Science.gov

Sample records for wake field suppression

  1. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  2. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  3. Argonne plasma wake-field acceleration experiments

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Gai, W.; Konecny, R.; Norem, J.; Schoessow, P.; Simpson, J.

    1989-03-14

    Four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These wake-fields are of interest both in the laboratory, for acceleration and focusing of electrons and positrons in future linear colliders, and in nature as a possible cosmic ray acceleration mechanism. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory. Some of the topics discussed are: the Argonne Advanced Accelerator Test Facility; linear plasma wake-field theory; measurement of linear plasma wake-fields; review of nonlinear plasma wave theory; and experimental measurement of nonlinear plasma wake-fields. 25 refs., 11 figs.

  4. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  5. Wake fields and energy spread for the ERHIC ERL

    SciTech Connect

    Fedotov, A.; Kayran, D.

    2011-10-16

    Wake fields in high-current ERLs can cause significant beam quality degradations. Here we summarize effects of coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness for ERL parameters of the eRHIC project. A possibility of compensation of such correlated energy spread is also presented. An emphasis in the discussion is made on the suppression of coherent synchrotron radiation due to shielding and a possible reduction of wall roughness effects for realistic surfaces.

  6. Wake fields in SLAC Linac Collimators

    SciTech Connect

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  7. Fast polynomial approach to calculating wake fields

    SciTech Connect

    Goldstein, C.I.; Peierls, R.F.

    1997-06-15

    In the computation of transverse wake field effects in accelerators, it is necessary to compute expressions of the form given in equations (1). It is usually desired to compute this a large number of times, the values of z{sub i} and x{sub i} being different at each iteration, other quantities remaining the same. The problem in practical applications is that the computational work grows as N{sub m}{sup 2}. Thus even using parallel computation to achieve speedup, the elapsed time to obtain a result still increases linearly with N{sub m}. The authors introduce here an approximate method of evaluating the sum in (1) whose computational work increases only as N{sub m}logN{sub m}. It involves some significant initial computation which does not have to be repeated at each subsequent iteration. The basis of the approach is to replace the individual contributions of a group of distant macroparticles with a local series expansion. In this respect it is similar in spirit to the so called fast multipole method.

  8. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  9. Wake Fields in the Super B Factory Interaction Region

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2011-06-02

    The geometry of storage ring collider interaction regions present an impedance to beam fields resulting in the generation of additional electromagnetic fields (higher order modes or wake fields) which affect the beam energy and trajectory. These affects are computed for the Super B interaction region by evaluating longitudinal loss factors and averaged transverse kicks for short range wake fields. Results indicate at least a factor of 2 lower wake field power generation in comparison with the interaction region geometry of the PEP-II B-factory collider. Wake field reduction is a consderation in the Super B design. Transverse kicks are consistent with an attractive potential from the crotch nearest the beam trajectory. The longitudinal loss factor scales as the -2.5 power of the bunch length. A factor of 60 loss factor reduction is possible with crotch geometry based on an intersecting tubes model.

  10. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  11. Wake fields and energy spread for the eRHIC ERL

    SciTech Connect

    Fedotov, A.; Kayran, D.

    2011-10-16

    Wake fields in high-current ERLs can cause significant beam quality degradations. Here we summarize effects of coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness for ERL parameters of the eRHIC project. A possibility of compensation of such correlated energy spread is also presented. An emphasis in the discussion is made on the suppression of coherent synchrotron radiation due to shielding and a possible reduction of wall roughness effects for realistic surfaces. In this report we discuss the wake fields with a focus on their effect on the energy spread of the beam. Other effects of wake fields are addressed elsewhere. An energy spread builds up during a pass though a very long beam transport in the eRHIC ERL under design. Such energy spread become important when beam is decelerated to low energy, and needs to be corrected. Several effects, such as Coherent Synchrotron Radiation (CSR), Resistive Wall (RW), accelerating RF cavities (RF) and Wall Roughness (WR) were considered. In this paper, we briefly summarize major contributions to energy spread from the wake fields for eRHIC parameters, and present possible energy spread compensation for decelerated beam. In the rest of the report we discuss effects which we believe are suppressed for the eRHIC parameters.

  12. Dreaming and personality: Wake-dream continuity, thought suppression, and the Big Five Inventory.

    PubMed

    Malinowski, Josie E

    2015-12-15

    Studies have found relationships between dream content and personality traits, but there are still many traits that have been underexplored or have had questionable conclusions drawn about them. Experimental work has found a 'rebound' effect in dreams when thoughts are suppressed prior to sleep, but the effect of trait thought suppression on dream content has not yet been researched. In the present study participants (N=106) reported their Most Recent Dream, answered questions about the content of the dream, and completed questionnaires measuring trait thought suppression and the 'Big Five' personality traits. Of these, 83 were suitably recent for analyses. A significant positive correlation was found between trait thought suppression and participants' ratings of dreaming of waking-life emotions, and high suppressors reported dreaming more of their waking-life emotions than low suppressors did. The results may lend support to the compensation theory of dreams, and/or the ironic process theory of mental control. PMID:26496477

  13. Wake-field studies on photonic band gap accelerator cavities

    NASA Astrophysics Data System (ADS)

    Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.

    1997-03-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.

  14. Mariner 10 magnetic field observations of the Venus wake

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Behannon, K. W.

    1977-01-01

    Magnetic field measurements made over a 21-hour interval during the Mariner 10 encounter with Venus were used to study the down-stream region of the solar wind-Venus interaction over a distance of approximately 100 R sub v. For most of the day before closest approach the spacecraft was located in a sheath-like region which was apparently bounded by planetary bow shock on the outer side and either a planetary wake boundary or transient boundary-like feature on the inner side. The spacecraft made multiple encounters with the wake-like boundary during the 21-hour interval with an increasing frequency as it approached the planet. Each pass into the wake boundary from the sheath region was consistently characterized by a slight decrease in magnetic field magnitude, a marked increase in the frequency and amplitude of field fluctuations, and a systematic clockwise rotation of the field direction when viewed from above the plane of the planet orbit.

  15. On some theoretical problems of laser wake-field accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kiriyama, H.; Koga, J. K.; Kotaki, H.; Mori, M.; Kando, M.

    2016-06-01

    Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams implies the improvement and controllability of the properties of the wake waves generated by ultra-short pulse lasers in underdense plasmas. In this work we present a compendium of useful formulas giving relations between the laser and plasma target parameters allowing one to obtain basic dependences, e.g. the energy scaling of the electrons accelerated by the wake field excited in inhomogeneous media including multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser pulse driver allows us to find the regimes where the chirp enhances the wake field amplitude. We present an analysis of the three-dimensional effects on the electron beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas. Using the conditions of electron trapping to the wake-field acceleration phase we analyse the multi-equal stage and multiuneven stage LWFA configurations. In the first configuration the energy of fast electrons is a linear function of the number of stages, and in the second case, the accelerated electron energy grows exponentially with the number of stages. The results of the two-dimensional particle-in-cell simulations presented here show the high quality electron acceleration in the triple stage injection-acceleration configuration.

  16. On some theoretical problems of laser wake-field accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kiriyama, H.; Koga, J. K.; Kotaki, H.; Mori, M.; Kando, M.

    2016-06-01

    > Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams implies the improvement and controllability of the properties of the wake waves generated by ultra-short pulse lasers in underdense plasmas. In this work we present a compendium of useful formulas giving relations between the laser and plasma target parameters allowing one to obtain basic dependences, e.g. the energy scaling of the electrons accelerated by the wake field excited in inhomogeneous media including multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser pulse driver allows us to find the regimes where the chirp enhances the wake field amplitude. We present an analysis of the three-dimensional effects on the electron beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas. Using the conditions of electron trapping to the wake-field acceleration phase we analyse the multi-equal stage and multiuneven stage LWFA configurations. In the first configuration the energy of fast electrons is a linear function of the number of stages, and in the second case, the accelerated electron energy grows exponentially with the number of stages. The results of the two-dimensional particle-in-cell simulations presented here show the high quality electron acceleration in the triple stage injection-acceleration configuration.

  17. Experimental studies of plasma wake-field acceleration and focusing

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Gai, W.; Konecny, R.; Mtingwa, S.; Norem, J.; Rosing, M.; Schoessow, P.; Simpson, J.

    1989-07-18

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs.

  18. Field measurements in the wake of a model wind turbine

    NASA Astrophysics Data System (ADS)

    Pol, Suhas; Taylor, Amelia; Bilbao, Argenis; Doostalab, Ali; Novoa, Santiago; Westergaard, Carsten; Hussain, Fazle; Sheng, Jian; Ren, Beibei; Giesselmann, Michael; Glauser, Mark; Castillo, Luciano

    2014-06-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability.

  19. Wouthuysen-Field absorption trough in cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Hernández, Oscar F.

    2014-12-01

    The baryon density enhancement in cosmic string wakes leads to a stronger coupling of the spin temperature to the gas kinetic temperate inside these string wakes than in the intergalactic medium (IGM). The Wouthuysen-Field (WF) effect has the potential to enhance this coupling to such an extent that it may result in the strongest and cleanest cosmic string signature in the currently planned radio telescope projects. Here we consider this enhancement under the assumption that x-ray heating is not significant. We show that the size of this effect in a cosmic string wake leads to a brightness temperature at least two times more negative than in the surrounding IGM. If the SCI-HI [T. C. Voytek et al., Astrophys. J. 782, L9 (2014), J. B. Peterson et al., arXiv:1409.2774] or EDGES [J. D. Bowman and A. E. E. Rogers Nature (London) 468, 796 (2010), J. D. Bowman et al., Astrophys. J. 676, 1 (2008)] experiments confirm a WF absorption trough in the cosmic gas, then cosmic string wakes should appear clearly in 21 cm redshift surveys of z =10 to 30.

  20. Nonlinear plasma and beam physics in plasma wake-fields

    SciTech Connect

    Rosenzweig, J.B.

    1990-02-12

    In experimental studies of the Plasma Wake-field Accelerator performed to date at the Argonne Advanced Accelerator Test Facility, significant nonlinearities in both plasma and beam behavior have been observed. The plasma waves driven in the wake of the intense driving beam in these experiments exhibit three-dimensional nonlinear behavior which has as yet no quantitative theoretical explanation. This nonlinearity is due in part to the self-pinching of the driving beam in the plasma, as the denser self-focused beam can excite larger amplitude plasma waves. The self-pinching is a process with interesting nonlinear aspects: the initial evolution of the beam envelope and the subsequent approach to Bennett equilibrium through phase mixing. 35 refs., 10 figs.

  1. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  2. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  3. Beam-shape distortion caused by transverse wake fields

    SciTech Connect

    Chao, A.W.; Kheifets, S.

    1983-02-01

    As a particle bunch in a storage ring passes through a region with a transverse impedance, it generates a transverse wake electromagnetic field that is proportional to the transverse displacement of the bunch in the region. The field acts back on the bunch, causing various effects (such as instabilities) in the motion of the bunch. We study one such effect in which a transverse impedance causes the beam to be distorted in its shape. Observed at a fixed location in the storage ring, this distortion does not change from turn to turn; rather, the distortion is static in time. To describe the distortion, the bunch is considered to be divided longitudinally into many slices and the centers of change of the slices are connected into a curve. In the absence of transverse impedance, this curve is a straight line parallel to the direction of motion of the bunch. Perturbed by the transverse wake field, the curve becomes distorted. What we find in this paper is the shape of such a curve. The results obtained are applied to the PEP storage ring. The impedance is assumed to come solely from the rf cavities. We find that the beam shape is sufficiently distorted and hence that loss of luminosity due to this effect becomes a possibility.

  4. Two-Channel Rectangular Dielectric Wake Field Accelerator Structure Experiment

    SciTech Connect

    Sotnikov, G. V.; Marshall, T. C.; Shchelkunov, S. V.; Didenko, A.; Hirshfield, J. L.

    2009-01-22

    A design is presented for a two-channel 30-GHz rectangular dielectric wake field accelerator structure being built for experimental tests at Argonne National Laboratory (ANL). This structure allows for a transformer ratio T much greater than two, and permits continuous coupling of energy from drive bunches to accelerated bunches. It consists of three planar slabs of cordierite ceramic ({epsilon} = 4.7) supported within a rectangular copper block, forming a drive channel 12 mmx6 mm, and an accelerator channel 2 mmx6 mm. When driven by a 50 nC, 14 MeV single bunch available at ANL, theory predicts an acceleration field of 6 MeV/m, and T = 12.6. Inherent transverse wake forces introduce deflections and some distortion of bunch profiles during transit through the structure that are estimated to be tolerable. Additionally, a cylindrical two-channel DWFA is introduced which shares many advantages of the rectangular structure including high T, and the added virtue of axisymmetry that eliminates lowest-order transverse deflecting forces.

  5. Wake-field generation by the ponderomotive memory effect

    SciTech Connect

    Wolf, U.; Schamel, H.

    1997-10-01

    An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with k{lambda}{sub d}{ge}0.2, where k is the wave number and {lambda}{sub d} the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. {copyright} {ital 1997} {ital The American Physical Society}

  6. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  7. Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field

    NASA Astrophysics Data System (ADS)

    Bovand, M.; Rashidi, S.; Dehghan, M.; Esfahani, J. A.; Valipour, M. S.

    2015-07-01

    In this article the finite volume method (FVM) is carried out to simulate the flow around and through a two-dimensional porous cylinder. An external magnetic field is used to control the wake behind the bluff body and also to suppress the vortex shedding phenomena. The Darcy-Brinkman-Forchheimer model has been used for modeling the flow in the porous medium. Effects of Stuart (N), Reynolds (Re) and Darcy (Da) numbers on the flow behavior have been investigated. The results show that the critical Stuart number for suppress vortex shedding decreases with increasing the Darcy numbers. Also, the Stuart number for disappearance the re-circulating wake increases with increased Reynolds number for both porous and solid cylinders.

  8. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  9. Field-aligned Currents in Io's Plasma Wake

    NASA Astrophysics Data System (ADS)

    Chen, Chuxin

    2008-09-01

    Since the discovery of Io-controlled decametric radio emissions, the interaction between Io and Jovian magnetosphere has been studied intensively. Two types of interaction have been proposed so far. One is electric circuit model, in which the induced currents flow between Io and the Jovian ionosphere along the magnetic flux tube threading Io. The other is Alfvén wing model. A wing forms in the perturbed magnetic field lines behind Io, the Alfvénic currents develop in the wing rather than along the magnetic flux tubes. More recently, auroral emission associated with Io's footprint and its trailing emission were observed. Such auroral arc may extend longitudinally westward for more than 100 degrees. This trail of aurora is brightest near Io and dims with increasing downstream distance. There is no clear theoretical understanding of the physics that generates this downstream aurora. However it is generally believed that Io's plasma wake is associated with this phenomenon and field-aligned currents lead to downstream emissions. Along with the above two types of the interaction between Io and its surrounding medium, there are also two theoretical frameworks in which these downstream emissions can be interpreted. The first one is corotational lag. When an Io-perturbed (mass loading and/or Io's conductivity) magnetic flux tube moves slowly relative to Jovian magnetosphere, an electric field would be induced at the equatorial plane of the flux tube, which in turn causes a current perpendicular to the field lines that is connected by field-aligned currents. The Lorentz force due to the perpendicular current would play the role of bring the lagged plasma up to corotation. The second is Alfvén wave, in which the Io-perturbed Alfvén wave is reflected between the Jovian ionosphere and the torus edge, driving particles into loss cone. Our present study attempts to use a MHD method to solve the above problem. MHD simulations of Io-Jupiter interaction has been carried out by

  10. Measurement of velocity and vorticity fields in the wake of an airfoil in periodic pitching motion

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.

    1987-01-01

    The velocity field created by the wake of an airfoil undergoing a prescribed pitching motion was sampled using hot wire anemometry. Data analysis methods concerning resolution of velocity components from cross wire data, computation of vorticity from velocity time history data, and calculation of vortex circulation from vorticity field data are discussed. These data analysis methods are applied to a flow field relevant to a two dimensional blade-vortex interaction study. Velocity time history data were differentiated to yield vorticity field data which are used to characterize the wake of the pitching airfoil. Measurement of vortex strength in sinusoidal and nonsinusoidal wakes show vortices in the sinusoidal wake have stronger circulation and more concentrated vorticity distributions than the tailored nonsinusoidal wake.

  11. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  12. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Fujimoto, Masaki; Harada, Yuki; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2015-04-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced above Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes above CA are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (<150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution representing bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  13. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Fujimoto, Masaki; Harada, Yuki; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2015-04-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced above Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes above CA are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (< 150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution representing bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  14. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Takahashi, F.; Fujimoto, M.; Yokota, S.; Harada, Y.; Matsushima, M.; Shibuya, H.; Shimizu, H.

    2014-12-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced over Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes over the CA anomaly are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (< 150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution that represents bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  15. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  16. Numerical Simulation of Wake Vortices Measured During the Idaho Falls and Memphis Field Programs

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1996-01-01

    A numerical large-eddy simulation model is under modification and testing for application to aircraft wake vortices. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. As part of the validation process, model results are compared with measured field data from the 1990 Idaho Falls and the 1994-1995 Memphis field experiments. Cases are selected that represent different aircraft and a cross section of meteorological environments. Also included is one case with wake vortex generation in ground effect. The model simulations are initialized with the appropriate meteorological conditions and a post roll-up vortex system. No ambient turbulence is assumed in our initial set of experiments, although turbulence can be self generated by the interaction of the model wakes with the ground and environment.

  17. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    NASA Astrophysics Data System (ADS)

    Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  18. Decoherence suppression in a resonant driving field

    NASA Astrophysics Data System (ADS)

    Minns, R. S.; Kutteruf, M. R.; Commisso, M. A.; Jones, R. R.

    2008-04-01

    Resonant radio frequency (rf) control fields have been employed to suppress decoherence in single quantum bits (qubits) encoded in the probability amplitudes of np fine-structure states in Li Rydberg atoms. As described previously [1], static electric-field tuning of the spin and orbital angular momentum composition of the fine-structure eigenstates enables qubit storage in an approximate decoherence-free subspace in which phase errors due to small stray electric and magnetic fields are strongly suppressed. In addition, it was found that sequences of short electric field pulses could be utilized in a 'bang-bang' dynamic decoupling scheme to improve coherence times. We now show that a continuous resonant rf field can also suppress decoherence in this system. The rf-dressed fine-structure states form a more robust basis in which the energy splitting between the component qubit levels is locked to the drive frequency, and decoherence is essentially eliminated. Measurements of the operational range of rf frequency and field strength required to achieve decoherence suppression are in agreement with the predictions of a two-level model.

  19. Measurement of High Reynolds Number Near-Field Turbulent Sphere Wakes under Stratified Conditions

    NASA Astrophysics Data System (ADS)

    Kalumuck, Kenneth; Brandt, Alan; Decker, Kirk; Shipley, Kara

    2015-11-01

    To characterize the near-field of a stratified wake at Reynolds numbers, Re = 2 x 105 - 106, experiments were conducted with a large diameter (0.5 m) sphere towed through a thermally stratified fresh water lake. Stratification produced BV frequencies, N, up to 0.07/s (42 cph) resulting in Froude numbers F = U/ND >= 15. The submerged sphere and associated instrumentation including two Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors were affixed to a common frame towed over a range of speeds. Three components of the instantaneous wake velocities were obtained simultaneously at two cross-wake locations with the ADVs while density fluctuations were inferred from temperature measurements made by the thermistors. These measurements were used to determine the mean, rms, and spectra of all three components of the turbulent velocity field and density fluctuations at multiple locations. The turbulence power spectra follow the expected -5/3 slope with wavenumber. Existing stratified near-field wake data for spheres are for Re =104 and less, and only a very limited set of data under unstratified conditions exists at these large values of Re. Those data are primarily measurements of the sphere drag, surface pressure distribution, and separation rather than in wake turbulence. Advances in CFD modeling have enabled simulations at these high Reynolds numbers without quantitative data available for validation. Sponsored by ONR Turbulence and Wakes program.

  20. 3D Analysis of Wake Field Excitation in a Dielectric Loaded Rectangular Resonator

    SciTech Connect

    Sotnikov, Gennadij V.; Onishchenko, Ivan N.; Marshall, Thomas C.

    2006-11-27

    The results of a three-dimensional analysis of wake field excitation in a slab-symmetric dielectric-loaded resonator by rigid electron bunches are presented. The complete set of solutions, including the solenoidal and potential parts of the electromagnetic field, consists of LSM and LSE modes. Each of the LSM and LSE modes contains odd and even waves. A numerical analysis of wake field excitation by symmetric electron bunches is carried out. The three-dimensional spatial structure of the longitudinal electric field is investigated. The influence of the drift vacuum channel on the wake field amplitude and on the coherent summation of wakefields for a regular sequence of bunches is studied.

  1. Blunt body near wake flow field at Mach 6

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus

    1996-01-01

    Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys

  2. Electric field effects on ion currents in satellite wakes

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1985-01-01

    Small currents associated with satellite spin, dielectric conduction, or trace concentrations of H+, can have a substantial effect on the potential of a satellite and the particle currents reaching its surface. The importance of such small currents at altitudes below about 300 km stems from the extremely small 0+ currents impinging on the wake-side of the spacecraft. The particle current on the downstream side of the AE-C satellite is considered. Theoretical estimates based on a newly described constant of the motion of a particle indicate that accounting for small concentrations of H+ remove a major discrepancy between calculated and measured currents.

  3. Wake-field and fast head-tail instability caused by an electron cloud.

    PubMed

    Ohmi, K; Zimmermann, F; Perevedentsev, E

    2002-01-01

    In positron and proton storage rings, electrons produced by photoemission, ionization, and secondary emission accumulate in the vacuum chamber during multibunch operation with close spacing. A positron or proton bunch passing through this "electron cloud" experiences a force similar to a short-range wake field. This effective wake field can cause a transverse-mode-coupling instability, if the electron-cloud density exceeds a threshold value. In this report, we compute the electron-cloud induced wake in a region without external magnetic field both analytically and via computer simulation, for parameters representing the low-energy positron ring of KEKB and the LHC proton beam in the CERN SPS. We study the linearity and time dependence of the wake function and its variation with the size of the electron cloud. Using a broadband resonator model for the electron-cloud wake field, we then evaluate theoretical expressions for the transverse-mode-coupling instability based on the linearized Vlasov equation, and for the instability threshold of fast transverse blow up including its dependence on chromaticity. PMID:11800799

  4. Principles of self-modulated proton driven plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Tuckmantel, Tobias; Kumar, N.; Upadhyay, A.; Lotov, K.; Khudik, V.; Siemon, C.; Shvets, G.; Muggli, P.; Caldwell, A.

    2012-12-01

    When a long proton bunch propagates in plasma, it is subject to the self-modulational instability. The radius of the proton bunch is modulated at the background plasma wavelength. The wake field is then resonantly excited. The amplitude of the wake is growing exponentially up to a saturation level that can reach a significant fraction of the wave breaking limit. The phase velocity of the wake is defined not only by the driver velocity, but also by the own instability dynamics. At the linear stage of the instability, the phase velocity is decreased that allows to inject low energy electrons in the wake. At the saturation phase, the wake phase velocity becomes close to that of the drvier. Side injection of particles at the right position in plasma may help to improve the maximum energy gain and the quality of acceleration. The wake's phase velocity can be controlled by smooth density gradients. The modulations of the proton bunch can be diagnosed by a transverse coherent transition radiation.

  5. A non-geometrically similar model for predicting the wake field of full-scale ships

    NASA Astrophysics Data System (ADS)

    Guo, Chunyu; Zhang, Qi; Shen, Yu

    2015-07-01

    The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non- geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)'s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.

  6. TE/TM alternating direction scheme for wake field calculation in 3D

    NASA Astrophysics Data System (ADS)

    Zagorodnov, Igor; Weiland, Thomas

    2006-03-01

    In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.

  7. Venera-9 magnetic field measurements in the Venus wake - Evidence for an earth-like interaction

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1976-01-01

    Venera-9 magnetic field measurements in the Venus wake provide additional support for the hypothesis that Venus has an intrinsic planetary field. The observed field is in the direction expected for a northward moment, and is similar to that observed in equivalent locations in the terrestrial magnetosphere, both in its temporal and spatial behavior. In particular, Venera-9 appears to have observed a plasma sheet expansion, field-aligned currents, and tail-field dipolarization.

  8. Three-component velocity field measurements of propeller wake using a stereoscopic PIV technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Paik, Bu Geun; Yoon, Jong Hwan; Lee, Choung Mook

    A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.

  9. Silicon oxynitride: A field emission suppression coating

    NASA Astrophysics Data System (ADS)

    Theodore, Nimel D.

    We have studied coatings deposited using our inductively-coupled RF plasma ion implantation and desposition system to suppress field emission from large, 3-D electrode structures used in high voltage applications, like those used by Thomas Jefferson National Accelerator Facility in their DC-field photoelectron gun. Currently time and labor-intensive hand-polishing procedures are used to minimize field emission from these structures. Previous work had shown that the field emission from polished stainless steel (27 muA of field-emitted current at 15 MV/m) could be drastically reduced with simultaneous deposition of sputtered silicon dioxide during nitrogen implantation (167 pA of field-emitted current at 30 MV/m). We have determined that this unique implantation and deposition procedure produces high-purity silicon oxynitride films that can suppress field emission from stainless steel regardless of their initial surface polish. However, when this implantation procedure was applied to large, 3-D substrates, arcs occurred, damaging the coating and causing unreliable and unrepeatable field emission suppression. We have developed a novel reactive sputtering procedure to deposit high-purity silicon oxynitride coatings without nitrogen ion implantation. We can control the stoichometry and deposition rate of these coatings by adjusting the nitrogen pressure and incident RF-power. Using profilometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry, elastic recoil detection analysis, and current-voltage measurements, we have determined that the elemental composition, chemical bonding, density, and electrical properties of the reactively-sputtered silicon oxynitride coatings are similar to those produced by nitrogen implantation during silicon dioxide deposition. Furthermore, high voltage tests determined that both coatings similarly suppress field emission from 6" diameter, polished

  10. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    SciTech Connect

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan; Qi, Xin E-mail: lyang@impcas.ac.cn; Shi, Jian; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions of moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.

  11. Fast ion surface energy loss and straggling in the surface wake fields.

    PubMed

    Nandi, T; Haris, K; Hala; Singh, Gurjeet; Kumar, Pankaj; Kumar, Rajesh; Saini, S K; Khan, S A; Jhingan, Akhil; Verma, P; Tauheed, A; Mehta, D; Berry, H G

    2013-04-19

    We have measured the stopping powers and straggling of fast, highly ionized atoms passing through thin bilayer targets made up of metals and insulators. We were surprised to find that the energy losses as well as the straggling depend on the ordering of the target and have small but significantly different values on bilayer reversal. We ascribe this newly found difference in energy loss to the surface energy loss field effect due to the differing surface wake fields as the beam exits the target in the two cases. This finding is validated with experiments using several different projectiles, velocities, and bilayer targets. Both partners of the diatomic molecular ions also display similar results. A comparison of the energy loss results with those of previous theoretical predictions for the surface wake potential for fast ions in solids supports the existence of a self-wake. PMID:23821777

  12. Wake field of electron beam accelerated in a RF-gun of free electron laser ``ELSA''

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el; Dolique, J.-M.

    1999-07-01

    Wake field effects driven by a coasting relativistic charged particle beam have been studied for various cavity geometries. In the particular case of a cylindrical "pill-box" cavity, an analytical expression of the ( E, B)( x, t) map has been obtained as a development on the complete base cavity normal modes. We extend this method to the case of an accelerated beam, which leaves the downstream face of the cavity with a thermal velocity, and becomes relativistic in a few cm. This situation is very different from the classical wake of an ultrarelativistic beam for two reasons: (a) in the case of an ultrarelativistic beam, the field directly generated by beam particles in their wake can be neglected, and the so-called wake field is the electromagnetic linear reponse of the cavity to the exciting signal which is the beam. For a transrelativistic beam, the direct field must be taken into account and added to cavity reponse, which is no longer linear, except for low-intensity beam; (b) causality prevents any beam's field influence at a distance from the emissive cathode greater than ct.

  13. Blunt Body Near-Wake Flow Field at Mach 10

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Hannemann, Klaus

    1997-01-01

    Tests were conducted in a Mach 10 air flow to examine the reattachment process of a free shear layer associated with the near wake of a 70 deg half angle, spherically blunted cone having a cylindrical after body. The nominal free-stream Reynolds number based on model diameter ranged from 0.25 x l0(exp 6) to 1 x l0(exp 6) and the angle of incidence set at 0 and +/- 20 deg. The present study was designed to complement previously reported Mach 6 perfect air tests as well as results obtained in several hypervelocity facilities capable of producing real gas effects. Surface heating rates were inferred from temperature time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. Limited forebody, base, and support sting surface pressures were obtained with piezoresistive Experimental results are compared to laminar perfect gas predictions provided by a 3-0 Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 16 to 18percent of the forebody stagnation point and a factor of 2 higher than laminar predictions, suggesting a transitional or turbulent shear layer. transducers.

  14. Simulation of Laser Wake Field Acceleration using a 2.5D PIC Code

    NASA Astrophysics Data System (ADS)

    An, W. M.; Hua, J. F.; Huang, W. H.; Tang, Ch. X.; Lin, Y. Z.

    2006-11-01

    A 2.5D PIC simulation code is developed to study the LWFA( Laser WakeField Acceleration ). The electron self-injection and the generation of mono-energetic electron beam in LWFA is briefly discussed through the simulation. And the experiment of this year at SILEX-I laser facility is also introduced.

  15. Wake fields, potential well distortion and beam stability in the LER PEP-II

    SciTech Connect

    Heifets, S.A.

    1996-02-01

    Longitudinal and transverse wake fields are constructed for LER PEP-II. The effects of potential well distortion and the single bunch longitudinal stability are discussed for LER PEP-II storage ring. The coupled-bunch stability recalculated with the updated impedance.

  16. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  17. The effect of space-charge and wake fields in the Fermilab Booster

    SciTech Connect

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James; Spentzouris, Linda; McCarron, Daniel; /IIT, Chicago

    2011-03-01

    We calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between the flat and the circular geometry impedance is presented. We use the wake fields calculated for the Fermilab Booster laminated magnets in realistic beam simulations using the Synergia code. We find good agreement between our calculation of the coherent tune shift at injection energy and the experimental measurements. In this paper we calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. First the coupling impedance is derived as a function of the wall surface impedance. Then the surface impedance is calculated by solving Maxwell's equations inside the lamination and the crack regions. We find that the commonly used resistive-wall approximations, good for metallic pipes with small surface impedance, are not valid in the laminated structures where the surface impedance is large. Realistic Synergia simulations of the Booster machine with wake fields predict transverse coherent tune shifts in good agreement with the experiment.

  18. Ion wake field effects on the dust-ion-acoustic surface mode in a semi-bounded Lorentzian dusty plasma

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-03-01

    The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermal plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.

  19. Generation of vortex rings by nonstationary laser wake field

    SciTech Connect

    Tsintsadze, N.L.; Murtaza, G.; Shah, H.A.

    2006-01-15

    A new concept of generating quasistatic magnetic fields, vortex rings, and electron jets in an isotropic homogeneous plasma is presented. The propagation of plasma waves, generated by a relativistically intense short pulse laser, is investigated by using the kinetic model and a novel nonpotential, time-dependent ponderomotive force is derived by obtaining a hydrodynamic equation of motion. This force can in turn generate quasistatic magnetic fields, vortex rings, and electron jets. It is also shown that the vortex rings can become a means for accelerating electrons, which are initially in equilibrium. The conservation of canonical momentum circulation and the frozen-in condition for the vorticity is discussed. The excitation of the vortex waves by the modulation of the amplitude of the plasma waves is considered. These vortex waves, which generate a lower hybrid mode propagating across the generated magnetic field, are also investigated.

  20. Volumetric visualization of the near- and far-field wake in flapping wings.

    PubMed

    Liu, Yun; Cheng, Bo; Barbera, Giovanni; Troolin, Daniel R; Deng, Xinyan

    2013-09-01

    The flapping wings of flying animals create complex vortex wake structure; understanding its spatial and temporal distribution is fundamental to animal flight theory. In this study, we applied the volumetric 3-component velocimetry to capture both the near- and far-field flow generated by a pair of mechanical flapping wings. For the first time, the complete three-dimensional wake structure and its evolution throughout a wing stroke were quantified and presented experimentally. The general vortex wake structure maintains a quite consistent form: vortex rings in the near field and two shear layers in the far field. Vortex rings shed periodically from the wings and are linked to each other in successive strokes. In the far field, the shed vortex rings evolve into two parallel shear layers with dominant vorticity convected from tip and root vortices. The shear layers are nearly stationary in space compared to the periodic vortex rings shed in the near field. In addition, downwash passes through the centers of the vortex rings and extends downward between the two shear layers. PMID:23924871

  1. Volumetric visualization of the near and far field wake in flapping wings

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Cheng, Bo; Deng, Xinyan; Bio-Robotics Lab Team

    2013-11-01

    The flapping wings of flying animals create complex vortex wake structure, understanding its spatial and temporal distribution is fundamental to animal flight theory. In this study, we applied the volumetric 3-component velocimetry to capture both the near- and far-field flow generated by a pair of mechanical flapping wings. For the first time, the complete three-dimensional wake structure and its evolution throughout a wing stroke were quantified and presented. The general vortex wake structure maintains a quite consistent form: vortex rings in the near-field and two shear layers in the far-field. In specific, vortex rings shed periodically from the wings and are linked to each other in successive strokes. In the far-field, the shed vortex rings evolve into two parallel shear layers with dominant vorticity convected from tip and root vortices. The shear layers are nearly stationary in space compared to the periodic vortex rings shed in the near field. In addition, downwash passes through the centers of the vortex rings and extends downward between the two shear layers. This work is supported by AFOSR.

  2. Teaching Biology Field Courses in the Wake of Environmental Disasters.

    ERIC Educational Resources Information Center

    Baca, Bart J.

    1982-01-01

    A biology field course organized to study the effects of the June 1979 Mexican oil spill on the marine biology of the shores of south Texas and Mexico is described, demonstrating how to effectively couple a biology classroom course with a natural or human caused environmental disaster. (Author/DC)

  3. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    SciTech Connect

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; Chao, A.; Pitthan, R.; Schuler, K.-P.; Zhidkov, A.G.; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  4. Orientation of planetary O/plus/ fluxes and magnetic field lines in the Venus wake

    NASA Technical Reports Server (NTRS)

    Perez-De-tejada, H.; Intriligator, D. S.; Russell, C. T.

    1982-01-01

    The presence of 'contaminant' heavy ions of planetary origin in the solar wind has long been the subject of intense theoretical and experimental research. Studies of their abundance, acceleration, and direction of motion are important because of their implications on the composition and dynamics of planetary and cometary plasma wakes. The plasma and magnetic field observations made with the Pioneer Venus Orbiter (PVO) at Venus have provided the opportunity to examine the conditions in which planetary ions are picked up by the solar wind. We show here that in the outer regions of the Venusian far wake the displacement of planetary O(plus) particles, characteristic of the Venus upper ionosphere, does not occur necessarily along the magnetic field lines but approximately in the direction of the shocked solar wind.

  5. Simulation of ultrashort electron pulse generation from optical injection into wake-field plasma waves.

    PubMed

    Dodd, E S; Kim, J K; Umstadter, D

    2004-11-01

    A laser-plasma-based source of relativistic electrons is described in detail, and analyzed in two dimensions using theoretical and numeric techniques. Two laser beams are focused in a plasma, one exciting a wake-field electron plasma wave while another locally alters some electron trajectories in such a way that they can be trapped and accelerated by the wave. Previous analyses dealt only with one-dimensional models. In this paper two-dimensional particle-in-cell simulations and analysis of single particle trajectories show that the radial wake field plays an important role. The simulation results are interpreted to evaluate the accelerated electron beam's properties and compared with existing devices. PMID:15600768

  6. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  7. Simulation of ultrashort electron pulse generation from optical injection into wake-field plasma waves

    SciTech Connect

    Dodd, E.S.; Kim, J.K.; Umstadter, D.

    2004-11-01

    A laser-plasma-based source of relativistic electrons is described in detail, and analyzed in two dimensions using theoretical and numeric techniques. Two laser beams are focused in a plasma, one exciting a wake-field electron plasma wave while another locally alters some electron trajectories in such a way that they can be trapped and accelerated by the wave. Previous analyses dealt only with one-dimensional models. In this paper two-dimensional particle-in-cell simulations and analysis of single particle trajectories show that the radial wake field plays an important role. The simulation results are interpreted to evaluate the accelerated electron beam's properties and compared with existing devices.

  8. Free-electron lasing in the wake field of an elliptical pill-box cavity

    NASA Astrophysics Data System (ADS)

    Kim, S. H.

    1992-04-01

    It is shown using the photon concept that free-electron lasing (or net stimulated bremsstrahlung) is unrelated to the electron phase with respect to the laser wave, while the net acceleration (or net two-photon absorption) in an RF acceleration cavity depends on the electron phase with respect to the RF wave. The gain formula for the free-electron laser using a magnetic wiggler (MFEL) derived using the recently developed quantum-augmented classical theory in which the electron phase is ignored is in excellent agreement with that obtained quantum-mechanically. It is found by means of this theory that if an electric wiggler is added to a MFEL, the synchronization between the transverse velocity and the laser wave, which is required for coherence of the laser light, is not affected, while the laser gain is enhanced owing to the increase in the amplitude of the energy modulation by the electric wiggler. As a configuration of this turbo-MFEL, a two-beam elliptical wake-field cavity is proposed. An electron beam injected in the antiparallel direction along the lasing-beam path in this cavity lases through transverse wiggling by the transverse wake field and energy modulation by the longitudinal wake produced by relativistic drivingbeam bunches. This laser (WFEL) becomes of greater advantage compared with the MFEL as the laser wavelength is made shorter. It is also shown that the amplification of the WFEL is much greater than that of the present MFEL if we can produce a wake field whose longitudinal component has field strength greater than 1 MV m-1.

  9. Quantum ring solitons and nonlocal effects in plasma wake field excitations

    SciTech Connect

    Fedele, R.; Tanjia, F.; De Nicola, S.; Jovanovic, D.; Shukla, P. K.

    2012-10-15

    A theoretical investigation of the quantum transverse beam motion for a cold relativistic charged particle beam travelling in a cold, collisionless, strongly magnetized plasma is carried out. This is done by taking into account both the individual quantum nature of the beam particles (single-particle uncertainty relations and spin) and the self consistent interaction generated by the plasma wake field excitation. By adopting a fluid model of a strongly magnetized plasma, the analysis is carried out in the overdense regime (dilute beams) and in the long beam limit. It is shown that the quantum description of the collective transverse beam dynamics is provided by a pair of coupled nonlinear governing equations. It comprises a Poisson-like equation for the plasma wake potential (driven by the beam density) and a 2D spinorial Schroedinger equation for the wave function, whose squared modulus is proportional to the beam density, that is obtained in the Hartree's mean field approximation, after disregarding the exchange interactions. The analysis of this pair of equations, which in general exhibits a strong nonlocal character, is carried out analytically as well as numerically in both the linear and the nonlinear regimes, showing the existence of the quantum beam vortices in the form of Laguerre-Gauss modes and ring envelope solitons, respectively. In particular, when the relation between the plasma wake field response and the beam probability density is strictly local, the pair of the governing equations is reduced to the 2D Gross-Pitaevskii equation that allows one to establish the conditions for the self focusing and collapse. These conditions include the quantum nature of the beam particles. Finally, when the relation between the plasma wake field response and the beam probability density is moderately nonlocal, the above pair of equations permits to follow the spatio-temporal evolution of a quantum ring envelope soliton. Such a structure exhibits small or violent

  10. Electro-optic Measurement of the Wake Fields of a Relativistic Electron Beam

    SciTech Connect

    Fitch, M. J.; Melissinos, A. C.; Colestock, P. L.; Carneiro, J.-P.; Edwards, H. T.; Hartung, W. H.

    2001-07-16

    When a relativistic electron bunch traverses a structure, strong electromagnetic fields are induced in its wake. For a 12 nC bunch of duration 4.2ps FWHM, the peak field is measured >0.5 MV/m . Time resolution of {approx}5 ps is achieved using electro-optic sampling with a lithium tantalate (LiTaO{sub 3}) crystal and a short-pulse infrared laser synchronized to the beam. We present measurements for both the longitudinal and radial components of the field and relate them to the wall impedance.

  11. Pioneer Venus observations of plasma and field structure in the near wake of Venus

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Brace, L. H.; Knudsen, W. C.; Taylor, H. A.; Scarf, F. L.; Colburn, D. S.; Barnes, A.

    1982-01-01

    Ionospheric plasma density depletions or 'holes' are observed by the Pioneer Venus orbiter in association with radial magnetic fields in the near wake of Venus. This report presents examples of the collected observations of these unexpected features of the Venus nightside ionosphere obtained by the Langmuir probe, magnetometer, ion mass spectrometer, retarding potential analyzer, plasma analyzer, and electric field experiments. The connection between plasma density depletions and temperature changes, changes in ion composition, plasma wave emissions, and magnetic fields with a substantial radial component is illustrated. Mechanisms that may be responsible for the formation and maintenance of holes are suggested.

  12. An adaptive lattice Boltzmann method for predicting turbulent wake fields in wind parks

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2014-11-01

    Wind turbines create large-scale wake structures that can affect downstream turbines considerably. Numerical simulation of the turbulent flow field is a viable approach in order to obtain a better understanding of these interactions and to optimize the turbine placement in wind parks. Yet, the development of effective computational methods for predictive wind farm simulation is challenging. As an alternative approach to presently employed vortex and actuator-based methods, we are currently developing a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that shows good potential for effective wind turbine wake prediction. Since the method is formulated in an Eulerian frame of reference and on a dynamically changing nonuniform Cartesian grid, even moving boundaries can be considered rather easily. The presentation will describe all crucial components of the numerical method and discuss first verification computations. Among other configurations, simulations of the wake fields created by multiple Vesta V27 turbines will be shown.

  13. Wake Fields Excited in a Micron-Scale Dielectric Rectangular Structure by a Train of Femtosecond Bunches

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Fang, J.-M.; Hirshfield, J. L.; Wang, Changbiao; Tarakanov, V. P.; Park, S. Y.

    2002-12-01

    We study the longitudinal wake field components which are induced in a rectangular, dielectric-lined structure having micron-scale dimensions by the passage of one or more charge bunches having femtosecond duration. The bunches would be obtained from a 500 MeV LACARA "chopper" which uses a TW optical wave from a CO2 laser [1]; the bunches are chopped from a macrobunch having duration ˜1 psec obtained from a high brightness 500 MeV rf linac. The high intensity laser wave accomplishes the chopping of the macrobunch into slices which are roughly 10% of the 10.6 μm radiation wavelength. These microbunches can be shaped into a rectangular cross section, approximately 10 μm × 150 μm in dimension, and will excite wake fields when injected into a rectangular dielectric wake field accelerating structure. We compute sample 3D wake fields, using the PIC code KARAT, as well as by means of an analytic method. The passage of just one pC bunch will set up a longitudinal wake field ˜ 40 MeV/m, and a train of ten properly-timed such bunches can produce a cumulative wake field ˜ 600 MeV/m. The choice of dimensions causes the wave solutions to approximate a single-mode excited by an infinitely-tall bunch in a 2D structure; a highly uniform longitudinal wake field in the cross-sectional plane of the structure results, suitable for accelerating a correctly positioned "test bunch". KARAT includes the effect of interference between the Cerenkov radiation of the bunch with the transition radiation emitted as the bunch enters the structure. The wake field structure is several cm in length, and is both rigid and capable of microfabrication accuracy; it could accordingly be a reproducible module in a staged array. The stability of the bunches and the analytic formulation are dealt with in a companion paper [2].

  14. Clean beams from laser wake-field accelerators via optical injection with a cleanup pulse

    SciTech Connect

    Cary, John R.; Giacone, R.E.; Nieter, C.; Bruhwiler, D.L.

    2005-05-15

    Multiple colliding-pulse injection schemes have been proposed as means for trapping electrons in the ultrashort acceleration buckets of laser-generated wake fields. The primary goal of this paper is to present a parameter study to determine the beams that can be obtained through collisions of collinear laser pulses in uniform plasma. The parameter study is through fully self-consistent, two-dimensional, particle-in-cell simulations, as previous work used only test-particle computations. To remove the multiple beams that can commonly be generated in colliding pulse injection, we use a cleanup pulse, a trailing laser pulse that absorbs the wake. The wake then no longer exists in the region where the trailing beamlets would be, and so the trailing beamlets no longer form. A series of simulations predicts that with such one can obtain single, short ({<=}10 fs) beams with a bunch charge of order 10 pC, normalized emittance of order 2{pi} {mu}m, and energy spread of the order of 10%. The parameters of the beams are insensitive to the amplitude of the backward pulse above normalized amplitudes of a{sub bw}{approx_equal}0.4.

  15. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads; Edlundd, Eric; Ji, Hantao

    2013-04-01

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x B| / |ρ (υ • ∇), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-049±0.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  16. Field investigation of a wake structure downwind of a VAWT in a windfarm array

    SciTech Connect

    Liu, H.T.; Buck, J.W.; Germain, A.C.; Hinchee, M.E.; Solt, T.S.; LeRoy, G.M.; Srnsky, R.A.

    1987-10-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m VAWT were investigated through a series of field experiments conducted at the FloWind windfarm on Cameron Ridge, Tehachapi, California. The field experiment was conducted within a VAWT array consisting of more than nine VAWTs with separations 3D crosswised by 8D downwind (where D is the turbine diameter) in a staggered configuration. The array is the upwind three rows of VAWTS in a total of six rows that are on top of the Cameron Ridge plateau. The terrain features in the vicinity are reasonably regular, with an upslope of 7 deg on the average; however, several local irregularities are present. The annual hourly averaged wind speed exceeds 8 m/s at the site. The wind field and the power-outputs of nine turbines within the array were measured with wind sensors and power transducers. Nine Gill propeller and 18 Maximum cup anemometers and one direction sensor were mounted on portable and stack-up towers installed upwind and within the turbine array. From the field measurements, the velocity and power/energy deficits were derived under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. Recommendations are made for optimizing windfarm design and operations as well as for wind energy management.

  17. Development of a Large Scale Field PIV System For Wake Measurement in a Wind Farm

    NASA Astrophysics Data System (ADS)

    Brock, Larry; Castillo, Luciano; Sheng, Jian

    2014-11-01

    Efficient utilization of wind energy requires detailed field measurements. Conventional techniques such as LIDAR and sonic anemometers can only provide low resolution point-wise measurement. Particle Image Velocimetry (PIV) is widely used in laboratory scale studies, however, has considerable difficulties for application in the field. The issues mainly arise due to the presence of background sunlight and the requirement of a large seeding volume. To address these issues, a novel, large-format, field PIV system is developed in this study. The PIV system is capable of measuring 2D velocity in a 1 m × 1 m field of view with 0.2 mm spatial resolution and 7.6 mm vector spacing. The instrument achieves a three-decade measurement range, which enables the quantification of wide spectrum of wake structures as well as those in ABL. It can be applied to assess inflow conditions and to identify coherent structures in turbine wakes. The paper will present the principle of measurement and the development of optical, electrical and mechanical systems, as well as the preliminary measurement in an experimental wind farm.

  18. Mixing, staging, and phasing for a proton-driven wake field accelerator

    SciTech Connect

    Gai, W.; Ruggiero, A.G.; Simpson, J.D.

    1987-01-01

    This paper expands on a few important details of the Wakeatron concept. This is a device where electrons can be accelerated by the wake field of short intense proton bunches travelling along the axis of an rf structure. Specifically, we have examined the consequences of the longitudinal dynamics of both the electron and the proton bunches. Included were ''mixing'' in the proton bunches (crucial to the overall concept) and phase shifts (electron bunches relative to proton bunches) in the acceleration process. Because of the deterioration of the proton bunches, due to the ''mixing'' process, it is required that the Wakeatron is indeed staged in a number of consecutive sections.

  19. Modal analysis of wake fields and its application to elliptical pill-box cavity with finite aperture

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Chen, K. W.; Yang, J. S.

    1990-11-01

    The potential of the wake-field produced by a bunch of relativistic charged particles passing through a pill-box cavity is expressed by using Floquet's theorem, and an obvious requirement that the energy gain over all acceleration cavity of many pill boxes must be proportional to the number of pill boxes, based on the previous modal approach (BWW theory). It is found that the wake-field is consisted of two classes of modes: the longitudinal modes which are independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal mode whose wavelength is on the order of the effective diameter of the cavity, and its magnitude is inversely proportional to the cross sectional area of the cavity for practical cavities with small apertures. Both longitudinal and transverse wake fields due to the longitudinal modes in an elliptical pill box cavity are expressed analytically in a closed series form by solving exactly the longitudinal eigenmode equation in the elliptical cylindrical coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse wake fields whose amplitudes per driving charge are greater than 100 MV/m/μC can be generated in an elliptical cavity.

  20. Modal analysis of wake fields and its application to elliptical pill-box cavity with finite aperture

    SciTech Connect

    Kim, S.H. ); Chen, K.W.; Yang, J.S. )

    1990-11-15

    The potential of the wake-field produced by a bunch of relativistic charged particles passing through a pill-box cavity is expressed by using Floquet's theorem, and an obvious requirement that the energy gain over all acceleration cavity of many pill boxes must be proportional to the number of pill boxes, based on the previous modal approach (BWW theory). It is found that the wake-field is consisted of two classes of modes: the longitudinal modes which are independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal mode whose wavelength is on the order of the effective diameter of the cavity, and its magnitude is inversely proportional to the cross sectional area of the cavity for practical cavities with small apertures. Both longitudinal and transverse wake fields due to the longitudinal modes in an elliptical pill box cavity are expressed analytically in a closed series form by solving exactly the longitudinal eigenmode equation in the elliptical cylindrical coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse wake fields whose amplitudes per driving charge are greater than 100 MV/m/{mu}C can be generated in an elliptical cavity.

  1. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  2. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  3. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    PubMed

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  4. X-ray densitometry based void fraction flow field measurements of cavitating flow in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Sun, Tiezhi; Ganesh, Harish; Ceccio, Steven

    2015-11-01

    At sufficiently low cavitation number, the wake vortices behind bluff objects will cavitate. The presence of developed cavitation can alter the underlying vortical flow. In this study, cavitation dynamics in the wake of a circular cylinder is examined in order to determine the relationship between the void fraction in the cavity wake and the resulting modification to the flow compared to the non-cavitating flow. Cavitation in the wake of a cylinder is investigated using high-speed video cameras and cinematographic X-ray densitometry. Using synchronized top and side views from high-speed video cameras, the morphology and extent of the cavities forming on the wake of the circular cylinder is studied for a range of cavitation numbers, at a Reynolds number of 1x10-5, which lies at the transition region between sub-critical to critical regime of wake transitions. The time resolved and mean X-ray densitometry based void fraction of the spanwise and plan view averaged flow field will be related to the vortex dynamics in an attempt to understand the role of vapor production in the observed dynamics.

  5. Control of hypoglossal motoneurones during naturally occurring sleep and wakefulness in the intact, unanaesthetized cat: a field potential study.

    PubMed

    Fung, Simon J; Chase, Michael H

    2014-08-01

    The present electrophysiological study was designed to determine the discharge threshold of hypoglossal motoneurones during naturally occurring states of sleep and wakefulness in the intact, unanaesthetized cat. The antidromic field potential, which reflects the net level of membrane excitability of motoneurones and therefore their discharge threshold, was recorded in the hypoglossal nucleus following stimulation of the hypoglossal nerve. The amplitude of the antidromic field potential was larger during wakefulness and non-rapid eye movement (NREM) sleep compared with REM sleep. There was no significant difference in the amplitude of the field potential when wakefulness was compared with NREM sleep (P = 0.103, df = 3, t = 2.324). However, there was a 46% reduction in amplitude during REM sleep compared with NREM sleep (P < 0.001, df = 10, t = 6.421) or wakefulness (P < 0.01, df = 4, t = -4.598). These findings indicate that whereas the excitability of motoneurones that comprise the hypoglossal motor pool is relatively constant during wakefulness and NREM sleep, their excitability is significantly reduced during REM sleep. This state-dependent pattern of control of hypoglossal motoneurones during REM sleep is similar to that reported for motoneurones in other motor nuclei at all levels of the neuraxis. The decrease in the evoked response of hypoglossal motoneurones, which reflects a significant increase in the discharge threshold of individual motoneurones, results in atonia of the lingual and related muscles during REM sleep. PMID:24605864

  6. Solitary wake field microdynamics of the pulsed laser induced microbubbles in three-dimensional dusty plasma liquids

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.; I, Lin

    2009-06-15

    The Eulerian/Lagrangian dynamics in the narrow wake field of the dusty plasma bubble is explored by directly tracking dust motion at the microscopic level. The bubble is induced by the focused laser pulse ablation in three-dimensional quiescent dusty plasma liquids operated in the pressure higher than the critical pressure for the self-excitation of dust acoustic wave by the downward ion wind. It is found that, after bubble expansion ceases, the collective excitation maintains its width and travels downward as a solitary wave, led by an ultrasonic rarefaction front contributed by the dust motion below the lower boundary, and trailed by the few compressional crests with descending crest heights and speeds in the narrow wake, under the symmetry breaking by the downward ion flow. The quick damping of the waves propagating along other directions leads to a narrow wake. Increasing the background pressure causes the more isotropic collapsing of the bubble without wake field oscillation. The role played by dust motion on interacting with and sustaining the wake field evolution is identified and discussed.

  7. Solitary wake field microdynamics of the pulsed laser induced microbubbles in three-dimensional dusty plasma liquids

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Yu; Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-06-01

    The Eulerian/Lagrangian dynamics in the narrow wake field of the dusty plasma bubble is explored by directly tracking dust motion at the microscopic level. The bubble is induced by the focused laser pulse ablation in three-dimensional quiescent dusty plasma liquids operated in the pressure higher than the critical pressure for the self-excitation of dust acoustic wave by the downward ion wind. It is found that, after bubble expansion ceases, the collective excitation maintains its width and travels downward as a solitary wave, led by an ultrasonic rarefaction front contributed by the dust motion below the lower boundary, and trailed by the few compressional crests with descending crest heights and speeds in the narrow wake, under the symmetry breaking by the downward ion flow. The quick damping of the waves propagating along other directions leads to a narrow wake. Increasing the background pressure causes the more isotropic collapsing of the bubble without wake field oscillation. The role played by dust motion on interacting with and sustaining the wake field evolution is identified and discussed.

  8. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  9. A high-charge and short-pulse RF photocathode gun for wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1998-02-01

    In this paper we present a design report on 1-1/2 cell, L-Band RF photocathode gun which is capable of generating and accelerating electron beams with peak currents >10 kA. We address several critical issues of high-current RF photoinjectors such as longitudinal space charge effect, and transverse emittance growth. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 100 nC beam at 18 MeV with r.m.s. bunch length 1.25 mm and normalized transverse emittance 108 mm mrad. Applications of this source beam for wake-field acceleration are also discussed.

  10. Semi-analytical fluid study of the laser wake field excitation in the strong intensity regime

    NASA Astrophysics Data System (ADS)

    Jovanović, D.; Fedele, R.; Belić, M.; De Nicola, S.

    2016-09-01

    We present an analytical and numerical study of the interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma. The study has been performed in the ultrarelativistic regime of electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The calculations are applied to a laser wake field acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse.

  11. A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC)

    SciTech Connect

    Seryi, Andrei; Hogan, Mark; Pei, Shilun; Raubenheimer, Tor; Tenenbaum, Peter; Katsouleas, Tom; Huang, Chengkun; Joshi, Chan; Mori, Warren; Muggli, Patric; /Southern California U.

    2009-10-30

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for a shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The R&D steps needed for further development of the concept are also outlined.

  12. High-quality electron beam from laser wake-field acceleration in laser produced plasma plumes

    SciTech Connect

    Sanyasi Rao, Bobbili; Moorti, Anand; Rathore, Ranjana; Ali Chakera, Juzer; Anant Naik, Prasad; Dass Gupta, Parshotam

    2013-06-10

    Generation of highly collimated ({theta}{sub div}{approx}10 mrad), quasi-monoenergetic electron beam with peak energy 12 MeV and charge {approx}50 pC has been experimentally demonstrated from self-guided laser wake-field acceleration (LWFA) in a plasma plume produced by laser ablation of solid nylon (C{sub 12}H{sub 22}N{sub 2}O{sub 2}){sub n} target. A 7 TW, 45 fs Ti:sapphire laser system was used for LWFA, and the plasma plume forming pulse was derived from the Nd:YAG pump laser of the same system. The results show that a reproducible, high quality electron beam could be produced from this scheme which is simple, low cost and has the capability for high repetition rate operation.

  13. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    SciTech Connect

    Naughton, Brian Thomas; Herges, Thomas

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  14. Velocity field measurements in the near wake of a parachute canopy

    NASA Astrophysics Data System (ADS)

    Desabrais, Kenneth J.

    The velocity field in the wake of a small scale flexible parachute canopy was measured using two-dimensional particle image velocimetry. The experiments were performed in a water tunnel with the Reynolds number ranging from 3.0--6.0 x 104. Both a fully inflated canopy and the inflation phase were investigated in a constant freestream (i.e. an infinite mass condition). The fully inflated canopy experienced a cyclic "breathing" which corresponded to the shedding of a vortex ring from the canopy. The normalized breathing frequency had a value of 0.56 +/- 0.03. The investigation of the canopy inflation showed that during the early stages of the inflation, the boundary layer on the canopy surface remains attached to the canopy while the canopy diameter increases substantially. The boundary layer begins to separate near the apex region when the diameter is ˜68% of the fully inflated diameter. The separation point then progresses upstream from the canopy apex region toward the canopy skirt. During this time period, the force rapidly increases to its maximum value while the separation point of the boundary layer moves upstream towards the skirt. The force then declines rapidly and the separated boundary layer rolls-up into a large vortex ring near the canopy skirt. At the same time, the canopy is drawn into an over-expanded state after which the cyclic breathing initiates. The unsteady potential force was estimated from the rate of change of the canopy volume. It contributed no more than 10% of the peak opening force and was only significant during the early stages of inflation. The majority of the opening force was the result of the time rate of change of the fluid impulse. It accounts for approximately 60% of the peak opening force. This result shows that the formation of the viscous wake is the primary factor in the peak drag force of the canopy.

  15. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    SciTech Connect

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  16. Proper orthogonal decomposition of velocity gradient fields in a simulated stratified turbulent wake: analysis of vorticity and internal waves

    NASA Astrophysics Data System (ADS)

    Gurka, R.; Diamessis, P.; Liberzon, A.

    2009-04-01

    The characterization of three-dimensional space and time-dependent coherent structures and internal waves in stratified environment is one of the most challenging tasks in geophysical fluid dynamics. Proper orthogonal decomposition (POD) is applied to 2-D slices of vorticity and horizontal divergence obtained from 3-D DNS of a stratified turbulent wake of a towed sphere at Re=5x103 and Fr=4. The numerical method employed solves the incompressible Navier-Stokes equations under the Boussinesq approximation. The temporal discretization consists of three fractional steps: an explicit advancement of the nonlinear terms, an implicit solution of the Poisson equation for the pseudo-pressure (which enforces incompressibility), and an implicit solution of the Helmholtz equation for the viscous terms (where boundary conditions are imposed). The computational domain is assumed to be periodic in the horizontal direction and non-periodic in the vertical direction. The 2-D slices are sampled along the stream-depth (Oxz), span-depth (Oyz) and stream-span planes (Oxy) for 231 times during the interval, Nt ∈ [12,35] (N is the stratification frequency). During this interval, internal wave radiation from the wake is most pronounced and the vorticity field in the wake undergoes distinct structural transitions. POD was chosen amongst the available statistical tools due to its advantage in characterization of simulated and experimentally measured velocity gradient fields. The computational procedure, applied to any random vector field, finds the most coherent feature from the given ensemble of field realizations. The decomposed empirical eigenfunctions could be referred to as "coherent structures", since they are highly correlated in an average sense with the flow field. In our analysis, we follow the computationally efficient method of 'snapshots' to find the POD eigenfunctions of the ensemble of vorticity field realizations. The results contains of the separate POD modes, along with

  17. Quasi-static Modeling of Plasma Wake Field Acceleration of Electron/Positron Beams

    NASA Astrophysics Data System (ADS)

    Zhou, Miaomiao; Huang, Chengkun; Lu, Wei; Tsung, Frank; Decyk, Viktor; Down, Adrian; Joshi, Chan; Mori, Warren

    2006-10-01

    A quasi-static particle in cell code QuickPIC is used to model Plasma Wake Field Acceleration (PWFA) by a relativistic electron or positron beam. Field-ionization, synchrotron radiation effects are included in the model. For an electron beam driver, the parameters in recent afterburner relevant experiments (E167) are used. Head erosion turns out to be a key factor limiting further energy gain for these parameters. The erosion speed in the simulation are compared with a simple theoretical calculation. The final energy spectrum measured in the experiment agreed very well with simulation predictions. For a positron beam driver, beam parameters relevant to the future SABER facilities are considered. Simulations show a pattern of positron beam evolution, i.e. a rapid modulation followed by an envelope stabilization. Up to 5.7 GeV energy gain were observed within 39 centimeters of plasma. At the end, a method of including the trapped particles into the quasi-static model will be described. Preliminary results will be shown.

  18. Modeling Laser Wake Field Acceleration with the Quasi-Static PIC Code QuickPIC

    SciTech Connect

    Vieira, J.; Antonsen, T. Jr.; Cooley, J.; Silva, L. O.

    2006-11-27

    We use the Quasi-static Particle-In-Cell code QuickPIC to model laser wake field acceleration, in both uniform and parabolic plasma channels within current state of the art experimental laser and plasma parameters. QuickPIC uses the quasi-static approximation, which allows the separation of the plasma and laser evolution, as they respond in different time scales. The laser is evolved with a larger time step, that correctly resolves distances of the order of the Rayleigh length, according to the ponderomotive guiding center approximation, while the plasma response is calculated through a quasi-static field solver for each transverse 2d slice. We have performed simulations that show very good agreement between QuickPIC and three dimensional simulations using the full PIC code OSIRIS. We have scanned laser intensities from those for which linear plasma waves are excited to those for which the plasma response is highly nonlinear. For these simulations, QuickPIC was 2-3 orders of magnitude faster than OSIRIS.

  19. Suppression of edge-localized modes by magnetic field perturbations

    SciTech Connect

    Kleva, Robert G.; Guzdar, Parvez N.

    2010-11-15

    Transport bursts in simulations of edge-localized modes (ELMs) in tokamaks are suppressed by the application of magnetic field perturbations. The amplitude of the applied magnetic field perturbations is characterized by a stochasticity parameter S. When S>1, magnetic flux surfaces are destroyed and the magnetic field lines diffuse in minor radius. As S increases in the simulations, the magnitude of the ELM bursts decreases. The size of bursts is reduced to a very small value while S is still less than unity and most of the magnetic flux surfaces are still preserved. Magnetic field line stochasticity is not a requirement for the stabilization of ELMs by the magnetic field perturbations. The magnetic field perturbations act by suppressing the growth of the resistive ballooning instability that underlies the ELM bursts.

  20. The Role of Turbulence in Chemical and Dynamical Processes in the Near-Field Wake of Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. Steve

    2002-01-01

    During this grant, covering the period from September 1998 to December 2001, we continued the investigation of the role of turbulent mixing in the wake of subsonic aircraft initiated in 1994 for NASA's Atmospheric Effects of Aviation Project. The goal of the research has been to provide sufficient understanding and quantitative analytical capability to assess the dynamical, chemical, and microphysical interactions in the near-field wake that have the greatest potential to influence the global atmospheric impact of the projected fleet of subsonic aircraft. Through large-eddy simulations we have shown that turbulence in the early wake dynamics can have a strong effect on both the ice microphysics of contrail evolution and on wake chemistry. The wake vortex dynamics are the primary determinant of the vertical extent of the contrail; this together with the local wind shear largely determines the horizontal extent. The fraction of the initial ice crystals surviving the wake vortex dynamics, their spatial distribution, and the ice mass distribution are all sensitive to the aircraft type, assumed initial ice crystal number, and ambient humidity and turbulence conditions. Our model indicates that there is a significant range of conditions for which a smaller aircraft such as a B737 produces as significant a persistent contrail as a larger aircraft such as a B747, even though the latter consumes almost five times as much fuel. Large-eddy simulations of the near wake of a B757 provided a fine-grained chemical-dynamical representation of simplified NOx - HOx chemistry in wakes of ages from a few seconds to several minutes. By sampling the simulated data in a manner similar to that of in situ aircraft measurements it was possible to provide a likely explanation for a puzzle uncovered in the 1996 SUCCESS flight measurements of OH and HO2 The results illustrate the importance of considering fluid dynamics effects in interpreting chemistry results when mixing rates and species

  1. Study on beam emittance evolution in a nonlinear plasma wake field accelerator with mobile plasma ions

    NASA Astrophysics Data System (ADS)

    An, Weiming; Joshi, Chan; Mori, Warren; Lu, Wei

    2014-10-01

    We study the electron beam evolution in a nonlinear blowout PWFA when the accelerated beam has a very small matched spot size that can cause the plasma ions collapsing towards the beam. Contrary to the common belief, very small emittance growth of the accelerated electron beam is found when the plasma ion collapsing destroys the perfect linear focusing force in the plasma wake field. The improved quasi-static PIC code QuickPIC also allows us to use very high resolution and to model asymmetric spot sizes. Simulation results show that the accelerated beam will reach a steady state after several cm propagation in the plasma (which is why we can do simulations and not let the drive beam evolve). We find that for round beams the ion density (which is Li+) enhancement is indeed by factors of 100, but that the emittance only grows by around 20 percent. For asymmetric spot sizes, the ion collapse is less and emittance growth is zero in the plane with the largest emittance and about 20 percent in the other plane.

  2. Performance and Near-Wake Flow field of A Marine Hydrokinetic Turbine Operating in Free surface Proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Kolekar, Nitin

    2015-11-01

    The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.

  3. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    SciTech Connect

    Makito, K.; Shin, J.-H.; Zhidkov, A.; Hosokai, T.; Masuda, S.; Kodama, R.

    2012-10-15

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of {approx}3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  4. Field investigation of a wake structure downwind of a VAWT (vertical-axis wind turbine) in a wind farm array

    SciTech Connect

    Liu, H.T.; Buck, J.W.; Germain, A.C.; Hinchee, M.E.; Solt, T.S.; LeRoy, G.M.; Srnsky, R.A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management. 17 refs., 66 figs., 6 tabs.

  5. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  6. Experimental studies of sound field suppression at discrete frequencies

    NASA Astrophysics Data System (ADS)

    Fiks, I. Sh.; Korotin, P. I.; Potapov, O. A.; Fiks, G. E.

    2016-03-01

    Practical implementation of an active sound control system ensuring sound suppression in outer space is described as applied to sound insulation problems for equipment whose total noise level is mainly due to low-frequency discrete spectral components. The operational principle of the proposed system is based on inverse field generation with respect to the field of the initial source of quasi-monochromatic signals. The inverse field is formed by a set of radiators, which are controlled by the signals of pressure receivers positioned in the near field of the source. Experimental studies carried out with the proposed sound control system demonstrate its efficiency and testify to the stability of its operation.

  7. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  8. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  9. Wake shield

    NASA Technical Reports Server (NTRS)

    Bannister, Tommy; Karr, Gerald R.

    1987-01-01

    Progress on the modeling of the flow field around a wake shield using a recently obtained code based on the Monte Carlo method is discussed. The direct simulation Monte Carlo method is a method for solving the Boltzman Equation using an approximation to the collision integral term. The collision integrand is evaluated for randomly selected values of its arguments and the summation will approach the integral for large enough samples. The collision effects may be modeled for either hard sphere or various power law potentials. The convective side of the Boltzman equation is approximated over a time step using a simple trajectory calculation of molecules as they travel through the domain of interest.

  10. A closed-form solution of wake-fields in an elliptical pill-box by using an elliptical coordinate system

    NASA Astrophysics Data System (ADS)

    Yang, J. S.; Chen, K. W.

    1989-10-01

    It was known from a complete model analysis1,2 that the wake potential in the pill-box cavity is predominantly determined by a few longitudinal modes counting from the fundamental longitudinal mode. An approach to find the longitudinal modes of an elliptical cavity is developed by means of the coordinate transformation method. It is found that the field configuration and eigenfrequencies of the elliptical cavity can be expressed in a closed form in terms of Mathieu functions. Inserting the closed form solution of modes into the previous analytical formula for the wake field, the wake field is expressed too in a closed form solution, which is convenient for numerical calculation. Thus, a numerical method to calculate expediently the wake field is developed, and a model calculation is presented.

  11. Scaling of far-field wake angle of nonaxisymmetric pressure disturbance.

    PubMed

    Moisy, F; Rabaud, M

    2014-06-01

    It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}). PMID:25019876

  12. Characterization of electron self-injection in laser wake field acceleration due to the parametric resonance

    SciTech Connect

    Zhidkov, A.; Koga, J.; Hosokai, T.; Kodama, R.; Fujii, T.; Oishi, Y.; Nemoto, K.

    2010-08-15

    The wave-breaking processes originating from a parametric resonance in the wake of a laser pulse in the absence of pulse overfocusing are thoroughly analyzed via multidimensional particle-in-cell simulations. The processes play a key role in the electron self-injection in the laser-driven acceleration of high energy, monoenergetic electrons in plasma channels. The resonance character of the charge loading in the first, second, and third injections is shown; its effect on the electron acceleration is demonstrated.

  13. Electric field suppression of ultracold confined chemical reactions

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-06-15

    We consider ultracold collisions of polar molecules confined in a one-dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking {sup 40}K{sup 87}Rb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes for KRb molecules to be 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient evaporative cooling of polar KRb molecules.

  14. Efficient suppression of Overhauser field fluctuations with DNP

    NASA Astrophysics Data System (ADS)

    McNeil, Robert; Botzem, Tim; Tenberg, Stefanie; Rubbert, Sebastian; Bluhm, Hendrik

    2015-03-01

    In certain spin-qubit schemes the Overhauser field is a tuned control parameter and in many spin qubits this fluctuating nuclear field is a significant factor limiting coherence. Nuclear spins can be driven via dynamic nuclear polarisation (DNP) to a chosen field and selective feedback applied narrowing the distribution of nuclear Overhauser field fluctuations. The achievable narrowing of the Overhauser field is related to the maximum pump rate and previous experiments on gated GaAs quantum dots were limited by the pump rate of the pumping mechanism used. We present a method to reduce nuclear fluctuations by increasing the max achievable pump rate. Sequentially applying two ac electric fields with frequencies slightly detuned from the desired Larmor frequency results in a pump curve with a stable fixed point. In the absence of spin-orbit interaction, driving electron spin flips via electric dipole spin resonance (EDSR) will also drive nuclear spin flips and this scheme is expected to result in stronger pumping and efficient suppression of the Overhauser field fluctuations. We will present experimental evidence of this driven nuclear polarization including tracking of EDSR resonances.

  15. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in a future

  16. Generation and Suppression of E Region Artificial Field Aligned Irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; Han, S.

    2012-12-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program (HAARP) facility during campaigns in May and August of 2012 and were quantified using a 30 MHz coherent scatter radar in Homer, Alaska. The purpose of the experiment was to analyze the X-mode suppression of FAIs generated from O-mode heating and to measure the threshold required to excite thermal parametric instabilities. The irregularities were excited by gradually increasing the power of a zenith pointing O-mode emission transmitted at a frequency of 2.75 MHz. To suppress the irregularities, a second X-mode emission at a higher frequency was added on alternating power cycles. The Homer radar measured the signal-to-noise ratio, Doppler shift, and spectral width of echoes reflected from the irregularities. We will calculate the threshold electric field required to excite the irregularities and compare with similar experiments in order to better understand the thermal parametric instability.

  17. A Nondestructive Method for Measuring the RMS Length of Charge Bunches Using the Wake Field Radiation Spectrum

    SciTech Connect

    Shchelkunov, S.V.; Marshall, T.C.; Hirshfield, J.L.; LaPointe, M.A.

    2004-12-07

    We report progress in the development of a nondestructive technique to measure bunch rms-length in the psec range and below, and eventually in the fsec range, by measuring the high-frequency spectrum of wake field radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate both experimentally and numerically that the generated spectrum is determined by the bunch rms-length, while the choice of the axial and longitudinal charge distribution is not important. Measurement of the millimeter-wave spectrum will determine the bunch rms-length in the psec range. This has been done using a series of calibrated mesh filters and the charge bunches produced by the 50MeV rf linac system at ATF, Brookhaven. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wake field microstructure.

  18. A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number

    SciTech Connect

    Tahara, Y.; Stern, F.

    1996-09-01

    A large-domain approach is developed for calculating ship boundary layers and wakes and wave fields for nonzero Froude number. The Reynolds-averaged Navier-Stokes and continuity equations are solved with the Baldwin-Lomax turbulence model, exact nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a body/free-surface conforming grid. The results are validated through comparisons with data for the Series 60 C{sub B} = 0.6 ship model at low and high Froude numbers and results of a precursory interactive approach. Both approaches yield satisfactory results; however, the large-domain results indicate improved resolution of the flow close to the hull and wake centerplane and of the Froucle number differences due to near-wall turbulence modeling and non-linear free-surface boundary conditions. Additional evaluation is provided through discussion of the recent CFD Workshop Tokyo 1994, where both methods were among the best. Last, some concluding remarks are made. 20 refs., 7 figs.

  19. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  20. Suppression of probe background signals via B1 field inhomogeneity

    SciTech Connect

    Feng, Jian; Reimer, Jeffrey

    2011-01-27

    A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a {pi}/2 pulse, the inhomogeneous B{sub 1} fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE {pi} pulses function complementarily and prove most effective in removing background signals from both strong and weak B{sub 1} fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the {pi}/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B{sub 1} field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.

  1. Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch

    NASA Astrophysics Data System (ADS)

    Tanjia, F.; Fedele, R.; De Nicola, S.; Akhter, T.; Jovanović, D.

    2016-09-01

    A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation for the wake potential where the driving term is the ultra-short bunch density, taking suitably into account the interplay between the sharpness and high energy of the bunch. Then, we show that a channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable axially-symmetric hollow beam structure.

  2. Studies of wake fields set up by relativistic electron bunches in a cylindrical dielectric-lined waveguide and application to accelerator physics

    NASA Astrophysics Data System (ADS)

    Shchelkunov, Sergey V.

    2005-07-01

    We report on the experimental demonstration of a novel acceleration technique, proposed in 1999, which might deliver high acceleration gradients as required by future linear colliders. This technique utilizes constructive superposition of wake-fields produced in a dielectric-lined waveguide by short (psec) drive bunches which excite a broadband frequency spectrum having ˜40 eigenmodes and thereby synthesize a high-amplitude accelerating field. This experiment is compared with a related experiment by a group at the Argonne National Laboratory where the wake field consisted of ˜10 eigenmodes. We find that the axial accelerating electric field has a sharply-peaked profile with very narrow footprint as desired, and we demonstrate that fields of two bunches have been successfully superimposed. We report the development of a nondestructive technique to measure bunch rms-length in the psec range and below, by measuring the high-frequency spectrum of wake field radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate both experimentally and numerically that the generated spectrum is determined by and sensitive to the bunch rms-length, whereas it is insensitive to the axial and longitudinal charge distribution. Measurement of the millimeter-wave spectrum determines the bunch rms-length in the psec range, and this has been done using a series of calibrated mesh filters. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wake field microstructure. We also investigate theoretically and numerically the quantitative behavior of the dielectric wake field accelerator performance (such as the efficiency, accelerating gradient, and energy spread) vs. the dielectric wake field

  3. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Boomsma, Aaron; Barone, Matthew; Sotiropoulos, Fotis

    2014-06-01

    The University of Minnesota Virtual Wind Simulator (VWiS) code is employed to simulate turbine/atmosphere interactions in the Scaled Wind Farm Technology (SWiFT) facility developed by Sandia National Laboratories in Lubbock, TX, USA. The facility presently consists of three turbines and the simulations consider the case of wind blowing from South such that two turbines are in the free stream and the third turbine in the direct wake of one upstream turbine with separation of 5 rotor diameters. Large-eddy simulation (LES) on two successively finer grids is carried out to examine the sensitivity of the computed solutions to grid refinement. It is found that the details of the break-up of the tip vortices into small-scale turbulence structures can only be resolved on the finer grid. It is also shown that the power coefficient CP of the downwind turbine predicted on the coarse grid is somewhat higher than that obtained on the fine mesh. On the other hand, the rms (root-mean-square) of the CP fluctuations are nearly the same on both grids, although more small-scale turbulence structures are resolved upwind of the downwind turbine on the finer grid.

  4. Simulation of Time-Dependent Energy Modulation by Wake Fields and its Impact on Gain in the VUV free Electron Laser of the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Schlarb, H.

    2000-05-01

    For shorter bunches and narrower undulator gaps the interaction between the electrons in the bunch and the wake fields becomes so large that the FEL amplification is affected. For a typical vacuum chamber of an X-ray or VUV Free Electron Laser three major sources of wake fields exist: a resistance of the beam pipe, a change in the geometric aperture and the surface roughness of the beam pipe. The generated wake fields, which move along with the electrons, change the electron energy and momentum, depending on the electron longitudinal and transverse position. In particular, the accumulated energy modulation shifts the electrons away from the resonance condition. Based on an analytic model the energy loss by the wake fields has been incorporated into the time-dependent FEL simulation code GENESIS 1.3. For the parameters of the TESLA Test Facility the influence of the bunch length, beam pipe diameter and surface roughness has been studied. The results are presented in this paper.

  5. Soft X-Ray Stimulated Bremsstrahlung In Traveling Longitudinal Electric Wake-Fields Of Two-Beam Pill-Box Cavities

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Chen, K. W.; Wilhelm, H. E.

    1986-01-01

    The amplification of laser light in a free electron laser (FEL) due to stimulated bremsstrahlung in a traveling longitudinal undulating electric field is derived. It is shown that this FEL provides sufficient gain to be used as a coherent radiation source down to the soft x-ray regime. It is suggested that, among other possibilities, the wake-field produced in a two-beam elliptical or annular pill-box cavity is suitable for the required traveling longitudinal undulating electric field.

  6. Soft X-ray stimulated bremsstrahlung in traveling longitudinal electric wake-fields of two-beam pill-box cavities

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Chen, K. W.; Wilhelm, H. E.

    The amplification of laser light in a free electron laser (FEL) due to stimulated bremsstrahlung in a traveling longitudinal undulating electric field is derived. It is shown that this FEL provides sufficient gain to be used as a coherent radiation source down to the soft X-ray regime. It is suggested that, among other possibilities, the wake-field produced in a two-beam elliptical or annular pill-box cavity is suitable for the required traveling longitudinal undulating electric field.

  7. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive

  8. Maleic hydrazide: sprout suppression of potatoes in the field.

    PubMed

    De Blauwer, V; Demeulemeester, K; Demeyere, A; Hofmans, E

    2012-01-01

    In 2005, the active substance maleic hydrazide was released on the Belgian market. Maleic hydrazide is authorized in potatoes as foliar treatment for instore sprout suppression and control of volunteers. The mode of action is based on blocking cell division whilst cell elongation is not affected. The product must be applied at once during the growing season, only after at least 80% of the tubers have reached 25 mm diameter and not later than 3 weeks before haulm killing. The first 24 h after application, no meaningful precipitation should occur to insure sufficiently uptake of the product by the crop. Field trials were set up for 4 years (2005-2008) and 4 locations per year with application of maleic hydrazide in four different cultivars (Bintje, Fontane, Asterix and Cilena). After application, the cultivar Asterix showed almost every year a temporarily phytotoxicity (bronze discoloration). On the first place yield was determined. When maleic hydrazide was applied too early (80% tubers % 25mm diameter) yield was negatively affected (3 years on 4) except for the cultivar Cilena (fresh market). Internal quality (dry matter and fry quality) was not influenced by the application of maleic hydrazide. Only Fontane had a slightly lower dry matter content. Maleic hydrazide also influenced appearance of secondary growth. However, the results were very variable depending on cultivar, location and time of application. After harvest, the tubers were kept in storage and assessed monthly on germination. Potatoes treated late in the growing season, showed a shorter dormancy period. A part of the tubers was replanted the following spring to verify volunteer control. Additional trials were set up by the Flemish government for two years (2010-2011). The results of previous trials were confirmed. Additional, the influence of maleic hydrazide on internal germination during storage was examined on the cultivar Innovator. The tests clearly showed a positive effect for this parameter

  9. Measurements of fish's wake by PIV

    NASA Astrophysics Data System (ADS)

    Li, Xuemin; Wu, Yanfeng; Lu, Xiyun; Yin, Xiezhen

    2003-04-01

    In this paper an experiment on measurements of the wake of Goldfish carassius auratus swimming unrestricted was conducted in a water tunnel. Color liquid was used to visualize the wake of the fish and PIV was used to measure velocity field of the wake. Results show that there is reverse Karman vortex street in symmetrical plane of the fish's wake and the Strouhal frequency of the fish is about 0.35 udner the different experimental conditions. The distribution of velocity and vorticity in the wake of Goldfish was measured by PIV and formation of reverse Karman vortex street in the wake was studied in a model experiment.

  10. A multi-beam, multi-terawatt Ti:sapphire laser system for laser wake-field acceleration studies

    SciTech Connect

    Toth, Cs.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2004-12-07

    The Lasers, Optical Accelerator Systems Integrated Studies (L'OASIS) Lab of LBNL operates a highly automated and remotely controlled Ti:sapphire chirped pulse amplification (CPA) laser system that provides synchronized beams of 2x1.0 TW, 12 TW, and 100 TW peak-power, in a unique, radiation shielded facility. The system has been specially designed for studying high field laser-plasma interactions and particularly aimed for the investigations of laser wake-field particle acceleration. It generates and recombines multiple beams having different pulse durations, wavelengths, and pulse energies for various stages of plasma preparation, excitation, and diagnostics. The amplifier system is characterized and continuously monitored via local area network (LAN) from a radiation shielded control room by an array of diagnostics, including beam profile monitoring cameras, remote controlled alignment options, self-correcting beam-pointing stabilization loops, pulse measurement tools, such as single-shot autocorrelator for pulse duration and third-order correlator for contrast measurements, FROG for pulse shape studies.

  11. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  12. Observations of large scale steady magnetic fields in the nightside Venus ionosphere and near wake

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Russell, C. T.; Slavin, J. A.; Mihalov, J. D.

    1981-01-01

    Based on an analysis of a large sample of Pioneer Venus Orbiter magnetometer data, characteristics of the magnetic fields near nightside periapsis are discussed. The observations generally indicate a weak average field of less than 10 gammas between 200 km and the periapsis altitude of 150 km, except when (1) the local solar wind dynamic pressure is high or (2) the spacecraft is in a 70 deg wide solar zenith angle range, which includes the midnight meridian and is centered west of it at 1 hr local time. The presence of radial field of alternating sign at low altitudes and in the nightside ionosphere suggests that the antiparallel magnetotail fields can terminate very close to the planet.

  13. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  14. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and vortex dynamics, instabilities in trailing vortices and wakes, simulation and measurements of wakes, analytical approaches for modeling wakes, wake interaction and other wind farm investigations. Many people have been involved in producing the 2015 Wake Conference proceedings. The work by the more than 60 reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of the section editors: Christian Masson, ÉTS, Fernando Porté-Agel, EPFL, Gerard Schepers, ECN Wind Energy, Gijs Van Kuik, Delft University, Gunner Larsen, DTU Wind Energy, Jakob Mann, DTU Wind Energy, Javier Sanz Rodrigo, CENER, Johan Meyers, KU Leuven, Rebecca Barthelmie, Cornell University, Sandrine Aubrun-Sanches, Université d'Orléans and Thomas Leweke, IRPHE-CNRS. We are also immensely indebted to the very responsive support from the editorial team at IOP Publishing, especially Sarah Toms, during the review process of these proceedings. Visby, Sweden, June 2015 Andrew Barney, Jens Nørkær Sørensen and Stefan Ivanell Uppsala University - Campus Gotland

  15. 3D-CFD Investigation of Contrails and Volatile Aerosols Produced in the Near-Field of an Aircraft Wake

    NASA Astrophysics Data System (ADS)

    Garnier, F.; Ghedhaifi, W.; Vancassel, X.; Khou, J. C.; Montreuil, E.

    2015-12-01

    configurations are analysed, a two-engine and a four-engine aircraft. The results show the influence on the engine location on the contrail formation in terms of size and distribution of ice particles in the near-field of the aircraft wake. Comparisons with reported observations in situ show a good agreement.

  16. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  17. Theoretical approach of the photoinjector exit aperture influence on the wake field driven by an electron beam accelerated in an RF gun of free-electron laser ``ELSA''

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el; Dolique, J.-M.

    2000-06-01

    The wake field generated in the cylindrical cavity of an RF photoinjector, by a strongly accelerated electron beam, has been analytically calculated (Salah, Dolique, Nucl. Instr. and Meth. A 437 (1999) 27) under the assumption that the perturbation of the field map by the exit hole is negligible as long as the ratio: exit hole radius/cavity radius is lower than approximately 1/3. Shown experimentally in the different context of a long accelerating structure formed by a sequence of bored pill-box cavity (Figuera et al., Phys. Rev. Lett. 60 (1988) 2144; Kim et al., J. Appl. Phys. 68 (1990) 4942), this often-quoted result must be checked for the wake field map excited in a photo injector cavity. Further, in the latter case, the empirical rule in question can be broken more easily because, due to causality, the cavity radius to be considered is not the physical radius but that of the part of the anode wall around the exit hole reached by the beam electromagnetic influence. We present an analytical treatment of the wake field driven in a photoinjector by the accelerated electron beam which takes this hole effect into account, whatever the hole radius may be.

  18. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields.

    PubMed

    Kyselková, Martina; Almario, Juliana; Kopecký, Jan; Ságová-Marečková, Markéta; Haurat, Jacqueline; Muller, Daniel; Grundmann, Geneviève L; Moënne-Loccoz, Yvan

    2014-08-01

    Very few soil quality indicators include disease-suppressiveness criteria. We assessed whether 64 16S rRNA microarray probes whose signals correlated with tobacco black root rot suppressiveness in greenhouse analysis could also discriminate suppressive from conducive soils under field conditions. Rhizobacterial communities of tobacco and wheat sampled in 2 years from four farmers' fields of contrasted suppressiveness status were compared. The 64 previously identified indicator probes correctly classified 72% of 29 field samples, with nine probes for Azospirillum, Gluconacetobacter, Sphingomonadaceae, Planctomycetes, Mycoplasma, Lactobacillus crispatus and Thermodesulforhabdus providing the best prediction. The whole probe set (1033 probes) revealed strong effects of plant, field location and year on rhizobacterial community composition, and a smaller (7% variance) but significant effect of soil suppressiveness status. Seventeen additional probes correlating with suppressiveness status in the field (noticeably for Agrobacterium, Methylobacterium, Ochrobactrum) were selected, and combined with the nine others, they improved correct sample classification from 72% to 79% (100% tobacco and 63% wheat samples). Pseudomonas probes were not informative in the field, even those targeting biocontrol pseudomonads producing 2,4-diacetylphloroglucinol, nor was quantitative polymerase chain reaction for 2,4-diacetylphloroglucinol-synthesis gene phlD. This study shows that a subset of 16S rRNA probes targeting diverse rhizobacteria can be useful as suppressiveness indicators under field conditions. PMID:24992533

  19. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. PMID:26825702

  20. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    SciTech Connect

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; van Tilborg, J.; Leemans, W.P.

    2003-05-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively.

  1. Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration

    SciTech Connect

    Cho, Myung-Hoon; Kim, Young-Kuk; Hur, Min Sup

    2013-09-15

    We present electron trapping in an ellipsoidal bubble which is not well explained by the spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of the laser pulse is large compared to the plasma wavelength. First, we introduce the relation between the bubble size and the field slope inside the bubble in longitudinal and transverse directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the electron trapping condition by numerical integration of the equations of motion. We found that the ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical bubble model. The trapping condition is compared with three-dimensional particle-in-cell simulations and the electron trajectory in test potential simulations.

  2. Overview of helicopter wake and airloads technology

    NASA Technical Reports Server (NTRS)

    Landgrebe, A. J.

    1985-01-01

    An overview of helicopter aerodynamics technology is presented with emphasis on rotor wake and airloads methodology developed at the United Technologies Research Center (UTRC). The evolution over the past twenty years of various levels of computerized wake geometry models at UTRC, such as undistorted wake, prescribed empirical wake, predicted distorted wake, and generalized wake models for the hover and forward flight regimes, is reviewed. The requirement for accurate wake modeling for flow field and airload prediction is demonstrated by comparisons of theoretical and experimental results. These results include blade pressure distributions predicted from a recently developed procedure for including the rotor wake influence in a full potential flow analysis. Predictions of the interactional aerodynamics of various helicopter components (rotor, fuselage, and tail) are also presented. It is concluded that, with advanced computers and the rapidly progressing computational aerodynamics technology, significant progress toward reliable prediction of helicopter airloads is forseeable in the near future.

  3. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  4. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    SciTech Connect

    Zhang, Xue Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid the multipactor phenomenon on cylinder windows is discussed.

  5. Self-modulation of a long externally injected relativistic charged-particle beam in a laser wake field acceleration scheme. A preliminary quantum-like investigation

    NASA Astrophysics Data System (ADS)

    Fedele, Renato; Jovanović, Dusan; Tanjia, Fatema; De Nicola, Sergio

    2014-03-01

    Recent investigations indicate that sufficiently long beams of charged particles, travelling in a plasma, experience the phenomenon of self-modulation. The self-modulation is driven by the plasma wake field excitation due to the beam itself, and it may become unstable under certain conditions. A preliminary theoretical investigation of the self-modulation of a relativistic charged-particle beam in overdense plasma in the presence of a preformed plasma wave is carried out, within the quantum-like description of charged particle beams provided by the Thermal Wave Model. A simple physical model for the self-modulation is put forward, described by a nonlinear Schrödinger equation coupled with the Poisson-like equation for the plasma wake potential (so-called Fedele-Shukla equations). The physical mechanism is based on the interplay of three concomitant effects, the radial thermal dispersion (associated with the emittance ε), the radial ponderomotive effects of a preexisting plasma wave (which provides the guidance for the beam), and the self-interaction of the plasma wake field generated by the beam itself.

  6. Background Suppression in Near-field Optical Imaging

    PubMed Central

    Höppener, Christiane; Beams, Ryan; Novotny, Lukas

    2010-01-01

    In several recent studies, antenna-based optical microscopy (e.g. TENOM) has demonstrated its potential to resolve features as small as 10nm. Most studies are concerned with well-separated features on flat surfaces and there are only few studies that deal with samples of high feature density or even three-dimesional objects. The reason is that the external laser irradiation of the optical antenna (e.g. tip or particle) also directly irradiates the sample and therefore gives rise to a background. Here we introduce an efficient background suppression scheme that makes use of feedback modulation. The method is widely applicable and not restricted to cantilever-based scanning schemes. We apply this technique to both dense samples of dye molecules and ion channel proteins in plasma membranes and demonstrate effective background suppression and strongly improved sensitivity. The feedback modulation scheme is expected to find application for biological studies in liquid environments and for investigations of subsurface features in material science. PMID:19170554

  7. Uniform distortion of a heated turbulent wake

    NASA Technical Reports Server (NTRS)

    Kawall, J. G.; Keffer, J. F.

    1978-01-01

    Digital sampling and processing techniques are used to assess the effect of a uniform and constant strain rate on a slightly heated cylinder-generated wake which had undergone a prestrain development distance of 115 cylinder diameters. The wake is generated by a circular heating element (6.6-mm-diam cylinder) mounted horizontally in the center of a low-speed open return wind tunnel. The strain field is produced by a distortion duct oriented in such a way as to accentuate any periodic interface structure which might be present in the undistorted wake. Interface statistics are presented for both the undistorted (near) wake and the uniformly strained wake, and conditional (point) averages of the streamwise velocity and passive temperature fields of the strained wake. The results suggest that the interface thickness is fairly uniform along the back but decreases along the front with distance from the wake center.

  8. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  9. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    SciTech Connect

    Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi; Mizuta, Yoshio; Uesaka, Mitsuru; Kodama, Ryosuke

    2010-03-22

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  10. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  11. Suppression of the Richtmyer-Meshkov Instability in the Presence of a Magnetic Field

    SciTech Connect

    Ravi Samtaney

    2003-03-21

    We present numerical evidence from two dimensional simulations that the growth of the Richtmyer-Meshkov instability is suppressed in the presence of a magnetic field. A bifurcation occurs during the refraction of the incident shock on the density interface which transports baroclinically generated vorticity away from the interface to a pair of slow or intermediate magnetosonic shocks. Consequently, the density interface is devoid of vorticity and its growth and associated mixing is completely suppressed.

  12. Magnetic Field Suppression of Flow in Semiconductor Melt

    NASA Technical Reports Server (NTRS)

    Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.

    2000-01-01

    One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.

  13. Time-dependent Suppression of Oscillatory Power in Evolving Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krishna Prasad, S.; Jess, D. B.; Jain, R.; Keys, P. H.

    2016-05-01

    Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and Hα filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

  14. Anisotropy in turbulence profiles of stratified wakes

    NASA Astrophysics Data System (ADS)

    Spedding, G. R.

    2001-08-01

    At sufficiently high values of the Reynolds number (Re⩾4.5×103) and internal Froude number (F⩾4), initially turbulent bluff body wakes evolve in the presence of a stable background density gradient with wake-averaged mean and turbulence length and velocity scales that are independent of Re and F for at least two orders of magnitude extension in both parameters. The way in which the initially three-dimensional motions transition to the characteristic (and Re- and F-independent) late wakes (where vertical velocities, w≪u,v) is both of great practical interest, and complex, hence somewhat unclear. Here, digital particle imaging velocimetry type measurements on towed-sphere wakes are described, so that the development of anisotropy can be measured by the time development of turbulence profiles in horizontal and vertical centerplanes. The observed anisotropies can be associated with energy transfer to internal wave modes, and suppression of other vertical displacements, that contrasts with sphere wakes at similar Re in a homogeneous fluid. Maximum Reynolds stresses occur at the boundary of a sinuous undulation of the wake, which increases in amplitude up to Nt≈60 (N is the buoyancy frequency that characterizes the strength of the stratification). Although an intrinsic wake profile instability cannot be excluded, the observed wake element spacings can be accounted for by known spiral and Kelvin-Helmholtz instabilities in the near wake.

  15. Characterization of cavity wakes

    NASA Astrophysics Data System (ADS)

    Kidd, James A.

    Scope and Method of Study. This research focused on flow over deep cavities at subsonic speeds with emphasis on the wake downstream of the cavity. Cavity wake behaviors have not been studied in detail and are a major concern for air vehicles with cavities and in particular for optical sensor systems installed in cavities. Other key behaviors for sensor survival and performance are cavity resonance and turbulence scales in the shear layer. A wind tunnel test apparatus was developed to explore cavity and wake characteristics. It consisted of a test section insert for the OSU Indraft Wind Tunnel with an additional contraction cone for significantly increased speed. The test section included a variable depth cavity in a boundary layer splitter plate/fairing assembly, a Y-Z traverse and pitot rake with in-situ pressure transducers for high frequency response. Flows were measured over clean cavities with length to depth (L/D) ratios of 4 to 1/2 and on cavities with a porous fence for resonance suppression. Measurements were taken in streamwise and cross-stream sections to three cavity lengths downstream of the cavity trailing edge. Flow visualization using laser sheet and smoke injection was also used. Findings and Conclusions. The high speed insert demonstrated a significant new capability for the OSU wind tunnel, reaching speeds of 0.35 Mach (390 feet/second) in a 14"x14" test section. Inlet room flow was found to be quite unsteady and recommendations are made for improved flow and quantitative visualization. Key findings for cavity wake flow include its highly three dimensional nature with asymmetric peaks in cross section with boundary layer thicknesses and integral length scales several times that of a normal flat plate turbulent boundary layer (TBL). Turbulent intensities (TI) of 35% to 55% of freestream speeds were measured for the clean configuration. Fence configuration TI's were 20% to 35% of free stream and, in both configurations, TI's decayed to

  16. Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field

    NASA Astrophysics Data System (ADS)

    Fang, Jiancheng; Chen, Yao; Zou, Sheng; Liu, Xuejing; Hu, Zhaohui; Quan, Wei; Yuan, Heng; Ding, Ming

    2016-03-01

    In a K-Rb-21Ne co-magnetometer, the Rb electron magnetic field which is experienced by the nuclear spin is about 100 times larger than that of the K in a K-3He co-magnetometer. The large electron magnetic field which is neglected in the K-3He co-magnetometer coupled Bloch equations model is considered here in the K-Rb-21Ne co-magnetometer to study the low frequency magnetic field suppression effect. Theoretical analysis and experimental results shows that in the K-Rb-21Ne spin co-magnetometer, not only the nuclear spin but also the large electron spin magnetic field compensate the external magnetic field noise. By comparison, only the 3He nuclear spins mainly compensate the external magnetic field noise in a K-3He co-magnetometer. With this study, in addition to just increasing the magnetic field of the nuclear spins, we can suppress the magnetic field noise by increasing the density of the electron spin. We also studied how the magnetic field suppression effect relates to the scale factor of the K-Rb-21Ne co-magnetometer and we compared the scale factor with that of the K-3He co-magnetometer. Lastly, we show the sensitivity of our co-magnetometer. The magnetic field noise, the air density fluctuation noise and pumping power optimization are studied to improve the sensitivity of the co-magnetometer.

  17. A soft X-ray free electron laser (FEL) using a two-beam elliptical pill-box wake-field cavity

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Chen, K. W.

    1988-01-01

    Stimulated bremsstrahlung in an undulating electric field in the lasing beam direction (electric wiggler) was shown to be possible from the quantum-mechanical viewpoint. Herein, this possibility is scrutinized from the viewpoint of classical electrodynamics. It is found that if stimulated bremsstrahlung in a transverse undulating magnetic field (magnetic wiggler) occurs, stimulated bremsstrahlung in the electric wiggler must also occur. It is further shown that a free electron laser (FEL) using a magnetic wiggler to provide a catalyzer field for stimulated bremsstrahlung cannot serve as a practical FEL operating in the soft X-ray region from both theoretical and experimental viewpoints. On the other hand, it is demonstrated that the FEL using a traveling wake field in a two-beam elliptical pill-box cavity is well suited as a source of coherent radiation in the soft X-ray region.

  18. Verification and validation studies of the time-averaged velocity field in the very near-wake of a finite elliptical cylinder

    NASA Astrophysics Data System (ADS)

    Flynn, Michael R.; Eisner, Alfred D.

    2004-04-01

    This paper presents verification and validation results for the time-averaged, three-dimensional velocity field immediately downstream of a finite elliptic cylinder at a Reynolds number of 1.35 × 10 4. Numerical simulations were performed with the finite element package, Fidap, using the steady state, standard k-epsilon model. The ratio of the cylinder height to the major axis of the elliptical cross section is 5.0; the aspect ratio of the cross section is 0.5625. This particular geometry is selected as a crude surrogate for the human form in consideration of further applied occupational and environmental health studies. Predictions of the velocity and turbulence kinetic energy fields in the very near-wake are compared to measurements taken in a wind tunnel using laser Doppler anemometry. Results show that at all locations where a reliable grid convergence index can be calculated there is not a demonstrable difference between simulated and measured values. The overall topology of the time-averaged flow field is reasonably well predicted, although the simulated near-wake is narrower than the measured one.

  19. Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon.

    PubMed

    Sigillito, A J; Tyryshkin, A M; Lyon, S A

    2015-05-29

    We report the use of novel, capacitively terminated coplanar waveguide resonators to measure the quadratic Stark shift of phosphorus donor qubits in Si. We confirm that valley repopulation leads to an anisotropic spin-orbit Stark shift depending on electric and magnetic field orientations relative to the Si crystal. By measuring the linear Stark effect, we estimate the effective electric field due to strain in our samples. We show that in the presence of this strain, electric-field sources of decoherence can be non-negligible. Using our measured values for the Stark shift, we predict magnetic fields for which the spin-orbit Stark effect cancels the hyperfine Stark effect, suppressing decoherence from electric-field noise. We discuss the limitations of these noise-suppression points due to random distributions of strain and propose a method for overcoming them. PMID:26066457

  20. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  1. Open-loop and closed-loop excitation of the wake behind a circular cylinder

    NASA Astrophysics Data System (ADS)

    Williams, David; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2006-11-01

    Both open loop and closed loop control were used to modify the flow around a circular cylinder at Re = 20,000. Independent plasma actuators were installed on the sides of the cylinder at +/- 90^o from the forward stagnation line. The actuators could be excited in-phase or 180^o out of phase with one another. In the case of open-loop forcing, in-phase excitation at twice the von Karman vortex shedding frequency produced large changes in the wake structure, similar to the experiments done by Williams, Mansy & Amato (JFM, 1992.) Negligible changes in wake structure occurred when the out-of-phase actuation was used, although the lock-on phenomenon was observed, suggesting that the wake structure modification resulting from the interaction between the forcing field and near wake is independent of Reynolds number. Closed-loop excitation using a proportional-derivative controller was done using a hot-film probe positioned at x/D=1.5, y/D = 1.5. The amplitude of the wake oscillation was shown to be sensitive to both the gain and phase of the controller. The amplitude of oscillations at a fixed controller gain are enhanced or suppressed relative to the non-forced level, depending on the controller phase. The vortex shedding frequency is changed when the PD controller is in a region of suppression. The expert assistance of SSgt. Mary S. Church is gratefully acknowledged.

  2. Caught in the act: a field gone suppressive for common scab?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato varieties are evaluated for resistance to common scab (CS) in fields with high CS disease pressure. Occasionally, disease pressure naturally declines in a CS nursery; this is termed disease suppression. We have data on severity of potato CS in a scab nursery in Maine for 6 years between 2001...

  3. Studies of aircraft wake chemistry and dispersion

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Farlow, N. H.; Anderson, L. B.

    1974-01-01

    Use of aerospace technology to study aircraft wakes is reviewed. It is shown how aerospace vehicles can be used to provide data for increased understanding of the atmosphere and of aircraft exhaust trails where knowledge is inadequate to evaluate fully the potential impact of the engine emissions. Models of aircraft near-field exhaust wakes are characterized by jet, vortex, and dispersion regimes. Wake growth in the jet regime is self-determined and rapid, whereas further spreading is inhibited in the vortex regime because of circulating vortex motion. Wake diffusion in the dispersion regime is initially influenced by aircraft induced turbulence but is dominated later by small-scale atmospheric turbulence. Computed fluid mechanical results show the importance of effects such as wake buoyancy, wind shear, turbulence, and traffic corridor exhaust buildup on dispersion of the wake. In the jet regime the exhaust characteristics and thermochemistry serve to illustrate initial chemical changes involving potential pollutant species.

  4. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    SciTech Connect

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  5. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  6. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    PubMed Central

    Bojak, Ingo; Stoyanov, Zhivko V.; Liley, David T. J.

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex. PMID:25767438

  7. Suppression of correlated electron escape in double ionization in strong laser fields

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub

    2008-01-01

    The effect of the Pauli exclusion principle on double ionization of He atoms by strong, linearly polarized laser pulses is analyzed. We show that correlated electron escape, with electron momenta symmetric with respect to the field polarization axis, is suppressed if atoms are initially prepared in the metastable state S3 . The effect is a consequence of selection rules for the transition to the appropriate outgoing two-electron states. We illustrate the suppression in numerical calculations of electron and ion momentum distributions within a reduced dimensionality model.

  8. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  9. Coalescing Wind Turbine Wakes

    DOE PAGESBeta

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  10. Coalescing Wind Turbine Wakes

    SciTech Connect

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  11. Coalescing Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  12. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young. PMID:25327247

  13. Electric-field-controlled suppression of Walker breakdown and chirality switching in magnetic domain wall motion

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bo; Li, You-Quan

    2016-07-01

    We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.

  14. Stably stratified building wakes

    SciTech Connect

    Kothari, K.M.; Peterka, J.A.; Meroney, R.N.

    1980-01-01

    The velocity and temperature wake behind an isolated building placed in a stably stratified turbulent boundary layer has been investigated utilizing wind tunnel tests and mathematical analysis. The mean velocity and mean temperature decrease but turbulence intensity and temperature fluctuation intensity increase as a result of the momentum wake. However, the vortex wake increases mean velocity and mean temperature, and decreases turbulence intensity and temperature fluctuation intensity along the centerline of the wake.

  15. Dynamics of wakes downstream of wind turbine towers

    NASA Technical Reports Server (NTRS)

    Snyder, M. H.; Wentz, W. H., Jr.

    1981-01-01

    The near field wakes downstream of circular cylinders and of 12 sided cylinders were surveyed in a wind tunnel. Local velocity and velocity deficit diagrams are presented. The variation of turbulence in the wake was surveyed and the frequency of the periodic component of wake motion was determined. Differences between wakes of circular cylinders and of 12 sided cylinders are discussed. Also effects of strakes, orientation of the 12 sided cylinders, and rounding of the corners are noted.

  16. Ionization suppression of Cl{sub 2} molecules in intense laser fields

    SciTech Connect

    Benis, E.P.; Xia, J.F.; Tong, X.M.; Faheem, M.; Zamkov, M.; Shan, B.; Richard, P.; Chang, Z.

    2004-08-01

    The strong field ionization of Cl{sub 2} molecules is investigated by using an ultrashort pulse Ti:sapphire laser. A spatial imaging technique is used in such measurements to reduce the effect of spatial integration. Cl{sub 2} shows strong ionization suppression as do other diatomic molecules having valence orbitals with antibonding symmetry (O{sub 2},S{sub 2}) when compared with the field ionization of atoms with nearly identical ionization potential. A more general molecular tunneling ionization model is proposed, and the calculations are in reasonable agreement with the measurements. Our results support that antibonding leads to ionization suppression, a trend that only F{sub 2} goes against and that needs to be further investigated.

  17. Suppressing Turbulence and Enhancing the Liquid Suspension Flow in Pipeline with Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Gu, G. Q.; Tao, R.

    2014-03-01

    Flows through pipes are the most common and important transportation of fluids. To enhance the flow output along pipeline, it requires reducing the fluid viscosity and suppressing turbulence simultaneously and effectively. Unfortunately, no method is currently available to accomplish both goals simultaneously. Fore example, heating reduces the fluid viscosity, but makes turbulence worse. Here we show that the symmetry breaking physics provides an efficient solution for this issue. When a strong electromagnetic field is applied in the flow direction in a small section of pipeline, the field polarizes and aggregates the particles suspended inside the base liquid into short chains along the flow direction. Such aggregation breaks the symmetry and makes the fluid viscosity anisotropic. Along the flow direction, the viscosity is significantly reduced; in the directions perpendicular to the flow, the viscosity is substantially increased. The turbulence is thus suppressed as all rotating motions and vertexes are suppressed. Only the flow along the pipeline is enhanced and the outflow is improved. The method is extremely energy efficient since it only aggregates the particles and does not heat the suspensions. Recent field tests on pipeline fully support the theoretical prediction.

  18. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  19. Differential study on molecular suppressed ionization in intense linearly and circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Deng, Yongkai; Liu, Yunquan; Liu, Xianrong; Liu, Hong; Yang, Yudong; Wu, Chengyin; Gong, Qihuang

    2011-12-01

    We present a differential study on above-threshold ionization of the O2 (N2) molecule as well as the companion atom Xe (Ar) (with close ionization potential) produced by linearly and circularly polarized laser fields (25 fs, 795 nm). The photoelectron angular distributions of the companion target are similar at the same laser condition. In both linearly and circularly polarized fields, we observe that the photoelectron yields of O2 are suppressed in the entire energy spectral range as compared with Xe with fully differential measurements, but not for the N2-Ar pair. This is different from the prediction of photoelectron energy spectra by the model including the interference terms [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.85.2280 85, 2280 (2000)], from which the low-energy photoelectrons of O2 were expected to be strongly suppressed in both linearly and circularly polarized laser fields. Resorting to the basic strong-field ionization picture, we believe that the lower orbital-dependent multiphoton excitation or tunneling possibility of O2 as compared with Xe is responsible for this effect. High-resolution fully differential data pose a stringent test on the current strong-field calculations on molecules.

  20. Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.

    2016-02-01

    We obtain the nonequilibrium effective action of an inflatonlike scalar field—the system—by tracing over sub-Hubble degrees of freedom of "environmental" light scalar fields. The effective action is stochastic leading to effective Langevin equations of motion for the fluctuations of the inflatonlike field, with self-energy corrections and stochastic noise correlators that obey a de Sitter space-time analog of a fluctuation dissipation relation. We solve the Langevin equation implementing a dynamical renormalization group resummation of the leading secular terms and obtain the corrections to the power spectrum of super-Hubble fluctuations of the inflaton field, P (k ;η )=P0(k )e-γ (k ;η ) where P0(k ) is the nearly scale invariant power spectrum in absence of coupling. γ (k ;η )>0 describes the suppression of the power spectrum; it features Sudakov-type double logarithms and entails violations of scale invariance. We also obtain the effective action for the case of a heavy scalar field of mass M ≫H ; this case yields a local "Fermi" limit with a very weak self-interaction of the inflatonlike field and dissipative terms that are suppressed by powers of H /M . We conjecture on the possibility that the large scale anomalies in the cosmic microwave background may originate in dissipative processes from inflaton coupling to sub-Hubble degrees of freedom.

  1. Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields

    NASA Astrophysics Data System (ADS)

    Rios, Raymond

    2009-05-01

    The depolarization of Ultracold Neutrons(UCN) was measured within 1-m long, 2 3/4" diameter electropolished copper, diamondlike carbon-coated copper, and stainless steel guide tubes as a function of magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnetic field and a 3/8" copper aperture. A series of Helmholtz coils produced a magnetic field over the length of the test guide of either 10 or 250 Gauss. The surface depolarization was observed to be suppressed at the higher holding field on the measured copper guides. These measurements will aid in the determination of the upper limit of depolarization of UCN in the UCN beta asymmetry measurement at LANL (UCNA) and in understanding the mechanisms for depolarization in non-magnetic guides.

  2. Suppressing the Rayleigh-Plateau Instability in Field-Directed Colloidal Assembly.

    PubMed

    Bauer, Jonathan L; Kurian, Martin J; Stauffer, Johnathan; Furst, Eric M

    2016-07-01

    Suspensions of superparamagnetic colloids that equilibrate in a toggled magnetic field undergo a Rayleigh-Plateau instability with a characteristic wavelength λ = 600 μm for the toggle frequency ν = 0.66 Hz. The instability is suppressed when the chamber length L in the field direction is less than 2λ. The final size of the magnetic domains perpendicular to the field, D, follows a power law relation of D ∼ L(0.71±0.07). These results demonstrate the structural differences of field-directed suspensions when confined to lengths scale set by the phase separation process and can potentially be used to create self-assembled colloidal crystals with well-defined size and shape. PMID:27254157

  3. A sidelobe suppressing near-field beamforming approach for ultrasound array imaging.

    PubMed

    He, Zhengyao; Zheng, Fan; Ma, Yuanliang; Kim, Hyung Ham; Zhou, Qifa; Shung, K Kirk

    2015-05-01

    A method is proposed to suppress sidelobe level for near-field beamforming in ultrasound array imaging. An optimization problem is established, and the second-order cone algorithm is used to solve the problem to obtain the weight vector based on the near-field response vector of a transducer array. The weight vector calculation results show that the proposed method can be used to suppress the sidelobe level of the near-field beam pattern of a transducer array. Ultrasound images following the application of weight vector to the array of a wire phantom are obtained by simulation with the Field II program, and the images of a wire phantom and anechoic sphere phantom are obtained experimentally with a 64-element 26 MHz linear phased array. The experimental and simulation results agree well and show that the proposed method can achieve a much lower sidelobe level than the conventional delay and sum beamforming method. The wire phantom image is demonstrated to focus much better and the contrast of the anechoic sphere phantom image improved by applying the proposed beamforming method. PMID:25994706

  4. Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field

    NASA Astrophysics Data System (ADS)

    Tamayama, Yasuhiro; Hamada, Keisuke; Yasui, Kanji

    2015-09-01

    We realize a suppression of an electromagnetically-induced-transparency-like (EIT-like) transmission in a metasurface induced by a local electric field that is strongly enhanced based on two approaches: squeezing of electromagnetic energy in resonant metasurfaces and enhancement of electromagnetic energy density associated with a low group velocity. The EIT-like metasurface consists of a pair of radiatively coupled cut-wire resonators, and it can effect both field-enhancement approaches simultaneously. The strongly enhanced local electric field generates an air discharge plasma at either of the gaps of the cut-wire resonators, which causes the EIT-like metasurface to change into two kinds of Lorentz-type metasurfaces.

  5. Visualization on fish's wake

    NASA Astrophysics Data System (ADS)

    Li, Xuemin; Lu, Xiyun; Yin, Xiezhen

    2002-05-01

    In this paper an experiment on wake of Goldfish swimming unrestricted was conducted in a water tunnel. Method of color liquid was used to visualize the wake. Results show that there is reverse Karman vortex street in symmetrical plane of the wake and the Strouhal frequency of the fish is in the range 0.25-0.35. A 3D vortex ring chain model was presented.

  6. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics. PMID:24690848

  7. Suppression of electron scattering by the longitudinal components of tightly focused laser fields

    SciTech Connect

    Masuda, S.; Kando, M.; Kotaki, H.; Nakajima, K.

    2005-01-01

    Relativistic electron scattering by a high intensity linearly polarized Gaussian (TEM{sub 00} mode) laser beam is studied in detail using three-dimensional numerical simulations. It is observed that the longitudinal components of the electromagnetic field in a tight focus effectively suppress transverse electron scattering in the relativistic laser ponderomotive acceleration scheme. The simulations show that the relativistic ponderomotive acceleration can produce high quality electron bunches characterized by an extremely short bunch length of subfemtosecond, energy spread less than 1%, and normalized transverse emittance less than 10{pi} mm mrad.

  8. Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields.

    PubMed

    Rubin, J; McLeod, K J; Titus, L; Nanes, M S; Catherwood, B D; Rubin, C T

    1996-01-01

    With use of a solenoid to generate uniform time-varying electric fields, the effect of extremely low frequency electric fields on osteoclast-like cell formation stimulated by 1,25(OH)2D3 was studied in primary murine marrow culture. Recruitment of osteoclast-like cells was assessed by counting multinuclear, tartrate-resistant acid phosphatase positive cells on day 8 of culture. A solenoid was used to impose uniform time-varying electric fields on cells; sham exposures were performed with an identical solenoid with a null net electric field. During the experiments, both solenoids heated interiorly to approximately 1.5 degrees C above ambient incubator temperature. As a result of the heating, cultures in the sham solenoid formed more osteoclast-like cells than those on the incubator shelf (132 +/- 12%). For this reason, cells exposed to the sham solenoid were used for comparison with cultures exposed to the active coil. Marrow cells were plated at 1.4 x 10(6)/cm2 in square chamber dishes and exposed to 60 Hz electric fields at 9.6 muV/cm from days 1 to 8. Field exposure inhibited osteoclast-like cell recruitment by 17 +/- 3% as compared with sham exposure (p < 0.0001). Several variables, including initial cell plating density, addition of prostaglandin E2 to enhance osteoclast-like cell recruitment, and field parameters, were also assessed. In this secondary series, extremely low frequency fields inhibited osteoclast-like cell formation by 24 +/- 4% (p < 0.0001), with their inhibitory effect consistent throughout all variations in protocol. These experiments demonstrate that extremely low intensity, low frequency sinusoidal electric fields suppress the formation of osteoclast-like cells in marrow culture. The in vitro results support in vivo findings that demonstrate that electric fields inhibit the onset of osteopenia and the progression of osteonecrosis; this suggests that extremely low frequency fields may inhibit osteoclast recruitment in vivo. PMID:8618169

  9. Nonlinear Kinetic Instabilities in Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2015-12-01

    Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.

  10. Cavities of Weak Magnetic Field Strength in the Wake of FTEs: Results from Global Magnetospheric MHD Simulations

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Sibeck, D. G.; Hesse, M.; Wang, Y.; Rastaetter, L.; Toth, G.; Ridley, A.

    2009-01-01

    We use the global magnetohydrodynamic (MHD) code BATS-R-US to model multipoint observations of Flux Transfer Event (FTE) signatures. Simulations with high spatial and temporal resolution predict that cavities of weak magnetic field strength protruding into the magnetosphere trail FTEs. These predictions are consistent with recently reported multi-point Cluster observations of traveling magnetopause erosion regions (TMERs).

  11. Laser wake-field acceleration in pre-formed plasma channel created by pre-pulse pedestal of terawatt laser pulse

    SciTech Connect

    Sanyasi Rao, Bobbili; Chakera, Juzer Ali; Naik, Prasad Anant; Kumar, Mukund; Gupta, Parshotam Dass

    2011-09-15

    The role of nanosecond duration pre-pulse pedestal (Amplified Spontaneous Emission (ASE) pre-pulse) in the propagation of 45 fs, 4 TW Ti:Sapphire laser pulse through a helium gas jet target has been investigated. We observed that the pre-pulse pedestal of about 1 ns duration and intensity 3 x 10{sup 12} W/cm{sup 2} creates pre-formed plasma with optical guiding channel like structure in the gas-jet at density around 3 x 10{sup 19} cm{sup -3}. Guiding of the 45 fs laser pulse (I{sub L} = 3 x 10{sup 18} W/cm{sup 2}) in the pre-formed plasma channel, over a distance much longer than the Rayleigh length was also observed. The guiding of the laser pulse resulted in the generation of high energy electron beam by laser wake-field acceleration of self-injected electrons. The accelerated electron beam was quasi-monoenergetic with peak energy up to 50 MeV, low divergence in the range of 3-6 mrad, and bunch charge up to 100 pC.

  12. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  13. Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation

    NASA Astrophysics Data System (ADS)

    Price, Layne C.

    2015-11-01

    We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.

  14. Contour detection based on the contextual modulation of non-classical receptive field facilitation and suppression

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Guo, Zhaoli; Cai, Chao

    2013-10-01

    Outside the classical receptive field (CRF), there exists a broad non-classical receptive field (NCRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. In this paper, a contour detection method inspired by the visual mechanism in the primary visual cortex (V1) is proposed. The method is divided in three steps. Firstly, the response of every single visual neuron in V1 is computed by local energy. Secondly, the facilitation and suppression (the contextual influence) on a neuron through horizontal interactions are obtained by constructing a two neighbor modulating functions. Finally, the total output response of one neuron to complex visual stimuli is acquired by combing the influence of local visual context on the neuron and energy response by itself. We tested it on natural image and encouraging results were acquired.

  15. Secondary energy growth and turbulence suppression in conducting channel flow with streamwise magnetic field

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Krasnov, Dmitry; Boeck, Thomas

    2012-07-01

    The effects of a streamwise magnetic field on conducting channel flow are studied by analyzing secondary linear perturbations evolving on streamwise streaks and by direct numerical simulations of relaminarization. By means of an optimal perturbation approach, magnetic damping is found to increase the streamwise wavelength of the most amplified secondary perturbations and to reduce their amplification level. Complete suppression of secondary instability is observed at a critical magnetic interaction parameter that depends on the streak amplitude and on the Reynolds number when the transient evolution of the streaky basic flow is taken into account. Relaminarization in the direct numerical simulation occurs at lower values of the interaction parameter than the critical values from the stability computations for the streak amplitudes considered. The dependence of these threshold values of the interaction parameters on the Reynolds number is fairly similar between simulations and stability analysis. Relaminarization thresholds from the simulations are also in good agreement with experiments on pipe flow with streamwise magnetic field.

  16. On the control and suppression of the Rayleigh-Taylor instability using electric fields

    NASA Astrophysics Data System (ADS)

    Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.

    2014-02-01

    It is shown theoretically that an electric field can be used to control and suppress the classical Rayleigh-Taylor instability found in stratified flows when a heavy fluid lies above lighter fluid. Dielectric fluids of arbitrary viscosities and densities are considered and a theory is presented to show that a horizontal electric field (acting in the plane of the undisturbed liquid-liquid surface), causes growth rates and critical stability wavenumbers to be reduced thus shifting the instability to longer wavelengths. This facilitates complete stabilization in a given finite domain above a critical value of the electric field strength. Direct numerical simulations based on the Navier-Stokes equations coupled to the electrostatic fields are carried out and the linear theory is used to critically evaluate the codes before computing into the fully nonlinear stage. Excellent agreement is found between theory and simulations, both in unstable cases that compare growth rates and in stable cases that compare frequencies of oscillation and damping rates. Computations in the fully nonlinear regime supporting finger formation and roll-up show that a weak electric field slows down finger growth and that there exists a critical value of the field strength, for a given system, above which complete stabilization can take place. The effectiveness of the stabilization is lost if the initial amplitude is large enough or if the field is switched on too late. We also present a numerical experiment that utilizes a simple on-off protocol for the electric field to produce sustained time periodic interfacial oscillations. It is suggested that such phenomena can be useful in inducing mixing. A physical centimeter-sized model consisting of stratified water and olive oil layers is shown to be within the realm of the stabilization mechanism for field strengths that are approximately 2 × 104 V/m.

  17. Status of wake and array loss research

    SciTech Connect

    Elliott, D.L.

    1991-09-01

    In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

  18. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  19. LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

    SciTech Connect

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R. E-mail: jstone@astro.princeton.edu

    2013-05-10

    Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.

  20. Wake dynamics behind a harbor seal vibrissa: a comparative view by PIV measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Wang, Shaofei; Chen, Hanping

    2014-11-01

    A comprehensive study was performed of wake dynamics behind a scaled-up model of harbor seal vibrissa, and the baseline configurations of circular cylinder, wavy cylinder and the elliptical cylinder were provided for comparison. A low-speed water channel and wind tunnel were employed for the model tests at the Reynolds number 102 ~ 104 based on diameter of the cylinder. A load cell and Particle Image Velocimetry were synchronized to measure the fluctuating lift/drag forces and the instantaneous flow field, respectively. By means of the comparative study, the unique three-dimensional wake characteristics in response to contour variations of the harbor seal vibrissa was elucidated through the Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) analyses of the measured flow field, demonstrating the ability of the vibrissa to suppress the vortex-induced vibration.

  1. Local and Far-Field Effects of Commuter Ferry Wake in New York Harbor: Implications for Mitigation

    NASA Astrophysics Data System (ADS)

    Fullerton, B.

    2002-12-01

    Anthropogenic sources of waves in New York Harbor have grown in recent years to the point that they are presently the dominant source of wave energy. Small fast commuter ferries account for the bulk of this growth. Between 1996 and present, fast-ferry traffic across the Hudson has seen an order of magnitude increase in both ferry crossings and ferry routes. Pressure time series recorders were co-located with profiling acoustic Doppler current, turbidity, and conductivity meters, deployed synoptically in strategic harbor locales for seven-day periods in summer and fall of 2002. Analysis of the sea-surface elevation time series revealed a semi-diurnal increase in wave energy coinciding with peak ferry use during morning and evening rush-hours. The measured wave energy levels during rush-hours was well above the wave energy levels measured overnight, when ferries were no longer in use. During rush-hours, the time-series of sea surface elevation appeared as a persistent background of waves with periods between 1.5 and 4.5 seconds containing intermittent, well-defined packets of high amplitude waves which appeared to be coincident with local ferry passage. The temporal pattern of sea-surface elevation throughout the weekday was repeated throughout the workweek. However, during weekends, the magnitude of the background wave energy level was approximately one half the magnitude of the energy level measured during any given workweek day. The amplitude of waves within the intermittent packets remained nearly constant for the entire week. The local, near-field effect of ferry traffic is visible in the sea surface elevation time series as intermittent packets, whereas the far-field effects, integrated harbor-wide, is seen as the background sea-state. The dual nature of the wave energy creates an implication for efforts attempting to mitigate the wave conditions. For conditions when the background sea-state is acceptable, small adjustments to individual ferry tracks and speeds

  2. Study on vibration suppression based on particle damping in centrifugal field of gear transmission

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Li, Jiani; Wang, Sheng; Fang, Xiaomeng

    2016-03-01

    Though particle damping technology has been applied to vibration suppression in steady state, there are few reports about the study of particle dampers in centrifugal fields because of its nonlinear damping performance and complex mechanism. Introducing particle damping technology into gear transmission will effectively reduce the vibration from gear engaging, especially for harsh working conditions, such as high temperature and oil lubrication. In this paper, we have explored the mechanism of gear excitation and determined the relationship between the rotational speed and gear's modal parameters in centrifugal fields. A mechanical model of the particle damper based on the discrete element method (DEM) in centrifugal fields has been established. Furthermore, the DEM model has been verified by comparing simulation data with experimental data. Based on the model, we have discussed the particle damper's energy dissipation mechanism in centrifugal fields, as well as the calculation method of energy dissipation. Moreover, the influence of the particle size on energy dissipation characteristics has been analyzed. The results can provide theoretical guidance for vibration and noise reduction of the gear transmission.

  3. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  4. Trailing edge wake flow characteristics of upper surface blown configurations. [noise generators

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1978-01-01

    Mean and fluctuating flow characteristics in the wake of upper surface blown flap configurations are presented. Relative importance of the longitudinal and the transverse components of the wake flow turbulence for noise generation are evaluated using correlation between the near-field noise and the wake turbulence. Effects of the jet velocity, the initial turbulence in the jet, and the flap deflection angle on noise and wake flow characteristics are studied. The far-field noise data is compared with the existing empirical prediction method. The measured wake flow properties are compared with an analytical model used in the existing USB wake flow noise theory. The detailed wake flow profiles, wake flow turbulence space-time correlations, wake flow turbulence cross-power spectra, and near-field noise third octave band spectra are presented in the appendices.

  5. LCS analysis of a biologically inspired wake

    NASA Astrophysics Data System (ADS)

    Green, Melissa; Smits, Alexander

    2008-11-01

    Particle Image Velocimetry (PIV) was used to investigate the wakes of rigid pitching panels with a trapezoidal panel geometry, chosen to model idealized fish caudal fins. Experiments were performed for Strouhal numbers from 0.23 to 0.65. The three dimensional flow field around the panel is reconstructed by integrating two-dimensional PIV results across the volume surrounding the panel. A Lagrangian coherent structure (LCS) analysis is employed to investigate the formation and evolution of the panel wake. A classic reverse von Kármán vortex street pattern was observed along the mid-span of the near wake, but the complexity and three-dimensionality of the wake increases away from the mid-span as streamwise vortices interact with the swept edges of the panel.

  6. Nonlinear spacing and frequency effects of an oscillating cylinder in the wake of a stationary cylinder

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofan; Zheng, Zhongquan Charlie

    2010-04-01

    Nonlinear responses to a transversely oscillating cylinder in the wake of a stationary upstream cylinder are studied theoretically by using an immersed-boundary method at Re=100. Response states are investigated in the three flow regimes for a tandem-cylinder system: the "vortex suppression" regime, the critical spacing regime, and the "vortex formation" regime. When the downstream cylinder is forced to oscillate at a fixed frequency and amplitude, the response state of flow around the two cylinders varies with different spacing between the two cylinders, while in the same flow regime, the response state can change with the oscillating frequency and amplitude of the downstream cylinder. Based on velocity phase portraits, each of the nonlinear response states can be categorized into one of the three states in the order of increasing chaotic levels: lock-in, transitional, or quasiperiodic. These states can also be correlated with velocity spectral behaviors. The discussions are conducted using near-wake velocity phase portraits, spectral analyses, and related vorticity fields. A general trend in the bifurcation diagrams of frequency spacing shows the smaller the spacing, frequency, or amplitude, the less chaotic the response state of the system and more likely the downstream and upstream wakes are in the same response state. The system is not locked-in in any case when the spacing between the cylinders is larger than the critical spacing. The near-wake velocity spectral behaviors correspond to the nonlinear response states, with narrow-banded peaks shown at the oscillation frequency and its harmonics in the lock-in cases. High frequency harmonic peaks, caused by interactions between the upstream wake and the downstream oscillating cylinder, are reduced in the near-wake velocity spectra of the upstream cylinder when the spacing increases.

  7. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  8. Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields

    NASA Astrophysics Data System (ADS)

    Rios, Raymond

    2009-10-01

    Experiments involving polarized Ultracold Neutrons (UCN) for high precision measurements require the use of high Fermi potential materials with a low spin flip probability per bounce. Previous studies show that the spin flip probability for materials vary on the order of 10-3 to 10-6. In this study, the depolarization of UCN was measured within 1-m long, 2 3/4" diameter bare copper, electropolished copper, diamond-like carbon-coated copper, and stainless steel guide tubes as a function of the magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnet and a copper plate. A series of Helmholtz coils produced a magnetic holding field over the length of the test guide at 10, 100, or 250 Gauss. The surface depolarization was observed to be suppressed at higher holding fields. These measurements will aid in the determination of an upper limit on depolarization of UCN in the UCNA beta asymmetry measurement at LANL and in understanding the mechanisms for depolarization in non-magnetic guides.

  9. Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range

    NASA Astrophysics Data System (ADS)

    Scholtes, Theo; Pustelny, Szymon; Fritzsche, Stephan; Schultze, Volkmar; Stolz, Ronny; Meyer, Hans-Georg

    2016-07-01

    We present a detailed experimental and theoretical study on the relaxation of spin coherence due to the spin-exchange mechanism arising in the electronic ground states of alkali-metal vapor atoms. As opposed to the well-explored formation of a stretched state in a longitudinal geometry (magnetic field parallel to the laser propagation direction) we employ adapted hyperfine-selective optical pumping in order to suppress spin-exchange relaxation. By comparing measurements of the intrinsic relaxation rate of the spin coherence in the ground state of cesium atoms with detailed density-matrix simulations we show that the relaxation due to spin-exchange collisions can be reduced substantially even in a tilted magnetic field of geomagnetic strength, the major application case of scalar magnetic surveying. This explains the observed striking improvement in sensitivity and further deepens the understanding of the light-narrowed Mx magnetometer, which was presented recently. Additionally, new avenues for investigating the dynamics in alkali-metal atoms governed by the spin-exchange interaction and interacting with arbitrary external fields open up.

  10. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGESBeta

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  11. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  12. Suppression of drinking by exposure to a high-strength static magnetic field.

    PubMed

    Houpt, Thomas A; Cassell, Jennifer A; Riccardi, Christina; Kwon, Bumsup; Smith, James C

    2007-01-30

    High-strength static magnetic fields of 7 T and above have been shown to have both immediate and delayed effects on rodents, such as the induction of locomotor circling and the acquisition of conditioned taste aversions. In this study, the acute effects of magnet field exposure on drinking were examined. Exposure to a 14.1-T magnetic field for as little as 5 min significantly decreased the amount of a glucose and saccharin solution (G+S) consumed by water-deprived rats over 10 min. The decreased intake could be accounted for largely, but not entirely, by an increase in the latency of magnet-exposed rats to initiate drinking. When intake was measured for 10-60 min after the initiation of drinking, thus controlling for increased latency, magnet-exposed rats still consumed less G+S than sham-exposed rats. The increased latency was not due simply to an inability of magnet-exposed rats to reach the elevated sipper tube of the G+S bottle, providing rats with long tubes that could be reached without raising their heads normalized intake but latency was still increased. The increased latency and decreased intake appeared to be secondary to somatic effects of magnet exposure, however, because during intraoral infusions magnet-exposed rats consumed the same amount of G+S with the same latency to reject as sham-exposed rats. The suppression of drinking by magnetic field exposure is consistent with the acute effects of other aversive stimuli, such as whole-body rotation, on short-term ingestion. These results add to the evidence that high-static strength magnetic fields can have behavioral effects on rodents. PMID:17055009

  13. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically

  14. Island Wake Dynamics and Wake Influence on the Evaporation Duct and Radar Propagation.

    NASA Astrophysics Data System (ADS)

    Burk, S. D.; Haack, T.; Rogers, L. T.; Wagner, L. J.

    2003-03-01

    The conditions under which atmospheric island wakes form leeward of Kauai, Hawaii, are investigated using idealized numerical simulations and real data forecasts from the U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS). Nondimensional mountain height is varied in a series of idealized simulations by altering the island's terrain height; with increasing , the wake configuration varies from two small counterrotating vortices to a straight wake to a meandering wake to a von Kármán vortex street. In both the idealized and real data forecasts, stability changes across the wake alter the surface layer temperature and moisture profiles, thereby modifying the refractivity and evaporation duct height (EDH) fields. An electromagnetic (EM) propagation model and a radar clutter model are used to demonstrate that the alterations to the refractivity field created by the wake are capable of strongly affecting near-surface EM propagation. Substantial azimuthal variability in radar sea clutter was observed during radar performance tests conducted by the USS O'Kane leeward of Kauai in December of 1999; these anomalies were postulated to result from an island wake. Results from the linkage of COAMPS output with the two EM codes are compared with the radar returns collected aboard the O'Kane, and metrics are developed for comparing COAMPS forecast EDH values with those calculated directly from the shipboard observations.

  15. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  16. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  17. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  18. Analysis of rotor wake aerodynamics during maneuvering flight using a free-vortex wake methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas

    The problem of helicopter rotor wake aerodynamics during maneuvering flight conditions was analyzed using a time-accurate, free-vortex wake methodology. The free-vortex method consists of a Lagrangian representation of the rotor flow field using vortex elements, where the evolution of the flow field is simulated by tracking the free motion of these vortex elements and calculating their induced velocity field. Traditionally, free-vortex methods are inviscid, incompressible models, but in the present approach the viscous effects are incorporated using a viscous splitting method where the viscous and inviscid terms are modeled as successive sub-processes. The rotor aerodynamics and rigid blade flapping dynamics are closely coupled with the wake model and solved for in a consistent manner using the same numerical scheme. Validations of the methodology with experimental data were performed to study the wake response to perturbations in collective and cyclic pitch inputs. The numerical simulations captured all the essential wake dynamics observed in flow visualization. The predictions of the transient inflow and airloads response were found to be in excellent agreement with the available experimental measurements. It was observed that the rotor wake was extremely sensitive to perturbations in collective and cyclic blade pitch inputs. The characteristic wake response was found to be the bundling of the wake vorticity into a vortex ring structure. The evolution, convection and subsequent breakdown of this bundled ring of tip-vortices was found to be highly nonlinear, and occurs with a temporal lag. The nonlinear induced velocity field associated with unsteady wake evolution can cause considerable fluctuations in the rotor airloads time-history if the bundled tip-vortex structure comes into close proximity to the rotor blades. Furthermore, the interaction of these tip-vortices with the blades results in steep gradients in the rotor airloads across the rotor disk, thereby

  19. Optical influence of ship wakes.

    PubMed

    Zhang, Xiaodong; Lewis, Marlon; Bissett, W Paul; Johnson, Bruce; Kohler, Dave

    2004-05-20

    The optical variations observed within ship wakes are largely due to the generation of copious amounts of air bubbles in the upper ocean, a fraction of which accumulate as foam at the surface, where they release scavenged surfactants. Field experiments were conducted to test previous theoretical predictions of the variations in optical properties that result from bubble injection in the surface ocean. Variations in remote-sensing reflectance and size distribution of bubbles within the ship-wake zone were determined in three different optical water types: the clear equatorial Pacific Ocean, moderately turbid coastal waters, and very turbid coastal waters, the latter two of which were offshore of New Jersey. Bubbles introduced by moving vessels increased the backscattering in all cases, which in turn enhanced the reflectance over the entire visible and infrared wave bands. The elevated reflectance had different spectral characteristics in the three locations. The color of ship wakes appears greener in the open ocean, whereas little change in color was observed in near-coastal turbid waters, consistent with predictions. Colorless themselves, bubbles increase the reflected radiance and change the color of the ocean in a way that depends on the spectral backscattering and absorption of the undisturbed background waters. For remote observation from aircraft or satellite, the foam and added surfactants further enhance the reflectance to a degree dependent on the illumination and the viewing geometry. PMID:15176201

  20. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  1. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  2. PIV measurements of near wake behind a U-grooved cylinder

    NASA Astrophysics Data System (ADS)

    Lim, H.-C.; Lee, S.-J.

    2003-08-01

    The flow structure around a circular cylinder with U-grooved surfaces has been investigated experimentally. The results were compared with that of a smooth cylinder having the same diameter. Drag force and turbulence statistics of wake behind each cylinder were measured for Reynolds numbers based on the cylinder diameter (/D=60mm) in the range ReD=8×103-1.4×105. At ReD=1.4×105, the U-type grooves reduce the drag coefficient acting on the cylinder by 18.6%, compared with that of smooth cylinder. The flow characteristics of wake behind the U-grooved cylinder have been analyzed using two kinds of particle image velocimetry (PIV) velocity measurement techniques, cinematic PIV and high-resolution PIV. Consecutive instantaneous velocity fields were measured using the cinematic PIV technique at time interval of 5ms, corresponding to about 1% of the vortex shedding frequency of the wake. The instantaneous velocity fields measured with the high-resolution PIV technique were ensemble-averaged to get the spatial distributions of turbulent statistics including turbulent intensities and turbulent kinetic energy. For the case of smooth cylinder, large-scale vortices formed behind the cylinder maintain round shape and do not spread out noticeably in the near wake. However, for the case of U-grooved cylinder, the vortices are largely distorted and spread out significantly as they go downstream. The longitudinal grooves seem to shift the location of spanwise vortices toward the cylinder, reducing the vortex formation region, compared with the smooth cylinder. The sharp peaks of longitudinal U-shaped grooves also suppress the formation of large-scale secondary streamwise vortices. The secondary vortices are broken into smaller eddies, reducing turbulent kinetic energy in the near-wake region.

  3. Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging using magnetic field gradient artefact suppression.

    PubMed

    Abächerli, Roger; Hornaff, Sven; Leber, Remo; Schmid, Hans-Jakob; Felblinger, Jacques

    2006-10-01

    The electrocardiogram (ECG) used for patient monitoring during magnetic resonance imaging (MRI) unfortunately suffers from severe artefacts. These artefacts are due to the special environment of the MRI. Modeling helped in finding solutions for the suppression of these artefacts superimposed on the ECG signal. After we validated the linear and time invariant model for the magnetic field gradient artefact generation, we applied offline and online filters for their suppression. Wiener filtering (offline) helped in generating reference annotations of the ECG beats. In online filtering, the least-mean-square filter suppressed the magnetic field gradient artefacts before the acquired ECG signal was input to the arrhythmia algorithm. Comparing the results of two runs (one run using online filtering and one run without) to our reference annotations, we found an eminent improvement in the arrhythmia module's performance, enabling reliable patient monitoring and MRI synchronization based on the ECG signal. PMID:17015063

  4. Acceleration of nonmonoenergetic electron bunches injected into a wake wave

    SciTech Connect

    Kuznetsov, S. V.

    2012-07-15

    The trapping and acceleration of nonmonoenergetic electron bunches in a wake field wave excited by a laser pulse in a plasma channel is studied. Electrons are injected into the region of the wake wave potential maximum at a velocity lower than the phase velocity of the wave. The paper analyzes the grouping of bunch electrons in the energy space emerging in the course of acceleration under certain conditions of their injection into the wake wave and minimizing the energy spread for such electrons. The factors determining the minimal energy spread between bunch electrons are analyzed. The possibility of monoenergetic acceleration of electron bunches generated by modern injectors in a wake wave is analyzed.

  5. Engineering models for merging wakes in wind farm optimization applications

    NASA Astrophysics Data System (ADS)

    Machefaux, E.; Larsen, G. C.; Murcia Leon, J. P.

    2015-06-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake deficits as applied in e.g. Fuga. The second approach is the square root of sums of squares approach, which is applied in the widely used PARK program. The third approach, which is presently used with the Dynamic Wake Meandering (DWM) model, assumes that the wake affected downstream flow field to be determined by a superposition of the ambient flow field and the dominating wake among contributions from all upstream turbines at any spatial position and at any time. The last approach developed by G.C. Larsen is a newly developed model based on a parabolic type of approach, which combines wake deficits successively. The study indicates that wake interaction depends strongly on the relative wake deficit magnitude, i.e. the deficit magnitude normalized with respect to the ambient mean wind speed, and that the dominant wake assumption within the DWM framework is the most accurate.

  6. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system

    SciTech Connect

    Damji, A.A.; Snyder, R.E.; Ellinger, D.C.; Witkowski, F.X.; Allen, P.S.

    1988-11-01

    An electrocardiographic (ECG) unit suitable for cardiac-synchronized nuclear magnetic resonance imaging in high magnetic fields is presented. The unit includes lossy transmission lines as ECG leads in order to suppress radio frequency (RF) interference in the electrocardiogram. The unit's immunity to RF interference is demonstrated.

  7. Suppression of ionization instability in a magnetohydrodynamic plasma by coupling with a radio-frequency electromagnetic field

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-05-09

    We describe the suppression of ionization instability and the control of a magnetohydrodynamic electrical power-generating plasma by coupling with a radio-frequency (rf) electromagnetic field. The rf heating stabilizes the unstable plasma behavior and homogenizes the nonuniform plasma structure, whereby the power-generating performance is significantly improved.

  8. Use of disease-suppressive Brassica rotation crops in potato production: overview of 10 years of field trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease-suppressive Brassica rotation crops have shown promise for management of soilborne diseases and enhanced yield in a variety of crop production systems. Over the last 10 years, numerous field trials have focused on how to best use Brassica crops in potato rotations in the Northeast, including...

  9. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  10. Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors.

    PubMed

    Lezzi, Francesca; Ferrari, Giorgio; Pennetta, Cecilia; Pisignano, Dario

    2015-11-11

    The authors report on the reduction of low-frequency noise in semiconductor polymer nanowires with respect to thin-films made of the same organic material. Flicker noise is experimentally investigated in polymer nanowires in the range of 10-10(5) Hz by means of field-effect transistor architectures. The noise in the devices is well described by the Hooge empirical model and exhibits an average Hooge constant, which describes the current power spectral density of fluctuations, suppressed by 1-2 orders of magnitude compared to thin-film devices. To explain the Hooge constant reduction, a resistor network model is developed, in which the organic semiconducting nanostructures or films are depicted through a two-dimensional network of resistors with a square-lattice structure, accounting for the different anisotropy and degree of structural disorder of the active nanowires and films. Results from modeling agree well with experimental findings. These results support enhanced structural order through size-confinement in organic nanostructures as effective route to improve the noise performance in polymer electronic devices. PMID:26479330

  11. Wake properties of a stripline beam kicker

    SciTech Connect

    Poole, B. R., LLNL

    1997-05-27

    The transport of a high current relativistic electron beam in a stripline beam kicker is strongly dependent on the wake properties of the structure. The effect of the beam-induced fields on the steering of the beam must be determined for a prescribed trajectory within the structure. A 3-D time domain electromagnetic code is used to determine the wake fields and the resultant Lorentz force on the beam both for an ultra-relativistic electron beam moving parallel to the beamline axis as well as a beam that follows a curved trajectory through the structure. Usually in determining the wake properties of the structure, a wake impedance is found for a beam that is moving parallel to the beamline axis. However, we extend this concept to curved trajectories by calculating beam induced forces along the curved trajectory. Comparisons are made with simple transmission line models of the structure. The wake properties are used in models to transport the beam self-consistently through the structure.

  12. Wake properties of a stripline beam kicker

    SciTech Connect

    Poole, B. R., LLNL

    1997-05-08

    The transport of a high current relativistic electron beam in a stripline beam kicker is strongly dependent on the wake properties of the structure. The effect of the beam-induced fields on the steering of the beam must be determined for a prescribed trajectory within the structure. A 3-D time domain electromagnetic code is used to determine the wake fields and the resultant Lorentz force on the beam both for an ultra-relativistic electron beam moving parallel to the beamline axis as well as a beam that follows a curved trajectory through the structure. Usually in determining the wake properties of the structure, a wake impedance is found for a beam that is moving parallel to the beamline axis. However, we extend this concept to curved trajectories by calculating beam induced forces along the curved trajectory. Comparisons are made with simple transmission line models of the structure. The wake properties are used in models to transport the beam self-consistently through the structure.

  13. Studies of a flat wake rotor theory

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Mckillip, R. M., Jr.

    1992-01-01

    A computer code was developed at Princeton University to calculate the velocity components in the flow field near a lifting rotor. The induced velocity components in the rotor flow field predicted by this theory are compared with experiment. It appears that on balance, this relatively simple theory gives a reasonable prediction of the average induced velocities in a rotor flow and is quite suitable for such applications as estimating the influence of the rotor wake on the tail surfaces of rotorcraft. The theory predicts that significant induced velocity components are present in all three flow directions in the wake at a lifting rotor. It should be noted , however, that there are a few experimental measurements of the longitudinal and lateral induced velocity components in the rotor wake. This theory, known as the flat wake theory, is essentially the rotary wing analog of Prandtl's lifting line theory. The theory is described in this report. Calculations based on the theory are presented and compared with a modern free wake theory.

  14. OCCURRENCE OF WEED-SUPPRESSIVE MICROORGANISMS IN SOILS OF CROP PRODUCTION FIELDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of growth-suppressive microorganisms as bioherbicides has been extremely limited for management of annual weeds in row-cropping systems. Bioherbicides based on growth-suppressive microorganisms require further improvements in efficacy of microbial strains and formulations. A more p...

  15. Field evaluation of potential weed-suppressive traits in an indica x tropical japonica mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The indica rice accession, PI 312777 (a.k.a. WC 4644), is highly productive and can suppress barnyardgrass (Echinochloa crus-galli) in reduced-input systems, but the genetic control of this weed suppression is unknown. A set of 330 recombinant inbred lines (RILs) was developed using single seed desc...

  16. Study on the effects of ion motion on laser-induced plasma wakes

    SciTech Connect

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-09-15

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10{sup 21} W/cm{sup 2} and plasma background density below 10{sup 19} cm{sup -3}. In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  17. Suppression of the contribution of short trajectories into above-threshold ionisation spectra by a two-colour laser field

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Zheltukhin, A. N.; Silaev, A. A.; Knyazeva, D. V.; Manakov, N. L.; Flegel', A. V.; Frolov, M. V.

    2016-04-01

    We have studied spectra of above-threshold ionisation of atoms by a two-colour laser field with collinear linearly polarised components. We have found a sharp (gap-like) dependence of the length of the high-energy plateau in above-threshold ionisation spectra on the relative phase of the two-colour field at comparable intensities of the field components. Using the quasi-classical analysis we have shown that this effect results from the suppression of partial above-threshold ionisation amplitudes, associated with closed classical trajectories of an electron in the laser field, within a certain range of relative phase values.

  18. Wakes of Maneuvering Bodies in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J.

    2007-05-01

    We present the results of experimental/theoretical studies on large momentum eddies generated in late wakes of unsteady moving self-propelled bodies in stratified fluids. The experiments were conducted with scaled submarine model at high Reynolds numbers (50,000), corresponding to the fully turbulent flow regime. Dye visualization and PIV were used for flow diagnostics. When a self-propelled body makes a maneuver, e.g. accelerates, it imparts net momentum on the surrounding fluid. We show that in a stratified fluid this leads to impulsive momentum wakes with large, long-lived coherent vortices in the late flows, which may be used as a signature for identification of submarine wakes in oceanic thermocline. First, we consider dynamics and properties of such wakes in a linearly stratified fluid and present a model that permits to predict the main flow characteristics. Second, we consider wakes in a two layer stratified fluid (analog of the upper ocean) and show that such wakes may penetrate to the water surface; we present a model for this phenomenon and propose criteria for the penetration of wake signatures to the water surface in terms of main governing parameters (signature contrast versus confinement number). Finally, we consider the evolution of such momentum wake eddies in the field of decaying background turbulence, which mimics the oceanic thermocline, and show that for the flow configuration studied the contrast number remains sufficiently large and detectable wake imprints survive for a long period of time. Some pertinent estimates for submarines cruising in the upper ocean are also given. For more details see [1-3]. This study was supported by grant from the Office of Naval Research. 1. Voropayev S.I., Fernando H.J.S., Smirnov S.A. & Morrison R.J. 2006. On surface signatures generated by submersed momentum sources. Phys. Fluids, under revision. 2. Voropayev S.I., Fernando H.J.S. & Morrison R.J. 2006. Dipolar eddies in a stratified turbulent flow. J. Fluid

  19. Near wake features of a flying European Starling

    NASA Astrophysics Data System (ADS)

    Kirchhefer, Adam; Kopp, Gregory; Gurka, Roi

    2013-11-01

    A great deal of research focusing on flapping wings has been motivated by their high performance capabilities, especially in low Reynolds number configurations where static wing performance typically suffers. The approaches to studying flapping wings have taken different forms. One form has been the systematic investigation of the parameters that influence the relationship between flapping wings and their wake. The other form, and the approach used in the present work, is the investigation of flapping wings in nature. While the earliest work on the flapping wings of animals consists of observations of bird flight by Leonardo DaVinci, advances in technology have allowed for quantitative measurements of the wake. The near wake of a freely flying European starling has been measured using high speed, time-resolved, particle image velocimetry, simultaneously with high speed cameras which imaged the bird. These have been used to measure the near wake two-dimensional velocity field that can be associated with the bird's location and wing configuration in an avian wind tunnel. Time series of the velocities have been expressed as composite wake plots, which depict segments of the wing beat cycle for various spanwise locations in the wake. Measurements indicate that downwash is not produced during the upstroke, suggesting that the upstroke does not generate lift. As well, the wake velocities imply the presence of streamwise vortical structures, in addition to tip vortices. These two characteristics indicate similarities between the wake of a bird and the wake of a bat.

  20. Spectral coherence in windturbine wakes

    SciTech Connect

    Hojstrup, J.

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  1. Cylinder wakes in flowing soap films.

    PubMed

    Vorobieff, P; Ecke, R E

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. PMID:11970100

  2. Cylinder wakes in flowing soap films

    SciTech Connect

    Vorobieff, P.; Ecke, R.E. ); Vorobieff, P. )

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  3. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.

    PubMed

    Takahashi, K; Lin, J-S; Sakai, K

    2008-05-15

    Using extracellular single unit recordings alone or in combination with neurobiotin juxtacellular labeling and orexin (hypocretin) immunohistochemistry in the mouse, we have recorded a total of 452 neurons in the orexin neuron field of the posterior hypothalamus. Of these, 76 exhibited tonic discharge highly specific to wakefulness, referred to as waking-active neurons. They showed differences from each other in terms of spike shape, activity profile, and response to an arousing sound stimulus and could be classified into three groups on the basis of spike shape as: 1) biphasic broad; 2) biphasic narrow; and 3) triphasic. Waking-active neurons characterized by biphasic broad spikes were orexin-immunopositive, whereas those characterized by either biphasic narrow or triphasic broad spikes were orexin-immunonegative. Unlike waking-specific histamine neurons, all orexin and non-orexin waking-active neurons exhibited slow (<10 Hz) tonic discharges during wakefulness and ceased firing shortly after the onset of electroencephalogram (EEG) synchronization (deactivation), the EEG sign of sleep (drowsy state). They remained virtually silent during slow-wave sleep, but displayed transient discharges during paradoxical (or rapid eye movement) sleep. During the transition from sleep to wakefulness, both orexin and triphasic non-orexin neurons fired in clusters prior to the onset of EEG activation, the EEG sign of wakefulness, and responded with a short latency to an arousing sound stimulus given during sleep. In contrast, the biphasic narrow non-orexin neurons fired in single spikes either prior to, or after, EEG activation during the same transition and responded to the stimulus with a longer latency. The activity of all waking-active neurons preceded the return of muscle tonus at the transition from paradoxical sleep to wakefulness. These data support the view that the activity of orexin and non-orexin waking-active neurons in the posterior hypothalamus plays an important

  4. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model waste…

  5. Photon acceleration in plasma wake wave

    SciTech Connect

    Bu, Zhigang; Shen, Baifei Yi, Longqing; Zhang, Hao; Huang, Shan; Li, Shun

    2015-04-15

    The photon acceleration effect in a laser wake field is investigated based on photon Hamiltonian dynamics. A test laser pulse is injected into a plasma wave at an incident angle θ{sub i}, which could slow down the photon velocity along the propagating direction of the wake wave so as to increase the acceleration distance for the photons. The photon trapping condition is analyzed in detail, and the maximum frequency shift of the trapped photon is obtained. The acceleration gradient and dephasing length are emphatically studied. The compression of the test laser pulse is examined and used to interpret the acceleration process. The limit of finite transverse width of the wake wave on photon acceleration is also discussed.

  6. Pedestal bifurcation and resonant field penetration at the threshold of edge-localized mode suppression in the DIII-D Tokamak.

    PubMed

    Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R

    2015-03-13

    Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression. PMID:25815938

  7. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  8. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  9. Suppression of thermopower of NaxCoO2 by an external magnetic field

    SciTech Connect

    Xiang, H. J.; Singh, David J

    2007-01-01

    We calculate the thermopower in Na{sub x}CoO{sub 2} using the standard Boltzmann transport theory and first principles electronic structures with spin polarization taken into account. The thermopower is found to be smaller when the system is polarized, which thereby provides an alternative reasonable explanation for the suppression of thermopower in a magnetic field. The role of the spin-orbit coupling on the thermoelectricity is also discussed.

  10. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  11. Finite element modeling study of the suppression effect of external high magnetic field on the heat transfer of tungsten melt

    NASA Astrophysics Data System (ADS)

    Qu, S.; Jia, Y.; Gao, S.; Yuan, Y.; Li, C.; Lian, Y.; Liu, X.; Liu, W.

    2016-02-01

    Finite element modeling analysis has been employed to simulate the melt layer motion of tungsten and tungsten-based materials under high magnetic field. High heat flux of 2 GW m-2 was loaded for 3 ms at 1000 K and provided a molten bath. Meanwhile, high magnetic field from 0 to 8 T was loaded during the simulation. Both positive and negative surface tension temperature coefficient was tested. The result shows that the convention forced by the surface tension is suppressed by the magnetic field. The high magnetic field performs as a resistance of the heat transfer, leading to a reduced molten bath. The magnetic field mitigates the melting behaviur of the tungsten materials.

  12. [Wake disorders. I. Primary wake disorders].

    PubMed

    Billiard, M; Carlander, B

    1998-02-01

    Primary wake disorders encompass various conditions of excessive daytime sleepiness and/or increased nighttime sleep, of unknown origin beginning most often in adolescence and of chronic or recurrent natural history. The best known of these conditions is narcolepsy associating two major clinical features, irresistible episodes of sleep, sleep onset REM periods and an almost constant association with HLA DR2-DQ1. The prevalence of the condition is close to the one of multiple sclerosis but positive diagnosis requires most often over 10 years to be made. The treatment of excessive daytime sleepiness has recently benefited from a new non-amphetamine awakening compound, modafinil, active in 60 to 70 p. 100 of the cases. The treatment of cataplexy still relies on antidepressants, tricyclics or selective serotonin reuptake blockers. Major advances in pathophysiology and pathogeny have been obtained through a natural model of the disease, canine narcolepsy. Pharmacological studies point to the importance of alpha-1 b adrenergic mechanisms in cataplexy, while dopaminergic systems seem more involved in excessive daytime sleepiness. As concerns genetics, the HLA DQB1*0602 gene predisposes to narcolepsy. In the canine model it is mirrored by an autosomal recessive gene showing a strong homology with the human immunoglobulin gene mu-switch. Familial studies have shown that besides typical phenotypes, attenuated forms of the condition characterized by isolated recurrent daytime naps and/or lapses into sleep do exist. In addition one or several other genes may be involved. Narcolepsy is multifactorial, including one or several genes as well as environmental factors. Idiopathic hypersomnia is noted for very long night sleep, difficulty waking up and more or less constant excessive daytime sleepiness. In contrast with narcolepsy sleep in not refreshing. There is no polysomnographic or immunogenetic special feature. Idiopathic hypersomnia is 10 times less frequent than narcolepsy

  13. Evidence of Magnetic Breakdown on the Defects With Thermally Suppressed Critical Field in High Gradient SRF Cavities

    SciTech Connect

    Eremeev, Grigory; Palczewski, Ari

    2013-09-01

    At SRF 2011 we presented the study of quenches in high gradient SRF cavities with dual mode excitation technique. The data differed from measurements done in 80's that indicated thermal breakdown nature of quenches in SRF cavities. In this contribution we present analysis of the data that indicates that our recent data for high gradient quenches is consistent with the magnetic breakdown on the defects with thermally suppressed critical field. From the parametric fits derived within the model we estimate the critical breakdown fields.

  14. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  15. Energetic Turbulence Structures in the Wake of Model Wind Turbines

    NASA Astrophysics Data System (ADS)

    Sheng, Jian; Mehdi, Faraz; Chamorro, Leonardo P.

    2013-11-01

    Wind turbine wakes contain complex and energetic flow structures. Characterizing the near-wake field is critical to assess flow-structure interactions and evaluate asymmetric loadings that trigger premature structural failure. Although the turbulence flow structure in the far-wake region is important in the wind farm design, an integrated characterization of the entire wake flow would provide clearer mechanistic view on other phenomena such wake meandering and unsteady interactions with the blades of downwind turbines. High-speed Particle Image Velocimetry (PIV) is carried out over a model wind turbine in a neutrally stratified boundary layer flow. The measurements are made at consecutive locations ranging from three rotor diameters upstream to twelve rotor diameters downstream of the unit. Vortical structures within the wake including tip, root and hub vortices are identified and followed as they advect downstream. The evolution of these dominant near-wake flow structures are quantified and provide us a better understanding of interactions between turbine wake and boundary layer. The spatial distribution of the mean and fluctuating velocity, as well as energy spectrum and turbulent kinetic budget are also discussed.

  16. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  17. Stability of viscoelastic wakes

    NASA Astrophysics Data System (ADS)

    Biancofiore, Luca; Brandt, Luca; Zaki, Tamer

    2014-11-01

    Theoretical and computational studies of synthetic wakes have explained the dynamics of several industrial and technological flows, for example mixing in fuel injection and papermaking, and the flow behind bluff bodies. Despite the industrial importance of complex non-Newtonian flow, previous work has focused on Newtonian fluids. Nonlinear simulations of viscoelastic, spatially-developing wakes are performed in order to analyze the influence of polymer additives on the behavior of the flow. Viscoelasticity is modeled using the FENE-P closure. A canonical wake profile (Monkewitz, Phys. Fluids, 88) is prescribed as an inflow condition, and the downstream evolution is computed using the full Navier-Stokes equations for a range of Reynolds and Weissenberg numbers. The simulations demonstrate that the influence of the polymer can be stabilizing or destabilizing, depending on the inlet velocity profile. Smooth profiles are stabilized by elasticity while sharp profiles are destabilized. The disturbance kinetic energy budget is examined in order to explain the difference in behavior and in particular the influence of the polymeric stresses on flow stability.

  18. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate

  19. Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    NASA Astrophysics Data System (ADS)

    Das, T.; Figueira de Morisson Faria, C.

    2016-08-01

    We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.

  20. First Lunar Wake Passage of ARTEMIS: Discrimination of Wake Effects and Solar Wind Fluctuations by 3D Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; Sibeck, D. G.; McFadden, J. P.

    2011-01-01

    The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.

  1. NOWVIV - Nowcasting wake vortex impact variables

    NASA Astrophysics Data System (ADS)

    Tafferner, A.; Birke, L.; Frech, M.

    2003-04-01

    A central task of the ongoing DLR project "Wirbelschleppe" (Wake Vortex) is to forecast meteorological quantities which influence the behaviour of wake vortices of landing aircraft. In the first place these are wind, temperature and turbulence, resp. the vertical shear thereof, which impact the lateral drift and turbulent decay of wake vortices. For this purpose the nowcasting system NOWVIV has been developed at DLR. It combines operational forecasts of the Lokal Modell (LM; Doms and Schaettler 1999) of the German weather service DWD with a high-resolution forecasting system. For the latter, the NOAA/FSL version of the mesoscale model MM5 (Grell et al. 2000) has been adapted to particular sites. Orography, land use, and soil type have been generated from available data sources for a 80 km square domain centered on a particular airport with a horizontal resolution of 2.1 km. As a good representation of the boundary layer is of particular importance for predicting wake vortex impact variables, the vertical spacing of model layers has been selected rather small throughout the lower model atmosphere, starting with 20 m at the ground and increasing to about 60 m at 2 km height. NOWVIV delivers vertical profiles of vortex impact variables, which are used by the wake prediction model ``P2P'' developed at DLR (Holzaepfel 2002) to predict wake vortex behaviour. During the two field campaigns ``WakeOP'' and ``WakeTOUL'' in April/May 2001 and May/June 2002 which aimed at measuring (by lidar) and predicting wake vortex behaviour of landing aircraft, NOWVIV has been run in an operational mode for the airports of Oberpfaffenhofen (Germany) and Tarbes (France). A statistical evaluation of the NOWVIV forecasting performance during these campaigns achieved satisfactory results as compared to local measurements of wind and temperature from radio acoustic sounding instruments (Frech et al. 2002). However, there are uncertainties in the daily variation of the boundary layer. Also, the

  2. Statistical Study of the Lunar Plasma Wake Outer Boundary

    NASA Astrophysics Data System (ADS)

    Ames, W. F.; Brain, D. A.; Poppe, A.; Halekas, J. S.; McFadden, J. P.; Glassmeier, K.; Angelopoulos, V.

    2012-12-01

    The Moon does not have an intrinsic magnetic field and lacks the conductivity necessary to develop an induced magnetosphere. Therefore, the interaction of the Moon with the solar wind is dominated by impact absorption of solar wind particles on the day side and the generation of a plasma wake on the night side. A plasma density gradient forms between the flowing solar wind and the plasma wake, causing solar wind plasma to gradually refill the wake region. Electrons fill the wake first, pulling ions in after them via ambi-polar diffusion. Despite the existence of comprehensive new plasma measurements of the lunar wake region, relatively little attention has been devoted to the shape and variability in location of its outer boundary. Improved knowledge of this boundary condition for the physical processes associated with wake refilling would provide useful tests for simulations and theoretical models of the lunar plasma interaction. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft mission is a two-probe lunar mission derived from the THEMIS (Time History of Events and Macroscale Interactions During Substorms) mission, repurposed to study the lunar space and planetary environment. Over the course of the mission there have been numerous passes of the ARTEMIS spacecraft through the lunar wake, at distances of up to seven lunar radii from the Moon. They have occurred for a variety of external conditions. We present a statistical study of tens of selected wake-crossing events of the ARTEMIS probes in 2011, using data primarily from the ARTEMIS fluxgate magnetometers (FGMs) and electrostatic analyzers (ESAs) to identify when the spacecraft entered and exited the wake. We study the shape of the outer wake boundary and its response to external conditions using two different techniques: one defines the wake boundary by a sharp decrease in ion density, the other by a decrease in magnetic field magnitude

  3. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  4. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  5. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  6. Wake Sensor Evaluation Program and Results of JFK-1 Wake Vortex Sensor Intercomparisons

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Burnham, David C.; Rudis, Robert P.

    1997-01-01

    The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.

  7. Noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Propeller performance and noise were measured on two model scale propellers operating in an anechoic flow environment with and without a wake. Wake thickness of one and three propeller chords were generated by an airfoil which spanned the full diameter of the propeller. Noise measurements were made in the relative near field of the propeller at three streamwise and three azimuthal positions. The data show that as much as 10 dB increase in the OASPL results when a wake is introduced into an operating propeller. Performance data are also presented for completeness.

  8. Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Winfield, J. M.; Douglas, N. H. M.; deSouza, N. M.; Collins, D. J.

    2014-05-01

    We present the development and application of a phantom for assessment and optimization of fat suppression over a large field-of-view in diffusion-weighted magnetic resonance imaging at 1.5 T and 3 T. A Perspex cylinder (inner diameter 185 mm, height 300 mm) which contains a second cylinder (inner diameter 140 mm) was constructed. The inner cylinder was filled with water doped with copper sulphate and sodium chloride and the annulus was filled with corn oil, which closely matches the spectrum and longitudinal relaxation times of subcutaneous abdominal fat. Placement of the phantom on the couch at 45° to the z-axis presented an elliptical cross-section, which was of a similar size and shape to axial abdominal images. The use of a phantom for optimization of fat suppression allowed quantitative comparison between studies without the differences introduced by variability between human subjects. We have demonstrated that the phantom is suitable for selection of inversion delay times, spectral adiabatic inversion recovery delays and assessment of combinatorial methods of fat suppression. The phantom is valuable in protocol development and the assessment of new techniques, particularly in multi-centre trials.

  9. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field.

    PubMed

    Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk

    2013-09-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512

  10. Wake Vortex Research in the USA (WakeNet-USA)

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Bryant, Wayne

    2006-01-01

    This viewgraph presentation reviews the cooperative work that FAA and NASA are engaged in to safely increase the capacity of the National Airspace System by studying the wake vortex operations. Wake vortex avoidance is a limiting factor in defining separation standards in the airport terminal area and could become a reducing separation standards in en route airspace.

  11. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    SciTech Connect

    Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.

  12. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    NASA Astrophysics Data System (ADS)

    Jing, C.; Chang, C.; Gold, S. H.; Konecny, R.; Antipov, S.; Schoessow, P.; Kanareykin, A.; Gai, W.

    2013-11-01

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.

  13. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening

    SciTech Connect

    Jiménez-Martínez, R.; Knappe, S.; Kitching, J.

    2014-04-15

    We demonstrate an optically pumped {sup 87}Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the {sup 87}Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

  14. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  15. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  16. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  17. Wake Measurements in ECN's Scaled Wind Farm

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. W.; Schepers, J. G.

    2014-12-01

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the relative wind speed, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  18. Total suppression of superconductivity by high magnetic fields in YBa(2)Cu(3)O(6.6).

    PubMed

    Rullier-Albenque, F; Alloul, H; Proust, Cyril; Lejay, P; Forget, A; Colson, D

    2007-07-13

    We have studied the variation of transverse magnetoresistance of underdoped YBCO(6.6) crystals, either pure or with reduced T(c) down to 3.5 K by electron irradiation, in fields up to 60 T. We find evidence that the superconducting fluctuation contribution to the conductivity is suppressed only above a threshold field H(c)'(T), which is found to vanish at T(c)' > T(c). In the pure YBCO(6.6) sample, H(c)' is already 50 T at T(c). We find that increasing disorder weakly depresses H(c)'(0), T(c)', and T(nu), the onset of the Nernst signal. Thus, these energy scales appear more characteristic of the 2D local pairing than the pseudogap temperature which is not modified by disorder. PMID:17678247

  19. Suppression of Secondary Emission in a Magnetic Field Using a Sawtooth and Isosceles Triangle Surface

    SciTech Connect

    Wang, L.; Raubenheimer, T.O.; Stupakov, G.; /SLAC

    2006-09-26

    The effect of surface roughness on the secondary electron emission from a sawtooth and isosceles triangle surface in a magnetic field under electron bombardment is investigated using a Monte-Carlo method. Some of the secondary electrons emitted from the surface return to the surface within their first few gyrations, resulting in a low effective secondary electron yield. Both sawtooth and isosceles triangle surface in magnetic field can significantly reduce the secondary emission yield below the multipacting threshold with weak dependence on the size of surface and magnetic field.

  20. Wakes in inhomogeneous plasmas.

    PubMed

    Kompaneets, Roman; Ivlev, Alexei V; Nosenko, Vladimir; Morfill, Gregor E

    2014-04-01

    The Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it nonoscillatory and weaker. PMID:24827356

  1. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  2. FDTD Analysis of Effectiveness of Shielding Clothes in Suppressing Electromagnetic Field in Phantom Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yoshiyuki; Nagano, Isamu; Yagitani, Satoshi; Ueno, Tomohiko; Nakayabu, Toshihiro

    In order to prevent cardiac pacemakers from malfunctioning caused by electromagnetic (EM) wave, as one of the solutions to the problem of pacemaker malfunctioning, we can use a shielding material to decrease the EM wave intensity. For the effective suppression of the EM wave including a complicated enclosure or a human body, it is desirable to solve for the EM wave propagation by using numerical analysis. We introduce the transmission coefficient when an EM wave is incident into a multi-layered material with an arbitrary direction into the FDTD method. This realizes three-dimensional numerical analysis of a thin shielding material as a method to solve the EM wave transmission problem, which has been conventionally considered difficult. We use a phantom model, a dummy model of a cardiac pacemaker wearer, to analyze the EM wave shielding effectiveness of the shielding clothes. The analytical result agrees fairly well with the experimental result, which verifies the validity of the developed method. As for the effect of the aperture of the shielding clothes, the EM wave coming around from the apertures is found to be larger in amount than the EM wave transmitted through the clothes, which suggests that the aperture causes the SE to decrease largely.

  3. Lagrangian coherent structures in the wake of a streamwise oscillating cylinder

    NASA Astrophysics Data System (ADS)

    Cagney, Neil; Balabani, Stavroula

    2015-11-01

    Lagrangian analysis of experimental flow measurements has the ability to reveal complex coherent structures and identify phenomena that may not be apparent from standard Eulerian descriptors, such as vorticity. We measure the wake of a cylinder undergoing streamwise vortex-induced vibrations (VIVs) using Particle-Image Velocimetry, and examine the wake dynamics throughout the response regime in terms of the phase-averaged vorticity fields. The Finite-Time Lyapunov exponent (FTLE) fields are also computed in backward- and forward-time in order to identify the Lagrangian Coherent Structures. We examine four distinct wake modes that occur at various points in the response regime. The roll up of the shear layers and the vortex formation process are examined using the FTLE fields. This analysis allows the fluid-structure interaction and dynamics in the near wake to be examined in much greater detail than would be possible using the vorticity fields alone. Particular attention is paid to the symmetric vortex-shedding mode, which is characteristic to streamwise VIV; the forward-time FTLE fields show that the wake is organised into discreet ``vortex cells,'' which enclose each vortex and define its boundary. Finally, the advection of tracers in the wake is studied in order to examine how the different wake modes promote/inhibit mixing. The alternate wake modes tend to promote mixing, particularly in the second response branch, but the symmetric shedding tends to reduce the lateral mixing across the wake.

  4. Probing Neutrino Hierarchy and Chirality via Wakes

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-01

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ˜0.1 eV , and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable.

  5. Rotor wake mixing effects downstream of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1981-01-01

    An experimental study of rotor wake was conducted in the trailing-edge and near-wake regions of a moderately loaded compressor rotor blade using a rotating triaxial hot-wire probe in a rotating frame of reference. The flow-field was surveyed very close to the trailing-edge as well as inside the annulus- and hub-wall boundary layers. The large amount of data acquired during this program has been analyzed to discern the decay effects as well as the spanwise variation of three components of velocity, three components of intensities and three components of shear stresses. The data set also include extensive information on the variation of the flow properties downstream. The other derived quantities include wake momentum thickness and deviation angles at various spanwise and downstream locations. These data are presented and interpreted, with emphasis on the downstream mixing as well as endwall-wake interaction effects.

  6. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  7. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  8. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  9. Mathematical models for exotic wakes

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Stremler, Mark

    2014-11-01

    Vortex wakes are a common occurrence in the environment around us; the most famous example being the von Kármán vortex street with two vortices being shed by the bluff body in each cycle. However, frequently there can be many other more exotic wake configurations with different vortex arrangements, based on the flow parameters and the bluff body dimensions and/or its oscillation characteristics. Some examples include wakes with periodic shedding of three vortices (`P+S' mode) and four vortices (symmetric `2P' mode, staggered `2P' mode, `2C' mode). We present mathematical models for such wakes assuming two-dimensional potential flows with embedded point vortices. The spatial alignment of the vortices is inspired by the experimentally observed wakes. The idealized system follows a Hamiltonian formalism. Model-based analysis reveals a rich dynamics pertaining to the relative vortex motion in the mid-wake region. Downstream evolution of the vortices, as predicted from the model results, also show good correspondence with wake-shedding experiments performed on flowing soap films.

  10. Suppression of the n=2 rotational instability in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Hoffman, Alan L.; Slough, J.; Harding, Dennis G.

    1983-06-01

    Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.

  11. Kaguya observations of the lunar wake in the terrestrial foreshock

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Fujimoto, M.; Harada, Y.; Tsugawa, Y.; Takahashi, F.; Yokota, S.; Matsushima, M.; Shibuya, H.; Shimizu, H.

    2015-12-01

    There forms a tenuous region behind the Moon in the solar wind, as the lunar dayside surface adsorbs most of the incident solar wind plasma. Entry processes of solar wind plasma into this tenuous region, which is called the lunar wake, have been widely studied. In addition to gradual refilling of the wake by the ambient solar wind, it has been known that a portion of solar wind protons that are scattered at the dayside surface or deflected by crustal magnetic fields can enter the wake (i.e. type-2 entry). However, proton entry into the deepest lunar wake (i.e. anti-subsolar region at low altitude) by the type-2 process needs specific solar wind conditions. Here we report, using data from Kaguya spacecraft in orbit around the Moon, that solar wind ions reflected at the terrestrial bow shock easily access the deepest lunar wake, when the Moon is located in the foreshock. In one case, when the spacecraft location is magnetically connected to the lunar night-side surface, the kinetic energy of upward-going field-aligned electron beams decreases or electron beams disappear during the reflected-ion events. This shows that the intrusion of the shock-reflected ions and electrons into the wake changes the electrostatic potential of the lunar night-side surface.

  12. The transitional wake behind an inclined prolate spheroid

    NASA Astrophysics Data System (ADS)

    Jiang, Fengjian; Gallardo, José P.; Andersson, Helge I.; Zhang, Zhiguo

    2015-09-01

    The wake behind a 6:1 prolate spheroid at 45° incidence has been studied by means of direct numerical simulations (DNSs). The Reynolds number based on the minor axis of the spheroid was 3000 as compared to 1000 in our preceding study [Jiang et al., "The laminar wake behind a 6:1 prolate spheroid at 45° incidence angle," Phys. Fluids 26, 113602 (2014)]. The resulting wake is no longer laminar and the transitional wake is fundamentally unsteady and highly asymmetric from the very beginning. A substantial side force resulted from the asymmetric pressure field. No signs of vortex shedding could be observed. The forces and the flow field around the spheroid exhibited a dominant periodicity with a surprisingly low Strouhal number of 0.0733. One part of the counter-rotating vortex pair which dominated the near-wake broke down into small-scale vortices as soon as the vortex left the shadow behind the spheroid. The other part appeared as a helical vortex inside which the mechanical energy was conserved over a substantial length. The axial flow within this vortex tube experienced a sudden change from having maximum to minimum at the vortex center while maintaining the sign of the circulation. The severe asymmetry of the wake is ascribed to a global instability and may impact on submarine maneuverability.

  13. Imperfect supercritical bifurcation in a three-dimensional turbulent wake

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; Pastur, Luc

    2015-06-01

    The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.

  14. Imperfect supercritical bifurcation in a three-dimensional turbulent wake.

    PubMed

    Cadot, Olivier; Evrard, Antoine; Pastur, Luc

    2015-06-01

    The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations. PMID:26172790

  15. Selective strong-field enhancement and suppression of ionization with short laser pulses

    NASA Astrophysics Data System (ADS)

    Hart, N. A.; Strohaber, J.; Kolomenskii, A. A.; Paulus, G. G.; Bauer, D.; Schuessler, H. A.

    2016-06-01

    We experimentally demonstrate robust selective excitation and attenuation of atomic Rydberg level populations in sodium vapor (Na i) using intense laser pulses in the strong-field limit (>1012W /c m2 ). Coherent control of the atomic population and related ionization channels is realized for intensities above the over-the-barrier ionization intensity. Moreover, atomic excitation selectivity and high ionization yield are simultaneously achieved without the need to tailor the spectral phase of the laser. A qualitative model confirms that this strong-field coherent control arises through the manifestation of a Freeman resonance.

  16. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  17. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors

    SciTech Connect

    Stolyarov, Maxim A.; Liu, Guanxiong; Balandin, Alexander A.; Rumyantsev, Sergey L.; Shur, Michael

    2015-07-13

    We have investigated low-frequency 1/f noise in the boron nitride–graphene–boron nitride heterostructure field-effect transistors on Si/SiO{sub 2} substrates (f is a frequency). The device channel was implemented with a single layer graphene encased between two layers of hexagonal boron nitride. The transistors had the charge carrier mobility in the range from ∼30 000 to ∼36 000 cm{sup 2}/Vs at room temperature. It was established that the noise spectral density normalized to the channel area in such devices can be suppressed to ∼5 × 10{sup −9 }μm{sup 2 }Hz{sup −1}, which is a factor of ×5 – ×10 lower than that in non-encapsulated graphene devices on Si/SiO{sub 2}. The physical mechanism of noise suppression was attributed to screening of the charge carriers in the channel from traps in SiO{sub 2} gate dielectric and surface defects. The obtained results are important for the electronic and optoelectronic applications of graphene.

  18. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Yang, Guang; Ding, Hui; Song, Jin-Zhi; Ye, Hui; Sheng, Zhao-Fu; Wang, Zi-Jun; Zhang, Yong-He

    2016-01-01

    Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways. PMID:27456222

  19. Field tests of environmentally friendly malathion replacements to suppress wild Mediterranean fruit fly (Diptera: Tephritidae) populations.

    PubMed

    Peck, S L; McQuate, G T

    2000-04-01

    This article reports a large-scale field test of two environmentally friendly malathion replacements on wild populations of the Mediterranean fruit fly, Ceratatis capitata (Wiedemann): spinosad, a bacteria-derived toxin, and phloxine B, a red dye with phototoxic properties. The comparison test was conducted on 11 coffee fields infested with wild populations of Mediterranean fruit fly on the Hawaiian island of Kauai with 8-wk protein bait sprays with and without toxicants. To assess effectiveness, adults were trapped and larval infestation levels were evaluated with fruit collections. Malathion was found to be the most effective treatment. However, the two replacements gave significant levels of control, and because they are environmentally safer, should be considered for eradicating incipient populations of this invasive species of fruit fly. Cage tests were also conducted to ensure that the wild flies consumed the bait and to assess how long the bait-toxicant combination remained effective in the field. Although spinosad and phloxine B were found to be effective up to 1 wk, malathion remained effective at least 2 wk. PMID:10826173

  20. Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity

    PubMed Central

    Lin, Fa-Hsuan; Vesanen, Panu T.; Hsu, Yi-Cheng; Nieminen, Jaakko O.; Zevenhoven, Koos C. J.; Dabek, Juhani; Parkkonen, Lauri T.; Simola, Juha; Ahonen, Antti I.; Ilmoniemi, Risto J.

    2013-01-01

    Ultra-low-field (ULF) MRI (B0 = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction. PMID:23626710

  1. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  2. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  3. Irregular sleep-wake syndrome

    MedlinePlus

    Sleep-wake syndrome - irregular ... routine during the day. The amount of total sleep time is normal, but the body clock loses ... have a different condition, such as shift work sleep disorder or jet lag syndrome.

  4. Observations and Analysis of Turbulent Wake of Wind Turbine by Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Li, Rongzhong; Wang, Xitao; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Turbulent wake of wind turbine will reduce the power output of wind farm. The access to real turbulent wake of wind turbine blades with different spatial and temporal scales is provided by the pulsed Coherent Doppler Lidar (CDL) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. In this paper, the authors discuss the possibility of using lidar measurements to characterize the complicated wind field, specifically wind velocity deficit by the turbine wake.

  5. ITPA Joint Experiment to Measure Threshold E-fields and Densities for Runaway Electron Onset and Suppression

    NASA Astrophysics Data System (ADS)

    Granetz, Robert

    2013-10-01

    Recent results from an ITPA joint experiment to study the onset, growth, and decay of relativistic electrons (REs) indicate that energy loss mechanisms other than collisional damping may play a dominant role in the dynamics of the RE population. Understanding the physics of RE growth and mitigation is motivated by the theoretical prediction that disruptions of full-current ITER discharges could generate ~10 MA of REs (10-20 MeV) through an avalanche growth process. A necessary condition for avalanche growth is that the Coulomb acceleration due to the toroidal electric field has to be at least high enough to counter the collisional drag on background electrons, i.e. E>Ec, where Ec is the critical E-field derived in. Ec scales linearly with electron density, ne, so one way to suppress avalanche growth is to quickly raise ne sufficiently high, but this is problematic on ITER. However, if there are other energy loss mechanisms in addition to collisions, then the actual threshold E-field will be greater than Ec, i.e. REs become more difficult to generate and sustain due to the additional loss mechanism(s). Due to the importance of Ec to the issue of REs in ITER, the ITPA MHD group is conducting a joint experiment to measure the threshold E-field on a number of tokamaks under steady-state, low Zeff conditions in which Vloop , ne, and REs can be well-diagnosed, and compared to theory. The analysis must take into account the RE growth time, which can be comparable to the discharge timescale. Data from DIII-D, C-Mod, TEXTOR, and FTU have been obtained so far, and the consensus to date is that the threshold E-field is significantly higher than Ec, or conversely, the ne required to damp REs is significantly less than predicted, suggesting that other loss mechanisms are involved. Implications for RE mitigation in ITER will be discussed.

  6. Symmetry-suppressed two-photon transitions induced by hyperfine interactions and magnetic fields

    SciTech Connect

    Kozlov, M. G.; English, D.; Budker, D.

    2009-10-15

    Two-photon transitions between atomic states of total electronic angular-momentum J{sub a}=0 and J{sub b}=1 are forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is impossible to construct a total angular-momentum J{sub 2{gamma}}=1 quantum-mechanical state of two photons that is permutation symmetric, as required by Bose-Einstein statistics. In atoms with nonzero nuclear spin, the selection rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evaluated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-state sublevels, and off-diagonal mixing of states with different total electronic angular momentum in the final state. The present theoretical treatment is relevant to the ongoing experimental search for a possible Bose-Einstein-statistics violation using two-photon transitions in barium, where the hyperfine-induced transitions have been recently observed, and the magnetic-field-induced transitions are being considered both as a possible systematic effect, and as a way to calibrate the measurement.

  7. Wake Shield Target Protection

    SciTech Connect

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-05-15

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed.

  8. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements. PMID:25215822

  9. Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W)

    NASA Astrophysics Data System (ADS)

    Kumer, Valerie; Reuder, Joachim; Svardal, Benny; Eecen, Peter

    2014-05-01

    The Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W) is a cooperative wake measurement campaign conducted by the Norwegian Centre of Offshore Wind Energy (Norcowe) and the Energy Research Centre of the Netherlands (ECN). A scanning, four static Windcubes as well as a downstream looking nacelle LiDAR are placed for half a year downstream of one of five research wind turbines in ECNs' wind turbine test farm Wieringermeer. In order to capture wake characteristics under different weather conditions a 60° sector for three different elevations and two vertical cross-sections are scanned every minute with additional wind profile information every second at 2, 5 and 12 rotor diameter distances. Another static Windcube, a forward-looking nacelle LiDAR and three Sonics are placed upstream to measure the undisturbed approaching flow field. During the campaign several scanning algorithms are tested to capture most wake features. The aim of the campaign is a qualitative and quantitative description of single wind turbine wake evolution, propagation and persistency, as well as to improve CFD wake models by delivering a detailed data set of several real atmospheric conditions.

  10. Enhancement of the Coulomb collision rate by individual particle wakes

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott; Scheiner, Brett

    2013-09-01

    Charged particles moving in a plasma leave a trailing wake in their electric potential profile associated with the response function of the medium. For superthermal particles, these wakes can cause significant departures from the oft-assumed screened Coulomb potential profile. The wakes extend the interaction length scale beyond the Debye screening length for collisions between fast test particles and field particles in their wake. This can increase the Coulomb collision rate for velocities beyond the thermal speed. To demonstrate this effect, we consider the relaxation rate due to electron-electron collisions of an electron distribution function with initially depleted tails, as is common near boundary sheaths or double layers. This problem is related to Langmuir's paradox. We compare the standard Landau (Fokker-Planck) collision operator, which does not account for wakes, with the Lenard-Balescu collision operator, which includes wake effects through the linear dielectric response function. For this distribution, the linear dielectric is described by the incomplete plasma dispersion function. We compare the collision operators directly as well as the relaxation rate determined from a hybrid kinetic-fluid model. S. D. Baalrud, Phys. Plasmas 20, 012118 (2013).

  11. Wake development and control for an airfoil with blunt and divergent trailing edge

    NASA Astrophysics Data System (ADS)

    El Gammal, M.

    2005-11-01

    The wake development downstream of an airfoil with a blunt and divergent trailing edge is experimentally investigated with conventional hot-wire anemometry. Two distinct wake development regions are identified. (i) a near-wake region where the vortex shedding is robust, the wake is highly asymmetric and the wake mean flow direction is curved; (ii) a far-wake region where momentum thickness reaches an asymptotic value, distributions of mean flow and turbulence quantities are almost symmetric, curvature of the mean flow becomes negligible and self-preserving state is reached. The effect of attaching rectangular vortex generators to the pressure and suction sides of the blunt trailing edge on the vortex shedding phenomena is quantified. The results clearly indicate vortex shedding suppression when the vortex generators are placed at a distance that equals twice the integral length scale in the spanwise direction. Based on these results, it is concluded that the streamwise components of the horseshoe vorticies generated by the vortex generators are responsible for the early suppression of the von Karman rolls; hence weakening the vortex shedding and accelerating the flow transition toward the far wake state. The effectiveness of this mechanism depends on the vortex generators placement in the spanwise direction.

  12. Wake potentials of the ILC Interaction Region

    SciTech Connect

    Novokhatski, A.; /SLAC

    2011-08-16

    The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of 'heating' power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results. The conclusions of this report are: (1) The amount of the beam energy loss in IR is almost equal to the energy loss in one ILC (TESLA) accelerating cryo-module; (2) Addition energy spread at IR is very small; (3) Spectrum of the wake fields is limited 300 GHz; (4) Average power of the wake fields excited in IR is 30 W for nominal ILC parameters; and (5) Pulse power in this case is 6 kilowatts.

  13. Large-Eddy Simulations of Wind Turbine Wakes Subject to Different Atmospheric Stabilities

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Lundquist, J. K.; Lee, S.; Clifton, A.

    2014-12-01

    As a byproduct of energy extraction, wind turbines create a low-speed, turbulent wake that propagate downwind. When wind turbines are situated in a group, as in a wind plant, the interactions of these wakes with other turbines are important because wake effects decrease the efficiency of the wind plant, and they increase mechanical loads on individual turbines. Wakes propagate downstream differently depending on the inflow conditions, and these conditions are heavily dominated by atmospheric stability. For example, we know that wakes are more persistent in stable conditions than in unstable conditions. Also, stable conditions often have significant wind veer which skews wakes laterally. Different levels of turbulence intensity are associated with different atmospheric stability levels, and turbulence intensity acts to diffuse wakes and to cause wake meandering. Wake physics are complex, and to understand them better, a high-resolution representation of the flow is necessary. Measurements are difficult with current sensing equipment because of the sheer size of wakes and the unsteady atmospheric environment in which they are found. Numerical simulations complement measurements and provide a high-resolution representation of the entire three-dimensional, unsteady flow field. In this work, we use large-eddy simulation (LES), the highest fidelity type of computational fluid dynamics (CFD) feasible for high-Reynolds-number wake flow. LES directly resolves the larger, energy-containing turbulent scales and models the effects of the subgrid scales that the computational mesh cannot resolve. Our solver is based on the OpenFOAM open-source CFD toolbox. Turbines are modeled using rotating actuator lines. Here, we present our LES of the wake behind a modern 1.5 MW turbine subject to different inflow atmospheric stability. We will present results of wakes subject to stable (strongly and weakly stable), neutral, and unstable conditions. We are particularly interested in how

  14. The development of a prescribed wake model for performance prediction in steady yawed flow

    SciTech Connect

    Robison, D.J.; Coton, F.N.; Galbraith, R.A.M.; Vezza, M.

    1995-09-01

    A new prescribed wake model for horizontal axis wind turbines (HAWTs) is presented. The model`s wake geometry is derived from simple prescriptive functions, based on momentum theory, defining the three-dimensional wake development from the near to the far field. The work described herein considers the analysis of both steady axial and yawed flow conditions. The detailed modelling of the yawed case is still in the initial stages, it is envisaged that this will eventually include fully unsteady aerodynamic effects. Model validation is by comparison with both experimental data and results from a free wake model.

  15. On the expansion of ionospheric plasma into the near-wake of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Wright, K. H., Jr.; Samir, U.; Hwang, K. S.

    1988-01-01

    During the Spacelab 2 mission, while the Plasma Diagnostics Package was attached to the Remote Manipulator System, differential ion vector measurements were obtained in the near wake at a distance of 4-5 Shuttle radii. The Orbiter's wake was found to fill in at a much faster rate than can be explained by simple thermal motion. The measurements strongly suggest that filling of the Orbiter's wake is produced by the process of 'collisionless plasma expansion into a vacuum' and that, for oblique angles of the magnetic field and velocity vectors, the near wake plasma depletion a few radii downstream is not sensitive to the body scale size.

  16. The Computer Code NOVO for the Calculation of Wake Potentials of the Very Short Ultra-relativistic Bunches

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2005-12-01

    The problem of electromagnetic interaction of a beam and accelerator elements is very important for linear colliders, electron-positron factories, and free electron lasers. Precise calculation of wake fields is required for beam dynamics study in these machines. We describe a method which allows computation of wake fields of the very short bunches. Computer code NOVO was developed based on this method. This method is free of unphysical solutions like ''self-acceleration'' of a bunch head, which is common to well known wake field codes. Code NOVO was used for the wake fields study for many accelerator projects all over the world.

  17. An experimental investigation of bending wave instability modes in a generic four-vortex wake

    SciTech Connect

    Babie, Brian M.; Nelson, Robert C.

    2010-07-15

    An experimental study of a planar wake consisting of four vortices that simulate the trailing vortex wakes generated by transport airplanes in either takeoff or landing configurations is presented. The objective of this study was to examine naturally occurring wake instabilities. Specifically, the focus of the study was centered on bending wave instabilities of which the Crow instability represents a particular case. A unique method of generating a four-vortex wake was developed for this study. The four-vortex wake generating device permitted direct variation of the spacing between vortices as well as control over the vortex circulation strength. Two quantitative flow visualization experiments were instrumental in identifying wake configurations that were conducive to the rapid growth of bending wave modes and in the identification of the long-wavelength mode. Detailed experiments were also conducted to examine the flow structure in the near-field or roll-up region using a four sensor, hot-wire probe that could measure all three velocity components in the wake simultaneously. The results of both the flow visualization and hot-wire experiments indicate that the long-wavelength mode and the first short-wavelength mode likely dominate the far-field wake physics and may potentially be utilized in a wake control strategy.

  18. A Study of Wake Development and Structure in Constant Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng

    2000-01-01

    Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.

  19. The computation of induced drag with nonplanar and deformed wakes

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Smith, Stephen

    1991-01-01

    The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.

  20. Kirchhoff's Integral Representation and a Cavity Wake Potential

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-02-17

    A method is proposed for the calculation of the short-range wake field potentials of an ultra-relativistic bunch passing near some irregularities in a beam pipe. The method is based on the space-time domain integration of Maxwell's equations using Kirchhoff's formulation. We demonstrate this method on two cases where we obtain the wake potentials for the energy loss of a bunch traversing an iris-collimator in a beam pipe and for a cavity. Likewise, formulas are derived for Green's functions that describe the transverse force action of wake fields. Simple formulas for the total energy loss of a bunch with a Gaussian charge density distribution are derived as well. The derived estimates are compared with computer results and predictions of other models.

  1. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Stefan, Heinz; Porté-Agel, Fernando

    2014-05-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ~O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 35-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is 35 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity vector near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  2. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  3. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  4. Formation and Recovery of Cold Wake during Typhoon Fanapi (2010)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jin, H.; Black, P. G.; Chen, S.; Doyle, J.; O'Neill, L. W.

    2012-12-01

    Cold anomaly of sea surface temperature (SST) is often created after the passage of a moving hurricane or typhoon. The SST reduction within these cold anomalies or cold wakes may reach 2C to 4C. The cold wakes may have important impact on the development of a tropical cyclone due to their control on the surface energy fluxes. This work is aimed at understanding the evolution of cold wake and its impacts on the boundary layers on both sides of the air-sea interface. During 2010 typhoon season, coupled Naval Research Laboratory COAMPS-Tropical Cyclone was used to provide real-time forecasts for ITOP (Impact of Typhoons on the Ocean in the Pacific) field experiment. Typhoon Fanapi started as a tropical depression on September 14, and turned into a Category 4 typhoon on September 18. Along its passage, Typhoon Fanapi produced a large area of cold wake, leading to about 2 degree C reductions in SST. The coupled COAMPS-TC realistically predicted the cold wake formation and recovery as well as the typhoon's track and intensity in general. We use combined coupled COAMPS-TC prediction and observation data collected during the ITOP IOP to investigate the characteristics of the cold wake evolution, evolution of atmospheric as well as oceanic boundary layers. The cold wake was predicted by the model on the right hand side of the storm track; it is driven by the strong shear mixing in the ocean mixed layer. The predicted maximum SST reduction within the wake is 2.5 C, a value very close to the AXBT and satellite observations. Because of this decrease in SST, a stable atmospheric boundary layer is formed, leading to decreases in the surface wind speed, sensible and latent heat fluxes. The predicted warming rate in the cold wake recovery process is comparable with the satellite observation, even though diurnal signal is much more significant in the model prediction. An important question is what determines the recovery time scale. Given the similar solar warming rate between the

  5. A digital photography and analysis system for estimation of root and shoot development in rice weed suppression studies in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice germplasm with an inherent ability to suppress weeds can potentially improve the economics and sustainability of weed control in rice. We devised a simple, rapid, and inexpensive digital imaging system to quantify several shoot and root growth characteristics in field-grown rice plants that ha...

  6. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  7. Thickness-Dependent and Magnetic-Field-Driven Suppression of Antiferromagnetic Order in Thin V5S8 Single Crystals.

    PubMed

    Hardy, Will J; Yuan, Jiangtan; Guo, Hua; Zhou, Panpan; Lou, Jun; Natelson, Douglas

    2016-06-28

    With materials approaching the 2D limit yielding many exciting systems with intriguing physical properties and promising technological functionalities, understanding and engineering magnetic order in nanoscale, layered materials is generating keen interest. One such material is V5S8, a metal with an antiferromagnetic ground state below the Néel temperature TN ∼ 32 K and a prominent spin-flop signature in the magnetoresistance (MR) when H∥c ∼ 4.2 T. Here we study nanoscale-thickness single crystals of V5S8, focusing on temperatures close to TN and the evolution of material properties in response to systematic reduction in crystal thickness. Transport measurements just below TN reveal magnetic hysteresis that we ascribe to a metamagnetic transition, the first-order magnetic-field-driven breakdown of the ordered state. The reduction of crystal thickness to ∼10 nm coincides with systematic changes in the magnetic response: TN falls, implying that antiferromagnetism is suppressed; and while the spin-flop signature remains, the hysteresis disappears, implying that the metamagnetic transition becomes second order as the thickness approaches the 2D limit. This work demonstrates that single crystals of magnetic materials with nanometer thicknesses are promising systems for future studies of magnetism in reduced dimensionality and quantum phase transitions. PMID:27163511

  8. Reexamining X-mode suppression and fine structure in artificial E region field-aligned plasma density irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; McCarrick, M.; Huba, J. D.

    2013-09-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program facility during campaigns in May and August of 2012 and observed using a 30 MHz coherent scatter radar imager in Homer, Alaska. The purpose of this ionospheric modification experiment was to measure the threshold pump power required to excite thermal parametric instabilities by O-mode heating and to investigate the suppression of the FAIs by simultaneous X-mode heating. We find that the threshold pump power for irregularity excitation was consistent with theoretical predictions and increased by approximately a factor of 2 when X-mode heating was present. A modified version of the Another Model of the Ionosphere (SAMI2) ionospheric model was used to simulate the threshold experiments and suggested that the increase was entirely due to enhanced D region absorption associated with X-mode heating. Additionally, a remarkable degree of fine structure possibly caused by natural gradient drift instability in the heater-modified volume was observed in experiments performed during geomagnetically active conditions.

  9. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.

    PubMed

    Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao

    2015-01-27

    Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current. PMID:25545108

  10. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  11. Harmonics suppression of vacuum chamber eddy current-induced fields with application to the Superconducting Super Collider Low Energy Booster Magnets

    SciTech Connect

    Schlueter, R.; Halbach, K.

    1992-01-01

    This report presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current-induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider Low Energy Booster Magnets.

  12. Harmonics suppression of vacuum chamber eddy current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets

    SciTech Connect

    Schlueter, R.D.; Halbach, K.

    1991-12-04

    This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.

  13. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-11-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  14. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  15. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  16. Study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments

    SciTech Connect

    Whale, J.; Skyner, D.J.; Papadopoulos, K.H.; Helmis, C.G.; Anderson, C.G.

    1996-06-01

    Wake flow measurements have been performed using the technique of particle image velocimetry (PIV) at stations downstream from a model wind turbine rotor, and evaluated against experimental data from two full-scale machines. Comparisons include both mean velocity and turbulent intensity cross-wake profiles at a range of tip speed ratios. The application of PIV to the study of wind turbine wakes is described in detail, including the steps required to ensure appropriate and accurate simulation of the flow field conditions. The results suggest that the PIV method is a potentially useful tool in the investigation of detailed wake flow, though significant differences are observed between wake velocity deficits at full- and model scale. These are discussed with regard to scale effect, the influence of terrain, model similarity, and the phenomenon of wake meandering and effective cross-wake smoothing. 17 refs., 13 figs.

  17. Near-wake instability and sensitivity analysis of wind turbines immersed in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porté-Agel, Fernando; Gallaire, François

    2014-11-01

    In wind farms, the separation distance among wind turbines is mainly determined by the downstream recovery of wind turbine wakes, which affects in turn power production and fatigue loads of downstream turbines. Thus, the optimization of a wind farm relies on the understanding of the single wake dynamics and a better characterization of their interactions within the atmospheric boundary layer (ABL). This work is focused on the stability analysis of vorticity structures present in wind turbine wakes. In order to take into account the effects of a non-uniform incoming wind investing the turbine, a 3D local stability analysis is performed on the non-axisymmetric swirling wake prevailing at different downstream stations. Different wind shear and veer of the incoming wind can now be investigated, together with a 3D non-isotropic turbulent velocity field. This procedure enables to perform stability analysis of wind turbine wakes for wind conditions very similar to the ones experienced in reality. The present analysis is carried out on wind tunnel data acquired in the wake of a down-scaled three-bladed wind turbine. The Reynolds stresses are taken into account via eddy-viscosity models calibrated on the experimental data. Furthermore, the effect of an external perturbation in the wake flow is investigated through linear sensitivity. This analysis represents a preliminary step for control of wind turbine wakes, and optimization of wake interactions and power harvesting.

  18. Transition to bluff body dynamics in the wake of vertical axis turbines

    NASA Astrophysics Data System (ADS)

    Araya, Daniel; Dabiri, John

    2015-11-01

    A unifying characteristic among bluff bodies is a similar wake structure independent of the shape of the body. We present experimental data to demonstrate that the wake of a vertical axis wind/water turbine (VAWT) shares similar features to that of a bluff body, namely a circular cylinder. For a fixed Reynolds number (Re ~ 104) and variable tip-speed ratio, 2D particle image velocimetry (PIV) is used to measure the velocity field in the wake of three different laboratory-scale turbines: a 2-bladed, 3-bladed, and 5-bladed VAWT, each with similar geometry. From the PIV measurements, the time-averaged and dynamic characteristics of the wake are evaluated. In all cases, we observe three distinct regions in the VAWT wake: (1) the near wake, where periodic blade shedding dominates; (2) a transition region, where blade vortices decay and growth of a shear layer instability occurs; (3) the far wake, where bluff body wake oscillations dominate. We further characterize this wake transition with regard to turbine solidity and examine its relation to the mean flow, an important metric for power production within a wind farm.

  19. The role of mesopontine NGF in sleep and wakefulness.

    PubMed

    Ramos, Oscar V; Torterolo, Pablo; Lim, Vincent; Chase, Michael H; Sampogna, Sharon; Yamuy, Jack

    2011-09-21

    The microinjection of nerve growth factor (NGF) into the cat pontine tegmentum rapidly induces rapid eye movement (REM) sleep. To determine if NGF is involved in naturally-occurring REM sleep, we examined whether it is present in mesopontine cholinergic structures that promote the initiation of REM sleep, and whether the blockade of NGF production in these structures suppresses REM sleep. We found that cholinergic neurons in the cat dorso-lateral mesopontine tegmentum exhibited NGF-like immunoreactivity. In addition, the microinjection of an oligodeoxyribonucleotide (OD) directed against cat NGF mRNA into this region resulted in a reduction in the time spent in REM sleep in conjunction with an increase in the time spent in wakefulness. Sleep and wakefulness returned to baseline conditions 2 to 5 days after antisense OD administration. The preceding antisense OD-induced effects occurred in conjunction with the suppression of NGF-like immunoreactivity within the site of antisense OD injection. These data support the hypothesis that NGF is involved in the modulation of naturally-occurring sleep and wakefulness. PMID:21840513

  20. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    PubMed

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization. PMID:27409950

  1. Recent results about fan noise: Its generation, radiation and suppression

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.

    1982-01-01

    Fan noise including its generation, radiation characteristics, and suppression by acoustic treatment is studied. In fan noise generation, results from engine and fan experiments, using inflow control measures to suppress noise sources related to inflow distortion and turbulence, are described. The suppression of sources related to inflow allows the experiments to focus on the fan or engine internal sources. Some of the experiments incorporated pressure sensors on the fan blades to sample the flow disturbances encountered by the blades. From these data some inferences can be drawn about the origins of the disturbances. Also, hot wire measurements of a fan rotor wake field are presented and related to the fan's noise signature. The radiation and the suppression of fan noise are dependent on the acoustic modes generated by the fan. Fan noise suppression and radiation is described by relating these phenomena to the mode cutoff ratio parameter. In addition to its utility in acoustic treatment design and performance prediction, cutoff ratio was useful in developing a simple description of the radiation pattern for broadband fan noise. Some of the findings using the cutoff ratio parameter are presented.

  2. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  3. Diffraction of an impulsive line source with wake

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Naeem, A.; Nawaz, Rab

    2010-10-01

    The problem of diffraction due to an impulse line source by an absorbing half-plane with wake using Myres' impedance condition (Myers 1980 J. Sound Vib. 71 429-34) in the presence of a subsonic fluid flow is studied. The time dependence of the field requires a temporal Fourier transform in addition to the spatial Fourier transform. The solution of the problem in the presence of wake is obtained by using Greens' function method, Fourier transform, the Wiener-Hopf technique and the modified stationary phase method. Expressions for the total far field for the trailing edge (wake present) situation are given. It is observed that the field produced by the Kutta-Joukowski condition will be substantially in excess of the field when this condition is ignored. Finally, a simple procedure is devised to calculate the inverse temporal Fourier transform. The solution for the leading edge situation can be obtained if the wake, and consequently a Kutta-Joukowski edge condition, is ignored. This can also be seen from the numerical results.

  4. A Study of Water Wave Wakes of Washington State Ferries

    NASA Astrophysics Data System (ADS)

    Perfect, Bradley; Riley, James; Thomson, Jim; Fay, Endicott

    2015-11-01

    Washington State Ferries (WSF) operates a ferry route that travels through a 600m-wide channel called Rich Passage. Concerns of shoreline erosion in Rich Passage have prompted this study of the generation and propagation of surface wave wakes caused by WSF vessels. The problem was addressed in three ways: analytically, using an extension of the Kelvin wake model by Darmon et al. (J. Fluid Mech., 738, 2014); computationally, employing a RANS Navier-Stokes model in the CFD code OpenFOAM which uses the Volume of Fluid method to treat the free surface; and with field data taken in Sept-Nov, 2014, using a suite of surface wave measuring buoys. This study represents one of the first times that model predictions of ferry boat-generated wakes can be tested against measurements in open waters. The results of the models and the field data are evaluated using direct comparison of predicted and measured surface wave height as well as other metrics. Furthermore, the model predictions and field measurements suggest differences in wake amplitudes for different class vessels. Finally, the relative strengths and weaknesses of each prediction method as well as of the field measurements will be discussed. Washington State Department of Transportation.

  5. Prescribed wake methodologies for wind turbine design codes

    SciTech Connect

    Galbraith, R.A.M.; Coton, F.N.; Robison, D.J.

    1995-12-31

    Prescribed wake performance assessment models have been developed successfully for both vertical (VAWT) and horizontal (HAWT) axis wind turbines. In the case of the VAWT model the Beddoes and Leishman dynamic stall model has been incorporated. This has resulted in a fully unsteady 3-D code, establishing extremely accurate performance prediction across a wide range of operating conditions. Comparison of performance estimates from the prescribed wake model with those from free wake models have shown excellent correlation. To date, the HAWT model has been developed for the consideration of steady axial and yawed inflows. In the axial flow case comparisons of predicted power output with field data and free wake predictions have shown excellent agreement. Full validation of the yawed flow model is currently underway, with very encouraging initial results. The capabilities of the HAWT model are currently being extended by the inclusion of the Beddoes and Leishman dynamic stall model. Consideration of the significant unsteady aerodynamic influences acting on HAWTs while operating in yaw will significantly improve the models performance. The power of this modelling technique is the significant reduction in the computational overhead it offers. The prescribed wake models offer performance estimates of comparable detail and accuracy to those from free vortex analyses in minutes rather than hours. As such these models are highly suited to design assessment, with particular application to fatigue load analysis.

  6. Analytical model of rotor wake aerodynamics in ground effect

    NASA Technical Reports Server (NTRS)

    Saberi, H. A.

    1983-01-01

    The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.

  7. POD analysis of PIV measurements in complex near wake flows

    NASA Astrophysics Data System (ADS)

    Al-Garni, A. M.; Bernal, L. P.

    2003-11-01

    Proper Orthogonal Decomposition analysis of PIV measurements is used to study the turbulent flow structure in the near wake of bluff bodies. Several body geometries are considered including two-dimensional cylindrical shapes, rounded-nose bluff bodies and typical road vehicle geometries. The main goal of the study is to determine the more energetic POD modes and associated unsteady flow, and the underlying near wake dynamics. We briefly review the results of POD analysis of PIV measurements in two-dimensional geometries. We show that in more complicated flow fields, different POD modes capture the turbulent energy in different regions of the wake. For example, in the flow over a pickup truck, modes 1 and 2 capture the turbulent structure in the underbody shear layer, while mode 4 captures the turbulent structure of the flow over the bed. This result has significant implications for flow control applications. The POD methodology is used to identify generic unsteady flow structures in the near wake. The dominant modes are an oscillation of the length of the recirculation region behind the body (breathing mode) and a lateral oscillation of the wake (flapping mode). In some cases a vortex shedding mode reminiscent of the Karman-Roshko structure in circular cylinders is also observed. Efforts to determine the dynamics of the experimentally measured POD modes are discussed.

  8. Numerical simulation of supersonic wake flow with parallel computers

    SciTech Connect

    Wong, C.C.; Soetrisno, M.

    1995-07-01

    Simulating a supersonic wake flow field behind a conical body is a computing intensive task. It requires a large number of computational cells to capture the dominant flow physics and a robust numerical algorithm to obtain a reliable solution. High performance parallel computers with unique distributed processing and data storage capability can provide this need. They have larger computational memory and faster computing time than conventional vector computers. We apply the PINCA Navier-Stokes code to simulate a wind-tunnel supersonic wake experiment on Intel Gamma, Intel Paragon, and IBM SP2 parallel computers. These simulations are performed to study the mean flow in the near wake region of a sharp, 7-degree half-angle, adiabatic cone at Mach number 4.3 and freestream Reynolds number of 40,600. Overall the numerical solutions capture the general features of the hypersonic laminar wake flow and compare favorably with the wind tunnel data. With a refined and clustering grid distribution in the recirculation zone, the calculated location of the rear stagnation point is consistent with the 2D axisymmetric and 3D experiments. In this study, we also demonstrate the importance of having a large local memory capacity within a computer node and the effective utilization of the number of computer nodes to achieve good parallel performance when simulating a complex, large-scale wake flow problem.

  9. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  10. Cooling Signs in Wake Debate

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    More than a year after dismantling a student-assignment policy based on socioeconomic diversity and setting off a wave of reaction that drew national attention, the Wake County, North Carolina, school board took a step that may turn down the temperature of the intense debate. The board, which has been deeply split on an assignment plan for the…

  11. Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    1998-01-01

    This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.

  12. Wake characteristics of buildings in disturbed boundary layers

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Chang, J.

    1980-01-01

    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. Field measurements of velocity and turbulence in the wake of a block building 3.2 m high and 26.8 m long are presented which show an apparent increase in momentum flow above the upwind value. Velocity-deficit and turbulence-excess decay characteristics of the disturbed or nonequilibrium layer are correlated with power law exponents and apparent roughness length at various distances downstream of the disturbance. Model wake profiles from the simulated building are compared at various stations for equilibrium and nonequilibrium upstream profiles. Empirical correlations relating building wake profiles to upstream nonequilibrium parameters are presented. The relationship of the data to the smooth-rough transition is discussed, and a flow model is presented.

  13. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  14. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  15. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions.

    PubMed

    Han, Yong; Shi, Yu-feng; Xi, Wang; Zhou, Rui; Tan, Zhi-bing; Wang, Hao; Li, Xiao-ming; Chen, Zhong; Feng, Guoping; Luo, Minmin; Huang, Zhi-li; Duan, Shumin; Yu, Yan-qin

    2014-03-17

    The basal forebrain (BF) plays a crucial role in cortical activation [1, 2]. However, the exact role of cholinergic BF (ch-BF) neurons in the sleep-wake cycle remains unclear [3, 4]. We demonstrated that photostimulation of ch-BF neurons genetically targeted with channelrhodopsin 2 (ChR2) was sufficient to induce an immediate transition to waking or rapid eye movement (REM) sleep from slow-wave sleep (SWS). Light stimulation was most likely to induce behavioral arousal during SWS, but not during REM sleep, a result in contrast to the previously reported photostimulation of noradrenergic or hypocretin neurons that induces wake transitions from both SWS and REM sleep. Furthermore, the ratio of light-induced transitions from SWS to wakefulness or to REM sleep did not significantly differ from that of natural transitions, suggesting that activation of ch-BF neurons facilitates the transition from SWS but does not change the direction of the transition. Excitation of ch-BF neurons during wakefulness or REM sleep sustained the cortical activation. Stimulation of these neurons for 1 hr induced a delayed increase in the duration of wakefulness in the subsequent inactive period. Our results suggest that activation of ch-BF neurons alone is sufficient to suppress SWS and promote wakefulness and REM sleep. PMID:24613308

  16. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  17. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  18. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  19. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  20. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  1. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  2. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  3. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  4. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC

  5. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  6. Dynamics of wake structure in clapping propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2009-11-01

    Some animals such as insects and frogs use a pair of symmetric flaps for locomotion. In some cases, these flappers operate in close proximity or even touch each other. In order to understand the underlying physics of these kinds of motion, we have studied the wake structures induced by clapping and their associated thrust performance. A simple mechanical model with two acrylic plates was used to simulate the power stroke of the clapping motion and three-dimensional flow fields were obtained using defocusing digital particle image velocimetry. Our studies show that the process of vortex connection plays a critical role in forming a downstream closed vortex loop. Under some kinematic conditions, this vortex loop changes its shape dynamically, which is analogous to the process of an elliptical vortex ring switching its minor and major axis. As the length of the plate along the rotating shaft decreases to change an aspect ratio, the downstream motion of the vortex is retarded due to the outward motion of side edge vortices and less propulsive force is generated per the surface area of the plate. The impact of compliance and stroke angle of the plate on wake structures and thrust magnitudes are also presented.

  7. Probing Neutrino Hierarchy and Chirality via Wakes.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-01

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ∼0.1  eV, and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable. PMID:27104695

  8. Brain mechanisms that control sleep and waking

    NASA Astrophysics Data System (ADS)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  9. Effects of atmospheric stability on the evolution of wind turbine wakes: Volumetric LiDAR scans

    NASA Astrophysics Data System (ADS)

    Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    Aerodynamic optimization of wind farm layout is a fundamental task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, like the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL stability regime. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2 MW Enercon E-70 wind turbine were performed with three scanning Doppler wind Light Detection and Ranging (LiDAR) instruments. One LiDAR was typically devoted to the characterization of the incoming wind, in particular wind velocity, shear and turbulence intensity at the height of the rotor disc. The other two LiDARs performed scans in order to characterize the wake velocity field produced by the tested wind turbine. The main challenge in performing field measurements of wind turbine wakes is represented by the varying wind conditions, and by the consequent adjustments of the turbine yaw angle needed to maximize power production. Consequently, taking into account possible variations of the relative position between LiDAR measurement volume and wake location, different LiDAR measurement procedures were carried out in order to perform 2-D and 3-D characterizations of the mean wake velocity field. However, larger measurement volumes and higher spatial resolution require longer sampling periods; thus, to investigate wake turbulence tests were also performed by staring the LiDAR laser beam over fixed directions and with the maximum sampling frequency. Furthermore, volumetric scans of the wind turbine wake were performed under different wind

  10. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  11. Simulation Comparison of Wake Mitigation Control Strategies for a Two-Turbine Case

    SciTech Connect

    Fleming, Paul; Gebraad, Pieter M. O.; Lee, Sang; van Wingerden, Jan-Willem; Johnson, Kathryn; Churchfield, Matt; Michalakes, John; Spalart, Philippe; Moriarty, Patrick

    2015-12-01

    Wind turbines arranged in a wind plant impact each other through their wakes. Wind plant control is an active research field that attempts to improve wind plant performance by coordinating control of individual turbines to take into account these turbine–wake interactions. High-fidelity simulations of a two-turbine fully waked scenario are used to investigate several wake mitigation strategies, in this paper, including modification of yaw and tilt angles of an upstream turbine to induce wake skew, as well as repositioning of the downstream turbine. The simulation results are compared through change relative to a baseline operation in terms of overall power capture and loading on the upstream and downstream turbine. Results demonstrated improved power production for all methods. Moreover, analysis of control options, including individual pitch control, shows potential to minimize the increase of, or even reduce, turbine loads.

  12. Wind tunnel measurements in the wake of a simple structure in a simulated atmospheric flow

    NASA Technical Reports Server (NTRS)

    Hansen, A. C.; Peterka, J. A.; Cermak, J. E.

    1975-01-01

    Measurements of longitudinal mean velocity and turbulence intensity were made in the wake of a rectangular model building in a simulated atmospheric boundary-layer wind. The model building was a 1:50 scale model of a structure used in a wake measurement program at the George C. Marshall Space Flight Center 8-tower boundary-layer facility. The approach wind profile and measurement locations were chosen to match the field site conditions. The wakes of the building in winds from azimuths of 0 and 47 degrees referenced to the normal to the building long axis were examined. The effect of two lines of trees upwind of the building on the wake and the importance of the ratio of the building height to boundary-layer thickness on the extent of the wake were determined.

  13. Suppression of the internal electric field effects in ZnO/Zn(0.7)Mg(0.3)O quantum wells by ion-implantation induced intermixing.

    PubMed

    Davis, J A; Dao, L V; Wen, X; Ticknor, C; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M

    2008-02-01

    Strong suppression of the effects caused by the internal electric field in ZnO/ZnMgO quantum wells following ion-implantation and rapid thermal annealing, is revealed by photoluminescence, time-resolved photoluminescence, and band structure calculations. The implantation and annealing induces Zn/Mg intermixing, resulting in graded quantum well interfaces. This reduces the quantum-confined Stark shift and increases electron-hole wavefunction overlap, which significantly reduces the exciton lifetime and increases the oscillator strength. PMID:21817603

  14. Wake effects in a Fayette 95-IIS wind turbine array

    SciTech Connect

    Simon, R.L.; Matson, D.F.; Fuchs, J.M.

    1987-09-01

    A group of 35 wind turbines on the Castello Ranch in Altamont Pass, California, was investigated to quantify array wake effects (losses in energy production due to operation of upwind turbines) and the factors influencing them. Approximately 65 hours of field measurements were made in summer 1986, with turbine energy production and wind velocity data recorded for various scenarios of array operation. Customized software and hardware were developed and installed by Fayette to facilitate these measurements. The existence of wake effects was fairly well established. Relative energy-production losses averaged 6% at the second row, when the first row was operating, and 7 to 8% at the third row, when the first two were operating. Apparently, then, the impact of the first row on the third (at a 21-rotor-diameter distance) was minimal. Ambient wind speed did not appear to affect the relative wind speed pattern within the array due to wakes, but because of the shape of the performance curve, it did affect relative energy production losses (particularly for the low-RPM mode of machine operation). The influences of ambient atmospheric conditions, such as stability, turbulence, and shear on the array wakes, were also investigated by testing over a range of the conditions available during a typical 24-hour day at the test site. None of these variables showed any significant effect on the degree of wake-induced energy losses. While the results of this study apply only to this specific array and type of wind turbine, the methodology could be applied to study wake effects at other wind farms. 6 refs., 7 figs., 20 tabs.

  15. Compressor and fan wake characteristics

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1975-01-01

    Approaches for developing an analytical model capable of determining the effects of rotor flow and blade parameters and turbulence properties (i.e. energy, velocity correlations, and length scale) on the rotor wake characteristics and its diffusion properties are discussed. The three-dimensional model will employ experimental measurements, instantaneous velocities, and turbulence properties at various stations downstream from a rotor. A triaxial probe and a rotating conventional probe, which is mounted on a traverse gear operated by two step motors, are to be used for these measurements. The final rotor wake model will be capable of predicting the discrete and broadband noise generated in a fan rotor and of evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery.

  16. Compressor and fan wake characteristics

    NASA Technical Reports Server (NTRS)

    Reynolds, B.; Hah, C.; Lakshminarayana, B.; Ravindranath, A.

    1978-01-01

    A triaxial probe and a rotating conventional probe, mounted on a traverse gear operated by two step motors were used to measure the mean velocities and turbulence quantities across a rotor wake at various radial locations and downstream stations. The data obtained was used in an analytical model developed to study how rotor flow and blade parameters and turbulence properties such as energy, velocity correlations, and length scale affect the rotor wake characteristics and its diffusion properties. The model, includes three dimensional attributes, can be used in predicting the discrete as well as broadband noise generated in a fan rotor, as well as in evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery.

  17. Flow Structures within a Helicopter Rotor Hub Wake

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  18. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  19. Numerical prediction of wakes in cascades and compressor rotors including the effects of mixing. II - Rotor passage flow and wakes including the effects of spanwise mixing

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Suryavamshi, N.

    1991-01-01

    The results of a numerical investigation to predict the flow field including wakes and mixing in axial-flow compressor rotors are presented. The wake behavior in a moderately loaded compressor rotor is studied numerically using a 3D incompressible Navier-Stokes solver with a high Reynolds number form of a turbulence model. The equations are solved using a time dependent implicit technique. The agreement between the measured data and the predictions is good; including the blade boundary-layer profiles, wake mean-velocity profiles, and decay. The ability of the pseudocompressibility scheme to predict the entire flow field including the near and far wake profiles and its decay characteristics, effect of loading, and the viscous losses of a 3D rotor flow field are demonstrated. The mixing in the downstream regions away from the hub and annulus walls is dominated by wake diffusion. In regions away from the walls the radial mixing is predominantly caused by the transport of mass, momentum, and energy by the radial component of velocity in the wake.

  20. Suppression of vortex pinning by field component parallel to the superconducting plane in Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Nakaharai, S.; Ishiguro, T.; Watauchi, S.; Shimoyama, J.; Kishio, K.

    2000-02-01

    The response of magnetic fluxoids nearly parallel to the superconducting plane of the layered superconductor Bi2Sr2CaCu2O8 has been investigated through the ac susceptibility measurement. The fluxoids respond diamagnetically due to pinning when they pierce the superconducting plane to form pancake vortices, but they are released due to melting and become mobile in the high field. The liberation is enhanced by approaching the parallel field direction by the effect of decoupling between planes and finally the vortex pinning is suppressed. The pinning of fluxoids with pancakes and releasing in relation to their lock-in state are presented.

  1. Comparison of application methods for suppressing the pecan weevil (Coleoptera: Curculionidae) with Beauveria bassiana under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. The entomopathogenic fungus Beauveria bassiana is pathogenic to C. caryae. Our objective was to compare different application methods for suppression of C. caryae adults. Treatments included direct application of B. bassiana (GHA...

  2. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  3. Computation of high resolution unsteady airloads using a constant vorticity contour free wake model

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Lam, C.-M. G.; Bliss, D. B.

    1992-01-01

    Recent work in the study of helicopter aerodynamic loading for acoustics applications has involved research on the development of an exceptionally efficient simulation of the velocity field induced by the rotor's vortex wake. This paper summarizes the work to date on the development of this analysis, which builds on the refined constant vorticity contour (CVC) free wake model recently developed for application to the study of vibratory loading. The particular focus of this paper is on demonstrations of a reconstruction approach that efficiently computes both the flow fields and airloads induced by CVC wakes on lifting rotor blades. Results of recent calculations on both main rotor and tail rotors are presented. These calculations show that by employing flow field reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to the direct calculations used in traditional methods.

  4. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  5. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  6. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep

    PubMed Central

    Konadhode, Roda Rani; Pelluru, Dheeraj; Shiromani, Priyattam J.

    2015-01-01

    Neurons containing orexin (hypocretin), or melanin concentrating hormone (MCH) are intermingled with each other in the perifornical and lateral hypothalamus. Each is a separate and distinct neuronal population, but they project to similar target areas in the brain. Orexin has been implicated in regulating arousal since loss of orexin neurons is associated with the sleep disorder narcolepsy. Microinjections of orexin into the brain or optogenetic stimulation of orexin neurons increase waking. Orexin neurons are active in waking and quiescent in sleep, which is consistent with their role in promoting waking. On the other hand, the MCH neurons are quiet in waking but active in sleep, suggesting that they could initiate sleep. Recently, for the first time the MCH neurons were stimulated optogenetically and it increased sleep. Indeed, optogenetic activation of MCH neurons induced sleep in both mice and rats at a circadian time when they should be awake, indicating the powerful effect that MCH neurons have in suppressing the wake-promoting effect of not only orexin but also of all of the other arousal neurotransmitters. Gamma-Aminobutyric acid (GABA) is coexpressed with MCH in the MCH neurons, although MCH is also inhibitory. The inhibitory tone of the MCH neurons is opposite to the excitatory tone of the orexin neurons. We hypothesize that strength in activity of each determines wake vs. sleep. PMID:25620917

  7. Multiple-LiDAR measurements of wind turbine wakes: effect of the atmospheric stability

    NASA Astrophysics Data System (ADS)

    Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Aerodynamic design and optimization of a wind farm layout are mainly based on the evaluation of wind turbine wake recovery by moving downstream, and on the characterization of wake interactions within a wind farm. Indeed, the power production of downstream wind turbine rows is strictly affected by the cumulative wake produced by the turbines deployed upstream. Wind turbine wakes are dependent on their aerodynamic features, and being immersed in the atmospheric boundary layer (ABL), they are also affected by surface heterogeneity, e.g. site topography and surface coverage, and atmospheric stability. The ABL stability is typically classified as neutral, convective or stable. In a neutral ABL the mechanical turbulent production is the dominating phenomenon. Conversely, for a convective ABL the turbulent kinetic energy and vertical transport phenomena are enhanced by positive buoyancy. Finally, for a stable ABL, a lower turbulence level is typically observed with an increased wind shear. For the present campaign convective ABL was typically observed during day-time, and neutral ABL for early morning and sunset periods. The aim of the present work is the evaluation of the influence of the ABL stability on downstream evolution of wind turbine wakes, which is mainly controlled by different ABL turbulence characteristics. Field measurements of the wake produced from a 2 MW Enercon E-70 wind turbine were performed with three scanning Doppler wind LiDARs. The wind and atmospheric conditions were characterized through a sonic anemometer deployed in proximity of the wind turbine. One LiDAR was placed at a distance about 12 rotor diameters upstream of the turbine in order to characterize the incoming wind. Two additional LiDARs were typically used to perform wake measurements. Tests were performed over the wake vertical symmetry plane in order to characterize wake recovery. Measurements were also carried out over conical surfaces in order to investigate the wind turbine wake

  8. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  9. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  10. Flow visualization of vortex interactions in multiple vortex wakes behind aircraft

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Lonzo, C., Jr.

    1975-01-01

    A flow visualization technique was developed which allows the nature of lift-generated wakes behind aircraft models to be investigated. The technique was applied to models being towed underwater in a ship model basin. Seven different configurations of a small-scale model of a 747 transport aircraft were used to allow observation of typical vortex interactions and merging in multiple vortex wakes. It was established that the motion of the wake vortices is often sensitive to small changes in either wing span loading or model attitude. Landing gear deployement was found to cause a far-field reformation of vorticity behind a model configuration which dissipated concentrated vorticity in the near-field wake. Alleviation of wake vorticity is achievable by configuring the wing span loading to cause the wake vortices to move in paths that result in their interactions and merging. The vortices shed from the horizontal stabilizer always moved down rapidly into the wake and merged with the other vortices, primarily the inboard flap vortices.

  11. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  12. Ship wake signatures in radar/optical images of the sea surface: observations and physical mechanisms

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Kapustin, I.; Lazareva, T.

    2014-10-01

    Ship wakes can be clearly seen in satellite radar and optical images of the sea surface, and understanding of physical mechanisms responsible for the wake signatures is very important to develop methods of ship detection/identification. The wake surface signatures at small and intermediate stages are characterized by a smooth centerline area where surface waves are depressed due to the vessel turbulence and by a pair of rough bands at the sides of the centerline wake. At large wake ages two slick bands (a "railroad track" wake) appear instead of the rough bands, while the smooth centerline band is practically absent. In this paper results of field studies of the mean flow structure near the wake are presented. It is shown that two mean circulating currents ("rolls") rotating in the opposite directions are formed at two sides of the median vertical plane of the wake. Near the water surface the rolls result in diverging horizontal flows, decreasing near the wake edges. Wind waves propagating against the diverging currents are amplified due to a wave straining mechanism thus increasing the surface roughness. Film sampling was carried out when crossing the wakes and analysis of films collected within the "railroad" slick bands and outside the bands has revealed enhanced surface wave damping, obviously due to accumulation of surfactants in the slick bands; the surfactant compression is explained by the action of the diverging currents. The diverging currents as part of the rolls and the surfactant transport to the water surface are supposed to be associated with air bubbles generated by ship propellers.

  13. Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W)

    NASA Astrophysics Data System (ADS)

    Kumer, V. M.; Reuder, J.; Svardal, B.; Eecen, P.

    2014-12-01

    WINTWEX-W is a cooperative wake measurement campaign conducted by the Norwegian Centre of Offshore Wind Energy (Norcowe) and the Energy Research Centre of the Netherlands (ECN). A scanning, four static Windcubes as well as a downstream looking nacelle LiDAR were placed for half a year downstream of one of five research wind turbines in ECNs' wind turbine test farm Wieringermeer. In order to capture wake characteristics under different weather conditions we scanned a 60˚ sector at three different elevations and two vertical cross-sections every minute. Windcubes v1 measured wind profiles every second at 2, 5 and 12 rotor diameter downstream distances. Another static Windcube, a forward-looking nacelle LiDAR and three Sonics were placed upstream to measure the undisturbed approaching flow field. The aim of the campaign is a qualitative and quantitative description of single wind turbine wake propagation and persistency, as well as to improve CFD wake models by delivering a detailed data set of several real atmospheric conditions.

  14. RWF rotor-wake-fuselage code software reference guide

    NASA Technical Reports Server (NTRS)

    Berry, John D.

    1991-01-01

    The RWF (Rotor-Wake-Fuselage) code was developed from first principles to compute the aerodynamics associated with the complex flow field of helicopter configurations. The code is sized for a single, multi-bladed main rotor and any configuration of non-lifting fuselage. The mathematical model for the RWF code is based on the integration of the momentum equations and Green's theorem. The unknowns in the problem are the strengths of prescribed singularity distributions on the boundaries of the flow. For the body (fuselage) a surface of constant strength source panels is used. For the rotor blades and rotor wake a surface of constant strength doublet panels is used. The mean camber line of the rotor airfoil is partitioned into surface panels. The no-flow boundary condition at the panel centroids is modified at each azimuthal step to account for rotor blade cyclic pitch variation. The geometry of the rotor wake is computers at each time step of the solution. The code produces rotor and fuselage surface pressures, as well as the complex geometry of the evolving rotor wake.

  15. Spatiotemporal spectral analysis of a forced cylinder wake.

    PubMed

    D'Adamo, Juan; Godoy-Diana, Ramiro; Wesfreid, José Eduardo

    2011-11-01

    The wake of a circular cylinder performing rotary oscillations is studied using hydrodynamic tunnel experiments at Re=100. Two-dimensional particle image velocimetry on the midplane perpendicular to the axis of a cylinder is used to characterize the spatial development of the flow and its stability properties. The lock-in phenomenon that determines the boundaries between regions of the forcing parameter space where the wake is globally unstable or convectively unstable [see Thiria and Wesfreid, J. Fluids Struct. 25, 654 (2009) for a review] is scrutinized using the experimental data. A method based on the analysis of power density spectra of the flow allows us to give a detailed description of the forced wake, shedding light on the energy distribution in the different frequency components and in particular on a cascade-like mechanism evidenced for a high amplitude of the forcing oscillation. In addition, a calculation of the drag from the velocity field is performed, allowing us to relate the resulting force on the body to the wake properties. PMID:22181499

  16. Spatiotemporal spectral analysis of a forced cylinder wake

    NASA Astrophysics Data System (ADS)

    D'Adamo, Juan; Godoy-Diana, Ramiro; Wesfreid, José Eduardo

    2012-11-01

    The wake of a circular cylinder performing rotary oscillations is studied using hydrodynamic tunnel experiments at Re = 100 . Two-dimensional particle image velocimetry on the mid-plane perpendicular to the axis of cylinder is used to characterize the spatial development of the flow and its stability properties. The lock-in phenomenon that determines the boundaries between regions of the forcing parameter space were the wake is globally unstable or convectively unstable is scrutinized using this experimental data. A novel method based on the analysis of power density spectra of the flow allows us to give a detailed description of the forced wake, shedding light on the energy distribution in the different frequency components and in particular on a cascade-like mechanism evidenced for a high amplitude of the forcing oscillation. In addition, a calculation of the drag from the velocity field is performed, allowing us to relate the resulting force on the body to the wake properties. The present work was supported by the Franco-Argentinian Associated Laboratory in the Physics and Mechanics of Fluids (LIA PMF-FMF).

  17. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b)...

  18. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b)...

  19. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b)...

  20. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b)...

  1. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b)...

  2. Empirical scaling of antisymmetric stratified wakes

    NASA Astrophysics Data System (ADS)

    Gallet, S.; Meunier, P.; Spedding, G. R.

    2006-08-01

    Initially turbulent wakes of a propelled cylinder at nonzero angles of yaw to the mean flow were measured in the horizontal centerplane plane up to approximately 100 buoyancy times, where vertical velocities are very small. The profiles of mean velocity were found to be antisymmetric throughout their lifetime, with both width and maximum velocity decaying at the same rate as previously studied momentum wakes. The maximum velocity of the profile is proportional to the angle of yaw, but the width is constant. Both the mean flow and fluctuating quantities show that the late wake is self-similar, with scaling laws that are consistent with previous work on propelled and drag wakes.

  3. Coupled wake boundary layer model of windfarms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  4. Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Pascheke, Frauke

    2014-04-01

    Measurements have been made in the wake of a model wind turbine in both a neutral and a stable atmospheric boundary layer, in the EnFlo stratified-flow wind tunnel, between 0.5 and 10 rotor diameters from the turbine, as part of an investigation of wakes in offshore winds. In the stable case the velocity deficit decreased more slowly than in the neutral case, partly because the boundary-layer turbulence levels are lower and the consequentially reduced level of mixing, an `indirect' effect of stratification. A correlation for velocity deficit showed the effect of stratification to be the same over the whole of the measured extent, following a polynomial form from about five diameters. After about this distance (for the present stratification) the vertical growth of the wake became almost completely suppressed, though with an increased lateral growth; the wake in effect became `squashed', with peaks of quantities occurring at a lower height, a `direct' effect of stratification. Generally, the Reynolds stresses were lower in magnitude, though the effect of stratification was larger in the streamwise fluctuation than on the vertical fluctuations. The vertical heat flux did not change much from the undisturbed level in the first part of the wake, but became much larger in the later part, from about five diameters onwards, and exceeded the surface level at a point above hub height.

  5. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  6. Plasma wakefield acceleration studies using the quasi-static code WAKE

    SciTech Connect

    Jain, Neeraj; Palastro, John; Antonsen, T. M.; Mori, Warren B.; An, Weiming

    2015-02-15

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  7. Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness

    PubMed Central

    Raksin, Jonathan N.; Glaze, Christopher M.; Smith, Sarah

    2012-01-01

    Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVCIN) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which “self” (here BOS) is used as a referent to judge “other” (here CON). PMID:22205651

  8. GPU Based Fast Free-Wake Calculations For Multiple Horizontal Axis Wind Turbine Rotors

    NASA Astrophysics Data System (ADS)

    Türkal, M.; Novikov, Y.; Üşenmez, S.; Sezer-Uzol, N.; Uzol, O.

    2014-06-01

    Unsteady free-wake solutions of wind turbine flow fields involve computationally intensive interaction calculations, which generally limit the total amount of simulation time or the number of turbines that can be simulated by the method. This problem, however, can be addressed easily using high-level of parallelization. Especially when exploited with a GPU, a Graphics Processing Unit, this property can provide a significant computational speed-up, rendering the most intensive engineering problems realizable in hours of computation time. This paper presents the results of the simulation of the flow field for the NREL Phase VI turbine using a GPU-based in-house free-wake panel method code. Computational parallelism involved in the free-wake methodology is exploited using a GPU, allowing thousands of similar operations to be performed simultaneously. The results are compared to experimental data as well as to those obtained by running a corresponding CPU-based code. Results show that the GPU based code is capable of producing wake and load predictions similar to the CPU- based code and in a substantially reduced amount of time. This capability could allow free- wake based analysis to be used in the possible design and optimization studies of wind farms as well as prediction of multiple turbine flow fields and the investigation of the effects of using different vortex core models, core expansion and stretching models on the turbine rotor interaction problems in multiple turbine wake flow fields.

  9. Inertial Motions and Mixing in the Wake of Typhoon Fanapi

    NASA Astrophysics Data System (ADS)

    Rainville, L.; Lee, C. M.; St Laurent, L.; Jayne, S. R.

    2012-12-01

    Typhoon Fanapi (September 2010) generated an intense cold wake and a large upper ocean inertial response as it transited the Western Pacific. Ship- and glider-based surveys captured the upper ocean evolution beginning only a few days after the Fanapi's passage, providing measurements used to quantify the spatial scale and decay time of the inertial response. The near-inertial internal wave field transitioned from well-defined, downward propagating wave packets in the first week, to a field composed of mostly low modes with smaller vertical shear and larger spatial coherence 10 days later. In addition, micro-temperature sensors integrated onto the Seagliders collected hundred of profiles of turbulent rates of dissipation in the upper ocean, allowing us to link the time series of mixing at the base of the cold wake to the inertial motions.

  10. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  11. Collisionless Damping of Laser Wakes in Plasma Channels

    SciTech Connect

    Li, X.; Shvets, G.

    1998-08-01

    Excitation of accelerating modes in transversely inhomogeneous plasma channels is considered as an initial value problem. Discrete eigenmodes are supported by plasma channels with sharp density gradients. These eigenmodes are collisionlessly damped as the gradients are smoothed. Using collisionless Landau damping as the analogy, the existence and damping of these "quasi-modes" is studied by constructing and analytically continuing the causal Green's function of wake excitation into the lower half of the complex frequency plane. Electromagnetic nature of the plasma wakes in the channel makes their excitation nonlocal. This results in the algebraic decay of the fields with time due to phase-mixing of plasma oscillations with spatially-varying fequencies. Characteristic decay rate is given by the mixing time, which corresponds to the dephasing of two plasma fluid elements separated by the collisionless skin depth. For wide channels the exact expressions for the field evolution are derived. Implications for electron acceleration in plasma channels are discussed.

  12. Thrust Production and Wake Structure of an Actuated Lamprey Model

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Smits, Alexander

    2004-11-01

    Thrust generation is studied for a flexible lamprey model which is actuated periodically to produce a streamwise traveling wave. Shape memory alloy actuators are used to achieve this deformation. The flow field is investigated using DPIV and flow visualization for a range of Strouhal numbers based on peak-to-peak amplitude of the trailing edge. The vortex kinematics in the spanwise and streamwise planes are examined, and a three-dimensional unsteady vortex model of the wake will be discussed.

  13. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  14. The Effect of Wake Passing on Turbine Blade Film Cooling

    NASA Technical Reports Server (NTRS)

    Heidmann, James David

    1996-01-01

    The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict

  15. Effects of Solar Wind Conditions on the Plasma Wake Within a Polar Crater: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.

    2011-01-01

    As the solar wind sweeps horizontally past a shadowed lunar crater it simultaneously diffuses toward the surface through an ambipolar process, forming a plasma wake (e.g., Figure 1). Importantly, the resulting electric field structure diverts solar wind protons toward the cold crater floor where they may represent a source of surficial hydrogen. We present a handful of two-dimensional kinetic simulations exploring the range of wake structures and surface particle fluxes possible under various background plasma conditions.

  16. Investigating the Structure of the Wake of a Dust Particle in the Plasma Sheath

    NASA Astrophysics Data System (ADS)

    Jung, Hendrik; Greiner, Franko; Piel, Alexander

    2015-11-01

    Due to the deflection of the ambient streaming ions, a negatively charged dust particle in the plasma sheath forms a wake with a net positive space charge in downstream direction. The wake is characterized by attractive, non-reciprocal forces between negatively charged particles and a charge reduction of a particle in the wake of another particle. In this contribution a two-particle system is used to investigate the ion wake structure behind a dust particle in the plasma sheath of an rf discharge. For this purpose, we have used the phase-resolved resonance method that evaluates the dynamic response of the particle system to small external, sinusoidal perturbations, which allows to measure the wake induces characteristics. Plasma inherent etching processes are used to achieve an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which is nearly unaffected by etching, can be probed. In good agreement with theoretical predictions, a significant modification in the plasma sheath to one long potential tail is observed. The presented method is used to investigate the influence of a strong magnetic field on the formation and spatial structure of the wake. Funded by DFG under contract SFB TR-24/A2.

  17. Lagrangian structures and mixing in the wake of a streamwise oscillating cylinder

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Balabani, S.

    2016-04-01

    Lagrangian analysis is capable of revealing the underlying structure and complex phenomena in unsteady flows. We present particle-image velocimetry measurements of the wake of a cylinder undergoing streamwise vortex-induced vibrations and calculate the Finite-Time Lyapunov Exponents (FTLE) in backward- and forward-time. The FTLE fields are compared to the phase-averaged vorticity fields for the four different wake modes observed while the cylinder experiences streamwise vortex-induced vibrations. The backward-time FTLE fields characterise the formation of vortices, with the roll up of spiral-shaped ridges coinciding with the roll up of the shear layers to form the vortices. Ridges in the forward-time fields tend to lie perpendicular to the flow direction and separate nearby vortices. The shedding of vortices coincides with a "peel off" process in the forward-time FTLE fields, in which a ridge connected to the cylinder splits into two strips, one of which moves downstream. Particular attention is given to the "wake breathing" process, in which the streamwise motion of the cylinder causes both shear layers to roll up simultaneously and two vortices of opposite sign to be shed into the wake. In this case, the ridges in forward-time FTLE fields are shown to define "vortex cells," in which the new vortices form, and the FTLE fields allow the wake to be decomposed into three distinct regions. Finally, the mixing associated with each wake mode is examined, and it is shown that cross-wake mixing is significantly enhanced when the vibration amplitude is large and the vortices are shed alternately. However, while the symmetric shedding induces large amplitude vibrations, no increase in mixing is observed relative to the von Kármán vortex street observed behind near-stationary bodies.

  18. Implications of MAVEN Mars near-wake measurements and models

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Dong, Chuanfei; Ma, Yingjuan; Curry, S. M.; Mitchell, D.; Espley, J.; Connerney, J.; Halekas, J.; Brain, D. A.; Jakosky, B. M.; Mazelle, C.

    2015-11-01

    Mars is typically viewed as a member of the category of weakly magnetized planets, with a largely induced magnetosphere and magnetotail produced by the draped fields of the solar wind interaction. However, selected Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) suprathermal electron and magnetic field observations in the near wake, sampled along its elliptical orbit during the early prime mission at altitudes ranging from its ~150 km periapsis to the tail magnetosheath, reinforce a picture seen in an MHD model where magnetic fields are rooted in the planet throughout much of the Martian magnetotail.

  19. Numerical Simulations of the Wake of Kauai

    NASA Astrophysics Data System (ADS)

    Lane, Todd P.; Sharman, Robert D.; Frehlich, Rod G.; Brown, John M.

    2006-09-01

    This study uses a series of numerical simulations to examine the structure of the wake of the Hawaiian island of Kauai. The primary focus is on the conditions on 26 June 2003, which was the day of the demise of the Helios aircraft within Kauai’s wake. The simulations show that, in an east-northeasterly trade wind flow, Kauai produces a well-defined wake that can extend 40 km downstream of the island. The wake is bounded to the north and south by regions of strong vertical and horizontal shear—that is, shear lines. These shear lines mark the edge of the wake in the horizontal plane and are aligned approximately parallel to the upstream flow direction at each respective height. The highest-resolution simulations show that these shear lines can become unstable and break down through Kelvin Helmholtz instability. The breakdown generates turbulent eddies that are advected both downstream and into the recirculating wake flow. Turbulence statistics are estimated from the simulation using a technique that analyzes model-derived structure functions. A number of sensitivity studies are also completed to determine the influence of the upstream conditions on the structure of the wake. These simulations show that directional shear controls the tilt of the wake in the north south plane with height. These simulations also show that at lower incident wind speeds the wake has a qualitatively similar structure but is less turbulent. At higher wind speeds, the flow regime changes, strong gravity waves are generated, and the wake is poorly defined. These results are consistent with previous idealized studies of stratified flow over isolated obstacles.

  20. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake.

    PubMed

    Hengen, Keith B; Torrado Pacheco, Alejandro; McGregor, James N; Van Hooser, Stephen D; Turrigiano, Gina G

    2016-03-24

    Homeostatic mechanisms stabilize neural circuit function by keeping firing rates within a set-point range, but whether this process is gated by brain state is unknown. Here, we monitored firing rate homeostasis in individual visual cortical neurons in freely behaving rats as they cycled between sleep and wake states. When neuronal firing rates were perturbed by visual deprivation, they gradually returned to a precise, cell-autonomous set point during periods of active wake, with lengthening of the wake period enhancing firing rate rebound. Unexpectedly, this resetting of neuronal firing was suppressed during sleep. This raises the possibility that memory consolidation or other sleep-dependent processes are vulnerable to interference from homeostatic plasticity mechanisms. PAPERCLIP. PMID:26997481

  1. The tendency to suppress, inhibiting thoughts, and dream rebound.

    PubMed

    Taylor, Fiona; Bryant, Richard A

    2007-01-01

    Ironic control theory proposes that suppressing thoughts leads to increased occurrence of the suppressed thought because monitoring for the unwanted thought leads to intrusions. This study investigated the influence of suppressing unwanted thoughts on dream content. One hundred participants who had high or low levels of tendency to suppress unwanted thoughts nominated an intrusive thought, and half of the participants were instructed to suppress that thought for 5 min prior to sleeping. Participants completed a dream diary upon waking, which was subsequently rated by independent raters for dream content. In terms of the 79 participants who reported dreaming, more high suppressors who were instructed to suppress dreamt about the intrusive thought than high suppressors in the control condition. There was no difference between low suppressors in the suppression and control conditions. These results suggest that dream content can be influenced by attempted suppression prior to sleep, and this is particularly apparent in people with a tendency to suppress unwanted thoughts. PMID:16516140

  2. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  3. Site Suitability Assessment with Dynamic Wake Meandering Model. A Certification Point of View.

    NASA Astrophysics Data System (ADS)

    Tomas Bayo, Ricard; Parro, Gema

    2015-04-01

    Establishment of large wind farms requires enormous investments putting steadily greater emphasis on optimal topology design and control of these. This requires not only an optimization of the power output, but also the development of strategies to cope with the higher loading expected. The cornerstone of such strategies is a realistic characterization and modelling of the wake flow field inside the wind farm, beyond Frandsen's equivalent turbulence method. Whereas Frandsen model has been mostly considered in the industry so far, it has not proved completely satisfactory when facing current problems such as wake effects on turbines placed at short distances or consequences of half wake for turbine loading. The objective of the present work is to address these questions from a certification point of view within the framework of Risoe's Dynamic Wake Meandering (DWM) model. The DWM model is based on the combination of three parts: modeling of quasi-steady wake deficits, a stochastic model of the downwind wake meandering and an added or self-generated wake turbulence. The analysis carried out is two-fold: First, a comparative study of the wake effects generated in Frandsen model as well as in various realizations of the DWM model is performed. For this purpose wake-induced loads are calculated using two different aeroelastic codes: HAWC2 and Bladed. Second, the applicability of DWM for the assessment of wind turbines under site-specific conditions is discussed and the conclusions summarized in a Recommended Practice. Clear prescriptions are thereby provided for the use of DWMM for site suitability assessments, including the aforementioned extreme situations, along with the interpretation of the future version of the IEC 61400-1 standards.

  4. SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm

    NASA Astrophysics Data System (ADS)

    Li, XiaoMing; Chi, Lequan; Chen, Xueen; Ren, YongZheng; Lehner, Susanne

    2014-08-01

    A TerraSAR-X (TS-X) Synthetic Aperture Radar (SAR) image acquired at the East China Sea offshore wind farm presents distinct wakes at a kilometer scale on the lee of the wind turbines. The presumption was that these wakes were caused by wind movement around turbine blades. However, wind analysis using spaceborne radiometer data, numerical weather prediction, and in situ measurements suggest that the prevailing wind direction did not align with the wakes. By analyzing measurement at the tidal gauge station and modeling of the tidal current field, these trailing wakes are interpreted to have formed when a strong tidal current impinged on the cylindrical monopiles of the wind turbines. A numerical simulation was further conducted to reproduce the tidal current wake under such conditions. Comparison of the simulated surface velocity in the wake region with the TS-X sea surface backscatter intensity shows a similar trend. Consequently, turbulence intensity (T.I.) of the tidal current wakes over multiple piles is studied using the TS-X observation. It is found that the T.I. has a logarithmic relation with distance. Furthermore, another case study showing wakes due to wind movement around turbine blades is presented to discuss the differences in the tidal current wakes and wind turbine wakes. The conclusion is drawn that small-scale wakes formed by interaction of the tidal current and the turbine piles could be also imaged by SAR when certain conditions are satisfied. The study is anticipated to draw more attentions to the impacts of offshore wind foundations on local hydrodynamic field.

  5. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Maul, Jude E; Emche, Sarah E; Liao, Xing; Guo, Xuelan; Liu, Yeying; McKenna, Laurie F; Buyer, Jeffrey S; Liu, Shengyi

    2011-07-01

    Sclerotinia sclerotiorum causes serious yield losses in crops in the People's Republic of China. Two formulations of oilseed rape seed containing the bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations. The pellet formulation significantly reduced disease (incidence and disease index) and increased plant dry mass, while the wrap formulation significantly reduced disease incidence and significantly increased plant dry mass at both field locations. Mean seed yield per 120 plants with both formulations of isolate Tu-100 was significantly greater than the appropriate controls, but at only one of the locations. Both formulations provided stable B. subtilis Tu-100 biomass (≥10(5) CFU·g(-1)) and seed germination (≥85%) over a 6 month period at room temperature. Polymerase chain reaction and DNA sequence analysis identified ituC and ituD, and bacAB and bacD in the genome of isolate Tu-100. These genes are involved in the biosynthesis of iturin and bacilysin. Iturin was detected in culture filtrates from isolate Tu-100, with thin layer chromatography. Detection of bacilysin was not attempted. Experiments reported here indicate the commercial viability of B. subtilis Tu-100 for suppression of S. sclerotiorum on oilseed rape. PMID:21767217

  6. Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations

    SciTech Connect

    Sadeghi, S. M.; Patty, K. D.

    2014-02-24

    We show that when a semiconductor quantum dot is in the vicinity of a metallic nanoparticle and driven by a mid-infrared laser field, its coherent dynamics caused by interaction with a visible laser field can become free of quantum decoherence. We demonstrate that this process, which can offer undamped Rabi and field oscillations, is the result of coherent normalization of the “effective” polarization dephasing time of the quantum dot (T{sub 2}{sup *}). This process indicates formation of infrared-induced coherently forced oscillations, which allows us to control the value of T{sub 2}{sup *} using the infrared laser. The results offer decay-free ultrafast modulation of the effective field experienced by the quantum dot when neither the visible laser field nor the infrared laser changes with time.

  7. Vortex dislocations in wake-type flow induced by spanwise disturbances

    NASA Astrophysics Data System (ADS)

    Ling, Guo Can; Zhao, Hong Liang

    2009-07-01

    Vortex dislocations in wake-type flow induced by three types of spanwise disturbances superimposed on an upstream velocity profile are investigated by direct numerical simulations. Three distinct modes of vortex dislocations and flow transitions have been found. A local spanwise exponential decay disturbance leads to the appearance of a twisted chainlike mode of vortex dislocation. A stepped spanwise disturbance causes a streamwise periodic spotlike mode of vortex dislocation. A spanwise sinusoidal wavy disturbance with a moderate waviness causes a strong unsteadiness of wake behavior. This unsteadiness starts with a systematic periodic mode of vortex dislocation in the spanwise direction followed by the spanwise vortex shedding suppressed completely with increased time and the near wake becoming a steady shear flow. Characteristics of these modes of vortex dislocation and complex vortex linkages over the dislocation, as well as the corresponding dynamic processes related to the appearance of dislocations, are described by examining the variations of vortex lines and vorticity distribution. The nature of the vortex dislocation is demonstrated by the substantial vorticity modification of the spanwise vortex from the original spanwise direction to streamwise and vertical directions, accompanied by the appearance of noticeable vortex branching and complex vortex linking, all of which are produced at the locations with the biggest phase difference or with a frequency discontinuity between shedding cells. The effect of vortex dislocation on flow transition, either to an unsteady irregular vortex flow or suppression of the Kármán vortex shedding making the wake flow steady state, is analyzed. Distinct similarities are found in the mechanism and main flow phenomena between the present numerical results obtained in wake-type flows and the experimental-numerical results of cylinder wakes reported in previous studies.

  8. Observations of Current Sheets Passing Through the Near Lunar Wake

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wong, H. C.; Ma, Y.; Zhou, M.

    2015-12-01

    Two reconnection exhausts were detected by one of the dual ARTEMIS orbiters in the solar wind near the Moon. Almost meanwhile, the other ARTEMIS orbiter encountered the two corresponding (to the exhausts) current sheets that show no reconnection signals at the relatively central and marginal locations in the near lunar wake. In the ``Margin Event", a strong magnetic enhancement in the normal direction has been found peaking near the neutral line. In the ``Center Event", the current sheet was significantly broadened in thickness. The rotations of magnetic field direction of the two current sheets became more smooth than those of the exhausts. It is the dropout currents which cannot penetrate into the near wake that mainly caused these observational magnetic features. Such magnetic configuration is very similar to the magnetic geometry between two anti-polarity permanent magnets parallel to each other in non conducting context. The essential reason is that the extremely low density plasma in the near wake can no longer carry as strong currents as in the solar wind to support the curl of the magnetic fields.

  9. Wake and wave resistance on viscous thin films

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, Rene; Benzaquen, Michael; Salez, Thomas; Raphael, Elie; Physico-Chimie Theorique Team

    The effect of an external pressure disturbance, which is displaced with constant speed along the free surface of a viscous thin film, is studied theoretically in the lubrication approximation in one- and two-dimensional geometries. In the comoving frame, the imposed pressure field creates a stationary deformation of the interface - a wake - that spatially vanishes in the far region. The shape of the wake and the way it vanishes depend on both the speed v and size a of the external source and the properties of the film: density ρ, air-liquid surface tension γ, shear viscosity μ, and film thickness h0. The wave resistance, namely the force that has to be externally furnished in order to maintain the disturbance speed and the stationary wake, is analyzed in detail. For finite-size pressure disturbances, it increases with the speed, up to a certain transition value above which a monotonic decrease occurs. The role of the horizontal extent of the pressure field is studied as well, revealing that for a smaller disturbance the latter transition occurs at a higher speed. Eventually, for a Dirac pressure source, the wave resistance either saturates for a 1D geometry, or diverges for a 2D geometry.

  10. Non-linear plasma wake growth of electron holes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  11. Wave Activity in Europa's Wake: Implications for Ion Pickup

    NASA Technical Reports Server (NTRS)

    Volwerk, M.; Kivelson, M. G.; Khurana, K. K.

    2001-01-01

    Intense wave power at frequencies near and below the cyclotron frequencies of heavy ions was detected in Europa's wake during the E11 and E15 flybys. The fluctuations are mainly transverse to the background magnetic field. Wave characteristics indicate that they are ion cyclotron waves driven by positively charged pickup ions. In both flybys there is evidence, derived from the wave polarization, for pickup of negatively charged chlorine ions. When the moon is near the center of the Jovian current sheet, the pickup rate inferred for the E15 flyby is larger than that for the E11 flyby, when the moon is outside the Jovian current sheet. The wave power does not provide exact pickup density values because the waves are observed in regions where their growth has not yet fully developed. At the edges of the wake region, low-frequency (< K+ gyrofrequency) magnetohydrodynamic waves are also present. We identify magnetic field signatures that are reminiscent of interchange/ballooning of mass-loaded flux tubes from the wake/pickup region expanding into ambient medium that is less dense.

  12. Transitions in the vortex wake behind the plunging profile

    NASA Astrophysics Data System (ADS)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  13. Non-linear plasma wake growth of electron holes

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-15

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  14. Suppression of current fluctuations in a crossed E×B field system for low-voltage plasma immersion treatment

    NASA Astrophysics Data System (ADS)

    Levchenko, I.; Keidar, M.; Ostrikov, K.; Yu, M. Y.

    2006-01-01

    Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations If at the substrate surface. In particular, If decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields.

  15. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery

    NASA Astrophysics Data System (ADS)

    Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui

    2015-08-01

    We consider a near-field thermophotovoltaic device with metal as the emitter and semiconductor as the photovoltaic cell. We show that when the cell is a III-V semiconductor, such as GaSb, parasitic phonon-polariton heat transfer reduces efficiency in the near-field regime, especially when the temperature of the emitter is not high enough. We further propose ways to avoid the phonon-polariton heat transfer by replacing the III-V semiconductor with a non-polar semiconductor such as Ge. Our work provides practical guidance on the design of near-field thermophotovoltaic systems for efficient harvesting of low-quality waste heat.

  16. Computation of rotor aerodynamic loads with a constant vorticity contour free wake model

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Wachspress, Daniel A.; Boschitsch, Alexander H.

    1991-01-01

    An analytical method is presented which facilitates the study of isolated rotors with an improved approach to wake simulation. Vortex filaments are simulated along contours of constant sheet strength for the sheet of vorticity resulting from each rotor blade. Curved vortex elements comprise the filaments which can be distorted by the local velocity field. Called the Constant Vorticity Contour wake model, the approach permits the simulation of the blades' wakes corresponding to the full span of the rotor blade. The discretization of the wake of the rotor blade produces spacing and structure that are consistent with the spatial and temporal variations in the loading. A vortex-lattice aerodynamic model of the blade is also included which introduces a finite-element structural model of the blade and consideration of the force and moment trim analysis. Results of the present version of the simulation, called RotorCRAFT, are found to correlate well with H-34 flight-test data.

  17. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  18. Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Maskew, B.

    1985-01-01

    A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.

  19. Study for prediction of rotor/wake/fuselage interference, part 1

    NASA Technical Reports Server (NTRS)

    Clark, D. R.; Maskew, B.

    1985-01-01

    A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.

  20. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  1. Wake evolution and trailing vortex instabilities

    NASA Astrophysics Data System (ADS)

    Odemark, Ylva; Fransson, Jens H. M.

    2011-11-01

    The production losses and inhomogeneous loads of wind power turbines placed in the wake of another turbine is a well-known problem when building new wind power farms, and a subject of intensive research. The present work aims at developing an increased understanding of the behaviour of turbine wakes, with special regard to wake evolution and the stability of the trailing vortices. Single point velocity measurements with hot-wire anemometry were performed in the wake of a small-scale model turbine. The model was placed in the middle of the wind tunnel test section, outside the boundary layers from the wind tunnel walls. In order to study the stability of the wake and the trailing vortices, a disturbance was introduced at the end of the nacelle. This was accomplished through two orifices perpendicular to the main flow, which were connected to a high-pressure tank and two fast-switching valves. Both varicose and sinusoidal modes of different frequencies could be triggered. By also triggering the measurements on the blade passage, the meandering of the wake and the disturbance frequency, phase averaged results could be computed. The results for different frequencies as well as studies of wake evolution will be presented.

  2. Unexpected suppression of spin-lattice relaxation via high magnetic field in a high-spin iron(iii) complex.

    PubMed

    Zadrozny, Joseph M; Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2016-08-01

    A counterintuitive three-order of magnitude slowing of the spin-lattice relaxation rate is observed in a high spin qubit at high magnetic field via multifrequency pulsed electron paramagnetic resonance measurements. PMID:27463410

  3. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  4. Wake instabilities of a blunt trailing edge profiled body at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Naghib-Lahouti, A.; Lavoie, P.; Hangan, H.

    2014-07-01

    Experiments have been conducted to identify and characterize the instabilities in the wake of a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, for a broad range of Reynolds numbers ( based on the thickness of the body). These experiments, which include measurements of the wake velocity field using hot-wire anemometry and particle image velocimetry, complement previous studies of the wake flow for the same geometry at lower and higher Reynolds numbers. The spatial characteristics of the primary wake instability (the von Kármán vortex street) are found to have relatively little variation in the range of Reynolds numbers investigated, in spite of the transition of the boundary layer upstream of the trailing edge from a laminar to a turbulent state. The dominant secondary instability, identified based on the structure of velocity and vorticity fields in the wake extracted using proper orthogonal decomposition, is found to have features similar to the ones described numerically and experimentally by Ryan et al. (J Fluid Mech 538:1-29, 2005), and Naghib-Lahouti et al. (Exp Fluids 52:1547-1566, 2012) at lower Reynolds numbers. The findings suggest that the spatial characteristics of the dominant primary and secondary wake flow instabilities have little dependence on the state of the flow upstream of the separation points, in spite of the distinct change in the normalized vortex shedding frequency upon the transition of the boundary layer.

  5. Wake interaction and power production of variable height model wind farms

    NASA Astrophysics Data System (ADS)

    Vested, M. H.; Hamilton, N.; Sørensen, J. N.; Cal, R. B.

    2014-06-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating.

  6. Large HAWT wake measurement and analysis

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-01-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of

  7. Large HAWT wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of

  8. Wake dynamics behind a seal-vibrissa-shaped cylinder: a comparative study by time-resolved particle velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Wang, Shaofei; Liu, Yingzheng

    2016-03-01

    The wake dynamics behind a seal-vibrissa-shaped cylinder, which are closely related to the seal's extraordinary ability to faithfully track the hydrodynamic trails of its upstream prey, were extensively studied by using time-resolved particle image velocity. Four cylindrical configurations that shared the same hydrodynamic diameter (i.e., a circular cylinder, an elliptical cylinder, a wavy cylinder, and a vibrissa-shaped cylinder) were chosen for the comparative study at the Reynolds number 1.8 × 103. The instantaneous flow fields behind the cylinders were measured along their vertical and horizontal planes. The distinct global differences between the wakes were determined from the streamline patterns, the reverse-flow intermittences, and both the streamwise and longitudinal velocity fluctuation intensities. Compared to the other three systems tested, the vibrissa-shaped cylinder system was characterized by a considerably reduced recirculation zone in the nodal plane, the existence of a very stably reversed flow, and substantial reductions in the streamwise and longitudinal velocity fluctuation intensities. Further cross-correlation of the fluctuating longitudinal velocities showed that the unsteady events behind the vibrissa-shaped cylinder were poorly organized by sequence and considerably constrained in their spatial extent. Finally, a dynamic mode decomposition (DMD) was performed on the instantaneously varying wake flows. In the wavy cylinder system, a single dominant DMD mode at St = 0.2 (corresponding to Karman vortex street) was detected in both the saddle and nodal planes. Although the dominant DMD modes at St = 0.23 and 0.3 were determined in the saddle and nodal planes of the vibrissa-shaped cylinder system, respectively, the spatial pattern of these two DMD modes showed resolved vortical structures that were highly distorted and constrained to an extremely limited space. These DMD modes had much less energy than those in the other three systems. The

  9. Particle Sizes and Self Gravity Wakes in Saturn's A Ring

    NASA Astrophysics Data System (ADS)

    Jerousek, R. G.; Colwell, J. E.; Esposito, L. W.; Nicholson, P. D.

    2015-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured normal optical depths throughout Saturn's rings by stellar occultations covering a wide range of viewing geometries. The UVIS photometer has an effective wavelength of 0.15 µm and a relatively wide (6.0 mrad × 6.4 mrad) field-of-view. VIMS, in occultation mode, measures at an effective wavelength of 2.9 µm and over a single pixel of angular dimensions 0.25 mrad × 0.5 mrad. Occultations measured by VIMS at the same viewing geometry as UVIS occultations overstate the optical depth if particles smaller than 1.22λVIMS/2θ ~ 8.36 mm are present because light diffracted out of the VIMS pixel by those particles is not replaced by neighboring particles. By measuring differential optical depths one can probe the parameters of the ring particle size distribution (i.e. Zebker et al. 1985, Icarus, 64, 531-548). The technique is complicated, however, by the geometric dependence of the optical depth imposed by the non-axisymmetric self-gravity wakes, which are ephemeral elongated aggregates, deformed by Keplerian shear. Beginning with the granola bar wake model of Colwell et al. (2006, Geophys. Res. Lett., 33, L07201), we introduce a free parameter τsmall which represents the excess normal optical depth measured by VIMS due to sub-cm particles between the opaque wakes and combine VIMS and UVIS occultations for particle size analysis while simultaneously determining the properties of the wakes. We find that throughout the A Ring the wake properties generally agree with previously published results (Colwell et al. 2006, Hedman et al. 2007, Astron. J., 133, 2624-2629). We find a significant fraction of sub-cm particles in the inner and outer A Ring and in the troughs of density waves near strong Lindblad resonances. While wake properties vary in the halo regions surrounding these resonances, the abundance of sub-cm particles varies little from 124

  10. Do great tits (Parus major) suppress basal metabolic rate in response to increased perceived predation danger? A field experiment.

    PubMed

    Mathot, Kimberley J; Abbey-Lee, Robin N; Kempenaers, Bart; Dingemanse, Niels J

    2016-10-01

    Several studies have shown that individuals with higher metabolic rates (MRs) feed at higher rates and are more willing to forage in the presence of predators. This increases the acquisition of resources, which in turn, may help to sustain a higher MR. Elevated predation danger may be expected to result in reduced MRs, either as a means of allowing for reduced feeding and risk-taking, or as a consequence of adaptively reducing intake rates via reduced feeding and/or risk-taking. We tested this prediction in free-living great tits (Parus major) using a playback experiment to manipulate perceived predation danger. There was evidence that changes in body mass and BMR differed as a function of treatment. In predator treatment plots, great tits tended to reduce their body mass, a commonly observed response in birds to increased predation danger. In contrast, birds from control treatment plots showed no overall changes in body mass. There was also evidence that great tits from control treatment plots increased their basal metabolic rate (BMR) over the course of the experiment, presumably due to decreasing ambient temperatures over the study period. However, there was no evidence for changes in BMR for birds from predator treatment plots. Although the directions of these results are consistent with the predicted directions of effects, the effects sizes and confidence intervals yield inconclusive support for the hypothesis that great tits would adaptively suppress BMR in response to increased perceived predation risk. The effect size observed in the present study was small (~1%) and would not be expected to result in substantive reductions in feeding rate and/or risk-taking. Whether or not ecological conditions that generate greater energetic stress (e.g. lower food availability, lower ambient temperatures) could produce an effect that produces biologically meaningful reductions in feeding activity and/or risk-taking remains an open question. PMID:27342428

  11. Comparison of application methods for suppressing the pecan weevil (Coleoptera: Curculionidae) with Beauveria bassiana under field conditions.

    PubMed

    Shapiro-Ilan, David I; Gardner, Wayne A; Cottrell, Ted E; Behle, Robert W; Wood, Bruce W

    2008-02-01

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin is pathogenic to C. caryae. One approach to managing C. caryae may be application of B. bassiana directed toward adult weevils as they emerge from the soil to attack nuts in the tree canopy. Our objective was to compare different application methods for suppression of C. caryae adults. Treatments included direct application of B. bassiana (GHA strain) to soil under the tree canopy, soil application followed by cultivation, soil application in conjunction with a cover crop (Sudan grass), direct application to the tree trunk, and application to the trunk with an UV radiation-protecting adjuvant. The study was conducted in a pecan orchard in Byron, GA, in 2005 and 2006. Naturally emerging C. caryae adults, caught after crawling to the trunk, were transported to the laboratory to determine percentage mortality and signs of mycosis. When averaged over the 15-d sampling period, weevil mortality and signs of mycosis were greater in all treatments than in the nontreated control in 2005 and 2006; >75% average mortality was observed with the trunk application both years and in the trunk application with UV protection in 2005. Results indicated trunk applications can produce superior efficacy relative to ground application, particularly if the ground application is followed by cultivation. Efficacy in the cover crop treatment, however, did not differ from other application approaches. Future research should focus on elucidating the causes for treatment differences we observed and the extent to which B. bassiana-induced C. caryae mortality reduces crop damage. PMID:18348807

  12. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  13. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  14. A wake detector for wind farm control

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Cacciola, S.; Schreiber, J.

    2015-06-01

    The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear.

  15. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  16. Secure Wake-Up Scheme for WBANs

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup

    Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.

  17. On the wake of a Darrieus turbine

    NASA Astrophysics Data System (ADS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-05-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  18. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  19. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  20. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  1. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  2. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  3. Vortex interactions and decay in aircraft wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Dupdonaldson, C.; Williamson, G. G.

    1977-01-01

    The dynamic interaction of aircraft wake vortices was investigated using both inviscid and viscous models. For the viscous model, a computer code was developed using a second-order closure model of turbulent transport. The phenomenon of vortex merging which results in the rapid aging of a vortex wake was examined in detail. It was shown that the redistribution of vorticity during merging results from both convective and diffusive mechanisms.

  4. Waking dreams and other metachoric experiences.

    PubMed

    Green, C

    1990-06-01

    This paper summarizes the development of the concept of metachoric experiences from 1961 onwards. The name of metachoric experience was given to one in which the whole of the environment was replaced by a hallucinatory one, although this may provide a precise replica of the physical world and appear to be completely continuous with normal experience. Prior to 1968 three types of metachoric experiences had been recognized; lucid dreams, out-of-the-body experiences (OBEs) and false awakenings, all of which showed interrelationships. The Institute's 1968 appeal for apparitional experiences led to a recognition that many of these were probably metachoric. This was suggested among other things by certain cases in which the lighting of the whole field of view changes, thus indicating that the experience was completely hallucinatory. The study of apparitions led also to the concept of waking dreams, i.e. completely hallucinatory experiences which may be initiated and terminated without any awareness of discontinuity on the part of the subject. These experiences seem to be capable of considerable apparent extension in time, thus providing a possible explanation of some reports of UFO sightings and of some of the more anomalous experiences of psychical research. In this connection the paper discusses the well-known Versailles experience of Miss Moberly and Miss Jourdain, and a published case of C.G. Jung. In conclusion some of the most obvious similarities and differences between the different types of metachoric experiences are discussed. PMID:2374788

  5. Near Wake of an Inflating Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Desabrais, Kenneth; Johari, Hamid

    2001-11-01

    The near wake of a parachute canopy inflating in a constant freestream was experimentally investigated in a water tunnel at a Re = 30,000. The temporal evolution of the velocity field immediately downstream of the canopy was measured along with the canopy diameter and force. The inflation of the canopy occurs in three stages. In the initial stage, the flow is fully attached to the surface of the canopy. During this stage, the canopy diameter increases substantially but the drag only rises gradually. The next stage of inflation initiates when the boundary layer separates from the canopy surface near the apex of the canopy. The drag rapidly increases at this point and achieves its maximum value. Subsequently, the drag sharply declines even while the canopy diameter continues to increase. During this stage of inflation, the boundary layer separation point moves from the apex region towards the canopy skirt. The final stage of inflation occurs once the separated shear layer, originating at the canopy skirt, rolls-up into a large vortex ring. The drag achieves a local minimum during the final stage, while the diameter achieves its maximum value.

  6. Use of Individual Flight Corridors to Avoid Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2001-01-01

    Vortex wakes of aircraft pose a hazard to following aircraft until the energetic parts of their flow fields have decayed to a harmless level. It is suggested here that in-trail spacings between aircraft can be significantly and safely reduced by designing an individual, vortex-free flight corridor for each aircraft. Because each aircraft will then have its own flight corridor, which is free of vortex wakes while in use by the assigned aircraft, the time intervals between aircraft operations can be safely reduced to the order of seconds. The productivity of airports can then be substantially increased. How large the offset distances between operational corridors need to be to have them vortex free, and how airports need to be changed to accommodate an individual flight-corridor process for landing and takeoff operations, are explored. Estimates are then made of the productivity of an individual flight-corridor system as a function of the in-trail time interval between operations for various values of wake decay time, runway width, and the velocity of a sidewind. The results confirm the need for short time intervals between aircraft operations if smaller offset distances and increased productivity are to be achieved.

  7. Suppression of vortex-induced vibration using moving surface boundary-layer control

    NASA Astrophysics Data System (ADS)

    Korkischko, I.; Meneghini, J. R.

    2012-10-01

    Experimental results of flow around a circular cylinder with moving surface boundary-layer control (MSBC) are presented. Two small rotating cylinders strategically located inject momentum in the boundary layer of the cylinder, which delays the separation of the boundary layer. As a consequence, the wake becomes narrower and the fluctuating transverse velocity is reduced, resulting in a recirculation free region that prevents the vortex formation. The control parameter is the ratio between the tangential velocity of the moving surface and the flow velocity (Uc/U). The main advantage of the MSBC is the possibility of combining the suppression of vortex-induced vibration (VIV) and drag reduction. The experimental tests are preformed at a circulating water channel facility and the circular cylinders are mounted on a low-damping air bearing base with one degree-of-freedom in the transverse direction of the channel flow. The mass ratio is 1.8. The Reynolds number ranges from 1600 to 7500, the reduced velocity varies up to 17, and the control parameter interval is Uc/U=5-10. A significant decreasing in the maximum amplitude of oscillation for the cylinder with MSBC is observed. Drag measurements are obtained for statically mounted cylinders with and without MSBC. The use of the flow control results in a mean drag reduction at Uc/U=5 of almost 60% compared to the plain cylinder. PIV velocity fields of the wake of static cylinders are measured at Re=3000. The results show that the wake is highly organized and narrower compared to the one observed in cylinders without control. The calculation of the total variance of the fluctuating transverse velocity in the wake region allows the introduction of an active closed-loop control. The experimental results are in good agreement with the numerical simulation studies conducted by other researchers for cylinders with MSBC.

  8. Suppression of superconductivity by strong magnetic fields in PbTe/PbS heterostructures with a superconducting interface

    NASA Astrophysics Data System (ADS)

    Bengus, S. V.; Sipatov, A. Yu.; Yuzephovich, S. I.

    2013-08-01

    This is a comprehensive study of the effect of strong magnetic fields on superconductivity in PbTe/PbS heterostructures with semiconducting layers of different thicknesses. Metallic conductivity and superconductivity (critical temperature Tc ≤ 6.5 K) in PbTe/PbS heterostructures are caused by inversion of bands along a continuous network of misfit dislocations that develops at the interfaces between semiconductor layers of sufficient thickness (d > 80 nm). With decreasing d the continuity of the superconducting interface is disrupted, Tc decreases, and the metallic conductivity changes to a semiconducting type. Disruption of the continuity of the superconducting interface is found to be a necessary condition for observing a magnetic-field induced superconductor-insulator transition (SIT) and has a significant influence on its features: a fan-like set of resistance curves R(T); intersection of the R(B) curves for fields perpendicular, as well as parallel, to the interface; and, negative magnetoresistance. A scaling analysis based on Fisher's theoretical model is carried out for these samples. No evidence of a SIT was observed in heterostructures with a perfect interface. It appears that the SIT effect is related to percolation phenomena characteristic of granular superconductors.

  9. Study and Suppression of the Microstructural Anisotropy Generated During the Consolidation of a Carbonyl Iron Powder by Field-Assisted Hot Pressing

    NASA Astrophysics Data System (ADS)

    García-Junceda, Andrea; Acebo, Laura; Torralba, José Manuel

    2015-07-01

    A spherical carbonyl iron powder was consolidated by the field-assisted hot pressing technique using graphite tools at two different temperatures, both above the austenitizing temperature. The microstructures obtained exhibited a compositional gradient in carbon along the consolidated material. Thus, the outer rim of the cylindrical samples was composed of cementite and pearlite that gradually turned to pearlite, leading to a fully ferritic microstructure at the core of the sample. The increase in the temperature has led to a higher introduction of carbon within the sample. The interposition of a thin tungsten foil between the graphite die/punches and the powders has significantly reduced the diffusion of the carbon through the iron matrix and has suppressed the microstructural anisotropy.

  10. Nonlinear modelling of vortex shedding control in cylinder wakes

    NASA Astrophysics Data System (ADS)

    Roussopoulos, Kimon; Monkewitz, Peter A.

    Kármán vortex shedding behind a cylinder placed at right angles to a uniform flow is known to be a limit cycle oscillation that results from the saturation of a global instability of the wake flow. In this paper we study the feedback control of Kármán vortex shedding for Reynolds numbers (based on cylinder diameter) close to the critical value of Re c ≈ 47 using “single input - single output” (SISO) proportional control. A model is presented that combines the linear streamwise global mode amplitude equation and the nonlinear spanwise Ginzburg-Landau equation and correctly models the three-dimensional effects observed in the controlled wake of finite length cyclinders. In particular it is demonstrated that for long cylinders vortex shedding can only be suppressed at the spanwise location of the sensor even though the actuation occurs uniformly over the entire span. At a fixed streamwise position the spanwise variation of the shedding angle is thereby given by the “hole solution” of Nozaki and Bekki, J. Phys. Soc. Jpn. 53 (1984) 1581.

  11. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2016-07-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  12. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  13. Statistics of waves within a ship wake

    NASA Astrophysics Data System (ADS)

    Didenkulova, I.; Rodin, A.

    2012-04-01

    High-amplitude water waves induced by high-speed ferries are regularly observed in Tallinn Bay, the Baltic Sea causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on coast can be a result of a group structure of the wake and it is studied experimentally at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location have amplitudes of about 1 m and periods of 8-10 sec with maximum run-up heights up to 1.4 m. These wakes represent a certain structure, where the largest and longest waves come first and waves of smaller amplitude and period after. Sometimes the groups of different heights and periods can be separated even within one wake. The wave heights within a wake are well-described by the Weibull distribution, which has different parameters for wakes from different ships. Wave runup heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights. Finally, the runup of individual waves within a wake is studied. It is shown that the largest amplification occurs for waves of weak amplitude and is in a good agreement with an estimate for the nonbreaking runup of a sinusoidal wave. The largest waves are strongly affected by the wave breaking and their runup is modeled numerically in the framework of the nonlinear shallow-water theory.

  14. Analysis of long distance wakes behind a row of turbines - a parameter study

    NASA Astrophysics Data System (ADS)

    Eriksson, O.; Nilsson, K.; Breton, S.-P.; Ivanell, S.

    2014-06-01

    Large Eddy Simulations (LES) of the long distance wake behind a row of 10 turbines are conducted to predict wake recovery. The Navier-Stokes solver EllipSys3D is used in combination with the actuator disc concept. Neutral atmospheric conditions are assumed in combination with synthetic turbulence using the Mann method. Both the wind shear profile and turbulence are introduced into the flow field using body forces. Previous simulations using the same simulation method to model the Horns Rev wind farm showed a higher wake recovery at long distances compared to measurements. The current study investigates further the sensitivity to parameters such as the grid resolution, Reynolds number, the turbulence characteristics as well as the impact of using different internal turbine spacings. The clearest impact on the recovery behind the farm could be seen from the turbulence intensity of the incoming flow. The impact of the wind shear on the turbulence intensity in the domain needs further studies. A lower turbulence level gives slower wake recovery as expected. A slower wake recovery can also be seen for a higher grid resolution. The Reynolds number, apart from when using a very low value, has a small impact on the result. The variation of the internal spacing is seen to have a relatively minor impact on the farm wake recovery.

  15. Three-dimensional flow visualization of a flexible cylinder wake subject to VIV

    NASA Astrophysics Data System (ADS)

    Dahl, Jason M.; Thomas, Emma; Gedikli, Ersegun D.

    2015-11-01

    The vortex-induced vibration of a low aspect ratio, low mode number, flexible cylinder is investigated in a recirculating flow channel under uniform inflow conditions. The cylinder had an aspect ratio of 40 and mass ratio of 3.76. The motion of the cylinder is tracked visually, using two high-speed cameras and the intersection of a laser sheet with the cylinder surface, capturing the cross-sectional response of cylinder at various locations along the span. Concurrent with the motion capture system, Particle Image Velocimetry is used to capture the velocity field in the wake of the cylinder at the same locations. The periodic nature of vibrations along the span of the cylinder is used to phase average the motion and wake of the cylinder, allowing for a phase averaged 3-D reconstruction of the cylinder wake. The 3-D reconstruction consists of stereoscopic PIV planar wake measurements obtained at 21 equally spaced locations along the span of the cylinder. The wake is investigated at several speeds showing the excitation of the first mode of the cylinder in the cross-flow direction and the transition to the excitation of the second mode of the cylinder in the in-line direction. This technique is shown to capture 3-D variation of vortex-shedding in the wake of the flexible cylinder.

  16. Numerical Simulation and Wake Modeling of Wind Turbine Rotor as AN Actuator Disk

    NASA Astrophysics Data System (ADS)

    Shen, Xiang; Wang, Tongguang; Zhong, Wei

    Numerical simulations of flow fields around the wind turbine rotor simplified as an actuator disk (AD) with zero thickness have been made to investigate the flow structure and wake development in different operation states. A N-S solver has been used and the energy extracted by the rotor is represented by a discontinuous pressure jump through the actuator disk. Axial pressure and velocity development from far upstream to far downstream is fully described by the simulations, which could never be obtained by the momentum theory. It is showed that there are significant differences in wake development between inviscid and viscous conditions. In inviscid simulations, the axial velocity keeps decreasing along the oncoming flow direction, which is consistent with the momentum theory. In viscous simulations, however, the axial velocity first decreases but then gradually recovers approaching to the undisturbed velocity, due to momentum transport from outer flow to wake flow by viscous shear effect. Based on the numerical analysis, the work of this paper is also focused on wake modeling. A new two-dimensional models based on nonlinear wake development has been developed, which is capable to describe the far wake more accurately.

  17. Wake structure of axial-flow hydrokinetic turbines in tri-frame arrangement

    NASA Astrophysics Data System (ADS)

    Chawdhary, Saurabh; Yang, Xiaolei; Hill, Craig; Khosronejad, Ali; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Marine and hydro-kinetic (MHK) energy hold promise for future of sustainable energy generation. Tri-frame of turbines, three turbines mounted on vertices of a triangle, are an effective way to build a power producing array of hydrokinetic turbines in marine environment. Large eddy simulation (LES) is used to simulate the flow past a tri-frame and characterize its wake. Full geometry of all three turbines in the tri-frame is resolved using the Curvilinear Immersed Boundary (CURVIB) method of Kang et al. (2011). High fidelity solution of flow field is obtained owing to the inclusion of detailed geometry of the turbines. Excellent agreement is obtained with the experiments conducted in a flume at Saint Anthony Falls Laboratory (SAFL). The wake evolution of the three turbines is compared to that of an isolated single turbine. The differences in wake dynamics are highlighted to elucidate the importance of turbine wake interaction in an array. The simulations indicate lower levels of TKE and lower levels of momentum deficit in the wake of the upstream turbine of tri-frame compared to the other turbines. Analysis of the far wake recovery is useful for the optimal MHK array design. This work was supported by NSF grant IIP-1318201. The simulations were carried out at the Minnesota Supercomputing Institute.

  18. PIV and LDA measurements of the wake behind a wind turbine model

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  19. Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow.

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Pascheke, F.

    2010-09-01

    slowly compared with the on-shore case. A turbine can also suppress the level of atmospheric turbulence below hub height. In neutral flow, the wakes grow in width and height. However, even in mild stable stratification the vertical development of the wake deficit can be completely inhibited; at least some reduction would be expected arising from the stabilizing influence on vertical fluctuations. The width in contrast develops at about the same rate. As anticipated, the wake development is slower still in the stable case because of the lower level ambient turbulence. The maximum deficit is at a lower height than it is for neutral flow. Various aspects of the turbulence in the wake have been investigated. Second-phase work will examine a larger number of wake-turbine and wake-wake interactions, make a more detailed study of how turbines alter the atmospheric turbulence, and examine more cases of stratification. Work is also in hand related to turbines in or near forested regions, and it is expected that aspects of the physics will have links with the effect a large wind farm will have on the ABL and on the wind resource for a downwind farm. The work will produce a series of test cases to assist in the development of better wake and wind resource prediction models as well as a better understanding of wake physics.

  20. Coupling of a free wake vortex ring near-wake model with the Jensen and Larsen far-wake deficit models

    NASA Astrophysics Data System (ADS)

    van Heemst, J. W.; Baldacchino, D.; Mehta, D.; van Bussel, G. J. W.

    2015-06-01

    This paper presents a simple physical model to improve the currently used far-wake deficit models in the wind industry. The main improvement is deemed on the determination of the wake deficit in the near-wake. A Vortex Ring Model (VRM) is used to calculate the induced velocities in the near-wake, which are then coupled to the Jensen far-wake model and the Larsen far-wake model based on the concept of Eddy Viscosity (EV). The inviscid near-wake VRM is based on the shedding of discrete tip vortex rings released from a uniformly loaded actuator disc. The model is validated against wind tunnel measurements from experiments with a two- bladed turbine and a circular metal mesh with a uniform porosity to represent an actuator disc. The VRM shows a good agreement with the experimental data with respect to the wake deficit evolution. The VRM is coupled with two well-known engineering type far-wake models: the Jensen and Larsen wake deficit models. The results of the coupling of the VRM and the more elaborated Larsen far-wake model are compared against a 3D Large Eddy Simulation (LES) CFD model. This comparison shows the effect of different near-wake models on the development of centreline velocities in the far-wake. The centreline velocity deficit predicted by the VRM-Larsen model more closely matches LES calculations in comparison with the reference Larsen model.

  1. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower

  2. A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

    PubMed

    Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M

    2015-12-01

    With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory. PMID:26438186

  3. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  4. Force estimation and turbulence in the wake of a freely flying European Starling

    NASA Astrophysics Data System (ADS)

    Ben-Gida, Hadar; Kirchhefer, Adam; Kopp, Gregory; Gurka, Roi

    2011-11-01

    Flapping wings are one of the most complex yet widespread propulsion method found in nature. Although aeronautical technology has advanced rapidly over the past 100 years, natural flyers, which have evolved over millions of years, still feature higher efficiency and represent one of nature's finest locomotion methods. One of the key questions is the role of the unsteady motion in the flow due to the wing flapping and its contribution to the forces acting on a bird during downstroke and upstroke. The wake of a freely flying European Starling is investigated as a case study of unsteady wing aerodynamics. Measurements of the near wake have been taken using long duration high-speed PIV in the wake behind a freely flying bird in a specially designed avian wind tunnel. The wake has been characterized by means of velocity and vorticity fields. The measured flow field is decomposed based on the wing position phases. Drag and lift have been estimated using the mean velocity deficit and the circulation at the wake region. In addition, kinematic analysis of the wing motion and the body has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV. Correlations between the wing kinematics and the flow field characteristics are presented as well as the time evolution of the velocity, vorticity and additional turbulence parameters.

  5. Aerodynamics of a freely flying owl from PIV measurements in the wake

    NASA Astrophysics Data System (ADS)

    Ben-Gida, Hadar; Gurka, Roi; Weihs, Daniel

    2015-11-01

    The mechanisms of the silent flight of owls have been the subject of scientific interest for many decades and a source of inspiration in the context of reducing flight noise. Over millions of years of evolution, owls have produced many specialized configurations to reduce the aerodynamic noise, which is found to be essential for successful hunting of potential prey. Here, we study how the three-dimensional flow field formed over the wing affect the vortical structures develop in the wake of a freely flying owl. We study the unique flight patterns of the Boobook owl; a mid-sized owl, which has the feature of stealth flight during both gliding and flapping flight. The owl was flown in a hypobaric avian wind tunnel at its comfort speed for various flight modes. The wake velocity field was sampled using long duration high speed PIV whilst the wing's kinematics were imaged using high speed video simultaneously with the PIV. The time series velocity maps acquired during few consecutive wingbeat cycles enabled to describe the various flow features as formed at the owl's wake by reconstructing the wake patterns and associate them with the various phases of the wingbeat cycle. The stealthy flight mode, which is a result of noise reduction mechanisms, formed over the wings (presumably by the leading-edge serrations) results in a unique signature in the wake flow field, which is characterized using the present data.

  6. Experimental flutter and buffeting suppression using piezoelectric actuators and sensors

    NASA Astrophysics Data System (ADS)

    Suleman, Afzal; Costa, Pedro A.; Moniz, Paulo A.

    1999-07-01

    This experimental investigation focuses on the application of piezoelectric sensors/actuators for wing flutter and vertical tail buffet suppression. The test article consists of a foam airfoil shell enveloped around an aluminum plate support structure with bonded piezoelectric actuators and sensors. Wind-tunnel test results for the wind are presented for the open- and closed-loop systems. Piezoelectric actuators were effective in suppressing flutter and the wake-induced buffet vibration over the range of parameters investigated.

  7. Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig

    PubMed Central

    Christianson, G. Björn; Chait, Maria; de Cheveigné, Alain

    2014-01-01

    In animal models, single-neuron response properties such as stimulus-specific adaptation have been described as possible precursors to mismatch negativity, a human brain response to stimulus change. In the present study, we attempted to bridge the gap between human and animal studies by characterising responses to changes in the frequency of repeated tone series in the anesthetised guinea pig using small-animal magnetoencephalography (MEG). We showed that 1) auditory evoked fields (AEFs) qualitatively similar to those observed in human MEG studies can be detected noninvasively in rodents using small-animal MEG; 2) guinea pig AEF amplitudes reduce rapidly with tone repetition, and this AEF reduction is largely complete by the second tone in a repeated series; and 3) differences between responses to the first (deviant) and later (standard) tones after a frequency transition resemble those previously observed in awake humans using a similar stimulus paradigm. PMID:25231619

  8. User's guide for a flat wake rotor inflow/wake velocity prediction code, DOWN

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1991-01-01

    A computer code named DOWN was created to implement a flat wake theory for the calculation of rotor inflow and wake velocities. A brief description of the code methodology and instructions for its use are given. The code will be available from NASA's Computer Software Management and Information Center (COSMIC).

  9. Wake potential in a semi-elliptic pill-box cavity

    NASA Astrophysics Data System (ADS)

    Yang, J. S.; Chen, K. W.

    1989-10-01

    In this article we compared the wake potential in a cavity of semi-elliptic cross section and elliptic cross section. The semi-elliptic cavity is considered to have an advantage that we can experimentally simulate an elliptic cavity with one beam line. It is found that we can produce considerably strong accelerating fields inside this cavity. We calculate the resonant modes of this cavity using previous analytical mode analysis1. Also the wake field inside this cavity is derived analytically and numerical results are presented to determine the usefulness of this cavity.

  10. Wake deficit measurements on the Jess and Souza Ranches, Altamont Pass

    SciTech Connect

    Nierenburg, R. )

    1990-04-01

    This report is ninth in a series of documents presenting the findings of field test under DOE's Cooperative Field Test Program (CFTP) with the wind industry. This report provides results of a project conducted by Altamont Energy Corp. (AEC) to measure wake deficits on the Jess and Sousa Ranches in Altamont Pass, CA. This research enhances and complements other DOE-funded projects to refine estimates of wind turbine array effects. This project will help explain turbine performance variability caused by wake effects. 4 refs., 28 figs., 106 tabs.

  11. Transition mechanisms in laminar separation bubbles with and without incoming wakes and synthetic jet effects

    NASA Astrophysics Data System (ADS)

    Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco

    2012-07-01

    Laminar separation and transition processes of the boundary layer developing under a strong adverse pressure gradient, typical of Ultra-High-Lift turbine profiles, have been experimentally investigated for a low Reynolds number case. The boundary layer development has been surveyed for different conditions: with steady inflow, with incoming wakes and with the synchronized forcing effects due to both incoming wakes and synthetic jet (zero net mass flow rate jet). In this latter case, the jet Strouhal number has been set equal to half the wake-reduced frequency to synchronize the unsteady forcing effects on the boundary layer. Measurements have been taken by means of a single-sensor hot-wire anemometer. For the steady inflow case, particle image velocimetry has been employed to visualize the large-scale vortical structures shed as a consequence of the Kelvin-Helmholtz instability mechanism. For the unsteady inflow cases, a phase-locked ensemble averaging technique, synchronized with the wake and the synthetic jet frequencies, has been adopted to reconstruct the boundary layer space-time evolution. Results have been represented as color plots, for several time instants of the forcing effect period, in order to provide an overall view of the time-dependent transition and separation processes in terms of ensemble-averaged velocity and unresolved unsteadiness distributions. The phase-locked distributions of the unresolved unsteadiness allowed the identification of the instability mechanisms driving transition as well as the Kelvin-Helmholtz structures that grow within the separated shear layer during the incoming wake interval and the synthetic jet operating period. Incoming wakes and synthetic jet effects in reducing and/or suppressing flow separation are investigated in depth.

  12. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    NASA Astrophysics Data System (ADS)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  13. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    NASA Astrophysics Data System (ADS)

    Tytell, Eric D.

    2007-11-01

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  14. Chronic Decrease in Wakefulness and Disruption of Sleep-Wake Behavior after Experimental Traumatic Brain Injury

    PubMed Central

    Skopin, Mark D.; Kabadi, Shruti V.; Viechweg, Shaun S.; Mong, Jessica A.

    2015-01-01

    Abstract Traumatic brain injury (TBI) can cause sleep-wake disturbances and excessive daytime sleepiness. The pathobiology of sleep disorders in TBI, however, is not well understood, and animal models have been underused in studying such changes and potential underlying mechanisms. We used the rat lateral fluid percussion (LFP) model to analyze sleep-wake patterns as a function of time after injury. Rapid-eye movement (REM) sleep, non-REM (NREM) sleep, and wake bouts during light and dark phases were measured with electroencephalography and electromyography at an early as well as chronic time points after LFP. Moderate TBI caused disturbances in the ability to maintain consolidated wake bouts during the active phase and chronic loss of wakefulness. Further, TBI resulted in cognitive impairments and depressive-like symptoms, and reduced the number of orexin-A-positive neurons in the lateral hypothalamus. PMID:25242371

  15. Simulation of wind turbine wakes using the actuator line technique.

    PubMed

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  16. Simulation of wind turbine wakes using the actuator line technique

    PubMed Central

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  17. Four-dimensional characterization of inflow to and wakes from a multi-MW turbine: overview of the Turbine Wake and Inflow Characterization Study (TWICS2011)

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.

    2011-12-01

    To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign

  18. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  19. Magnetoelectric phenomena in manganites R0.6Ca0.4MnO3(R = Pr, Nd) with charge ordering suppressed by a magnetic field

    NASA Astrophysics Data System (ADS)

    Kadomtseva, A. M.; Popov, Yu. F.; Vorob'ev, G. P.; Kamilov, K. I.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.

    2008-01-01

    A change in electric polarization (up to 300 μC/m2) upon magnetic-field suppression of a charge-ordered antiferromagnetic state upon a transition to the ferromagnetic conducting phase ( H cr ˜ 65-80 kOe at 4.2 K) is discovered in Pr0.6Ca0.4MnO3 and Nd0.6Ca0.4MnO3 single crystals. The transition is also accompanied by a jump in magnetization and magnetostriction. The dependence of the induced polarization sign on the polarity of the electric field in which the sample was preliminarily cooled indicates the existence of spontaneous electric polarization. The effect is the strongest in Nd0.6Ca0.4MnO3 and is weaker by a factor of 5-10 in Pr0.6Ca0.4MnO3, for which the tolerance factor is higher. The observed effect may be associated with recently predicted noncentrosymmetric structures in doped manganites with x ˜ 0.5 (see D.V. Efremov, J. van den Brink, and D.I. Khomskii, Nature Materials 3, 853 (2004)), in which e g electrons are not localized upon charge and orbital ordering at one manganese ion, but are distributed among neighboring ions, thus forming an ordered polar dimer structure.

  20. Suppressing of slow magnetic relaxation in tetracoordinate Co(II) field-induced single-molecule magnet in hybrid material with ferromagnetic barium ferrite.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trávníček, Zdeněk

    2015-01-01

    The novel field-induced single-molecule magnet based on a tetracoordinate mononuclear heteroleptic Co(II) complex involving two heterocyclic benzimidazole (bzi) and two thiocyanido ligands, [Co(bzi)2(NSC)2], (CoL4), was prepared and thoroughly characterized. The analysis of AC susceptibility data resulted in the spin reversal energy barrier U = 14.7 cm(-1), which is in good agreement with theoretical prediction, U(theor). = 20.2 cm(-1), based on axial zero-field splitting parameter D = -10.1 cm(-1) fitted from DC magnetic data. Furthermore, mutual interactions between CoL4 and ferromagnetic barium ferrite BaFe12O19 (BaFeO) in hybrid materials resulted in suppressing of slow relaxation of magnetization in CoL4 for 1:2, 1:1 and 2:1 mass ratios of CoL4 and BaFeO despite the lack of strong magnetic interactions between two magnetic phases. PMID:26039085