K+, 18-24 mV from 1 to 0.1 microM-Ca2+ and 8-14 mV from 0.1 to 0.01 microM-Ca2+. Interference from H+ and Mg2+ was negligible. The small response to Na+ at sub-micromolar Ca2+ was taken into account, when necessary, in measurement of [Ca2+]i. 3. Measurements of basal [Ca2+]i were made in ganglia from animals kept only a few weeks in captivity, in a bathing solution equilibrated with air and containing 2 mM-Ca2+. In thirteen measurements from impalements which met stringent criteria for electrode performance and cell viability, the mean basal pCa (--log10[Ca2+]) was 6.77 +/- 0.07 (S.E.), corresponding to a mean free Ca2+ concentration of 0.17 microM. 4. The basal [Ca2+]i in neurones from a group of snails kept hibernating for several months was higher, mean pCa 6.15, for ganglia handled in 2 mM-Ca2+ solution. 5. Intracellular injections of Ca2+ or EGTA raised and lowered, respectively, the indicated basal [Ca2+]i, showing that the electrodes responded appropriately inside the cells and that unknown or untested components of cytoplasm were not significantly interfering with the Ca-sensor. 6. Altering the external Ca2+ concentration between 0.1 and 10 mM usually produced only small, +/- 0.1 pCa units, changes in basal [Ca2+]i of satisfactorily impaled, quiescent cells. 7. In cell 1F, which has repetitive spikes with a substantial Ca current, changes in Ca gradient or blockade of voltage-dependent Ca channels sometimes markedly altered [Ca2+]i, showing that Ca entry with the spikes was elevating [Ca2+]i. 8. Replacing external Na+ with Li+ or bis(2-hydroxyethyl)dimethylammonium had little effect on [Ca2+]i. 9. Elevating CO2

  9. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    PubMed Central

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification. PMID:27023542

  10. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements.

    PubMed

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification. PMID:27023542

  11. Transport Measurements on Topological Insulators with Superconductor Electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wu, Tai-Lung; Jauregui, Luis A.; Mitkowski, Irek; Chen, Yong P.

    2013-03-01

    Interplay between topological insulators (TIs) and superconductors (SCs) is interesting to study novel physics such as Majorana fermions. Here we report transport measurements on bulk TI interfaced with superconducting electrodes, including indium (In) and niobium (Nb). The TI crystals are high quality Bi2 Te3 , Bi2 Se3 , Bi2 Te2 Se grown by the Bridgman method. Multiple superconducting transitions have been observed in Bi2 Te3 /In systems, possibly due to the superconducting alloys formed by In and Bi. Below the superconducting temperature of In (or Nb), the resistance of TI/Sc structure shows a pronounced upturn which may be a probe of spin-polarized surface states in TI and the interplay with SC. DARPA MESO program (Grant N66001-11-1-4107)

  12. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    NASA Astrophysics Data System (ADS)

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-01

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  13. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  14. Electrode oxygen-affinity influence on voltage nonlinearities in high-k metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Vallée, C.; Gonon, P.; Jorel, C.; El Kamel, F.

    2010-06-01

    This work highlights the influence of the oxygen affinity of the metal electrodes used in high-k metal-insulator-metal capacitors. Several metallic electrodes are tested in order to investigate the role of the metal work function, and the role of the electrode oxygen-affinity in nonlinear behavior of HfO2 and BaTiO3 capacitors. It is shown that the magnitude of the quadratic coefficient of nonlinearity is better explained by the electrode oxygen-affinity rather than by its work function. It is thought that electrode oxidation increases the number of oxygen vacancies at the electrode/dielectric interface, and so increases the magnitude of nonlinearity.

  15. A fault-tolerant voltage measurement method for series connected battery packs

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Mi, Chris

    2016-03-01

    This paper proposes a fault-tolerant voltage measurement method for battery management systems. Instead of measuring the voltage of individual cells, the proposed method measures the voltage sum of multiple battery cells without additional voltage sensors. A matrix interpretation is developed to demonstrate the viability of the proposed sensor topology to distinguish between sensor faults and cell faults. A methodology is introduced to isolate sensor and cell faults by locating abnormal signals. A measurement electronic circuit is proposed to implement the design concept. Simulation and experiment results support the mathematical analysis and validate the feasibility and robustness of the proposed method. In addition, the measurement problem is generalized and the condition for valid sensor topology is discovered. The tuning of design parameters are analyzed based on fault detection reliability and noise levels.

  16. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.

    PubMed

    Shiba, Kenji

    2015-08-01

    We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device. PMID:26736844

  17. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  18. Demonstration of the two-chamber approach for high-voltage measurements using collinear laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Will, Elisa; Ullmann, Johannes; Frömmgen, Nadja; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Kaufmann, Simon; Krieger, Andreas; Nörtershäuser, Wilfried

    2014-06-01

    An electronic measurement of high-voltages of several ten kV with accuracy as required for precision experiments is currently only feasible using highly sophisticated voltage dividers. Collinear laser spectroscopy can provide a direct and precise measurement of high-voltages using the Doppler shift of accelerated ions. Although proposed already in 1982, a measurement with relative accuracy better than 10-4 was not reported so far. To improve this accuracy, a dedicated new setup for high-voltage measurements will be installed at the Technische Universität Darmstadt. A two-chamber approach will be used to remove uncertainties due to the insufficiently known starting potential inside the ion source. Here we present a demonstration of the pump-and-probe technique performed in preparatory studies at the TRIGA-LASER experiment in Mainz.

  19. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  20. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  1. Considerations on electrical impedance measurements of electrolyte solutions in a four-electrode cell

    NASA Astrophysics Data System (ADS)

    Chaparro, C. V.; Herrera, L. V.; Meléndez, A. M.; Miranda, D. A.

    2016-02-01

    A tetrapolar probe to measure the electrical properties of electrolyte solutions was implemented with gold electrodes according to the van der Pauw method. Electrical impedance spectroscopy (EIS) measurements of different concentrations of phosphate buffer saline (PBS) solution and an oral mucosal tissue sample dispersed in PBS were performed in the galvanostatic mode using a four-electrode cell (tetrapolar probe). Taking advantage of using a potentiostat/galvanostat for carrying out the electrical measurements, a simple and rapid method using a three-electrode electrochemical cell is described for: a) cleaning of electrodes, b) verification of surface chemical state of electrode material and c) choice of current supplied to electrodes for EIS measurements. Results of this research shown a depolarization effect due to the addition of oral mucosa tissue cells into the PBS solution.

  2. Study on the spatial resolution of EEG--effect of electrode density and measurement noise.

    PubMed

    Ryynänen, O; Hyttinen, J; Malmivuo, J

    2004-01-01

    The spatial resolution of electroencephalography (EEG) is studied by means of inverse cortical EEG solution. Special attention is paid to the effect of electrode density and the effect of measurement noise on the spatial resolution. A three-layer spherical head model is used as a volume conductor to obtain the source-field relationship of cortical potentials and scalp potential field. Effect of measurement noise is evaluated with truncated singular value decomposition (TSVD). Also simulations about different electrode systems' ability to separate cortical sources are performed. The results show that as the measurement noise increases the advantage of dense electrode systems decreases. Our results suggest that in clinical measurement environment it is always beneficial to use at least 64 measurement electrodes. In low-noise realistic measurement environment the use of even 256 measurement electrodes is beneficial. PMID:17271283

  3. Microdroplet-Based Potentiometric Redox Measurements on Gold Nanoporous Electrodes.

    PubMed

    Freeman, Christopher J; Farghaly, Ahmed A; Choudhary, Hajira; Chavis, Amy E; Brady, Kyle T; Reiner, Joseph E; Collinson, Maryanne M

    2016-04-01

    Potentiometric redox measurements were made in subnanoliter droplets of solutions using an optically transparent nanoporous gold electrode strategically mounted on the stage of an inverted microscope. Nanoporous gold was prepared via dealloying gold leaf with concentrated nitric acid and was chemisorbed to a standard microscope coverslip with (3-mercaptopropyl)trimethoxysilane. The gold surface was further modified with 1-hexanethiol to optimize hydrophobicity of the surface to allow for redox measurements to be made in nanoscopic volumes. Time traces of the open-circuit potential (OCP) were used to construct Nernst plots to evaluate the applicability of the droplet-based potentiometric redox measurement system. Two poised one-electron transfer systems (potassium ferricyanide/ferrocyanide and ferrous/ferric ammonium sulfate) yielded Nernstian slopes of -58.5 and -60.3 mV, respectively, with regression coefficients greater than 0.99. The y-intercepts of the two agreed well to the formal potential of the two standard oxidation-reduction potential (ORP) calibrants, ZoBell's and Light's solution. The benzoquinone and hydroquinone redox couple was examined as a representative two-electron redox system; a Nernst slope of -30.8 mV was obtained. Additionally, two unpoised systems (potassium ferricyanide and ascorbic acid) were studied to evaluate the system under conditions where only one form of the redox couple is present in appreciable concentrations. Again, slopes near the Nernstian values of -59 and -29 mV, respectively, were obtained. All experiments were carried out using solution volumes between 280 and 1400 pL with injection volumes between 8 and 100 pL. The miniscule volumes allowed for extremely rapid mixing (<305 ms) as well. The small volumes and rapid mixing along with the high accuracy and sensitivity of these measurements lend support to the use of this approach in applications where time is a factor and only small volumes are available for testing. PMID

  4. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  5. Porosity measurements of electrodes used in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, E. E.; Loyson, P.; Rust, N.

    A method is presented that determines the porosity of a complete electrode plate used in lead-acid batteries. It requires only elementary equipment and is simple to operate, so that laboratory workers can use it as a routine method during manufacturing to determine the complete electrode's average porosity over a range of electrode sizes and types of both flat plate and tubular configuration. The method makes use of Archimedes' principle and uses glycerol as displacement medium. This allows for the porosity determination of both cured and formed positive and negative electrodes, without the detrimental effect of lead oxidation, which is common when using water as a displacement medium. The study showed that the method of using glycerol as a displacement medium gave on average, good repeatable results for both cured and formed positive and negative electrode plates used in the manufacture of automotive lead-acid batteries. The porosity results of the method were compared to the results obtained using Hg porosimetry, where a statistical paired t-test showed the two techniques to produce comparable results for all types of plates analyzed. The porosity of various plates was compared to the surface area of the respective active material of both positive and negative electrodes. These results showed unusual trends in that, depending on the manufacturing conditions, the surface area of formed positive electrodes could vary significantly from sample to sample of different batches without little change in its respective porosity. The surface area of different formed negative electrodes, however, would only vary slightly with significant changes in their corresponding porosity. The glycerol displacement method was also shown to be suitable to determine the effective porosity of cured and formed positive tubular electrodes.

  6. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively. PMID:26961230

  7. Selection of the Optimum Electrospray Voltage for Gradient Elution LC-MS Measurements

    SciTech Connect

    Marginean, Ioan; Kelly, Ryan T.; Moore, Ronald J.; Prior, David C.; Lamarche, Brian L.; Tang, Keqi; Smith, Richard D.

    2009-04-01

    Changes in liquid composition during gradient elution liquid chromatography (LC) and mass spectrometry (MS) analyses affect the electrospray operation. To establish methodologies for judicious selection of the electrospray voltage, we monitored in real-time the effect of the LC gradient on the spray current. The optimum range of the electrospray voltage shifted to lower values as the concentration of organic solvent in the eluent increased during reversed-phase LC analyses. These results provided the means to rationally select the voltage that ensured successful electrospray operation throughout gradient elution LC-MS experiments. A small run-to-run drift in the spray current was observed for electrosprays operated at constant voltage. This could be the result of fouling or degradation of the electrospray emitter, which affected the electric field driving the electrospray. Algorithms using feedback from spray current measurements to maintain the electrospray voltage within the optimum operating range throughout gradient elution LC-MS were evaluated. The electrospray operation with voltage regulation and at constant, judiciously selected voltage during gradient elution LC-MS measurements produced data with similar reproducibility.

  8. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  9. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  10. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  11. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  12. Optimal configuration of an electrode array for measuring ventricles' contraction

    NASA Astrophysics Data System (ADS)

    Lewandowska, M.; Poliński, A.; Truyen, B.; Wtorek, J.

    2013-04-01

    An influence of an electrode-array configuration on an impedance signal composition for a fixed spatial distribution of its sources is examined in the paper. The Finite Element Method and Geselowitz relationship were used for examining three different electrode-arrays. A sensitivity approach was used to evaluate each configuration assuming that localization of the signal source is known. A conductivity change, thus the source of the impedance signal was considered as two hemispheres covered by a shell.

  13. Comment on ''Capacitance-voltage measurements in amorphous Schottky barriers''

    NASA Astrophysics Data System (ADS)

    Powell, M. J.; Döhler, G. H.

    1981-01-01

    The band-bending potential profile V(x) in the space-charge region of an amorphous semiconductor moves regidly in the x direction, with increased bias, irrespective of the form of the density of localized states N(E). A recent paper by Singh and Cohen [J. Appl. Phys. 51, 413 (1980)] which suggest this is not true is incorrect in this point. This property leads to simplified schemes for the analysis of C-V measurements and field-effect conductance measurements.

  14. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  15. Current-Voltage Measurements in a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C

    2007-01-01

    Abstract- The Oak Ridge National Laboratory in collaboration with American Superconductor Corporation and Cryomagnetics Inc. has designed, fabricated, and tested an HTS coil wound with second-generation (2G) YBCO coated conductor tape. The purpose of the HTS coil project was to study the quench characteristics in 2G YBCO coils at 77 K and lower temperatures (~ 30-45 K). These quench characteristics were investigated in both a pool boiling LN2 environment and in a conduction cooled configuration at ~ 30 K and 45 K. Transport critical current (Ic) measurements taken on the very first thermal cycle of the YBCO coil in pool boiling LN2 showed an Ic ~ 31 A corresponding to a central magnetic field of 0.32 T. The measured Ic value was consistent with the calculated value using the calculated maximum perpendicular B-field component and the measured short sample Ic at 77 K. Subsequent Ic measurements taken in the conduction cooling configuration at 34 K and 45 K, showed a steady-state Ic ~ 45-49 A and 38-44 A, respectively. These Ic values were significantly lower than the calculated value assuming a literature derived temperature dependent Ic of the 2G YBCO tape. A steady degradation was observed in the Ic of the coil with each successive thermal cycle. In addition, the coil was also pulse tested up to 1-T in non-steady state transient conditions and for ramp rates varying between 0.01 and 5 A/s. The problems and limitations encountered during testing of this new type of 2G coil is briefly discussed.

  16. Improving the measurement accuracy of mixed gas by optimizing carbon nanotube sensor's electrode separation

    NASA Astrophysics Data System (ADS)

    Hao, Huimin; Zhang, Yong; Quan, Long

    2015-10-01

    Because of excellent superiorities, triple-electrode carbon nanotube sensor acts good in the detection of multi-component mixed gas. However, as one of the key factors affecting the accuracy of detection, the electrode separation of carbon nanotube gas sensor with triple-electrode structure is very difficult to decide. An optimization method is presented here to improve the mixed gas measurement accuracy. This method optimizes every separation between three electrodes of the carbon nanotube sensors in the sensor array when test the multi-component gas mixture. It collects the ionic current detected by sensor array composed of carbon nanotube sensors with different electrode separations, and creates the kernel partial least square regression (KPLSR) quantitative analysis model of detected gases. The optimum electrode separations come out when the root mean square error of prediction (RMSEP) of test samples reaches the minimum value. The gas mixtures of CO and NO2 are measured using sensor array composed of two carbon nanotube sensor with different electrode separations. And every electrode separation of two sensors is optimized by above-mentioned method. The experimental results show that the proposed method selects the optimal distances between electrodes effectively, and achieves higher measurement accuracy.

  17. Effects of stray capacitance to ground in three electrode monopolar needle bioimpedance measurements.

    PubMed

    Kalvoy, H; Aliau-Bonet, C; Pallas-Areny, R; Martinsen, O G

    2015-08-01

    Positive phase angle is documented and analyzed in a three electrode monopolar needle measurement. Inductance equivalent behavior of the stray capacitance to ground is described as error source in a non-inductive sample measurement. PMID:26738037

  18. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. PMID:22945587

  19. The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork

    PubMed Central

    Hou, Yubin; Lu, Qingyou

    2014-01-01

    We have measured the coefficient of the voltage induced frequency shift (VIFS) of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built. PMID:25414971

  20. Relationship between Work Function of Hole Collection Electrode and Temperature Dependence of Open-Circuit Voltage in Multilayered Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Shirotori, Toshiki

    2012-02-01

    We have investigated the photovoltaic properties of multilayered organic photovoltaic devices consisting of indium tin oxide (ITO)/(NiO)/donor/C60/bathocuproine (BCP)/Al structures. Open circuit voltage (VOC) increases with the decrease in temperature between 40 and 350 K. The VOC was, however, pinned at approximately 0.6 V for the device without NiO, probably owing to the insufficient work-function difference between ITO and Al electrodes. The hole injection was also markedly suppressed at the ITO/donor interface in the device with large IP donor materials without the buffer layer and abnormal S-shaped current density-voltage (J-V) characteristics were observed. On the other hand, the value of VOC increases with the increase in ionization potential (IP) of donor materials in the device with NiO buffer layers owing to the enhanced work-function difference of about 1 eV, and the S-shaped curves disappeared at the high temperatures above 200 K. The VOC is further improved to nearly 1.2 V by the UV-ozone treatment of the NiO surface. We have therefore concluded that the increment of work function of the anode caused by the insertion of an oxide buffer layer and the surface treatment of the electrode by UV-ozone treatment are essentially important for the improvement of VOC and charge transport/injection properties in the multilayered organic solar cell applications.

  1. Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement

    DOEpatents

    Turner, Steven Richard

    2006-12-26

    A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.

  2. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode. PMID:25137719

  3. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  4. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    SciTech Connect

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  5. Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Márquez, J. C.; Seoane, F.; Välimäki, E.; Lindecrantz, K.

    2010-04-01

    Textile Electrodes have been widely studied for biopotentials recordings, specially for monitoring the cardiac activity. Commercially available applications, such as Adistar T-shirt and Textronics Cardioshirt, have proved a good performance for heart rate monitoring and are available worldwide. Textile technology can also be used for Electrical Bioimpedance Spectroscopy measurements enabling home and personalized health monitoring applications however solid ground research about the measurement performance of the electrodes must be done prior to the development of any textile-enabled EBI application. In this work a comparison of the measurement performance of two different types of dry-textile electrodes and manufacturers has been performed against standardized RedDot 3M Ag/AgCl electrolytic electrodes. 4-Electrode, whole body, Ankle-to-Wrist EBI measurements have been taken with the Impedimed spectrometer SFB7 from healthy subjects in the frequency range of 3kHz to 500kHz. Measurements have been taken with dry electrodes at different times to study the influence of the interaction skin-electrode interface on the EBI measurements. The analysis of the obtained complex EBI spectra shows that the measurements performed with textile electrodes produce constant and reliable EBI spectra. Certain deviation can be observed at higher frequencies and the measurements obtained with Textronics and Ag/AgCl electrodes present a better resemblance. Textile technology, if successfully integrated it, may enable the performance of EBI measurements in new scenarios allowing the rising of novel wearable monitoring applications for home and personal care as well as car safety.

  6. Slot-electrode optical modulator using KTiOPO(4).

    PubMed

    Godil, A A; Kikuchi, H; Fukui, T; Kubota, S

    1995-07-20

    A slot-electrode optical modulator is introduced and demonstrated with KTP at 532 nm. A switching voltage of 45 V, risetime of 3.5 ns, and power capability of more than 7 Ware measured. DC modulation without application of DC voltage is discussed. Further optimization can reduce the switching voltage to 18 V. PMID:21052271

  7. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  8. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  9. Skin-electrode impedance measurement during ECG acquisition: method’s validation

    NASA Astrophysics Data System (ADS)

    Casal, Leonardo; La Mura, Guillermo

    2016-04-01

    Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.

  10. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    NASA Astrophysics Data System (ADS)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  11. Investigating the dependence of the temperature of high-intensity discharge (HID) lamp electrodes on the operating frequency by pyrometric measurements

    NASA Astrophysics Data System (ADS)

    Reinelt, J.; Westermeier, M.; Ruhrmann, C.; Bergner, A.; Awakowicz, P.; Mentel, J.

    2011-03-01

    Phase-resolved temperature distributions are determined along a rod-shaped tungsten electrode, by which an ac arc is operated within a model lamp filled with argon. Switched dc and sinusoidal currents are applied with amplitudes of several amperes and operating frequencies being varied between 10 Hz and 10 kHz. The temperature is deduced from the grey body radiation of the electrode being recorded with a spectroscopic measuring system. Phase-resolved values of the electrode tip temperature Ttip and of the power input Pin are determined comparing the measured temperature distributions with the integral of the one-dimensional heat balance with these parameters as integration constants. They are supplemented by phase-resolved measurements of the sum of cathode and anode fall called the electrode sheath voltage. If a switched dc current is applied it is found that both quantities are within the cathodic phase only marginally higher than for a cathode being operated with a dc current. Ttip and Pin start to decrease for low currents and to increase for high currents at the beginning of the anodic phase. But with increasing operating frequency the deviations from the cathodic phase are reduced until they cannot be resolved for frequencies of several kHz. A more pronounced modulation, but the same tendencies, is observed with a sinusoidal current waveform. For 10 kHz a diffuse arc attachment with an almost phase-independent electrode tip temperature, which deviates only marginally from that of a dc cathode, and an electrode sheath voltage proportional to the arc current is established with both current waveforms.

  12. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  13. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  14. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  15. Effect of a spherical object in 4 electrode Focused Impedance Method (FIM): measurement and simulation

    NASA Astrophysics Data System (ADS)

    Abir, R.; Pettersen, F. J.; Martinsen, O. G.; Rabbani, K. S.

    2013-04-01

    Focused Impedance Method (FIM) gives enhanced localized sensitivity at the centre of a zone defined by a simple system of electrodes, of which a 4-electrode version with electrodes at the corners of a square region has been studied in detail in the present work. The present work studies the effect of a large sphere whose diameter almost equals the dimensions of the central focused zone, or, the Focused Impedance. The sphere is placed at different positions with respect to the centre of the system at the electrode plane. The study has been made using a phantom in which the electrodes are fixed on a side wall while an insulating ball is hung at various positions inside the saline and moved with respect to the electrodes in their vicinity. The same was then simulated by providing appropriate parameters in COMSOL multiphysics, a software package utilizing Finite Element Method, by providing appropriately matching parameters. The measured impedance decreases as the ball is moved away from the centre in the electrode plane or along the depth. The sensitivity also decreases with an increase in electrode spacing. Although the behaviours were similar in both the studies, simulated values by COMSOL deviated from the measured values significantly. It suggests that COMSOL may not give accurate simulations for large objects.

  16. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok; Yang, J.-C.; Chu, Ying Hao; Yu, Pu; Lu, X.; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  17. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  18. Performance check of cell with newly designed electrode for 129Xe EDM measurement

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yu; Bidinosti, Christopher; Ichikawa, Yuichi; Sato, Tomoya; Ohtomo, Yuichi; Kojima, Shuichiro; Funayama, Chikako; Suzuki, Takahiro; Tsuchiya, Masato; Furukawa, Takeshi; Yoshimi, Akihiro; Ino, Takashi; Ueno, Hideki; Matuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) can be detected as a difference between the spin precession frequencies measured with an electric field applied parallel and antiparallel to a magnetic field. We aim to make a measurement of the 129Xe EDM at a level of d ~10-28 e cm by using a nuclear spin maser. The amplitude of the maser signal is proportional to the nuclear spin polarization. The polarization of 3He that acts as a co-magnetometer, is sensitive to the interactions with the electrodes used to generate the electric field. Previously, we used a transparent electrode made of ITO (Indium Tin Oxide) to allow transmission linearly polarized laser light into the cell. However, 3He polarization in a cell with such electrodes was measured to be ~0.1%, which is ten times smaller than no electrodes. In order to solve the problem, we adopted an electrode made from a mesh of Molybdenum. The geometry also reduces the contact area between 3He gas and the electrode. We measured 3He polarization at a cell with the mesh electrode by means of adiabatic fast passage NMR.

  19. Constant voltage stress induced current in Ta2O5 stacks and its dependence on a gate electrode

    NASA Astrophysics Data System (ADS)

    Atanassova, E.; Stojadinovic, N.; Paskaleva, A.; Spassov, D.; Vracar, L.; Georgieva, M.

    2008-07-01

    Response of 8 nm Ta2O5 stacks with different gates (Al, W and Au) to voltage stress at gate injection is studied by probing under various voltage/time conditions at room temperature and at 100 °C. A stress-induced leakage current (SILC) is detected in all samples and reveals gate dependence. It is established that the pre-existing traps actually govern this response, and the impact of gate-induced defects is stronger. The Au-gated devices are the most susceptible to the stress degradation. Two processes—electron trapping at pre-existing traps and positive charge build-up—are suggested to be responsible for generation of SILC. It is concluded that despite some gate effects, the origin of CVS degradation in this particular high-k dielectric is different from that in SiO2.

  20. A new measurement method for electrode gain in an orthogonally symmetric beam position monitor

    NASA Astrophysics Data System (ADS)

    Zou, Jun-Ying; Wu, Fang-Fang; Yang, Yong-Liang; Sun, Bao-Gen; Zhou, Ze-Ran; Luo, Qing; Lu, Ping; Xu, Hong-Liang

    2014-12-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light Source (HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.

  1. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    SciTech Connect

    Stewart, M.; Lepadatu, S.; McCartney, L. N.; Cain, M. G.; Wright, L.; Crain, J.; Newns, D. M.; Martyna, G. J.

    2015-02-01

    The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA) simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  2. Tracking MOV operability under degraded voltage condition by periodic test measurements

    SciTech Connect

    Hussain, B.; Behera, A.K.; Alsammarae, A.J.

    1996-12-31

    The purpose of this paper is to develop a methodology for evaluating the operability of Alternating Current (AC) Motor Operated Valve (MOV) under degraded voltage condition, based on the seating parameter measured during surveillance/testing. This approach will help resolve Nuclear Regulatory Commission`s (NRC`s) concern on verifying the AC MOV`s design basis capability through periodic testing.

  3. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    SciTech Connect

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that

  4. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-01

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D -dot and B -dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z . These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient

  5. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGESBeta

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; et al

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  6. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  7. Low-voltage pulsed plasma discharges inside water using a bubble self-generating parallel plate electrode with a porous ceramic

    NASA Astrophysics Data System (ADS)

    Muradia, Sonia; Nagatsu, Masaaki

    2013-04-01

    Characteristics of pulsed bubbles discharges in water were investigated using parallel punched plate electrodes with a porous thin ceramic plate inserted between two metal plates. The micro-bubbles were generated just beneath the porous ceramic plate by flowing gas through it. The transition from spiky dielectric barrier discharges to pulsed glow discharges enables efficient bubble discharges at a relatively low voltage of 1.8 ˜ 4.0 kV of the 5 kHz square-waves with a pulse-width of about 750 ns. With 80% Ar and 20% O2 mixture gas at 4.0 kV, the 50 mg/l Indigo Carmine aqueous solution was efficiently decolorized within about 3 min.

  8. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method.

    PubMed Central

    Goldman, Y; Morad, M

    1977-01-01

    1. A single sucrose gap voltage clamp technique was developed to correct for artifacts of 'leakage' corrent and extracellular resistance making possible improved measurement of membrane current and membrane potential in cardiac muscle. 2. A fourth compartment termed 'guard gap' was added to the sucrose gap. The guard gap is maintained at the same potential as the Reinger pool, so that no extracellular leakage current can flow into the Ringer pool. Comparison of experimental results with the predictions of an idealized cable model indicates that the guard gap is effective in trapping leakage current. 3. The slow charging of membrane capacitance due to extracellular series resistance was accelerated by applying a 'pre-pulse' of the command potential past the final voltage clamp value. 4. A second technique, termed 'chopped current pulse clamp', was used to compensate for the extracellular resistance throughout the voltage clamp step. The applied current was turned on and off at a frequency of 0-5-2 kHz. The membrane potential sampled during the zero current phase was fed back through the clamp loop. 5. With either of these compensation techniques, the voltage and current traces settle to effectively constant values within 2-4 msec after initiation of a hyperpolarizing voltage clamp step from rest. 6. The membrane conductance measured by the prepulse and chopped current-pulse technique are equal and confirm a higher conductance at rest than during the plateau of the action potential. 7. The 'instantaneous' current-voltage relation of the membrane is linear during the plateau of the frog ventricular action potential. PMID:301933

  9. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  10. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  11. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators

    SciTech Connect

    Wang, Chu; Belley, Matthew D.; Chao, Nelson J.; Dewhirst, Mark W.; Yoshizumi, Terry

    2014-08-15

    Purpose: For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. Methods: A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. Results: For each of the four filtration levels, the measured BQI values were in good agreement (<5%) between the three irradiators. BQI showed filtration-specificity, possibly due to the difference in beam quality. Conclusions: The BQI has been verified as a feasible alternative for monitoring the constancy of the tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure.

  12. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators

    PubMed Central

    Wang, Chu; Belley, Matthew D.; Chao, Nelson J.; Dewhirst, Mark W.; Yoshizumi, Terry

    2014-01-01

    Purpose: For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. Methods: A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. Results: For each of the four filtration levels, the measured BQI values were in good agreement (<5%) between the three irradiators. BQI showed filtration-specificity, possibly due to the difference in beam quality. Conclusions: The BQI has been verified as a feasible alternative for monitoring the constancy of the tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure. PMID:25086562

  13. Improvement of Electrical Stimulation Protocol for Simultaneous Measurement of Extracellular Potential with On-Chip Multi-Electrode Array System

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoyuki; Nomura, Fumimasa; Hattori, Akihiro; Yasuda, Kenji

    2012-06-01

    Cardiotoxicity testing with a multi-electrode array (MEA) system requires the stable beating of cardiomyocytes for the measurement of the field potential duration (FPD), because different spontaneous beating rates cause different responses of FPD prolongation induced by drugs, and the beating rate change effected by drugs complicates the FPD prolongation assessment. We have developed an on-chip MEA system with electrical stimulation for the measurement of the FPD during the stable beating of human embryonic stem (ES) cell-derived cardiomyocyte clusters. Using a conventional bipolar stimulation protocol, we observed such large artifacts in electrical stimulation that we could not estimate the FPD quantitatively. Therefore, we improved the stimulation protocol by using sequential rectangular pulses in which the positive and negative stimulation voltages and number of pulses could be changed flexibly. The balanced voltages and number of pulses for sequential rectangular pulses enabled the recording of small negative artifacts only, which hardly affected the FPD measurement of human-ES-cell-derived cardiomyocyte clusters. These conditions of electrical stimulation are expected to find applications for the control of constant beating for cardiotoxicity testing.

  14. Compact floating ion energy analyzer for measuring energy distributions of ions bombarding radio-frequency biased electrode surfaces

    NASA Astrophysics Data System (ADS)

    Edelberg, Erik A.; Perry, Andrew; Benjamin, Neil; Aydil, Eray S.

    1999-06-01

    A compact floating retarding-field ion energy analyzer and the accompanying electronics have been designed and built to measure the energy distribution of ions bombarding radio-frequency (rf) biased electrodes in high-density plasma reactors. The design consists of two main components, a compact retarding field vacuum probe and an integrated stack of floating electronics for providing output voltages, measuring currents and voltages and transmitting data to a computer. The operation and capabilities of the energy analyzer are demonstrated through ion energy distribution measurements conducted on a 4 MHz rf-biased electrostatic chuck in a 13.56 MHz high-density transformer coupled plasma (TCP) reactor. The analyzer is capable of operating while floating on several hundreds of volts of rf bias and at pressures up to 30 mTorr without differential pumping. The effects of pressure (2-30 mTorr), TCP power (500-1500 W), rf-bias power (0-800 W), gas composition, and ion mass on the ion energy distributions are demonstrated through Ar, Ne, and Ar/Ne discharges.

  15. A multipoint micro antimony pH electrode for tissue surface measurements.

    PubMed

    Lund, N; Sjöberg, F; Guldbrand, H; Walfridsson, H; Edwall, G

    1984-01-01

    Based on monocrystalline antimony we have developed a multipoint tissue surface pH electrode. The six electrodes were produced by spark cutting from a large antimony single crystal. The electrodes were then cast in epoxy resin in a ring shaped structure which fitted around the MDO oxygen electrode. The antimony electrode was ground and polished to expose an undisturbed closely packed crystal plane of antimony to the measuring solution. Before and after monitoring periods standardization was performed in TRIS buffers of pH 6.72, 7.32 and 7.74 at 37 degrees C. Antimony electrode potential is influenced by oxygen. Therefore, mean tissue oxygen pressure was registered simultaneously with an MDO electrode. The oxygen sensitivity factor used in this study was 18mV/logpO2. The correction factor for the antimony electrode oxygen dependence, measured in vitro, seemed to be correct also for the in vivo state. This, however, needs further investigation. To illustrate the usefulness of the multipoint pH electrode seven normal state rabbits were studied, and thereafter four - one each in a hypoxic, hypocarbic, hypovolemic or hyperoxic situation. In the normal state tissue pH measured on a skeletal muscle surface varied from 7.0 to 7.4. In the case of tissue microcirculation shutdown (in the hypocarbic or the hypovolemic situations), the initial reaction was a scattering of the pH values, and then the development of tissue acidosis. Our conclusion is that the use of a multipoint pH sensor enables improved and more detailed monitoring of the tissue acid-base status. PMID:6546135

  16. Measurements of 1/f noise in Josephson junctions at zero voltage: Implications for decoherence in superconducting quantum bits

    NASA Astrophysics Data System (ADS)

    Mück, Michael; Korn, Matthias; Mugford, C. G. A.; Kycia, J. B.; Clarke, John

    2005-01-01

    Critical current fluctuations with a 1/f spectral density (f is frequency) are potentially a limiting source of intrinsic decoherence in superconducting quantum bits (qubits) based on Josephson tunnel junctions. Prior measurements of this noise were made at nonzero voltages whereas qubits are operated in the zero voltage state. We report measurements of 1/f noise in a dc superconducting quantum interference device first, coupled to a resonant tank circuit and operated in a dispersive mode at zero voltage, and, second, operated conventionally with a current bias in the voltage regime. Both measurements yield essentially the same magnitude of critical current 1/f noise.

  17. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  18. In vivo measurements of structure/electrode position changes during respiration for Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Qin, Lihong; Allen, Tadashi; Patterson, Robert

    2010-04-01

    For pulmonary applications of EIT systems, the electrodes are placed around the chest in a 2D ring, and the images are reconstructed based on the assumptions that the object is rigid and the measured resistivity change in EIT images is only caused by the actual resistivity change of tissue. Structural changes are rarely considered. Previous studies have shown that structural changes which result in tissue/organ and electrode position change tend to introduce artifacts to EIT images of the thorax. Since EIT reconstruction is an ill-posed inverse problem, any inaccurate assumptions of object may cause large artifacts in reconstructed images. Accurate information on structure/electrode position changes is necessary to understand factors contributing to the measured resistivity changes and to improve EIT reconstruction algorithm. In this study, in vivo structure/electrode position changes from a healthy male volunteer are investigated during respiration cycle at two levels, the nipple line level and the level approximately 5 cm below. For each level, sixteen fiduciary markers are equally spaced around the surface, the same as the electrode placement for EIT measurements. A MR scanner with respiration-gated ability is used to acquire images of the thorax. MR thoracic images are prospectively acquired corresponding temporally to specific time periods within respiration cycle (FRC, mid tidal volume, tidal volume). The chest expansions in anterior-posterior and lateral directions and inside tissue/organ position changes are then analyzed. The electrode position changes corresponding to different phases of respiration cycle are also measured.

  19. Dark current measurements in humid SF6: influence of electrode roughness, relative humidity and pressure

    NASA Astrophysics Data System (ADS)

    Zavattoni, L.; Hanna, R.; Lesaint, O.; Gallot-Lavallée, O.

    2015-09-01

    The measurement of ‘dark current’ in pressurized SF6 at high electric field is performed using electrodes with a coaxial geometry. To identify the main mechanisms involved in measured currents, the influences of electrode roughness, gas pressure and relative humidity have been investigated. The experimental results reveal that charge injection from the electrode constitute the predominant process responsible for the dark current. The latter is nearly identical in positive and negative polarities, and shows an exponential increase versus the relative humidity and the electric field. The analysis of results shows that under high electric field, the emission of charged water clusters from the water films adsorbed on electrodes probably constitutes the main mechanism of charge emission.

  20. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes.

    PubMed

    Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J M

    2000-01-01

    This article deals with a direct electrochemical method of detecting antigens using new methods of functionalization of gold electrodes. Based on the reacting ability of gold with sulfhydryl groups, three protocols for the fixation of antibodies have been explored. They are based on either the self-assembling properties of functional thiols bearing long alkyl chains or the possibility of a direct coupling of antibody moieties. Coverage rates as high as 97% can be reached. The analysis of the electrochemical impedance behavior of such layers can lead to a sensitive method for the direct detection of the antibody/antigen interaction. The addition of a redox couple in the tested solution, acting as an amplifier, allowed detection limits for the antigens as low as a few picograms/milliliter to be reached. PMID:11209460

  1. Assessment of Carbon/Salt/Adhesive Electrodes for Surface Electromyography Measurements

    PubMed Central

    Posada-Quintero, Hugo; Rood, Ryan; Burnham, Ken; Pennace, John

    2016-01-01

    This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon’s Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz–2 kHz, no significant differences were found in the signals’ amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = −0.02, variance = 0.11; OFF-time: bias = −0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative

  2. Assessment of Carbon/Salt/Adhesive Electrodes for Surface Electromyography Measurements.

    PubMed

    Posada-Quintero, Hugo; Rood, Ryan; Burnham, Ken; Pennace, John; Chon, Ki

    2016-01-01

    This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon's Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz-2 kHz, no significant differences were found in the signals' amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = -0.02, variance = 0.11; OFF-time: bias = -0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative to Ag

  3. Influence of electrode positioning on accuracy and reproducibility of electrical velocimetry cardiac output measurements.

    PubMed

    Trinkmann, Frederik; Berger, Manuel; Michels, Julia D; Doesch, Christina; Weiss, Christel; Schoenberg, Stefan O; Akin, Ibrahim; Borggrefe, Martin; Papavassiliu, Theano; Saur, Joachim

    2016-09-01

    Electrical velocimetry (EV) is one of the most recent adaptions of impedance cardiography. Previous studies yielded diverging results identifying several factors negatively influencing accuracy. Although electrode arrangement is suspected to be an influencing factor for impedance cardiography in general, no data for EV is available. We aimed to prospectively assess the influence of electrode position on the accuracy and reproducibility of cardiac output (CO) measurements obtained by EV. Two pairs of standard electrocardiographic electrodes were placed at predefined positions of the thorax in 81 patients. The inter-electrode gap was varied between either 5 or 15 cm by caudal movement of the lowest electrode. Measurements were averaged over 20 s and performed twice at each electrode position. Reference values were determined using cardiac magnetic resonance imaging (CMR). Mean bias was 1.2  ±  1.6 l min(-1) (percentage error 22  ±  28%) between COCMR and COEV at the 5 cm gap significantly improving to 0.5  ±  1.6 l min(-1) (8  ±  28%) when increasing the gap (p  <  0.0001). The mean difference between repeated measurements was 0.0  ±  0.3 l min(-1) for the 5 cm and 0.1  ±  0.3 l min(-1) for the 15 cm gap, respectively (p  =  0.3). The accuracy of EV can be significantly improved when increasing the lower inter-electrode gap still exceeding the Critchley and Critchley recommendations. Therefore, absolute values should not be used interchangeably in clinical routine. As the reproducibility was not negatively affected, serial hemodynamic measurements can be reliably acquired in stable patients when the electrode position remains unchanged. PMID:27480359

  4. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.

    PubMed

    Ishida, Itzel G; Rangel-Yescas, Gisela E; Carrasco-Zanini, Julia; Islas, León D

    2015-04-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13-14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker's, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  5. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  6. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    PubMed

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  7. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement

    PubMed Central

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-01-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  8. Novel flexible dry PU/TiN-multipin electrodes: first application in EEG measurements.

    PubMed

    Fiedler, P; Pedrosa, P; Griebel, S; Fonseca, C; Vaz, F; Zanow, F; Haueisen, J

    2011-01-01

    Dry biosignal electrodes for electro-encephalography (EEG) are an essential step for realization of ubiquitous EEG monitoring and brain computer interface technologies. We propose a novel electrode design with a specific shape for hair layer interfusion and reliable skin contact. An electrically conductive Titanium-Nitride (TiN) thin layer is deposited on a polyurethane substrate using a multiphase DC magnetron sputtering technique. In the current paper we describe the development and manufacturing of the electrode. Furthermore, we perform comparative EEG measurements with conventional Ag/AgCl electrodes in a 6-channel setup. Our results are promising, as the primary shape of the EEG is preserved in the signals of both electrodes sets, according to recordings of spontaneous EEG and visual evoked potentials. The variance of both signals is in the same order of magnitude. The Wilcoxon-Mann-Whitney two-sample rank-sum test revealed no significant differences for 25 of the 28 compared signal episodes. Hence, our novel electrodes show equivalent signal quality compared to conventional Ag/AgCl electrodes. PMID:22254249

  9. Correlation between measured voltage and observed wavelength in commercial AlGaInP laser diode

    SciTech Connect

    Iskrenović, Predrag S.; Krstić, Ivan B.; Obradović, Bratislav M. Kuraica, Milorad M.

    2014-05-14

    Temperature of a commercial AlGaInP/GaInP quantum well laser diode (LD) is measured using two methods: peak wavelength shift and the diode voltage drop caused by working current. Time evolutions of temperature obtained by the two methods during the LD self-heating are measured and compared. No significant difference between the thus obtained temperature evolutions is obtained. Correlation between the LD voltage drop and the laser radiation frequency is established using a simple four-level semiconductor laser scheme and the LD gap energy is estimated. The LD gap energy decreases from 1.66 eV to 1.56 eV for temperature increase of 21 K, at close to room temperature. It is found that LD's frequency decrease is caused by the gap energy decrease.

  10. A miniature all-solid-state calcium electrode applied to in situ seawater measurement

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Wang, You; Luo, Zhiyuan; Pan, Yiwen

    2013-12-01

    An all-solid-state miniature calcium ion selective electrode (ISE) based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT(PSS)) for continuous in situ measurement in seawater was studied. The electrode substrate was a platinum (Pt) wire of 0.5 mm diameter and PEDOT(PSS) was electropolymerized on one end of the Pt wire to act as the solid contact of this calcium ISE. The PEDOT(PSS) layer was covered with a calcium-selective poly(vinyl chloride) membrane, which contained ETH129 as calcium ionophore, potassium tetrakis-(p-chlorophenyl)borate as lipophilic anion and bis(2-ethylhexyl) sebacate as the plasticizer. Experiments using electrochemical impedance spectroscopy and reversed chronopotentiometry illustrated that electropolymerized PEDOT(PSS) decreased the resistance and improved the stability of the electrode. The sensors can work stably in the calcium ion concentration range of 10-6-10-1 mol L-1 with the slope of 27.7 mV/decade. Also Na+, K+ and Mg2+ can hardly interfere with the performance of the electrode. This electrode was applied to measure the calcium ion concentration of seawater samples. The experimental data showed that the electrode can resist the corrosion of seawater and its reproducibility was good (SD < 0.1 mM kg-1). The lifetime of such an electrode was at least six months. Because of the wire-shape and the small size of such a liquid junction free calcium electrode, it is pressure-resistant and easy to package and seal, therefore it is suitable for use in underwater equipment for in situ seawater measurement.