Science.gov

Sample records for wake vortex decay

  1. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  2. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  3. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  4. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  5. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  6. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept works by placing shape memory alloy (SMA) control surfaces on the submarine's diving planes and periodically oscillating them. The modulated control vortices generated by these surfaces interact with the tip vortices on the diving planes, causing an instability to rapidly occur. Though several numerical simulations have been presented, experimental verification does not appear to be available in the open literature. The authors address this problem through a concept called passive wake vortex control (PWVC), which has been demonstrated to rapidly break apart a trailing vortex wake and render it incoherent. PWVC functions by introducing unequal strength, counter-rotating control vortices next to the tip vortices. The presence of these control vortices destabilizes the vortex wake and produces a rapidly growing wake instability.

  7. Computational simulation of turbulent vortex merger and decay. [in aircraft wakes

    NASA Technical Reports Server (NTRS)

    Raj, P.; Iversen, J. D.

    1979-01-01

    The interaction and eventual merger of corotational vortices and the decay of a single vortex have been studied by employing zero-, one- and two-equation turbulent-flow models in order to gain a better understanding of the role of turbulence. An implicit finite-difference procedure is used to integrate the unsteady, two-dimensional equations in a cross-plane. The zero- and one-equation formulations utilize a mixing-length model, which incorporates the streamline curvature effect by prescribing a spatially-varying mixing-length. In the two-equation model, the turbulence kinetic energy equation and a modified rate of dissipation equation which includes a streamline curvature correction are solved. Computational results of different models applied to various flow-configurations are presented and compared with available experimental data whenever possible.

  8. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  9. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  10. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  11. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  12. Wake Vortex Research in the USA (WakeNet-USA)

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Bryant, Wayne

    2006-01-01

    This viewgraph presentation reviews the cooperative work that FAA and NASA are engaged in to safely increase the capacity of the National Airspace System by studying the wake vortex operations. Wake vortex avoidance is a limiting factor in defining separation standards in the airport terminal area and could become a reducing separation standards in en route airspace.

  13. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  14. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  15. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  16. Vortex wake and exhaust plume interaction, including ground effect

    NASA Astrophysics Data System (ADS)

    Adam, Ihab Gaber

    Computational modeling and studies of the near-field wake-vortex turbulent flows, far-field turbulent wake- vortex/exhaust-plume interaction for subsonic and High Speed Civil Transport (HSCT) airplane, and wake- vortex/exhaust-plume interaction with the ground are carried out. The three-dimensional, compressible Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The turbulence models of Baldwin and Lomax, one-equation model of Spalart and Allmaras and two-equation shear stress transport model of Menter are implemented with the RANS solver for turbulent-flow modeling. For the near-field study, computations are carried out on a fine grid for a rectangular wing with a NACA-0012 airfoil section and a rounded tip. The focus of study is the tip-vortex development, the near-wake-vortex roll-up, and validation of the results with the available experimental data. For the far-field study, the computations of wake-vortex interaction with the exhaust-plume of a single engine of a medium-size subsonic aircraft in a holding condition and two engines of a HSCT in a cruise condition are carried out using an overlapping zonal method for several miles downstream. The overlapping zonal method has been carefully developed and investigated for accurate and efficient calculations of the far-field wake-vortex flow. The results of the subsonic flow are compared with those of a Parabolized Navier-Stokes (PNS) solver known as the UNIWAKE code. Next, the problem of wake-vortex/ground interaction is investigated. For the simulation of this problem, typical velocity profiles of a tip vortex with and without the exhaust-plume temperature profiles are used for inflow boundary conditions and the computations are carried out using the overlapping zonal method for long distances downstream. The effects of the exhaust-plume temperature on the vortex descent, ground boundary-layer separation, vortex rebound and vortex decay are studied and validated with the available experimental data. A parametric study, which covers the effects of atmospheric conditions such as axial wind, crosswind, wind shear, turbulence and, Reynolds number on vortex motion and dynamics near the ground, is also carried out.

  17. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  18. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  19. Vortex methods and their application to trailing wake vortex simulations

    NASA Astrophysics Data System (ADS)

    Winckelmans, Grgoire; Cocle, Roger; Dufresne, Louis; Capart, Raphal

    2005-05-01

    Vortex methods are competitive for simulating incompressible unsteady flows, because they have negligible dispersion error and good energy conservation. The various methods are presented, including the recent developments: particle redistribution, diffusion, relaxation (by projection), efficient solvers (fast multipole method, vortex-in-cell method, hybrid method) and parallel computer implementations. Examples relating to wing/aircraft trailing wake vortices are presented: 2-D and 3-D, inviscid and viscous, direct numerical simulation and large eddy simulation. We consider wake roll-ups, vortex tube dynamics, 3-D instabilities and the complexity/turbulence they produce. A vortex system in ground effects is also presented. To cite this article: G. Winckelmans et al., C. R. Physique 6 (2005).

  20. Use of Individual Flight Corridors to Avoid Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2001-01-01

    Vortex wakes of aircraft pose a hazard to following aircraft until the energetic parts of their flow fields have decayed to a harmless level. It is suggested here that in-trail spacings between aircraft can be significantly and safely reduced by designing an individual, vortex-free flight corridor for each aircraft. Because each aircraft will then have its own flight corridor, which is free of vortex wakes while in use by the assigned aircraft, the time intervals between aircraft operations can be safely reduced to the order of seconds. The productivity of airports can then be substantially increased. How large the offset distances between operational corridors need to be to have them vortex free, and how airports need to be changed to accommodate an individual flight-corridor process for landing and takeoff operations, are explored. Estimates are then made of the productivity of an individual flight-corridor system as a function of the in-trail time interval between operations for various values of wake decay time, runway width, and the velocity of a sidewind. The results confirm the need for short time intervals between aircraft operations if smaller offset distances and increased productivity are to be achieved.

  1. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  2. On point vortex models of exotic bluff body wakes

    NASA Astrophysics Data System (ADS)

    Stremler, Mark A.; Basu, Saikat

    2014-12-01

    Exotic vortex wakes, in which three or more vortices are generated during each shedding cycle, are frequently found in the wake of an oscillating bluff body. Two common examples are P+S wakes (with 3 vortices) and 2P wakes (with 4 vortices). We consider mathematical models of these wakes consisting of N = 3 or 4 point vortices with constant strengths in an inviscid fluid that is otherwise at rest in a singly-periodic domain. By enforcing constraints on the vortex strengths and, in the case of N = 4, on the symmetry of the vortex locations, the mathematical models reduce to integrable Hamiltonian systems. We compare the point vortex trajectories with two exotic wake patterns reported in the literature. Results support the use of point vortex modeling to investigate vortex dynamics in exotic wakes and suggest the need for additional classification of experimental wake patterns.

  3. An approximate model of vortex decay in the atmosphere

    NASA Technical Reports Server (NTRS)

    Greene, G. C.

    1985-01-01

    An approximate analysis of atmospheric effects on wake vortex motion and decay is presented. The effects of density stratification, turbulence, and Reynolds number are combined in a single model so that the relative importance of different parameters can be determined. Predicted wake motion is shown to be in good agreement with limited data from both ground facility and flight test measurements taken under low turbulence conditions. Wake decay was found to depend strongly on both density stratification and turbulence. For typical levels of turbulence, wake decay was found to result from the 'Crow instability' except under strongly stratified conditions.

  4. On the Development of Turbulent Wakes from Vortex Streets

    NASA Technical Reports Server (NTRS)

    Roshko, Anatol

    1953-01-01

    Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hotwire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At R = 40 to 150, called the stable range, regular vortex streets are formed and no turbulent motion is developed. The range R = 150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. This transition first occurs in the range R = 150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations. In the stable range the vortices decay by viscous diffusion. In the irregular range the diffusion is turbulent and the wake becomes fully turbulent in 40 to 50 diameters downstream. It was found that in the stable range the vortex street has a periodic spanwise structure. The dependence of shedding frequency on velocity was successfully used to measure flow velocity. Measurements in the wake of a ring showed that an annular vortex street is developed.

  5. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  6. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    NASA Technical Reports Server (NTRS)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  7. Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Han, Jongil

    1999-01-01

    A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.

  8. Turbulence Climatology at Dallas/Ft.Worth (DFW) Airport: Implications for a Departure Wake Vortex Spacing System

    NASA Technical Reports Server (NTRS)

    Perras, G. H.; Dasey, T. J.

    2000-01-01

    Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.

  9. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  10. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  11. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input file, with preferred parameters values, is given in Appendix A. An example of the plot generated at a normal completion of the inversion is shown in Appendix B.

  12. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  13. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail. PMID:8571221

  14. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  15. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  16. Persistence and decay of wake vorticity

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1976-01-01

    Some recent research relating to the nature of the lift-induced vortex wakes behind large aircraft was reviewed and the scaling laws that permit a comparison of results from ground facilities with those from flight test were provided. The maximum rotational velocities in the wake are shown to depend on a span loading shape parameter and on a characteristic length of persistence behind the aircraft. The effects of Reynolds number are also shown.

  17. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  18. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  19. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  20. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

  1. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  2. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  3. Aircraft wake two-vortex system at turbulent equilibrium

    NASA Astrophysics Data System (ADS)

    Winckelmans, Gregoire; de Visscher, Ivan; Bricteux, Laurent

    2012-11-01

    We consider a two-vortex system (2VS) started from a 2-D initial condition of given energy (two opposite sign vortices, each with an algebraic circulation profile and with a relatively tight core, rc, compared to the distance, b0, center to center: rc /b0 = 0 . 05). The 2VS is submitted to a very weak and realistic atmospheric turbulence background (of energy < 0 . 01 that of the 2VS) so that it is excited to go unstable. The flow then generates, by non-linear interactions, instabilities and much more turbulence and eventually reaches a statistical equilibrium: a 2VS still with tight cores, with significant turbulence in the vortex oval, yet still laminar in the inner part of the cores, and which slowly decays in time. This state of equilibrium is quite universal (as confirmed by various sensitivity analyses). It is then of great importance to the physics and modeling of fully formed aircraft wake vortices and is characterized: spectrum, vorticity field, circulation profile and core size of the vortices in cross-planes and for the mean (i.e., longitudinal average). The two-scales Proctor-Winckelmans profile model is also compared to the data: it fits well the inner part 0 < r /b0 < 0 . 04 and the outer part 0 . 16 < r /b0 < 0 . 5 of the profile, but is still poor in between.

  4. Analog Processing Assembly for the Wake Vortex Lidar Experiment

    NASA Technical Reports Server (NTRS)

    Stowe, Edwood G.

    1995-01-01

    The Federal Aviation Administration (FAA) and NASA have initiated a joint study in the development of reliable means of tracking, detecting, measuring, and predicting trailing wake-vortices of commercial aircraft. Being sought is an accurate model of the wake-vortex hazard, sufficient to increase airport capacity by reducing minimum safe spacings between planes. Several means of measurement are being evaluated for application to wake-vortex detection and tracking, including Doppler RADAR (Radio Detection and Ranging) systems, 2-micron Doppler LIDAR (Light Detection And Ranging) systems, and SODAR (Sound Detection And Ranging) systems. Of specific interest there is the lidar system, which has demonstrated numerous valuable capabilities as a vortex sensor Aerosols entrained in the vortex flow make the wake velocity signature visible to the lidar, (the observable lidar signal is essentially a measurement of the line-of-sight velocity of the aerosols). Measurement of the occurrence of a wake vortex requires effective reception and monitoring of the beat signal which results from the frequency-offset between the transmitted pulse and the backscattered radiation. This paper discusses the mounting, analysis, troubleshooting, and possible use of an analog processing assembly designed for such an application.

  5. Simulation of wake vortex radiometric detection via jet exhaust proxy

    NASA Astrophysics Data System (ADS)

    Daniels, Taumi S.

    2015-06-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  6. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  7. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  8. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  9. Wake Vortex Transport in Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2000-01-01

    A sensitivity study for aircraft wake vortex transport has been conducted using a validated large eddy simulation (LES) model. The study assumes neutrally stratified and nonturbulent environments and includes the consequences of the ground. The numerical results show that the nondimensional lateral transport is primarily influenced by the magnitude of the ambient crosswind and is insensitive to aircraft type. In most of the simulations, the ground effect extends the lateral position of the downwind vortex about one initial vortex spacing (b(sub o)) in the downstream direction. Further extension by as much as one b(sub o) occurs when the downwind vortex remains 'in ground effect' (IGE) for relatively long periods of time. Results also show that a layer-averaged ambient wind velocity can be used to bound the time for lateral transport of wake vortices to insure safe operations on a parallel runway.

  10. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  11. NWRA AVOSS Wake Vortex Prediction Algorithm. 3.1.1

    NASA Technical Reports Server (NTRS)

    Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)

    2002-01-01

    This report provides a detailed description of the wake vortex prediction algorithm used in the Demonstration Version of NASA's Aircraft Vortex Spacing System (AVOSS). The report includes all equations used in the algorithm, an explanation of how to run the algorithm, and a discussion of how the source code for the algorithm is organized. Several appendices contain important supplementary information, including suggestions for enhancing the algorithm and results from test cases.

  12. The natural and forced formation of spot-like 'vortex dislocations' in the transition of a wake

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.

    1992-10-01

    The study examines the 3D transition of the flow behind a bluff body, with emphasis placed on the evolution of large-scale structures in the wake. It is shown that vortex dislocations are a fundamental characteristic of natural transition in a wake. The level of fluctuations in the transition wake is shown to be much larger than in a laminar wake, with a much slower decay of fluctuation energy as the wake travels downstream. In order to study their evolution in detail, dislocations were passively forced to occur at a local spanwise position with the use of a small ring disturbance. It is found that 'two-sided' dislocations are stable in a symmetric in-phase configuration, and that they induce quasi-periodic velocity spectra and (beat) dislocation-frequency oscillations in the near wake. It is suggested that vortex or phase dislocations could be a generic feature of transition in all shear flows.

  13. Wake evolution and trailing vortex instabilities

    NASA Astrophysics Data System (ADS)

    Odemark, Ylva; Fransson, Jens H. M.

    2011-11-01

    The production losses and inhomogeneous loads of wind power turbines placed in the wake of another turbine is a well-known problem when building new wind power farms, and a subject of intensive research. The present work aims at developing an increased understanding of the behaviour of turbine wakes, with special regard to wake evolution and the stability of the trailing vortices. Single point velocity measurements with hot-wire anemometry were performed in the wake of a small-scale model turbine. The model was placed in the middle of the wind tunnel test section, outside the boundary layers from the wind tunnel walls. In order to study the stability of the wake and the trailing vortices, a disturbance was introduced at the end of the nacelle. This was accomplished through two orifices perpendicular to the main flow, which were connected to a high-pressure tank and two fast-switching valves. Both varicose and sinusoidal modes of different frequencies could be triggered. By also triggering the measurements on the blade passage, the meandering of the wake and the disturbance frequency, phase averaged results could be computed. The results for different frequencies as well as studies of wake evolution will be presented.

  14. Assessment of a wake vortex flight test program

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Dillenius, M. F. E.; Schwind, R. G.; Nielsen, J. N.

    1974-01-01

    A proposed flight test program to measure the characteristics of wake vortices behind a T-33 aircraft was investigated. A number of facets of the flight tests were examined to define the parameters to be measured, the anticipated vortex characteristics, the mutual interference between the probe aircraft and the wake, the response of certain instruments to be used in obtaining measurements, the effect of condensation on the wake vortices, and methods of data reduction. Recommendations made as a result of the investigation are presented.

  15. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  16. Measurements of Aircraft Wake Vortex Separation at High Arrival Rates and a Proposed New Wake Vortex Separation Philosophy

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Donohue, George L.; Haynie, Rudolph C.

    2003-01-01

    This paper presents data and a proposed new aircraft wake vortex separation standard that argues for a fundamental re-thinking of international practice. The current static standard, under certain atmospheric conditions, presents an unnecessary restriction on system capacity. A new approach, that decreases aircraft separation when atmospheric conditions dictate, is proposed based upon the availability of new instrumentation and a better understanding of wake physics.

  17. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next section.

  18. Wake Vortex Influence on Ambient Potential Temperature

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two-dimensional version of the Terminal Area Simulation System (TASS) was used to numerically simulate the interaction of wake vortices from closely separated aircraft. The aircraft parameters and separations are taken from observed data at an actual airport. The wake vortices are generated near the runway threshold for four successive aircraft. The ambient conditions are characterized by light crosswinds and stable stratification. This movie shows the effect that the vortices have upon the ambient potential temperature field.

  19. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  20. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  1. Transitions in the vortex wake behind the plunging profile

    NASA Astrophysics Data System (ADS)

    Koz?owski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  2. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  3. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  4. Optimal perturbations in a four-vortex aircraft wake model

    NASA Astrophysics Data System (ADS)

    Fabre, David; Jacquin, Laurent; Loof, Antoine

    2002-11-01

    We consider the instability properties of two vortex pairs in a counter-rotating configuration. Such configurations model vortex wakes observed behind aircrafts with inboard vortices produced at the inboard flap edges and at the tips of the horizontal tail. The instability potential is characterised by way of an optimal perturbation analysis. This extends the analysis of Fabre & Jacquin (2000) which was restricted to particular stationary configurations, and that of Crouch (1997) which considered co-rotating configurations. A complete mapping of the optimal perturbations is presented. The optimal perturbations grow faster than the Crow (1970) instability. However, they correspond to short-wavelength perturbations mainly affecting the weaker inboard vortices. A possible strategy which consists of forcing a long wavelength is then investigated. Application of both the optimal and the long-wave optimal perturbations to reduction of vortex wake danger is discussed.

  5. Viscous effects on a vortex wake in ground effect

    NASA Technical Reports Server (NTRS)

    Zheng, Z.; Ash, Robert L.

    1992-01-01

    Wake vortex trajectories and strengths are altered radically by interactions with the ground plane. Prediction of vortex strength and location is especially important in the vicinity of airports. Simple potential flow methods have been found to yield reasonable estimates of vortex descent rates in an otherwise quiescent ambient background, but those techniques cannot be adjusted for more realistic ambient conditions and they fail to provide satisfactory estimates of ground-coupled behavior. The authors have been involved in a systematic study concerned with including viscous effects in a wake-vortex system which is near the ground plane. The study has employed numerical solutions to the Navier-Stokes equations, as well as perturbation techniques to study ground coupling with a descending vortex pair. Results of a two-dimensional, unsteady numerical-theoretical study are presented in this paper. A time-based perturbation procedure has been developed which permits the use of analytical solutions to an inner and outer flow domain for the initial flow field. Predictions have been compared with previously reported laminar experimental results. In addition, the influence of stratification and turbulence on vortex behavior near the ground plane has been studied.

  6. A preliminary study of a wake vortex encounter hazard boundary for a B737-100 airplane

    NASA Technical Reports Server (NTRS)

    Reimer, Heidi M.; Vicroy, Dan D.

    1996-01-01

    A preliminary batch simulation study was conducted to define the wake decay required for a Boeing 737-100 airplane to safely encounter a Boeing 727 wake and land. The baseline six-degree-of-freedom B737 simulation was modified to include a wake model and the strip-theory calculation of the vortex-induced forces and moments. The guidance and control inputs for the airplane were provided by an autoland system. The wake strength and encounter altitude were varied to establish a safe encounter boundary. The wake was positioned such that the desired flight path traversed the core of the port Vortex. Various safe landing criteria were evaluated for defining a safe encounter boundary. A sensitivity study was also conducted to assess the effects of encounter model inaccuracies.

  7. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  8. The Wake Vortex Prediction and Monitoring System WSVBS

    NASA Astrophysics Data System (ADS)

    Gerz, T.; Holzpfel, F.

    2009-09-01

    Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behaviour without compromising safety. The WSVBS consists of components that consider meteorological conditions, aircraft glide path adherence, aircraft parameter combinations representing aircraft weight categories, the resulting wake-vortex behaviour, the surrounding safety areas, wake vortex monitoring, and the integration of the predictions into the arrival manager. The WSVBS has been designed and applied to Frankfurt Airport. However, its components are generic and can well be adjusted to any runway system and or airport location. The prediction horizon is larger than 45 min (as required by air traffic control) and updated every 10 minutes. It predicts the concepts of operations and procedures established by DFS and it further predicts additional temporal separations for in-trail traffic. A specific feature of the WSVBS is the usage of both measured and predicted meteorological quantities as input to wake vortex prediction. In ground proximity where the probability to encounter wake vortices is highest, the wake predictor employs measured environmental parameters that yield superior prediction results. For the less critical part aloft, which can not be monitored completely by instrumentation, the meteorological parameters are taken from dedicated numerical terminal weather predictions. The wake vortex model predicts envelopes for vortex position and strength which implicitly consider the quality of the meteorological input data. This feature is achieved by a training procedure which employs statistics of measured and predicted meteorological parameters and the resulting wake vortex behaviour. The WSVBS combines various conservative elements that presumably lead to a very high overall safety level of the WSVBS. The combination of these conservative measures certainly leads to a very high but currently unknown overall safety. Once the methodology of a comprehensive risk analysis will be established, it is planned to adjust all components to appropriate and consistent confidence levels. The WSVBS has demonstrated its functionality at Frankfurt airport during 66 days in the period from 18/12/06 until 28/02/07. The performance test indicates that (i) the system ran stable - no forecast breakdowns occurred, (ii) aircraft separations could have been reduced in 75% of the time compared to ICAO standards, (iii) reduced separation procedures could have been continuously applied for at least several tens of minutes and up to several hours occasionally, (iv) the predictions were correct as for about 1100 landings observed during 16 days no warnings occurred from the LIDAR. Fast-time simulations reveal that adapted concepts of operation yield significant reductions in delay and/or an increase in capacity to 3% taking into account the real traffic mix and operational constraints in the period of one month. Before the WSVBS can be handed over for final adaptations to become a customized fully operational system some further steps are planned. A risk analysis needs to be pursued to convince all stakeholders of the usefulness and capabilities of the system.

  9. NASA Langley Research Center Wake Vortex Research Supporting VAMS

    NASA Technical Reports Server (NTRS)

    Rutishauser, David

    2002-01-01

    NASA researchers have designed a system to predict aircraft wake turbulence on final approach, so airliners can be spaced more safely and efficiently. This technology, known as the Aircraft VOrtex Spacing System (AVOSS), demonstrates an integration of technologies that provides weather-dependent dynamic aircraft spacing for wake avoidance in a real-time relevant environment. AVOSS was successfully demonstrated at Dallas Fort-Worth Airport in July 2000. The demonstration represented the culmination of 6 years of field-testing, data collection, and development.

  10. Wake vortex measurements of bodies at high angle of attack

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Johnson, D. A.

    1978-01-01

    Three-dimensional laser velocimeter measurements have been made of the wake vortices of a slender tangent-ogive body which had nose and body fineness ratios of 3.5 and 12, respectively. Data were obtained for an angle of attack to seminose angle ratio of 2.3 at a free-stream Mach number of 0.6 and unit Reynolds number of 2 million/ft. Details of the mean flow field are presented and features of the turbulent and unsteady nature of the vortex flow field are discussed. Problems associated with obtaining meaningful vortex measurements in high-speed flows are addressed.

  11. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.

  12. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an infrasonic array at the Newport News-Williamsburg International Airport early in the year 2013. A pattern of pressure burst, high-coherence intervals, and diminishing-coherence intervals was observed for all takeoff and landing events without exception. The results of a phased microphone vs. linear infrasonic array comparison will be presented.

  13. Flow visualization of vortex interactions in multiple vortex wakes behind aircraft

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Lonzo, C., Jr.

    1975-01-01

    A flow visualization technique was developed which allows the nature of lift-generated wakes behind aircraft models to be investigated. The technique was applied to models being towed underwater in a ship model basin. Seven different configurations of a small-scale model of a 747 transport aircraft were used to allow observation of typical vortex interactions and merging in multiple vortex wakes. It was established that the motion of the wake vortices is often sensitive to small changes in either wing span loading or model attitude. Landing gear deployement was found to cause a far-field reformation of vorticity behind a model configuration which dissipated concentrated vorticity in the near-field wake. Alleviation of wake vorticity is achievable by configuring the wing span loading to cause the wake vortices to move in paths that result in their interactions and merging. The vortices shed from the horizontal stabilizer always moved down rapidly into the wake and merged with the other vortices, primarily the inboard flap vortices.

  14. Overview of the preparation and use of an OV-10 aircraft for wake vortex hazards flight experiments

    NASA Technical Reports Server (NTRS)

    Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1995-01-01

    An overview is presented of the development, use, and current flight-test status of a highly instrumented North American Rockwell OV-10A Bronco as a wake-vortex-hazards research aircraft. A description of the operational requirements and measurements criteria, the resulting instrumentation systems and aircraft modifications, system-calibration and research flights completed to date, and current flight status are included. These experiments are being conducted by the National Aeronautics and Space Administration as part of an effort to provide the technology to safely improve the capacity of the nation's air transportation system and specifically to provide key data in understanding and predicting wake vortex decay, transport characteristics, and the dynamics of encountering wake turbulence. The OV-10A performs several roles including meteorological measurements platform, wake-decay quantifier, and trajectory-quantifier for wake encounters. Extensive research instrumentation systems include multiple airdata sensors, video cameras with cockpit displays, aircraft state and control-position measurements, inertial aircraft-position measurements, meteorological measurements, and an on-board personal computer for real-time processing and cockpit display of research data. To date, several of the preliminary system check flights and two meteorological-measurements deployments have been completed. Several wake encounter and wake-decay-measurements flights are planned for the fall of 1995.

  15. Vortex age as a wake turbulence scaling parameter

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Marchman, J. F., III

    1973-01-01

    Research which was conducted to determine the significance of vortex age as a scaling parameter in wake turbulence development and dissipation is reported. Tests were conducted at three angles of attack, three free stream speeds, and seven downstream positions from 2 to 30 chordlengths using an NACA 0012 wing and a five hole yawhead pitot probe. The end surface of the wing tip was flat. Speeds were selected to give a predetermined range of vortex ages. The complete velocity structure of the vortex was measured at each station and speed. The resulting plots of maximum tangential velocity and vortex core diameter versus downstream distance and vortex age indicate that vortex age is not a self sufficient scaling parameter. In addition to the expected effect of lift coefficient there is also a definite free stream speed influence at high wing angles of attack. The exact cause and nature of this effect is not fully understood, but it does not appear to be explainable in terms of Mach number or Reynolds number; however, the influence of tip edge shape on spanwise flow separation appears to be an important factor.

  16. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  17. Cavitation and Wake Structure of Unsteady Tip Vortex Flows.

    NASA Astrophysics Data System (ADS)

    Hart, Douglas Payton

    Unsteady flows are prevalent in virtually every fluid application yet, because of their intrinsic complexity, few attempts have been made to measure them or explain their behavior. This thesis presents an experimental study of one of the simplest unsteady flow induced effects, the periodic change in angle of attack of a lifting surface. Of particular interest is the influence this effect has on the tip vortex structure of a finite aspect ratio hydrofoil and the part it plays in the inception of cavitation. An aspect ratio 2.3 hydrofoil was reflection-plane mounted to the test section floor of the Caltech Low Turbulence Water Tunnel and harmonically oscillated in pitch near its center of pressure. Observations of the growth and collapse of surface and tip vortex cavitation were made along with detailed observations of the interaction of the tip vortex formation with the spanwise wake structure. Measurements of the cavitation inception number for surface cavitation and tip vortex cavitation were made relative to the phase of the hydrofoil and the reduced frequency, k = omegac/2U_{infty }, of oscillation. Studies of the oscillation -induced spanwise trailing vortex structures and the Karman vortex street generated by the boundary layer were made of a two-dimensional hydrofoil. Laser Doppler Velocimetry (LDV) measurements were taken of the tip vortex velocity profile and the flow at the trailing edge of both the two - and the three-dimensional hydrofoils at reduced frequencies ranging from 0.5 to 2.0. Dynamic changes in bound circulation and shed vorticity in the streamwise and spanwise directions relative to the freestream were calculated from these measurements at three locations along the span of the foil. The results of these measurements are compared to theoretical flow calculations and related to measurements of the cavitation inception number in the tip vortex region of the three -dimensional foil.

  18. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study, two numerical models were utilized in system simulations. The results of this study improve our understanding of the method of detection, resolution requirements for range and azimuth, pulse compression, and performance prediction. Simulations applying pulse compression techniques show that detection is good in heavy fog to greater than 2000 m. Both compressed and uncompressed short pulses show the vortex structure. To explore operational challenges, siting and scanning strategies were also analyzed. Simulation results indicate that excellent wake vortex detection, tracking and classification is possible in drizzle (+15 dBZ) and heavy fog (- 13 dBZ) using short pulse techniques (<99ns) at ranges on the order of 900 m, with a modest power of 500 W output. At 1600 m, detection can be expected at reflectivities as low as -13 dBZ (heavy fog). The radar system, as designed and built, has the potential to support field studies of a wake vortex spacing system in low-visibility conditions ranging from heavy fog to rain, when sited within 2000m of the flight path.

  19. Numerical investigation of medium wavelength instabilities in four vortex wake systems

    NASA Astrophysics Data System (ADS)

    Dufresne, Louis; Winckelmans, Gregoire; Capart, Raphael

    2003-11-01

    Wake vortex systems generated by wings with modified span loading can generate, after rollup, multiple vortex systems. We here consider the four vortex system investigated experimentally by Ortega et al.: two pairs of counter-rotating vortices with circulation ratio ?_2/?_1=-0.37 and inner spacing ratio b_2/b1 = 0.48. Different numerical tools are used to investigate the dynamics of the most unstable medium wavelength (?/b_1?1) instability: a vortex filament method with random initial perturbations and of longitudinal extent equivalent to many times ?; a spectral code run on a single processor (about 9 millions grid points for a simulation with an extent of ?), and on multiple processors (for simulations with an extent of many ?) thus also allowing for random initial perturbations and eventually also capturing the Crow-type instability of the equivalent two vortex system. The spectral code is run in both DNS mode (for moderate Reynolds number) and ``quasi-inviscid" mode (using a hyper-viscosity of type nabla^8 u. Results are presented on stability (modes, growth rates, saturation), vortex topological changes by reconnection, and related energy decay. Comparisons are also made with the experimental results of Ortega et al.

  20. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.

  1. Vortex Wake Geometry of a Model Tilt Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Yamauchi, G. K.; Johnson, W.; Wadcock, A. J.

    2002-01-01

    The vortex wake trajectory from one rotor of a 0.25-scale V-22 tiltrotor model was measured for four test conditions in the NASA Ames 40- by 80-Foot Wind Tunnel. Vortex wake images were acquired using a laser light sheet and video camera. Wake trajectories were constructed by extracting vortex positions from the video images. Wake trajectories were also calculated using the comprehensive analysis CAMRAD II. Measured and calculated wake geometries exhibit similar trends when advance ratio is varied at fixed thrust or when thrust is varied at fixed advance ratio.

  2. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

  3. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  4. An Investigation of Candidate Sensor-Observable Wake Vortex Strength Parameters for the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Tatnall, Chistopher R.

    1998-01-01

    The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.

  5. Similarity and decay laws of momentumless wakes

    NASA Astrophysics Data System (ADS)

    Hassid, S.

    1980-02-01

    The decay laws of self-similar momentumless wakes are investigated using the k-epsilon turbulent energy-dissipation model. Self-similar solutions to the model equations, which are written in terms of the turbulent energy per unit mass, the rate of turbulent energy dissipation per unit mass, and the free-stream and axial velocities, are found using two velocity scales, one for the turbulent quantities and one for the mean flow. The decays of the mean velocity defect, turbulent energy, and length scale predicted by the model for conditions approximating experimental conditions are found to be in good agreement with the experimental data of Naudscher (1965) for a jet-driven disk and of Gran (1974), Lin and Pao (1974), Schetz and Jakubowski (1975, 1974) and Schetz et al. (1976) for propeller-driven bodies.

  6. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  7. Model Validation of Wake-Vortex/Aircraft Encounters

    NASA Technical Reports Server (NTRS)

    Pete, Kimberly R.; Vicroy, Dan D.; Smith, Sonya T.

    2000-01-01

    Wake-vortex effects on an 10% scale model of the B737-100 aircraft are calculated using both strip theory and vortex-lattice methods. The results are then compared to data taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). The accuracy of the models for a reduced geometry, such with the horizontal stabilizer and the vertical tail removed, is also investigated. Using a 10% error in the circulation strength and comparing the model's results with the experiment illustrates the sensitivity of the models to the vortex circulation strength. It was determined that both strip theory and the vortex lattice method give accurate results when all the geometrical information is used. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be accurately modeled with either the full geometry or the reduced geometry.

  8. Wake Vortex Advisory System (WakeVAS) Evaluation of Impacts on the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2005-01-01

    This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.

  9. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  10. Coupling of a free wake vortex ring near-wake model with the Jensen and Larsen far-wake deficit models

    NASA Astrophysics Data System (ADS)

    van Heemst, J. W.; Baldacchino, D.; Mehta, D.; van Bussel, G. J. W.

    2015-06-01

    This paper presents a simple physical model to improve the currently used far-wake deficit models in the wind industry. The main improvement is deemed on the determination of the wake deficit in the near-wake. A Vortex Ring Model (VRM) is used to calculate the induced velocities in the near-wake, which are then coupled to the Jensen far-wake model and the Larsen far-wake model based on the concept of Eddy Viscosity (EV). The inviscid near-wake VRM is based on the shedding of discrete tip vortex rings released from a uniformly loaded actuator disc. The model is validated against wind tunnel measurements from experiments with a two- bladed turbine and a circular metal mesh with a uniform porosity to represent an actuator disc. The VRM shows a good agreement with the experimental data with respect to the wake deficit evolution. The VRM is coupled with two well-known engineering type far-wake models: the Jensen and Larsen wake deficit models. The results of the coupling of the VRM and the more elaborated Larsen far-wake model are compared against a 3D Large Eddy Simulation (LES) CFD model. This comparison shows the effect of different near-wake models on the development of centreline velocities in the far-wake. The centreline velocity deficit predicted by the VRM-Larsen model more closely matches LES calculations in comparison with the reference Larsen model.

  11. Stability of a four-vortex aircraft wake model

    NASA Astrophysics Data System (ADS)

    Fabre, David; Jacquin, Laurent

    2000-10-01

    The stability of an aircraft wake model composed of an external vortex pair (modeling the wing tip vortices) and an internal vortex pair rotating in the opposite direction (modeling the vortices generated by the fuselage and the horizontal tail) in a stationary configuration is investigated with the vortex filament stability method used by Crow [AIAA J. 8, 2172 (1970)] and Crouch [J. Fluid Mech. 350, 311 (1997)]. It is shown that this configuration is unstable with respect to two-dimensional and three-dimensional disturbances. For long wavelength three-dimensional symmetric perturbations, the rapid growth observed in the numerical simulations of Rennich and Lele [J. Air. 36, 398 (1999)] is found. Moreover, the analysis allows one to show that without an excitation of the long-wave mode, the system will naturally develop short wavelength instabilities localized within the inner vortices which do not affect the outer vortices. Inspection of the initial value problem shows that the long-wave modes can be efficiently initiated by the introduction of perturbations on the internal vortices.

  12. Wing Wake Vortices and Temporal Vortex Pair Instabilities

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Miller, G. D.

    In this presentation we include selected results which have originated from vortex dynamics studies conducted at Cornell, in collaboration with IRPHE, Marseille. These studies concern, in particular, the spatial development of delta wing trailing vortices, and the temporal development of counter-rotating vortex pairs. There are, as might be expected, similarities in the instabilities of both of these basic flows, as shown in our laboratory-scale studies. In the case of the spatial development of vortex pairs in the wake of a delta wing, either in free flight or towed from an XY carriage system in a towing tank, we have found three distinct instability length scales as the trailing vortex pair travels downstream. The first (smallest-scale) instability is found immediately behind the delta wing, and this scales on the thickness of the two shear layers separating from the wing trailing edge. The second (short-wave) instability, at an intermediate distance downstream, scales on the primary vortex core dimensions. The third (long-wave) instability far downstream represents the classical "Crow" instability (Crow, 1970), scaling on the distance between the two primary vortices. By imposing disturbances on the delta wing incident velocity, we find that the long-wave instability is receptive to a range of wavelengths. Our experimental measurements of instability growth rates are compared with theoretical predictions, which are based on the theory of Widnall et al. (1971), and which require, as input, DPIV measurements of axial and circumferential velocity profiles. This represents the first time that theoretical and experimental growth rates have been compared, without the imposition of ad-hoc assumptions regarding the vorticity distribution. The agreement with theory appears to be good. The ease with which a Delta wing may be flown in free flight was demonstrated at the Symposium, using a giant polystyrene triangular wing, launched from the back of the auditorium, and ably caught by Professor Sid Leibovich, in whose honour the Symposium was held. In the case of the temporal growth of vortex pairs, formed by the closing of a pair of long flaps underwater, we find two principal instabilities; namely, a longwavelength Crow instability, and a short-wavelength "elliptic" instability. Comparisons between experiment and theory for the growth rates of the long-wave instability, over a range of perturbed wavelengths, appears to be very good. The vortex pair "pinches off", or reconnects, to form vortex rings in the manner assumed to occur in contrails behind jet aircraft. We discover a symmetry-breaking phase relationship for the short wave disturbances growing in the two vortices, which we 380 C.H.K. Williamson et al. show to be consistent with a kinematic matching condition between the two disturbances. Further results demonstrate that this instability is a manifestation of an elliptic instability, which is here identified for the first time in a real open flow. We therefore refer to this flow as a "cooperative elliptic" instability. The long-term evolution of the flow involves the inception of secondary miniscule vortex pairs, which are perpendicular to the primary vortex pair.

  13. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Krmn wake, reverse von Krmn wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Krmn wake (drag) to the reverse von Krmn wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Krmn like wakes to more exotic wake structures.

  14. An experimental investigation of bending wave instability modes in a generic four-vortex wake

    SciTech Connect

    Babie, Brian M.; Nelson, Robert C.

    2010-07-15

    An experimental study of a planar wake consisting of four vortices that simulate the trailing vortex wakes generated by transport airplanes in either takeoff or landing configurations is presented. The objective of this study was to examine naturally occurring wake instabilities. Specifically, the focus of the study was centered on bending wave instabilities of which the Crow instability represents a particular case. A unique method of generating a four-vortex wake was developed for this study. The four-vortex wake generating device permitted direct variation of the spacing between vortices as well as control over the vortex circulation strength. Two quantitative flow visualization experiments were instrumental in identifying wake configurations that were conducive to the rapid growth of bending wave modes and in the identification of the long-wavelength mode. Detailed experiments were also conducted to examine the flow structure in the near-field or roll-up region using a four sensor, hot-wire probe that could measure all three velocity components in the wake simultaneously. The results of both the flow visualization and hot-wire experiments indicate that the long-wavelength mode and the first short-wavelength mode likely dominate the far-field wake physics and may potentially be utilized in a wake control strategy.

  15. Two Dimensional Wake Vortex Simulations in the Atmosphere: Preliminary Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.; Hinton, D. A.; Han, J.; Schowalter, D. G.; Lin, Y.-L.

    1998-01-01

    A numerical large-eddy simulation model is currently being used to quantify aircraft wake vortex behavior with meteorological observables. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. The addition of grid-scale turbulence as an initial condition appeared to have little consequence. Results show that conventional nondimensionalizations work very well for vortex pairs embedded in stably stratified flows. However, this result is based on simple environments with constant Brunt-Vaisala frequency. Results presented here also show that crosswind profiles exert important and complex interactions on the trajectories of wake vortices. Nonlinear crosswind profiles tended to arrest the descent of wake vortex pairs. The member of the vortex pair with vorticity of same sign as the vertical change in the ambient along-track vorticity may be deflected upwards.

  16. Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models

    NASA Technical Reports Server (NTRS)

    Tanuwidjaja, A.

    1982-01-01

    Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.

  17. Development of a rotor wake/vortex model. Volume 2: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    The principal objective was to establish a verified rotor wake/vortex model for specific application to fan and compressor rotor-stator interaction and resulting noise generation. A description and flow chart of the Rotor Wake/Vortex Model computer program, a listing of the program, definitions of the input/output parameters, a sample input/output case, and input files for Rotor 55, the JT15D rotor, and Rotor 67, Stage 1 are provided.

  18. A comparison of airborne wake vortex detection measurements with values predicted from potential theory

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1991-01-01

    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.

  19. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  20. Wake vortex modeling for airborne and ground-based measurements using a coherent lidar

    NASA Astrophysics Data System (ADS)

    Thomson, J. Alex L.; Hannon, Stephen M.

    1995-06-01

    Simulated signatures of aircraft wakes as detected by a scanning coherent short wavelength lidar are presented and characterized for a number of candidate surveillance scenarios. Ground based and airborne scanning configurations that emulate candidate operational detection and warning systems are compared for spatial coverage and detection capability as a function of system design parameters and atmospheric conditions. Examples of trailing geometries characteristic of onboard wake detection and warning systems are presented. The dependence of predicted detection capability on hydrodynamic parameters, such as vortex circulation, axial motion in the wake vortices, and ambient turbulence is discussed. Simulated wake signatures are compared to observations for wakes observed at Denver's Stapleton International Airport in 1993.

  1. Analysis of the Vortex-Decay Process in the K'arm'an Street

    NASA Astrophysics Data System (ADS)

    Ponta, Fernando

    2007-11-01

    In this talk we shall explore the effect of viscosity upon the vorticity distribution and rate of decay of vortex cores in the K'arm'an vortex street behind a circular cylinder. We used direct numerical simulation data, which we contrasted against well-known experimental measurements. By decomposing the incompressible velocity field in its solenoidal and harmonic components, we identified the eddy structures associated with the formation, shedding and rearrangement of the vortices into the K'arm'an street. We then follow their evolution during the subsequent decay process. This allowed us to extend the conclusions of the partially-viscous model of Hooker (1936), who assumed several simplifying hypothesis: initial infinite-length filament-vortex wake, circular Lamb vortices of equal age at subsequent times, and no overlapping of the vortex cores. We found that the vortex cores exhibit a Gaussian vorticity profile, and a vorticity-stream function scatter-plot clearly consistent with the Lamb-vortex model. The vorticity peak on the core decays downstream with the systematic hyperbolic law given by Lamb's solution, with a rate of decay determined by the amount of circulation contained into the core at the early stages of the street formation.

  2. Three-dimensional vortex wake structure of flapping wings in hovering flight

    PubMed Central

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R.; Deng, Xinyan

    2014-01-01

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity. PMID:24335561

  3. Separation of Lift-Generated Vortex Wakes Into Two Diverging Parts

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Brown, Anthony P.

    2010-01-01

    As part of an ongoing study of the spreading rate of lift-generated vortex wakes, the present investigation considers possible reasons as to why segments of lift-generated wakes sometimes depart from the main part of the wake to move rapidly in either an upward or downward direction. It is assumed that deficiencies or enhancements of the lift carry over across the fuselage-shrouded wing are the driving mechanism for departures of wake-segments. The computations presented first indicate that upwardly departing wake segments that were observed and photographed could have been produced by a deficiency in lift carryover across the fuselage-shrouded part of the wing. Computations made of idealized vortex wakes indicate that upward departure of a wake segment requires a centerline reduction in the span loading of 70% or more, whether the engines are at idle or robust thrust. Similarly, it was found that downward departure of wake segments is produced when the lift over the center part of the wing is enhanced. However, it was also found that downward departures do not occur without the presence of robust engine-exhaust streams (i.e., engines must NOT be at idle). In those cases, downward departures of a wake segment occurs when the centerline value of the loading is enhanced by any amount between about 10% to 100%. Observations of condensation trails indicate that downward departure of wake segments is rare. Upward departures of wake segments appears to be more common but still rare. A study to determine the part of the aircraft that causes wake departures has not been carried out. However, even though departures of wake segments rarely occur, some aircraft do regularly shed these wake structures. If aircraft safety is to be assured to a high degree of reliability, and a solution for eliminating them is not implemented, existing guidelines for the avoidance of vortex wakes [1,3] may need to be broadened to include possible increases in wake sizes caused by vertical departures of wake segments. Further study may indicate that it is not possible to modify existing aircraft enough to prevent wake departures. Wake-avoidance guidelines must then be adjusted to provide the desired degree of safety. It appears that steps to avoid upwardly moving wake segments have already been incorporated into the avoidance procedures used for aircraft on approach to runways at the Frankfurt Airport [6,7]. The uncertainty in the prospects for compromises in flight safety caused by rapidly upwardly or downwardly moving wake segments suggest that it be specified that aircraft do not fly above or below each other during operations in the airport vicinity where aircraft are likely to be closely spaced [20].

  4. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  5. Wake vortex detection at Denver Stapleton Airport with a pulsed 2-micron coherent lidar

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Thomson, J. Alex

    1994-01-01

    This report describes the effort undertaken to relate aircraft wake history to the local environment. This involved the monitoring of the embedded windfield, monitoring of local meteorological parameters, a high-resolution velocity field analysis in vertical scan planes and measurement of the axial velocity signature. A flashlight pumped 2.09 micron solid state coherent laser radar system was used to detect and track wake vortices. Strong wake vortex signatures were measured for moderate to large aircraft at Denver's Stapleton airport and a large vortex database was compiled.

  6. A prediction model for the vortex shedding noise from the wake of an airfoil or axial flow fan blades

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chung, M. K.; Kim, Y.-H.

    1993-06-01

    An analytical model is presented for predicting the vortex shedding noise generated from the wake of axial flow fan blades. The downstream wake of a fan blade is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. The fluctuating pressure and lift on the blade surface, which are induced from the vortices in the wake, are analyzed by incorporating the wake model for the von Karman vortex street with thin airfoil theory. The predicted vortex shedding frequency and the overall sound pressure level compare favorably with the measured results for the vortex shedding noise from axial flow fans.

  7. Evolution and breakdown of helical vortex wakes behind a wind turbine

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Sherry, M.; Lo Jacono, D.; Blackburn, H. M.; Sheridan, J.

    2014-12-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable.

  8. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    NASA Astrophysics Data System (ADS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-12-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors.

  9. A three dimensional vortex wake model for missiles at high angles on attack

    NASA Technical Reports Server (NTRS)

    Sheffield, J. S.; Deffenbaugh, F. D.

    1980-01-01

    A three dimensional model for the steady flow past missile and aircraft nose shaped bodies is presented based on augmenting a potential solution with a wake composed of vortex filaments. The vortex positions are determined by the requirement that they, in some sense, align with the flow. The aerodynamic loads on the body are compared with experimental values and used to evaluate the model. The vortex positions compare well with flow visualization results for slender bodies at high angles of attack. The approximations in the wake near the body cause peaks in the force distributions more severe than in the measured values. For given vortex strengths and body attachment points multiple steady vortex positions were not found.

  10. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  11. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  12. Evaluation of Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.

    2009-01-01

    Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

  13. Wake-Vortex Separation Distances when Flight-Path Corridors are Constrained

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Olson, Lawrence E. (Technical Monitor)

    1995-01-01

    Since the vortex wakes of large transport aircraft can pose a hazard to smaller following aircraft during landing and takeoff operations, certain separation guidelines are followed while aircraft are in the approach and departure corridors at airports. These guidelines reduce the capacity of airports because the separation distances are larger than other airport factors require. This paper studies the effect that a decrease in the size of the cross-section of the flight corridors for air traffic control would have on the wake-vortex separation guidelines; e.g., when the Global Positioning System (GPS) is implemented for air traffic control. It is first shown why smaller flight corridors permit reduced spacings at airports. Several arrangements of smaller flight corridors are then presented to illustrate how differing atmospheric and airport conditions can be accommodated. These considerations indicate that a reduction is then permissible in the wake-vortex spacings while still retaining the same or an improved degree of safety.

  14. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  15. Periodic vortex shedding in the supersonic wake of a planar plate

    NASA Technical Reports Server (NTRS)

    Xing, W. F.; Marenbach, G.

    1985-01-01

    Vortex sheets in the wake have been mainly studied in incompressible flows and in the transonic region. Heinemann et al. (1976) have shown that for the subsonic region the Strouhal number is nearly independent of the Mach number. Motallebi and Norbury (1981) have observed an increase in the Strouhal number in transonic supersonic flow at Mach numbers up to 1.25. The present investigation is concerned with an extension of the studies of vortex shedding to higher supersonic Mach numbers, taking into account questions regarding the possibility of a generation of stable von Karman vortex paths in the considered Mach number range. It is found that the vortex sheet observed in a supersonic wake behind a rough plate is only stable and reproducible in cases involving a certain surface roughness and certain aspects of trailing edge geometry.

  16. Numerical Study of Wake Vortex Behavior in Turbulent Domains with Ambient Stratification

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2000-01-01

    A three-dimensional large eddy simulation model is used to investigate the sensitivity of ambient stratification with turbulence on the behavior of aircraft wake vortices. Modeled ambient turbulence levels range from very weak to moderate, and stratification levels range from strongly stable to unstable. The results of profound significance from this study are: 1) very little sensitivity between vortex linking time and the level of stratification, 2) the mean vortex separation remained nearly constant regardless of stratification and turbulence (at least prior to linking), 3) the wake vortices did not rise regardless of the level of stratification, and 4) for very strong stratification, the vortex stopped descending and quickly dissipated even before vortex linking could occur. These results are supported by experimental data and are contrary to conclusions from other numerical studies that assume laminar flow and/or relatively-low Reynolds numbers.

  17. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    NASA Technical Reports Server (NTRS)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  18. Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes

    NASA Technical Reports Server (NTRS)

    Martin, Preston B.; Leishman, J. Gordon

    2003-01-01

    This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.

  19. The Decay of Vortex Ring Circulation in Left Ventricular Filling

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley; Jung, Sunghwan; Little, William; Vlachos, Pavlos

    2011-11-01

    Radially confined vortex rings have been previously investigated and shown to exhibit a decay in circulation after vortex ring pinch-off. A semi-empirical model for the evolution of the vortex ring circulation subject to the effect of confinement was previously developed and displayed strong agreement with experimental observations. In this work the model was applied to clinical phase contrast Magnetic Resonance Imaging data to track and potentially predict the rate of vortex ring circulation decay within the filling left ventricle (LV) subject to changing physiological characteristics in normal and diseased conditions. From our previous work and clinical observations, we hypothesize that variations in vortex ring dynamics within the LV are caused by changes in ventricular geometry. Therefore impaired ventricular relaxation causes a decreased LV volume during filling, results in a more rapid decay of early diastolic hydrodynamic circulation. This model may be used to more completely understand the filling dynamics and potentially lead to improved diagnostic techniques.

  20. A Parametric Study of Accelerations of an Airplane Due to a Wake Vortex System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1999-01-01

    A study was conducted using strip theory to systematically investigate the effects of progressively more complete descriptions of the interaction of an airplane with a wake vortex system. The emphasis was in roll-dominant, parallel, vortex encounters. That is, the simulated airplane's longitudinal axis was nearly parallel to the rotation axis of the vortex system for most of the results presented. The study began with a drag-less rectangular wing in the flow field of a single vortex and progressed to a complete airplane with aerodynamic surfaces possessing taper, sweep, dihedral, and stalling and immersed in the flow field of a vortex pair in ground effect. The effects of the pitch, roll, and yaw attitudes of the airplane on the calculated accelerations were also investigated. The airplane had the nominal characteristics of a Boeing 757, and the vortex flow field had the nominal characteristics of the wake of a Boeing 767. The Bumham-Hallock model of a vortex flow field was used throughout the study. The data are presented mainly in terms of contours of equal acceleration in a two-dimensional area centered on the vortex pair and having dimensions of 300 feet by 300 feet.

  1. Generation of vortex rings by nonstationary laser wake field

    SciTech Connect

    Tsintsadze, N.L.; Murtaza, G.; Shah, H.A.

    2006-01-15

    A new concept of generating quasistatic magnetic fields, vortex rings, and electron jets in an isotropic homogeneous plasma is presented. The propagation of plasma waves, generated by a relativistically intense short pulse laser, is investigated by using the kinetic model and a novel nonpotential, time-dependent ponderomotive force is derived by obtaining a hydrodynamic equation of motion. This force can in turn generate quasistatic magnetic fields, vortex rings, and electron jets. It is also shown that the vortex rings can become a means for accelerating electrons, which are initially in equilibrium. The conservation of canonical momentum circulation and the frozen-in condition for the vorticity is discussed. The excitation of the vortex waves by the modulation of the amplitude of the plasma waves is considered. These vortex waves, which generate a lower hybrid mode propagating across the generated magnetic field, are also investigated.

  2. Spectral Characteristics of Wake Vortex Sound During Roll-Up

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr. (Technical Monitor); Zhang, Yan; Wang, Frank Y.; Hardin, Jay C.

    2003-01-01

    This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensity (60 dB above threshold of human hearing) at a distance of 200 ft from the vortex core. The spectrum then drops o rapidly thereafter. A rigorous analytical approach has been adopted in this report to derive the spectrum of vortex sound. First, the sound pressure was solved from an alternative treatment of the Lighthill s acoustic analogy approach [1]. After the application of Green s function for free space, a tensor analysis was applied to permit the removal of the source term singularity of the wave equation in the far field. Consequently, the sound pressure is expressed in terms of the retarded time that indicates the time history and spacial distribution of the sound source. The Fourier transformation is then applied to the sound pressure to compute its spectrum. As a result, the Fourier transformation greatly simplifies the expression of the vortex sound pressure involving the retarded time, so that the numerical computation is applicable with ease for axisymmetric line vortices during the rolling-up process. The vortex model assumes that the vortex circulation is proportional to the time and the core radius is a constant. In addition, the velocity profile is assumed to be self-similar along the aircraft flight path, so that a benchmark vortex velocity profile can be devised to obtain a closed form solution, which is then used to validate the numerical calculations for other more realistic vortex profiles for which no closed form solutions are available. The study suggests that acoustic sensors operating at low frequency band could be profitably deployed for detecting the vortex sound during the rolling-up process.

  3. Progress Towards the Investigation of Technical Issues Relevant to the Design of an Aircraft Wake Vortex Advisory System (WakeVAS)

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.

    2003-01-01

    Wake vortex separations applied to aircraft during instrument operations have been shown to potentially introduce inefficiencies in air traffic operations during certain weather conditions conducive to short duration wake hazards between pairs of landing aircraft. NASA Langley Research Center (LaRC) demonstrated an integration of technologies that provided real-time observations and predictions of aircraft wake behavior, from which reduced wake spacing from the current criteria was derived. In order to take this proof of concept to an operational prototype system, NASA has been working in cooperation with the FAA and other government and industry members to design operational concepts for a Wake Vortex Advisory System (WakeVAS). In addition to concept development, open research issues are being addressed and activities to quantify system requirements and specifications are currently underway. This paper describes the technological issues relevant to WakeVAS development and current NASA efforts to address these issues.

  4. Commercial aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Gerz, Thomas; Holzpfel, Frank; Darracq, Denis

    2002-04-01

    This paper discusses the problem of wake vortices shed by commercial aircraft. It presents a consolidated European view on the current status of knowledge of the nature and characteristics of aircraft wakes and of technical and operational procedures of minimizing and predicting the vortex strength and avoiding wake encounters. Methodological aspects of data evaluation and interpretation, like the description of wake ages, the characterization of wake vortices, and the proper evaluation of wake data from measurement and simulation, are addressed in the first part. In the second part an inventory of our knowledge is given on vortex characterization and control, prediction and monitoring of vortex decay, vortex detection and warning, vortex encounter models, and wake-vortex safety assessment. Each section is concluded by a list of questions and required actions which may help to guide further research activities. The primary objective of the joint international efforts in wake-vortex research is to avoid potentially hazardous wake encounters for aircraft. Shortened aircraft separations under appropriate meteorological conditions, whilst keeping or even increasing the safety level, is the ultimate goal. Reduced time delays on the tactical side and increased airport capacities on the strategic side will be the benefits of these ambitious ventures for the air transportation industry and services.

  5. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation.

    PubMed

    Bomphrey, Richard J; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-12-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  6. Aircraft wake vortex velocity measurements using a scanning CO2 laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Sonnenschein, C. M.; Jeffreys, H. B.

    1975-01-01

    A CO2 laser Doppler velocimeter was employed in the study of pairs of counterrotating vortices trailing aircraft in an airport air space. A laser positioned on an extended runway centerline scans a vertical plane perpendicular to the centerline. Vortex location, measurement of vortex transport, and measurement of the properties of aircraft wake vortex flow fields are achieved via spectral analysis of the data. Highest amplitude in the spectrum, the associated maximum velocity, the highest velocity above the amplitude threshold, and the total number of frequency (velocity) cells above thresholds are studied as parameters in analysis of the vortex-associated flow field. The profile of the radial variation of tangential velocity is studied, and two special problems are examined: location of the vortex center and error introduced by crosswind.

  7. Influence of structural flexibility on the wake vortex pattern of airfoils undergoing harmonic pitch oscillation

    NASA Astrophysics Data System (ADS)

    Monnier, B.; Naguib, A. M.; Koochesfahani, M. M.

    2015-04-01

    Reported herein is an investigation of the influence of the structural flexibility of sinusoidally pitching airfoils on the pattern of vorticity shed into the wake. For rigid airfoils, it is well known that, depending on the oscillation frequency and amplitude, this pattern takes the form of the classical or reverse von Kármán vortex street. The pattern may be characterized by the vortex circulation ( Γ o ), vortex-to-vortex streamwise and cross-stream spacing ( a and b, respectively), and vortex core radius ( R). In the present work, these four parameters are obtained from particle image velocimetry measurements in the wake of airfoils consisting of a rigid "head" and flexible "tail" at chord Reynolds number of 2010 for different tail flexibilities. The results show that flexible airfoils exhibit the switch from classical to reverse von Kármán vortex street (i.e., change in the sign of b) at a reduced frequency of oscillation lower than their rigid counterpart. At a given oscillation frequency, the Strouhal number at which this switch occurs is smallest for a given airfoil structural flexibility; which becomes stiffer with increasing frequency. Using Strouhal number based on the actual trailing edge oscillation amplitude, reasonable scaling is found of the dependence of not only b but also Γ o , a and R on the motion and structure parameters for all airfoils investigated. These results are complemented with analyses using a vortex array model, which together with the identified scaling of the wake vortex parameters, provide basis for the computation of the net thrust acting on the airfoil.

  8. Relationship between vortex ring in tail fin wake and propulsive force

    NASA Astrophysics Data System (ADS)

    Imamura, Naoto; Matsuuchi, Kazuo

    2013-10-01

    Our aim was to investigate the three-dimensional (3D) vortex ring in the wake of a tail fin and to clarify the propulsion mechanism of dolphins and fish. In this study, we replaced a tail fin in pitching motion with an oscillating wing having a drive unit. The flow fields around the wing were measured by stereoscopic particle image velocimetry. To visualize the 3D structure of the vortex in the wake, we determined the flow fields in equally spaced cross-sectional planes. We reconstructed the 3D velocity fields from the velocity data with three components in two dimensions. We visualized the 3D vortex structure from these velocity data and plotted an iso-vorticity surface. As a result, we found that the vortex ring was generated by the kick-down and kick-up motions of the wing and that the wake structure was comparable with that obtained numerically. Moreover, we calculated the propulsive forces from the temporal variations in circulation and in the area surrounded by the vortex ring.

  9. Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration

    NASA Astrophysics Data System (ADS)

    Fabre, David; Jacquin, Laurent; Loof, Antoine

    2002-01-01

    We consider the instability of two vortex pairs in a counter-rotating configuration. Such configurations model vortex wakes observed behind aircraft with inboard vortices produced at the inboard flap edges and at the tips of the horizontal tail. The instability potential is characterized by an optimal perturbation analysis. This extends the analysis of Fabre & Jacquin (2000) which was restricted to particular stationary configurations, and that of Crouch (1997) which considered co-rotating configurations. A complete mapping of the optimal perturbations is presented. The optimal perturbations grow faster than the Crow (1970) instability. However, they correspond to short-wavelength perturbations mainly affecting the weaker inboard vortices. A possible strategy which consists of forcing a long wavelength is then investigated. Application of both the optimal and the long-wave optimal perturbations to reduction of vortex wake danger is discussed.

  10. Implicit Euler calculation of supersonic vortex wake/engine plume interaction

    NASA Astrophysics Data System (ADS)

    Cali, Philip; Drela, Mark

    1993-01-01

    This paper presents the computational modeling of supersonic vortex wake/engine plume interaction. The evolution of the wake and plume was modeled in the Trefftz plane using the two-dimensional, unsteady Euler equations. Test cases varying the initial spanwise location of the plume were conducted. In all cases, the plume was seen to break apart into small bundles which then orbited the vortex core. Although the inward pressure gradient of the rolled-up vortex drove the hot effluent toward the center, the inward motion of the buoyant plume fluid was limited due to the lack of a diffusive model. The amount of effluent drawn tightly to the core increased as the initial plume location was moved outward along the span.

  11. A vortex pair model for plume downwash into stack wakes

    NASA Astrophysics Data System (ADS)

    Johnston, C. R.; Wilson, D. J.

    A model is proposed that uses a streamwise vortex pair embedded in the plume to produce a downwash velocity that varies with downwind distance and competes with the trajectory centerline plume rise velocity. This streamwise vortex pair is an idealization of the connection back to the stack tip of the vertical von Karman vortices shed from the stack. The model is compared with the measurements of trajectories from non-buoyant momentum jets injected from a circular tube with subcritical external Reynolds number into a uniform cross flow in a water channel. Fluorescent dye and laser sheet-lighting were used to define the trajectories over a range of effluent to crosswind velocity ratios from 0.25 to 8.0. With an empirical function to account for the efficiency with which the jet entrains vorticity from the stack-tip vortex pair, the model accurately predicts the plume downwash effects, and accounts for the continuous downward deflection of the jet trajectory.

  12. Models of Wake-Vortex Spreading Mechanisms and Their Estimated Uncertainties

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity at its busiest airports. Many airports with nearly-simultaneous operations on closely-spaced parallel runways (i.e., as close as 750 ft (246m)) suffer a severe decrease in runway acceptance rate when weather conditions do not allow full utilization. The objective of a research program at NASA Ames Research Center is to develop the technologies needed for traffic management in the airport environment so that operations now allowed on closely-spaced parallel runways under Visual Meteorological Conditions can also be carried out under Instrument Meteorological Conditions. As part of this overall research objective, the study reported here has developed improved models for the various aerodynamic mechanisms that spread and transport wake vortices. The purpose of the study is to continue the development of relationships that increase the accuracy of estimates for the along-trail separation distances available before the vortex wake of a leading aircraft intrudes into the airspace of a following aircraft. Details of the models used and their uncertainties are presented in the appendices to the paper. Suggestions are made as to the theoretical and experimental research needed to increase the accuracy of and confidence level in the models presented and instrumentation required or more precise estimates of the motion and spread of vortex wakes. The improved wake models indicate that, if the following aircraft is upwind of the leading aircraft, the vortex wakes of the leading aircraft will not intrude into the airspace of the following aircraft for about 7s (based on pessimistic assumptions) for most atmospheric conditions. The wake-spreading models also indicate that longer time intervals before wake intrusion are available when atmospheric turbulence levels are mild or moderate. However, if the estimates for those time intervals are to be reliable, further study is necessary to develop the instrumentation and procedures needed to accurately define when the more benign atmospheric conditions exist.

  13. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A; Holzpfel, F; Rahm, S

    2015-09-21

    The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-m PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-m PCDL. The domain of applicability of the RV method is determined. PMID:26406749

  14. Vortex Formation in the Wake of Dark Matter Propulsion

    NASA Astrophysics Data System (ADS)

    Robertson, G. A.; Pinheiro, M. J.

    Future spaceflight will require a new theory of propulsion; specifically one that does not require mass ejection. A new theory is proposed that uses the general view that closed currents pervade the entire universe and, in particular, there is a cosmic mechanism to expel matter to large astronomical distances involving vortex currents as seen with blazars and blackholes. At the terrestrial level, force producing vortices have been related to the motion of wings (e.g., birds, duck paddles, fish's tail). In this paper, vortex structures are shown to exist in the streamlines aft of a spaceship moving at high velocity in the vacuum. This is accomplished using the density excitation method per a modified Chameleon Cosmology model. This vortex structure is then shown to have similarities to spacetime models as Warp-Drive and wormholes, giving rise to the natural extension of Hawking and Unruh radiation, which provides the propulsive method for space travel where virtual electron-positron pairs, absorbed by the gravitational expansion forward of the spaceship emerge from an annular vortex field aft of the spaceship as real particles, in-like to propellant mass ejection in conventional rocket theory.

  15. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  16. Vortex motion in the near-wake region behind a single gas bubble in a liquid-solid fluidized bed - The pendulum model for wake size prediction

    SciTech Connect

    Tsuchiya, K.; Fan, L.S.

    1987-01-01

    A mechanistic model, denoted as the pendulum model, which interrelates the frequency of vortex shedding and the size of the bubble wake is developed based on secondary motion of a single gas bubble rising in liquids and/or liquid-solid suspensions. In the model, the bubble and its primary wake are regarded as a single semi-rigid body steadily rocking at the vortex shedding frequency. Inherent model parameters, including bubble geometric parameters, the bubble rise velocity and the vortex shedding frequency, are expressed in terms of the bubble size to permit a priori prediction of the wake size. The predicted wake sizes are compared satisfactorily with the experimental data reported in the literature over a wide range of the bubble Reynolds number.

  17. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  18. Application of panel method to wake vortex/wing interaction and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Smith, B. E.; Ross, J. C.

    1984-01-01

    The ability of a low-order panel method to calculate the aerodynamic loads on wings caused by interaction with wake vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads and rolling-moment coefficients on the following wing were compared with experimental data. A good agreement with experiment was obtained when the following wing was located more than one following-wing chord length from the tip vortex. The predictions deteriorated as the following wing was placed closer to the vortex. At large downstream distances (approximately 10 generating-wing chord lengths), induced rolling-moment coefficients on the following wing were consistently overestimated. Despite the strong interaction between the wake-vortex filaments and surface doublet panels, the accuracy of the calculations was in most cases independent of the panel distribution and density. A good agreement between theoretical and experimental loads was obtained with a minimum of experimentation with panel arrangements.

  19. Estimation of aircraft wake vortex parameters from data measured by a Stream Line lidar

    NASA Astrophysics Data System (ADS)

    Smalikho, I. N.; Banakh, V. A.

    2015-11-01

    A method for estimation of aircraft wake vortex parameters (coordinates of axis and circulation of vortices) from raw data measured by a pulsed coherent Doppler lidar "Stream Line" has been offered. By numerical simulation we found optimal measurement parameters, with which it is possible to obtain information about the wake vortices, despite the low level of echo signal inherent to this lidar. The method was tested in an experiment at the airfield of Tomsk airport. The results of the experimental data processing are consistent with theoretical calculations for the type of aircrafts involved in this experiment.

  20. Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory

    NASA Astrophysics Data System (ADS)

    Carmer, Carl F. v.; Heider, Andr; Schrder, Andreas; Konrath, Robert; Agocs, Janos; Gilliot, Anne; Monnier, Jean-Claude

    Multiple-vortex systems of aircraft wakes have been investigated experimentally in a unique large-scale laboratory facility, the free-flight B20 catapult bench, ONERA Lille. 2D/2C PIV measurements have been performed in a translating reference frame, which provided time-resolved crossvelocity observations of the vortex systems in a Lagrangian frame normal to the wake axis. A PIV setup using a moving multiple-camera array and a variable double-frame time delay has been employed successfully. The large-scale quasi-2D structures of the wake-vortex system have been identified using the QW criterion based on the 2D velocity gradient tensor ?H u, thus illustrating the temporal development of unequal-strength corotating vortex pairs in aircraft wakes for nondimensional times tU0/b?45.

  1. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  2. Vortex Wake Geometry of a Model Tilt Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    A full-span 0.25-scale V-22 tiltrotor was tested in the NASA Ames 40-by 80-Foot Wind Tunnel in November 2000. The main objective of the test was to acquire a comprehensive database to validate tiltrotor analyses. Figure 1 shows the model installed in the Ames 40- by 80-Foot Wind Tunnel. Rotor and vehicle performance measurements were taken in addition to wing pressures, acoustics, and flow visualization. A dual acoustic traverse system was installed to measure blade-vortex interaction (BVI) noise levels and directivity. Test conditions included hover and forward flight in helicopter mode. Angle-of-attack and thrust sweeps for three tunnel speeds were acquired before model problems caused the premature conclusion of the test. The test will resume in the Ames 80- by 120-Foot Wind Tunnel in late 2001. This paper will focus on the wake geometry measurements that were acquired during the test. The wake geometry measurements were a small subset of a larger matrix of planned measurements designed to study the development and structure of the dual vortex system generated during BVI conditions. The present paper will provide wake geometry data for four test conditions. In addition, the data will be compared with previously acquired wake measurements from an isolated tiltrotor

  3. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches

    NASA Technical Reports Server (NTRS)

    Garodz, L. J.

    1975-01-01

    A series of flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Flights of the B727, equipped with smoke generators for vortex marking, were flown wherein its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) or a Piper Twin Comanche (Pa-30); and its vortex location during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 meters (300 feet) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex. As the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 nautical miles would be a minimum separation distance at which roll control could be maintained during parallel encounters of the B727's landing configuration wake by small aircraft.

  4. An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.; Stewart, Eric C.

    1996-01-01

    Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error.

  5. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  6. Motion, decay and merging of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Ting, L.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized. Emphases are placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the merging of the filament(s) are described. It is focused on the development of the approximate boundary conditions for the computational domain.

  7. Modeling von Karman vortex shedding in cylinder wake to examine energetic coherent motions on hydrokinetic turbines

    NASA Astrophysics Data System (ADS)

    Neary, V. S.; Gunawan, B.; Chamorro, L. P.; Stekovic, S.; Hill, C.

    2012-12-01

    Numerous investigators have examined vortex-shedding in the wake of cylinders. This is a classical flow problem that has many engineering applications, including pronounced flow disturbance, turbulence generation, and sediment scour in the wakes of in stream structures, e.g. bridge piers and towers for marine and hydrokinetic (MHK) turbines. It is also important to understand the contribution of large coherent motions on the unsteady loading and performance of hydrokinetic turbines. Unsteady vortex shedding is caused by flow separation and detachment within the near-wall region along the cylinder surface. Our aim is to examine the unsteady flow field and von Karman vortex shedding resulting from unsteady turbulent flow around an emergent cylinder mounted perpendicular to a fixed surface by conducting physical and numerical modeling experiments. The numerical simulation emulates an open-channel flow experiment at the St. Anthony Falls Laboratory at the University of Minnesota, where instantaneous velocity was measured using three synchronized acoustic Doppler velocimeters (ADVs). The open-channel flume is 80 m long, and 2.75 m wide. The flow depth is 1.15 m. The cylinder diameter is 0.116 m. The flow is turbulent, with a cylinder Reynolds number equal to 5.44E4. We use the commercial CFD software, STAR-CCM+, to generate the computational mesh that models the flow geometry around the cylinder, and to numerically solve the unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The generated mesh is fine enough (> 2 million elements) to resolve the coherent structures of vortex shedding. The Frost high-performance cluster (an ORNL supercomputer) is used to run the simulation. The results show how a validated CFD model can be used to design the layout and spacing of synchronized ADV point measurements to characterize essential features of the Karman shedding in the cylinder wake. A similar approach can be used to design field ADV arrays for measuring more complex vortex shedding, e.g. the tip vortices, occurring in the wakes of MHK turbine rotors.; Numerical simulation of Karman shedding in the wake of cylinder (diameter 0.116 m, Reynolds number, 5.44E4).

  8. Runway Wake Vortex, Crosswind, and Visibility Detection with a Scintillometer at Schiphol Airport

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Hartogensis, O. K.; Holtslag, A. A. M.

    2015-12-01

    We evaluate the performance and investigate the capability of a scintillometer to detect wake vortices, crosswind and visibility near an airport runway. An experiment is carried out at Schiphol airport (Amsterdam, The Netherlands), where an optical scintillometer is positioned alongside a runway. An algorithm is developed to detect wake vortices, and also the strength of the wake vortex, from the variance in the scintillation signal. The algorithm shows promising results in detecting wake vortices and their strengths during the night. During the day, the scintillometer signal is dominated by environmental turbulence and wake vortices are no longer detectable. The crosswind measured by the scintillometer is compared with wind-speed and wind-direction data at the airport. Our results show that, after applying an outlier filter, the scintillometer is able to measure the crosswind over the short time period of 3 s required for aviation applications. The outlier filter does not compromise the capability of the scintillometer to obtain the maximum 3 s crosswind over a 10-min time frame correctly. Finally, a transmission method is used to obtain the visibility from the scintillometer signal, which is then compared with that obtained from a visibility sensor. The scintillometer is able to identify periods of low visibility correctly, although it shows a high amount of scatter around the exact visibility value.

  9. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Chistopher L.

    2001-01-01

    Aircraft travel has become a major form of transportation. Several of our major airports are operating near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity without sacrificing public safety. One solution to the problem is to increase the number of airports and build new. runways; yet, this solution is becoming increasingly difficult due to limited space. A better solution is to increase the production per runway. This solution increases the possibility that one aircraft will encounter the trailing wake of another aircraft. Hazardous wake vortex encounters occur when an aircraft encounters the wake produced by a heavier aircraft. This heavy-load aircraft produces high-intensity wake turbulence that redistributes the aerodynamic loads of trailing smaller aircraft. This situation is particularly hazardous for smaller aircraft during takeoffs and landings. In order to gain a better understanding of the wake-vortex/aircraft encounter phenomena, NASA Langley Research Center conducted a series of flight tests from 1995 through 1997. These tests were designed to gather data for the development a wake encounter and wake-measurement data set with the accompanying atmospheric state information. This data set is being compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results. The purpose of this research is to derive and implement a procedure for calculating the wake-vortex/aircraft interaction portion of that database by using the data recorded during those flight tests. There were three objectives to this research. Initially, the wake-induced forces and moments from each flight were analyzed based on varying flap deflection angles. The flap setting alternated between 15 and 30 degrees while the separation distance remained constant. This examination was performed to determine if increases in flap deflection would increase or decrease the effects of the wake-induced forces and moments. Next, the wake-induced forces and moments from each flight were analyzed based on separation distances of 1-3 nautical miles. In this comparison, flap deflection was held constant at 30 degrees. The purpose of this study was to determine if increased separation distances reduced the effects of the wake vortex on the aircraft. The last objective compared the wake-induced forces and moments of each flight as it executed a series of maneuvers through the wake-vortex. This analysis was conducted to examine the impact of the wake on the B737 as it traversed the wake horizontally and vertically. Results from the first analysis indicated that there was no difference in wake effect at flap deflections of 15 and 30 degrees. This conclusion is evidenced in the cases of the wake-induced sideforce, rolling moment, and yawing moment. The wake-induced lift, drag, and pitching moment cases yielded less conclusive results. The second analysis compared the wake-induced forces and moments at separation distances of 1-3 nautical miles. Results indicated that there was no significant difference in the wake-induced lift, drag, sideforce, or yawing moment coefficients. The analysis compared the wake-induced forces and moments based on different flight maneuvers. It was found that the wake-induced forces and moments had the greatest impact on out-to-in and in-to-out maneuvers.

  10. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.

    PubMed

    Henningsson, P; Spedding, G R; Hedenstrm, A

    2008-03-01

    In this paper we describe the flight characteristics of a swift (Apus apus) in cruising flight at three different flight speeds (8.0, 8.4 and 9.2 m s(-1)) in a low turbulence wind tunnel. The wingbeat kinematics were recorded by high-speed filming and the wake of the bird was visualized by digital particle image velocimetry (DPIV). Certain flight characteristics of the swift differ from those of previously studied species. As the flight speed increases, the angular velocity of the wingbeat remains constant, and so as the wingbeat amplitude increases, the frequency decreases accordingly, as though the flight muscles were contracting at a fixed rate. The wings are also comparatively inflexible and are flexed or retracted rather little during the upstroke. The upstroke is always aerodynamically active and this is reflected in the wake, where shedding of spanwise vorticity occurs throughout the wingbeat. Although the wake superficially resembles those of other birds in cruising flight, with a pair of trailing wingtip vortices connected by spanwise vortices, the continuous shedding of first positive vorticity during the downstroke and then negative vorticity during the upstroke suggests a wing whose circulation is gradually increasing and then decreasing during the wingbeat cycle. The wake (and implied wing aerodynamics) are not well described by discrete vortex loop models, but a new wake-based model, where incremental spanwise and streamwise variations of the wake impulse are integrated over the wingbeat, shows good agreement of the vertical momentum flux with the required weight support. The total drag was also estimated from the wake alone, and the calculated lift:drag ratio of approximately 13 for flapping flight is the highest measured yet for birds. PMID:18281334

  11. Stability of a wind turbine wake subject to root vortex perturbations

    NASA Astrophysics Data System (ADS)

    Smith, David; Blackburn, Hugh; Sheridan, John

    2013-11-01

    Results for DNS of a wind turbine wake will be presented. The Tjæborg wind turbine geometry is modelled using a spectral element solver in coupled to an actuator line model described by Sørensen and Shen (2002). The actuator line model considers the flow over the turbine by calculating body forces derived from two-dimensional airfoil data and flow velocity localised at the blade. Using such a model, Ivanell et al. (2010) identified instabilities in the tip vortex for sinusoidal perturbations that reduced the streamwise spacing between tip vortices. In work to be presented we consider perturbations to the blade-root vortex of the turbine. We examine whether perturbations to the root vortex can excite instability mechanisms in the tip vortex and potentially modify tip vortex downstream extents. We also explore how changes to the spacing between root and tip vortices modifies these effects. Ivanell et al. (2010) J Wind Energy 13, Sørensen and Shen. (2002) J Fluids Eng 124. Supported by Australian Research Council grant DP1096444.

  12. A Sensitivity Study of the Aircraft Vortex Spacing System (AVOSS) Wake Predictor Algorithm to the Resolution of Input Meteorological Profiles

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Butler, Patrick; Riggins, Jamie

    2004-01-01

    The AVOSS project demonstrated the feasibility of applying aircraft wake vortex sensing and prediction technologies to safe aircraft spacing for single runway arrivals. On average, AVOSS provided spacing recommendations that were less than the current FAA prescribed spacing rules, resulting in a potential airport efficiency gain. Subsequent efforts have included quantifying the operational specifications for future Wake Vortex Advisory Systems (WakeVAS). In support of these efforts, each of the candidate subsystems for a WakeVAS must be specified. The specifications represent a consensus between the high-level requirements and the capabilities of the candidate technologies. This report documents the beginnings of an effort to quantify the capabilities of the AVOSS Prediction Algorithm (APA). Specifically, the APA horizontal position and circulation strength output sensitivity to the resolution of its wind and turbulence inputs is examined. The results of this analysis have implications for the requirements of the meteorological sensing and prediction systems comprising a WakeVAS implementation.

  13. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  14. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sibell, Russel; Vetorino, Steven; Higgins, Richard; Tracy, Allen

    2015-05-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  15. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  16. Unsteady vortex lattice techniques applied to wake formation and performance of the statically thrusting propeller

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    The application is considered of vortex lattice techniques to the problem of describing the aerodynamics and performance of statically thrusting propellers. A numerical lifting surface theory to predict the aerodynamic forces and power is performed. The chordwise and spanwise loading is modelled by bound vortices fixed to a twisted flat plate surface. In order to eliminate any apriori assumptions regarding the wake shape, it is assumed the propeller starts from rest. The wake is generated in time and allowed to deform under its own self-induced velocity field as the motion of the propeller progresses. The bound circulation distribution is then determined with time by applying the flow tangency boundary condition at certain selected control points on the blades. The aerodynamics of the infinite wing and finite wing are also considered. The details of wake formation and roll-up are investigated, particularly the localized induction effect. It is concluded that proper wake roll-up and roll-up rates can be established by considering the details of motion at the instant of start.

  17. The free-wake prediction of rotor hover performance using a vortex embedding method

    NASA Technical Reports Server (NTRS)

    Ramachandran, K.; Tung, C.; Caradonna, F. X.

    1989-01-01

    A method is developed to predict the rotor hover performance. This method solves the compressible mass conservation equation much like current full potential codes and can therefore predict the transonic flows on a rotor. However, the newly developed approach also allows for the free convection of shed vorticity and permits the computation of the entire hover wake system. The method uses a vortex embedding scheme in potential flow and has been implemented in a computer code, HELIX -I. To predict power we implement a simple boundary layer and two different induced-drag integration schemes. The induced-drag is obtained from surface pressure integration and an energy flux integral. Comparisons between computations and experiment show good agreement for the prediction of power polars, surface pressure distribution, and tip vortex geometry.

  18. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Hansen, M. O. L.; Moan, T.

    2014-12-01

    In order to evaluate aerodynamic loads on floating offshore wind turbines, advanced dynamic analysis tools are required. As a unified model that can represent both dynamic inflow and skewed inflow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable accuracy.

  19. Flutter clearance flight tests of an OV-10A airplane modified for wake vortex flight experiments

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Rivera, Jose A., Jr.; Stewart, Eric C.

    1995-01-01

    The envelope expansion, flight flutter tests of a modified OV-10A aircraft are described. For the wake vortex research program, the airplane was modified to incorporate three forward-extending instrumentation booms, one extending forward from each wing tip and one from the right side of the fuselage. The booms were instrumented with sensors to measure the velocity and direction of local air flow. The flutter test results show that the modified OV-10A aircraft is free from flutter at speeds up to 330 KEAS at 5000 feet altitude.

  20. Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Evans, P. F.; Hackett, J. E.

    1976-01-01

    Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.

  1. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.

  2. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection

    NASA Astrophysics Data System (ADS)

    Akbulut, M.; Hwang, J.; Kimpel, F.; Gupta, S.; Verdun, H.

    2011-06-01

    We report on the development of a fiber-optic pulsed coherent lidar transceiver for wind-velocity and aircraft wake-vortex hazard detection. The all-fiber 1.5?m transmitter provides up to 560 ?J energy at 25 kHz with 800 ns pulse width (pump limited). Performance simulations indicate wake-vortex hazard signature detection up to ~2.5km range with a receiver sensitivity of ~2 fW (SNR=6), suited for an aircraft landing scenario. Furthermore, the transceiver is implemented using high-speed FPGA based control and digital-signal-processing, enabling its use as a flexible pulse-format multi-function in-flight lidar sensor. We present the latest laboratory results and preliminary testing of this pulsed coherent lidar transceiver, along with the lidar performance simulation of wake-vortex eddy models.

  3. Dynamic decay of a single vortex into vortex-antivortex pairs

    SciTech Connect

    Lendínez, Sergi; Jain, Shikha; Novosad, Valentyn Fradin, Frank Y.; Pearson, John E.; Tejada, Javier; Bader, Samuel D.

    2014-05-07

    A variety of metastable states, including vortices, antivortices, and their combinations, is typical for magnetically soft, thin films and patterned structures. The physics of individual spin vortices in patterned structures has been rather extensively explored. In contrast, there are few studies of the vortex–antivortex–vortex (v-av-v) system, in part because the configuration is rather challenging to obtain experimentally. We demonstrate herein how a recently proposed resonant-spin-ordering technique can be used to induce the dynamic decay of a single vortex into v-av states in elongated elements. The approach is based on first driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency, and then subsequently reducing the excitation field back to the linear regime. This procedure stabilizes the system into a v-av-v state that is completely decoupled from the initialization excitation frequency. The newly acquired state is stable in remanence. The dynamic response of this system is expected to demonstrate a number of collective modes, depending on the combination of the vortex core polarities, and/or the excitation field direction, and, hence, is of interest for future studies.

  4. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the WTMD status information they felt important was represented. Overwhelmingly, subjects felt that approving, monitoring and terminating the WTMD procedure could be integrated into their supervisory workload.

  5. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure

    PubMed Central

    Flammang, Brooke E.; Lauder, George V.; Troolin, Daniel R.; Strand, Tyson

    2011-01-01

    Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns. PMID:21543357

  6. Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rutishauser, David (Technical Monitor)

    2003-01-01

    Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.

  7. Dynamic response of a turbulent cylinder wake to sinusoidal inflow perturbations across the vortex lock-on range

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Efstathios; Liang, Chunlei

    2011-07-01

    Large-eddy simulations are employed to investigate the dynamic response of the turbulent wake of a circular cylinder to sinusoidal perturbations in the inflow velocity superposed on a mean component. The perturbation frequency is varied across the vortex lock-on range at a constant amplitude of 5% of the mean velocity corresponding to a Reynolds number of 2580. The effect on the instantaneous, time-averaged and phase-averaged characteristics of the near-wake flow and fluid forces on the cylinder is reported. Comparisons of the present simulations to experimental realizations show that the physics of the unsteady three-dimensional separated flow are well reproduced. The simulations capture the modification of the wake structure including the shrinking of the recirculation bubble and vortex-formation region and the enhancement of the wake fluctuations and vortex strength in the lock-on regime. These wake effects are accompanied by an increase in the steady and unsteady drag and the unsteady lift acting on the cylinder. An empirical formula for the amplification of the mean drag coefficient due to inflow perturbations and equivalent oscillations of the cylinder in a steady flow is provided from compilation of available data. Particular attention is given to the change in the timing of vortex shedding with respect to the imposed perturbation across the lock-on range in order to reveal the link between the vortex dynamics and the fluid-induced forces on the cylinder. It is shown that the phase at which vortices are shed from the cylinder shifts monotonically as a function of the perturbation frequency resulting in corresponding changes in the phase of the unsteady forces. It is further shown that the phase of the lift is directly linked to that of vortex shedding but the phase of the drag is biased by inertial forces due to added mass and induced pressure waves. Decomposition of the total in-line force to inviscid "potential-flow" and viscous "vortex-drag" components indicates that the latter exhibits a behavior which is not physically consistent. The stochastic character of vortex synchronization in turbulent wakes and the implications of the present findings for vortex-induced free in-line vibrations are also discussed.

  8. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Aircraft During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher L.; Smith, Sonya T.; Vicroy, Dan D.

    2000-01-01

    Several of our major airports are operating at or near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity and safety. As more and more airplanes are placed into the terminal area the probability of encountering wake turbulence is increased. The NASA Langley Research Center conducted a series of flight tests from 1995 through 1997 to develop a wake encounter and wake-measurement data set with the accompanying atmospheric state information. The purpose of this research is to use the data from those flights to compute the wake-induced forced and moments exerted on the aircraft The calculated forces and moments will then be compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results.

  9. Estimation of aircraft wake vortex parameters from data measured with a 1.5-?m coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A

    2015-07-15

    A strategy of measurement by a 1.5-?m pulsed coherent Doppler lidar "Stream Line" has been developed, and a method for estimation of aircraft wake vortices from the lidar data has been proposed. The principal possibility of obtaining the information about the vortex situation over an airport airfield with the Stream-Line lidar has been demonstrated. PMID:26176481

  10. On the increased decay of swirl after vortex breakdown

    NASA Astrophysics Data System (ADS)

    Genc, Balkan; Ertunc, Ozgur; Vaidya, Haresh; Koeksoy, Cagatay; Delgado, Antonio

    2010-11-01

    In this study, vortex breakdown in swirling flows and critical swirl rate for its occurrence was experimentally and numerically investigated. In order to understand and control this interesting phenomenon, a special pipe flow test facility with a rotating honeycomb type swirl generator was constructed. Measurements of all velocity components were carried out by using LDV combined with refractive index matching technique. The maximum Reynolds number and swirl intensity (ratio of angular momentum flux to axial momentum flux) of the flow were ReD = 30,000 and So = 11, respectively. Measurements at a few diameters downstream of the honeycomb revealed that, beyond a critical swirl intensity setting, the swirl component decayed faster as the swirl intensity was further increased. It is also measured that the axial flow attained reduced or even negative velocities around the centreline after this critical swirl intensity was exceeded. It is argued that rapid decay of swirl component due to vortex breakdown causes the change of tendencies in the flow. Critical swirl intensity was hereby proposed to be So 0.95, which is important for design and prediction of swirling flows. In order to complement these experimental results CFD analyses were carried out.

  11. Rotor blade-vortex interaction impulsive noise source identification and correlation with rotor wake predictions

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Schultz, K. J.; Martin, Ruth M.

    1987-10-01

    An acoustic source localization scheme applicable to noncompact moving sources is developed and applied to the blade-vortex interaction (BVI) noise data of a 40-percent scale BO-105 model rotor. A generalized rotor wake code is employed to predict possible VBI locations on the rotor disk and is found quite useful in interpreting the acoustic localization results. The highly varying directivity patterns of different BVI impulses generated at the same test condition are explained by both the localization results and predicted tip vortex trajectories. The effects of rotor tip-path-plane angle and advance ratio on the BVI source positions is studied. Decreasing tip-path-plane angle (at constant advance ratio) moves the general interaction region upwind on the rotor disk, significantly changing the interaction geometry. Increasing advance ratio (at constant tip-path-plane angle) shifts the general source region downwind on the rotor disk with the increased convection of the vortices until about 60 deg azimuth, where the BVI sources appear to become acoustically less effective. The region of strongest BVI sources lies between 60 and 70 deg azimuth and 80 and 90 percent radius for the moderate range of advance ratios studied.

  12. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    NASA Astrophysics Data System (ADS)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  13. Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models

    NASA Astrophysics Data System (ADS)

    Liu, Haiying

    This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW-2, and the CSD program, DYMORE, is also established. The ability to accurately capture the wake structure around a helicopter rotor is crucial for rotorcraft performance analysis. In the third part of this thesis, a new representation of the wake vortex structure based on Non-Uniform Rational B-Spline (NURBS) curves and surfaces is proposed to develop an efficient model for prescribed and free wakes. NURBS curves and surfaces are able to represent complex shapes with remarkably little data. The proposed formulation has the potential to reduce the computational cost associated with the use of Helmholtz's law and the Biot-Savart law when calculating the induced flow field around the rotor. An efficient free-wake analysis will considerably decrease the computational cost of comprehensive rotorcraft analysis, making the approach more attractive to routine use in industrial settings.

  14. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  15. Numerical studies of motion and decay of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Tavantzis, J.; Ting, L.

    1986-01-01

    A computational code is developed for the integro-differential equations governing the motion of the centerlines of vortex filaments submerged in a background potential flow. These equations, which are derived from the method of matched asymptotic analysis, include the effect of decaying large-magnitude circumferential and axial velocity components in the vortical cores. Numerical examples are presented to assess the effect of large axial velocity and of nonsimilar initial profiles in vortical cores. The initial configurations of the filaments are chosen so as to fulfill the basic assumption of asymptotic analysis, which is the effective vortical core size is much smaller than all other length scales in the flowfield, e.g., the radius of curvature and interfilament distance. The computations are continued until the basic assumption is no longer valid, that is, when the merging or intersection of filaments have begun. Various types of local or global merging or intersection of filaments are classified and demonstrated by numerical examples.

  16. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  17. Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field

    NASA Astrophysics Data System (ADS)

    Bovand, M.; Rashidi, S.; Dehghan, M.; Esfahani, J. A.; Valipour, M. S.

    2015-07-01

    In this article the finite volume method (FVM) is carried out to simulate the flow around and through a two-dimensional porous cylinder. An external magnetic field is used to control the wake behind the bluff body and also to suppress the vortex shedding phenomena. The Darcy-Brinkman-Forchheimer model has been used for modeling the flow in the porous medium. Effects of Stuart (N), Reynolds (Re) and Darcy (Da) numbers on the flow behavior have been investigated. The results show that the critical Stuart number for suppress vortex shedding decreases with increasing the Darcy numbers. Also, the Stuart number for disappearance the re-circulating wake increases with increased Reynolds number for both porous and solid cylinders.

  18. On vortex evolution in the wake of axisymmetric and non-axisymmetric low-aspect-ratio accelerating plates

    NASA Astrophysics Data System (ADS)

    Fernando, John N.; Rival, David E.

    2016-01-01

    Impulsively started, low-aspect-ratio elliptical and rectangular flat plates were investigated to determine the role of geometric asymmetries on vortex evolution. Dye visualizations, force measurements, and particle image velocimetry were used throughout to characterize the variation between shapes. For all the shapes studied, aspect ratio was observed to have the largest influence on force production and vortex evolution. Non-uniform curvature and edge discontinuities characteristic of ellipses (with aspect ratios other than one) and rectangles, respectively, play a secondary role. Furthermore, it was shown that stably attached vortex rings form behind the circular and square flat plates, which reduce the instantaneous drag force of each plate until the vortex rings break down. In contrast, all flat plates with aspect ratios other than one are subjected to fast-modulating elliptical vortex rings in the wake. These vortex rings increase the drag force of each plate until pinch-off occurs. Finally, pinch-off was identified with the streamwise pressure-gradient field and compared with formation numbers calculated using the circulation-based methodology, yielding good agreement for all plates with aspect ratios greater than one.

  19. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Kurkowski, R. L.; Garodz, L. J.; Robinson, G. H.; Smith, H. J.; Jacobsen, R. A.; Stinnett, G. W., Jr.; Mcmurtry, T. C.; Tymczyszyn, J. J.; Devereaux, R. L.

    1975-01-01

    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed.

  20. Numerical study of the diffusion-like decay of vortex tangles without mutual friction

    NASA Astrophysics Data System (ADS)

    Kondaurova, Luiza P.; Nemirovskii, Sergey K.

    2011-05-01

    The diffusion-like decay of vortex tangles without mutual friction is simulated numerically using the localized induction approximation. This algorithm, previously developed by the authors, is based on an examination of crossing lines, and has been used to study vortex reconnection processes. We have examined the effect of various factors on the decay of inhomogeneous vortex tangles: diffusion (large vortex loops break up into smaller ones which move away from an initial volume), changes in length owing to reconnection processes, the elimination of small vortices below the spatial resolution, and the insertion and removal of points to ensure stability of the numerical algorithm. The simulations show that a vortex tangle initially localized in a small region will spread into the surrounding space. The time evolution of the vortex line density inside the initial region agrees satisfactorily with that obtained by solving a diffusion equation.

  1. Three-dimensional vortex wake structure of a flapping-wing micro aerial vehicle in forward flight configuration

    NASA Astrophysics Data System (ADS)

    Percin, M.; van Oudheusden, B. W.; Eisma, H. E.; Remes, B. D. W.

    2014-09-01

    This paper investigates the formation and evolution of the unsteady three-dimensional wake structures generated by the flapping wings of the DelFly II micro aerial vehicle in forward flight configuration. Time-resolved stereoscopic particle image velocimetry (Stereo-PIV) measurements were carried out at several spanwise-aligned planes in the wake, so as to allow a reconstruction of the temporal development of the wake of the flapping wings throughout the complete flapping cycle. Simultaneous thrust-force measurements were performed to explore the relation between the wake formation and the aerodynamic force generation mechanisms. The three-dimensional wake configuration was subsequently reconstructed from the planar PIV measurements by two different approaches: (1) a spatiotemporal wake reconstruction obtained by convecting the time-resolved, three-component velocity field data of a single measurement plane with the free-stream velocity; (2) for selected phases in the flapping cycle a direct three-dimensional spatial wake reconstruction is interpolated from the data of the different measurement planes, using a Kriging regression technique. Comparing the results derived from both methods in terms of the behavior of the wake formations, their phase and orientation indicate that the spatiotemporal reconstruction method allows to characterize the general three-dimensional structure of the wake, but that the spatial reconstruction method can reveal more details due to higher streamwise resolution. Comparison of the wake reconstructions for different values of the reduced frequency allows assessing the impact of the flapping frequency on the formation and interaction characteristics of the vortical structures. For low values of the reduced frequency, it is observed that the vortex structure formation of instroke and outstroke is relatively independent of each other, but that increasing interaction occurs at higher reduced frequencies. It is further shown that there is a phase lag in the appearance of the structures for increasing flapping frequency, which is in correlation with the generation of the forces. Comparison of thrust generated during the instroke and the outstroke phases of the flapping motion in conjunction with the development of the wake structures indicates that wing-wing interaction at the start of outstroke (peel motion) becomes a dominant feature for reduced frequencies greater than 0.62.

  2. An unsteady vortex lattice method model of a horizontal axis wind turbine operating in an upstream rotor wake

    NASA Astrophysics Data System (ADS)

    Hankin, D.; Graham, J. M. R.

    2014-12-01

    An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well.

  3. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.

    PubMed

    Drucker; Lauder

    1999-01-01

    Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(-)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(-)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(-)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(-)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of swimming fishes and is therefore a valuable means of studying unsteady flows produced by animals moving through fluids. PMID:10460729

  4. On Use of Global Positioning Technology for Solution of Wake Vortex Problem

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Olson, Lawerence E. (Technical Monitor)

    1997-01-01

    Improved precision of the flight paths used by aircraft to approach and depart airports is becoming available when the Global Positioning System (GPS) is implemented at airports. An overview will be given of published information on how GPS precision guidance at airports can be used to avoid encounters with the lift-generated vortices shed by preceding aircraft during landing. It is pointed out that GPS provides two needed services to bring about improved avoidance capability. Firstly, GPS pseudolites are being built and installed at airports so that, when coupled with autopilot systems currently available on subsonic transport aircraft, the aircraft can make precision approaches for zero visibility landings. The same equipment can also be used for precision approaches for wake-vortex avoidance. Secondly, regular monitoring of atmospheric motions along the approach corridor can be obtained by use of GPS equipment on board aircraft that are in the flight corridors. That is, wind velocity is determined by use of GPS equipment to measure the ground speed of the aircraft and then combined with onboard instrumentation to measure the airspeed of the aircraft. The difference between the two measurements yields the wind velocity. When the measured wind velocities are transmitted to an airport ground station they are used to monitor whether air motions adverse for safety in the flight corridor are present. If any parts of the corridor are unsafe, the spacing of the aircraft, or the location of the flight corridor being used, is modified. It is estimated that the spacings between any combination of aircraft can then be safely reduced to a uniform 3 n. mi. Information to be presented is contained in an article published in the AIAA Journal of Aircraft, May-June 1996.

  5. Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth

    NASA Astrophysics Data System (ADS)

    Bomphrey, Richard J.; Lawson, Nicholas J.; Taylor, Graham K.; Thomas, Adrian L. R.

    2006-04-01

    Some insects use leading-edge vortices to generate high lift forces, as has been inferred from qualitative smoke visualisations of the flow around their wings. Here we present the first Digital Particle Image Velocimetry (DPIV) data and quantitative analysis of an insect’s leading-edge vortex and near wake at two flight speeds. This allows us to describe objectively 2D slices through the flow field of a tethered Tobacco Hawkmoth ( Manduca sexta). The near-field vortex wake appears to braodly resemble elliptical vortex loops. The presence of a leading-edge vortex towards the end of the downstroke is found to coincide with peak upward force production measured by a six-component force-moment balance. The topology of Manduca’s leading-edge vortex differs from that previously described because late in the downstroke, the structure extends continuously from wingtip across the thorax to the other wingtip.

  6. Vortex-Body Interactions: A Critical Assessment. Coupled Gap-Wake Instabilities/Turbulence: A Source of Noise

    NASA Technical Reports Server (NTRS)

    Rockwell, Donald

    1999-01-01

    This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.

  7. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  8. Waking.

    PubMed

    Moon, Paul J

    2013-09-01

    An indubitable aspect of laboring in the realm of hospice care is the "everydayness" of human loss or the stark encounter of death in the human experience. This can pose as opportunity to adopt each day in a particular manner. As such, the focus of my reflection is on transposing certain dynamics of a (funeral) wake to broader professional and personal socioexistential processes. PMID:22811212

  9. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 1: Theory and application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The current program had the objective to modify a discrete vortex wake method to efficiently compute the aerodynamic forces and moments on high fineness ratio bodies (f approximately 10.0). The approach is to increase computational efficiency by structuring the program to take advantage of new computer vector software and by developing new algorithms when vector software can not efficiently be used. An efficient program was written and substantial savings achieved. Several test cases were run for fineness ratios up to f = 16.0 and angles of attack up to 50 degrees.

  10. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  11. Characterizing the wake vortex signature for an active line of sight remote sensor. M.S. Thesis Technical Report No. 19

    NASA Technical Reports Server (NTRS)

    Heil, Robert Milton

    1994-01-01

    A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.

  12. Application of a panel method to wake-vortex/wing interaction and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Ross, James C.

    1987-01-01

    The ability of the Vortex Separation AEROdynamics (VSAERO) program to calculate aerodynamic loads on wings due to interaction with free vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads, rolling-moment coefficients, and lift coefficients on the following wing were compared with experimental results of McMillan et al. and El-Ramly et al. Comparisons of calculated and experimental vortex tangential velocities were also made.

  13. Prediction of the vortex wake for noncircular missiles in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    Engineering prediction methods with the capability to calculate induced effects of lee-side separation vorticity associated with circular and noncircular missiles at high angles of attack in supersonic flow are compared. Methods of interest include a discrete vortex cloud technique, concentrated vortex models, and solutions of Euler's equations with specified separation. Comparison of measured and predicted surface pressure distributions and flow field surveys are presented for bodies with circular and elliptic cross sections. Two flow models for computing lee-side vortex-induced effects on control fins in the vicinity of the vortex field are examined, and suggestions regarding the appropriate flow model for specific situations are included.

  14. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximitywake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximitywake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  15. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region.

    PubMed

    Borazjani, Iman; Sotiropoulos, Fotis

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity-wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  16. Motion and decay of vortex rings submerged in a rotational flow

    NASA Technical Reports Server (NTRS)

    Ishii, K.; Liu, C. H.

    1987-01-01

    The interaction between vortex rings of finite strength and an axisymmetric rotational background flow is studied by a singular perturbation method, because it is difficult to use a finite-difference method to analyze the viscous decay in the small core of a vortex ring. The analysis is carried out by combining a composite solution of a vortex ring and an unsteady Euler solution for the background rotational flow. Using the method of averaging, a numerical scheme is developed to obtain an Euler solution in which the grid and time-step sizes depend solely on the length and velocity scales of the background flow. Numerical results are presented to illustrate the interaction between the trajectories and decay rates of the vortex rings and the background rotational flow.

  17. Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Barber, M. R.; Garodz, L. J.

    1976-01-01

    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria.

  18. The role of atmospheric shear, turbulence and a ground plane on the dissipation of aircraft vortex wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Hirsh, J. E.

    1978-01-01

    Enhanced dispersion of two-dimensional trailed vortex pairs within simplified neutral atmospheric backgrounds is studied numerically for three conditions: when the pair is imbedded in a constant turbulent bath (constant dissipation); when the pair is subjected to a mean cross-wind shear; and when the pair is near the ground. Turbulent transport is modeled using second-order closure turbulent transport theory. The turbulent background fields are constructed using a superequilibrium approximation. The computed results allow several general conclusions to be drawn with regard to the reduction in circulation of the vortex pair and the rolling moment induced on a following aircraft: (1) the rate of decay of a vortex pair increases with increasing background dissipation rate; (2) cross-wind shear disperses the vortex whose vorticity is opposite to the background; and (3) the proximity of a ground plane reduces the hazard of the pair by scrubbing. The phenomenon of vortex bounce is explained in terms of secondary vorticity produced at the ground plane. Qualitative comparisons are made with available experimental data, and inferences of these results upon the persistence of aircraft trailing vortices are discussed.

  19. Estimation of flow parameters of turbulent fluctuations and vortex motions based on randomly sampled velocity data in the near wake of a circular cylinder in a steady flow

    NASA Astrophysics Data System (ADS)

    Kong, Dehong

    1995-09-01

    Flow velocities measured in the near-wake of bluff bodies contain information of mean flow, turbulent fluctuations and vortex motions. Flow parameters like RMS values of velocity fluctuations, Reynolds shear stresses, and auto- / spatial correlation of velocity fluctuations, derived by direct averaging of measured data, will include the total contributions of the periodic vortex motions and the random turbulent fluctuations. In the case of near-wake flows behind a cylinder at sub- critical Reynolds numbers, a vortex-street is formed in the wake and the vortex-shedding frequency is well defined. This offers a possibility for simplifying the decomposition or regular vortex motions and the random turbulent fluctuations. Velocity profiles and cross-stream spatial correlation of streamwise velocity were measured by positioning a TSI's two-component LDA system in the region 2d to 4d downstream of a circular cylinder at Re equals 35,000. The randomly sampled data were first interpolated linearly, and then resampled with a pertinent sampling frequency. The optimal FIR filters, designed using the Remez exchange algorithm, were applied to reject the digital signals in a narrow band around the vortex-shedding frequency. Various flow parameters associated with random turbulence were computed. The integration of the auto- and spatial correlation, obtained based on the filtered data gave a physically adequate estimation of the integral time and length scales of the turbulent fluctuations. Errors due to linear interpolation and filter were discussed.

  20. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  1. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  2. Simulating Virtual Terminal Area Weather Data Bases for Use in the Wake Vortex Avoidance System (Wake VAS) Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the research project, sounding datasets were generated for the region surrounding 9 major airports, including Dallas, TX, Boston, MA, New York, NY, Chicago, IL, St. Louis, MO, Atlanta, GA, Miami, FL, San Francico, CA, and Los Angeles, CA. The numerical simulation of winter and summer environments during which no instrument flight rule impact was occurring at these 9 terminals was performed using the most contemporary version of the Terminal Area PBL Prediction System (TAPPS) model nested from 36 km to 6 km to 1 km horizontal resolution and very detailed vertical resolution in the planetary boundary layer. The soundings from the 1 km model were archived at 30 minute time intervals for a 24 hour period and the vertical dependent variables as well as derived quantities, i.e., 3-dimensional wind components, temperatures, pressures, mixing ratios, turbulence kinetic energy and eddy dissipation rates were then interpolated to 5 m vertical resolution up to 1000 m elevation above ground level. After partial validation against field experiment datasets for Dallas as well as larger scale and much coarser resolution observations at the other 8 airports, these sounding datasets were sent to NASA for use in the Virtual Air Space and Modeling program. The application of these datasets being to determine representative airport weather environments to diagnose the response of simulated wake vortices to realistic atmospheric environments. These virtual datasets are based on large scale observed atmospheric initial conditions that are dynamically interpolated in space and time. The 1 km nested-grid simulated datasets providing a very coarse and highly smoothed representation of airport environment meteorological conditions. Details concerning the airport surface forcing are virtually absent from these simulated datasets although the observed background atmospheric processes have been compared to the simulated fields and the fields were found to accurately replicate the flows surrounding the airport where coarse verification data were available as well as where airport scale datasets were available.

  3. Wind-tunnel measurements in the wakes of structures

    NASA Technical Reports Server (NTRS)

    Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.

    1977-01-01

    Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.

  4. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be considered. It is concluded that a RASS system, developed for the specific application of wake vortex detection, could become part of a robust Aircraft Vortex Spacing System (AVOSS). This system, in turn, could contribute to Reduced Spacing Operations (RSO) in US airports and improvements in Terminal Area productivity (TAP).

  5. Computation of potential flows with embedded vortex rings and applications to helicopter rotor wakes

    NASA Technical Reports Server (NTRS)

    Roberts, T. W.

    1983-01-01

    A finite difference scheme for solving the motion of a number of vortex rings is developed. The method is an adaptation of the 'cloud-in-cell' technique to axisymmetric flows, and is thus a combined Eulerian-Lagrangian technique. A straightforward adaptation of the cloud-in-cell scheme to an axisymmetric flow field is shown to introduce a grid dependent self-induced velocity to each vortex ring. To correct this behavior the potential is considered to consist of two parts, a local and a global field. An improved difference formula is derived, allowing the accurate calculation of the potential at points near vortex locations. The local potential is then subtracted before calculating the velocity, leaving only the influences of the remaining vortices. The correct self-induced velocity is then explicitly added to the vortex velocity. Calculations of the motion of one and two vortex rings are performed, demonstrating the ability of the new method to eliminate the grid dependence of the self-induced velocity. The application of the method to the calculation of helicopter rotor flows in hover is attempted.

  6. Estimation of flow parameters of turbulent fluctuations and vortex motions based on randomly sampled velocity data in the near wake of a circular cylinder in a steady flow

    SciTech Connect

    Kong, D.

    1995-12-31

    Turbulent near wake flow is one of the key subjects for solving fluid dynamics-related problems in industrial practice, e.g. numerical simulation of gas explosions on offshore oil/gas production platforms. Flow velocities measured in the near-wake of bluff bodies contain information of mean flow, turbulent fluctuations and vortex motions. Flow parameters like RMS values of velocity fluctuations, Reynolds shear stresses, and auto-/spatial correlation of velocity fluctuations, derived by direct averaging of measured data, will include the total contributions of the periodic vortex motions and the random turbulent fluctuations. In the case of near-wake flows behind a cylinder at sub-critical Reynolds numbers, a vortex-street is formed in the wake and the vortex-shedding frequency is well defined. This offers a possibility for simplifying the decomposition of regular vortex motions and the random turbulent fluctuations. Velocity profiles and cross-stream spatial correlation of streamwise velocity were measured by positioning a TSI`s two-component LDA system in the region 2d to 4d downstream of a circular cylinder at Re = 35,000. The randomly sampled data were first interpolated linearly, and then re-sampled with a pertinent sampling frequency. The optimal FIR filters, designed using the Remez exchange algorithm, were applied to reject the digital signals in a narrow band around the vortex-shedding frequency. Various flow parameters associated with random turbulence were computed. The integration of the auto- and spatial correlation, obtained based on the filtered data gave a physically adequate estimation of the integral time and length scales of the turbulent fluctuations. Errors due to linear interpolation and filtering were discussed.

  7. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  8. TURBULENT DIFFUSION BEHIND VEHICLES: EXPERI-MENTALLY DETERMINED INFLUENCE OF VORTEX PAIR IN VEHICLE WAKE

    EPA Science Inventory

    The wake of a moving vehicle was simulated using a wind tunnel with a moving floor. he vehicle models, both scale and block-shaped, were held in a fixed position while the floor moved at the upstream air speed. his simulates an automobile traveling on a straight highway in still ...

  9. Vortex Ring Formation in the Wake of Biologically Inspired Flapping Foils

    NASA Astrophysics Data System (ADS)

    Read, M. B.

    2005-11-01

    The design of biologically inspired propulsion mechanisms for underwater vehicles continues to generate significant interest in the hydrodynamics of fish swimming. Flapping foils, mimicking fish fins, have been shown to produce significant thrust and have been implemented on prototype underwater vehicles. Here, the three-dimensional vortical structures in the wake of a finite aspect ratio flapping foil are investigated in order to model the three dimensional propulsive signature of swimming fish and flapping foils. The vortical patterns in the wake of a flapping foil are visualized using qualitative fluorescent dye methods, imaged in three views: planform, wing-tip and isometric. Reynolds number based on foil chord length is 165. The foil is forced to heave and pitch with a prescribed motion mimicking that of a swimming fish tail. The visualizations reveal the formation of a pair of coherent, curved, and interconnected ring-like vortices for each full flapping cycle. The wake evolution shows a dependence on Strouhal number and foil motion kinematics; Strouhal number was varied between 0.1 and 0.4. Experimental visualization results compare well with recent numerical simulations using the same parameters. An analogy the model of the wake of a swimming fish is also explored.

  10. Cylinder wakes in flowing soap films

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Ecke, Robert E.

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag.

  11. Cylinder wakes in flowing soap films

    SciTech Connect

    Vorobieff, P.; Ecke, R.E. ); Vorobieff, P. )

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  12. A combined pFFT-multipole tree code, unsteady panel method with vortex particle wakes

    NASA Astrophysics Data System (ADS)

    Willis, David J.; Peraire, Jaime; White, Jacob K.

    2007-03-01

    Potential flow solvers for 3-D aerodynamic flows are commonly used in industrial applications. Two main difficulties preventing the even more widespread use of these codes are the limitations on the number of discretization elements and the user expertise and effort required to specify the wake location. In the paper we present an automatic wake generation strategy for a potential flow solver, and accelerate the method using a pFFT-Fast Multipole Tree algorithm. The combined method can be used to simulate both steady and unsteady flows. The steady state solution is achieved by running an unsteady flow simulation until it reaches a steady state. Computation results are given to demonstrate that the method is fast enough to automatically simulate entire heaving and flapping wing crafts in under and hour on a desktop computer.

  13. A Lagrangian approach to vortex identification in swimming and flying animal wakes.

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng; Dabiri, John

    2006-11-01

    The fluid wakes of swimming and flying animals are generally time-dependent. The Eulerian velocity field, which can be measured by existing DPIV measurement techniques, does not directly indicate the flow geometry in this type of unsteady flows. In this study, a Lagrangian approach is developed to determine the Lagrangian Coherent Structures, which are physical boundaries separating flow regions with distinct dynamics, including vortices. The determination of morphology and kinematics of vortices is necessary in estimating time-dependent locomotive forces (Dabiri, J. Exp. Bio., 2006). It also provides information in studying fluid transport in animal swimming and flying. The application of the method is demonstrated by studying the wake of a bluegill sunfish pectoral fin and that of a free-swimming jellyfish.

  14. A Probabilistic Wake Vortex Lateral Transport Model Using Data from SFO and DEN

    NASA Technical Reports Server (NTRS)

    Mellman, George R.; Delisi, Donald P.

    2008-01-01

    In a previous report, we considered the behavior of the lateral position of vortices as a function of time after vortex formation for Out of Ground Effects (OGE) data for aircraft landing at San Francisco International Airport (SFO). We quantified the spread in lateral position as a function of time and examined how predictable lateral position is under a variety of assumptions. The combination of spread and predictability allowed us to derive probability distribution functions (PDFs) for lateral position given observed crosswind (CW) velocities. In this study, we examine the portability of these PDFs with respect to other landing sites. To this end, we consider OGE data obtained by the Federal Aviation Administration for landings at Denver International Airport (DEN) between 04/05/2006 and 06/03/2006. We consider vortices from both B733 (Boeing 737 models 200-500) and B757 (Boeing 757) aircraft. The data set contains 635 B733 landings and 506 B757 landings. The glide slope altitude for these measurements was 280 m, determined by the average initial vortex observation adjusted for a 3-second delay in the initial observation. The comparable SFO altitude was 158 m. We note that the principal mechanism for lateral transport in the OGE regime is advection by the ambient wind. This implies that a simple crosswind correction may be effective in explaining much of the variation in the lateral transport data. In this study, we again consider the use of ASOS data and average Lidar crosswind data over the vortex altitude range to predict vortex location as a function of time.

  15. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds.

    PubMed

    Spedding, G R; Rosn, M; Hedenstrm, A

    2003-07-01

    In view of the complexity of the wing-beat kinematics and geometry, an important class of theoretical models for analysis and prediction of bird flight performance entirely, or almost entirely, ignores the action of the wing itself and considers only the resulting motions in the air behind the bird. These motions can also be complicated, but some success has previously been recorded in detecting and measuring relatively simple wake structures that can sometimes account for required quantities used to estimate aerodynamic power consumption. To date, all bird wakes, measured or presumed, seem to fall into one of two classes: the closed-loop, discrete vortex model at low flight speeds, and the constant-circulation, continuous vortex model at moderate to high speeds. Here, novel and accurate quantitative measurements of velocity fields in vertical planes aligned with the freestream are used to investigate the wake structure of a thrush nightingale over its entire range of natural flight speeds. At most flight speeds, the wake cannot be categorised as one of the two standard types, but has an intermediate structure, with approximations to the closed-loop and constant-circulation models at the extremes. A careful accounting for all vortical structures revealed with the high-resolution technique permits resolution of the previously unexplained wake momentum paradox. All the measured wake structures have sufficient momentum to provide weight support over the wingbeat. A simple model is formulated and explained that mimics the correct, measured balance of forces in the downstroke- and upstroke-generated wake over the entire range of flight speeds. Pending further work on different bird species, this might form the basis for a generalisable flight model. PMID:12796450

  16. Preliminary flight test investigation of an airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Verstynen, Harry A.; Patterson, James C., Jr.

    1990-01-01

    NASA and the FAA have conducted a brief flight-test investigation to furnish preliminary data on the feasibility of transport aircraft wake-vortices' detection, with a view to improving airport capacity by reducing the longitudinal in-trail spacing between aircraft on landing runs. Attention was given to the possibility that the detection of strong vortices at a sufficiently early stage might furnish reasonable warning of impending aerodynamic effects. Preliminary results indicate that while maximum detection distances obtainable with wingtip-mounted flow-angularity vanes are slightly lower than had been predicted, improved detector algorithms may render them more sensitive.

  17. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.

    PubMed

    Dabiri, John O; Colin, Sean P; Costello, John H

    2006-06-01

    Fast-swimming hydromedusan jellyfish possess a characteristic funnel-shaped velum at the exit of their oral cavity that interacts with the pulsed jets of water ejected during swimming motions. It has been previously assumed that the velum primarily serves to augment swimming thrust by constricting the ejected flow in order to produce higher jet velocities. This paper presents high-speed video and dye-flow visualizations of free-swimming Nemopsis bachei hydromedusae, which instead indicate that the time-dependent velar kinematics observed during the swimming cycle primarily serve to optimize vortices formed by the ejected water rather than to affect the speed of the ejected flow. Optimal vortex formation is favorable in fast-swimming jellyfish because, unlike the jet funnelling mechanism, it allows for the minimization of energy costs while maximizing thrust forces. However, the vortex ;formation number' corresponding to optimality in N. bachei is substantially greater than the value of 4 found in previous engineering studies of pulsed jets from rigid tubes. The increased optimal vortex formation number is attributable to the transient velar kinematics exhibited by the animals. A recently developed model for instantaneous forces generated during swimming motions is implemented to demonstrate that transient velar kinematics are required in order to achieve the measured swimming trajectories. The presence of velar structures in fast-swimming jellyfish and the occurrence of similar jet-regulating mechanisms in other jet-propelled swimmers (e.g. the funnel of squid) appear to be a primary factor contributing to success of fast-swimming jetters, despite their primitive body plans. PMID:16709905

  18. Knuckleball and Flying Disk: Boundary Layer Transitions, Separations and Vortex Wakes in Sports Aerodynamics

    NASA Astrophysics Data System (ADS)

    Higuchi, Hiroshi; Kiura, Toshiro; Goto, Yuichiro; Hiramoto, Riho

    2001-11-01

    In spite of their popularity, flow structures over common baseball and flying disks have not been studied in detail. A slowly rotating baseball is subject to erratic flight paths, and is known as a knuckleball. In the present experiment, the characteristic of force acting on a baseball was obtained and the velocity vector field near the surface of the ball and the wake were measured with the DPIV technique. The seam triggered the boundary layer transition or caused the boundary layer separation itself. The laminar/turbulent boundary layer separations were identified with specific ball orientations. Corresponding three-dimensional wake pattern and the side force result in unpredictable trajectories. In the second part of the talk, flow physics regarding a spin-stabilized flying disk is addressed. The roll-up of trailing vortices was visualized in detail and their vorticity field was measured with the DPIV. The vortical flow over the disk produced flow reattachment at a very high angle of attack. The boundary layer at low angles of attack was affected by the surface motion with asymmetric boundary layer transitions as evidenced by the flow visualization and the hot wire survey. The flow separation and attachment on the underside cavity were also affected by the rotation.

  19. Secondary frequencies in the wake of a circular cylinder with vortex shedding

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul S.; Don, Wai Sun; Gottlieb, David; Rudy, David H.; Townsend, James C.

    1990-01-01

    A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers was conducted using three different numerical algorithms for solving the time-dependent compressible Navier-Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well-predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behavior.

  20. Secondary frequencies in the wake of a circular cylinder with vortex shedding

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul S.; Don, Wai Sun; Gottlieb, David; Rudy, David H.; Townsend, James C.

    1991-01-01

    A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers was conducted using three different numerical algorithms for solving the time-dependent compressible Navier-Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well-predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behavior.

  1. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  2. Laboratory measurements of vortex- and wake-induced vibrations of a tandem arrangement of two flexible risers

    NASA Astrophysics Data System (ADS)

    Liu, Huai-zeng; Wang, Fei; Jiang, Guo-sheng; Guo, Hai-yan; Li, Xiao-min

    2016-03-01

    The dynamic response of two flexible model risers in tandem arrangement immersed in a stepped current was analyzed. The risers, with an external diameter of 20 mm and a total length of 6200 mm, had an aspect ratio of 310. They were hinged to the support structure at the center-to-center distances away 3-12 times the external diameter. The top 1200 mm was exposed to a uniform current at a speed which was up to 0.9 m/s (the Reynolds number was 18000) and the rest in still water. The dynamic responses, which were obtained through the Fiber Bragg Grating strain gauges mounted on the surface, were analyzed by studying the cross-flow amplitudes and modal weights. The cross-flow vibration were observed up to the third mode, and the modal transformation from the second mode to the third mode was clearly observed. The experiment confirmed that the typical vortex-induced vibration (VIV) had occurred on the up-stream riser. But for the down-stream riser, the main excitation mechanism was wake-induced vibration (WIV). The modal transformation of WIV was more complex than that of VIV, which might be helpful for other researchers to study the interference effect.

  3. The Human Aerodynamic Wake

    NASA Astrophysics Data System (ADS)

    Settles, Gary; Moyer, Zachary; Paterson, Eric; Edge, Brian

    2003-11-01

    The wake that trails behind a walking person in still air is, in effect, that of an irregular 3-D cylinder. At a brisk walking speed of 1.3 m/s (3 mph), the human wake is characterized by a Reynolds number of about 50,000. It is thus turbulent with underlying large-scale vortex motion. We show that buoyancy plays no role at this Reynolds number, even though it is dominant in the plume of a standing person. Computational Navier-Stokes solutions and laser-light-sheet experiments with a human subject reveal a large recirculation zone behind the torso and flow between the legs. The decay of a passive scalar introduced on the human body is found to be exponential with downstream distance. The volume flux in the human wake is roughly constant with downstream distance until the recirculation closes, whence it grows due to turbulent entrainment. Further experiments reveal the development of the wake from the human thermal plume as the Reynolds number (proportional to walking speed) is increased from zero to 50,000. These results pertain to the sensing of chemical traces in the wakes of walking persons for aviation security. Supported by FAA Grant 99-G-040.

  4. Wind turbine design using a free-wake vortex method with winglet application

    NASA Astrophysics Data System (ADS)

    Maniaci, David

    Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern wind turbine blade design thus requires non-standard modeling that can effectively analyze the effects of a non-planar blade, such as a blade with a winglet. The free-wake, distributed vorticity element (FW-DVE) method meets these analysis goals. Previous work applied the FW-DVE method to wind turbines, but did not include the influence of profile forces and did not include any design applications. The present research focused on developing the FW-DVE method into a design tool for wind turbine design applications and on the validation of this tool. In the research presented in this thesis, the FW-DVE method was modified to include the effect of airfoil profile drag and to account for the effects of stall and a non-linear lift-curve. A design tool was created to aid in using the WindDVE analysis code for trade space exploration. The method was used to analyze and design a winglet for a small-scale wind turbine, which was tested in a wind tunnel at the University of Waterloo where it exhibited a 9% increase in the maximum coefficient of power of the rotor. The performance results from this test have been used to validate the FW-DVE method for wind turbine design, along with an analysis of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment Phase VI wind turbine.

  5. Numerical simulations of a turbulent axial vortex

    NASA Astrophysics Data System (ADS)

    Qin, Jim Hongxin

    Although the vortex is present in most flows of engineering interest, the turbulent structure of the vortex is not well understood. Current prediction capabilities are especially weak for the vortex as well as other strongly rotating flows. The objective of this work is to aid the development of turbulence models for the vortex as well as strongly rotating flows in general by using direct numerical simulations of the vortex. The present study focuses on the turbulent axial vortex with and without an external strain field. The numerical simulations of a turbulent axial vortex without strain, i.e. an isolated vortex, have been performed by using a pseudo spectral method for compressible flow. The results qualitatively match well with the experimental data. The isolated vortex is stable unless the mean axial wake flow has sufficient magnitude. During the period of decay of disturbances, the mean tangential velocity profile exhibits anti-diffusion because a negative eddy viscosity develops near the center of the vortex. With the disturbance growth, the isolated vortex develops large-scale helical vortex structures, but they eventually disappear during the period of relaminarization. The details of turbulent statistics have been examined. The turbulent structure is related to the in stability of the isolated vortex. The budgets for the Reynolds stresses reveal that the production term is the primary source term, but the pressure strain, pressure transport, and turbulent transport terms also make a large contribution to the budgets for the Reynolds stresses.

  6. Visualization on fish's wake

    NASA Astrophysics Data System (ADS)

    Li, Xuemin; Lu, Xiyun; Yin, Xiezhen

    2002-05-01

    In this paper an experiment on wake of Goldfish swimming unrestricted was conducted in a water tunnel. Method of color liquid was used to visualize the wake. Results show that there is reverse Karman vortex street in symmetrical plane of the wake and the Strouhal frequency of the fish is in the range 0.25-0.35. A 3D vortex ring chain model was presented.

  7. Infrared imaging simulation and detection of ship wake

    NASA Astrophysics Data System (ADS)

    Yang, Li; Chen, Xuan; Chang, Shizheng; Xu, Enchi; Wang, Xingyu; Wang, Ye; Zhao, Xiaolong; Du, Yongchen; Kou, Wei; Fan, Chunli

    2015-10-01

    The thermal wake would be formed owing to the cooling water or exhaust heat discharged by ship, and the cold wake could be formed by the cool water in the lower part of sea stirred up by the ship propeller or vortexes. Owing to the difference of surface temperature and emissivity between the ship wake and the surrounding ocean the ship wake will be easily detected by the infrared detecting system. The wave of wake also could be detected by the difference of reflected radiance between the background and the Kelvin wake of ship. In this paper the simulating models of infrared imaging of ship wake are developed based on the selfradiation of wake, the reflected radiance of the sky and sun and the transmitted radiance of atmosphere, and the infrared imaging signatures of ship wake are investigated. The results show that the infrared imaging signatures of ship wake can be really simulated by the models proposed in this paper. The effects of the detecting height, the angle of view, the NETD of detector and the temperature of wake on the infrared imaging signatures of ship wake are studied. The temperature difference between the ship wake and surrounding ocean is a main fact which effects on the detecting distance. The infrared imaging signatures of ship wake in 8-14?m wave band is stronger than that in 2-5?m wave band whenever the temperature of ship wake is warmer or cooler than the surrounding ocean. Further, the infrared imaging of thermal wake is investigated in the homogenous water and temperature stratified water at different speed of a ship and different flow rate and depth of the discharged water in a water tank. The spreading and decaying laws of infrared signature of ship wake are obtained experimentally. The results obtained in this paper have an important application in the infrared remote sensing of ship wake.

  8. Vortex pair production and decay of a two-dimensional supercurrent by a quantum-field-theory approach

    SciTech Connect

    Iengo, R.; Jug, G.

    1995-09-01

    We investigate the phenomenon of the decay of a supercurrent through homogeneous nucleation of vortex-antivortex pairs in a two-dimensional (2D) like superconductor or superfluid by means of a quantum electrodynamic formulation for the decay of the 2D vacuum. The case in which both externally driven current and Magnus force are present is treated exactly, taking the vortex activation energy and its inertial mass as independent parameters. Quantum dissipation is included through the formulation introduced by Caldeira and Leggett. The most relevant consequence of quantum dissipation is the elimination of the threshold for vortex production due to the Magnus force. In the dissipation-dominated case, corresponding formally to the limit of zero intertial mass, an exact formula for the pair production rate is given. If however the inertial mass is strictly zero we find that vortex production is inhibited by a quantum effect related to the Magnus force. The possibility of including vortex pinning is investigated by means of an effective harmonic potential. While an additional term in the vortex activation energy can account for the effect of a finite barrier in the direction perpendicular to the current, pinning along the current depresses the role of the Magnus force in the dissipation-dominated dynamics, except for the above-mentioned quantum effect. A possible description of vortex nucleation due to the combined effects of temperature and externally driven currents is also presented along with an evaluation of the resulting voltage drop.

  9. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.

  10. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  11. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  12. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  13. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  14. Information Requirements for Supervisory Air Traffic Controllers in Support of a Mid-Term Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.

    2008-01-01

    A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.

  15. Investigation of Some Wake Vortex Characteristics of an Inclined Ogive-Cylinder Body at Mach Number 2

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H; Perkins, Edward W

    1958-01-01

    For a body consisting of a fineness-ratio-3 ogival nose tangent to a cylindrical afterbody 7.3 diameters long, pitot-pressure distributions in the flow field, pressure distributions over the body, and downwash distributions along a line through the vortex centers have been measured for angles of attack to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10 to the 6th power and 0.44 x 10 to the 6th power. Comparisons of computed and measured vortex paths and downwash distributions are made. (author)

  16. Ribbon Surface Pressure and Wake Velocity Data for the Experimental Validation of a Vortex-Based Parachute Inflation Code

    SciTech Connect

    MCBRIDE,DONALD DEAN; CLARK JR,EDWARD LEE; HENFLING,JOHN F.

    2001-06-01

    An experiment to measure surface pressure data on a series of three stainless steel simulated parachute ribbons was conducted. During the first phase of the test, unsteady pressure measurements were made on the windward and leeward sides of the ribbons to determine the statistical properties of the surface pressures. Particle Image Velocimetry (PIV) measurements were simultaneously made to establish the velocity field in the wake of the ribbons and its correlation with the pressure measurements. In the second phase of the test, steady-state pressure measurements were made to establish the pressure distributions. In the third phase, the stainless steel ribbons were replaced with nylon ribbons and PIV measurements were made in the wake. A detailed error analysis indicates that the accuracy of the pressure measurements was very good. However, an anomaly in the flow field caused the wake behind the stainless steel ribbons to establish itself in a stable manner on one side of the model. This same stability was not present for the nylon ribbon model although an average of the wake velocity data indicated an apparent 2{degree} upwash in the wind tunnel flow field. Since flow angularity upstream of the model was not measured, the use of the data for code validation is not recommended without a second experiment to establish that upstream boundary condition.

  17. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  18. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  19. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 2: User's manual for DIVORCE

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, F. D.; Vitz, J. F.

    1979-01-01

    The users manual for the Discrete Vortex Cross flow Evaluator (DIVORCE) computer program is presented. DIVORCE was developed in FORTRAN 4 for the DCD 6600 and CDC 7600 machines. Optimal calls to a NASA vector subroutine package are provided for use with the CDC 7600.

  20. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  1. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2012-09-01

    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  2. Kinematics of flight and the relationship to the vortex wake of a Pallas' long tongued bat (Glossophaga soricina).

    PubMed

    Wolf, Marta; Johansson, L Christoffer; von Busse, Rhea; Winter, York; Hedenstrm, Anders

    2010-06-15

    To obtain a full understanding of the aerodynamics of animal flight, the movement of the wings, the kinematics, needs to be connected to the wake left behind the animal. Here the detailed 3D wingbeat kinematics of bats, Glossophaga soricina, flying in a wind tunnel over a range of flight speeds (1-7 m s(-1)) was determined from high-speed video. The results were compared with the wake geometry and quantitative wake measurements obtained simultaneously to the kinematics. The wingbeat kinematics varied gradually with flight speed and reflected the changes observed in the wake of the bats. In particular, several of the kinematic parameters reflected the differences in the function of the upstroke at low and high flight speeds. At lower flight speeds the bats use a pitch-up rotation to produce a backward flick which creates thrust and some weight support. At higher speeds this mechanism disappears and the upstroke generates weight support but no thrust. This is reflected by the changes in e.g. angle of attack, span ratio, camber and downstroke ratio. We also determined how different parameters vary throughout a wingbeat over the flight speeds studied. Both the camber and the angle of attack varied over the wingbeat differently at different speeds, suggesting active control of these parameters to adjust to the changing aerodynamic conditions. This study of the kinematics strongly indicates that the flight of bats is governed by an unsteady high-lift mechanism at low flight speeds and points to differences between birds and bats. PMID:20511529

  3. Design of an Aircraft Vortex Spacing System for Airport Capacity Improvement

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS, in real-time operation, at a major airport. A wake vortex system test facility was established at the Dallas-Fort Worth International Airport (DFW) in 1997 and tested in 1998. Results from operation of the initial AVOSS system, plus advances in wake vortex prediction and near-term weather forecast models, "nowcast", have been integrated into a second-generation system. This AVOSS version is undergoing final checkout in preparation for a system demonstration in 2000. This paper describes the revised AVOSS system architecture, subsystem enhancements, and initial results with AVOSS version 2 from a deployment at DFW in the fall of 1999.

  4. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  5. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    NASA Technical Reports Server (NTRS)

    Krause, M. C.; Wilson, D. J.; Howle, R. E.; Edwards, B. B.; Craven, C. E.; Jetton, J. L.

    1976-01-01

    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week.

  6. A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake

    NASA Astrophysics Data System (ADS)

    Manti?-Lugo, Vladislav; Arratia, Cristbal; Gallaire, Franois

    2015-07-01

    The supercritical instability leading to the Bnard-von Karman vortex street in a cylinder wake is a well known example of supercritical Hopf bifurcation: the steady solution becomes linearly unstable and saturates into a periodic limit cycle. Nonetheless, a simplified physical formulation accurately predicting the transition dynamics of the saturation process is lacking. Building upon our previous work, we present here a simple self-consistent model that provides a clear description of the saturation mechanism in a quasi-steady manner by means of coupling the instantaneous mean flow with its most unstable eigenmode and its instantaneous amplitude through the Reynolds stress. The system is coupled for different oscillation amplitudes, providing an instantaneous mean flow as function of an equivalent time. A transient physical picture is described, wherein a harmonic perturbation grows and changes in amplitude, frequency, and structure due to the modification of the mean flow by the Reynolds stress forcing, saturating when the flow is marginally stable. Comparisons with direct numerical simulations show an accurate prediction of the instantaneous amplitude, frequency, and growth rate, as well as the saturated mean flow, the oscillation amplitude, frequency, and the resulting mean Reynolds stresses.

  7. Vortex Shedding and Soap Film Physics

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Vorobieff, Peter

    1999-11-01

    We present experimental results on vortex shedding from a cylinder in a flowing soap film. From the thickness field, obtained by scattered light intensity, we determine the dimensionless vortex spacing - the Strouhal number - as a function of flow velocity, cylinder diameter, and film thickness. We also acquire the velocity field and thereby the vorticity field using DPIV (digital particle-image velocimetry). The thickness dependence of the film viscosity is obtained by matching low Reynolds-number data with results from 2D cylinder wakes in 3D flows. The decay of peak vorticity in the vortex street is measured and the effects of internal viscous dissipation and of external air drag are estimated based on a simple dynamical model. Features with a characteristic size of less than about 1mm appear to be undamped by air drag whereas larger vortices decay faster suggesting that air drag becomes increasingly important for large scales. These measurements set the stage for the investigation of near- and far-wake instabilities where the 2D nature of the soap films prevents the spanwise disturbances that lead to wake instability in 3D.

  8. Wingtip Vortex-Augmented Turbopusher Propeller Thrust

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.

    1985-01-01

    Thrust of propeller enhanced by tip vortex. Wingtip-Mounted Nacelle provides turboprop vortex velocity recovery. Thrust of turbopusher propeller increased by flow of lift-induced vortex. As result of weaker vortex, reduction in induced drag of wing afforded by propeller-wake mass injection into core of vortex, causing it to break down.

  9. Measurements of fish's wake by PIV

    NASA Astrophysics Data System (ADS)

    Li, Xuemin; Wu, Yanfeng; Lu, Xiyun; Yin, Xiezhen

    2003-04-01

    In this paper an experiment on measurements of the wake of Goldfish carassius auratus swimming unrestricted was conducted in a water tunnel. Color liquid was used to visualize the wake of the fish and PIV was used to measure velocity field of the wake. Results show that there is reverse Karman vortex street in symmetrical plane of the fish's wake and the Strouhal frequency of the fish is about 0.35 udner the different experimental conditions. The distribution of velocity and vorticity in the wake of Goldfish was measured by PIV and formation of reverse Karman vortex street in the wake was studied in a model experiment.

  10. A cockpit-display concept for executing a multiple glide-slope approach for wake-vortex avoidance

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1984-01-01

    A piloted simulation study was undertaken to determine the feasibility of utilizing a forward-looking display to provide information that would enable aircraft to rredue their in-trail separation interval, and hence increase airport capacity, through the application of multiple glide-path approach techniques. The primary objective of this study was to determine whether information could be satisfactorily provided on a head-up display (HUD) format to permit the pilot to conduct a multiple glide-slope approach while maintaining a prespecified in-trail separation interval. The tests were conducted in a motion-base cockpit simulator configured as a current-generation transport aircraft and included dynamic effects of the vortices generated by the lead aircraft. The information provided on the HUD included typical aircraft guidance information and the current and past positions of the lead aircraft. Additionally, the displayed information provided self-separation cues that allowed the pilot to maintain separation on the lead aircraft. Performance data and pilot subjective ratings and comments were obtained during the tests. The results of this study indicate that multiple glide-slope approaches, procedurally designed for vortex avoidance, are possible while maintaining pilot work load and performance within operationally acceptable limits. In general, it would seem that multiple glide-slope approaches are possible even under reduced in-trail separation conditions if the pilot is provided with adequate situational information.

  11. Coalescing Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  12. Large Eddy Simulation of Aircraft Wake Vortices: Atmospheric Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.

    1997-01-01

    Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.

  13. Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.

    2000-01-01

    The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.

  14. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  15. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  16. Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki L. H.; Myers, Theodore

    1997-01-01

    This report documents a high risk, high pay-off experiment with the objective of detecting, for the first time, the presence of aircraft wake vortices in clear air using X-band Doppler radar. Field experiments were conducted in January 1995 at the Wallops Flight Facility (WFF) to demonstrate the capability of the 9.33 GHz (I=3 cm) radar, which was assembled using an existing nine-meter parabolic antenna reflector at VVTT and the receiver/transmitter from the NASA Airborne Windshear Radar-Program. A C-130-aircraft, equipped with wingtip smoke generators, created visually marked wake vortices, which were recorded by video cameras. A C-band radar also observed the wake vortices during detection attempts with the X-band radar. Rawinsonde data was used to calculate vertical soundings of wake vortex decay time, cross aircraft bearing wind speed, and water vapor mixing ratio for aircraft passes over the radar measurement range. This experiment was a pathfinder in predicting, in real time, the location and persistence of C-130 vortices, and in setting the flight path of the aircraft to optimize X-band radar measurement of the wake vortex core in real time. This experiment was conducted in support of the NASA Aircraft Vortex Spacing System (AVOSS).

  17. Studies of aircraft wake chemistry and dispersion

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Farlow, N. H.; Anderson, L. B.

    1974-01-01

    Use of aerospace technology to study aircraft wakes is reviewed. It is shown how aerospace vehicles can be used to provide data for increased understanding of the atmosphere and of aircraft exhaust trails where knowledge is inadequate to evaluate fully the potential impact of the engine emissions. Models of aircraft near-field exhaust wakes are characterized by jet, vortex, and dispersion regimes. Wake growth in the jet regime is self-determined and rapid, whereas further spreading is inhibited in the vortex regime because of circulating vortex motion. Wake diffusion in the dispersion regime is initially influenced by aircraft induced turbulence but is dominated later by small-scale atmospheric turbulence. Computed fluid mechanical results show the importance of effects such as wake buoyancy, wind shear, turbulence, and traffic corridor exhaust buildup on dispersion of the wake. In the jet regime the exhaust characteristics and thermochemistry serve to illustrate initial chemical changes involving potential pollutant species.

  18. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  19. Propeller tip vortex interactions

    NASA Technical Reports Server (NTRS)

    Johnston, Robert T.; Sullivan, John P.

    1990-01-01

    Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

  20. Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow

    NASA Astrophysics Data System (ADS)

    Branlard, E.; Papadakis, G.; Gaunaa, M.; Winckelmans, G.; Larsen, T. J.

    2015-06-01

    Vortex particles methods are applied to the aeroelastic simulation of a wind turbine in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence with the effect of the shear vorticity is demonstrated for the first time in vortex methods simulations. Most vortex methods formulation of shear, including segment formulations, assume a frozen shear. It is here shown that these formulations omit two source terms in the vorticity equation. The current paper also present unfrozen simulation of shear. The infinite support of the shear vorticity is accounted for using a novel approach relying on a Neumann to Dirichlet map. The interaction of the sheared vorticity with the wind turbine is shown to have an important impact on the wake shape. The obtained wake shape are closer to the one obtained using traditional computational fluid dynamics: Results with unfrozen shear do not have the severe upward motion of the wake observed in vortex methods simulation with frozen shear. The interaction of the shear and turbulence vorticity is shown to reduce the turbulence decay otherwise observed. The vortex code implemented is coupled to an aeroelastic code and examples of aeroelastic simulations under sheared and turbulent inflow are presented.

  1. VIDEO IMAGES OF SMOKE DISPERSION IN THE NEAR WAKE OF A BUILDING PART I. TEMPORAL AND SPATIAL SCALES OF VORTEX SHEDDING

    EPA Science Inventory

    In a wind-tunnel study, recorded video images of smoke dispersion in the wake of a rectangular-shaped building web analyzed. ontinuous source of smoke was emitted at floor level, midway along the leeward side of the building. moke was observed to build up within a region adjacent...

  2. Three dimensional mean flow and turbulence characteristics of the near wake of a compressor rotor blade

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1980-01-01

    The investigation was carried out using the rotating hot wire technique. Measurements were taken inside the end wall boundary layer to discern the effect of annulus and hub wall boundary layer, secondary flow, and tip leakage on the wake structure. Static pressure gradients across the wake were measured using a static stagnation pressure probe insensitive to flow direction changes. The axial and the tangential velocity defects, the radial component of velocity, and turbulence intensities were found to be very large as compared to the near and far wake regions. The radial velocities in the trailing edge region exhibited characteristics prevalent in a trailing vortex system. Flow near the blade tips found to be highly complex due to interaction of the end wall boundary layers, secondary flows, and tip leakage flow with the wake. The streamwise curvature was found to be appreciable near the blade trailing edge. Flow properties in the trailing edge region are quite different compared to that in the near and far wake regions with respect to their decay characteristics, similarity, etc. Fourier decomposition of the rotor wake revealed that for a normalized wake only the first three coefficients are dominant.

  3. Numerical Simulations of Wake/Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias

    2003-01-01

    Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.

  4. Turbulence Measurements in the Near Field of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Chow, Jim; Zilliac, Greg; Bradshaw, Peter

    1997-01-01

    The roll-up of a wingtip vortex, at Reynolds number based on chord of 4.6 million was studied with an emphasis on suction side and near wake measurements. The research was conducted in a 32 in. x 48 in. low-speed wind tunnel. The half-wing model had a semi-span of 36 in. a chord of 48 in. and a rounded tip. Seven-hole pressure probe measurements of the velocity field surrounding the wingtip showed that a large axial velocity of up to 1.77 U(sub infinity) developed in the vortex core. This level of axial velocity has not been previously measured. Triple-wire probes have been used to measure all components of the Reynolds stress tensor. It was determined from correlation measurements that meandering of the vortex was small and did not appreciably contribute to the turbulence measurements. The flow was found to be turbulent in the near-field (as high as 24 percent RMS w - velocity on the edge of the core) and the turbulence decayed quickly with streamwise distance because of the nearly solid body rotation of the vortex core mean flow. A streamwise variation of the location of peak levels of turbulence, relative to the core centerline, was also found. Close to the trailing edge of the wing, the peak shear stress levels were found at the edge of the vortex core, whereas in the most downstream wake planes they occurred at a radius roughly equal to one-third of the vortex core radius. The Reynolds shear stresses were not aligned with the mean strain rate, indicating that an isotropic-eddy-viscosity based prediction method cannot accurately model the turbulence in the cortex. In cylindrical coordinates, with the origin at the vortex centerline, the radial normal stress was found to be larger than the circumferential.

  5. Holographic flow visualization. [of aircraft wakes

    NASA Technical Reports Server (NTRS)

    Charwat, A. F.; Fourney, M. E.

    1976-01-01

    Holographic visualization techniques are presented of the vortex wake of a lifting wing. The motions of tracer particles in vortical flows are described along with the development of a liquid-drop tracer generator. An analysis is presented of the motion of particles of arbitrary density and size in solid body and potential vortex flows.

  6. Coupled wakes behind two circular cylinders

    NASA Astrophysics Data System (ADS)

    Le Gal, P.; Chauve, M. P.; Lima, R.; Rezende, J.

    1990-04-01

    The wake of a pair of identical cylinders placed side by side in a uniform flow is visualized. Different flows appear when the distance between the cylinders is decreased. For large gaps, the study of the phase difference between the vortex shedding shows that locking occurs and can be associated with asymmetric flows. For small gaps, a new vortex pattern with a separated stagnant zone is visualized. Finally, a classical alternate vortex street is observed at very small gaps. An analogy with coupled oscillators is then presented in order to interpret the asymmetric regimes as beats between the wakes.

  7. Large vortex structures behind a maneuvering body in stratified fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; McEachern, G. B.; Fernando, H. J. S.; Boyer, D. L.

    1999-06-01

    When a submerged self-propelled body makes a maneuver, e.g., accelerates, significant momentum is transported to the surrounding fluid. Our experiments show that in a stratified fluid this may lead to the formation of large vortex structures, much larger and different from those produced in the late wake during steady motion. Estimates also show that when an oceanic submerged vehicle changes its velocity by as little as 10% or its direction of motion by 5 degrees, large structures of the size of 1-2 km and with decay times of several days may be expected. Such effects may have potentially important applications and have not been studied previously.

  8. Vortex-Free Flight Corridors for Aircraft Executing Compressed Landing Operations

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2006-01-01

    A factor that limits airport arrival and departure rates is the need to wait between operations for the wake vortices of preceding aircraft to decay to a safe level. As airport traffic demand increases, creative methods will be needed to overcome the limitations caused by the hazard posed by vortex wakes so that airport capacities can be increased. The problem addressed here is the design of vortex-free trajectories for aircraft as they fly from their cruise altitudes down to their final approach paths and to a landing. The guidelines presented recommend that the flight path of each aircraft in a group executing nearly-simultaneous landings be spaced far enough apart laterally along organized flight paths so that the vortex wakes of preceding aircraft will not intrude into the airspace to be used by following aircraft. An example is presented as to how a combination of straight lines and circular arcs is able to provide each aircraft in a group with a vortex-free trajectory so that all are able to safely form the pattern needed for nearly simultaneous landings on a set of closely-spaced parallel runways. Although the guidelines me described for aircraft on approach, they are also applicable to departure, and to en route operations.

  9. Dynamics and control of hydrofoil wakes

    NASA Astrophysics Data System (ADS)

    Arndt, Roger; Kjeldsen, Morten; Wosnik, Martin

    2006-11-01

    The problem of rotor-stator interaction has been an issue in the turbomachinery field for more than forty years. Manipulation of the stator wakes is one method to minimize the problem. In order to explore this concept, a comprehensive experimental program was carried out in a water tunnel utilizing a series of NACA 0015 hydrofoils. Baseline wake data were collected with a hydraulically smooth foil and compared with various foil modifications including foils covered with riblet tape aligned both span wise and parallel to the main flow, and a foil modified with 3 mm high and 10 mm total length vortex generators (VG), spaced 10 mm apart span wise, that were positioned close to the trailing edge of the foil. Not only was the effect of the modifications on wake spreading investigated but also the effect on wake dynamics such as vortex shedding was studied. PIV has been used for mapping the near wake region extending roughly 1 chord-length (1c) downstream the trailing edge over a range of angle of attack. The results show, as expected, that wake dynamics and wake characteristics such as maximum deficit and width, scale with average drag. It was demonstrated that the use of vortex generators would improve both the dynamics and spreading characteristics of the wake.

  10. Global stability analysis of the steady and periodic cylinder wake

    SciTech Connect

    Noack, B.R.; Eckelmann, H.

    1994-07-01

    A global, three-dimensional stability analysis of the steady and the periodic cylinder wake is carried out employing a low-dimensional Galerkin method. The steady flow is found to be asymptotically stable with respect to all perturbations for Re less than 54. The onset of periodicity is confirmed to be a supercritical Hopf bifurcation which can be modeled by the Landau equations. The periodic solution is observed to be only neutrally stable for 54 less than Re less than 170. While two-dimensional perturbations of the vortex street rapidly decay, three-dimensional perturbations with long spanwise wavelengths neither grow nor decay. The periodic solution becomes unstable at Re = 170 by a perturbation with the spanwise wavelength of 1.8 diameters. This instability is shown to be a supercritical Hopf bifurcation in the spanwise coordinate and leads to a three-dimensional periodic flow. Finally the transition scenario for higher Reynolds numbers is discussed.

  11. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  12. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and vortex dynamics, instabilities in trailing vortices and wakes, simulation and measurements of wakes, analytical approaches for modeling wakes, wake interaction and other wind farm investigations. Many people have been involved in producing the 2015 Wake Conference proceedings. The work by the more than 60 reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of the section editors: Christian Masson, ÉTS, Fernando Porté-Agel, EPFL, Gerard Schepers, ECN Wind Energy, Gijs Van Kuik, Delft University, Gunner Larsen, DTU Wind Energy, Jakob Mann, DTU Wind Energy, Javier Sanz Rodrigo, CENER, Johan Meyers, KU Leuven, Rebecca Barthelmie, Cornell University, Sandrine Aubrun-Sanches, Université d'Orléans and Thomas Leweke, IRPHE-CNRS. We are also immensely indebted to the very responsive support from the editorial team at IOP Publishing, especially Sarah Toms, during the review process of these proceedings. Visby, Sweden, June 2015 Andrew Barney, Jens Nørkær Sørensen and Stefan Ivanell Uppsala University - Campus Gotland

  13. Accelerated Destruction of Aircraft Wake Vortices

    NASA Astrophysics Data System (ADS)

    Rennich, Steven C.; Lele, Sanjiva K.

    1996-11-01

    footnotetext [1] Supported by Boeing and NSF under PYI award. We investigate how disturbances to aircraft vortex wakes, applied at the wing, survive the roll-up process and eventually lead to the destruction of the wake. The problem is studied using temporal slices of a vortex wake in a domain that is large enough in the axial direction to contain the most unstable wavelength (as predicted by Crow) and is unbounded in the cross stream directions. A new numerical method solves the incompressible Navier-Stokes equations in vorticity form treating the unbounded character analytically, using spectral methods in space and RK4 time advancement. Studies of the growth of perturbations on a counter-rotating columnar vortex pair reproduced Crow's linear, inviscid, vortex filament results well for high Reynolds number. The 3-D roll-up of perturbed plane wakes were studied at Re = ?/? = 10,000 using a 1/2% oscillation in the spanwise location of the semi-span centroid of vorticity as the perturbation. Perturbed wakes due to elliptically loaded wings show a short period of rapid growth before evolving into the Crow instability which then grows at the predicted rate. Perturbed wakes due to idealized flapped wings, formed by the superposition of two elliptical lift distributions, perturbed in a similar manner, display more complex initial behavior before evolving into the Crow instability.

  14. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  15. Multidimensional Josephson vortices in spin-orbit-coupled Bose-Einstein condensates: Snake instability and decay through vortex dipoles

    NASA Astrophysics Data System (ADS)

    Gallemí, A.; Guilleumas, M.; Mayol, R.; Mateo, A. Muñoz

    2016-03-01

    We analyze the dynamics of Josephson vortex states in two-component Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling by using the Gross-Pitaevskii equation. In one dimension, both in homogeneous and harmonically trapped systems, we report on stationary states containing doubly charged, static Josephson vortices. In multidimensional systems, we find stable Josephson vortices in a regime of parameters typical of current experiments with 87Rb atoms. In addition, we discuss the instability regime of Josephson vortices in disk-shaped condensates, where the snake instability operates and vortex dipoles emerge. We study the rich dynamics that they exhibit in different regimes of the spin-orbit-coupled condensate depending on the orientation of the Josephson vortices.

  16. Shallow flow vortex formation and control

    NASA Astrophysics Data System (ADS)

    Fu, Haojun

    Vortical structures in shallow flow past a vertical cylinder are addressed in this investigation. A cinema technique of digital particle image velocimetry (DPIV) provided quantitative representations of the wholefield flow patterns in both instantaneous and averaged forms. Techniques for passive and active control of these vortices, and their influence on the loading of the bed, were explored. In a fully-developed, laminar shallow flow, the unstable structure in the near-wake of the cylinder correlates with the horseshoe (necklace) vortex system about the upstream surface of the cylinder. A coherent varicose mode of vortex formation is observed in the near-wake, even though the classical large-scale vortex shedding is suppressed due to bed friction effects. It is also demonstrated that when the near-wake is stable at a sufficiently low value of Reynolds number, applications of external perturbations lead to destabilization of the wake. Classes of small-scale three-dimensional structures arise in a fully-turbulent shallow flow past a surface-piercing cylinder. A prevalent feature is an upward moving jet-like flow from the bed surface, through the center of the developing quasi-two-dimensional primary vortex, at a location in the very near-wake of the cylinder. Passive control via base-bleed through a narrow streamwise slot leads to substantially delay/attenuation of vortex formation in the near-wake. The large-scale near-wake structure is recoverable through combined positive-active control, in the form of rotational perturbations in the presence of small magnitude base bleed. These alterations of the near-wake structure occur in conjunction with modifications of the streamline topology and Reynolds stress at the bed, as well as the shallow approach flow. Active control via rotational perturbations of the cylinder at the most unstable shear-layer frequency promotes well-defined vortical structures in the separating shearlayer, which contribute to the earlier formation of the Karman vortex in the near wake. A state of primary lock-on is observed when perturbations are applied near the frequency of inherent Karman vortex street. For perturbations at the fundamental harmonics of the natural Karman vortex shedding frequency, small amplitude perturbations lead to the recovery of the classical large-scale vortex shedding pattern through a mechanism of vortex-vortex interactions in the near-wake.

  17. Optimal propulsive efficiency of vortex enhanced propulsion

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2013-11-01

    The formation of coherent vortex rings in the jet wake of a vehicle has been shown to increase the propulsive efficiency of self-propelled vehicles. However, the effect of varying vortex ring formation characteristics has not been explored for vehicles at Reynolds numbers comparable to autonomous or manned submersible vehicles. In this work, we considered a range of vortex ring formation characteristics and found a peak in the propulsive efficiency where the vortex rings generated are coincident with the onset of vortex ring pinch off. This peak corresponds to a 22% increase in the propulsive efficiency for the vortex-enhanced wake compared to a steady jet. We gratefully acknowledge the support of the Office of Naval Research Grants N000140810918 and N000141010137.

  18. TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Tang, Zhan-Qi; Jiang, Nan

    2011-05-01

    The process of laminar to turbulent transition induced by a cylinder wake is studied by time-resolved (TR) particle image velocimetry (PIV) in a water channel. The combination of multi-scale local-averaged structure function analysis with criteria is used to identify the generation of secondary transverse vortex structure and to track its evolution along the streamwise. At the beginning of transition, with the decent of cylinder wake vortex, the secondary vortex structure is induced near the wall. As the secondary vortex moves downstream, it is induced to lift up by the wake vortex, meanwhile they are diffused and dissipated. According to the method of spatial conditional average, a low-speed hump is found in the near-wall region along the bypass transition zone, accompanied by a low-speed region in the free stream occupied by the wake vortex. With further downstream, the hump in the near-wall region becomes more and more obvious. At the later stage of transition zone, hairpin vortex can be seen by conditional-averaged low-pass filtered vorticity. The hairpin head is almost vertical to the wall with an inclination angle of about 90, which is attributed to the additional lift-up behavior induced by wake vortex. It can be concluded that in the process of bypass transition, the wake vortex would not only induce the secondary vortex but also leaven its growth and evolution, resulting in the robust and rapidly growing hairpin vortex.

  19. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  20. On vortex streets behind Taylor columns

    NASA Astrophysics Data System (ADS)

    Khaledi, Hatef A.; Andersson, Helge I.

    2010-10-01

    Computer experiments were performed to explore the flow in the vicinity of a truncated normal flat plate in a rapidly rotating fluid. A Taylor column formed above the flat plate and the vortex shedding in the wake of the Taylor column closely resembled the vortex street behind the solid plate. This is probably the first observation of a Krmn vortex street behind a Taylor column in a computational study.

  1. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  2. The transitional wake behind an inclined prolate spheroid

    NASA Astrophysics Data System (ADS)

    Jiang, Fengjian; Gallardo, José P.; Andersson, Helge I.; Zhang, Zhiguo

    2015-09-01

    The wake behind a 6:1 prolate spheroid at 45° incidence has been studied by means of direct numerical simulations (DNSs). The Reynolds number based on the minor axis of the spheroid was 3000 as compared to 1000 in our preceding study [Jiang et al., "The laminar wake behind a 6:1 prolate spheroid at 45° incidence angle," Phys. Fluids 26, 113602 (2014)]. The resulting wake is no longer laminar and the transitional wake is fundamentally unsteady and highly asymmetric from the very beginning. A substantial side force resulted from the asymmetric pressure field. No signs of vortex shedding could be observed. The forces and the flow field around the spheroid exhibited a dominant periodicity with a surprisingly low Strouhal number of 0.0733. One part of the counter-rotating vortex pair which dominated the near-wake broke down into small-scale vortices as soon as the vortex left the shadow behind the spheroid. The other part appeared as a helical vortex inside which the mechanical energy was conserved over a substantial length. The axial flow within this vortex tube experienced a sudden change from having maximum to minimum at the vortex center while maintaining the sign of the circulation. The severe asymmetry of the wake is ascribed to a global instability and may impact on submarine maneuverability.

  3. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads, Eric Edlund and Hantao Ji

    2013-04-17

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x#2; B| / |? (? ?), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-0490.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  4. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  5. Recent Laboratory and Numerical Trailing Vortex Studies

    NASA Technical Reports Server (NTRS)

    Delisi, Donald P.; Greene, George C.; Robins, Robert E.; Singh, Raminder

    1996-01-01

    Results from two laboratory studies and two numerical studies are presented. In the first laboratory study, measurements of the strength of vortices from a three-dimensional (3-D) model wing are presented. The measurements follow the vortices as they evolve in time from a two-dimensional (2-D) line vortex pair to the development and migration of 3-D vortex rings. It is shown that the resulting vortex rings can contain up to 40 percent of the initial vortex circulation. Thus, the formation of vortex rings may not necessarily signal the end of the wake hazard to following aircraft. In the second laboratory study, we present the results of an experiment which shows how the spanwise drag distribution affects wake-vortex evolution. In this experiment, we modified the spanwise drag distribution on a model wing while keeping the total lift and drag constant. The results show that adding drag on or near the centerline of the wing has a larger effect than adding drag at or near the wingtips. These measurements complement the results of NASA studies in the 1970s. In the first numerical study, results of 3-D numerical calculations are presented which show that the vortex Reynolds number has a significant influence on the evolution and migration of wake vortices. When the Reynolds number is large, 3-D vortex rings evolve from the initially 2-D line vortex pairs. These vortex rings then migrate vertically. When the Reynolds number is lower, the transition of vorticity from 2-D to 3-D is delayed. When the Reynolds number is very low, the vortices never transition to 3-D, and the vertical migration is significantly reduced. It is suggested that this effect may have been important in previous laboratory wake-evolution studies. A second numerical study shows the influence that vertical wind shear can have on trailing vortex evolution.

  6. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  7. Accelerated destruction of aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Rennich, Steven Carl

    1997-11-01

    All aircraft shed a wake of vorticity which typically rolls up to form a trailing counter-rotating vortex pair. When encountered by following aircraft, these vortices can cause a substantial loss of altitude which is especially hazardous during takeoff and landing. Since avoiding this wake vortex hazard currently determines the spacing between aircraft on approach to land, accelerating the destruction of these vortices could lead to greater safety and increased airport utilization. In practice, an aircraft's vortex wake often breaks down via the Crow instability. No other instability has been found which is more rapidly growing or shows a greater ability to mix vorticity of opposite sign. Thus, the objective of this research is to investigate alleviation schemes by which perturbations, applied to the wake at the wing, survive the roll-up process, excite the Crow instability at large amplitude and lead to accelerated destruction of the wake vortices. To carry out this research, a new numerical method has been developed which solves the incompressible Navier-Stokes equations in vorticity form in a domain which is periodic in one direction and unbounded in the other two. For problems requiring high accuracy, this method has been shown to be orders of magnitude more efficient than existing schemes. A code using this method has been used to fully characterize the Crow instability as it exists in a 3D, viscous environment and validate the analytical models of this instability. Other simulations have studied the evolution of the Crow instability in perturbed wakes shed by elliptically loaded and high-lift wings. Finally, a new mechanism to be used in accelerating the destruction of aircraft wake vortices is proposed. Its behavior is investigated using both Navier-Stokes and vortex filament methods. The results indicate that the time required for vortex linking can be reduced by as much as a factor of seven when compared to the time required for equivalent growth via the linear Crow instability. This mechanism shows significant potential for use in a wake vortex hazard alleviation scheme.

  8. Theoretical study of lift generated vortex sheets designed to avoid roll up

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.

    1973-01-01

    The random motions of the vortex elements behind a wing that sheds a disturbed, translating array of vortices are analyzed. The analysis indicates that the wake would diffuse and decay rapidly when viscosity is present and would produce small rolling moments on encountering aircraft. It was found that comparable results could also be achieved with an array consisting of vortices that are equal in magnitude but which alternate in sign. This observation indicates that random motion can probably be achieved with a variety of stepped loadings.

  9. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  10. Free-wake analysis of a rotor in hover

    NASA Technical Reports Server (NTRS)

    Chen, C. S.; Velkoff, H. R.; Tung, C.

    1987-01-01

    A numerical method based on the axisymmetric, incompressible Navier-Stokes equations is combined with a lifting surface code to predict the vortex wake of hovering rotors. The lifting surface code, AMI Hover, is used to obtain the circulation distribution on the blade. This circulation distribution is fed into the Navier-Stokes code to compute the vortex wake under this specified circulation distribution. An iteration approach is used between these two codes to converge the circulation distribution and the shape of the vortex wake. A relaxation scheme is developed to resolve the instability encountered among the tip vortices. A reconcentration scheme is used to solve the diffusion problem due to the strong artificial viscosity. The results from the present method are compared with experimental data obtained by smoke-flow visualization and hot-wire measurements for several rotor blade configurations. The comparisons show that the present method is able to predict the complex wake system shed by a hovering rotor.

  11. Effects of incoming wind condition and wind turbine aerodynamics on the hub vortex instability

    NASA Astrophysics Data System (ADS)

    Ashton, R.; Viola, F.; Gallaire, F.; Iungo, G. V.

    2015-06-01

    Dynamics and instabilities occurring in the near-wake of wind turbines have a crucial role for the wake downstream evolution, and for the onset of far-wake instabilities. Furthermore, wake dynamics significantly affect the intra-wind farm wake flow, wake interactions and potential power losses. Therefore, the physical understanding and predictability of wind turbine wake instabilities become a nodal point for prediction of wind power harvesting and optimization of wind farm layout. This study is focused on the prediction of the hub vortex instability encountered within wind turbine wakes under different operational conditions of the wind turbine. Linear stability analysis of the wake flow is performed by means of a novel approach that enables to take effects of turbulence on wake instabilities into account. Stability analysis is performed by using as base flow the time-averaged wake velocity field at a specific downstream location. The latter is modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex and helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disc model. The results show that hub vortex instability is promoted by increasing the turbine thrust coefficient. Indeed, a larger aerodynamic load produces an enhanced wake velocity deficit and axial shear, which are considered the main sources for the wake instability. Nonetheless, wake swirl also promotes hub vortex instability, and it can also affect the azimuthal wavenumber of the most unstable mode.

  12. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  13. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.

  14. Investigating wake topology of a single step cylinder with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Yarusevych, Serhiy; Rafati, Sina; Scarano, Fulvio

    2013-11-01

    Wake vortex shedding from a single step cylinder is investigated experimentally using Tomographic Particle Image Velocimetry (TOMO PIV). The model geometry is comprised of two circular cylinders of different diameters joined concentrically. Experiments are conducted in a low-speed wind tunnel for a range of cylinder diameter ratios 1.14 <= D/d <= 2.67 and Reynolds numbers 2000 <= ReD <= 5000. The employed TOMO PIV system consists of six CCD cameras subtending an arc and an Nd:YAG laser. LaVision DaVis 8 is used for image acquisition and processing. For the range of parameters investigated, turbulent vortex shedding occurs in the single-step cylinder wake. The difference in diameters leads to a variation in vortex shedding frequency, producing complex three-dimensional vortex interactions in the wake region downstream of the step. The use of TOMO PIV enables quantitative visualization and analysis of the attendant intricate vortex dynamics. Vortex filaments are visualized by the Q-criterion, and the topology of recurring vortex patterns is investigated. Reduced order modeling is used to identify dominant vortex interactions, providing added insight into the wake development. The results are used to reconstruct salient topological features of the near wake region and to investigate the effect of diameter ratio and Reynolds number on the wake topology.

  15. Development of new tip-loss corrections based on vortex theory and vortex methods

    NASA Astrophysics Data System (ADS)

    Branlard, Emmanuel; Gaunaa, Mac

    2014-12-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex filament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip-losses. Theodorsen's theory is successfully applied for the first time to assess the wake expansion behind a wind turbine. The tip-loss corrections obtained are compared with the ones from Prandtl and Glauert and implemented within a new Blade Element Momentum(BEM) code. Wake expansion is seen to reduce tip-losses and have a greater influence than wake distortion.

  16. Direct numerical simulation of a turbulent vortex ring

    NASA Astrophysics Data System (ADS)

    Archer, P. J.; Thomas, T. G.; Coleman, G. N.

    Engineers have been fascinated by vortex rings for over a hundred years, due to their numerous engineering and biological applications and their presence as a constituent of fully turbulent flow. Although the laminar ring has received much attention, the turbulent vortex ring is less well understood, due to the difficulty in its visualisation and measurement. Glezer and Coles [1] used ensemble averaging of experimental data to show that the radial expansion, circulation decay and slowing of the turbulent ring occur in a self-similar fashion. Circulation decreases in a staircase-like fashion [2] as the ring sheds hairpin vortices [3] into a wake. The radial growth of the ring is due to a slight excess in the amount of entrainment over detrainment[1]. The movement of dye within the ring suggests the existence of secondary vortices that wrap around the core, influencing the local entrainment, detrainment and production of turbulence [1]. In previous work [4], we investigated the laminar evolution of the ring and focused on the development of the Tsai-Widnall-Moore-Saffman (TWMS) instability [5, 6], and transition to turbulence. Here, we examine the temporal development of the turbulent vortex ring.

  17. Hybrid vortex method for lifting surfaces with free-vortex flow

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Chu, L.-C.; Yates, E. C., Jr.

    1980-01-01

    A Nonlinear Hybrid Vortex method (NHV-method) has been developed for predicting the aerodynamic characteristics of wings exhibiting leading- and side-edge separations. This method alleviates the drawbacks of the Nonlinear Discrete Vortex method (NDV-method, also known as the multiple line vortex method.) The NHV-method combines continuous-vorticity and vortex-line representations of the wing and its separated free shear layers. Continuous vorticity is used in the near-field calculations, while discrete vortex-lines are used in the far-field calculations. The wing and its free shear layers are divided into quadrilateral vortex panels having second-order vorticity distributions. The aerodynamic boundary conditions and continuity of the vorticity distributions are satisfied at certain nodal points on the vortex panels. An iterative technique is used to satisfy these conditions in order to obtain the vorticity distribution and the wake shape. Distributed and total aerodynamic loads are then calculated.

  18. Vortex rings in radially confined domains

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Vlachos, Pavlos P.

    2012-10-01

    The dynamics of vortex rings generated within confined domains are relevant to important hydrodynamic processes such as flow past heart valves or severe arterial constrictions. However, despite their importance, these flows have not received much attention to date. This study examines the development and evolution of radially confined vortex rings. Time-resolved digital particle image velocimetry was used to investigate two levels of radial confinement and a range of vortex ring strengths. We found that for severely confined vortex rings, the formation time and peak circulation values were unaffected for L/D 0 < 4 cases and slightly affected for larger L/D 0 cases. After pinch-off, circulation decay was observed with an approximately constant normalized circulation decay rate. We found that with increasing circulation strength, the nondimensional time delay between the pinch-off and the onset of circulation decay reduced due to an increased vortex ring diameter within the confinement domain and a reduction in the necessary time for the surface induced and core vorticity regions to interact. This study uncovers the dynamics of radially confined vortex rings and show that the nondimensional rate of circulation decay is dependent on the vortex ring confinement ratio (ratio of the vortex ring orifice diameter to the diameter of the outer cylinder), and the time delay between the vortex pinch-off and the onset of circulation is dependent on the vortex ring circulation strength.

  19. On the characteristics of the wake meandering of a marine hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Kang, S.

    2013-12-01

    Recently Kang et al. (Journal of Fluid Mechanics, submitted) showed that the hub vortex breakdown occurring downstream of a hydrokinetic turbine plays an important role in enhancing wake meandering. In this study the hub vortex breakdown and wake meandering phenomena are further examined using large-eddy simulation (Kang et al., Advances in Water Resources, 2012). Specifically, the effect of the incoming turbulence, the presence of hub and nacelle geometries, and the tip speed ratio of the rotor on the wake meandering and the hub vortex breakdown are examined.

  20. Spectral Method For Simulation Of Vortex Rings

    NASA Technical Reports Server (NTRS)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, P. R.

    1991-01-01

    Method of computation relying on spectral basis functions developed especially for simulation of axisymmetric vortex rings in incompressible, viscous fluid with quiescent far field. Contributes to understanding of flows in and around vortex rings during long propagation times, including such theoretically and practically important phenomena as drift and expansion of ring, "leapfrogging" and coalescence of two rings, and shedding of vorticity into wake of propagating ring.

  1. The wake of hovering flight in bats.

    PubMed

    Hkansson, Jonas; Hedenstrm, Anders; Winter, York; Johansson, L Christoffer

    2015-08-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  2. Measurements in 80- by 120-foot wind tunnel of hazard posed by lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Sacco, J. N.; Askins, P. A.; Bisbee, L. S.; Smith, S. M.

    1993-01-01

    The large, low speed wind tunnel at NASA-Ames has been used to study the characteristics of lift-generated vortices involved in the definition of aircraft-separation criteria, in order to enhance airport capacity without compromising safety. Attention is given to the potential hazard caused by the vortex wake of several configurations of a subsonic transport. Measured downwash distributions in the wake of three different wake-generator configurations are obtained by means of a vortex-lattice method, in order to predict the lift and rolling moment on several models of wake-following aircraft.

  3. Dynamics of wake structure in clapping propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2009-11-01

    Some animals such as insects and frogs use a pair of symmetric flaps for locomotion. In some cases, these flappers operate in close proximity or even touch each other. In order to understand the underlying physics of these kinds of motion, we have studied the wake structures induced by clapping and their associated thrust performance. A simple mechanical model with two acrylic plates was used to simulate the power stroke of the clapping motion and three-dimensional flow fields were obtained using defocusing digital particle image velocimetry. Our studies show that the process of vortex connection plays a critical role in forming a downstream closed vortex loop. Under some kinematic conditions, this vortex loop changes its shape dynamically, which is analogous to the process of an elliptical vortex ring switching its minor and major axis. As the length of the plate along the rotating shaft decreases to change an aspect ratio, the downstream motion of the vortex is retarded due to the outward motion of side edge vortices and less propulsive force is generated per the surface area of the plate. The impact of compliance and stroke angle of the plate on wake structures and thrust magnitudes are also presented.

  4. Structure of leading-edge vortex flows including vortex breakdown

    SciTech Connect

    Payne, F.M.

    1987-01-01

    An experimental investigation of the structure of leading-edge vortex flows on thin sharp-edged delta wings was carried out at low Reynolds numbers. Flow-visualization techniques were used to study the topology of the vortex and the phenomenon of vortex breakdown. Seven-hole probe-wake surveys and laser-doppler-anemometer measurements were obtained and compared. Delta wings with sweep angles of 70, 75, 80, and 85/sup 0/ were tested at angles of attack of 10, 20, 30, and 40/sup 0/. The test were conducted in a Reynolds number range of 8.5 x 10/sup 4/ to 6.4 x 10/sup 5/. Smoke-flow visualization revealed the presence of small Kelvin-Helmholtz type vortical structures in the shear layer of a leading-edge vortex. These shear-layer vortices follow a helical path and grow in the streamwise direction as they wind into the vortex core where the individual shear layers merge. The phenomenon of vortex breakdown was studied using high-speed cinema photography. The bubble and spiral types of breakdown were observed and appear to represent the extremes in a continuum of breakdown forms.

  5. On the wake of a Darrieus turbine

    NASA Astrophysics Data System (ADS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-05-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  6. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  7. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  8. Vulcanized vortex

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Lee, Youngone

    2009-01-01

    We investigate vortex configurations with the vulcanization term inspired by the renormalization of ??4 theory in the canonical ?-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  9. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  10. Dynamical features of the wake behind a pitching foil

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], 10.1103/PhysRevE.91.043017, this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bnard-von Krmn (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at ? =30 (or ?z=0.21 ) for Re=1500 . By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake.

  11. Axisymmetric Turbulent Wakes with New Nonequilibrium Similarity Scalings

    NASA Astrophysics Data System (ADS)

    Nedi?, J.; Vassilicos, J. C.; Ganapathisubramani, B.

    2013-10-01

    The recently discovered nonequilibrium turbulence dissipation law implies the existence of axisymmetric turbulent wake regions where the mean flow velocity deficit decays as the inverse of the distance from the wake-generating body and the wake width grows as the square root of that distance. This behavior is different from any documented boundary-free turbulent shear flow to date. Its existence is confirmed in wind tunnel experiments of wakes generated by plates with irregular edges placed normal to an incoming free stream. The wake characteristics of irregular bodies such as buildings, bridges, mountains, trees, coral reefs, and wind turbines are critical in many areas of environmental engineering and fluid mechanics.

  12. The 3-D wake measurements near a hovering rotor for determining profile and induced drag

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Schuler, C. A.; Branum, L.; Wu, J. C.

    1995-01-01

    Primarily an experimental effort, this study focuses on the velocity and vorticity fields in the near wake of a hovering rotor. Drag terminology is reviewed, and the theory for separately determining the profile-and-induced-drag components from wake quantities is introduced. Instantaneous visualizations of the flow field are used to center the laser velocimeter (LV) measurements on the vortex core and to assess the extent of the positional mandering of the trailing vortex. Velocity profiles obtained at different rotor speeds and distances behind the rotor blade clearly indicate the position, size, and rate of movement of the wake sheet and the core of the trailing vortex. The results also show the distribution of vorticity along the wake sheet and within the trailing vortex.

  13. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  14. Measurement of velocity and vorticity fields in the wake of an airfoil in periodic pitching motion

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.

    1987-01-01

    The velocity field created by the wake of an airfoil undergoing a prescribed pitching motion was sampled using hot wire anemometry. Data analysis methods concerning resolution of velocity components from cross wire data, computation of vorticity from velocity time history data, and calculation of vortex circulation from vorticity field data are discussed. These data analysis methods are applied to a flow field relevant to a two dimensional blade-vortex interaction study. Velocity time history data were differentiated to yield vorticity field data which are used to characterize the wake of the pitching airfoil. Measurement of vortex strength in sinusoidal and nonsinusoidal wakes show vortices in the sinusoidal wake have stronger circulation and more concentrated vorticity distributions than the tailored nonsinusoidal wake.

  15. Thrust Production and Wake Structure of an Actuated Lamprey Model

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Smits, Alexander

    2004-11-01

    Thrust generation is studied for a flexible lamprey model which is actuated periodically to produce a streamwise traveling wave. Shape memory alloy actuators are used to achieve this deformation. The flow field is investigated using DPIV and flow visualization for a range of Strouhal numbers based on peak-to-peak amplitude of the trailing edge. The vortex kinematics in the spanwise and streamwise planes are examined, and a three-dimensional unsteady vortex model of the wake will be discussed.

  16. The effects of vortex modeling on blade-vortex interaction noise prediction

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Tung, Chee; Low, Scott L.

    1995-01-01

    The use of a blade vortex interaction noise prediction scheme, based on CAMRAD/JA, FPR and RAPP, quantifies the effects of errors and assumptions in the modeling of the helicopter's shed vortex on the acoustic predictions. CAMRAD/JA computes the wake geometry and inflow angles that are used in FPR to solve for the aerodynamic surface pressures. RAPP uses these surface pressures to predict the acoustic pressure. Both CAMRAD/JA and FPR utilize the Biot-Savart Law to determine the influence of the vortical velocities on the blade loading and both codes use an algebraic vortex model for the solid body rotation of the vortex core. Large changes in the specification of the vortex core size do not change the inplane wake geometry calculated by CAMRAD/JA and only slightly affect the out-of-plane wake geometry. However, the aerodynamic surface pressure calculated by FPR changes in both magnitude and character with small changes to the core size used by the FPR calculations. This in turn affects the acoustic predictions. Shifting the CAMRAD/JA wake geometry away from the rotor plane by 1/4 chord produces drastic changes in the acoustic predictions indicating that the prediction of acoustic pressure is extremely sensitive to the miss distance between the vortex and the blade and that this distance must be calculated as accurately as possible for acceptable noise predictions. The inclusion or exclusion of a vortex in the FPR-RAPP calculation allows for the determination of the relative importance of that vortex as a BVI noise source.

  17. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  18. Dynamic wake distortion model for helicopter maneuvering flight

    NASA Astrophysics Data System (ADS)

    Zhao, Jinggen

    A new rotor dynamic wake distortion model, which can be used to account for the rotor transient wake distortion effect on inflow across the rotor disk during helicopter maneuvering and transitional flight in both hover and forward flight conditions, is developed. The dynamic growths of the induced inflow perturbation across rotor disk during different transient maneuvers, such as a step pitch or roll rate, a step climb rate and a step change of advance ratio are investigated by using a dynamic vortex tube analysis. Based on the vortex tube results, a rotor dynamic wake distortion model, which is expressed in terms of a set of ordinary differential equations, with rotor longitudinal and lateral wake curvatures, wake skew and wake spacing as states, is developed. Also, both the Pitt-Peters dynamic inflow model and the Peters-He finite state inflow model for axial or forward flight are augmented to account for rotor dynamic wake distortion effect during helicopter maneuvering flight. To model the aerodynamic interaction among main rotor, tail rotor and empennage caused by rotor wake curvature effect during helicopter maneuvering flight, a reduced order model based on a vortex tube analysis is developed. Both the augmented Pitt-Peters dynamic inflow model and the augmented Peters-He finite state inflow model, combined with the developed dynamic wake distortion model, together with the interaction model are implemented in a generic helicopter simulation program of UH-60 Black Hawk helicopter and the simulated vehicle control responses in both time domain and frequency domain are compared with flight test data of a UH-60 Black Hawk helicopter in both hover and low speed forward flight conditions.

  19. Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations

    NASA Astrophysics Data System (ADS)

    Cocle, Roger; Winckelmans, Grgoire; Daeninck, Goric

    2008-11-01

    A new combination of vortex-in-cell and parallel fast multipole methods is presented which allows to efficiently simulate, in parallel, unbounded and half-unbounded vortical flows (flows with one flat wall). In the classical vortex-in-cell (VIC) method, the grid used to solve the Poisson equation is typically taken much larger than the vorticity field region, so as to be able to impose suitable far-field boundary conditions and thus approximate the truly unbounded (or half-unbounded) flow; an alternative is to assume periodicity. This approach leads to a solution that depends on the global grid size and, for large problems, to unmanageable memory and CPU requirements. The idea exploited here is to work on a domain that contains tightly the vorticity field and that can be decomposed in several subdomains on which the exact boundary conditions are obtained using the parallel fast multipole (PFM) method. This amounts to solving a 3-D Poisson equation without requiring any iteration between the subdomains (e.g., no Schwarz iteration required): this is so because the PFM method has a global view of the entire vorticity field and satisfies the far-field condition. The solution obtained by this VIC-PFM combination then corresponds to the simulation of a truly unbounded (or half-unbounded) flow. It requires far less memory and leads to a far better computational efficiency compared to simulations done using either (1) the VIC method alone, or (2) the vortex particle method with PFM solver alone. 3-D unbounded flow validation results are presented: instability, non-linear evolution and decay of a vortex ring (first at a moderate Reynolds number using the sequential version of the method, then at a high Reynolds number using the parallel version); instability and non-linear evolution of a two vortex system in ground effect. Finally, a space-developing simulation of an aircraft vortex wake in ground effect is also presented.

  20. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  1. Benard-von Karman Vortex Street in a Bose-Einstein Condensate

    SciTech Connect

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2010-04-16

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  2. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  3. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  4. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  5. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-11-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  6. Measurement of Aircraft Wake Vortices Using Doppler LIDAR

    NASA Astrophysics Data System (ADS)

    Ogasawara, Takeshi; Misaka, Takashi; Ogawa, Toshihiro; Obayashi, Shigeru; Yamada, Izumi

    In this research, the wake turbulence from actual passenger airplanes taking off from Sendai airport was measured with Electronic Navigation Research Institute's Doppler laser radar (lidar). First, the influence of the surrounding wind on the behavior of wake vortices was investigated. The wake vortices in the crosswind case disappear more quickly from the runway than those of the low surrounding wind and head wind cases. In addition, the wake vortices in the case of large crosswind move faster than those in small crosswind. Next, the correction factor was estimated by using the pseudo lidar measurements based on Computational Fluid Dynamics (CFD). The corrected data for weak surrounding wind case agreed with the existing wake vortex model.

  7. Wake of forced flow around elliptical leading edge plates

    NASA Astrophysics Data System (ADS)

    Mills, R.; Sheridan, J.; Hourigan, K.

    2005-02-01

    Previous investigations have shown that flows around rectangular plates with transverse forcing involve interactions between vortices shed from the leading and trailing edges and vortex merging in the wakes. The Strouhal number of vortex shedding at which peak base drag occurs varies with chord-to-thickness ratio in a stepwise fashion, similar to the self-sustained oscillations at low Reynolds number for unforced flows. In the present study, the leading edge flow separation and vortex shedding is eliminated by using plates with elliptical leading edges, and the trailing edge flow is examined through particle image velocimetry. In particular, the response of the trailing-edge vortex shedding and the base pressure coefficient to applied transverse oscillations of different Strouhal number and amplitude is measured. Substantial variation in the base pressure coefficient is found, with peaks appearing at the natural shedding frequency and at a harmonic. The effect of the forcing on the wake dimension and the strength of the wake vortices is quantified using particle image velocimetry. Three-dimensional structures in addition to the two-dimensional Krmn vortices in the wake are also visualized.

  8. Vortex methods and vortex statistics

    SciTech Connect

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.

  9. Inviscid Interactions Between Wake Vortices and Shear Layers

    NASA Technical Reports Server (NTRS)

    Zheng, Z. C.; Baek, K.

    1998-01-01

    Aircraft trailing vortices can be influenced significantly by atmospheric conditions such as crosswind, turbulence, and stratification. According to the NASA 1994 and 1995 field measurement program in Memphis, Tennessee, the descending aircraft wake vortices could stall or be deflected at the top of low-level temperature inversions that usually produce pronounced shear zones. Numerical simulations of vortex/shear interactions with ground effects have been performed by several groups. Burnham used a series of evenly spaced line vortices at a particular altitude to model the ground shear layer of the cross- wind. He found that the wind shear was swept up around the downwind vortex and caused the downwind vortex to move upward, and claimed that the effect was actually produced by the vertical gradient in the wind shear rather than by the wind shear directly, because uniformly distributed wind-shear vortices would have no effect on the trailing vortex vertical motion. Recently, Proctor et al. numerically tested the effects of narrow shear zones on the behavior of the vortex pair, motivated by the observation of the Memphis field data. The shear-layer sensitivity tests indicated that the downwind vortex was more sensitive and deflected to a higher altitude than its upwind counterpart. The downstream vortex contained vorticity of opposite sign to that of the shear. There was no detectable preference for the downwind vortex (or upwind vortex) to weaken (or strengthen) at a greater rate.

  10. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  11. Vortex-Based Aero- and Hydrodynamic Estimation

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar Sam

    Flow control strategies often require knowledge of unmeasurable quantities, thus presenting a need to reconstruct flow states from measurable ones. In this thesis, the modeling, simulation, and estimator design aspects of flow reconstruction are considered. First, a vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake sensing algorithm for aircraft formation flight missions. The method assimilates wing distributed pressure measurements with a vortex-based wake model to better predict the state of the flow. The study compares Kalman-type algorithms with particle filtering algorithms, demonstrating that the vortex nonlinearities require particle filters to yield adequate performance. Furthermore, the observability structure of the wake is shown to have a negative impact on filter performance regardless of the algorithm applied. It is demonstrated that relative motions can alleviate the filter divergence issues associated with this observability structure. In addition to estimator development, the dissertation addresses the need for an efficient unsteady multi-body aerodynamics testbed for estimator and controller validation studies. A pure vortex particle implementation of a vortex panel-particle method is developed to satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat plate as well as the impulsive startup of a multi-wing formation. It is clear, from these validation studies, that the method is able to accommodate the unsteady wake effects that arise in formation flight missions. Lastly, successful vortex-based estimation is highly dependent on the reliability of the low-order vortex model used in representing the flow of interest. The present treatise establishes a systematic framework for vortex model improvement, grounded in optimal control theory and the calculus of variations. By minimizing model predicted errors with respect to empirical data, the shortcomings of the baseline vortex model can be revealed and reconciled. Here, the method is demonstrated on an impulse matching model for canonical unsteady wing maneuvers and reveals the shortcomings of the Kutta condition in such flows. The resulting analysis sheds light on the governing physical processes and provides guidance for model improvement for the unsteady aerodynamics associated with these canonical wing maneuvers.

  12. Experimental study of a vortex subjected to imposed strain

    NASA Technical Reports Server (NTRS)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the waveguide theories of vortex breakdown. A rectangular wing based on the NACA 0012 airfoil was used to produce a trailing vortex which convected downstream without undergoing breakdown. Dye marked the vortex location. A disturbance was then introduced onto the vortex using a small moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. The downstream traveling wave produced a structure similar in appearance to a vortex breakdown. The upstream wave produced a moving, swirling, turbulent region that was not a vortex breakdown. The waves moving in either direction have the same swirl velocity profiles but quite different axial velocity profiles. The upstream disturbance (turbulence) moved into a flow with an axial velocity profile that had a wake-like defect in the core region. The downstream moving vortex breakdown moved into a flow with a jet-like overshoot in the core region. The fact that no breakdown was observed for the wake-like defect and breakdown was observed for the jet-like overshoot is not consistent with computational fluid dynamics (CFD) calculations. Although there are not a lot of examples, CFD results show breakdown for both types of profiles. The longitudinal and swirl velocity profiles were documented by Laser Doppler Velocimeter (LDV) measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  13. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  14. Vortex retarders

    NASA Astrophysics Data System (ADS)

    McEldowney, Scott C.

    This dissertation addresses the creation of polarization vortex beams. Vortex retarders are components with uniform retardance but a fast axis which rotates around its center with can create polarization vortices. The goal was to develop a simple method for producing vortex retarders for visible wavelengths, with a continuous fast axis, and for multiple vortex modes. The approach was to use photo-aligned liquid crystal polymers (LCP). The target was a halfwave retardance for wavelengths in the range of 540550nm. A photo-alignment layer was spin-coated onto a substrate, baked, and alignment was set through exposure to linear polarized UV (LPUV) light. The alignment layer was exposed through a narrow wedge shaped aperture located between the substrate and polarizer. Both the polarizer and substrate were continuously rotated during exposure process in order to create a continuous variation in photo-alignment orientation with respect to azimuthal locations on the substrate. The mode of the vortex retarder was determined by the relative rotation speeds. The LCP precursor was spin-coated and subsequently polymerized using a UV curing processes. Elements produced were analyzed by measuring the space variant Mueller Matrix of each component. Our measurements demonstrated that the vortex retarders were half wave plates with a continuous fast axis orientation. Measurement of the center region of the vortex retarders identifies a 100-200um region of disorientation. At 0.5mm resolution, a high depolarization index in the center of the vortex retarders was observed. The DOP was low in the center for a horizontal linear polarized input field but remained high for circular polarized input. The viability of these components was assessed by determining the point spread matrix (PSM) and the optical transfer matrix (OTM) and comparing these to theoretical calculations. The agreement between the measured and predicted PSM was excellent. The major difference was the non-zero response in the m03 and m30 elements indicating circular diattenuation. The OTM comparison between measured and predicted demonstrated an excellent quantitative match at lower spatial frequencies and a good qualitative match at higher spatial frequencies. Measured results confirm that vortex retarders produced using photo-aligned LCP produce near theoretical performance in an optical system.

  15. Computation of rotor aerodynamic loads with a constant vorticity contour free wake model

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Wachspress, Daniel A.; Boschitsch, Alexander H.

    1991-01-01

    An analytical method is presented which facilitates the study of isolated rotors with an improved approach to wake simulation. Vortex filaments are simulated along contours of constant sheet strength for the sheet of vorticity resulting from each rotor blade. Curved vortex elements comprise the filaments which can be distorted by the local velocity field. Called the Constant Vorticity Contour wake model, the approach permits the simulation of the blades' wakes corresponding to the full span of the rotor blade. The discretization of the wake of the rotor blade produces spacing and structure that are consistent with the spatial and temporal variations in the loading. A vortex-lattice aerodynamic model of the blade is also included which introduces a finite-element structural model of the blade and consideration of the force and moment trim analysis. Results of the present version of the simulation, called RotorCRAFT, are found to correlate well with H-34 flight-test data.

  16. Experimental and theoretical Doppler-lidar signatures of aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Koepp, F.; Krichbaumer, W. A.

    1986-01-01

    The DFVLR laser Doppler anemometer is a CO2 continuous wave homodyne system designed for boundary layer wind measurements. During the last three years, it was mainly used in the wake-vortex program at Frankfurt airport for determination of vortex strength, transport, and lifetime. The strategy for that special type of measurement was previously reported in detail along with single experimental results. Therefore, herein is given a short summary of the data concerning questions of air traffic control. In addition to the experimental activities a computer model describing wake-vortex behavior was installed. It allows the comparison of the measured data with the hydrodynamically predicted quantities. On the other hand, it leads to an improved procedure for future wake-vortex measurements.

  17. Numerical investigations on the wake structures of micro-ramp and micro-vanes

    NASA Astrophysics Data System (ADS)

    DaWen, Xue; ZhiHua, Chen; XiaoHai, Jiang; BaoChun, Fan

    2014-02-01

    Based on large eddy simulation, combined with the high-order WENO (weighted essentially non-oscillatory schemes) scheme, immersed boundary method and adaptive mesh refinement technique, the supersonic flow past a wall-mounted micro-ramp and two micro-vanes have been simulated. The different wake structures are presented and discussed. Our numerical results showed that wake structures behind the micro-ramp are more complicated, including ring-like vortex train, and streamwise vortex tubes etc. However, the wake structures of the micro-vanes are quite simple; they are mainly the two counter-rotating streamwise vortex tubes. The control of boundary flow of both is achieved through the energy exchange between the main stream and the boundary layer and is presented mainly by the upwash and downwash motion of gases under the entrainment of vortex tubes.

  18. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Astrophysics Data System (ADS)

    Stremel, Paul M.

    1989-03-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  19. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

  20. On the interpretation of vortex breakdown

    NASA Astrophysics Data System (ADS)

    Keller, Jakob J.

    1995-07-01

    Studying the numerous papers that have appeared in the recent past that address ``vortex breakdown,'' it may be difficult for a reader to avoid getting rather confused. It appears that various authors or even schools have conflicting views on the correct interpretation of the physics of vortex breakdown. Following the investigation by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], in this paper, axisymmetric forms of vortex breakdown, as originally defined by Benjamin [J. Fluid Mech. 14, 593 (1962)] are addressed. It is argued that at least some of the previous investigations have been concerned with different aspects of the same phenomena and may, in fact, not disagree. One of the most fundamental questions in this context concerns the properties of the distributions of total head and circulation on the downstream side of vortex breakdown transitions. Some previous investigators have suggested that the downstream flow would exhibit properties that are similar to those of a wake. For this reason the phenomenon of vortex breakdown is investigated for a class of distributions of total head and circulation in the domain of flow reversal that is substantially more general than in previous investigations. Finally, a variety of problems are discussed that are crucial for a more complete theory of vortex breakdown, but have not yet been solved. It is shown that for the typically small flow speeds in a domain of flow reversal produced by a vortex breakdown wave, the departures of both vortex core size and swirl number, with respect to the case of uniform total pressure in the zone of flow reversal, as discussed by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], remain surprisingly small. As a consequence, the possible appearance of large departures from a Kirchhoff-type wake must be due to viscous diffusion at low and due to shear-layer instabilities at high Reynolds numbers.

  1. Intelligent and mass vortex flowmeters

    SciTech Connect

    Ribolini, E.

    1996-02-01

    In nature, Karman vortices are quite common. For instance, they happen when an airstream flows past a mountain, house, pole, tower, or skyscraper, or, more simply, when it blows among branches of a tree. The typical spiral shape of these swirls is invisible because there is no tracing element, such as the clouds in the satellite photo. Also, the observation point is rarely above or below the plane of these classic spiral shapes. Or you can watch the alternating whirlpool train that a river or stream makes behind bridge piers. Regular Karman vortices form downstream of a bluff body along two distinct wakes: the vortices of one wake rotate clockwise, those of the other rotate counterclockwise. Close to the bluff body, the wake distance is always constant and depends on bluff body shape and dimensions. The distance between two adjacent vortices is also constant and independent of fluid parameters such as velocity, pressure, density, and temperature. Vortices interact with their surrounding space by stimulating or choking every other nearby swirl on the verge of birth and development. Two Karman vortices cannot be generated simultaneously, but only one at a time, alternately on the left and right side of the bluff body. The process works just like a fluidic flip-flop. This natural phenomenon can be created artificially by placing a trapezoidal, or similarly symmetrical, bar across the diameter of a pipe section. Parallelism of the internal walls of the pipe and the corners of the trapezoidal bar ensure stability of the separation point of the boundary layer. Consequently, the separation point of each vortex with respect to the bar remains stable and the vortex train is regular. If the fluid speed doubles, creation of swirls doubles while the small volume encompassed by each vortex remains constant. So, by counting the number of swirls passing a fixed point during a defined time interval, one can compute the total passed fluid volume. 3 figs.

  2. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  3. Numerical Analysis of Tip Cavitation on Marine Propeller with Wake Alignment Using a Simple Surface Panel Method “SQCM”

    NASA Astrophysics Data System (ADS)

    Kanemaru, T.; Ando, J.

    2015-12-01

    This paper presents the calculation method of tip cavitation with wake alignment. Tip cavitation consists of tip vortex cavitation and tip super cavitation which means the undeveloped and local super cavitation around blade tip. The feature of this study is that the method applies the wake alignment model in order to express the realistic phenomena of tip cavitation and predict the pressure fluctuation more accurately. In the present method, the wake sheet is deformed according to the induced velocity vector on the vortex lines. The singularity of the potential vortex can be removed by using the Rankine Vortex model. This paper shows the calculated results regarding cavitation pattern, pressure fluctuation etc. comparing with published experimental data and calculated results without wake alignment.

  4. Relationship Between Vortex Meander and Ambient Turbulence

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    Efforts are currently underway to increase the capacity of airports by use of closely-spaced parallel runways. If such an objective is to be achieved safely and efficiently during both visual and instrument flight conditions, it will be necessary to develop more precise methods for the prediction of the motion and spread of the hazard posed by the lift-generated vortex-wakes of aircraft, and their uncertainties. The purpose of the present study is to relate the motion induced in vortex filaments by turbulence in the ambient flow field to the measured turbulence in the flow field. The problem came about when observations made in the two largest NASA wind tunnels indicated that extended exposure of vortex wakes to the turbulence in the wind tunnel air stream causes the centers of the vortices to meander about with time at a given downstream station where wake measurements are being made. Although such a behavior was expected, the turbulence level based on the maximum amplitude of meander was much less than the root-mean-squared value measured in the free-stream of the wind tunnel by use of hot-film anemometers. An analysis of the time-dependent motion of segments of vortex filaments as they interact with an eddy, indicates that the inertia of the filaments retards their motion enough in the early part of their travel to account for a large part of the difference in the two determinations of turbulence level. Migration of vortex filaments from one turbulent eddy to another (probably with a different orientation), is believed to account for the remainder of the difference. Methods that may possibly be developed for use in the measurement of the magnitude of the more intense eddies in turbulent flow fields and how they should be adjusted to predict vortex meander are then discussed.

  5. Analysis of Wake VAS Benefits Using ACES Build 3.2.1: VAMS Type 1 Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.

  6. Application of Three-Component PIV to a Hovering Rotor Wake

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Lourenco, Luiz; Heineck, James T.; Wadcock, Alan J.; Abrego, Anita I.; Aiken, Edwin W. (Technical Monitor)

    2000-01-01

    The key to accurate predictions of rotorcraft aerodynamics, acoustics, and dynamics lies in the accurate representation of the rotor wake. The vortical wake computed by rotorcraft CFD analyses typically suffer from numerical dissipation before the first blade passage. With some a priori knowledge of the wake trajectory, grid points can be concentrated along the trajectory to minimize the dissipation. Comprehensive rotorcraft analyses based on lifting-line theory rely on classical vortex models and/or semi-empirical information about the tip vortex structure. Until the location, size, and strength of the trailed tip vortex can be measured over a range of wake ages, the analyses will continue to be adjusted on a trial and error basis in order to correctly predict blade airloads, acoustics, dynamics, and performance. Using the laser light sheet technique, tip vortex location can be acquired in a straightforward manner. Measuring wake velocities and vortex core size, however, has been difficult and tedious using point-measurement techniques such as laser velocimetry. Recently, the Particle Image Velocimetry (PIV) technique has proven to be an efficient method for acquiring velocity measurements over relatively large areas and volumes of a rotor wake. The work reported to date, however, has been restricted to 2-component velocity measurements of the rotor wake. Three-component velocity measurements of a hovering rotor wake were acquired at NASA Ames Research Center in May 1999. This experiment represents a major step toward understanding the detailed structure of a rotor wake. This paper will focus primarily on the experimental technique used in acquiring this data. The accuracy and limitations of the current technique will also be discussed. Representative velocity field measurements will be included.

  7. Wake ingestion propulsion benefit

    NASA Astrophysics Data System (ADS)

    Smith, Leroy H., Jr.

    1991-06-01

    It is well known that the efficiency of propulsion is improved if part or all of the propulsive fluid comes from the wake of the craft being propelled. In this paper this propulsion benefit is quantified in terms of wake parameters and propulsor properties. The formulations apply directly to unducted fans or propellers, but the conclusions are also relevant to ducted propulsors. It is found that the power saving is greatest when the propulsor disk loading is high, when the wake form factor is high (flow near separation), and when the propulsor design is such that the wake profile tends to be flattened as it passes through the propulsor (high wake recovery). Examples are given showing that the benefit can be in the 20 percent range in some cases. Propeller design parameters that lead to high wake recovery are also given.

  8. The `void' structure in the wake of a self-oscillating flexible circular cylinder

    NASA Astrophysics Data System (ADS)

    Gilbert, Stuart; Sigurdson, Lorenz

    2010-03-01

    We discuss the experimental vortex wake of a flexible circular cylinder undergoing vortex-induced vibration at low Reynolds number and a large cylinder aspect ratio. Hydrogen bubbles formed on the cylinder track the von Karman vortex cores. They show a characteristic void structure. We propose a vortex skeleton model that includes a pinch-off of opposite-signed cores. Voids occurred at a node in streamwise vibration when close to an antinode in transverse cylinder vibration. A vibration model predicts the ratio of shedding frequency to natural cylinder vibration frequency necessary for void formation at specific spanwise locations.

  9. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

  10. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy to the square of the wake mean velocity deficit are determined nearly entirely by the total strain. For these measures the order in which the strains are applied does not matter and the changes brought about by the strain are nearly reversible. The wake mean velocity deficit and width, on the other hand, differ by about a factor of three when the total strain returns to one, depending on whether the wake was first "favourably" or "adversely" strained. The strain history is important for predicting the evolution of these quantities.

  11. Ship Wakes and Solitons

    NASA Astrophysics Data System (ADS)

    Buchsbaum, Steven Bruce

    1990-01-01

    Observations of ship wakes have exhibited a compact steep ray within the diverging portion of the traditional Kelvin wake. This ray typically consists of four to eight wave crest contained within an oblique packet profile. This profile does not appear to disperse as rapidly as would be anticipated for linear gravity waves. Quantitative observations of these rays in the wake of the coast guard cutter Point Brower, and model ships during a tank towing experiment, have shown these features to be oblique packet solitons. I use the term soliton to describe a wave packet for which nonlinearities act to balance linear dispersion, rather than the strict mathematical definition. The measured angular position within the wake of these solitons is observed to be a function of speed. It is shown that a ship modeled by a pressure source at the bow, and a pressure sink at the stern can account for the observed speed dependence. Numerical integration of the nonlinear Schrodinger equation has demonstrated that the small deviations of our observations from exact soliton profiles are consistent with soliton like behavior. Indeed these near soliton solutions are shown to be a better match to our observations than exact soliton solutions. Thus I would conclude that a solitary wake feature is a possible explanation for the bright lines observed in sun glitter photos of ship wakes taken from the space shuttle. Solitary wake features may also contribute to the explanation of some of the long bright lines observed in ship wake SAR images observed from SEASAT.

  12. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  13. Vortex bursting and tracer transport of a counter-rotating vortex pair

    NASA Astrophysics Data System (ADS)

    Misaka, T.; Holzpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  14. Analytical model of rotor wake aerodynamics in ground effect

    NASA Technical Reports Server (NTRS)

    Saberi, H. A.

    1983-01-01

    The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.

  15. Effect of leading-edge vortex flaps on aerodynamic performance of delta wings

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1981-01-01

    The effect of leading-edge vortex flaps on the aerodynamic characteristics of highly swept-back wings is analytically investigated, using the free vortex sheet method. The method, based on a three-dimensional inviscid flow model, is an advanced panel type employing quadratic doublet distributions to represent the wing surface, rolled-up vortex sheet and wake and is capable of computing forces, moments and surface pressures.

  16. Wake structure and wing motion in bat flight

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana; Breuer, Kenneth; Swartz, Sharon

    2008-11-01

    We report on experiments concerning the wake structure and kinematics of bat flight, conducted in a low-speed wind tunnel using time-resolved PIV (200Hz) and 4 high-speed cameras to capture wake and wing motion simultaneously. 16 Lesser dog-faced fruit bats (C. brachyotis) were trained to fly in the wind tunnel at 3-6.5m/s. The PIV recordings perpendicular to the flow stream allowed observing the development of the tip vortex and circulation over the wing beat cycle. Each PIV acquisition sequence is correlated with the respective kinematic history. Circulation within wing beat cycles were often quite repeatable, however variations due to maneuvering of the bat are clearly visible. While no distinct vortex structure was observed at the upper reversal point (defined according the vertical motion of the wrist) a tip vortex was observed to develop in the first third of the downstroke, growing in strength, and persisting during much of the upstroke. Correlated to the presence of a strong tip vortex the circulation has almost constant strength over the middle half of the wing beat. At relatively low flight speeds (3.4 m/s), a closed vortex structure behind the bat is postulated.

  17. Vortex induced vibrations in wind -- Design criteria

    SciTech Connect

    Oppen, A.N.; Kvitrud, A.

    1996-12-31

    A design procedure with criteria for vortex induced vibrations due to wind, based on DIN 4133/Eurocode-1 and adopted for offshore conditions, is introduced. The proposal contains criteria for avoiding vortex induced vibrations and a procedure for controlling fatigue damage. A comparison with some existing design codes is given. Parameters utilized in current design practice in Norway are reviewed and some recent developments discussed. Emphasis is put on investigating the interrelation between parameters and identifying the key parameters and criteria representing boundaries for avoiding vortex induced vibrations. Special design considerations, like vortex initiated global vibrations (frame vibrations) and wake induced vibrations, are discussed. This paper may be seen as a follow-up of the paper: Wind Induced Resonant Cross-Flow Vibrations on Norwegian Offshore Flare Booms, OMAE-95, by the same authors, in which the experienced problem area and a tentative solution strategy were presented. Recent experience with vortex mitigation devices applied on flare booms is included. As an introduction, a short description of the vortex shedding phenomena is given.

  18. Sound signature of propeller tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Westerweel, Jerry; van Terwisga, Tom

    2015-12-01

    The design of an efficient propeller is limited by the harmful effects of cavitation. The insufficient understanding of the role of vortex cavitation in noise and vibration reduces the maximum efficiency by a necessary safety margin. The aim in the present study is to directly relate propeller cavitation sound to tip vortex cavity dynamics. This is achieved by a dedicated experiment in a cavitation tunnel on a specially designed two-bladed propeller using a high-speed video camera and a hydrophone. The sound signature of a tip vortex cavity is not evidently present in the sound spectrum above the tunnel background. The addition of a simulated wake inflow results in a high amplitude broadband sound. With a decrease in the free-stream pressure the centre frequency of this sound decreases as a result of a larger vortex cavity diameter. In the near future each blade passage in the high-speed video will be analyzed in detail. The frequency content of the cavity dynamics can then be directly related to the measured sound. An analytic model for vortex cavity dynamics resulting in a cavity eigenfrequency using a vortex velocity model can finally be evaluated as a design instrument for estimation of broadband sound from propeller cavitation.

  19. Experimental study of plane turbulent wakes in a shallow water layer

    NASA Astrophysics Data System (ADS)

    Chen, Daoyi; Jirka, Gerhard H.

    1995-07-01

    Shallow two-dimensional turbulent wake flows have been studied experimentally on a large water table. In the experiments, the ambient Reynolds number Re h = UaH/ ?, in which Ua is the depth-averaged ambient velocity, H the water depth, and ? the kinematic viscosity, is large, well above a lower critical value of the order of 500 for open-channel flows so that the ambient base flow is fully turbulent. Different types of blunt bodies extending over the full depth are inserted in that base flow, including cylinders and flat solid and porous plates oriented transversely to the ambient flow. In all cases, the transverse body dimension D greatly exceeds the water depthy, D/H ? 1 . With that condition, the wake Reynolds number Re d = UaD/ ? is very large, greater than 10 4. The shallow near-wake characteristics of plane wakes from blunt bodies extending over the full water depth have been found to fall into one of three classes: (i) the vortex street (VS) type with an oscillating vortex shedding mechanism, (ii) the unsteady bubble (UB) wake type with flow instabilities growing downstream of a recirculating bubble attached to the body, and (iii) the steady bubble (SB) wake type with an attached bubble followed by a turbulent wake that contains no growing instabilities. When Re h > 1500, the flow classification is uniquely dependent on a shallow wake parameter, S = c fD/H in which cf is a quadratic law friction coefficient. For circular cylindrical bodies the VS-UB transition is characterized by a critical value, Sca ? 0.2, and the UB-SB transition by Scc ? 0.5. Solid plates, oriented transversely, differ by a factor of 1.25. The shallow far-wake behavior has been investigated with a special variable porosity wake device that reduces the wake velocity deficit and completely suppresses the VS instabilities in the near-field. Thus, only UB and SB wake types are found in that case. Furthermore, the shallow plane wake is obsserved to "stabilize" for large downstream distances, x/H, in the sense that the growth and maintenance of the large scale structures in the wake flow become suppressed and the wake collapses into a more ordered flow that, however, still contains small scale (of scale H) turbulence. This wake stabilization is controlled by two factors: first, the usual evolution in a turbulent wake that reduces the velocity deficit while increasing the wake parameter S, and secondly, the exponential loss of the momentum deficit flux in the wake due to bottom friction.

  20. Volumetric visualization of the near and far field wake in flapping wings

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Cheng, Bo; Deng, Xinyan; Bio-Robotics Lab Team

    2013-11-01

    The flapping wings of flying animals create complex vortex wake structure, understanding its spatial and temporal distribution is fundamental to animal flight theory. In this study, we applied the volumetric 3-component velocimetry to capture both the near- and far-field flow generated by a pair of mechanical flapping wings. For the first time, the complete three-dimensional wake structure and its evolution throughout a wing stroke were quantified and presented. The general vortex wake structure maintains a quite consistent form: vortex rings in the near-field and two shear layers in the far-field. In specific, vortex rings shed periodically from the wings and are linked to each other in successive strokes. In the far-field, the shed vortex rings evolve into two parallel shear layers with dominant vorticity convected from tip and root vortices. The shear layers are nearly stationary in space compared to the periodic vortex rings shed in the near field. In addition, downwash passes through the centers of the vortex rings and extends downward between the two shear layers. This work is supported by AFOSR.

  1. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

    NASA Astrophysics Data System (ADS)

    Chen, Zheng-Shou; Kim, Wu-Joan

    2010-06-01

    The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortexinduced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

  2. Wakes of Maneuvering Bodies in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J.

    2007-05-01

    We present the results of experimental/theoretical studies on large momentum eddies generated in late wakes of unsteady moving self-propelled bodies in stratified fluids. The experiments were conducted with scaled submarine model at high Reynolds numbers (50,000), corresponding to the fully turbulent flow regime. Dye visualization and PIV were used for flow diagnostics. When a self-propelled body makes a maneuver, e.g. accelerates, it imparts net momentum on the surrounding fluid. We show that in a stratified fluid this leads to impulsive momentum wakes with large, long-lived coherent vortices in the late flows, which may be used as a signature for identification of submarine wakes in oceanic thermocline. First, we consider dynamics and properties of such wakes in a linearly stratified fluid and present a model that permits to predict the main flow characteristics. Second, we consider wakes in a two layer stratified fluid (analog of the upper ocean) and show that such wakes may penetrate to the water surface; we present a model for this phenomenon and propose criteria for the penetration of wake signatures to the water surface in terms of main governing parameters (signature contrast versus confinement number). Finally, we consider the evolution of such momentum wake eddies in the field of decaying background turbulence, which mimics the oceanic thermocline, and show that for the flow configuration studied the contrast number remains sufficiently large and detectable wake imprints survive for a long period of time. Some pertinent estimates for submarines cruising in the upper ocean are also given. For more details see [1-3]. This study was supported by grant from the Office of Naval Research. 1. Voropayev S.I., Fernando H.J.S., Smirnov S.A. & Morrison R.J. 2006. On surface signatures generated by submersed momentum sources. Phys. Fluids, under revision. 2. Voropayev S.I., Fernando H.J.S. & Morrison R.J. 2006. Dipolar eddies in a stratified turbulent flow. J. Fluid Mech., submitted. 3. Voropayev S.I., Smirnov S.A. & Fernando H.J.S. 2007. Late-wake vortices of maneuvering bodies in stratified fluids. J. Fluid Mech., submitted.

  3. Studies on unsteady vortex motions including thermo-fluid interactions

    SciTech Connect

    Sundaram, P.

    1987-01-01

    An inviscid unsteady vortex dynamics study is presented to study the flow details in several free and bounded shear flows. The specific flows considered are the starting vortex behind sharp edges, the vortex street behind bluff-body wakes, the plane-mixing layers between two streams, and the wall bounded vortex street. Using the unsteady vortex dynamics models developed for each of these flows, and through the Lagrangian dynamics computational approach, the streakline and pathline pattern were computed for these flows. From the combined study of the computed streakline and pathline pattern, various flow-visualization details and the illusions created by the streaklines were identified and explained. With the accuracy of the unsteady vortex model for the vortex street wake having been verified by the good agreement obtained between the computed and flow visualization results, the model was used to investigate the different flow interactions present in this complex flow. This computational study highlights the important inviscid entrainment effects of convecting vortices by showing that the eruption-like appearance of the wall-layer streaklines observed in the flow visualization pictures is predominantly due to the inviscid entrainment effects and not merely caused by the viscous effects.

  4. An experimental investigation of vortex stability, tip shapes, compressibility, and noise for hovering model rotors

    NASA Technical Reports Server (NTRS)

    Tangler, J. L.; Wohlfeld, R. M.; Miley, S. J.

    1973-01-01

    Schlieren methods of flow visualization and hot-wire anemometry for velocity measurements were used to investigate the wakes generated by hovering model propellers and rotors. The research program was directed toward investigating (1) the stability of the tip vortex, (2) the effects produced by various tip shapes on performance and tip vortex characteristics, and (3) the shock formation and noise characteristics associated with various tip shapes. A free-wake analysis was also conducted for comparison with the vortex stability experimental results. Schlieren photographs showing wake asymmetry, interaction, and instability are presented along with a discussion of the effects produced by the number of blades, collective pitch, and tip speed. Two hot-wire anemometer techniques, used to measure the maximum circumferential velocity in the tip vortex, are discussed.

  5. Wake Turbulence: An Obstacle to Increased Air Traffic Capacity

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Wingtip vortices were first described by British aerodynamicist F.W. Lanchester in 1907. A product of lift on a finite-span wing, these counterrotating masses of air trail behind an aircraft, gradually diffusing while convecting downward and moving about under mutual induction and the influence of wind and stratification. Should a smaller aircraft happen to be following the first aircraft, it could be buffeted and even flipped if it flew into the vortex, with dangerous consequences. Given the amount of air traffic in 1907, the wake vortex hazard was not initially much of a concern. The demand for air transportation continues to increase, and it is estimated that demand could double or even triple by 2025. One factor in the capacity of the air transportation system is wake turbulence and the consequent separation distances that must be maintained between aircraft to ensure safety.

  6. A Piloted Simulation Study of Wake Turbulence on Final Approach

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1998-01-01

    A piloted simulation study has been conducted in a research simulator to provide a means to estimate the effects of different levels of wake turbulence on final approach. A worst-case methodology was used to ensure conservative estimates. Fourteen airline pilots voluntarily participated in the study and flew almost 1000 approaches. The pilots rated the subjective severity of the disturbances using a special rating scale developed for this study. Several objective measures of the airplane/pilot response to the simulated wake turbulence were also made. All the data showed a large amount of variation between pilots and to a lesser extent for a given pilot. Therefore, the data were presented at 50, 70, 90 percentile levels as a function of vortex strength. The data allow estimates of the vortex strength for a given subjective or objective response and vice versa. The results of this study appear to be more conservative than the results of previous studies.

  7. Numerical Simulation of Wake Vortices Measured During the Idaho Falls and Memphis Field Programs

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1996-01-01

    A numerical large-eddy simulation model is under modification and testing for application to aircraft wake vortices. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. As part of the validation process, model results are compared with measured field data from the 1990 Idaho Falls and the 1994-1995 Memphis field experiments. Cases are selected that represent different aircraft and a cross section of meteorological environments. Also included is one case with wake vortex generation in ground effect. The model simulations are initialized with the appropriate meteorological conditions and a post roll-up vortex system. No ambient turbulence is assumed in our initial set of experiments, although turbulence can be self generated by the interaction of the model wakes with the ground and environment.

  8. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Flow visualization is used to interrogate the wake structure produced by a rigid flat panel of aspect ratio (span/chord) 0.54 pitching in a free stream at a Strouhal number of 0.23. At such a low aspect ratio, the streamwise vorticity generated by the plate tends to dominate the formation of the wake. Nevertheless, the wake has the appearance of a three-dimensional von Krmn vortex street, as observed in a wide range of other experiments, and consists of horseshoe vortices of alternating sign shed twice per flapping cycle. The legs of each horseshoe interact with the two subsequent horseshoes in an opposite-sign, then like-sign interaction in which they become entrained. A detailed vortex skeleton model is proposed for the wake formation. PMID:19746198

  9. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel.

    PubMed

    Buchholz, James H J; Smits, Alexander J

    2005-12-01

    Flow visualization is used to interrogate the wake structure produced by a rigid flat panel of aspect ratio (span/chord) 0.54 pitching in a free stream at a Strouhal number of 0.23. At such a low aspect ratio, the streamwise vorticity generated by the plate tends to dominate the formation of the wake. Nevertheless, the wake has the appearance of a three-dimensional von Krmn vortex street, as observed in a wide range of other experiments, and consists of horseshoe vortices of alternating sign shed twice per flapping cycle. The legs of each horseshoe interact with the two subsequent horseshoes in an opposite-sign, then like-sign interaction in which they become entrained. A detailed vortex skeleton model is proposed for the wake formation. PMID:19746198

  10. Control of a Sphere Wake by Sting Interference and Localized Disturbances

    NASA Astrophysics Data System (ADS)

    Norman, Adam; Feingold, Joshua; McKeon, Beverley

    2007-11-01

    Vortex shedding in the wake of a sphere that is simply supported using a streamwise-aligned cylindrical sting is investigated at sub-critical Reynolds numbers of order 10^4. The effect of the sting size on the K'arm'an vortex shedding and Kelvin-Helmholtz shear layer instability is examined. The blockage of the sting will be compared with the two-dimensional analog of the splitter plate introduced into a cylinder wake. The controlling mechanism of a small stud placed upstream of the average azimuthal separation angle is also explored. High speed stereo particle image velocimetry is used to understand the average and temporal aspects of the sting and stud controlling mechanisms, and Lagrangian Coherent Structure (LCS) analysis is implemented to probe the wake structure. This research is a first step towards active control of a sphere wake using surface actuation.

  11. Experimental investigation of the wake behind a model of wind turbine in a water flume

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. N.; Kabardin, I.; Mikkelsen, R.; Srensen, J. N.

    2014-12-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories.

  12. On the absence of asymmetric wakes for periodically plunging finite wings

    NASA Astrophysics Data System (ADS)

    Calderon, D. E.; Cleaver, D. J.; Gursul, I.; Wang, Z.

    2014-07-01

    It has previously been shown that, at high Strouhal numbers, oscillating airfoils can produce deflected jets that can create very high lift-coefficients for otherwise symmetric scenarios. These deflected jets form through pairing of the trailing-edge vortices to create asymmetric vortex couples that self-propel at an angle to the freestream, resulting in an asymmetric flow field and non-zero lift. In this paper results are presented that indicate these high-lift deflected jets cannot form for finite wings. Instead of the straight vortex tubes that pair and convect at an angle to the freestream observed for effectively infinite wings, finite wings exhibit vortex tubes that break into two branches near the tip forming double helix structures. One branch connects with the last vortex; one branch connects with the next vortex. This creates a long "daisy chain" of interconnected trailing edge vortices forming a long series of vortex loops. These symmetric flow fields are shown to persist for finite wings even to Strouhal numbers more than twice those required to produce asymmetric wakes on plunging airfoils. Two contributing reasons are discussed for why deflected jets are not observed. First the tip vortex creates three-dimensionality that discourages vortex coupling. Second, the symmetry of the circulation of the interconnected vortex loops, which has been confirmed by the experiments, is a natural consequence of the vortex topology. Therefore, the asymmetry in trailing edge vortex strength previously observed as characteristic of deflected jets cannot be supported for finite wings.

  13. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  14. Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav

    2012-01-01

    A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.

  15. Contrail formation in aircraft wakes

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Hlie, Jerome; Poinsot, Thierry

    2004-03-01

    The process of the formation and early evolution of a condensation trail (contrail) in the near field of an aircraft wake was numerically studied by means of a mixed Eulerian/Lagrangian two-phase flow approach. Large-eddy simulations were used for the carrier phase, while, for the dispersed phase, a Lagrangian particle tracking method was used, coupled with a microphysics model to account for ice nucleation. The basic configuration was an exhaust engine jet loaded with soot particles and water vapour and interacting with a wing-tip trailing vortex. The thermodynamic conditions for contrail formation were identified by tracking the spatial distribution of supersaturation around particles. A strong mass coupling between the two phases was demonstrated by the simulations: the condensation of water vapour over soot particles, induced by exhaust dispersion into cold ambient air, leads to the formation of ice crystals whose size grows until thermodynamic equilibrium between the two phases is reached. Finally, local vapour depletion causes significant deviation from the classical mixing line theory and is also responsible for polydispersion of particle radii.

  16. Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    OConnor, Cornelius J.; Rutishauser, David K.

    2001-01-01

    An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.

  17. Characteristics of lightly loaded fan rotor blade wakes

    NASA Technical Reports Server (NTRS)

    Reynolds, B.; Lakshminarayana, B.

    1979-01-01

    Low subsonic and incompressible wake flow downstream of lightly loaded rotor was studied. Measurements of mean velocity, turbulence intensity, Reynolds stress, and static variations across the rotor wake at various axial and radial locations were investigated. Wakes were measured at various rotor blade incidences to discern the effect of blade loading on the rotor wake. Mean velocity and turbulence measurements were carried out with a triaxial hot wire probe both rotating with the rotor and stationary behind the rotor. Results indicate that increased loading slows the decay rates of axial and tangential mean velocity defects and radial velocities in the wake. The presence of large radial velocities in the rotor wake indicate the extent of the interactions between one radius and another. Appreciable static pressure variations across the rotor wake were found in the near wake region. Similarity in the profile shape was found for the axial and tangential components of the mean velocity and in the outer layer for axial, tangential, and radial turbulence intensities.

  18. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  19. The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Wittmer, Kenneth S.; Wenger, Christian W.

    1997-01-01

    The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation of the probes. These data clearly show the influence of the coherent eddies in the spiral wake and the turbulent region between the cores. These eddies produce distinct peaks in the upwash velocity kappa-omega spectra, and strong anisotropy manifested both in the decay of the kappa-omega spectrum at larger wave-numbers and in differences between the kappa-omega spectra of different components. None of these features are represented in the von Karman spectrum for isotropic turbulence that is often used in broadband noise computations. Wave-number frequency spectra measured in the cores appear to show some evidence that the turbulence outside sets tip core waves, as has previously been hypothesized. These spectra also provide for the first time a truly objective method for distinguishing velocity fluctuations produced by core wandering from other motions.

  20. Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

    1990-01-01

    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

  1. Numerical investigation of wake structures of slow-flying bats

    NASA Astrophysics Data System (ADS)

    Wang, Shizhao; Zhang, Xing; He, Guowei

    2010-11-01

    Recently, some unique features of wake structure in bat flight have been revealed by experiments. It is found that the flow structure of bat flight is more complex than that of bird. A conceptual wake model of bat flight has been "rebuilt" using 2D DPIV images, but there is some risk of missing the details regarding dynamics of 3D vortex structures. Detailed flow information is still needed to understand the unsteady flow in bat flying. In this work, we perform 3D simulation of bat flying at the Reynolds number of 1000 (based on upstream flow and mean chord length) using the immersed boundary method. The geometry and wing-beat kinematics of bat are taken from the work of Watts et al (2001). The topology and evolution of the wake structures are described. The variation of topology in wake structures with the flapping Strouhal number is investigated. Moreover, the link between the generation of high lift and leading edge vortex is also studied.

  2. 3D visualization of unsteady 2D airplane wake vortices

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Zheng, Z. C.

    1994-01-01

    Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.

  3. Implementation of Parallel Computing Technology to Vortex Flow

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer

    1999-01-01

    Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.

  4. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Srensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to ?/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  5. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  6. Wing-vortex interaction: unraveling the flowfield of a hovering rotor

    NASA Astrophysics Data System (ADS)

    Bhagwat, Mahendra J.; Caradonna, Francis X.; Ramasamy, Manikandan

    2015-01-01

    This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.

  7. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  8. Experimental investigation of the wake behind a solid disk

    SciTech Connect

    Balligand, H.; Higuchi, Hiroshi

    1993-12-01

    The flow past a solid circular disk placed in time-dependent approaching stream velocity was investigated experimentally. The model was near-impulsively started from rest and moved at a constant speed. The wake behind the disk remained axisymmetric when the disk was traversed for a short distance. The scaling effect of varying the acceleration rate and the subsequent constant velocity on the wake evolution was investigated by detailed flow visualizations. The drag measurement indicated an initial maximum force dependent on the acceleration rate before it decreased toward the quasi-steady value. The model was subsequently decelerated at various rates, either to rest or to a second constant velocity. The wake overtook the disk in most cases depending of the values of both deceleration rate and velocity ratio. The force measurement showed that the drag acting on the disk became negative shortly after the onset of deceleration and reached its most negative value approximately at the end of the deceleration. The peak negative drag correlated with the deceleration rate. During the deceleration to a second velocity the drag became negative even when the vortex structure remained downstream of the disk. When the disk was subjected to constant speeds for a prolonged time, onset of asymmetry of the vortex structure occurred, eventually leading to a three-dimensional wake. Finally, the wake behind the disk was compared with the two-dimensional counterpart, using a rectangular flat plate. One of the prime motivations for studying the wake behind bluff bodies during acceleration and deceleration phases is to achieve a better understanding of the unsteady flow phenomena associated with the opening and early phase of deceleration of a parachute.

  9. Flicker vortex structures in multiferroic materials

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Ding, X.; Salje, E. K. H.

    2014-09-01

    Computer simulation of ferroelastic materials reveals dynamic polar vortex structures related to flexo-electricity between cation and anion lattices. At finite temperatures, the vortices are found to flicker in time and space. Widely spaced ferroelastic twin boundaries nucleate vortices while dense twin boundaries suppress them. The time averaged number of vortices at any site decays exponentially, indicating the highly mobile dynamics of the vortex lattice. Applied electric fields break the rotational symmetry of vortices and finally destroy them. The total number density of vortices follows a field and temperature dependence as N(E)=N0/[1+A exp(E/k(T-TVF))] with TVF < 0. The observed vortex structures are akin to those observed in magnetic and superconducting disordered vortex lattices.

  10. Interaction of a Boundary Layer with a Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low Reynolds number, as a consequence of the high level of the free-stream perturbation. An instantaneous flow visualization for that case is shown. A detailed examination of flow statistics in the transitional and turbulent regions, including the evolution of the turbulent kinetic energy (TKE) budget and frequency spectra showed the formation and evolution of turbulent spots characteristic of the bypass transition mechanism. It was also observed that the turbulent eddies achieved an equilibrium, fully developed turbulent states first, as evidenced by the early agreement achieved by the terms in the TKE budget with those observed in turbulent flows. Once a turbulent Reynolds stress profile had been established, the velocity profile began to resemble a turbulent one, first in the inner region and later in the outer region of the wall layer. An extensive comparison of the three cases, including budgets, mean velocity and Reynolds stress profiles and flow visualization, is included. The results obtained are also presented.

  11. A Hybrid Vortex Method for Two-Dimensional Flow Over Tube Bundles

    SciTech Connect

    Strickland, J.H.; Wolfe, W.P.

    1998-11-13

    A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented, and results of sample calculations are compared with known analytical solutions and with calculations from other vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent of analytical solutions while using three orders of magnitude fewer vortices than other vortex simulations.

  12. Automatic Tip Vortex Core Profiling for Numerical Flow Simulations of Rotorcraft in Hover

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chaderjian, Neal M.

    2010-01-01

    An automated approach is presented that extracts visual and quantitative data from vortex cores produced by Navier-Stokes simulations of rotorcraft in hover mode. This approach extracts contiguous rotor tip vortex-core trajectories, cross-flow velocity profiles, and vortex-core diameter variation with wake age (azimuth angle). This automated approach is faster and more accurate than a conventional manual approach. Moreover, this new approach allows for an efficient way to quantitatively compare vortex-core profiles from different flow simulations, e.g., grid resolution studies, and validate computed results with experimental data

  13. Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    1998-01-01

    This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.

  14. Demonstration of rapid-scan two-dimensional laser velocimetry in the Langley Vortex Research Facility for research in aerial applications

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Jordan, F. L., Jr.

    1977-01-01

    Tests were conducted to demonstrate a rapid scan two dimensional laser velocimeter (LV) measurement technique for aerial applications research. The LV system is capable of simultaneously measuring both vertical and axial flow velocity components in a near or far field vortex system. Velocity profiles were successfully measured in the wake vortex of a representative agricultural aircraft model, with the vortex system rapidly transporting in ground effect. Results indicate that the laser velocimetry technique can provide quantitative information of wake vortex characteristics in ground effect.

  15. Collinear wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs.

  16. On the statistics of wind turbine wake meandering: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Howard, Kevin B.; Singh, Arvind; Sotiropoulos, Fotis; Guala, Michele

    2015-07-01

    Measurements of the instantaneous wake flow from a model wind turbine placed in a turbulent boundary layer were obtained by wall-parallel oriented particle image velocimetry (PIV) in the St. Anthony Falls Laboratory wind tunnel. PIV velocity vector fields were used to investigate mean (expansion angle, wavelength, and wake velocity) and higher order statistics (local slope, curvature, and correlation) describing meandering motions in the turbine wake. These statistics were used to compare the wakes produced by four different wind turbine operating configurations, which include a single turbine operating at two different tip-speed ratios and two turbines aligned with the mean flow. The origin of meandering motions was identified for all cases in the hub vortex signature, which evolved into a stretched or compressed low speed meander in the wall parallel plane, depending on the turbine operating conditions and on the interaction with the wake shear layer. Finally, both autocorrelation and scale-dependent statistics on the velocity minima fluctuations about the meander signature suggest that small scale vortices, found in the hub shear layer and in the wake shear layer, interact with the hub vortex and govern its spatial evolution into large scale wake meandering.

  17. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  18. Topology of the vorticity field in three-dimensional shear layers and wakes

    NASA Astrophysics Data System (ADS)

    Meiburg, Eckart; Lasheras, Juan C.; Ashurst, W. T.

    1988-09-01

    An experimental and numerical study of the three-dimensional transition of plane wakes and shear layers behind a flat plate is presented. Flow visualization techniques are used to monitor the response of laminar flows at moderate Reynolds numbers (about 100) to perturbations periodically distributed along the span. In this way, the formation and evolution of streamwise vortex tubes and their interaction with the spanwise vortices are analyzed. The flow was studied numerically by means of three-dimensional inviscid vortex dynamics. Comparison between experiment and visualization indicates that important features of the three-dimensional evolution can be reproduced by inviscid vortex dynamics.

  19. Stereo-Video Data Reduction of Wake Vortices and Trailing Aircrafts

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel

    1998-01-01

    This report presents stereo image theory and the corresponding image processing software developed to analyze stereo imaging data acquired for the wake-vortex hazard flight experiment conducted at NASA Langley Research Center. In this experiment, a leading Lockheed C-130 was equipped with wing-tip smokers to visualize its wing vortices, while a trailing Boeing 737 flew into the wake vortices of the leading airplane. A Rockwell OV-10A airplane, fitted with video cameras under its wings, flew at 400 to 1000 feet above and parallel to the wakes, and photographed the wake interception process for the purpose of determining the three-dimensional location of the trailing aircraft relative to the wake. The report establishes the image-processing tools developed to analyze the video flight-test data, identifies sources of potential inaccuracies, and assesses the quality of the resultant set of stereo data reduction.

  20. Comparison of calculated and measured model rotor loading and wake geometry

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.

  1. Hypersonic rarefied wake characterization

    NASA Technical Reports Server (NTRS)

    Brewer, E. B.

    1993-01-01

    Results of a numerical study using the direct simulation Monte Carlo (DSMC) method are presented for hypersonic rarefied flow over an aeroassisted space transfer vehicle (ASTV). The emphasis of the study is the characterization of the near wake region which includes the ASTV payload. The study covered the transitional flow regime from near continuum to free molecular. Calculations show that the character of the near wake is significantly affected by the presence of the payload. Flow separation occurs when an afterbody is present throughout the transitional flow regime. In contrast, when no afterbody is present, no separation is observed until the flow approaches continuum.

  2. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  3. Probabilistic Analysis of Impact of Wake Vortices on Closely-Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Hardy, Gordon H.; Rossow, Vernon J.; Meyn, Larry A.

    2005-01-01

    One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity of its largest airports. Many airports with closely spaced parallel runways suffer a severe runway acceptance rate when the weather conditions do not allow full utilization of these parallel runways. The present requirement for simultaneous independent landings in Instrument Meteorological Conditions, IMC, is at least 4300 feet of lateral runway spacing (as close as 3000 feet for runways with a Precision Runway Monitor). Operations in Visual Meteorological Conditions, VMC, to Closely Spaced Parallel Approaches only require a lateral runway spacing greater than 750 feet. A study by Hardy and Lewis integrated and extended earlier studies and concepts in lateral traffic separation, longitudinal station keeping, wake prediction, wake display, and the concepts of R N P into a preliminary system concept for Closely Spaced Parallel Approaches in IMC. This system allows IMC airport acceptance rates to approach those for VMC. The system concept that was developed, presented traffic and wake information on the NAVigation Display, NAV, and developed operational procedures for a mix of conventional and Runway Independent Aircraft with different approach speeds to Closely Spaced Parallel Runways. This paper first describes some improvements made on the technology needed to better predict and formulate a probabilistic representation for the time-dependent motion and spreading of the hazardous region associated with the lift-generated vortex wakes of preceding aircraft. In this way, the time at which the vortex wakes of leading aircraft intrude into the airspace of adjacent flight-corridor/runway combinations can be more reliably predicted. Such a prediction is needed because it determines restraints to be placed on in-trail separation distances; or, the allowable time intervals between aircraft executing nearly simultaneous landings or takeoffs on very closely-spaced runways. Improved estimates of wake spreading are achieved by inclusion of representations in the equations for wake spreading due to ambient turbulence and due to the long-wave instability of a vortex pair. Wake motion and spreading due to the time-averaged wind and its variations with time, are retained. The more detailed representation of wake spreading presented here permits the development of probabilistically-based uncertainty estimates for wake spreading. Measurements needed within actual aircraft wake vortices to validate and support this analysis are also described. The second part of the paper uses the improvements in the accuracy of the location of wake vortices to extend the preliminary system concept for Closely Spaced Parallel Approaches described earlier with more robust operational procedures. Additionally, improvements in longitudinal station keeping, wake display, and risk assessment methodologies are incorporated and described.

  4. Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies

    NASA Technical Reports Server (NTRS)

    Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.

  5. Radar Reflectivity in Wingtip-Generated Wake Vortices

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki

    1997-01-01

    This report documents new predictive models of radar reflectivity, with meter-scale resolution, for aircraft wakes in clear air and fog. The models result from a radar design program to locate and quantify wake vortices from commercial aircraft in support of the NASA Aircraft Vortex Spacing System (AVOSS). The radar reflectivity model for clear air assumes: 1) turbulent eddies in the wake produce small discontinuities in radar refractive index; and 2) these turbulent eddies are in the 'inertial subrange' of turbulence. From these assumptions, the maximum radar frequency for detecting a particular aircraft wake, as well as the refractive index structure constant and radar volume reflectivity in the wake can be obtained from the NASA Terminal Area Simulation System (TASS) output. For fog conditions, an empirical relationship is used to calculate radar reflectivity factor from TASS output of bulk liquid water. Currently, two models exist: 1) Atlas-based on observations of liquid water and radar reflectivity factor in clouds; and 2) de Wolf- specifically tailored to a specific measured dataset (1992 Vandenberg Air Force Base).

  6. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model waste

  7. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model waste…

  8. Efficient Prediction of Helicopter BVI Noise under Different Conditions of Wake and Blade Deformation

    NASA Astrophysics Data System (ADS)

    Inada, Yoshinobu; Yang, Choongmo; Iwanaga, Noriki; Aoyama, Takashi

    Predictions of helicopter BVI noise using three-dimensional Euler code with a single blade grid are conducted under three different conditions: BVI noise caused by (1) interaction between rotating blades and vortex shed from fixed wing vortex generator, (2) interaction between rotating blades and tip vortices shed from preceding blades, and (3) interaction between rotating blades with elastic deformation and shed tip vortices. In the CFD calculation, the Field Velocity Approach (FVA) and Scullys vortex model are used to import the wake information into the calculation grid and to determine the induced velocity made by tip vortices, respectively (cases 1 3). Beddoes generalized wake model is used to prescribe the tip vortices position in the wake (cases 2 and 3). Information about blade elastic deformation is imported from HART II project experimental data into the calculation (case 3). Acoustic analyses based on Ffowcs-Williams and Hawkings (FW-H) equation are conducted subsequently in each case. The results from the calculations show good agreement with experiments in all three cases, indicating that application of FVA, Scullys model, and Beddoes generalized wake model is effective for BVI noise prediction in this study, which is intended for low calculation cost using a single blade grid. Also, use of blade elastic deformation data in the calculation shows marked improvement in calculation precision. Consequently, the method used in this study can predict BVI noise under various conditions of wake or blade deformation with acceptable precision and low calculation cost.

  9. Study of the Mutual Interaction Between a Wing Wake and an Encountering Airplane

    NASA Technical Reports Server (NTRS)

    Walden, A. B.; vanDam, C. P.

    1996-01-01

    In an effort to increase airport productivity, several wind-tunnel and flight-test programs are currently underway to determine safe reductions in separation standards between aircraft. These programs are designed to study numerous concepts from the characteristics and detection of wake vortices to the wake-vortex encounter phenomenon. As part of this latter effort, computational tools are being developed and utilized as a means of modeling and verifying wake-vortex hazard encounters. The objective of this study is to assess the ability of PMARC, a low-order potential-flow panel method, to predict the forces and moments imposed on a following business-jet configuration by a vortex interaction. Other issues addressed include the investigation of several wake models and their ability to predict wake shape and trajectory, the validity of the velocity field imposed on the following configuration, modeling techniques and the effect of the high-lift system and the empennage. Comparisons with wind-tunnel data reveal that PMARC predicts the characteristics for the clean wing-body following configuration fairly well. Non-linear effects produced by the addition of the high-lift system and empennage, however, are not so well predicted.

  10. Observation of quantum decay of homogeneous, isotropic (grid) turbulence

    NASA Astrophysics Data System (ADS)

    Ihas, Gary; Munday, Lydia; Yang, Jihee; Thompson, Kyle; Guo, Wei; Chapurin, Roman; Fisher, Shaun; McClintock, Peter; Vinen, W. F.

    2014-03-01

    In classical grid turbulence fluid is forced through a stationary grid. In the quantum case a grid moves through an initially stationary superfluid driven by a linear motor. We have developed a motor using superconducting drive coils and bearings, moving a grid at constant speed (0 and 15 cm/s). Stalp et al[2] report the decay of vortex-line density L in the grid's wake measured by 2nd sound attenuation. L decayed at large times as t - 3 / 2, interpreted as a quasi-classical Richardson cascade of energy-containing eddies size limited by channel width, associated with a Kolmogorov energy spectrum. It is assumed eddies produced on a scale of the grid mesh grow through the classical fluids mechanism.[3] We can now test a semi-quantitative theory with different mesh grids or channel sizes, relating to the possible existence of inverse turbulent cascades. Our 2nd sound system is conventional, but with a novel phase and amplitude feedback loop making stringent constant temperature unnecessary. Both t - 3 / 2 and non-t - 3 / 2 decays have been observed with 2 mesh sizes. US NSF DMR#0602778 and #1007937 and EPSRC EP/H04762X/1.

  11. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  12. Wake interference behind two flat plates normal to the flow - A finite-element study

    NASA Technical Reports Server (NTRS)

    Behr, M.; Tezduyar, T. E.; Higuchi, H.

    1991-01-01

    A finite-element model of the Navier-Stokes equations is used for numerical simulation of flow past two normal flat plates arranged side by side at Reynolds number 80 and 160. The results from this simulation indicate that when the gap between the plates is twice the width of a single plate, the individual wakes of the plates behave independently, with the antiphase vortex shedding being dominant. At smaller gap sizes, the in-phase vortex shedding, with strong wake interaction, is favored. The gap flow in those cases becomes biased, with one of the wakes engulfing the other. The direction of the biased flow was found to be switching at irregular intervals, with the time histories of the indicative flow parameters and their power spectra resembling those of a chaotic system.

  13. Oblique Vortex Shedding Behind Tapered Cylinders

    NASA Astrophysics Data System (ADS)

    Valls, B.; Andersson, H. I.; Jenssen, C. B.

    2002-05-01

    The vortex shedding in the wake behind linearly tapered circular cylinders has been considered for the two taper ratios 75:1 and 100:1. The Reynolds number based on the velocity of the incoming flow and the largest diameter was in the range from 130 to 180. The low Reynolds number assured that laminar flow prevailed in the entire flow field. The full unsteady three-dimensional Navier-Stokes equations were solved numerically with the view of exploring the rather complex vortex shedding phenomena caused by the variation of the natural shedding frequency along the span of the cylinder. The accurate computer simulations showed that this variation gave rise to discrete shedding cells, each with its own characteristic frequency and inclined with respect to the axis of the cylinder. Flow visualizations revealed that vortex dislocation and splitting took place in the numerically simulated flow fields. The computer simulations compared surprisingly well with the extensive laboratory experiments reported by Piccirillo & Van Atta in 1993 for a range of comparable conditions; this has enabled detailed analyses of other flow variables (notably pressure and vorticity) than those readily accessible in a physical experiment. However, distinct differences in the vortex dynamics are observed in some of the cases.

  14. Control of vortex induced vibrations by suction and blowing

    NASA Astrophysics Data System (ADS)

    Muralidharan, K.; Patnaik, B. S. V.

    2010-11-01

    K'arm'an vortex shedding behind bluff bodies is of interest in a wide range of technological applications. Vortex shedding past a stationary D-cylinder is controlled in our earlier investigations [1]. However, a flexibly mounted circular cylinder gives rise to vortex induced vibrations. The control of these vibrations is of both fundamental and practical interest as fluid submerged structures need suppression of vortex induced oscillations. Flow past a circular cylinder is numerically simulated by coupling mass, momentum conservation equations along with dynamical equations for the structure. An active flow control strategy based on suction and blowing is designed and implemented to assess the efficacy of this control methodology. This is achieved by suitably located suction and blowing slots on the cylinder surface. These actuators are designed such that, the suction and blowing together results in zero mass injection. This system is found to effectively annihilate the vortex induced vibrations, when the quantum of actuations is about thrice the free stream velocity. The blowing slot is located on the leeward side of the cylinder, while the suction slots are positioned at an angle of 100^o to the flow direction. The convective instability region is reduced, while the length of the wake formation region behind the body is controlled, with an attendant annihilation of the wake vortices. [4pt] [1] Patnaik BSV, Wei GW, Phy. Rev. Lett., 88, 054502, (2002).

  15. Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra H.

    2015-07-01

    Synthetic aperture PIV (SAPIV) is used to quantitatively analyze the wake behind a giant danio ( Danio aequipinnatus) swimming freely in a seeded quiescent tank. The experiment is designed with minimal constraints on animal behavior to ensure that natural swimming occurs. The fish exhibits forward swimming and turning behaviors at speeds between 0.9 and 1.5 body lengths/second. Results show clearly isolated and linked vortex rings in the wake structure, as well as the thrust jet coming off of a visual hull reconstruction of the fish body. As a benchmark for quantitative analysis of volumetric PIV data, the vortex circulation and impulse are computed using methods consistent with those applied to planar PIV data. Volumetric momentum analysis frameworks are discussed for linked and asymmetric vortex structures, laying a foundation for further volumetric studies of swimming hydrodynamics with SAPIV. Additionally, a novel weighted refocusing method is presented as an improvement to SAPIV reconstruction.

  16. Continuous parametric families of stationary and translating periodic point vortex configurations

    NASA Astrophysics Data System (ADS)

    O'Neil, Kevin A.

    The number of periodic arrangements of point vortices in two-dimensional fluid flow that are stationary is known to be finite for a generic choice of vortex circulations. When all circulations are the same in absolute value, however, stationary vortex street configurations have been associated with the zeros of certain trigonometric polynomials containing free complex parameters. The presence of these parameters may prove useful in constructing point vortex models of shear layers and wakes. In this paper it is shown that such a continuum of stationary configurations exists in a much wider class of point vortex street systems. The circulations may take on many values, not just two, providing increased flexibility in the modelling context. A simple method for computing these configurations is derived. The effects of symmetries on the solution polynomials are described, and illustrated with examples. In addition, novel translating vortex street configurations are found having arbitrary translation velocity and containing free parameters for vortex circulations 2.

  17. Effects of Chemistry on Blunt-Body Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  18. Mapping optical ray trajectories through island wake vortices

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Minet, Jean; Vorontsov, Mikhail A.

    2015-06-01

    Optical wave propagation through the atmosphere is complicated by organized atmospheric structures, spanning a wide range of length and time scales, which induce spatio-temporal variability in refraction. Therefore, when considering long-range optical ray trajectories, the influence of such structures on the propagation path becomes significantly more complex compared to a hypothetically homogeneous atmosphere. In this paper, we use a coupled mesoscale model and ray tracing framework to analyze the refractive anomalies associated with the wake vortices induced by three geographically diverse islands under various meteorological conditions. We identify organized mesoscale wake vortices (e.g., von Krmn vortices) which are sometimes capable of distorting optical ray trajectories, through ray bending, tens of meters at a range of approximately 50 km. In addition, we find in some cases that vertical oscillations, or perturbations, to the simulated ray trajectories share a frequency with the vortex shedding frequency on the order of hours. At the same time, it is also observed that the intensity and predictability of the wake vortex-induced ray bending varies from case to case. Collectively, these results highlight the value of using mesoscale models in optical wave propagation studies above conventional approaches which do not explicitly consider horizontally heterogeneous atmospheres.

  19. Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates

    SciTech Connect

    Rooney, S. J.; Blakie, P. B.; Bradley, A. S.; Anderson, B. P.

    2011-08-15

    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature, we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al.[Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.

  20. Euler solutions for self-generated rotor blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Tung, C.; Sankar, L. N.

    1990-01-01

    A finite-difference procedure was developed, on the basis of the conservation form of the unsteady three-dimensional Euler equations, for the prediction of rotor blade-vortex interactions (BVIs). Numerical solution procedures were obtained for the analysis of the model parallel BVIs and the more realistic helicopter self-generated-rotor BVIs. It was found that, for self-generated subcritical interactions, the accuracy of the predicted leading edge pressures relied heavily on the user-specified vortex core radius and on the CAMRAD-code-predicted geometry of the interaction vortex elements and their relative orientation with respect to the blade. It was also found that the free-wake model used in CAMRAD to predict the tip vortex trajectory for use in the Euler solution yields lower streamwise and higher axial wake convective velocities than those inferred from the experimental data.

  1. Prediction of rotating-blade vortex noise from noise of nonrotating blades

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Schlinker, R. H.; Amiet, R. K.

    1976-01-01

    Measurements were conducted in an acoustic wind tunnel to determine vortex noise of nonrotating circular cylinders and NACA 0012 airfoils. Both constant-width and spanwise tapered models were tested at a low turbulence level. The constant-diameter cylinder and constant-chord airfoil also were tested in the turbulent wake generated by an upstream cylinder or airfoil. Vortex noise radiation from nonrotating circular cylinders at Reynolds numbers matching those of the rotating-blade tests were found to be strongly dependent on surface conditions and Reynolds number. Vortex noise of rotating circular cylinder blades, operating with and without the shed wake blown downstream, could be predicted using data for nonrotating circular cylinders as functions of Reynolds number. Vortex noise of nonrotating airfoils was found to be trailing-edge noise at a time frequence equal to that predicted for maximum-amplitude Tollmein-Schlichting instability waves at the trailing edge.

  2. [Wake disorders. I. Primary wake disorders].

    PubMed

    Billiard, M; Carlander, B

    1998-02-01

    Primary wake disorders encompass various conditions of excessive daytime sleepiness and/or increased nighttime sleep, of unknown origin beginning most often in adolescence and of chronic or recurrent natural history. The best known of these conditions is narcolepsy associating two major clinical features, irresistible episodes of sleep, sleep onset REM periods and an almost constant association with HLA DR2-DQ1. The prevalence of the condition is close to the one of multiple sclerosis but positive diagnosis requires most often over 10 years to be made. The treatment of excessive daytime sleepiness has recently benefited from a new non-amphetamine awakening compound, modafinil, active in 60 to 70 p. 100 of the cases. The treatment of cataplexy still relies on antidepressants, tricyclics or selective serotonin reuptake blockers. Major advances in pathophysiology and pathogeny have been obtained through a natural model of the disease, canine narcolepsy. Pharmacological studies point to the importance of alpha-1 b adrenergic mechanisms in cataplexy, while dopaminergic systems seem more involved in excessive daytime sleepiness. As concerns genetics, the HLA DQB1*0602 gene predisposes to narcolepsy. In the canine model it is mirrored by an autosomal recessive gene showing a strong homology with the human immunoglobulin gene mu-switch. Familial studies have shown that besides typical phenotypes, attenuated forms of the condition characterized by isolated recurrent daytime naps and/or lapses into sleep do exist. In addition one or several other genes may be involved. Narcolepsy is multifactorial, including one or several genes as well as environmental factors. Idiopathic hypersomnia is noted for very long night sleep, difficulty waking up and more or less constant excessive daytime sleepiness. In contrast with narcolepsy sleep in not refreshing. There is no polysomnographic or immunogenetic special feature. Idiopathic hypersomnia is 10 times less frequent than narcolepsy. It is often overdiagnosed due to insufficient knowledge of other causes of excessive daytime sleepiness such as the upper airway resistance syndrome. Modafinil is also of great value in the treatment of idiopathic hypersomnia. In the absence of an animal model, pathophysiology and pathogeny are still poorly understood. Even rarer is the Kleine-Levin syndrome which is easily distinguishable through its recurrent character and its tendency to progressively disappear. It mainly occurs in early adolescent males. Its main features are episodes of sleep of a week duration recurring at a several months' interval along with disturbances of alimentary and sexual behavior. There is no satisfactory treatment of hypersomniac episodes. On the other hand a prophylactic treatment with carbamazepine or lithium may be active. Pathophysiology remains unsettled in spite of some evidence of a hypothalamic functional disturbance. PMID:9773032

  3. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  4. A Comparative Study of Spatially Modulated Forcing of Cylinder Wake with Segmented Plasma Actuators of Different Wavelengths

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samik; Gregory, James W.

    2012-11-01

    The wake of a 1-inch diameter (D) circular cylinder was forced three dimensionally by mounting dielectric barrier discharge plasma actuators at specific spanwise locations. Actuators with spanwise wavelengths of 1, 2, 4 and 6D were used. Considerable drag reduction was achieved with 4D and 6D actuators compared to 1D and 2D actuators which showed no effect on the drag. In the case of the 6D actuator, prominent spanwise differences were observed in the wake mean velocity profiles, with a much wider wake behind the region of no plasma formation and differential development persisting well downstream. The different wavelength actuators were also compared in terms of their ability to induce streamwise vorticity in the wake. Segmented forcing with the 4D actuator augmented the generation of streamwise vorticity in the wake which was revealed in the cross-plane time-averaged data. A detailed study of vortex dislocation was carried out with a rake of eight hot wires. Segmented forcing with 4 and 6D actuator introduced vortex dislocation in the Karman vortex street. The phenomenon of vortex dislocation due to phase mismatch is inferred as the primary reason for the effectiveness of 4D actuator in reducing drag. This work is supported by the Air Force Office of Scientific Research, Award Number FA9550-10-1-0490.

  5. Measurements in a High Reynolds Number Wake

    NASA Astrophysics Data System (ADS)

    Jimenez, Juan; Hultmark, Marcus; Smits, Alexander

    2009-11-01

    Experiments were conducted in the Princeton/ONR HRTF windtunnel with air pressurized up to 220atm. The wake of a DARPA SUBOFF submarine model was measured at 5 different downstream locations for Reynolds numbers from 1x10^6 to 70x10^6. For all Reynolds numbers studied, the mean velocity distribution is self-similar from 3 diameters, D, downstream for the side where the support is not located. In contrast, self-similarity in the Reynolds stresses is not reached at the furthest downstream location (x/D=15). The non-dimensional fluctuations are Reynolds number dependent for all measured Reynolds numbers. The energy spectra reveal two peaks in the near-wake. The lower wavenumber peak corresponds to a Strouhal number based on diameter and freestream velocity of about 0.2, suggesting that it is associated with an azimuthal or helical shedding mode in the wake. The peak decays with downstream distance, suggesting that this mode might play a parital role in the approach to self-similarity of the turbulent stresses

  6. Vortex methods and flow around a circular cylinder

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Cheng

    A deterministic vortex method is used to investigate an impulsively started flow around a circular cylinder at large Reynolds numbers. The method solves the viscous vorticity equation using a finite-difference method for diffusion and a vortex-in-cell method for convection. Vortices are introduced along the surface of the cylinder to satisfy the no-slip condition. The Reynolds numbers of the flow are kept at 100, 300, 9500, and 100,000. Numerical results are compared with analytical solutions for a short period of time, and with finite-difference solutions and flow-visualization experiments for a long period of time. The agreement between the separation angles, wake lengths, streamline patterns, and axial velocities in the near wake is found to be satisfactory.

  7. The motion of a singular vortex near an escarpment

    NASA Astrophysics Data System (ADS)

    Dunn, D. C.; McDonald, N. R.; Johnson, E. R.

    2001-12-01

    McDonald (1998) has studied the motion of an intense, quasi-geostrophic, equivalent-barotropic, singular vortex near an infinitely long escarpment. The present work considers the remaining cases of the motion of weak and moderate intensity singular vortices near an escarpment. First, the limit that the vortex is weak is studied using linear theory. For times which are short compared to the advective time scale associated with the vortex it is found that topographic waves propagate rapidly away from the vortex and have no leading-order influence on the vortex drift velocity. The vortex propagates parallel to the escarpment in the sense of its image in the escarpment. The mechanism for this motion is identified and is named the pseudoimage of the vortex. Large-time asymptotic results predict that vortices which move in the same direction as the topographic waves radiate non-decaying waves and drift slowly towards the escarpment in response to wave radiation. Vortices which move in the opposite direction to the topographic waves reach a steadily propagating state. Contour dynamics results reinforce the linear theory in the limit that the vortex is weak, and show that the linear theory is less robust for vortices which move counter to the topographic waves. Second, contour dynamics results for a moderate intensity vortex are given. It is shown that dipole formation is a generic feature of the motion of moderate intensity vortices and induces enhanced motion in the direction perpendicular to the escarpment.

  8. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  9. An experimental investigation of shock wave/vortex interaction

    NASA Astrophysics Data System (ADS)

    Cattafesta, Louis Nicholas, III

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave has been carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using Laser Doppler Velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e. a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self-similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, Planar Laser Scattering, and Laser Doppler Velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach-disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e. a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

  10. Stratificaiton Effects on wake of large wind turbines in wind farm

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran; Debnath, Mithu

    2013-11-01

    The focus of the present talk is to demonstrate the interplay of the complex interactions between the wind turbulence and the wake turbulence under different stratification conditions. Large eddy simulation (LES) has been used to simulate flow over multi mega-watt wind turbines. The results have revealed different empirical relations for the mean velocity deficit decay and turbulence kinetic energy decay rates in the wake region of the wind turbine. The simulation for wind farm has revealed the wake decay rates as a function of the radial and streamwise distance from the upstream wind turbine. Vertical mixing plays a major role in altering the flow dynamics in the wake region. Support from NSF CBET-1348480, NSF HRD-1242180 and TACC Supercomputing.

  11. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  12. A pilot rating scale for vortex hazard evaluation

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1975-01-01

    A pilot rating scale is developed for subjective assessment of hazard resulting from wake vortex encounter upsets. The development of the rating scale is based on a survey of 48 pilots regarding the semantic properties of various phrases and a choice of formats for the rating scale. The rating scale can be used to define a hazard/nonhazard boundary as well as to determine a measure of the hazard.

  13. Experimental investigation of the subwing tip and its vortex structure

    NASA Technical Reports Server (NTRS)

    Tangler, J. L.

    1978-01-01

    A better understanding of the subwing's vortex structure relative to a square tip for several angles of attack and yaw angles is provided. This comparison included subwings of various chord size and airfoil thickness. Flow visualization, together with performance and wake measurements, provided a comparison between the square tip and subwing tips during both a semi-span wind-tunnel test and a small-scale rotor hover-stand test.

  14. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  15. The Effects of Aircraft Wake Dynamics on Contrail Development

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)

    2001-01-01

    Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.

  16. Computation of high resolution unsteady airloads using a constant vorticity contour free wake model

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Lam, C.-M. G.; Bliss, D. B.

    1992-01-01

    Recent work in the study of helicopter aerodynamic loading for acoustics applications has involved research on the development of an exceptionally efficient simulation of the velocity field induced by the rotor's vortex wake. This paper summarizes the work to date on the development of this analysis, which builds on the refined constant vorticity contour (CVC) free wake model recently developed for application to the study of vibratory loading. The particular focus of this paper is on demonstrations of a reconstruction approach that efficiently computes both the flow fields and airloads induced by CVC wakes on lifting rotor blades. Results of recent calculations on both main rotor and tail rotors are presented. These calculations show that by employing flow field reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to the direct calculations used in traditional methods.

  17. Vortex Tilting and the Enhancement of Spanwise Flow in Flapping Flight

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Barbera, Giovanni; Cheng, Bo; Deng, Xinyan

    2011-11-01

    The leading edge vortex is key in lift generation on flapping wings. Its stability depends on the transport of the entrained vorticity into the wake via spanwise flow. This study investigates the generation and enhancement of spanwise flow based on the chordwise vorticity that results from the tilting of the leading edge vortex and trailing edge vortex. Two dynamically scaled robotic model wings, one rectangular and one insect wing shaped based on Drosophila melanogaster (fruit fly), are submerged in a tank of mineral oil and actuated into flapping motion. The overall flow structure was visualized and measured by a Volumetric 3-component Velocimetry (V3V) system (TSI, Inc.). From the three dimensional flow measurements obtained, the chordwise vorticity resulting from the vortex tilting is shown. The distribution of the resulting spanwise flow induced by the vortex tilting is shown using isosurfaces and on a planar cross section downstream of the leading edge. It is observed that the largest spanwise flow is located in the area between the tilted leading edge vortex and the tilted trailing edge vortex, supporting our hypothesis that the vortex tilting enhances the spanwise flow. This vortex tilting mechanisms helps to explain the overall flow structure and the stability of the leading edge vortex.

  18. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  19. Glory, Vortex Street off Baja California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On June 19, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured both a vortex street and a glory visible amid the lattice of clouds over the Pacific Ocean off Baja California. In this image, the swirling clouds known as vortex streets appear along the left edge of the image, stretching southward from Isla Guadalupe. Another NASA satellite captured an earlier example of vortex streets in June 2000. These atmospheric vortices, known as Von Karman vortex streets, often occur in the wake of an obstacle to air flow, such as an island. Stratocumulus clouds--low-lying, sheets of puffy clouds-- over the ocean show the impact of the island on air flow visible though their alternating pattern of clockwise and counter-clockwise swirls. Southeast of the vortex street, a glory, which resembles a rainbow, hovers above the cloud cover. The glory is faint but large, 200 to 300 kilometers long, along a north-south orientation. This phenomenon can occur when the satellite passes directly between the Sun and a bank of clouds below. (People also observe them while looking down on clouds from airplanes.) Not just any kind of cloud can produce a glory; only clouds composed entirely of water droplets (as opposed to ice crystals) can make them. The droplets that form glories generally have diameters of less than 50 micrometers (a micrometers is a millionth of a meter). The water droplets bend the light, showing its different wavelengths, or colors. In this glory, reds and oranges are most visible. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center.

  20. On the wake behind a high speed train

    NASA Astrophysics Data System (ADS)

    Okude, Muneshige; Hayafuji, Hidetoshi; Matsui, Tatsuya

    1992-11-01

    The velocity distributions in the boundary layer on the side wall of a high speed train were measured by using two rakes of the multiple hot-wires. One was set on the wall of the last car of a train which was running at 320 km/hr on the downway railroad, the other was set on the nose of the first car of a train which was at rest on the upway railroad. The instant the two rakes of multiple hot-wire came in a straight line, and the velocity distribution throughout the boundary layer could be obtained. After that instant, the velocity distributions in the outer part of the wake behind the running train were measured by the stationary hot-wire rake set on the car at rest. The thickness of the boundary layer on the wall of the last car was about 2.5 m. The spectrum of the velocity fluctuations in the wake had strong intensity at about 1.5 and 3.5 Hz in its distribution. The flow pattern in the wake was visualized by using the smoke generated by smoke markers. Recording of the wake flow by a video camera was not successful, but the naked eye observation noticed the alternating vortex shedding from the rear surface of the last car as in the case of an automobile. The flow patterns on the rear surface of the last car visualized by the tuft method also showed the alternating vortex shedding. The shedding frequency could be roughly about two to five Hz.

  1. Wake effects on drift in two-dimensional inviscid incompressible flows

    SciTech Connect

    Melkoumian, Sergei; Protas, Bartosz

    2014-12-15

    This investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible and inviscid fluid. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the Föppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the Föppl vortex wake, some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the Föppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is shown to have an unbounded total drift area. By providing a systematic account of the wake effects on the drift, the results of this study will allow for more accurate modeling of hydrodynamic stirring.

  2. Automatic Vortex Core Detection

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Haimes, Robert; Gearld-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    An eigenvector method for vortex identification has been applied to recent numerical and experimental studies in external flow aerodynamics. This paper shows that it is an effective way to extract and visualize features such as vortex cores, spiral vortex breakdowns, and vortex bursts. The algorithm has also been incorporated in a finite element flow solver to guide an automatic mesh refinement program. Results show that this approach can resolve small scale vortical structures in helicopter rotor simulations which are not captured on coarse meshes.

  3. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  4. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    NASA Astrophysics Data System (ADS)

    S, Delnero J.; J, Maran Di Leo; Colman; J; M, Camocardi; Sainz M, Garca; F, Muoz

    2011-12-01

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  5. The application of experimental data to blade wake interaction noise prediction

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.; Devenport, William J.

    1991-01-01

    Blade wake interaction noise (BWI) has been defined as the broadband noise generated by the ingestion of turbulent trailing tip vortices by helicopter rotors. This has been shown to be the dominant contributor to the subjectively important part of the acoustic spectrum for the approach stage of a helicopter flyover. A prediction method for BWI noise based on the calculated trailing vortex trajectories has been developed and estimates of the vortex turbulence have been made. These measurements were made on a trailing vortex from a split wing arrangement and did not give the spectrum of the velocity fluctuations. A recent experiment carried out to measure the turbulence associated with a trailing vortex and the application of the results to BWI noise prediction is described.

  6. Free-surface interactions in the wake of an inverted cylindrical pendulum

    NASA Astrophysics Data System (ADS)

    Voorhees, A. V.; Wei, T.

    2001-11-01

    Vortex-induced vibration experiments of a low-mass circular cylinder were conducted in the Rutgers Free-Surface Water Tunnel. The focus of this study was to ascertain the extent of free-surface effects on the cylinder motion. A 2.54-cm diameter, 160 cm long circular cylinder was mounted vertically in the test section as an inverted pendulum. The bottom was attached to the tunnel floor by a leaf spring and the upper end protruded through the free surface. Strong vertical flows, associated with the Krmn vortex street, have been observed in the wake; such flows have not been found in transverse oscillator wakes that exhibit similar response data. In addition, these vertical flows are markedly altered near the free surface. The 3-D wake and free-surface interactions were examined in the synchronization regime at Re = 3800. In this regime, the amplitude response exhibits highly modulated, quasi-periodic beating. Temporally and spatially-resolved, phase-averaged DPIV measurements were made in horizontal and cross-stream planes. The oblique nature, vertical and streamwise, of the vortex shedding will be shown using composite time plots from both measurement planes. Changes in vortex shedding phase and formation length will be related to response amplitude modulations.

  7. Numerical simulation of separated flow over three-dimensional complex shape bodies with some vortex method

    NASA Astrophysics Data System (ADS)

    Aparinov, A. A.; Setukha, A. V.; Zhelannikov, A. I.

    2014-11-01

    The numerical simulation of the 3-d unsteady flows of incompressible fluid over bodies with complex geometry with the vortex method is considered. The vortex wake approximation is based on the Lagrange approach for the inviscid fluid. The surfaces of bodies are simulated with vortex frames. The described approach makes possible to model thin lifting surfaces as well as solid bodies. The above method was applied for numerical modeling of flow past whole body of modern medium-range passenger aircraft, calculations of aerodynamic characteristics of the aircraft. The results of calculation of pitching and side aerodynamic characteristics are compared to experimental data got in TsAGI (Central Aerohydrodynamic Institute).

  8. Downwash in Vortex Region Behind Rectangular Half-wing at Mach Number 1.91

    NASA Technical Reports Server (NTRS)

    Cummings, John L; Haefeli, Rudolph C

    1950-01-01

    Results of an experimental investigation to determine downwash and wake characteristics in region of trailing vortex system behind a rectangular half-wing at Mach number 1.91 are presented. The wing had a 5-percent thick symmetric diamond cross section beveled to a knife edge at the tip. At small angles of attack, downwash angles were in close agreement with predictions of linearized theory based on the assumption of an undistorted vortex sheet. At higher angles of attack, the flow was greatly influenced by the rolling up of the vortex sheet.

  9. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  10. Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Yang, Zifeng; Sarkar, Partha

    2012-05-01

    An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting "free-run" PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, "phase-locked" PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.

  11. Detection and tracking of vortex phenomena using Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Huang, Yangzi; Green, Melissa A.

    2015-07-01

    The formation and shedding of vortices in two vortex-dominated flows around an actuated flat plate are studied to develop a better method of identifying and tracking coherent structures in unsteady flows. The work automatically processes data from the 2D simulation of a flat plate undergoing a pitch-up maneuver, and from experimental particle image velocimetry data in the wake of a continuously pitching trapezoidal panel. The Eulerian , , and Q functions, as well as the Lagrangian finite-time Lyapunov exponent are applied to identify both the centers and boundaries of the vortices. The multiple vortices forming and shedding from the plates are visualized well by these techniques. Tracking of identifiable features, such as the Lagrangian saddle points, is shown to have potential to identify the timing and location of vortex formation, shedding, and destruction more precisely than by only studying the vortex cores as identified by the Eulerian techniques.

  12. The physical and biological impact of a small island wake in the deep ocean

    NASA Astrophysics Data System (ADS)

    Coutis, P. F.; Middleton, J. H.

    2002-08-01

    A primitive equation numerical model is used to systematically investigate wake formations at Cato Island (15532'E, 2315'S) under a variety of realistic flow conditions. The model faithfully reproduces the key features of data obtained in the vicinity of the island under conditions of "strong" ( 0.7 m s -1) and "weak" ( 0.3 m s -1) incident currents. For the strong inflow study, a vortex shedding wake is indicated, with an eddy shedding period of approximately 36 h. Interaction between wake and free stream currents produces strong downwelling and upwelling in regions of flow convergence and divergence, respectively. For the weak inflow case, a Lagrangian analysis of wake currents shows strong particle retention properties and vertical pumping in the wake; these results are consistent with observations of nutrient uplift and biological enhancement (the "island mass effect") in the vicinity of the island in February, 1993. Numerical sensitivity experiments demonstrate that incident flow speed, background rotation rate and coastal island geometry each have a strong controlling influence on wake formations. Increasing the background rotation rate reduces the frequency of eddy shedding, while disproportionately increasing the circulation strength within shed eddies. For the biologically important non-shedding flow scenario, Lagrangian wake characteristics are examined in detail using the float-tracking scheme of the numerical model. It is found that unsteadiness severely compromises wake retention of passively drifting particles. Coastal geometry also has a strong controlling influence on wake retention. The numerical experiments suggest that particle retention in island wakes has a "hair trigger" characteristic controlled by incident flow speed and direction. This simple but powerful observation is used as the basis for a new proposal to explain the long-standing recruitment problem of biological oceanography. Good overall agreement between field data and numerical predictions further establishes two-dimensional representations of island topography as a viable and computationally efficient alternative to full, three-dimensional modelling, when the modelled flows are "dynamically deep".

  13. Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gregory, James W.

    2015-01-01

    The wake response to three-dimensional forcing of flow over a circular cylinder was studied. Spanwise-segmented dielectric-barrier discharge plasma actuators were mounted on the cylinder in a square wave pattern for active forcing of the cylinder wake. The buried electrodes were placed periodically to create a spanwise-modulated blowing profile, with the aim of targeting three-dimensional instabilities in the wake. Considerable spanwise variation in the wake was achieved, which was a direct consequence of the difference in the location of shed spanwise vortices from the cylinder, along with the generation of streamwise vorticity. Two distinct power levels were used for forcing the flow, with different flow response observed between the two conditions. With low power, the segmented forcing caused the large-scale spanwise structures in the forcing region to lead those in the no-forcing region, with an accompanying shift away from the centerline and generation of streamwise vorticity. While vortex shedding was not substantially attenuated with low-power forcing, the shedding in the near wake was significantly attenuated with high-power forcing. This attenuation in the shedding strength was accompanied by a decrease in the peak shedding frequency, indicating an increase in the formation length. High-power forcing caused elongation of the Krmn vortices due to the induced strain field and strong differential development of the wake shedding frequency. In both forcing regimes, the wake three-dimensionality increased as shown by the increased width of the spectral peaks.

  14. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis

    NASA Astrophysics Data System (ADS)

    Lignarolo, L. E. M.; Ragni, D.; Simo Ferreira, C. J.; van Bussel, G. J. W.

    2014-06-01

    The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of the Delft University of Technology. The wind turbine wake is characterized by the complex dynamics of the tip vortex development and breakdown. Analysis of the flow statistics show anisotropic turbulent fluctuations in the turbine wake, with stronger components in the radial direction. The wake of the actuator disc is instead characterized by isotropic random fluctuations. The mixing process in the shear layer is further analysed in terms of flux of mean flow kinetic energy, to show the main differences between the kinetic energy entrainment in the actuator and the turbine wake. This project is intended to provide the basis for understanding the origin of the limitations of the current wake models based on the actuator disc assumption.

  15. Wake Measurements in ECN's Scaled Wind Farm

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. W.; Schepers, J. G.

    2014-12-01

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the relative wind speed, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  16. Effect of upstream rotor vortical disturbances on the time-averaged performance of axial compressor stators. Part 2: Rotor tip vortex/streamwise vortex-stator blade interactions

    SciTech Connect

    Valkov, T.V.; Tan, C.S.

    1999-07-01

    In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated nontransitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 2, the focus will be on the interaction of stator with the moving upstream rotor tip and streamwise vortices, the controlling parametric trends, and implications on design.

  17. Tomographic PIV measurements of a regenerating hairpin vortex

    NASA Astrophysics Data System (ADS)

    Sabatino, D. R.; Rossmann, T.

    2016-01-01

    The three-dimensional formation and regeneration of a hairpin vortex in a laminar boundary layer is studied in a free-surface water channel. The vortex is generated by fluid injection through a narrow slot into a laminar boundary layer (Re_{δ ^*} = 485) and recorded with tomographic particle image velocimetry. The swirling strength based on the λ _2 criterion shows that the hairpin initially forms at the upstream edge of the elongated ring vortex produced by the injection. The elongated ring vortex decays while the hairpin vortex strengthens. Because the hairpin vortex is of sufficient strength, it forms a kink in the legs as a result of inviscid induction. A bridging structure forms between the legs initially upstream of the kink. As this structure dissipates, another bridging structure forms downstream of the kink and closes the vortex loop between the legs. This pinches off the original hairpin head such that two distinct vortices result. The formation of the secondary hairpin head does not appear to be preceded by a reduction in the spanwise gap between the legs or significant change in height above the wall as has been seen when exposed to a mean turbulent profile. Instead, the formation is preceded by the stretching of the hairpin legs downstream of the kink, exposes the ejected fluid between the legs to boundary layer flow producing conditions similar to those that formed the initial hairpin vortex.

  18. Electrostatically Enhanced Vortex Separator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

  19. Vortex diode jet

    DOEpatents

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  20. Improved vortex reactor system

    DOEpatents

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  1. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  2. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  3. Description of Selected Algorithms and Implementation Details of a Concept-Demonstration Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    2001-01-01

    A ground-based system has been developed to demonstrate the feasibility of automating the process of collecting relevant weather data, predicting wake vortex behavior from a data base of aircraft, prescribing safe wake vortex spacing criteria, estimating system benefit, and comparing predicted and observed wake vortex behavior. This report describes many of the system algorithms, features, limitations, and lessons learned, as well as suggested system improvements. The system has demonstrated concept feasibility and the potential for airport benefit. Significant opportunities exist however for improved system robustness and optimization. A condensed version of the development lab book is provided along with samples of key input and output file types. This report is intended to document the technical development process and system architecture, and to augment archived internal documents that provide detailed descriptions of software and file formats.

  4. Role of leading-edge vortex flows in prop-fan interaction noise

    NASA Astrophysics Data System (ADS)

    Simonich, J. C.; McCormick, D. C.; Lavrich, P. L.

    1993-04-01

    An experimental investigation has been carried out to study the interaction mechanisms associated with wakes from unswept, aft-, and forward-swept vanes incident on rotating prop-fan blades. Wakes from a single, stationary upstream vane interacted with a single rotating prop-fan. Comprehensive flowfield and acoustic measurements were acquired over a range of takeoff operating conditions. The forward-swept vane caused the leading-edge vortex and a core velocity defect associated with it to move inboard towards the hub and away from the high-speed tip region of the prop-fan. The tip vortex had only a small axial velocity disturbance associated with it. This is in contrast to the aft-swept vane which directed the leading-edge vortex out towards the tip, and led a large axial velocity disturbance to be swept toward the prop-fan tip region. Noise measurements revealed that the forward-swept vane wakes generated relatively less interaction noise than the aft-swept vane wakes, at equivalent vane loadings. From this simulation study, a potential noise reduction strategy for the counter-rotating prop-fan is suggested which uses a forward-swept/aft-swept counter-rotating prop-fan combination. By reducing the sweep or modifying the spanwise loading on the blades, it may be possible to control the magnitude and/or location of the velocity defect associated with the leading-edge vortex.

  5. Kelvin-Tkachenko waves of few-vortex arrays in trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Simula, T. P.; Machida, K.

    2010-12-01

    We have calculated the low-lying elementary excitations of three-dimensional few-vortex arrays in trapped Bose-Einstein condensates. The number of different Kelvin-Tkachenko vortex wave branches found matches the number of vortices in the condensate. The lowest odd-parity modes exhibit superfluid gyroscopic vortex motion. Experimentally, these modes could be excited and observed individually or in connection with the formation and decay of quantum turbulence.

  6. Kelvin-Tkachenko waves of few-vortex arrays in trapped Bose-Einstein condensates

    SciTech Connect

    Simula, T. P.; Machida, K.

    2010-12-15

    We have calculated the low-lying elementary excitations of three-dimensional few-vortex arrays in trapped Bose-Einstein condensates. The number of different Kelvin-Tkachenko vortex wave branches found matches the number of vortices in the condensate. The lowest odd-parity modes exhibit superfluid gyroscopic vortex motion. Experimentally, these modes could be excited and observed individually or in connection with the formation and decay of quantum turbulence.

  7. Aerodynamics of vortex generators

    NASA Technical Reports Server (NTRS)

    Breidenthal, Robert E., Jr.; Russell, David A.

    1988-01-01

    An experimental and theoretical study was undertaken of the separation delay and dramatic boundary-layer thinning that can occur in vortex-generator installations. Wind tunnel measurements of the dynamic-pressure profile downstream of a vortex generator were found to compare under certain conditions with that downstream of a suction slit, while water-tunnel visualization studies of vortex-generator height and geometry suggested optimum configurations, and only a minor effect of base porosity. A series of progressively more complex inviscid flow models was developed to be applied to a 3-D integral boundary-layer code. This code predicted layer thinning downstream of the suction site of the vortex models, and other observed features. Thin-layer Navier-Stokes equations are now being used with the ultimate goal of clarifying the physical processes involved in vortex generator performance and developing calculational procedures capable of predicting it.

  8. Vortex control: Further encounters

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.

    1991-01-01

    The progress of continuing investigations on vortex control techniques is updated. The following topics are briefly discussed: (1) vortex flaps adapted for high-alpha control; (2) alleviation of leading edge extension (LEX) vortex induced twin-tail buffet; (3) controlled decoupling of interactive forebody chine and wing vortices; (4) forebody vortex manipulation by mechanical and pneumatic techniques; and (5) stall-departure alleviation of high aspect-ratio wings. Salient results of exploratory low speed wind tunned experiments are presented. The investigations, primarily aimed at concept validation, were performed on generic configurations utilizing flow visualizations and pressure and balance measurements. Selected results illustrate the efficacy and potential for development of specific vortex control concepts for improved high-alpha configuration aerodynamics.

  9. Spanwise loading distribution and wake velocity surveys of a semi-span wing

    NASA Technical Reports Server (NTRS)

    Felker, F. F., III; Piziali, R. A.; Gall, J. K.

    1982-01-01

    The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.

  10. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  11. Direct Monte Carlo Simulations of Hypersonic Low-Density Flows about an ASTV Including Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, V. K.; Moss, J. N.; Wilmoth, R. G.; Price, J. M.

    1992-01-01

    Results of a numerical study concerning flow past a 70-deg blunted cone in hypersonic low-density flow environments are presented using the direct simulation Monte-Carlo method. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Results indicate that a stable vortex forms in the near wake at and below a freestream Knudsen number (based on cone diameter) of 0.01 and the size of the vortex increases with decreasing Knudsen number. The base region of the flow remains in thermal nonequilibrium for all cases considered herein.

  12. Interaction of vortex rings with multiple permeable screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2014-11-01

    Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.

  13. A Theoretical Investigation of Vortex-Sheet Deformation Behind a Highly Loaded Wing and Its Effect on Lift

    NASA Technical Reports Server (NTRS)

    Cone, Clarence D., Jr.

    1961-01-01

    The induced drag polar is developed for wt-ngs capable of attaining extremely high loadings while possessing an elliptical distribution of circulation. This development is accomplished through a theoretical investigation of the vortex-wake deformation process and the deduction of the airfoil forces from the impulse and kinetic energy contents of the ultimate wake form. The investigation shows that the induced velocities of the wake limit the maximum lift coefficient to a value of 1.94 times the wing aspect ratio, for aspect ratios equal to or less than 6.5, and that the section properties of the airfoil limit the lift coefficient to 12.6 for aspect ratios greater than 6.5. Relations are developed for the rate of deformation of the vortex wake. It is also shown that linear wing theory is app1icable up to lift coefficients equal to 1.1 times the aspect ratio.

  14. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  15. A vortex panel method for calculating aircraft downwash on parachute trajectories

    SciTech Connect

    Fullerton, T.L.; Strickland, J.H.; Sundberg, W.D.

    1991-01-01

    This paper presents a discussion of a methodology of the paneled-wing method for calculating aircraft-induced wake velocities. This discussion will include a description of how an aircraft and its wake are represented by finite length vortex filaments, how the strength and location of these filaments are determined based upon aircraft characteristics and trajectory data, and how the induced velocity values are determined once the location and strength of the vortex filaments are known. Examples will be presented showing comparisons between induced velocity values calculated using both the paneled-wing method and Strickland's lifting line method. Comparison is also made between calculated results from the paneled-wing method and wind tunnel data collected in the wake of a scale model aircraft. Additional examples will show the effect of including aircraft downwash calculations in a trajectory analysis for a parachute-retarded store delivered via aircraft. 3 refs., 12 figs.

  16. Feasibility of detecting aircraft wake vortices using passive microwave radiometers

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1993-01-01

    The feasibility of detecting the cold core of the wake vortex from the wingtips of an aircraft using a passive microwave radiometer was investigated. It was determined that there is a possibility that a cold core whose physical temperature drop is 10 C or greater and which has a diameter of 5 m or greater can be detected by a microwave radiometer. The radiometer would be a noise injection balanced Dicke radiometer operating at a center frequency of 60 GHz. It would require a noise figure of 5 dB, a predetection bandwidth of 6 GHz, and an integration time of 2 seconds resulting in a radiometric sensitivity of 0.018 K. However, three additional studies are required. The first would determine what are the fluctuations in the radiometric antenna temperature due to short-term fluctuations in atmospheric pressure, temperature, and relative humidity. Second, what is the effect of the pressure and temperature drop within the cold core of the wake vortex on its opacity. The third area concerns the possibility of developing a 60 GHz radiometer with a radio metric sensitivity an order of magnitude improvement over the existing state of the art.

  17. Flow in the near wake of hemispherical parachute shapes

    NASA Astrophysics Data System (ADS)

    Young, Jeffrey; Carnasciali, Maria-Isabel; Kandis, Mike

    2012-11-01

    A CFD study was conducted using ANSYS to investigate the pitch-stability of several hemispherical parachute geometries at varying Reynolds numbers. In actuality, the parachute itself is not a rigid body and large variations in the parachute geometry can occur due to the flexibility of the parachute fabric. This factor combined with flow through gaps/open areas provide for a much more complex wake than that of a simple bluff body like a disc or sphere. In some cases, Vortex Shedding or alternating vortices are generated which cause oscillations in the axial (i.e., drag force) and normal (i.e., lift force) forces that lead to pitching/oscillations. This study investigated the flow in the near wake of hemispherical parachute shapes (assumed to be rigid) having various sized gaps/open areas positioned at distinct locations to determine which designs resulted in ``less severe'' Vortex Shedding. The design features (i.e., size and location of the gaps) that provided the smallest variation/fluctuation in the normal forces were identified and compared to actual parachute designs.

  18. Suppression of Wake Vortices Using Periodic Cross-Section Variations

    NASA Astrophysics Data System (ADS)

    Bouabdallah, A.; Oualli, H.; Benlahnache, A.; Menad, Y.; Gad-El-Hak, M.

    2013-11-01

    Vortices in the wake of blunt bodies are responsible for significant portion of the drag. An active flow control strategy is designed to inhibit the shedding of such vortex structures. A numerical study is conducted to investigate the effect of periodic cross-section variations on the shed vortices. We use an LES scheme with a Smagorinsky-Lilly subgrid model. The two-dimensional body sinusoidally changes its cross-section from circular to elliptic. The amplitude varies in the range of 5-100% of the nominal cylinder's diameter, and the oscillation frequency varies in the range of 0.2-10 times the cylinder's natural shedding frequency. The von Kármán vortex street is most sensitive to the cross-section variations at a Reynolds number of 3,740. At this Re, the boundary layer is subcritical, and the wake is predominately bidimensional. The flow exhibits a cascade of bifurcations identified by the shifting of the shedding mode. When the flow control strategy is optimized, as much as 65% drag reduction is achieved, which is a direct result of the shedding mechanism inhibition. An experimental validation of this result is forthcoming.

  19. Unsteady inflow effects on the wake shed from a high-lift LPT blade subjected to boundary layer laminar separation

    NASA Astrophysics Data System (ADS)

    Satta, Francesca; Ubaldi, Marina; Zunino, Pietro

    2012-04-01

    An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.

  20. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.

    PubMed

    Buchholz, James H J; Smits, Alexander J

    2008-04-30

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For Re(C) = O(10(4)), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Krmn vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and Re(C) = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  1. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For ReC = O(104), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Krmn vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and ReC = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  2. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  3. Vortex shedding from a hydrofoil at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Bourgoyne, Dwayne A.; Ceccio, Steven L.; Dowling, David R.

    2005-05-01

    High Reynolds number (Re) wall-bounded turbulent flows occur in many hydro- and aerodynamic applications. However, the limited amount of high-Re experimental data has hampered the development and validation of scaling laws and modelling techniques applicable to such flows. This paper presents measurements of the turbulent flow near the trailing edge of a two-dimensional lifting surface at chord-based Reynolds numbers, Re_{C}, typical of heavy-lift aircraft wings and full-scale ship propellers. The experiments were conducted in the William B. Morgan Large Cavitation Channel at flow speeds from 0.50 to 18.3ms(-1) with a cambered hydrofoil having a 3.05m span and a 2.13m chord that generated 60 metric tons of lift at the highest flow speed, Re_{C}{?}50{}10(6) . Flow-field measurements concentrated on the foil's near wake and include results from trailing edges having terminating bevel angles of 44() and 56() . Although generic turbulent boundary layer and wake characteristics were found at any fixed Re_{C} in the trailing-edge region, the variable strength of near-wake vortex shedding caused the flow-field fluctuations to be Reynolds-number and trailing-edge-geometry dependent. In the current experiments, vortex-shedding strength peaked at Re_{C}{=}4{}10(6) with the 56() bevel-angle trailing edge. A dimensionless scaling for this phenomenon constructed from the free-stream speed, the wake thickness, and an average suction-side shear-layer vorticity at the trailing edge collapses the vortex-shedding strength measurements for 1.4{}10(6}{?) Re_{C}{?}50{}10(6) from both trailing edges and from prior measurements on two-dimensional struts at Re_{C}{}2{}10(6) with asymmetrical trailing edges.

  4. Collision of two vortex rings

    NASA Astrophysics Data System (ADS)

    Kida, S.; Takaoka, M.; Hussain, F.

    1991-09-01

    The Navier-Stokes equation is solved using a spectral method in order to investigate the interaction of two identical circular viscous vortex rings starting in a side-by-side configuration. The vortices undergo two successive reconnections, fusion and fission, but the simulation shows topological details not observed in experiments. The shapes of the evolving rings are different for different initial conditions, but the mechanism of the reconnection is explained by bridging, except that the bridges are created on the front of the dipole close to the position of the maximum strain rate. Spatial structures of the various field quantities are compared. It is found that domains of high energy dissipation and high enstrophy production overlap, and that they are highly localized in space compared with the regions of concentrated vorticity. The kinetic energy decays according to the same power laws as found in fully developed turbulence, consistent with concentrated regions of energy dissipation.

  5. Vortex generator for flow control

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor); Marner, Wilbur J. (Inventor); Rohatgi, Naresh K. (Inventor)

    1989-01-01

    Fluidics flow control of a multiphase supply using a cylindrical chamber is achieved by introducing the supply flow radially into the chamber. The supply flow exits through a port in the center at the chamber. A control fluid is then introduced tangentially about 90.degree. upstream from the supply port. A second control fluid port may be added about 90.degree. upstream from the first control fluid port, but preferably two sets of supply and control ports are added with like ports diametrically opposite each other. The control fluid flows against the circular wall of the control chamber, which introduces a vortex in the flow of the supply flow that decays into a spiral path to the exit port in the center of the chamber. The control flow rate may thus be used to control the spiral path, and therefore the supply flow rate through the exit port.

  6. Bubbly wake of surface vessels

    NASA Astrophysics Data System (ADS)

    Caillé, François; Magnaudet, Jacques; Clanet, Christophe

    2006-11-01

    We study the length of the bubbly wake of surface vessels. This wake is important for the boat security since it can extend to several ship length and thus increases the detectability of the ship by torpedoes. The image analysis of the wake of real scale ships reveals the sensitivity of the length to propellers. We have thus conducted a systematic study in the laboratory of the interaction bubble/propeller, trying to address several questions:- what is the role of cavitation?- is the propeller able to attract the bubbles present along the ship at the sea surface?- if attracted, can these bubble be broken by the propeller?

  7. The role of turbulent mixing in wind turbine wake recovery and wind array performance

    NASA Astrophysics Data System (ADS)

    Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan

    2014-05-01

    The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Frh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Frh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11

  8. Unsteady rotor aerodynamics using a vortex panel method

    NASA Technical Reports Server (NTRS)

    Crispin, Y.

    1982-01-01

    The problem of the potential incompressible flow about a helicopter rotor blade is solved using an unsteady vortex-panel method where the mutual interaction between the blade and the distorting free wake is taken into account. The present method alleviates the need to rely upon measured-wake geometries or p5escribed-wake models in order to calculate the airloads. A computer program has been developed which is capable of predicting the geometry of the time-dependent three-dimensional (3-D) wake and the instantaneous loadings for a single blade in hover, climb, and forward flight. The solution is obtained by using a time-accurate step-by-step procedure. The complex-wake geometry at any time is presented graphically with a computer graphics system. Calculated results are compared with published data for a rotor blade in both hover and forward flight. The code has also been applied to the study of the effect of changing blade tip geometry.

  9. Wake patterns of the wings and tail of hovering hummingbirds

    NASA Astrophysics Data System (ADS)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more strongly resembles the bat model. Thus, pairs of unconnected vortex loops may be shared features of different animals during hovering and slow forward flight.

  10. Wake patterns of the wings and tail of hovering hummingbirds

    NASA Astrophysics Data System (ADS)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    2009-05-01

    The flow fields of slowly flying bats and faster-flying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Annas hummingbirds ( Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more strongly resembles the bat model. Thus, pairs of unconnected vortex loops may be shared features of different animals during hovering and slow forward flight.

  11. Vortex crystals in fluids

    NASA Astrophysics Data System (ADS)

    Barry, Anna M.

    It is common in geophysical flows to observe localized regions of enhanced vorticity. This observation can be used to derive model equations to describe the motion and interaction of these localized regions, or vortices, and which are simpler than the original PDEs. The best known vortex model is derived from the incompressible Euler equations, and treats vortices as points in the plane. A large part of this dissertation utilizes this particular model, but we also survey other point vortex and weakly viscous models. The main focus of this thesis is an object known as the vortex crystal. These remarkable configurations of vortices maintain their basic shapes for long times, while perhaps rotating or translating rigidly in space. We study existence and stability of families of vortex crystals in the special case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For general N, we find at least three distinct families of critical points, one of which continues to a linearly stable class of vortex crystals. Because the stable family is most likely to be observed in nature, we study it extensively. Continuation methods allow us to follow these critical points to nonzero weak vortex strength and investigate stability and bifurcations. In the large N limit of this family, we prove that there is a unique one parameter family of distributions which minimize a "generalized" potential. Finally, we use point vortex and weakly viscous vortex models to analyze vortex crystal configurations observed in hurricane eyes and related numerical simulations. We find striking numerical and analytical agreement, thus validating the use of simplified vortex models to describe geophysical phenomena.

  12. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  13. Velocity and rolling-moment measurements in the wake of a swept-wing model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.

    1975-01-01

    Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.

  14. Vortex-Induced Vibrations of AN Elastic Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Zhou, C. Y.; So, R. M. C.; Lam, K.

    1999-02-01

    A numerical study of a uniform flow past an elastic circular cylinder using the discrete vortex method incorporating the vortex-in-cell (VIC) technique has been undertaken. The Reynolds number is kept at 200 for all calculations and the cylinder motion is modelled by a spring-damper-mass system. The fluid motion and the structural responses are solved in an iterative way so that the interactions between the fluid and the structure can be accounted for properly. Analyses of the cylinder responses, the damping, the induced forces, the vortex shedding frequency and the vortex structure in the wake have been carried out. The results show that fluid damping is responsible for a limit-cycle oscillation behaviour even when the system natural frequency is close to the vortex-shedding frequency. Reasonable agreement with previous experimental data and computational results is obtained in the comparison of the amplitude of the limit-cycle oscillations. The results further show that the cylinder oscillations could be as large as 0.57 diameter under certain flow conditions and structural properties. Finally, it is shown that a one-degree-of-freedom structural model yields results that are only in qualitative agreement with a two-degree-of-freedom model. In other words, the streamwise oscillations also have a substantial effect on the transverse vibrations and their characteristics.

  15. Irregular sleep-wake syndrome

    MedlinePLUS

    Sleep-wake syndrome - irregular ... routine during the day. The amount of total sleep time is normal, but the body clock loses ... have a different condition, such as shift work sleep disorder or jet lag syndrome.

  16. Direct-mode interactions in the wake behind a stepped cylinder

    NASA Astrophysics Data System (ADS)

    Valls, B.; Andersson, H. I.; Jenssen, C. B.

    2002-04-01

    A computerized flow analysis of wake phenomena caused by a discontinuity in cylinder diameter is presented. The vortex linkage and half-loop formation observed experimentally by Lewis and Gharib [Phys. Fluids A 4, 104 (1992)] have for the first time been reproduced numerically. The instantaneous vorticity and pressure fields provide a distinct picture of the direct-mode interaction, from which it is concluded that a new half-loop is formed every third shedding cycle.

  17. Generalization of the JTZ model to open plane wakes.

    PubMed

    Wu, Zuo-Bing

    2010-03-01

    The JTZ model [C. Jung, T. Tel, and E. Ziemniak, Chaos 3, 555 (1993)], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is extended here to describe an open plane wake without the confined narrow channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and experimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the interaction between small spherical particles and vortices in an extended JTZ model flow is studied. It is shown that the particle size has significant influences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vortices. Numerical results based on the extended JTZ model are found in qualitative agreement with experimental ones in the normal range of particle sizes. PMID:20370277

  18. The singing vortex.

    PubMed

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  19. Magnetic vortex oscillators

    NASA Astrophysics Data System (ADS)

    Hrkac, Gino; Keatley, Paul S.; Bryan, Matthew T.; Butler, Keith

    2015-11-01

    The magnetic vortex has sparked the interest of the academic and industrial communities over the last few decades. From their discovery in the 1970s for bubble memory devices to their modern application as radio frequency oscillators, magnetic vortices have been adopted to modern telecommunication and sensor applications. Basic properties of vortex structures in the static and dynamic regime, from a theoretical and experimental point of view, are presented as well as their application in spin torque driven nano-pillar and magnetic tunnel junction devices. Single vortex excitations and phase locking phenomena of coupled oscillators are discussed with an outlook of vortex oscillators in magnetic hybrid structures with imprinted domain confinement and dynamic encryption devices.

  20. Influence of separated vortex on aerodynamic noise of an airfoil blade

    NASA Astrophysics Data System (ADS)

    Sasaki, Soichi; Takamatsu, Hajime; Tsujino, Masao; Tsubota, Haruhiro; Hayashi, Hidechito

    2010-02-01

    In order to clarify the mechanism by which aerodynamic noise is generated from separated flow around an airfoil blade, the relation between the attack angle and the aerodynamic noise of the blade was analyzed using a wind tunnel experiment and a CFD code. In the case of rear surface separation, the separated vortex which has a large-scale structure in the direction of the blade chord is transformed into a structure that concentrates at the trailing edge with an increase in the attack angle. The aerodynamic noise level then becomes small according to the vortex scale in the blade chord. When the flow is separated at the leading edge, a separated vortex of low pressure is formed at the vicinity of the trailing edge. The pressure fluctuations on the blade surface at the vicinity of the trailing edge become large due to the vortex in the wake. It is considered that the aerodynamic noise level increases when the flow is separated at the leading edge because the separated vortex is causing the fluctuations due to wake vortex shedding.